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JobComposer: Career Path Optimization via
Multicriteria Utility Learning ?

Richard J. Oentaryo, Xavier Jayaraj Siddarth Ashok, Ee-Peng Lim, and Philips Kokoh
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1 Mclaren Applied Technologies, 7 Temasek Boulevard, Singapore 038987
richard.oentaryo@mclaren.com

2 Living Analytics Research Centre, Singapore Management University, Singapore 178902
{xaviera,eplim,pprasetyo}@smu.edu.sg

Abstract. With online professional network platforms (OPNs, e.g., LinkedIn,
Xing, etc.) becoming popular on the web, people are now turning to these plat-
forms to create and share their professional profiles, to connect with others who
share similar professional aspirations and to explore new career opportunities.
These platforms however do not offer a long-term roadmap to guide career pro-
gression and improve workforce employability. The career trajectories of OPN
users can serve as a reference but they are not always optimal. A career plan
can also be devised through consultation with career coaches, whose knowledge
may however be limited to a few industries. To address the above limitations, we
present a novel data-driven approach dubbed JobComposer to automate ca-
reer path planning and optimization. Its key premise is that the observed career
trajectories in OPNs may not necessarily be optimal, and can be improved by
learning to maximize the sum of payoffs attainable by following a career path.
At its heart, JobComposer features a decomposition-based multicriteria utility
learning procedure to achieve the best tradeoff among different payoff criteria
in career path planning. Extensive studies using a city state-based OPN dataset
demonstrate that JobComposer returns career paths better than other baseline
methods and the actual career paths.

Keywords: Career planning · multicriteria optimization · job transition

1 Introduction

Motivation. At some point in our life, we may raise questions such as “What is my
career goal?” or “How can I achieve my career goal?” Developing a career plan is
essential for the career success of individuals, giving them a sense of direction to follow
and a way to track how their career is progressing. Career planning would also help
workforce improve their employability and develop the right skills, especially in the
face of uncertainties due to rapid shifts in global economy and technology.

The success of career planning depends on how much insights one has on the set
of possible career trajectories. To gain such insights, one may conduct his or her own
? This research is supported by the National Research Foundation, Prime Minister’s Office, Sin-

gapore under its International Research Centres in Singapore Funding Initiative.
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research or seek consultation and counseling from some career coach(es). Both ap-
proaches are however challenging as they have to cope with dynamically-changing job
and workforce landscape. To offer individuals career planning insights at the societal
scale, there is a critical need to automate career planning as much as possible, thus
motivating this research.

Fortunately, with the fast-rising adoption of online professional network (OPN) sites
(such as LinkedIn, Xing and Viadeo), people start creating and sharing their profes-
sional profiles with others, using their profiles to connect with others as well as to
explore new career opportunities. It is also possible to leverage on these OPNs to gain
deeper and more comprehensive insights on career trajectories.

Objectives. In this paper, we therefore develop a new data-driven approach dubbed
JobComposer for automated career path planning and optimization. The centerpiece
of this approach is a multicriteria utility learning procedure that seeks to identify an op-
timal strategy for composing a career path emanating from a given origin job, by taking
into account the trade-off among different payoff criteria simultaneously. Our goal is
to assist job seekers and career coaches in making more informed career decisions and
guidance, respectively, based on a data-centric view of job and workforce landscape.

To the best of our knowledge, the problem of optimizing (improving) existing career
paths is new, and our JobComposer is the first attempt to address this problem via
utility learning. Previous works on OPN-based career path recommendation [11,9] favor
the more popular career paths that people take, implying an inherent assumption that
common career paths are ideal. However, this is not necessarily true in reality, and so
the utility values of these popular career paths may be suboptimal (see Section 5).

JobComposer works based on the premise that observed career paths may be
suboptimal and can be further improved. The suboptimality can be due to the “incom-
pleteness” of observed career paths as their users may discontinue further career for
various reasons. For example, a user could decide to retire at an early age, or fail to
acquire the required skills to advance to the next higher level job. Another possible
reason of suboptimality is the subjectivity in career decisions made by users. For in-
stance, an head of engineering who is no longer interested in senior management, may
relinquish her position to become an engineer. Finally, the optimality of a career path
involves multiple criteria, e.g., salary, job level, etc.. To realize this, JobComposer
assembles career paths out of all possible job transitions found in observed career tra-
jectories, and employs a new multicriteria utility learning procedure that jointly takes
into account multiple payoff criteria when optimizing a career path. This allows us to
capture the tradeoff among different—possibly competing—goals in career path plan-
ning. As individuals select their preferred criteria, JobComposer would return the
corresponding optimized career paths. However, these career paths are not personalized
as the preferred criteria differ from user features (e.g. skills, education level, etc.).

Contributions. We summarize our main contributions as follows: (a) We present a
new problem formulation of career path optimization as a multicriteria utility learning
task using career trajectories observed in OPN data, which distinguishes our work from
previous works [18,9] that do not consider a set of payoff criteria in finding good career
paths; (b) We develop an efficient decomposition-based iterative procedure that divides
the multicriteria utility learning problem into multiple scalar optimization subproblems
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and optimizes them simultaneously, which has been shown to be efficient than non-
decomposition-based methods; and (c) We conduct extensive experiments to evaluate
the efficacy and validity of our approach in both quantitative and qualitative aspects.

Paper outline. In Section 2, we first survey related works on job transition analyses
and career recommendation. Section 3 describes our dataset. We then elaborate the
proposed JobComposer approach in Section 4. Section 5 presents the details of our
empirical study using a city state-based OPN dataset. Section 6 concludes this paper.

2 Related Work

Research on job and workforce movements has been around for decades [17,10,13,5,6],
which often involves analyzing various aspects of workforce such as age and wage
growth. These studies, however, traditionally relied on surveys, census, and other data
such as tax lists and population registers, which require time-consuming and costly
(manual) efforts to collect. Moreover, the findings tend to be focused on selected work-
force segments, and cannot be easily replicated in a larger population.

With the rise of OPN, there is now a growing interest to conduct research on online
user data in order to understand job transition behavior and career growth. Wang et al.
[18] proposed a hierarchical Bayesian model to predict the probability of a user making
a job transition at a certain time. Cheng et al. [3] modeled job transition activities to rank
influential companies. State et al. [16] analyzed the migration trends of professional
workers into the US. Xu et al. [20] combined work experiences from OPNs and check-
in records from location-based social networks to predict job change occasions. More
recently, Chaudhury et al. [2] analyzed the growth patterns of the ego-network of new
employees in companies. Xu et al. [21] generated and analyzed job transition networks
to identify talent circles. Kapur et al. [7] employed the PageRank [14] algorithm on
a graph of job transitions among companies to estimate the desirability ranking of the
companies, and use this ranking to compute the ranking of universities.

Beyond job transition analysis, a few studies have been conducted that make use
of the career paths (trajectories) of OPN users. Xu et al. [22] developed a sequence
alignment method for quantifying the professional similarity between two career paths.
Lou et al. [11] devised a career path planning method that utilizes the shortest path
algorithm on a job hop graph, where the edge weight is the negative logarithm of the
job transition probability. Most recently, Liu et al. [9] developed a multi-source learning
framework that combines information from multiple social networks (i.e., sources) and
models the career path of an individual.

While our work is most closely related to [11,9], it is noteworthy that the proposed
JobComposer approach is based on a fundamentally different premise. In particular,
the methods in [11,9] were designed to obtain a good fit to common/popular career tra-
jectories observed in the OPN data. As such, they inherently assume that the common
trajectories are ideal, which may not always hold in reality. In contrast, JobComposer
works based on the premise that the observed career trajectories may be suboptimal and
have room for improvements. JobComposer also goes further by incorporating multi-
criteria utility-based learning and path generation features. As such, it is able to achieve
a good balance among multiple goals involved in a career path planning process.
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Table 1. Statistics of our OPN dataset

Count metric Value
No. of user profiles 455,477
No. of career trajectories 57,784
No. of (unique) jobs 255,691
No. of (unique) job transitions 265,533
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Fig. 1. Distribution of out-degree of jobs

3 Dataset

Dataset construction. We study career trajectories data collected from one of the
largest OPNs in the city state of Singapore. We first crawled the directory of all public
user accounts maintained by the target OPN. The dataset was constructed in Novem-
ber 2016. These public user profiles cover professional attributes of users including
their education and career trajectory information. Each career trajectory consists of the
sequence of jobs of a user and the respective companies. Companies come with differ-
ent sizes and are assigned to the size categories: [2-10], [11-50], [51-200], [201-1000],
[1001-5000], [5001-10000], and [10001+]. Each company also belongs to an industry.

Data cleaning. A job here refers to a job title in a certain sized company of an
industry, as opposed to specific job title in some company. This allows the resultant ca-
reer paths to be more appropriate for guiding users as opposed to specific job in specific
company. To facilitate a proper empirical study, we perform two data cleaning steps.
Firstly, we only include those jobs s, whose job titles js have a minimum support of
100 users. This removes jobs with unusual and misspelled titles. Secondly, we remove
users who did not specify their education qualifications. We also remove all work expe-
riences before one graduates from university or colleges. Table 1 summarizes the count
statistics of the final dataset that we obtain after cleaning, and use throughout our study.

Out-transition degree of jobs. To determine the likelihood of out-transition of jobs
in our dataset, we plot the out-transition degree of jobs in Figure 1 against the career
paths observed. From the figure, we can observe that there are jobs with an out-degree
of 0. These represent the last jobs in the career paths. These are usually the CEO and
other very senior jobs. There are also many more jobs with out-degree greater than 1.
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4 Proposed Approach

In this section, we first introduce our problem formulation that forms the basis of
our JobComposer approach. Next, we describe the core ideas of JobComposer,
namely: decomposition-based multicriteria utility learning and multicriteria utility se-
lection. Finally, we present several payoff criteria used in the context of our OPN data.

4.1 Problem Formulation

First of all, we define a career path as a sequence of jobs taken by a person in a chrono-
logical order. Here, two adjacent/consecutive jobs in the sequence are assumed to have
non-overlapping time period. Each job s is represented by a tuple (is, cs, js), which de-
notes a job title js for a company size category cs in industry is. Note that each company
size category cs represents the company type in terms of employee size, e.g., ‘1-50 em-
ployees’ typically denotes a small startup, whereas ‘10,000+ employees’ usually refers
to a large, multi-national corporation (MNC).

Based on this definition, we formulate the following problem: “Given a person’s
current (origin) job, how can we find an optimal career path that maximizes the total
payoff possibly obtained by following that path?” Under this formulation, we then treat
career path as a stochastic process that undergoes transitions from one job (state) to
another job (state). For computational simplicity, we particularly focus on a type of
stochastic processes called Markov process, which exhibits a Markov property such
that the next value of the process depends on the current value, but is conditionally
independent of the previous values of the stochastic process [4]. In the context of career
path planning, this means that a person’s future job is stochastically independent of
his/her jobs in the past, given his/her current job.

It is worth noting that our formulation can be viewed as a special instance of Markov
Decision Process (MDP) [15]. One key difference is that the MDP formulation addi-
tionally includes the concept of action, which allows an agent to make a choice/decision
that would affect the evolution of the agent’s states over time. However, in our career
planning context, only one action exists for the transition of one state (job) to another,
which is hopping from one job j to another job j′. In this case, the next state is a deter-
ministic (non-stochastic) function of the current state and action, and thus MDP reduces
to a Markov process. Extended formulation of the current career planning problem to
MDP is beyond the scope of this paper and would be left for future work.

Given the Markov process formulation, how do we then define the optimality of a
career path beginning from some origin/source job s? Firstly, we consider a person who
has to decide his/her path of destination jobs {d1, . . . , dt, . . . , dT }, in order to maximize
the discounted sum of future payoffs r(dt−1, dt) that he/she can possibly get starting
from s. The optimal value for this maximization process is given by the value function:

V (s) = max
{d1,...,dt,...,dT }

[
r(s, d1) + γr(d1, d2) + . . .+ γT−1r(dT−1, dT )

]
(1)

where s = d0 and γ ∈ (0, 1] is the discount factor. The discount factor controls how
myopic (or far-sighted) the selection of a career path is. In an economic context where
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the payoff is the amount of dollars made, a discount factor γ < 1 can be interpreted in
terms of the idea that a dollar today is worth more than a dollar tomorrow.

Subsequently, the formula (1) can be rearranged to:

V (s) = max
d1

[
r(s, d1) + max

{d2,...,dT }

[
γr(d1, d2) + . . .+ γT−1r(dT−1, dT )

]]
= max

d1

[
r(s, d1) + γ max

{d2,...,dT }

[
r(d1, d2) + . . .+ γT−2r(dT−1, dT )

]]
= max

d
[r(s, d) + γV (d)] (2)

where we equate d = d1 for notational simplicity. This recursive definition is also
known as the Bellman equation, which underpins dynamic programming (DP) theory
[1]. Next, we define a utility function U(s, d) for transition from job s to d such that:

V (s) = max
d

U(s, d) (3)

This in turn leads to the following recursive formulation:

U(s, d) = r(s, d) + γV (d)

= r(s, d) + γmax
d′

U(d, d′) (4)

In the recursive formulation, d′ denotes the next destination job that maximizes the
overall utility. To solve equation (4), a simple way is to turn the equality symbol “=”
into an assignment operator “←” and keep iterating the assignments. This leads to the
following value iteration procedure: For all job transitions (s, d), where s and d are the
source and destination jobs respectively, repeat until terminating criterion:

U(s, d)← r(s, d) + γmax
d′

U(d, d′) (5)

The above asynchronous DP update procedure is guaranteed to converge to the optimal
utility U∗(s, d), independent from the initial value of U(s, d). We can prove the con-
vergence by showing that, for large iteration k, limk→∞ U(s, d)(k) = U∗(s, d). To this
end, we first quantify the distance between U(s, d)(k) and the optimal U∗(s, d) using
L∞-norm, i.e., ||U (k) − U∗||∞ = max(s,d) |U(s, d)(k) − U(s, d)∗|. We then let T be
the backup operator such that T (U(s, d)) = r(s, d) + γmaxd′ U(d, d′). With this, we
can show that:

||U (k+1) − U∗||∞ ≤ ||T (U (k))− T (U∗)||∞ ≤ γ||U (k) − U∗||∞ ≤ . . .
≤ γk+1||U (0) − U∗|| → 0 (6)

4.2 Decomposition-Based Multicriteria Utility Learning

The value iteration described in (5) operates based on a single type of payoff criterion.
In practical career planning, however, one may be interested in multiple payoff criteria,
such as job level gain, duration of stay in a company, income gain, etc. To account for
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Algorithm 1 Decomposition-Based Multicriteria Utility Learning (MUL/D)
Inputs:

Set of all job transition observations D = {(s, d)},
Discount factor γ ∈ (0, 1],
Maximum iteration Tmax,
Total number of weight combinations N

Output:
Utility values {U(s, d,λj)|∀(s, d) ∈ D, ∀λj ∈ λ}

/* Initialization */
Generate all N possible weight combinations λ = [λ1, . . . ,λj , . . . ,λN ]
Set U(s, d,λj)← 0 for all weight combinations λj ∈ λ and job transitions (s, d) ∈ D
/* Utility update */

repeat
for each weight combination λj ∈ λ do

for each job transition (s, d) ∈ D do
r(s, d,λj)←

∑M
i=1 λ

j
ifi(s, d)

U(s, d,λj)← r(s, d,λj) + γmaxd′ U(d, d′,λj)
end for

end for
until maximum iteration Tmax

multiple career planning goals, we generalize the single-criterion approach described in
(5) and propose a new multicriteria utility learning procedure.

To this end, we first decompose the multicriteria utility problem into a number of
scalar optimization subproblems by considering a weighted combination of the different
criteria. Let λ = [λ1, . . . , λi, . . . , λM ]T denote a weight vector, such that λi ≥ 0,∀i ∈
{1, . . . ,m} and

∑M
i=1 λi = 1, where M is the total number of criteria. Accordingly,

we extend the payoff and utility functions by adding a third dimension that corresponds
to a particular weight vector λ. That is, the value iteration formula now becomes:

U(s, d,λ)← r(s, d,λ) + γmax
d′

U(d, d′,λ) (7)

where the payoff function r(s, d,λ) is defined by:

r(s, d,λ) =

M∑
i=1

λifi(s, d) (8)

where the payoff function r(s, d,λ) is defined by: fi(s, d) is the ith payoff criterion for
transition (s, d). We further elaborate the payoff criteria we have used in Section 4.4.

The expression given in (8) corresponds to the so-called weighted summation scalar-
ization method [12]. Given a fixed weight vector λ, r(s, d,λ) is a linear combination of
fi(s, d). The value iteration procedure for U(s, d,λ) will thus retain the same conver-
gence property as equation (6). An empirical demonstration of the convergence trait of
our multicriteria utility learning procedure is presented in Section 5.

Algorithm 1 summarizes our decomposition-based multicriteria utility learning pro-
cedure, or MUL/D in short. The original multicriteria utility career path optimization is
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broken down into multiple weighted criteria single utility optimization problems, each
with a unique weight combination. Here, the number of criteria is M . The total number
of possible weight combinations N is controlled by a positive (integer) parameter H .
More precisely, λ1, . . . ,λj , . . . ,λN are all the weight vectors in which each individual
weight λji (1 ≤ i ≤ M − 1) takes a value from { 0

H ,
1
H , . . . ,

H
H }. The final weight

component, λjM , is determined by:

λjM = 1−
M−1∑
k=1

λjk (9)

With this definition, the total number of possible weight vectors N for M different
criteria is given by:

N = (H + 1)M−1 (10)

As an example, suppose we have three criteria (i.e., M = 3) and H = 10. In this
case, the degree of freedom is M − 1 = 2, owing to the constraint

∑M
i=1 λi = 1.

That is, the weight for the last (third) criterion can be computed as λ3 = 1 − λ1 − λ2.
The total number of weight vectors or weight combinations would therefore be (H +
1)M−1 = 112 = 121. By adjusting H alone, we can control both learning overhead
and granularity of the optimal solutions.

4.3 Multicriteria Utility Selection

Once we learn through Algorithm 1 the utility values U(s, d,λj) for all possible weight
vectors λj ∈ λ, the next question is: How do we pick a weight vector λ∗ that gives
the best tradeoff/balance among different criteria? To answer this, we introduce the
idea that the best tradeoff/balance is one that allows best overall improvement of actual
observed paths taken by individuals. With this, we present a new metric known as the
product of improvement means (PIM) defined as:

PIM = min
i

(sgn(µi))×
M∏
i=1

|µi| (11)

where sgn() is the sign function (i.e., sgn(µ) = +1 when µ > 0 and -1 otherwise),
and µi is the mean of improvement of the optimized payoff criterion i over to the actual
payoff criterion i:

µi =
1

K

K∑
k=1

 ∑
(s,d)∈Poptimized(k,s0)

fi(s, d) −
∑

(s,d)∈Pactual(k,s0)

fi(s, d)

 (12)

Here Poptimized(k, s0) and Pactual(k, s0) are the set of all job transitions in the optimized
career path produced by JobComposer and those in the actual path taken by an in-
dividual k, respectively. In this case, both paths start from the same origin job s0. The
distinction between the two paths will be further illustrated in Section 5.
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The term mini(sgn(µi)) in (11) implies that, if any one of µi is negative, then the
overall PIM value will be negative as well. This is to ensure that each improvement
mean µi has a positive value, which is intuitive and desirable. Without this constraint,
it is possible that two of the criteria give negative improvement means, but the overall
PIM is positive due to double-negation of the (negative) signs of the corresponding µi
during the product operation.

For a given weight vector λj , we have a PIM value PIM(λj). Accordingly, we iden-
tify the best tradeoff among different payoff criteria by picking a weight vector λ∗ such
that the following condition is met:

λ∗ = arg max
λj∈λ

PIM(λj) (13)

4.4 Payoff Criteria

In this work, we devise a few examples of payoff criterion fi(s, d), which tell us how
rewarding a job transition is. These are payoff criteria that are derived from the career
trajectories observed in our OPN dataset (which we will elaborate later). Our multicri-
teria utility learning approach is however not limited to these criteria. Depending on
the available datasets, one could use criteria such as salary, medical benefits, etc.. Let
p and s (or d) denote a person and a job, respectively. Our three criterion examples are
defined as follows:

– Duration cost (Ds,d): This is our simplest payoff criterion; for a job pair (s, d), it
refers to the average time lapse between the start date and end date of the source
job s, over all people who move from job s to job d. In other words, a job transition
which takes less time duration to the destination job is viewed as more favorable
than another job transition which takes more time duration. Formally, we define the
duration cost as:

Ds,d =

∑
p∈Ks,d

(endp,s − startp,s)
|Ks,d|

(14)

where Ks,d is the set of all people who hop from job s to job d, and startp,s and
endp,s are the start and end dates of a job s that a person p takes, respectively.
We note that the duration cost is computed based on the start/end dates of a source
(instead of destination) job s, as our primary interest is a person’s duration of stay
at the source job before hopping to the destination job.

– Level gain (Ls,d): This refers to the difference between the levels of two jobs s and
d, where the “level” of job s is estimated by computing the average work experience
over all people who have job s in their career trajectories. Here, we assume that a
job transition that gains much job level is favorable. In our data, there is no explicit
job level information. The job level gain Ls,d is thus defined by:

Ls,d = Ld − Ls =
∑
p∈|Kd| wp,d

|Kd|
−
∑
p∈|Ks| wp,s

|Ks|
(15)

where Ks is the set of all people who ever took job s, and wp,s is the work ex-
perience of person p at job s. he work experience is the duration since the last
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graduation date of a person till the time at which he/she finishes a particular job.
Intuitively, a job with longer average work experience implies that a longer time is
required to achieve that position, and so we can expect it to be a high-level job. Ex-
amples of job with high level score Ls according to our OPN data are “Professor”
and “Managing Director”, whereas examples of job with low Ls are “Intern” and
“Teaching Assistant”. Also note that a positive (negative) gain Ls,d can be loosely
viewed as a “promotion” (“demotion”)—in terms of the level of work experience
required. We note that, although there is no ground truth available in our OPN data,
our manual inspections show that the level gain provides a reasonable proxy for a
promotion or demotion.

– Desirability gain (Rs,d). This is defined as the difference between logarithm of
the desirability of two jobs s and d, where the “desirability” is computed using the
PageRank algorithm [14,7]. In this case, we reinterpret the set of all job transitions
D as a directed (unweighted) graph, where each node corresponds to a job s and
each edge a job transition (s, d). PageRank views inbound edges as “votes”, and
the key idea is that “votes” from important nodes should carry more weight than
“votes” from less important nodes [14]. As such, a job node that has high PageRank
score reflects a “desirable” point where the flow of job transitions is heading to. We
compute the desirability gain Rs,d as:

Rs,d = log(Pd)− log(Ps) (16)

where Ps is the PageRank score of job s. In this work, we employ a weighted
version of PageRank [8], whereby the transition probabilities for each (source) node
is proportional to the (out-)edge weights divided by the weighted out-degree of
the node. In the context of this work, the weighted PageRank can be viewed as
a measure of global competitiveness. That is, a job with high PageRank reflects
a “desirable” destination where the flow of job transitions is heading to. In this
case, we use hop volume as the edge weight, based on the intuition that the volume
matters in determining where the flow goes to. To prevent inflated PageRank due to
sink nodes (i.e., nodes with zero out-degree), we also allow a jump to any random
node in the graph with a probability of α. Unless specified, we use α = 0.15 by
default in this work.

Using the above criteria, we construct a three-dimensional payoff vector f(s, d) =
[f1(s, d), f2(s, d), f3(s, d)] = [−Ds,d, Ls,d, Rs,d]. In contrast to Ls,d and Rs,d, we use
the negated value of Ds,d, because we view the duration as a cost to be minimized.

5 Empirical Study

This section presents our empirical study on the dataset presented in Section 3. We first
describe the evaluation metrics and baseline methods used in our study. We then present
our quantitative and qualitative analyses. Our analyses aim to demonstrate that one can
optimize career paths starting from any job considering the different criteria altogether,
and to illustrate some optimized career paths through some case examples.
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5.1 Metrics and Baselines

Combined metrics. We evaluate for each actual path P in our dataset in Figure 1
(57,784 of them), the quality of optimized path returned by our proposed multicriteria
utility method compared with the quality of optimized path returned by some baseline
method combining all the different payoff criteria. We define this path-specific metric
based on product of improvement means (PIM). The path-specific PIM value comparing
the path returned by a method denoted by opt for an actual path P is defined as:

PIMopt
P = min

i
sgn(µP,i)×

M∏
i=1

|µP,i| (17)

where

µP,i =
∑

(s,d)∈Popt(P,s0)

fi(s, d)−
∑

(s,d)∈Pactual(P,s0)

fi(s, d) (18)

We then compare our method with a baseline by computing PIMMUL/D
P − PIMbaseline

P .
This metric returns a positive value when our method returns a optimized path superior
than that returned by the baseline method, and negative value otherwise.

Baseline methods. In this work, we evaluate our MUL/D-based JobComposer
approach against several baselines. They consists of greedy based methods, methods
that optimize single-criterion utility only for the purpose of finding the best performance
one can achieve for each criterion, and a method assuming equal weights for different
criteria. Specifically, the baseline methods include the following:

– Greedy most common path: Greedy path generation by following job transitions
with the most number of people.

– Greedy shortest duration path: Greedy path generation by following job transi-
tions with the lowest Ds,d.

– Greedy level gain path: Greedy path generation by following job transitions with
the highest Ls,d.

– Greedy desirability gain path: Greedy path generation by following job transi-
tions with the highest Rs,d.

– Single-criterion utility path (−Ds,d): Utility learning with negatedDs,d as payoff
criterion.

– Single-criterion utility path (Ls,d): Utility learning with Ls,d as payoff criterion.
– Single-criterion utility path (Rs,d): Utility learning with Rs,d as payoff criterion.
– Equally weighted utility path: Utility learning via linear scalarization of payoff

criteria: w1Ls,d − w2Ds,d + w3Rs,d

The greedy methods are designed to select the job that maximizes some single cri-
terion at every new job transition. Since they construct the overall path by making in-
cremental decisions, they may not return the optimal path even for the criterion they try
to optimize. The single criterion methods can address this shortcoming, but do not op-
timize for multiple criteria. The multi-criteria utility method to be compared with ours
is the Equally weighted utility path method.
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Fig. 2. Convergence of our multicriteria utility method

Parameter settings. For all the utility-based baselines (including ours), we set the
discount factor and maximum iteration as γ = 0.7 and Tmax = 50, respectively, which
give the best results overall. For the equally weighted utility method, as we do not have
one preferred criterion , we equalize the weights as: w1 = w2 = 1 and w3 = β = 500.
We set an equal weight for Ds,d and Ls,d, since they have the same unit (i.e., months).
Meanwhile, we use w3 = β to bring Rs,d after to (roughly) the same scale. To test for
the statistical significance of our method relative to the baselines, we use the Wilcoxon
signed-rank test [19], which is a non-parametric statistical significance test for two
paired samples, which cannot be assumed to be normally distributed. A low p-value
below a threshold (typically 0.05 or 0.01) indicates that they are significantly different.

5.2 Quantitative Analysis

Convergence analysis. We firstly examine the convergence property of our MUL/D
algorithm. In particular, We would like to show that our MUL/D method converges
within a small number of iterations. The shaded region in Figure 2 shows the evolution
of the L∞-norm of the utility changes between two successive iterations ||U (k+1) −
U (k)||∞ of all possible weights in λ over iterations. The solid curve in the shaded
region represents the L∞-norm of λ∗ as mentioned in (11), whereas the lower and
upper dashed curves represent minimum and maximumL∞-norm respectively. In terms
of utility changes, we can see that our method converges to a stationary point within 10
iterations, regardless of the choice of λ. This provides an empirical justification for the
convergence trait as per (6).

Comparison with baselines. First, we show the mean and median of PIMMUL/D
P −

PIMBaseline
P of actual paths when they are optimized by our method and some baseline

method in Figure 3. The results show that our method outperforms all the baselines for
most of the actual paths as PIMMUL/D

P − PIMBaseline
P values are largely positive. In

particular, our method is very much better than single-criterion utility method based on
job level L, greedy desirability gain method and greedy most common method.

Next, Table 2 summarizes how well our method fares against the baselines accord-
ing to the improvement in combined criteria measured by PIM optimized

P − PIM actual
P ,
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Fig. 3. Path-based combined metric improvements for different baseline methods

Table 2. Benchmarking results of different path planning methods

Method PIM Dactual −Doptimized Loptimized − Lactual Roptimized − Ractual

Mean p-value Mean p-value Mean p-value
Greedy most common -74.01 -88.80 0.00e+00 (-) 11.67 0.00e+00 (-) -0.07 0.00e+00 (-)
Greedy shortest duration -19.46 23.06 0.00e+00 (+) 2.67 0.00e+00 (-) -0.32 0.00e+00 (-)
Greedy level gain -255.37 -28.39 0.00e+00 (-) 26.84 0.00e+00 (+) -0.34 0.00e+00 (-)
Greedy desirability gain -1057.25 -57.38 0.00e+00 (-) 19.19 3.34e-04 (-) 0.96 0.00e+00 (+)
Single-criterion utility (−Ds,d) -198.45 61.30 0.00e+00 (+) -6.55 0.00e+00 (-) -0.49 0.00e+00 (-)
Single-criterion utility (Ls,d) -2478.66 -90.45 0.00e+00 (-) 81.52 0.00e+00 (+) -0.34 0.00e+00 (-)
Single-criterion utility (Rs,d) -240.31 -36.65 0.00e+00 (-) 5.96 0.00e+00 (-) 1.10 0.00e+00 (+)
Equally weighted utility -577.01 -42.83 0.00e+00 (-) 12.31 0.00e+00 (-) 1.09 0.00e+00 (+)
Multicriteria utility 241.73 16.36 - 19.51 - 0.76 -
(+): significantly better than multicriteria utility; (-): significantly worse than multicriteria utility

and in single criteria (i.e., duration cost, level gain, or desirability gain) of the opti-
mized career path returned by the method against that of the observed career path.
PIM optimized and PIM actual denote the PIM value of optimized path and actual path re-
spectively. For single criteria such as duration cost. The duration cost of a path is defined
as DP =

∑
(s,d)∈PDs,d, and Dactual

P −Doptimized
P denotes the improvement in duration

cost. Other single criteria-based improvement can be defined in a similar manner. As
shown in Table 2, our MUL/D approach returns the best combined performance over
different criteria measured by the average improvement of PIM. It is the only method
that return positive PIM value. It is also the only method that returns positive mean and
median improvement in every criteria. The greedy and single-criterion methods tend
to do well only on one specific criterion, but not the others. Hence, they could return
positive gains in one criterion but negative ones in other criteria.

Compared to the equally weighted utility method, our MUL/D approach gives better
mean for PIM optimized

P − PIM actual
P , Dactual −Doptimized and Loptimized − Lactual, though

the former is superior in terms of Roptimized − Ractual. This result is reasonable as the
equally weighted utility method is a reasonably strong baseline. Table 2 also includes
the two-sided p-values of the Wilcoxon test. It is evident that all p-values are very small
(i.e.,� 0.01). Hence, the performance differences between our method with the other
baselines are statistically significant. While above mentioned baselines are conceptually
weaker, they are not necessarily easy to beat in practice.
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Table 3. Examples of career path optimization results

#1 Actual path: (Telecom., 10,001+ employees, Technical Officer)→ (Telecom., 5001-10K employees, Engineer)
→ (Telecom., 10,001+ employees, Associate Eng.)
Greedy most common path: (Telecom., 10,001+ employees, Tech. Officer)
→ (International Trade & Development, 5001-10,000 employees, Tech. Manager)
Multicriteria utility path: (Telecom., 10,001+ employees, Tech. Officer)→ (Telecom., 5001-10K employees, Eng.)
→ (Telecom., 5001-10K employees, Project Leader)
Metric improvement for greedy most common path:Dactual −Dgreedy most common = -72.00,
Lgreedy most common − Lactual = 107.15,Rgreedy most common − Ractual = -0.06
Metric improvement for multicriteria utility path:Dactual −Dmulticriteria utility = 70.00,
Lmulticriteria utility − Lactual = 100.73,Rmulticriteria utility − Ractual = 0.04

#2 Actual path: (Banking, 10,000+ employees, Analyst)→ (IT & Services, 5001-10,000 employees, Analyst)
→ (IT & Services, 5,000 - 10,000 employees, Team Leader)→ (Banking, 10,000+ employees, Credit Risk Analyst)
Greedy most common path: (Banking, 10,000+ employees, Analyst)→ (Banking, 10,000+ employees, Associate)
→ (Banking, 10,000+ employees, Assistant Vice President)→ (Banking, 10,000+ employees, Vice President)
→ (Banking, 10,000+ employees, Director)→ (Financial Services, 10,000+ employees, Executive Director)
→ (Banking, 10,000+ employees, Managing Director)
Multicriteria utility path: (Banking, 10,000+ employees, Analyst)→ (Banking, 10,000+ employees, Consultant)
→ (IT & Services, 10,000+ employees, Technical Consultant)
→ (IT & Services, 10,000+ employees, Project Manager)
→ (Financial Services, 10,000+ employees, Assistant Vice President)
Metric improvement for greedy most common path:Dactual −Dgreedy most common = -165.24,
Lgreedy most common − Lactual = 160.56,Rgreedy most common − Ractual = 0.66
Metric improvement for multicriteria utility path:Dactual −Dmulticriteria utility = 56.00,
Lmulticriteria utility − Lactual = 78.89,Rmulticriteria utility − Ractual = 1.09

#3 Actual path: (Semiconductors, 10,001+ employees, Process Eng.)→ (Semiconductors, 201-500 employees, Process Eng.)
→ (Semiconductors, 5001-10,000 employees, Equip. Eng.)→ (Semiconductors, 201-500 employees, Field Appln. Eng.)
Greedy most common path: (Semiconductors, 10,001+ employees, Process Engineer)
→ (Semiconductors, 10,001+ employees, Senior Process Eng.)
Multicriteria utility path: (Semiconductors, 10,001+ employees, Process Eng.)
→ (Banking, 10,001+ employees, Rel. Manager)→ (Banking, 10,001+ employees, Associate Director)
→ (Banking, 10,001+ employees, Managing Director)
Metric improvement for greedy most common path:Dactual −Dgreedy most common = 79.75,
Lgreedy most common − Lactual = 21.68,Rgreedy most common − Ractual = 0.59
Metric improvement for multicriteria utility path:Dactual −Dmulticriteria utility = 67.42,
Lmulticriteria utility − Lactual = 105.44,Rmulticriteria utility − Ractual = 1.39

Note: The format of a job is (i, c, j), where i is the industry code, c is the company size category, and j is the job title.

Runtime analysis. In the above quantitative analysis, MUL/D required less than
one and a half hour to complete the analysis of 265,000+ job transitions. With parallel
computation, the time required can be further reduced significantly. We nevertheless
leave this detailed runtime analysis to future work.

5.3 Qualitative Analysis

We also study a few career path examples in detail in order to qualitatively evaluate the
career path recommendations made by JobComposer. Specifically, we look at exam-
ples whereby Dactual−Dmulticriteria utility ≥ 50 months, Lmulticriteria−Lactual ≥ 70 months,
and Rmulticriteria utility − Ractual ≥ 0. These are the examples that can show significant
improvement according to our chosen multiple criteria. Table 3 shows three such exam-
ples. For comparison, we also show the corresponding recommendations made by the
greedy most common path method. It can be seen that our multicriteria utility learning
approach yields better metric improvements (at least two metrics) in comparison to the
greedy most common path method.
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It is interesting see how our method can devise optimized paths that are sensible
and yet yield high improvements. The first examples illustrates a person who begins
his career as a Technical Officer in Telecommunications Industry with a large company
having more than 10,000 employees and remains in the same industry for entry-level
engineering roles with similar company sizes. In this case, though the greedy most
common method provides a higher level gain by switching to a lower company size in
the Internet Industry, it takes 72 additional months and the desirability gain is less. In
contrast, our method suggests to remain in the same Telecommunications Industry but
in a relatively smaller company (5000-10,000 employees) ending up as a project leader,
saving 70 months and having higher desirability gain.

In the second example, an Analyst in a very large bank, following the path suggested
by our method (which advises to not immediately switch to a different Industry) saves
56 months and will end up as an Assistant Vice President in Financial Services Industry
(higher level and desirability gains). Though the path suggested by greedy most com-
mon method has much higher level gain, the person has to wait for around 165 months
to achieve it and also the desirability gain is much lesser than that of our method.

The last example shows how a person working in a large Semiconductor company
can improve his career by switching to Banking Industry as a Relationship Manager,
ending up as a Managing Director of a large bank (higher level and desirability gain)
and saves around 67 months. Following the greedy most common method, the person
instead of switching to different smaller companies in the same industry, could get a
promotion in the same industry of same company size, saving 80 months. Comparing
to our method, the greedy most common method has slightly better duration gain, but
it has much lesser level and desirability gains.

In sum, our qualitative study shows that JobComposer produces sensible career
path recommendations, with better quality than those of the greedy most common path,
also justifying our earlier hypothesis that the common paths may not be always optimal
and can be improved. Nevertheless, it must be noted that all the paths recommended
in Table 3 only show what is possible, but do not necessarily guarantee that the next
job in the path can always be achieved. Constraining the path to available openings and
estimating the probability of successfully obtaining a career is beyond the scope of this
paper, but is certainly the direction of our future work.

6 Conclusion

In this paper, we put forward a new data-driven approach for automated career path
planning and optimization called JobComposer. To realize JobComposer, we first
formulate career path optimization as a utility learning problem on top of a Markov
process. Based on this formulation, we then develop a novel decomposition-based mul-
ticriteria utility learning and multicriteria utility selection procedures to devise a career
path that optimizes multiple criteria simultaneously and identify the best tradeoff among
different criteria, respectively. Comprehensive quantitative and qualitative studies using
a city state-based OPN data have demonstrated the efficacy of our approach.

While JobComposer offers a powerful methodology for career path planning,
there remains room of improvements. To endow a greater level of personalization within
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its career optimization processes, we would like to develop a more advanced method
that utilizes a richer set of user features (e.g., skills, education level, etc.). Additionally,
we plan to augment relevant auxiliary data—such as employees’ salaries—and conduct
studies with a more comprehensive set of payoff criteria.
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