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Abstract. Solving combinatorial optimization problems using a fixed
set of operators has been known to produce poor quality solutions. Thus,
adaptive operator selection (AOS) methods have been proposed. But, de-
spite such effort, challenges such as the choice of suitable AOS method
and configuring it correctly for given specific problem instances remain.
To overcome these challenges, this work proposes a novel approach known
as I-AOS-DOE to perform Instance-specific selection of AOS methods
prior to evolutionary search. Furthermore, to configure the AOS meth-
ods for the respective problem instances, we apply a Design of Exper-
iment (DOE) technique to determine promising regions of parameter
values and to pick the best parameter values from those regions. Our
main contribution lies in the use a self-organizing neural network as the
offline-trained AOS selection mechanism. This work trains a variant of
FALCON known as FL-FALCON using performance data of applying
AOS methods on training instances. The performance data comprises
derived fitness landscape features, choices of AOS methods and feed-
back signals. The hypothesis is that a trained FL-FALCON is capable of
selecting suitable AOS methods for unknown problem instances. Exper-
iments are conducted to test this hypothesis and compare I-AOS-DOE
with existing approaches. Experiment results reveal that I-AOS-DOE can
indeed yield the best performance outcome for a sample set of quadratic
assignment problem (QAP) instances.

1 Introduction

Evolutionary search is commonly used to solve combinatorial optimization prob-
lems. During evolutionary search, adaptive operator selection (AOS) is used to
select operators adaptively that will hopefully lead the search toward optimality.
Though it may be highly probable for seasoned practitioners to gain specialized
knowledge of performance characteristics for a subset of problem instances, it
is a non-trivial endeavor to possess such specialized knowledge for all problem
instances. Moreover, with the availability of more sophisticated machine learning
techniques, such specialized knowledge may have become obsolete.

Following on a work that investigates varying operator settings [18], there
has been interest on designing better AOS mechanism. Evidences of such interest



include improving bandit-based operator selection mechanisms by [4, 5]. There is
also a study on the use of adaptive pursuit in neuro-evolution algorithm [8]. These
works contributed to the state-of-the-art by extending specific AOS methods.
To our knowledge, there has been no attempt to achieve a generic method for
selecting AOS methods at the problem instance level. Also of interest to this work
is on the topic of fitness landscape analysis [12], the use of fitness landscape for
selecting differential evolution operators [13] and algorithm selection problem [2].
This work is also encouraged by a neural network-based AOS method using
fitness landscape features for selecting crossover operators [16].

This work aims to overcome the problem of selecting suitable AOS methods
and configuring it to parameter values correct for specific problem instances [18].
Thus, we propose a novel approach, known as I-AOS-DOE, integrating self-
organizing neural networks and design of experiment (DOE) techniques for
instance-specific selection of AOS methods. Using DOE [6], our proposed ap-
proach treats the parameter values and AOS operators as decision variables.
DOE was initially applied to identify the important parameters and determine
ranges of their values. Further analysis is performed to identify the best param-
eter values in those ranges. A class of self-organizing neural networks known as
Fusion Architecture for Learning and Cognition (FALCON) [14] is used as an
adaptive selector of AOS methods. A specific variant of FALCON known as FL-
FALCON [17] is trained using performance data of AOS methods on the problem
instances. The performance data comprises derived landscape features, the se-
lected AOS, the AOS parameter set and feedback signals indicating the solution
quality. The hypothesis of this work is that the trained FL-FALCON can select
suitable AOS methods for unknown problem instances. To test this hypothesis,
experiments were conducted to evaluate the performance of the proposed ap-
proach using Quadratic Assignment Problem (QAP) instances. Comparing the
performance of I-AOS-DOE with existing approaches, experiment results reveal
that I-AOS-DOE can indeed yield the best performance outcome for a sample
set of QAP instances.

The presentation of this work continues in Section 2 where several related
works are reviewed. The problem addressed through this work is defined in
Section 3. The proposed approach is presented in Section 4. This is followed by
the presentation of the experiments and the results in Section 5. Last but not
least, Section 6 summarizes and conclude this work.

2 Related works

SATzilla was introduced as an algorithm portfolio selection methodology to solve
SAT problem [20]. This is achieved by using a number of problem-specific fea-
tures for a given SAT instance. The goal is to provide a runtime prediction model
for SAT solvers. Later, SATzilla was enhanced to include explicit cost-sensitive
loss function [21]. Earlier, Hydra was proposed as using parameter tuning to
address algorithm portfolios [19]. Hydra tunes the solver using ParamILS and
add parameterization to a SATzilla portfolio. In addition, ISAC was introduced
as an instance-specific algorithm configurator for solving MaxSAT problems [7].
It overcomes the problem of proper parameterizing of algorithms by clustering



training instances produced by those algorithms on MaxSAT problems. Later,
ISAC++ generalizes tuning of individual solvers and combine multiple solvers
into a solver portfolio [1]. ISAC++ takes an additional step of using any algo-
rithm selector to choose one of the parameterizations.

SNAP-NEAT incorporates adaptive pursuit as the AOS mechanism for solv-
ing fractured problems [8]. To do so, SNAP-NEAT makes continuous updates and
initial estimation of the operator values and probability. Evaluated using several
problem instances, the experiment results reveal that SNAP-NEAT can select
the best operators intelligently for the problem instances. Thus, SNAP-NEAT
has demonstrated the ability to combine the strengths of NEAT, RBF-NEAT
and Cascade-NEAT effect for solving reactive control and high-level problems.

A dynamic variant of the Multi-Armed Bandit (MAB) upper confidence
bound algorithm was introduced as an AOS mechanism [5]. It uses a sliding
window to update operator quality estimates, discard ancient events while pre-
serving the recent ones. The MAB-based AOS mechanism was evaluated us-
ing artificial and real optimization problems for operator quality distribution.
There is also an MAB-based AOS mechanism using fitness landscape analysis to
better describe the resultant population during evolutionary search [4]. An on-
line learning algorithm known as dynamic weighted majority (DWM) is used to
model concept drifts. It was evaluated using several problem instances and com-
pared with MAEN*-II. Other AOS mechanisms using fitness landscape analysis
includes a landscape-based AOS mechanism for differential evolution (LSAOS-
DE) for selecting multiple DE operators [13]. LSAOS-DE uses problem landscape
information and performance histories of operators in an adaptive operator se-
lection mechanism. LSAOS-DE is evaluated using single-objective optimization
functions from CEC2014 and CEC2015 competitions. It is also compared with
other heuristic-based selection method and state-of-the-art algorithms.

One-sided support vector regression was introduced to address the algorithm
selection problem [2]. It employs exploratory landscape analysis to discover land-
scape features. That proposed approach is evaluated using several BBOB func-
tions. The BBOB functions are divided into four classes according to modality,
separability and global structure. Results from the experiments shows that one-
sided support vector regression can generalize better than the selected bench-
marks. It has also provided better insights on how landscape features can be
mapped to efficient algorithms. There is also a meta-learning framework for ad-
dressing algorithm selection problem in continuous optimization problems [10].
The independent variables are the landscape features and algorithm parameters
while the dependent variable is the algorithm performance. Performance of the
proposed neural network-based approach is evaluated using the CEC2005 bench-
marks. The predicted rankings made by the proposed approach are compared
with the actual rankings and random ranking.

3 Problem Statement

This work addresses the problem of solving quadratic assignment problem (QAP)
instances unknown to the solver. Landscape features are derived using fitness val-
ues from a different and unknown solver. Only the derived landscape features are



presented as input to the solver for solving QAP problem instances. The gener-
ated solution is evaluated using fitness function on the QAP problem instances.
In this work, there are several QAP instances, AOS methods and possible values
for the AOS parameters. The performance of the AOS methods across the prob-
lem instances can be rather different [20]. Thus, the challenge here is to perform
instance-specific selection of AOS methods for specific problem instances.

The application of solver to QAP problem instance j results in a fitness
landscape comprising a list of objective values. A QAP problem instance has also
an objective value of a best-known solution. This work subtracts the objective
value of best-known solution from the objective values in the fitness landscape
to obtain a list of objective value deviations. A set of fitness landscape features
F j for problem instance j is derived using the objective value deviations. The
proposed solution is to recommend the choice of AOS method aosi and possible
values for AOS parameters aphi for solving unknown problem instance j. Clearly,
the resultant fitness landscape and solution is expected to be better than the
quality of the initial fitness landscape F j . The quality of the fitness landscape is
quantified using mean value and minimum value of the objective value deviation.

4 Instance-Specific Selection of AOS Methods

This paper proposed a framework, illustrated using Fig. 1, to address the prob-
lem of solving combinatorial optimization problems. Known as I-AOS-DOE, it
performs instance-specific selection of AOS methods prior to conducting evo-
lutionary search. I-AOS-DOE uses an artificial neural network to make good
recommendations of AOS methods and parameter values for problem instances
adaptively. The statistical technique known as Design of Experiment (DOE) is
used to identify good parameter values for the AOS methods.

Fig. 1. Illustration of the proposed I-AOS-DOE framework for selecting AOS methods
to unknown problem instances

4.1 Neural Network-based Approach

I-AOS-DOE uses a class of ART-based self-organizing neural network known as
FALCON [14] for selecting AOS methods. FALCON is favored for the ability
to learn incrementally in real time. Based on the adaptive resonance theory
(ART) [3], FALCON has been demonstrated in several prior works [14–17] to be
capable of striking a delicate balance between specificity and generalizability. A
specific variant of FALCON known as FL-FALCON [17] is used in this work.



Structure and Operating Modes Seen in Fig. 2, FL-FALCON has a two-
layer architecture, comprising an input/output (IO) layer and a knowledge layer.
The IO layer has a sensory field F c11 for accepting state vector S, an action field
F c21 for accepting action vector A, and a reward field F c31 for accepting reward
vector R. The category field F c2 at the knowledge layer stores the committed
and uncommitted cognitive nodes. Each cognitive node j has template weights
wck for k = {1, 2, 3}.

Fig. 2. The FALCON architecture.

FL-FALCON operates in one of the following operating modes. In PER-
FORM mode, FL-FALCON selects cognitive node J for deriving action choice
a for state s. In LEARN mode, FL-FALCON learns the effect of action choice a
on state s. In INSERT mode, domain or external knowledge can be assimilated
into FL-FALCON [15].

Insertion of Performance Data This work prepares FL-FALCON for select-
ing AOS methods by inserting performance data of AOS methods on problem
instances into it. This step prepares FL-FALCON for selecting AOS methods.
Performance characteristics of AOS methods on problem instances are inserted
into FL-FALCON in two stages. The first stage is to encode input pattern xck

where derived fitness landscape features are encoded as state vector xc1, decision
variables are encoded as action vector xc2 and feedback signal r are encoded as
reward vector xc3, i.e., xck = {xc1,xc2,xc3}. The second stage is to insert the
encoded performance data into FL-FALCON. The insertion operation is per-
formed by selecting a winning cognitive node J for input pattern xck using the
code selection steps. Template learning is applied on winning cognitive node J
to learn input pattern xck.

The decision variables encoded in action vector xc2 are the identity of prob-
lem instance, the choice of AOS method and parameters of the selected AOS
method. Different AOS methods have different number of parameters. To ac-
count for such differences, action vector xc2 is defined to be capable of holding
the largest number of parameters. The continuous values of AOS parameters are
between 0.0 and 1.0. A parameter having value x is encoded into action vector
xc2 as {x, 1.0− x}. Identity of problem instance and AOS method are nominal
decision variables. To encode such information into action vector xc2, a numeri-
cal index vi is used for decision variable i. After that, it is divided by available
number of choices Di to give a continuous numerical value di between 0.0 and
1.0. After that, numerical equivalent of decision variable i di is encoded into xc2



as {di, 1.0 − di}. This way of encoding a numerical value using two elements is
known as complement coding.

Code Selection Code selection is performed to identify winning cognitive node
J for deriving action choice a for state s in PERFORM mode. A winning cog-
nitive node J is identified in LEARN mode to learn the mapping of state s to
action choice a with effect r. In INSERT mode, a winning cognitive node J is
identified to learn an unit of domain knowledge.

A winning cognitive node J is identified in two stages. The first stage is
known as code activation. This stage derive choice function T cj for the committed

cognitive node j with respect to input pattern xck for k = {1, 2, 3} using

T cj =

3∑
k=1

γck
|xck ∧wck

j |
αck + |wck

j |
(1)

where the fuzzy AND operation (p ∧ q)i ≡ min(pi, qi), the norm |.| is defined
by |p| ≡

∑
i pi for vectors p and q, αck ∈ [0, 1] is the choice parameters, γck ∈

[0, 1] is the contribution parameters and k = {1, 2, 3}. This is followed by a
competition among the cognitive nodes using their choice function T cj to find
winning cognitive node J using

J = arg max
j
{T cj : for all F c2 node j} (2)

This is followed by the second stage where the match functionsmck
J of winning

cognitive node J with respect to input pattern xck is derived and checked against
vigilance parameters ρck using

mck
J =

|xck ∧wck
J |

|xck|
≥ ρck (3)

A winning cognitive node J is only confirmed when it satisfies the vigilance
criterion as expressed using (3). Using winning cognitive node J , FL-FALCON
performs operation specific to the operating mode. In LEARN and INSERT
modes, FL-FALCON executes the template learning operation. In PERFORM
mode, FL-FALCON executes the activity readout operation using wc2

J .

Template Learning This step is executed to learn an input pattern xck using
a winning cognitive node J identified using code selection. Winning cognitive
node J can either be a committed or uncommitted cognitive node. A committed
cognitive node j contains a previously learned pattern while an uncommitted
cognitive node j has not learned an input pattern.

Template learning takes place by modifying weight wck
J of winning cognitive

node J using

w
ck(new)
J = (1− βck)w

ck(old)
J + βck(xck ∧w

ck(old)
J ) (4)

where βck ∈ [0, 1] is the learning rate. After that, cognitive node J becomes
a part of the knowledge layer. It will participate in subsequent rounds of code
selection.



Activity Readout This is the process of acquiring action choice a from action
field wc2

J of winning cognitive node J . Previous works encode a single decision
variable in wc2

J . By doing so, action choice a can be read out using

xc2(new) = xc2(old) ∧wc2
J (5)

In this work, decision variables are encoded as action vector xc2. The readout
of the decision variables from action field wc2

J of winning cognitive node J is
performed in reverse order to the encoding scheme.

4.2 Input Pattern

Input pattern xck to FL-FALCON comprises state vector xc1, action vectorxc2

and reward vector xc3. State vector xc1 encodes the fitness landscape features.
Action vector xc2 encodes the decision variables. Reward vector xc3 encodes the
feedback signal.

Fitness Landscape Features Combinatorial optimization problem instances
are solved using evolutionary search. Solution sji generated at search iteration i

for problem instance j has an objective value o(sji ). Problem instance j has an

optimal solution osj with objective value o(osj). Objective value deviation δji of

solution sji at search iteration i to optimal solution osj is derived using

δji =
|o(sji )− o(osj)|

o(osj)
. (6)

Evolutionary search is conducted for N search iterations. Fitness landscape
F j is formed using N values of objective value deviation. Fitness landscape
analysis (FLA) [12] and descriptive statistics techniques are applied on fitness
landscape F j to derive 10 landscape-based features comprising the minimum
value (min), the maximum value (max), the median (med), the standard devia-
tion (std−dev), the coefficient of variation (cv), range (r), skewness (sk), kurtosis
(kt), proportion of upticks (uptick) and proportion of downticks (downticks).

For minimizing optimization problem j, min feature represents an objective
value deviation δji of solution sji having an objective value o(sji ) closest to ob-
jective value o(osj) of optimal solution osj . Similarly, max feature represents

an objective value deviation δjk of solution sjk having an objective value o(sji )
furthest away from objective value o(osj) of optimal solution osj . The difference

between o(sji ) and o(sjk) gives the range of objective value deviation of fitness
landscape Fj . The standard deviation std − dev feature measures the average
amount of quantitative deviation from the mean value of fitness landscape F j .
The coefficient of variation cv measures the dispersion of the objective value
deviation δji making up fitness landscape F j . For this work, skewness (sk) is
a measure of symmetry of fitness landscape F j . Kurtosis (kt) is a measure of
peakedness of fitness landscape F j . With respect to search i, an uptick repre-
sents a worse solution is found at search iteration i+1. The uptick feature is the
proportion of upticks with respect to N search iterations. Similarly, a downtick



represents a better solution is found at search i + 1. The downtick feature is
the proportion of downticks with respect to N search iterations. The derived
landscape features are normalized and encoded using complement coding.

Decision Variables The decision variables comprises the problem instance, the
AOS method and values of AOS parameters. The choices of problem instance
and AOS method have nominal values while the parameters are normalized
continuous values. Thus, the problem instance and AOS method choices are
encoded as part of the action vector by representing them numerically as indices.
The problem index and AOS index are then normalized using the total number
of problem instances and AOS methods respectively. The AOS methods have
different number of tunable parameters. Thus, a fixed-length action vector is
defined to accommodate the largest number of AOS parameters. Similar to the
state vector, complement coding is used to encode the decision variables into
the action vector. A compatible decoding scheme is used to retrieve the decision
variables from the action vector.

Feedback Signal This is a continuous value indicating the quality of fitness
landscape for problem instance j. The quality of fitness landscape is measured
with respect to the objective value of its optimal solution. Feedback signal f j is
derived as an average of the mean value m(δj) and the minimum value min(δji )
of objective value deviations. The mean value gives an aggregated perception of
proximity of raw fitness values to the fitness value of the optimal solution for
a problem instance. Thus, smaller mean value indicates fitness landscape with
better quality. The minimum value of objective value deviation represents the
best possible solution for a problem instance. Thus, smaller minimum value of
objective value deviation indicates the presence of better quality solution. Due

to such significance, the feedback signal f j is derived using
m(δj)+min(δji )

2

4.3 Select AOS Methods

Properly parameterized AOS methods are selected in two stages. The first stage
is to insert performance data into FL-FALCON. This is following by the second
stage of selecting AOS methods using the trained FL-FALCON. The steps for
inserting performance data into FL-FALCON is outlined using Algorithm 1. It
entails the derivation of fitness landscape features F j for problem instance j.
The derived fitness landscape features F j are then encoded as state vector xc1.
The decision variables and feedback signals are encoded as action vector xc2 and
reward vector xc3 respectively. Together, they form the input pattern xck to be
inserted into FL-FALCON.

The trained FL-FALCON selects the AOS methods along with parameter
values using the steps outlined in Algorithm 2. The proposed approach has two
loops. Given the derived fitness landscape features F , the inner loop search for
the best response from FL-FALCON. The winning cognitive node J is inhibited
after each iteration of the inner loop to allow other cognitive nodes to win. The
chosen response comprising AOS method and parameter values are returned to



Algorithm 1 Insertion of Performance Data into FL-FALCON
Require: performance data for applying AOS methods on problem instances
Ensure: FL-FALCON is initialize to appropriate structure and parameter values.
1: while has more performance data do
2: derive fitness landscape features from raw fitness landscape
3: encode derived fitness landscape features Fj as state vector xc1

4: encode decision variables as action vector xc2

5: encode feedback signal as reward vector xc3

6: insert input pattern xck = {xc1,xc2,xc3} into FL-FALCON operating in INSERT mode
7: end while
8: return trained FL-FALCON

the outer loop where it is used in evolutionary search. After that, a new set
of derived fitness landscape features are obtained using the collected objective
values. Together with the chosen response and feedback signals, it is presented
to FL-FALCON for further learning. The updated FL-FALCON is used in sub-
sequent rounds of search for better AOS methods and parameter sets. The outer
loop terminates after meeting the closing criteria.

Algorithm 2 Solving combinatorial optimization problem using I-AOS-DOE
Require: trained FL-FALCON
Require: derived fitness landscape features F
Require: State vigilance threshold ζc1 and state vigilance stepsize δζc1

Ensure: best reward r∗ = 0.0
1: while not end of search do
2: encode derived fitness landscape features F as state vector xc1

3: set action vector xc2 and reward vector xc3 to uncommitted patterns
4: while ρc1p > ζc1 do

5: present input pattern xck to FL-FALCON for action selection
6: if wc3

J (0) > r∗ then

7: r∗ = wc3
J (0)

8: readout AOS methods and parameter values from action vector wc2
J

9: end if
10: inhibit winning cognitive node J
11: reduce state vigilance ρc1p using δζ

12: end while
13: clear inhibition for all cognitive nodes
14: if no valid response then
15: select AOS method and parameter values randomly
16: end if
17: apply AOS method configured with DOE-derived parameter values to solve problem instance

j
18: remember best solution to problem instance j
19: derive fitness landscape features Fj from a new set of objective values
20: encode derived fitness landscape features F as state vector xc1

21: encode selected response as action vector xc2

22: encode feedback signal as reward vector xc3

23: present input pattern xck = {xc1,xc2,xc3} to FL-FALCON for learning
24: end while
25: return best solution to problem instance j

4.4 Design of Experiment

Design of Experiment (DOE) is a well-studied statistical technique for determin-
ing key parameters of particular process [9] and best parameter values for target



algorithms [6]. In this paper, we focus on defining promising regions for the pa-
rameter configurations and define the best parameter values for AOS methods
using DOE technique. We briefly explain the idea of this approach.

Given a set of parameters K, it is assumed that the initial range value of each
parameter k ∈ K is known and bounded by a numerical interval [LBk, UBk].
A 2|K| factorial design is applied to screen and rank the parameters. A com-
plete design requires rep × 2|K| observations where rep represents the number
of replicates for a set of parameter values. Screening is performed to determine
the parameters that are statistically significant. This step reduces the number of
parameters to tune. The following example provides an illustration of how the
screening phase is applied.

Suppose we wish to study the effect of two parameters k1 and k2. The 22

factorial design would consist of four experimental units where each unit is run
rep times:

unit (1): set k1 at LBk1
and k2 at LBk2

unit (k1): set k1 at LBk1
and k2 at UBk2

unit (k2): set k1 at UBk1
and k2 at LBk2

unit (k1k2): set k1 at UBk1
and k2 at UBk2

A factorial experiment is then analyzed using Analysis of Variance (ANOVA)
to estimate the main effect for a particular parameter. The test of significance
of the main effect of the parameters with a significance level (e.g. α = 5%) is
conducted for determining the importance of parameters. The ranking of the im-
portant parameters is then done by comparing the absolute values of the main
effects of those parameters. Each non-significant parameter is then set to a con-
stant value. After that, we find promising ranges for m important parameters for
m ≤ |K|. This process begins by exploring a larger space where the linear rela-
tionship holds allowing for the application of standard approach for linear model
checking and diagnosis [9]. The AOS is run with respect to the parameter config-
uration space which contains (2m+1) possible parameter configurations with an
additional setting defined by the centre points of the m important parameters.
Centre points are added to protect against curvature.

The interaction and curvature tests are used for checking model adequacy.
The planar model can still be applied as long as either one of them is not
statistically significant. Otherwise, the region of planar local optimality has been
reached and the promising region has been found. The process is continued by
applying the steepest descent, in order to bring the parameter to the vicinity of
the optimum values. Once the region of the optimum values has been found (e.g.
one of two statistical tests is statistically significant), the planar model becomes
invalid. The important parameters are assumed to be in their promising range.
The best parameter value is taken by discretizing the range and pick the value
that provides the best result. Details on the DOE technique are in [6].

5 Performance Evaluation

Experiments are conducted to evaluate the performance of I-AOS-DOE and
compared it with selected AOS methods and crossover operators. To do so, it
is necessary to inform the readers of the necessary details of the experiments
such as the choice of AOS methods and crossover operators in Section 5.1, the
default parameters and DOE-derived parameters in Section 5.2 and the selected



QAP problem instances in Section 5.3. After that, the results are presented and
analysed in Section 5.4.

5.1 AOS and Crossover Operators

The AOS methods and crossover operators used in this work are presented in
the following paragraphs.

Adaptive Operator Selection As mentioned in [4], adaptive operator se-
lection is composed of credit assignment and operator selection sub-tasks. The
credit assignment sub-task allocates a credit value signifying the effect of the
selected operator on the quality of the solution. The operator selection sub-task
decides on the choice of operators based on the knowledge of credit value for
the operators. Several AOS methods implementing different approaches for the
sub-tasks are known. In this work, the AOS methods that can be selected using I-
AOS-DOE are probabilistic matching (PM), adaptive pursuit (AP), multi-armed
bandit (MAB), reinforcement learning (RL) and a self-organizing artificial neural
network (NN) known as FL-FALCON [17].

Crossover Operators The AOS methods are implemented to select crossover
operators during the search iterations. Crossover operator picks parts of the
parent chromosomes and use it to form a child chromosome. In this way, the child
chromosome may possess characteristics of the parent chromosomes. Different
crossover operators implement the crossover operation differently. The crossover
operators used in this work are the cycle crossover (CX), distance-preserving
crossover (DPX), partially-mapped crossover (PMX) and order crossover (OX).
Details on the crossover operators are available in [16].

5.2 Design of Experiment

The steps of DOE are presented in Section 4.4. Table 1 summarizes the initial
ranges for parameters of each AOS method. One column is used to present
the best parameter values for each AOS when solving the training instances.
For example, the best parameters for Reinforcement Learning are α = 0.2 and
δ = 1.0. The last column contains the default parameters.

Table 1. Paramater values of AOS
AOS par [LBpar, UBpar] Best Value Default Value [16]
Probability Matching α [0.0, 1.0] 0.5 0.3

pmin [0.0, 0.2] 0.1 0.05
Adaptive Pursuit α [0.0, 1.0] 0.5 0.3

β [0.0, 1.0] 1.0 0.3
pmin [0.0, 0.2] 0.2 0.05

Multi-armed Bandit γ [0.0, 1.0] 0.5 1.0
Reinforcement Learning α [0.0, 0.2] 0.2 0.03

δ [0.0, 1.0] 1.0 0.9
Neural Network ρc1p [0.9, 1.0] 1.0 0.97

ρc2p [0.9, 1.0] 0.95 0.0

ρc3p [0.0, 0.1] 0.05 0.03



5.3 Problem Instances

This work focuses on solving selected Quadratic Assignment Problem (QAP)
problem instances for demonstrating the efficacy of I-AOS-DOE. The QAP prob-
lem instances are selected using prior knowledge of the difficulty levels. The pri-
mary source of such knowledge is the work on the use of self-organizing neural
network as an AOS method in [16]. It is discovered that the AOS methods and
crossover operators have rather broad range of performance profile on 18 QAP
instances. Thus, the interest here is to propose a robust approach capable of
stabilizing the performance on the following 18 QAP problem instances.

chr15a, chr15c, chr18a, chr20a, chr20b, chr20c, chr22a, chr22b, chr25a,
kra30a, kra30b, kra32, lipa40a, nug17, nug24, nug28, nug30, rou20,

5.4 Result Analysis

The results used to illustrate the performance of the AOS methods and crossover
operators are seen in Fig. 3 and Fig 4. The results are presented in the form of
ranks among the various approaches. These approaches are ranked according to
their best objective values for solving the selected QAP problem instances.

Fig. 3. Illustration of the differences in performance of AOS methods on different
problem instances

It is known from [16] that there are problem instances where the AOS meth-
ods have rather diverse outcome. Fig. 3 is meant to illustrate this observation.
From Fig. 3, NN is observed having the best performance for chr15a problem
instance whereas AP is observed performing better than NN for kra32 and nug17
problem instances. In addition, the other AOS methods have rather different per-
formance outcome among these problem instances as well. Thus, I-AOS-DOE is
designed to exploit the strength of AOS methods for different problem instances.

From Fig. 4, I-AOS-DOE is showing rather robust and stable performance. It
has the best rank among the approaches in both experiments. At the other end
of the spectrum, order crossover operator (OX) has the worst performance aggre-
gated over the selected problem instances. The worst performing AOS method
configured using the default parameters is AP. The worst performance AOS
method configured using DOE-derived parameters is RL.

In the second experiment, only the parameters of the AOS methods are de-
rived using DOE. Thus, the effect of DOE on the performance of AOS methods



Fig. 4. Illustration of the ranking obtained by AOS methods configured using DOE-
derived parameters (left) and default parameters (right) and the crossover operators.

can be observed objectively using Fig. 5. The objective value difference seen in
Fig. 5 is obtained by subtracting the objective value of the approach whose pa-
rameter values are derived using DOE from that of the same approach configured
with the default parameter values. This approach is taken because of the expec-
tation that DOE-derived parameters can help the AOS methods to improve on
their performance. Thus, if the application of DOE has helped, the objective
value difference will be positive and vice versa. The approaches seen in Fig. 5
are ranked in ascending order with respect to their objective value difference.
Positive objective value difference indicates the application of DOE has helped
in improving the performance of the AOS method for solving combinatorial op-
timisation problem using evolutionary search.

Fig. 5. Illustrations of the ranking obtained on the effect of DOE on the performance
of the AOS methods

I-AOS-DOE is only affected by the application of DOE indirectly. This is
because the parameters of I-AOS-DOE are not tuned using DOE. Rather, it is
the parameters of AOS methods selected by I-AOS-DOE that are derived using
DOE. From Fig. 5, I-AOS-DOE, MAB and AP are observed having positive ob-
jective value differences. This means the performance of these three approaches
are helped by the application of DOE. Given that the parameters of I-AOS-DOE



are not tuned using DOE, its performance improvement can be attributed to the
selection of AOS methods helped by the application of DOE.

6 Conclusions

This work proposed a neural network-based approach for performing instance-
specific selection of adaptive operator selection methods known as I-AOS-DOE.
Using a class of self-organizing neural network known as FALCON, I-AOS-DOE
is trained to select AOS methods for solving specific QAP problem instances.
Training of a specific variant of FALCON known as FL-FALCON is carried
out by inserting performance data of AOS methods on QAP problem instances.
The performance data comprises a set of derived fitness landscape features as
the state features, a set of decision variables comprising identity of problem
instance, the choice of AOS method and the set of AOS parameter values as
features of the action space. A feedback signal aggregating the average objective
value difference and the best objective value difference to the objective value of
a known optimal solution is encoded as the reward vector.

The trained FL-FALCON selects a set of decision variables using a set of
derived fitness landscape features as inputs. Without knowing the identity of
the problem instance, the trained FL-FALCON is to recommend a AOS method
along with the appropriate parameter set for solving the problem instance us-
ing evolutionary search. Experiments were conducted using 18 QAP problem
instances, 5 AOS methods and 4 crossover operators. Experiment results are
obtained for AOS methods configured using the default parameter values and
DOE-derived parameter values. The aggregated effect of these two sets of AOS
methods over the selected QAP problem instances are compared and contrasted.
From the results, it is observed that I-AOS-DOE is most effective and robust in
solving the selected QAP instances. In addition, it is shown that DOE is effec-
tive towards certain AOS methods in solving the selected QAP instances using
evolutionary search. Consequentially, the use of DOE turns out to have positive
effect on the performance of I-AOS-DOE.

This work can be extended in several dimensions. In particular, we might
incorporate I-AOS-DOE into the Hyflex framework [11]. By being in this Hyflex
framework, I-AOS-DOE can be evaluated on problem domains such as maximum
satisfiability problem (SAT), the flow shop sequencing problem, the bin packing
problem and the personnel scheduling. It may also be possible to compare against
other approaches for solving these benchmark problems. Beyond that, there are
also many fitness landscape analysis (FLA) techniques that can be exploited to
better analyse and characterise the raw fitness landscape of problem instances.
The derivation of fitness landscape features agnostic to approaches used for solv-
ing problem instances can help I-AOS-DOE learn a set of generalizable policies
for selecting AOS methods for unknown problem instances.
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