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ABSTRACT
The knowledge of all occupied and unoccupied trips made by self-

employed drivers are essential for optimized vehicle dispatch by

ride-hailing services (e.g., Didi Dache, Uber, Lyft, Grab, etc.). How-

ever, vehicles’ occupancy status is not always known to service

operators due to adoption ofmultiple ride-hailing apps. In this paper,

we propose a novel framework, Learning to INfer Trips (LINT), to

infer occupancy of car trips by exploring characteristics of observed

occupied trips. Two main research steps, stop point classification
and structural segmentation, are included in LINT. In the first step,

we represent a vehicle trajectory as a sequence of stop points, and

assign stop points with pick-up, drop-off, and intermediate labels
thus producing a stop point label sequence. In the second step, for

structural segmentation, we further propose several segmentation

algorithms, including greedy segmentation (GS), efficient greedy seg-
mentation (EGS), and dynamic programming-based segmentation
(DP) to infer occupied trip from stop point label sequences. Our

comprehensive experiments on real vehicle trajectories from self-

employed drivers show that (1) the proposed stop point classifier

predicts stop point labels with high accuracy, and (2) the proposed

segmentation algorithm GS delivers the best accuracy performance

with efficient running time.
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1 INTRODUCTION
Owing to the rise of sharing economy, ride-hailing services (e.g.,

Didi Dache, Uber, Grab, etc.) have become an integral part of public

transport. For ride-hailing app operators, realtime vehicle occu-
pancy status is an essential information as it offers opportunities to

optimize vehicle dispatch. For example, an occupied vehicle should
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not be arranged for another booking before the current trip is com-

pleted. On the other hand, drivers without passengers should be

alerted whenever there are new bookings nearby.

Often, ride-hailing apps collect vehicle trajectory data, whether

the vehicles are in service or not. However, the occupancy status

of vehicles is not always known for the following reason. Self-

employed drivers tend to adopt multiple ride-hailing app(s) to re-

ceive bookings, making it challenging to gauge actual availability

of each driver. For instance, suppose that one driver serves two

ride-hailing app(s) A and B. When the driver takes a trip booked

from A, the occupancy status of the driver is occupied from A’s per-
spective but remains unoccupied from B’s perspective because the
trip is unknown to B and vice versa. Partial knowledge of booked

trips can result in inaccurate estimation of drivers’ availability, i.e.,

assuming a driver is still available to take passengers while in fact

the driver is busy with another booked trip from other platforms. A

straightforward solution for this is to unify the partial knowledge

from all ride-hailing contenders. This is unfortunately infeasible in

reality due to the competition among the contenders.

In this work, we consider the practical scenario where the ve-

hicle movement trajectories of vehicles are collected by a single

mobile ride-hailing app. Moreover, occupancy in some parts of the

collected trajectory data, corresponding to booked trips, is known.

From the overall vehicle trajectory and the observed occupied trips

within the trajectory, we aim to derive the occupancy status for

unobserved trips within the remaining trajectory. It is worth noting

that the unobserved trips, while their occupancy is unobserved

to the ride-hailing app, may actually contain occupied trips. Our

empirical analysis shows that the unobserved trips dominate the

entire collection of trajectories (e.g., 87.1% of all sampling points).

As illustrated in Figure 1(a), the observed/unobserved trips can

be derived from two types of data: (1) vehicle trajectory and (2)

booked trips in these trajectories. Accordingly, we formulate the

occupancy inference problem as follows.

Problem 1.1. (Occupancy Inference) Given a dataset of vehicle

trajectories and booked trips of participating vehicles, determine

all unobserved occupied and unoccupied trips within the vehicle

trajectories based on the booked trips.

Solving the occupancy inference problemwould bemore straight-

forward if we have both labeled occupied and unoccupied trips in

the trajectory dataset. We can resort to supervised learning by iden-

tifying discriminative features to classify occupied and unoccupied

trips [25][23]. For example, the authors in [25] proposed a super-

vised learning approach to infer the occupied/unoccupied status of

taxi trajectories. They assume both occupied and unoccupied trips

are observed in the input data, which may be valid for some taxicabs

specially equipped to record occupancy status. Nevertheless, the

https://doi.org/10.1145/3269206.3272025
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ride-hailing scenario considered in this paper is uniquely different.

Due to the lack of detailed information on the unobserved trips, we

do not have the ground truth for “unoccupied” trips but only some

knowledge on a small subset of “occupied” trips (obtained from the

booked trips). In other words, our prediction task is one with single
class ground truth, which requires both new prediction methods

and new accuracy evaluation framework.

To utilize observed occupied trips to infer unobserved occupied

and unoccupied trips, we first determine the labels of some impor-

tant trajectory points or stop points at which a vehicle has to make

brief stops. We assume that each occupied trip consists of a pick-up

point and a drop-off point, while having a number of intermediate

stops due to traffic lights or other road conditions. Pick-up, drop-off,

and intermediate stop points are all relatively stationary in a trajec-

tory. Thus, we can represent a trajectory as a sequence of properly

labelled stop points. Following the patterns of pick-up, intermedi-

ate stop points and drop-off in an occupied trip, we can segment a

trajectory into occupied and unoccupied trips. Thus, in this work,

we propose to first learn stop points from observed occupied trips.

To label these stop points as pick-up, drop-off, or intermediate, we

train stop point classifiers using features engineered from a set of

labeled stop points, which can be extracted from known occupied

trips. We then devise several algorithms to infer occupied trips by

forming valid label sequences, i.e., an occupied trip is a sequence

starting with a pick-up point, followed by a number of intermediate

stop points before a drop-off stop point.

Figures 1(b) and 1(c) illustrate our proposed idea. Given a vehicle

trajectory, we extract stop points (refer to Section 2 for stop point

definition) based on a speed threshold. As shown in Figure 1(b), we

obtain six stop points depicted as circles. We apply the stop point

classifier to classify them into: pick-up points (P), drop-off points (D)

and intermediate points (I). Suppose the sequence of assigned stop

point labels is PDIIDP as shown in Figure 1(b). The first two label

assignments PD is a well-formed occupied trip (red solid line) but

not the remaining label assignments IIDP (which refers to neither

an occupied nor an unoccupied trip). To refine the label sequence

with least correction, we employ one of the proposed Structural Trip
Inference algorithms to segment the trajectory into well-formed

sequences (which represent either occupied or unoccupied trips).

In the example, two corrections (2
nd

and 6
th

stop points) are made

to transform the stop points in Figure 1(b) into the well-formed

seqences in Figure 1(c). The corrected stop point labels yield an

inferred occupied trip PIIID.

Uncovering trip occupancies from vehicle trajectories is also

useful for awide spectrum of downstream applications. For example,

with a more complete knowledge of trips made by self-employed

drivers based on both observed and inferred trips, ride-hailing

services can gauge the demand for services and adjust the fare

scheme accordingly. Another application is to use the observed and

inferred trips to detect traffic issues at some locations. For example,

a cluster of intermediate stop points may indicate traffic congestions

(e.g., at specific road junctions) or long queue for dropping off or

picking up passengers (e.g., at airports, CBD transit stations). To

gain more insights from stop points, we may also perform spatial

and temporal analyses to uncover spatial-temporal dynamics of

each type of stop points.

Contributions. This paper makes the following contributions:

(1) Vehicle Trajectory

(3) Trips Occupancy

< (14:05, pick-up point), (14:25, drop-off point) >(2)

observed trip (b1)unobserved trip unobserved trip

Bookings b1Bookings b1Booking: b1

14:05 14:25

(a) Trip Occupancy

Classified Stop Points: PDIIDP

P
D

I

P

D

I

(b) Stop Point Classification

Corrected Stop Points: PIIIDI

I
P

D

I

I I

(c) Structural Trip Inference

Figure 1: Illustration of inferring unobserved trips

The LINT Framework. To address partial ground truth in vehicle

trajectory, we propose a novel framework, namely, Learning to

INfer Trips (LINT), for inferring trips’ occupancies based on the

ideas of stop point classification and structural trip inference.
Stop Point Classification and Analysis.We develop a stop point clas-

sifier for learning stop points from occupied trips using our pro-

posed point features. We reveal the economic activities and urban

dynamics by analyzing geographical locations and temporal distri-

butions of all the labeled stop points.

Cost-Effective Segmentation Algorithms. We devise several segmen-

tation algorithms, including DP, GS and EGS, for generating valid

label sequences from a sequence of predicted labeled stop points.

Experiment Evaluation using Vehicle Trajectory Data.Our experiments

show that the proposed stop point classifier can accurately label

stop points. We also demonstrate that GS achieves high accuracy

with efficient running time.

In the rest of this paper, we present the LINT framework in Sec-

tion 2. Sections 3 introduces our method for stop point classification.

Section 4 describes proposed segmentation algorithms. Section 5

evaluates our LINT framework using real-world datasets. Section 6

reviews the related work. Finally, Section 7 concludes this study.

2 THE LINT FRAMEWORK
In this section, we give an overview of the LINT framework. LINT

is designed to infer occupied and unoccupied trips from unobserved

trips by exploiting a given set of observed occupied trips within

a vehicle trajectory. Figure 2 depicts the LINT framework, which

consists of two major components: (1) stop point classification, and
(2) structural trip inference, which are detailed as follows.

Stop Point Classification. The first step of LINT learns stop point

classifiers from the observed occupied trips by three sub-steps: stop

point extraction, feature extraction, and classifier training. First, we

extract stop points and their labels from the observed occupied trips.

A stop point refers to a consecutive sequence of trajectory points

indicating a near-stationary vehicle (i.e., speed is close to zero).

Second, we explore and extract features associated with the stop

points. Third, we train a classifier to determine pick-up, drop-off,

and intermediate stop points using the proposed features.

Structural Trip Inference. The second step of LINT consists of

three sub-steps: stop point/feature extraction, classification, and



1. Stop Point (SPT) Classification 2. Structural Trip Inference

Unknown Trips
(Unoccupied/Occupied)

Known Trips
(Occupied)

SPT Extraction

Feature Extraction

SPT Classifier Training

SPT Extraction

Feature Extraction

Unoccupied/Occupied Trips

Known Trips
(Occupied)

Observed Trips
(Occupied)

Unknown Trips
(Unoccupied/Occupied)

Unobserved Trips
(Unoccupied/Occupied)

SPT Classifier Trip Segmentation 

SPT Classification

Figure 2: Overview of LINT Framework
Table 1: Statistics of our Ride-Hailing Dataset
Trajectory Occupied Unobserved
# trips 54,567 54,979

# sampling points(×106) 5.3 35.9

travel distance(×106km) 0.4 3.1

Stop Point Training Size Testing Size
intermediate 336,566 (0.825) 84,094 (0.825)

pick-up 38,002 (0.093) 9496 (0.093)

drop-off 33,538 (0.082) 8377 (0.082)

segmentation. Given a vehicle trajectory with unobsesrved trips,

we first extract stop points and generate features for the extracted

stop points. Second, we predict labels of extracted stop points using

the stop point classifier trained from the stop point classification

component. As a result, the vehicle trajectory of unobserved trips is

transformed into a sequence of labelled stop points (or a sequence

of labels, in short). Unfortunately, the sequence of labels may not

follow the structure validity constraint, a pattern of occupied trips

that begins with a pick-up stop point, followed by a number of in-

termediate stop points, before ending with a drop-off stop point. To

address this issue, we propose segmentation algorithms which take

a sequence of labelled stop points as input and make appropriate

corrections to meet the structure validity constraint.

The major research issues in LINT framework lie in two aspects:

(i) to effectively classify stop points, and (ii) to devise cost-effective

segmentation algorithms under imposed constraints to infer trips.

Both tasks are nontrivial. We discuss the challenges and propose

solutions in following sections.

3 STOP POINT CLASSIFICATION
In LINT, an essential task for inferring occupied and unoccupied

trips is to assign labels to stop points of a trajectory, which is

formulated as a stop point classification problem.

Problem 3.1. (Stop Point (SPT) Classification) Given a set of occu-

pied trips C = ⟨c1, · · · , cm⟩, a speed threshold ϵs , and a stationary

time threshold ϵd , learn a classifier to label a given stop point of

unknown type as pick-up, intermediate, or drop-off.

3.1 Stop Point Extraction
Stop point is an aggregation of near by trajectory sampling points

where the vehicle mostly stops and is formally defined as below.

Definition 1. (Stop Point) A stop point corresponds to a sequence

of trajectory sampling points s=⟨qi+1, · · · ,qi+k ⟩ such that the speed
between any consecutive points is less than the speed threshold ϵs
and the time difference between the first and last point is less than

a stationary time threshold ϵd . The location of the stop point is

represented by the centroid of s , where s .lat = 1

k
∑j=k
j=1 qi+j .lat and

s .lnд = 1

k
∑j=k
j=1 qi+j .lnд. The time of the stop point is also derived

by the mean time point in s , i.e., s .t = 1

k
∑j=k
j=1 qi+j .t .

The label of stop points from the observed occupied trips is

determined as follows. For each occupied trip c j corresponding to a
booking bj , we label the stop points covering the pick-up and drop-

off points of c j as pick-up and drop-off stop points, respectively. The

remaining stop points between pick-ups and drop-offs are labeled as

intermediate stop points. Accordingly, we obtain a set of stop points

and their labels from the trajectories as depicted in Table 1. We

observe that the majority of stop points (> 80%) are intermediate.

3.2 Feature Extraction
Given a target stop point si , We investigate three types of features:

spatial density, temporal density, and spatial-temporal density of

stop points. These features aim to capture co-occurrences of the
same type among nearby stop points of si .
Spatial Density. Empirically, we observed that the spatial locality

of stop points, i.e., stop points of the same type tend to share similar

locations. For example, city landmarks are natural for pick-up and

drop-off, while busy road junctions are likely intermediate stop

points. In other words, the spatial correlation between si and l-type
stop points (where l ∈ { drop-off, pick-up, and intermediate}) is

salient, if l-type stop points appear more often in the neighborhood

of si than other types. To capture the pattern, we formally define the

l-type spatial density of stop point si to be the popularity-neutralized
ratio of l-type stop points to the number of stop points in the

neighborhood of si as follows:

fs (si , l) =
|N (r , si ) ∩ Sl |

|N (r , si )| · |Sl |
(1)

where Sl is the universal set of l-type stop points and N (r , si ) is the
set of nearby stop points located within r radius of si . The N (r , si )
in denominator aims to derive the proportion of l-type stop points

in the neighborhood of si , i.e., |N (r , si ) ∩ Sl |/|N (r , si )|. However,
due to the dominance (> 80%) of intermediate stop points over

all places, we further normalize the ratio by |Sl | to neutralize the
popularities of stop points. fs (si , l) returns a value between 0 and

1. A higher value of fs (si , l) indicates l-type is more dominant in

the neighborhood of si .
Temporal Density. We also hypothesize that the temporal corre-

lation between label types and stop points si is salient. For example,

pick-ups/drop-offs are likely to appear more often during morning

and evening peak hours. If l-type stop points appear more often

within a time window ω from the si .t than other types of stop

points, it suggests a higher temporal correlation between l-type
stop points and si . Thus, we define the l-type temporal density of
stop point si to be the ratio of l-type stop points to the number of

stop points within a time window ω from the si .t as follows:

ft (si , l) =
|N (ω, si ) ∩ Sl |

|N (ω, si )| · |Sl |
(2)

where N (ω, si ) is the set of stop points within ωi from si . Similarly,

the |Sl | in denominator neutralizes the popularities of stop points.

Spatial-TemporalDensity. Finally, wemeasure the spatial-temporal

correlation between l-type stop points and si . Likewise, we define
the l-type spatial-temporal density of stop point si as follows:



fst (si , l) =
|N (ω, r , si ) ∩ Sl |

|N (ω, r , si )| · |Sl |
(3)

where N (ω, r , si ) is the set of stop points within ω (e.g., 30 mins)

and r (e.g., 30 meters) away from si . The |Sl | in denominator again

neutralizes the popularities of stop points.

Our features are evaluated in a statistically sound manner. For

example, we find the mean values of spatial-temporal density for

drop-offs (0.987) against non-drop-offs (0.005) are significantly dif-

ferent, with p-value < 1.0 × 10−4 at the 0.05 level.1 This coincides

with typical clustering effect on types of stop points, where drop-

offs are usually spatial-temporally co-located with drop-offs rather

than with non-drop-off points.

3.3 Training Classifier
Once the stop points are extracted from the observed occupied trips,

the point features are extracted to train stop point classifiers. We

adopt one-vs-all strategy to classify each type of stop points. This

gives rise to three one-vs-all classifiers: NI/I (i.e. non-intermediate

vs intermediate stop points), P/NP (i.e. pick-up vs non-pick-up stop

points), and D/ND (i.e. drop-off vs non-drop-off stop points). A stop

point si is given to the three classifiers simultaneously to determine

its label. Once we obtain the prediction outcomes from supervised

learning models (e.g., using SVMs), we then transform the predic-

tion outcomes to posterior probabilities using Platt Scaling [10, 11].

4 STRUCTURAL TRIP INFERENCE
Since the label prediction of stop points in a trajectory sequence

is independent from one another, the predicted labels may violate

the structural validity constraint, i.e., any occupied trip begins with

a pick-up, followed by any number of intermediate stop points,

before ending with a drop-off. Thus, we design the structural trip

inference component in LINT for the following refinement task.

Problem 4.1. (Structural Trip Segmentation (STS)) Given an ini-

tial label sequence Z0 = ⟨z1, · · · , zT ⟩, where zi is the label of i
th

stop point in the sequence (zi ∈ L = {D, P , I }), find a refined label

sequence Z ′ = ⟨z′
1
, · · · , z′T ⟩ of “good quality” such that Z ′ simulta-

neously satisfies the following structural validity constraints.

0 ≤ (num(P, Z [1, i]) − num(D, Z [1, i])) ≤ 1, ∀1 ≤ i ≤ T (4a)

0 ≤ (num(D, Z [i, T ]) − num(P, Z [i, T ])) ≤ 1, ∀1 ≤ i ≤ T (4b)

where num(P ,Z [1, i]) returns the number of P labels in sequence

Z [1, i]. Specifically, Eq. (4a) captures the prefix validity constraint
that mandates the prefix sequence from the beginning up to i to
have either equal number of P and D labels or one more P label

than D. Eq. (4b) captures the suffix validity constraints. The suffix

sequence from position i onwards must have either equal number

of P and D labels or one more D label than P labels.

Problem Analysis. A naive approach to STS is to generate all

possible label sequences, eliminate those not satisfying the validity

constraints, and then return the one(s) with “good quality”. This

requires searching the entire solution space O(3T ), which is not

efficient. Additionally, there is no clearmeasure of the “good quality”

mentioned above. Intuitively, the quality of a valid label sequence is

good if it is closely similar to the true occupied trip. Unfortunately,

we do not have ground truth to measure errors in the inference

1
Due to space constraint, we skip the discussion of spatial and temporal densities.

process. Thus, we propose several heuristics using the probability
profile of a label sequence as a guidance to achieve our goal.

Definition 2. (Probability Profile) Given an label sequence Z , its
probability profile matrixMT×|L | consists of entriesM(i, zi ) denot-

ing the probability that the ith stop point being labeled as zi .

The matrix entriesM(i, zi ) can be estimated based on posterior

probabilities p(zi = x |si ) (i.e., ) for the i
th

point of Z to have label

x ∈ L, using our SPT classifier. As the key challenge in the STS

problem is to find a refined label sequence of (unmeasurable) good

quality, the knowledge of probability profileMT×|L | may potentially

provide clues to find a label sequence that has few errors from the

original stop point labels in the unobserved trajectory.

In the following, we formulate the STS task as an optimization

problem based on the probability profile matrix, and then leverage

dynamic programming to find an optimal label sequence.

4.1 Dynamic Programming (DP)
We measure the quality of a label sequence Z ′ by using likelihood
defined in Eq. (5a) as a proxy. The goal of DP is to find a label

sequence Z that (i) minimizes the log-likelihood of Z (see Eq. (5b)),

and (ii) satisfies the structure validity constraint defined in Eq. (4).

p(Z ′) = p(z′
1
, z′

2
, · · · , z′T ;M) =

T∏
i=1

p(zi |M) =
T∏
i=1

M(i, zi ) (5a)

argmin

Z
log (p(Z )) (5b)

First, we notice that the aforementioned optimization problem

is not eligible to employ dynamic programming given label types

(P,I,D) because the property of optimal substructure does not hold.

To address this issue, we introduce two types of intermediate points:

(1) IO (occupied): the intermediate points after P and before D, and

(2) IU (unobserved): the intermediate points after D and before P.

We provide the proof of eligibility to use dynamic programming for

the optimization problem given label types (P,IO ,D,IU ) as follows:

Proof. Let Z [1,T ] be the optimal label sequence from position 1

toT . Assume that this optimal label sequence contains IO at ith posi-

tion, the solution thus can be split intoZ [1,i] andZ [i ,T ]. If there is a
sequence Z ′ with better log-likelihood from 1 to i , log (p(Z ′[1, i])) <
log (p(Z [1, i])), then log (p(Z ′[1, i]))+log (p(Z [i,T ])) < log (p(Z [1, i]))+
log (p(Z [i,T ])). This contradicts to the first statement that Z [1,T ]
is the optimal label sequence from position 1 to T . □

Once the property of optimal substructure holds, the optimal

valid label sequence can be constructed from optimal solutions

to its subsequences. Let t (i ,x) be the log-likelihood of an optimal

subsequence up to i , where x ∈ {P , IO ,D, IU }. Let trans(x ,y) be
true if and only if it is valid to go from label x to label y. For exam-

ple, the valid transitions to drop-off points include trans(P ,D)=true
and trans(IO ,D)=true. The invalid transition to drop-off points is

trans(IU ,D)=false. The dynamic programming function incorporat-

ing validity constraints can be defined as follows:

t(i + 1,y) = min

trans(x,y)=true
t(i,x) + logM(i + 1,y) (6)

Our goal is then to find the minimum of t (T,D) or t (T,IU ) with

the first position being either t (1,P ) or t (1,IU ) such that validity

constraints in Eq. (4) hold.



Table 2: Optimal Sequence ⟨P, D, P, IO , D, IU , IU , P, D ⟩
i 1 2 3 4 5 6 7 8 9

P 2.3 0.91 1.51 3.45 5.02 5.64 5.86 4.29 6.19

IO 0.22 2.53 2.52 3.12 5.42 5.25 5.47 6.67 5.5

D 2.3 1.15 3.21 2.71 3.34 7.33 7.55 7.77 5.21
IU 0.22 2.53 2.76 4.37 5.01 3.56 3.78 4.99 6.19
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Figure 3: Comparison of proposed algorithms.

Algorithm 1: TripSegmentation (GS and EGS)

Input:
Z = {z1, ..., zT }: initial label sequence, MT×|L | : probability profile of Z , α
and λ: error and z-score threshold;

Output:
Z ′: the valid label sequence with maximum likelihood

1 λZ ← z-score( |Z |), nN I ← numNI(Z );

/* base case: make corrections */

2 if λZ ≤ λ & nN I ≤ α & ¬valid (Z ) then return CorrectSeq(Z ,M ,α );
/* recursion case: division */

3 if EGS then
4 Zlv , Zrv ← findValidPrefixSuffix(Z );

5 Z ← Z − Zlv − Zrv ;
6 else if GS then
7 Zlv ← ∅, Zrv ← ∅;

8 pivot ←findPivot(Z );

9 Zl ← Z [low, pivot ]; Zr ← Z [pivot + 1, hiдh];
10 if ¬valid (Zl ) then Z ′l = TripSegmentation(Zl ,M ,α ,λ) else Z ′l = Zl ;
11 if ¬valid (Zr ) then Z ′r = TripSegmentation(Zr ,M ,α ,λ) else Z ′r = Zr ;
12 return Zlv ⊕ Z ′l ⊕ Z

′
r ⊕ Zrv ;

Running Example. Consider the sequence in Figure 3, DP builds

a table for each possible label subsequences as illustrated in Table 2.

Each entry t (i ,x ) indicates the log-likelihood of obtaining a subse-

quence up to i , Z [1,i], ending with label x ∈ {P , IO ,D, IU }. Starting
from the last position, t (i=9,D) has the minimum log-likelihood.

We then assign "D" to point at i=9. The valid transition from i=8
to t (i=9,D) includes t (i=8,P)=4.29 and t (i=8,IO )=6.67. We then as-

sign "P" to z8 because it has the minimum log-likelihood among

valid transitions. Moving on in the same manner to the very be-

ginning of the sequence, the valid transitions given t (i=2,D) are
t (i=1,P)=2.3 and t (i=1,IO )=0.22. We assign "P" over "IO " to z1 even if

t (i=1,IO ) has smaller log-likelihood in order to meet the constraint

in Eq, (4). The final corrected sequence with two corrections is

⟨P,D, P , IO ,D, IU , IU , P ,D⟩.
Complexity Analysis of DP. The time complexity to compute all

t (T ,x) is O(4T ). DP essentially builds a look-up table of size 4-by-T

for a sequence of length T and four different point types.

4.2 Greedy Segmentation (GS)
The key idea of GS is to secure labels of high likelihoods while pri-
oritizing corrections based on their likelihoods rather than trivially

optimizing global likelihood (as DP does). GS adopts a divide-and-

conquer approach. When Z is structurally invalid but of “manage-

able” length and “simple” to correct, GS directly performs a cor-

rection on it to return a valid sequence Z ′. Otherwise, GS divides
Z into two subsequences Zl and Zr based on a carefully chosen

pivot label. It then recursively correct Zl and Zr and returns the

concatenation of Z ′l and Z
′
r .

As shown in Algorithm 1, GS first determines if the given se-

quence Z is of manageable length and simple (Line 2). We say that

a sequence is manageable if it includes a number of stop points

almost identical to that of a typical occupied trip. We thus com-

pute the z-score of the length of sequence Z and consider Z to be

manageable if the z-score is less than a threshold λ. Let the mean

and standard deviation of the number of stop points in observed

occupied trips be denoted by µ and σ , respectively. The z-score of

|Z |, λZ , is computed by
|Z |−µ
σ . The µ and σ of observed occupied

trips are 9.9 and 3.7, respectively, in our dataset. On the other hand,

Z is considered simple if it does not have too many P and D labels,

which are the labels to be corrected. We use an error threshold α to

determine a simple sequence. A manageable and simple sequence

is corrected by invoking the CorrectSeq procedure.

Choice of Pivot.Anon-manageable or non-simple sequence has to

be further divided into Zl and Zr subsequences using a pivot (Line

8-9). We select the position idx in the sequence with most confident

P or D label based on the profile matrix, as the pivot represents

the beginning or end of some occupied trips which are least likely

to be corrected (i.e., idx = argmaxi,zi ∈{P,D}M(i, zi )). If Zl (or Zr )
is structurally invalid, we recursively call Algorithm 1 with the

appropriate parameters including error and z-score threshold to

correct it (Line 10-11). Finally, we return the concatenation of Z ′l
and Z ′r (Zlv and Zrv are ∅ in Line 12).

Selection of Candidate Corrections. The CorrectSeq procedure

aims to find a correction to a given label sequence. Ideally, we prefer

only a few label changes to minimize loss in the likelihood of label

sequence. We thus use a priority queue Q to efficiently maintain

candidate label changes ordered by decreasing likelihood value.

Starting from the candidate of label change with the largest

likelihood value, we perform one single change on Z to obtain Zc .
If Zc is valid, we add it to our valid candidate set, otherwise it is

added to invalid candidate set. For the invalid candidates, more

changes may be further made to generate valid candidates as long

as the number of changes is capped by α . Finally, we return the

valid candidates with the maximum likelihood.

Generating valid candidates with α changes requires

∑α
i=1C

|Q |
i

examinations. We generate candidates incrementally until α label

changes are explored. Note that α is bounded by number of P’s

and D’s in the sequence. The likelihood of a sequence does not

strictly decrease as more corrections are made. Thus, we have no

choice but to explore candidates with more corrections (up to α )
even when a feasible solution with fewer corrections is found.

Likelihood Pruning Strategy. If a sequence has maximal likeli-

hood, each of its non-overlapping subsequences also has maximum

likelihood. We thus maintain a heap to sort valid candidates Zc ’s
by their local likelihood p(Zc )’s and return the one with maximum

local likelihood as the corrected sequence.



Running Example. Figure 3(b) illustrates GS. Consider the se-

quence in Figure 3(b) with α=2 and λ=2. The sequence is not simple

as it contains more than α NI labels. Hence, GS divides it into two

subsequences Z [1, 5] and Z [6, 9]. GS selects z5=D as the pivot due

to its highest probability 0.8 among all the NI points. Z [6, 9] is valid
(shaded) and thus requires no more work. On the other hand,Z [1, 5]
is invalid and still not simple. It is further divided into Z [1, 2], and
Z [3, 5] using z3=P as the pivot. Z [3, 5] is valid and remains intact.

Since Z [1, 2] contains no more than α=2 NI labels, direct error

correction is performed on it. Between two valid candidates “II”

and “PD”, “II” (likelihood(“II”)=0.08) is chosen due to a larger like-

lihood. The final corrected sequence with only one correction is

⟨I , I, P , I ,D, I , I , P ,D⟩.
Complexity Analysis of GS. The validity examinations require

O(T logT ) time for a sequence of length T . GS at each base case

examines

∑α
i=1C

k×|L |
i candidates with length k , α = 2 ≪ T and

returns the valid candidate with the maximal likelihood. Thus, each

base case requiresO(k2) time for candidate generation. In summary,

the time complexity of GS is O(T logT × k2).

4.3 Efficient Greedy Segmentation (EGS)
To further enhance the efficiency of GS, we proposeEfficientGreedy
Segmentation (EGS) to efficiently derive feasible solutions with-

out compromising too much optimality. The key idea here is to

keep valid subsequences untouched (if possible) before diving into

refinement. As such, the refinement area can be greatly minimized.

Valid Prefix and Suffix Pruning. Given sequence Z [low ,hiдh],
let Zlv=Z [low ,lh] (also called the valid prefix of Z ) be the left

most maximal valid subsequence of Z , where lh ≤ hiдh. Simi-

larly, let Zrv = Z [rh,hiдh] (called the valid suffix of Z ) be the right
most maximal valid subsequence of Z . The remaining subsequence,

Z [lh,rl], where lh ≤ rl , is called the Minimal Invalid Sequence.
As candidate generation for base cases (Algorithm 1, Line 2)

is the most computationally intensive step in GS, we introduce a

strategy to minimize the examination of subsequences. To achieve

this, EGS first identifies the most “minimal invalid subsequence”

by eliminating valid prefix and suffix in a given sequence in each

recursion step. The pseudo code of EGS is given in Algorithm 1.

In the recursion case, EGS first finds the valid prefix and the valid

suffix (Line 4). Afterwards, EGS processes the remaining invalid

sequence Z (Line 5) like what GS does in its recursion phase. EGS

finds a pivot from the updated Z and then divides the latter into

Zl and Zr (Line 8-9). Depending on the validity of Zl and Zr , more

recursion may be required (Line 10-11). In the base case, EGS breaks

the recursion if the sequence satisfies the manageability and sim-

plicity conditions, or searches for the valid candidate with maximal

likelihood otherwise.

Running Example. Figure 3(b) illustrates a running example by

EGS to showcase the efficiency of EGS. Given a sequenceZ=IPPIDIIPD,
EGS detects the valid suffix Z [3, 9] (shaded). There is no valid prefix.
EGS thus focuses on correcting Z [1, 2]. Similar to GS, the likelihood

pruning strategy prunes away candidate "II", selecting the best can-

didate sequence "PD" for Z [1, 2]. The final corrected sequence with

only one correction is ⟨I , I, P , I ,D, I , I , P ,D⟩.
Complexity Analysis of EGS. EGS performs inO(T ) attempts to

examine the validity of a sequence of length T . For each base case,

EGS examines

∑α
i=1C

3k
i candidates of length k , α = 2 ≪ T and

reports the valid candidate with the maximal likelihood. Thus, each

base case takes O(k2) time for candidate generation. In summary,

the time complexity is O(T × k2).

5 PERFORMANCE EVALUATION
In this section, we evaluate our LINT framework using real datasets

and report the experimental results and findings.

5.1 Datasets and Settings
5.1.1 Datasets. We acquired a dataset from a ride-hailing mobile

app provider.
2
The first part of the dataset, booked trips data,

consists of millions of booking records, which contain pick-up

and drop-off locations as well as the time of bookings made by

users in Singapore from July to September 2014 via the app. The

second part of the dataset, vehicle trajectory data, covers the GPS
trajectories of 100 active self-employed drivers on the app during

the same period, with a sampling interval of about 15 seconds. We

also obtained the city’s road network from OpenStreetMap (OSM).

Given vehicle trajectories and bookings, we first clean the data

by removing duplicate bookings made by the same users within

a short period, and noisy trajectory points using Map-matching

techniques [2]. Second, we determine the pick-up and drop-off stop

points of observed occupied trips using both trajectory and booking

data. Finally, we extract all stop points with given speed threshold

ϵs=5 km/h and stationary time threshold ϵd=10 min.

From the trajectory and booking data, we obtain 336,566 (82.5%)

intermediate, 38,002 (9.3%) pick-up and 33,538 (8.2%) drop-off stop

points from 54,567 occupied trips which serve as the ground truth

for training and testing of the stop point classifiers.
3
In experiments,

we use the trajectories covering 80% observed occupied trips for

training and the remaining trajectories, i.e., the other 20% of ob-

served occupied trips, for testing. Through a training and testing

process, we harvest the stop point classifiers and the LINT frame-

work for deployment. Finally, all unobserved trajectories, which

consist of both occupied trips and unoccupied trips, are further

processed and analyzed using the deployed LINT framework.

To train stop point label classifiers, we use SVM [5] and logistic

regression (LR) models, which are evaluated via 5-fold cross valida-

tion. We then apply DP, GS, and EGS on stop point label sequences

to infer valid sequences for occupied and unoccupied trips.

5.1.2 Evaluation Metrics.
Stop Point Classification. In this experiment, we aim to answer

three research questions: (1) how effective and robust are the pro-

posed feature types? (2) what is the impact of imbalance ratio be-
tween positive and negative samples?, and (3) what are the spatial-

temporal properties of each type of stop points? We measure the

accuracy of stop point classification using the following metrics.

F-Score: F -score(P) = 2 · Pre(P) ·Rec(P)/(Pre(P)+Rec(P)) where P
is one of the label types (e.g., pick-up); Pre(P) and Rec(P) denote
the precision and recall of prediction on class P, respectively, by a

classifier under examination.

2
We could not reveal the app name and detailed statistics due to non-disclosure

agreement.

3
The percentages of pick-up and drop-off stop points are not the same due to the

missing drop-off labels in some bookings in our dataset.
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Figure 4: Performance comparison.

Structural Trip Inference. In this experiment, we aim to answer

two research questions: (1) how well can our segmentation algo-

rithms uncover the occupied trips? and (2) how many changes

does each algorithm made upon the original sequence? We use edit
distance and correction rate for the two questions respectively.

Edit distance (ED): Consider a ground truth sequence ZGT under

a mixed occupied and unobserved trips (e.g., GT in Table 4), and

a predicted label sequences Z ′i . The edit distance is defined by the

sum of unoccupied stop points in Z ′i that are occupied in ZGT ,

and unobserved stop points in ZGT that are occupied in Z ′i . Edit

distance gives a total cost to transform Z ′i to Z
GT

.

Correction rate (CR): This measures the fraction of corrections

made to the original label sequence (i.e. #corrected labels in Z ′)
over the size of the original label sequence Z . Note that correction
rate is stricter than editing distance. A sequence may have zero

editing distance but suffered from high correction rate when one

occupied trip is mistakingly predicted as multiple occupied trips.

5.2 Evaluation on Stop Point Classification
Effectiveness of Features. Figure 4(a) shows the effectiveness

of the proposed point features across classification models (LR

v.s. SVM). SVM outperforms LR for all 3 stop point labels and it

achieves 96.7, 97.0, and 97.4 in F-score over pick-up, drop-off and

intermediate classes. We also find that the most discriminative

feature in NI/I classification is the spatial-temporal density of pick-

ups. This matches our intuition that pick-up points are usually

spatial-temporally closer to NI stop points rather than I stop points.

Impact of Imbalance Ratio.As there are manymore I stop points

than P/D stop points, the negative instances significantly out-number

positive instances for P/NP, D/ND and NI/I classification, causing

concerns on the issues of data imbalance and prolonged training

time. We therefore study the impact of imbalance ratio x = number

of negative instances / number of positive instances. Suppose pick-

ups are the positive instances. We then use all of themnp as positive

instances, and x ·np other stop points, i.e., intermediate and drop-off,

to train the P/NP classifier. We study the impact of imbalance ratio

using SVM classifier for x ∈ {2, 4, 6, 8, 10}. Figure 4(b) suggests that
increasing x for negative instances improves classification accuracy

for all stop point labels. Figure 4(b), the I/NI classifier, sees improve-

ment of F-score from 0.953 (x=2) to 0.97 (x=10). Note that at x=2,
the classifiers still perform extremely well (0.953) even though we

down-sample the negative instances significantly.

Spatial-Temporal Properties of Stop Points. Given the set of

classified stop points obtained using our classifier, we investigate

the spatial properties of stop points by analyzing popular land-

mark types in the neighborhood of each type of stop points. We

thus propose popularity-neutralized ratio of t-type landmarks in the

Table 3: Comparison of Stop Points Distribution
Landmarks Clinic Residence Transit Station
(%) D P I D P I D P I

Global 8.2 9.3 82.5 8.2 9.3 82.5 8.2 9.3 82.5

Local 31.6 19.6 48.8 9.6 17.6 72.8 8.3 4 87.7

(a) drop-offs: Scl inic v.s. overall (b) pick-ups: Scl inic v.s. overall

(c) drop-offs: Sr esidence v.s. overall (d) pick-ups: Sr esidence v.s. overall

Figure 5: Temporal Distributions of Stop Points.

neighborhood of the stop point si as follows:

flm (si , t) =
|Nlm (r , si ) ∩ Lt |

|Nlm (r , si )| · |Lt |
(7)

where Nlm (r , si ) denotes the set of landmarks within r (e.g., 50

meters) from the stop point si and Lt denotes the set of t-type
landmarks in facebook business entries dataset. Due to the domi-

nance of some landmarks, we further normalize the ratio by |Lt | to
neutralize the popularities of landmarks. flm (si , t) returns a value
between 0 and 1. A higher value of flm (si , t) indicates t-type is

more dominant in the neighborhood of si .
Popularity-neutralized ratio helps uncover stop points with ex-

ceptionally high or low concentration of certain type of landmarks.

First, we select 300 stop pointswith the highest popularity-neutralized

ratio for each type of landmark type t , denoted as St . We then de-

rived the local distribution of stop point type from St to compare

with the global distribution, i.e., the distribution of overall classi-

fied stop points: 84,094 (82.5%) intermediate, 9,496 (9.3%) pick-up,

and 8,377 (8.2%) drop-off points. Lastly, we identify those landmark

types t such that the alternative distribution drawn from St displays
significant deviation from the global distribution. Through our anal-

ysis, three landmark types are identified as particularly interesting:

t ∈ {"clinic","residence","transit"}. Table 3 summarizes the devia-

tions between the global distribution and three local distributions

drawn from Sclinic , Sr esidence , and Stransit , respectively. For ex-
ample, we observe a notable increase of drop-offs (31.6% v.s. 8.2%) in

the neighborhoods of Sclinic against global distribution. This indi-

cates a higher tendency of drop-offs in the neighborhoods of these

clinics. We also observe notable increases in pick-ups (17.6% v.s.

9.3%) and intermediate stops (87.7% v.s. 79%) in the neighborhoods

of Sr esidence and Stransit , respectively.
We further investigate the temporal variations of stop points in

Sclinic , and Sr esidences . Figure 5(a) shows the temporal distribu-

tion of (1) drop-off proportion from Sclinic and (2) overall drop-off

proportion. We observe a much higher proportion of drop-offs

against overall drop-off proportion during daytime [05:00,15:00].

Figure 5(b) shows the distribution of (1) pick-up proportion from
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Sclinic and (2) overall pick-up proportion. We observe a much

higher proportion of pick-ups against overall pick-up proportion

during night time [16:00,22:00]. Similarly, we observe a much higher

proportion of drop-offs from Sr esidence during night time [17:00,21:00]

in Figure 5(c) and a much higher proportion of pick-ups from

Sr esidence during daytime [04:00,14:00] in Figure 5(d).

By coupling with landmark data, we perform spatial and tempo-

ral analyses and have interesting observations. For example, Figure

6(a) reveals that the drop-offs from Sclinic mostly cluster at major

hospitals or medical centers in Singapore, such as Singapore general

hospital (SGH), national university hospital (NUH), KK women’s

and children’s hospital (KK). The pick-ups from Sr esidence are

mostly from central and east coast neighborhoods where expensive

private residential properties are located as shown in Figure 6(b).

Lastly, the intermediate points from Stransit are mostly nearby

road junctions or public transit places in Figure 6(c). The areas

where enormous intermediate stop points cluster may indicate traf-

fic congestions (e.g., at road junctions) or long queue for dropping

off or picking up passengers (e.g., at airports, CBD transit stations).

5.3 Evaluation on Structural Trip Inference
We evaluate the performance of our segmentation algorithms in

two aspects: (1) quality, and (2) efficiency.

Occupancy Recovery. Figure 7(a) shows how well the proposed

structural segmentation algorithms can recover the ground truth

in terms of edit distance as we vary threshold of correction num-

bers α . Figure 7(a) suggests that GS and EGS take one to four edit

operations to recover ground truth per trajectory under various

settings of α , while DP consistently requires approximately four

edit operations from ground truth occupancy status. GS yields the

least editing operations against ground truth. In particular, GS gives

the most accurate trip segments when α=2 (edit distances = 0.7 on

average). This suggests that prioritizing stop point labels is critical

for accurate prediction of occupancy status.

Occupied Trip Recovery. Figure 7(b) shows that GS returns the
most accurate stop point label sequence against ground truth se-

quence with varying error threshold α . When α=2, GS (0.72%) only
requires half of the corrections (CR) required by DP (1.68%) while

achieving smaller editing distance to recover occupancy status of

(a) Edit Distance (b) Correction Rate

(c) Execution Time (d) Execution Time

Figure 7: Performance comparison of segmentation results.

trajectories. This suggests that GS and EGS employ the knowledge

of probability profile more effectively than DP.

Effectiveness of Pivot Selection Strategy. Figures 7(a) and 7(b)

together suggest that prioritizing point labels may compromise

global likelihood for a corrected label sequence that is more similar

to the ground truth occupied trips. Pivot selection prioritizes valid

substrings of high likelihood values, which enables GS and EGS

to focus on invalid subsequences with small likelihood values. On

the whole, the STS task greatly benefits from the pivot selection

strategy and the divide-and-conquer framework.

Effect of α Threshold in Efficiency. Figure 7(c) compares the ef-

ficiency of GS, EGS, and DP. Among them, EGS incurs significantly

less execution time compared to GS especially when α becomes

larger. For example, the time taken by GS is 2.1 times the time

taken by EGS at α=5. This is because the divide-and-conquer frame-

work can efficiently locate invalid subsequences and safely avoid

examining valid subsequences. DP achieves the best efficiency both

theoretically O(T ) and empirically.

Effects of LikelihoodPruning Strategies. In Figure 7(d), EGS(wo)
without likelihood pruning strategy incurs redundant computation

to derive the final corrected label sequence. In contrast, EGS(w)

benefits from the pruning strategy and incurs less execution time.

Case Studies on Inferring Trip Occupancies. Table 4 shows

an example of how GS benefits from the pivot selection strategy

compared to DP that optimizes likelihood. GT indicates the ground

truth label sequence with two unobserved stop points and Occu-
pancy(GT) is the occupancy status of GT. GS makes two corrections

(CR=2) at i = 8 (I to D) and i = 9 (D to I), respectively; yielding

Occupancy(GS) with only one edit distance to Occupancy(GT) at
i = 9. DP also makes two corrections at i = 3 (P to D) and i = 8

positions (I to P); yielding Occupancy(DP) with seven edit distances

to Occupancy(GT).

6 RELATEDWORKS
Urban Computing. There has been significant amount of work

on urban computing recently [22], including human mobility mod-

elling [3, 6, 7, 17], urban planning in transportation [12, 13, 18–

20, 24], traffic route prediction [1, 9, 16, 19, 20], etc. A number of

applications driven by urban dataset, such as travel cost estima-

tion [4, 14, 15] and refuel behavior sensing [21], have emerged.



Table 4: Comparison of trip occupancy in edit distance (ED) and cor-
rection rate (CR) (0, –, and ? strand for unoccupied, occupied, and
unobserved).

i 1 2 3 4 5 6 7 8 9

GT ? ? P I I I I I D

Occupancy(GT) ? ? — — — — — — —
Method Inferred Trip Occupancies ED CR
GS I I P I I I I D I
Occupancy(GS) 0 0 — — — — — — 0 1 2

DP P IO D IU IU IU IU P D

Occupancy(DP) — — — 0 0 0 0 0 — 7 2

Zheng et al. propose a travel time estimation model for any path

based on trajectories of vehicles [14]. Liu et al. use taxi trajectory

data to learn drivers’ routing decisions [8]. Yuan et al. propose a

recommendation framework for both taxi drivers and passengers

based on passenger mobility patterns and taxi driver behavior from

their GPS trajectories [20]. The paper also presents a probabilistic

model to detect the occupied/cruising/parked status of a trajectory

segment for a working taxi.

Trajectory Segmentation. One major issue often appeared in

urban computing applications is trajectory segmentation [23][25].

Recently, Zheng et al. propose a supervised learning approach (deci-

sion tree, CRF etc.) to partition trajectory into segments of different

transportation modes (e.g., bike/bus/driving/walk) [23]. With given

transportation modes of trajectories, they propose to utilize super-

vised learning approaches to infer transportation modes based on

segment features. Lastly, a postprocessing is introduced to improve

the inferred sequences of transportation modes by incorporating

typical user behaviors. Zhu et al. adopt a similar framework to infer

the status of taxi trajectories [25]. The authors also resort to super-

vised learning approaches to infer the taxi status for each trajectory

points given both ground truth of occupied and unoccupied taxi

trajectories.

The ground truth labels, e.g., occupied and unoccupied labels

of segments in [25], are given in all the aforementioned related

works. This facilitates effective supervised learning for the targeted

problems. Uniquely different from these previous works, we have

only knowledge of a small subset of occupied trips. We therefore

face a prediction task with single class ground truth due to lack

of knowledge in unoccupied trips. The main innovation of this

paper is thus to address posed challenges in prediction method and

accuracy evaluation based on the ideas of stop point classification
and structural trip inference.

7 CONCLUSIONS
We address a novel problem of inferring unobserved trips from

vehicle trajectories and booking data using a small set of occupied

trips. We propose a new framework, Learning to INfer Trips (LINT),

for inferring occupied and unoccupied trips based on the ideas of

stop point classification and structure trip inference. For the former,

we extract point features to effectively classify stop points. In addi-

tion, we propose to use probability profiles as potential clues to find

a valid label sequence of “good quality” for the latter. We develop

a dynamic programming (DP) algorithm to infer trip occupancies

from stop point label sequences. Additionally, we propose novel

greedy segmentation (GS) and its efficient variant greedy algorithm

(EGS). We conduct extensive experiments to evaluate our propos-

als. Results show that stop point labels can be predicted with high

F-score. GS achieves high accuracy with efficient running time.
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