
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2018

Performance characterization of deep learning models for Performance characterization of deep learning models for

breathing-based authentication on resource-constrained devices breathing-based authentication on resource-constrained devices

Jagmohan CHAUHAN
Aalto University

Jathusan RAJASEGARAN
University of Moratuwa

Surang SENEVIRATNE
University of Sydney

Archan MISRA
Singapore Management University, archanm@smu.edu.sg

Aruan SENEVIRATNE
University of New South Wales

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
CHAUHAN, Jagmohan; RAJASEGARAN, Jathusan; SENEVIRATNE, Surang; MISRA, Archan; SENEVIRATNE,
Aruan; and LEE, Youngki. Performance characterization of deep learning models for breathing-based
authentication on resource-constrained devices. (2018). Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies. 2, (4), 158: 1-26.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4255

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4255&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jagmohan CHAUHAN, Jathusan RAJASEGARAN, Surang SENEVIRATNE, Archan MISRA, Aruan
SENEVIRATNE, and Youngki LEE

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4255

https://ink.library.smu.edu.sg/sis_research/4255

Performance Characterization of Deep Learning Models for
Breathing-based Authentication on Resource-Constrained Devices

Providing secure access to smart devices such as mobiles, wearables and various other IoT devices is becoming increasingly
important, especially as these devices store a range of sensitive personal information. Breathing acoustics-based authentication
offers a highly usable and possibly a secondary authentication mechanism for such authorized access, especially as it can
be readily applied to small form-factor devices. Executing sophisticated machine learning pipelines for such authentication
on such devices remains an open problem, given their resource limitations in terms of storage, memory and computational
power. To investigate this possibility, we compare the performance of an end-to-end system for both user identification and
user verification tasks based on breathing acoustics on three type of smart devices: smartphone, smartwatch and Raspberry Pi
using both shallow classifiers (i.e., SVM, GMM, Logistic Regression) and deep learning based classifiers (e.g., LSTM, MLP). Via
detailed investigation, we conclude that LSTM models for acoustic classification are the smallest in size, have lowest inference
time and are more accurate than all other compared classifiers. An uncompressed LSTM model provides 80%-94% accuracy
while requiring only 50–180 KB of storage (depending on the breathing gesture). The resulting inference can be done on
smartphones and smartwatches within approximately 7–10 ms and 18–66 ms respectively, thereby making them suitable
for resource-constrained devices. Further memory and computational savings can be achieved using model compression
methods such as weight quantization and fully connected layer factorization: in particular, a combination of quantization
and factorization achieves 25%–55% reduction in LSTM model size, with almost no loss of accuracy. We also compare the
performance on GPUs and show that the use of GPU can reduce the inference time of LSTM models by a factor of 300%. These
results provide a practical way to deploy breathing based biometrics, and more broadly LSTM-based classifiers, in future
ubiquitous computing applications.

CCS Concepts: • Computer systems organization→ Embedded and cyber-physical systems; • Security and Privacy→
Security Services; • General and reference →Performance;

Additional Key Words and Phrases: Security, Authentication, Breathing Gestures, Wearables, IoT, SVM, GMM, DNN, LSTM

ACM Reference Format:
. . Performance Characterization of Deep Learning Models for Breathing-based Authentication on Resource-Constrained
Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 0, 0, Article 0 (), 26 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Smartphones are already popular and wearables (especially smartbands, smartglasses and smartwatches) are
rapidly gaining market share–some estimates suggest that 504.65 million wearable devices will be sold by the
year 2021 [17]. Such pervasive devices are being increasingly used for various sensitive daily applications, such
as performing financial transactions [31] or monitoring health and fitness levels [38]. These devices also store
other personal information such as user profiles, call records, contacts and emails. Ensuring authorized access to
such devices and their services is thus critically important [45, 46]. IoT is another emerging category of devices
[48] requiring usable and secure access. IoT devices at smart homes and smart offices would need a suitable form
of authentication to ensure that a genuine user is accessing the facility or service, such as gaining entry to a
Author’s address:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© Association for Computing Machinery.
2474-9567//0-ART0 $15.00
https://doi.org/0000001.0000001

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Published in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
Volume 2 Issue 4, December 2018, Article No. 158.
https://doi.org/10.1145/3287036
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

0:2 •

smart office through a sensor–enabled door or operating a smart coffee maker. Personalized use of wearable and
IoT devices will also be an enabler of future smart manufacturing and Industry 4.0 operations. For example, an
augmented reality (AR) smartglass, which overlays product-specific knowledge on real-world equipment, can
adjust such content and instructions based on the individual worker’s profile (e.g., to tailor to different levels
of expertise or different data access privileges). Alternately, only a supervisor may be authorized to modify the
settings of an IoT platform that alters the parameters of a 3D printing machine.
For an authentication scheme to work on such small form-factor and ubiquitously deployed devices, it has

to be not only secure but also unobtrusive. Also, as many of the wearable and IoT devices are constrained in
terms of resources, the authentication mechanism must be lightweight. Cloud based resource augmentation is not
always possible and not preferred–e.g., for many IoT devices, continuous Internet connection is not guaranteed.
Moreover, many of these scenarios require continuous access authorization (e.g., a factory worker using a
smartglass should be periodically re-authenticated), suggesting the possible need for lightweight secondary
authentication mechanisms that augment more traditional techniques. To tackle these goals of security, lightweight
local processing and unobtrusiveness, we consider a novel form of authentication, based on natural breathing
acoustics, introduced by Chauhan et al. named BreathPrint [10]. BreathPrint utilizes breathing (the most natural
action) as a behavioural acoustic fingerprint, with the user being authenticated via gestures such as sniff, normal
breathing and deep breathing. However, it was deployed as a cloud–based solution and used a shallow machine
learning model based on GMM (Gaussian Mixture Model), with handcrafted features.

In this paper, to make BreathPrint more accurate/robust and pervasive, we investigate whether (a) BreathPrint
can be effectively implemented using deep learning models and (b) whether these deep learning models can be
locally executed on resource-constrained wearable and IoT devices. Our investigation is more broadly about the
mechanics of executing applications that utilise recurrent deep learning pipelines on such embedded devices, with
BreathPrint providing an exemplar. We focus on deep learning primarily because they can outperform shallow
classifier models based on SVM and GMM/HMM in terms of accuracy. However, deep learning based classifiers are
currently known to impose significant computational overheads, and also require large volumes of training data. To
this end, we conducted performance evaluation of an end-to-end LSTM based BreathPrint authentication system
on three representative hardware platforms: mobile (smartphone), wearable (smartwatch) and IoT (Raspberry Pi).
We also investigate the sensitivity of LSTM performance to model compression strategies that reduce the storage
and computational costs (making it deployable even on highly resource-constrained platforms) and compare its
performance against (a) alternative deep learning models such as Multi Layer Perceptron (MLP) and b) shallow
machine learning models, such as GMM, SVM and Logistic Regression. To the best of our knowledge, we are the
first to investigate and compare performance of LSTM based models against MLP, SVM and GMM for acoustics
based classification on multiple embedded platforms.

Key Contributions: We make three key contributions:

Performance of Deep Learning Models: We implemented and evaluated an LSTM-based (Long Short Term
Memory, a variant of RNN) model for breathing acoustic based authentication (for both user identification and user
verification tasks), on three representative devices: smartphone, smartwatch and Raspberry Pi. User identification
is a task where we resolve “Which user is attempting to authenticate?" and user verification is a task which
involves checking “Is this really user A?". We also compare performance of LSTM against MLP, GMM, SVM and
Logistic Regression based models. We measured the performance in terms of accuracy, balanced accuracy, model
sizes, model loading and inference time and show that LSTM based models for user authentication are smaller in
size, lightweight and more accurate than MLP, GMM, SVM and Logistic Regression based models and thus better
suited for resource-constrained devices. An uncompressed LSTM model’s accuracy ranges from 80%–94% and is
only 50–180 KB in size (for relevant breathing gestures) and can run on smartphones and smartwatches with
approximately 7–10 ms and 18-66 ms of inference timings, respectively. The accuracy can be increased further by

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:3

2%–10% by using majority voting or probability fusion methods, making these methods a compelling approach
for improving the security of authentication systems based on single sample testing.

Evaluation ofModel CompressionMethods:We showhowmodel compression techniques such as quantization
and factorization can help to further reduce the memory footprint of LSTM and MLP models without impacting
accuracy. Quantized, as well as factorized models, were able to achieve 25%–55% reduction in size compared to
the unmodified model for LSTM with the worst-case accuracy drop being only 5%. The reduction achieved for
MLP was in the range of 25%–80% while providing similar accuracy as the unmodified models.

Inference performance onmobile CPU andmobile GPU:We evaluated the impact of offloading computational
tasks to GPU (Graphical Processing Unit) for deep learning models. To take advantage of GPU functionality, we
extended MobiRNN [6] framework to obtain models that are suitable for execution on wearables and Raspberry Pi
in addition to smartphones. We show that the use of a GPU decreases the inference time (by 50%–300%, depending
on the device and the breathing gestures) for LSTM based models. However, as the number of hidden units in
the LSTM model increases, the benefits of GPU offloading start to diminish. This is because LSTM models with
a higher number of hidden units tend to have more information flowing into the deep neural network which
causes memory bandwidth on the device to become a bottleneck.

2 RELATED WORK
We discuss related work under two topics. First, we discuss the important work related to speech processing tasks
using deep learning models. Second, we present work in porting deep learning models to resource-constrained
devices.

2.1 Deep Learning Models for Acoustics Modeling
Initial work by Rahman et al. [37] pioneered the use of deep neural networks for acoustic modeling and is one of
the key papers that contributed to the exponential popularity of deep learning models. Authors first pre-trained
the neural networks as a multilayered generative model of a window of spectral feature vectors. In the next phase,
backpropagation was used to adjust the features in every layer to make them more useful for discrimination.
The resulting phone error rate on the TIMIT dataset was 20.7% which was a 2%–13% improvement over the state
of the art GMM/HMM based approaches. Graves et al. [18] used RNN based deep learning model for speech
recognition and achieved an error rate of 17.7% on TIMIT dataset. Since then multiple work have proposed
different deep learning based architectures for speech recognition [4, 7, 52], speaker recognition [9, 21, 50] and
speaker adaptation [2, 30, 54]. For example, Heigold et al. [21] showed that an RNN based deep learning model can
achieve 1.3% in Equal Error Rate (ERR) compared to 5% EER obtained using an i-vector baseline for an end-to-end
text-dependent speaker verification system on the passphrase “OK Google”. Compared to these work that focuses
on advancing the state of art of deep neural networks for acoustic modelling, we investigate whether such models
are deployable on resource-constrained devices.

2.2 Deep Learning on Resource-Constrained Devices
Lane et al. [28] tried to understand the resource requirements and execution bottlenecks related to CNN and
DNN architectures on different devices: mobile, wearable and IOT for audio and vision based applications.
Their study showed that complex CNN models have significant resource requirements and hence could not
be executed efficiently on these devices. To address this problem, Bhattacharya et al. [5] proposed SparseSep.
In SparseSep, the main idea is to find the sparse representation of fully connected layers and separate the
convolutions kernels by creating separate filters. This reduces the number of parameters and the number of
convolutional operations required for a deep learning model to operate and hence reduce the computational

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:4 •

and space complexity. DeepEar [29] utilized DNN models on smartphone to realize practical audio sensing
applications in noisy environments. By implementing DeepEar on DSP of a smartphone, the authors showed that
smartphone consumed only 6% of the total energy in a day. DeepEye [35] deployed CNNs on wearables to enable
continuous vision applications. It allows local execution of multiple deep vision models by interleaving execution
of computation-heavy convolutional layers with the loading of memory-heavy fully connected layers. A similar
system named DeepMon [22] enable continuous vision applications on resource-constrained devices by focusing
on reducing the processing latency of convolutional layers by doing a set of optimization techniques. Firstly,
DeepMon proposed a caching mechanism that leverages similarities between consecutive images. Secondly,
DeepMon perform faster matrix multiplication by model decomposition and unfolding. DeepMon also offloads
processing of the convolutional layers to GPUs, which accelerates processing.
MobiRNN [6] employs GPU offloading to make LSTM run faster on smartphones for activity recognition

tasks using RenderScript.1 QuantizedCNN [53] introduced quantization of filter kernels in convolutional layers
and weighting matrices in fully connected layers to reduce the storage and memory overhead of CNN models
on smartphones to allow them to classify images within seconds. In another work, Kim et al. [24] introduced
one-shot whole network compression to compress CNN models. DeepX [27] provides a software accelerator for
deep learning model execution on modern mobile processors. DeepX uses a pair of resource control algorithms,
where the first algorithm decomposes the large unified deep neural network into unit sized smaller blocks which
can be efficiently executed on heterogeneous local device processors including CPUs and GPUs. The second
algorithm performs resource scaling to adjust the overhead introduced by each unit of block.

As we see, most of the work to date has focused on improving the performance and deployment of CNNs and
DNNs on resource-constrained devices. While CNN is good at delivering excellent results on spatial data, LSTM is
more appropriate for sequential data such as audio or text. Hence, there is a clear need to study the performance
of LSTM on resource-constrained devices in terms of resource requirements and execution bottlenecks. We took
the first step in this direction by investigating the performance of deep learning models, especially LSTM on
acoustic data (breathing sounds), which can be used for deploying an end-to-end user authentication solution on
mobile, wearable and IoT devices.

3 METHODOLOGY

3.1 Dataset
We used the breathing acoustic samples from BreathPrint [10] which presented the feasibility of a breathing
acoustics based user authentication system using Gaussian Mixture Models. The original dataset consisted of 70
breathing samples (audio files) per breathing gesture (sniffing, normal breathing and deep breathing) collected
from 10 users over three sessions. Each session was 3–4 days apart in time. A sniff gesture consists of two quick
consecutive inhalations. A normal breathing gesture has an inhalation followed by an exhalation phase, while a
deep breathing gesture involves a long inhalation, followed by a long exhalation.

For our experiments, we divide the dataset into five folds while keeping 80%, 10% and 10% of the total samples
for training, validation and testing sets respectively in each fold. If we keep the number of samples for each user
in accordance with the time they are collected, the five folds look like as shown in Figure 1. As deep learning
models require large volumes of data for training and validation, we created an augmented dataset for both
training and validation using the method similar to BreathRNNet [11]. To create an augmented dataset, we used
frequency wrapping [23] and amplitude scaling [39]. Each sample was scaled 10 times along the time axis and
the amplitude by selecting two separate values from a uniform distribution;U (0.8, 1.2). This leads to an 11-fold
increase in the number of samples for both the training and validation set. Note that we do not perform data

1https://developer.android.com/guide/topics/renderscript/compute.html

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:5

augmentation on the test set. In this work we focus only on two breathing gestures; sniff and deep, as authors of
BreathPrint [10] showed that these two gestures provide better accuracy compared to normal breathing gesture.

15-70 8-14 1-7

Valid Test Train

Fold 2

 1-14 29-70 15-21 22-28

Train Train Valid Test

Fold 3

1-28 36-42 43-70 29-35

Train Train Valid Test

Fold 4

1-42 57-70 43-49 50-56

Train Valid Train Test

Fold 5

64-70 1-56 57-63

Train Valid Test

Fold 1

Fig. 1. Folds for training, validation and testing set. Dotted vertical lines delineates the different sessions

We created 10ms frames from each sample using Hamming window smoothing and for each frame, we
calculated 96 Mel Fequency Cepstral Coefficients (MFCC) features; 32 MFCC, 32 Delta MFCC and 32 Double Delta
MFCC. Then we combine frames to create different windows of different sizes. Next, we created overlapping
windows for a given breathing sample.We used the best window sizes identified by the authors of BreathRNNet [11]
in their work. Those sizes were 30 and 250 (corresponding to a duration of 30 ms and 2500 ms), respectively for
the sniff and deep breathing gesture with 90% overlap. The aforementioned approach is used to create windows
for training data from breathing samples present in the training set. Similarly, windows for validation data and
test data are created from breathing samples for the validation set and test set respectively. The created windows
henceforth are used as the data for training, validation and testing. Note that in the rest of the paper except this
subsection the term sample refers to a window as they were used for the final training, validation and testing. To
keep the training and validation data balanced, we used the NearMiss-3 undersampling algorithm [34]. We used
NearMiss-3 algorithm as it is a controlled undersampling algorithm which allows one to specify the number of
windows needed in each class. In each fold, we specify the number of windows for each class to be determined
by the number of windows present in class with the least number of windows. The average training set size for
the five folds is 22,044 and 26,928 for the sniff and deep breathing gestures respectively. Similarly, the validation
and test set size is 2,354 and 460.2 for sniff breathing gestures respectively. Table 1 below provides a summary
of the dataset for the five folds. Additionally, we also combined consecutive windows from each sample in the
test set to create new test sets to perform majority voting and probability fusion based testing (see Section 4.1.1).
The size for the number of consecutive windows was chosen to be three and five. For further details on the
initial breathing dataset, we encourage the readers to refer to read [10, 11] that describes the data collection, data
augmentation and pre-processing methods in more detail.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:6 •

Note that our work significantly differs from BreathPrint and BreathRNNet in a number of ways. In BreathPrint,
the main idea was to introduce novel behavioural modality, which can be used for user authentication in particular
user verification. The authors of BreathPrint used GMM classifier on a laptop in an offline fashion to obtain the
results. In comparison, the focus of our work is to evaluate the performance of different shallow and deep learning
models to see if BreathPrint can be efficiently implemented and perform real-time authentication on various
resource-constrained devices. The other major differences are the dataset, classifiers and type of user authentication.
We take the BreathPrint dataset but uses techniques such as random scaling and frequency warping to create a
new augmented dataset. Also, our work evaluates BreathPrint using SVM, GMM, Logistic Regression, MLP and
LSTM based classifiers for both user identification and user verification task.
Our work also differs from BreathRNNet, primarily in the scale of evaluation and in our final objective. The

major differences lie in the type of authentication, evaluated classifiers, GPU offloading and extra compression
techniques for deep learning models. While BreathRNNet only dealt with user identification, we investigate both
user identification and user verification tasks. Additionally, while BreathRNNet only evaluated the performance
of SVM and LSTM for a fixed configuration (2 layers, 128 hidden units), we not only evaluate the relative
performance of other shallow models (MLP, GMM and Logistic Regression), but also study the performance of
LSTM under more varied models and scenarios (e.g., {2,4} layers with multiple hidden units, performance under
GPU offloading, and inclusion of factorization and non-linear model compression techniques).

Table 1. Summary of the dataset

Sniff Deep
Frame size 10ms 10ms
Window size 30 250
Overlap 90% 90%
Average Training set size (std. dev.) 22,044 (369) 26,928 (4039)
Average Validation set size (std. dev.) 2,354 (564) 3124 (1353)
Average Test set size (std. dev.) 460.2 (31) 647.2 (80.52)

3.2 User Identification
In user identification we decide whether a breathing sample belongs to a user from a closed set of known users,
which can be mapped to a multi-class classification problem.

3.2.1 Deep Learning based approach. We train two deep learning models; LSTM and Multi Layer Perceptron
(MLP) with different configurations. For LSTM we used an architecture that is similar to Hammerla et al. [19]. We
trained a number of models for combinations of 2 and 4 LSTM layers and 32 and 64 hidden unit sizes (Figure 2a).
Each LSTM layer had a dropout wrapper and we tried dropout keep probability (pkeep) values between 0.7 and
1.0 at steps of 0.05.

For MLP, we created a network (Figure 2b) that takes as an input size ofwindow size × 96 followed by the
hidden layer of sizes 2,000, 100, and 32 or 64 and softmax for the sniff gesture. To handle the input sizes in the
deep breathing gesture the MLP architecture had two extra layers of size 8000 and 4000 between the input layer
and size 2000 layer. We created two networks where the size of the second last hidden layer is either 32 or 64. We
tried tanh, ReLU, and Sigmoid activation functions in addition to varying the dropout keep probabilities similar to
the LSTM architecture.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:7

FC Layer

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Softmax
Prediction

Window Size

FC Layer

LSTM
Layers
(2 or 4)

with Dropout
Wrappers

96 MFCC
Features

No. of users - 10

d - vectors

No. of hidden units
(32 or 64)

No. of MFCC
features - 96

(a) LSTM Model

W
in

do
w

 S
iz

e
x

96
 M

FC
C

 F
ea

tu
re

s

Hidden Layers

2000
100

64 or 32 10

(MLP for deep gesture had two extra layers 8000
and 4000 between the input and 2000 layers)

d-vectors
Softmax

Prediction

(b) MLP Model

Fig. 2. Deep learning network architectures

All the models were implemented using TensorFlow and trained with up to 1000 epochs using Adam optimizer
[25] with mini batches of size 32 with early termination. Henceforth, we will use the notation based on number
of layers/number of hidden units to refer to an LSTM model. For example, an LSTM model with two layers and 32
hidden units would be referred to as LSTM (2/32). Similarly, for MLP we will use the notation based on number
of units in the last hidden layer. For example, an MLP model with 32 units in the last hidden layer would be
referred to as MLP (32). Note that for each classifier, validation set was tested to obtain the tuning parameters.
The parameters providing the highest average accuracy on all the folds were then used to create the final models
for testing the test set. In Table 2 we show the chosen hyper parameters for each classifier.

3.2.2 SVM-based approach. To compare the performance of deep learning models with conventional machine
learning models, we trained a multi-class SVM classifier with a linear kernel and RBF kernel using libSVM [8].
For SVM with linear kernel, the optimal value for penalty C (regularization parameter) was found out from the
possible values ranging from 2−5 to 215 in the steps of 2. For SVM with RBF kernel, the optimal value for gamma

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:8 •

Table 2. Activation and dropout rates of deep models

Sniff Deep
Model Activation pkeep Activation pkeep
LSTM (2/32) NA 1.0 NA 0.7
LSTM (4/32) NA 0.7 NA 0.8
LSTM (2/64) NA 0.85 NA 0.7
LSTM (4/64) NA 0.7 NA 0.85
MLP (32) Sigmoid 0.95 Sigmoid 0.75
MLP (64) Sigmoid 0.9 Sigmoid 1.0

д was found out from the possible values ranging from 23 to 2−15 in the steps of 2. Finally, the values used for C
and д were 2−5 and 2−15 respectively.

3.3 User Verification
In user verification, we consider the scenario where users upfront gives their identity and breathing acoustic
sample to validate whether the user providing the sample is the legitimate user. This can be mapped to a binary
classification problem where an incoming breathing sample is compared against the claiming user’s model to see
if it is classified as a positive or negative sample. A positive sample means the user is legitimate and is allowed
access. The user is denied access otherwise.

3.3.1 Deep Learning Feature based approach. We used a similar approach as Variani et al. [50], where we used
the previously trained deep learning model (the one created for user identification) as a feature extractor to train
a GMM classifier. The pipeline for the entire user verification process is shown in Figure 3. Firstly the MFCC
based features are extracted from the breathing sample and fed into a deep learning model. Next, d − vectors
(of size 1x32 or 1x64) are obtained from the hidden layers of the deep learning models (Figure 2). The d-vectors
(deep vectors) are then fed as features into GMM based classifier to determine if the user who is claiming to be
user “X" and is trying to gain access to the system is actually user “X". The determination is done by calculating
log-likelihood scores and is explained in the next subsection. Figure 4 show a 2-dimensional t-SNE plot [32] of
the distribution of the d −vectors obtained from LSTM (2/32) model for sniff breathing gesture. The figure shows
that the classes are clearly separable and suited for user authentication.

Fig. 3. User verification–LSTM/MLP, GMM on d-vectors (deep vectors)

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:9

400 300 200 100 0 100 200 300 400
t-SNE Compnent 1

300

200

100

0

100

200

300

t-S
NE

 C
om

po
ne

nt
 2

User 1
User 2
User 3
User 4
User 5
User 6
User 7
User 8
User 9
User 10

Fig. 4. t-SNE plot for user verification with d-vectors obtained from LSTM (2/32) for sniff breathing gesture

3.3.2 MFCC Features based approach. To compare the results of deep learning approach with a conventional
baseline, we trained a GMM classifier with diagonal co-variances using Scikit. Two models are created for each
user. The first model is trained from a target user’s data (user’s model) while the second model uses data from
all other users (other’s model). At verification time, an incoming breathing sample is compared against both
the models to obtain the log likelihood scores. If the score of the user’s model is greater than the other’s model
then the verification is successful. The GMM based approach uses MFCC features extracted from the breathing
samples directly instead of d-vectors. We searched between 1 to 10 to select the correct number of components
which provides best results. One is the optimal number of components for sniff and deep breathing gestures
for GMM (only) models. For GMM models based on deep learning, the number of components is nine for sniff
breathing gestures with LSTM and MLP. The number of components for deep breathing gesture is four and nine
for LSTM and MLP respectively with GMM. We also compared the performance of GMM with a model based on
Logistic Regression with a penalty of l2, regularization parameterC with a value of 1 and saд (Stochastic Average
Gradient) solver.

3.4 Model Compression
We used two methods; quantization andmatrix factorization of fully connected layers to compress the trained deep
learning models. We apply quantization and factorization at different levels as described below to investigate the
trade-off between the model size and the accuracy.

3.4.1 Quantization. The fully connected layers in the trained LSTM and MLP models act as a matrix multipli-
cation and the addition of bias terms. The weight values are stored as 32 bit single precision floats in Tensorflow
graphs. To reduce the storage size of the models, we quantized the fully connected layers to 8-bits as described

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:10 •

by Han et al. [20] which is a type of non-linear quantization. We tried non-linear quantization because they
have been proven to be more accurate than linear quantization [36, 55]. We used a simple k −means clustering
of the weight values in the fully connected matrix to find 256 centroids and each weight was approximated to
the closest centroid value. This allows us to decrease the size of the matrix by a factor of four. For example, the
first hidden layer of our MLP architecture for sniff breathing gesture is a 2, 880 ∗ 2, 000 matrix. Thus, it takes
approximately 22.5MB (2, 880 ∗ 2, 000 ∗ 4bytes) in memory. Finding k-means clusters for k = 256 allows us to
replace 32bit f loats with 8bit inteдers and gives a four times decrease in the model size.

3.4.2 Matrix Factorization. We used Singular Value Decomposition (SVD), a factorization method that allows
decomposing a matrixW into three componentsU , Σ, and V where Σ is a diagonal matrix. Taking only the first
k diagonal elements from Σ allows to get a good representation of the original matrix and this helps to reduce
the memory required to store the matrix as well as to reduce the computation time by reducing the number of
multiplications. Equation 1 show the mathematical formulation for SVD.

W
n×d
= U

n×k
Σ

k×k
VT

k×d
(1)

The storage gain and the computational gain achieved using SVD are shown in Equation 2 and 3 respectively.
Storage gain specifies how much storage space can be saved when SVD is applied to the original matrix. Higher
values of storage gain lead to smaller sized models compared to the unmodified model and thus results in saving
space on the device. Similarly, computational gain defines how much speed up can be achieved in terms of the
number of matrix multiplications on a compressed model using SVD against doing matrix multiplications on the
unmodified model. More precisely, computational gain shows how much faster processing can be done on deep
learning models to lower the inference timings. The importance of parameter k (number of SVD components) can
be assessed from both the equations. A larger value of k would lead to diminishing gains in both the storage and
computation but the structural similarity will be very high and vice versa. Note the storage gain can be k if the
original matrix is sparse. Structural similarity is a measure of how similar a reconstructed matrix constructed from
k SVD components is to the original matrix and is a good estimation of accuracy. High structural similarities mean
the reconstructed matrix more closely resembles the original matrix and hence can achieve similar accuracies.
We use the notion of structural similarities as mentioned by Wang et al. [51]

storaдe дain =
nd

nk + k2 + kd
(2)

computational дainmultiplication =
n2d

n2k + k3 + k2d
(3)

Figure 5 shows how the storage gain, computational gain and the structural similarity changes when we change
the number of SVD components in the decomposing process for a sniff breathing gesture on a MLP (32) deep
learning model. The x-axis shows the number of SVD components. The primary y-axis shows the gain (storage
or computational). While the secondary y-axis shows the structural similarity. With only 20 SVD components
we can obtain the computational gain of 4.8 times (less computation compared to original matrix computation)
and storage gain of 2.5 times (less amount of memory to store the decomposed matrices.) while maintaining the
structural similarity at 92%. With the increment in the number of SVD components, the structural similarity
increases but at the expense of decreased gains in storage and computation.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:11

020406080100
Number of SVD Components

1

2

3

4

5

G
ai

n
(T

im
es

)

Storage Gain
Structural Similarity b/w
Original & Decomposed Matrix

0.75

0.80

0.85

0.90

0.95

1.00

St
ru

ct
ur

al
 S

im
ila

ri
ty

(a) Storage Gain

020406080100
Number of SVD Components

0

2

4

6

8

10

G
ai

n
(T

im
es

)

Computational Gain
Structural Similarity b/w
Original & Decomposed Matrix

0.75

0.80

0.85

0.90

0.95

1.00

St
ru

ct
ur

al
 S

im
ila

ri
ty

(b) Computational Gain

Fig. 5. Storage and computational gain with SVD for Sniff breathing gesture on MLP (32) model

3.5 Performance Metrics
We evaluate the performance of the models on four representative devices listed in Table 3; Pixel 1, Nexus 6P,
LG G Watch R and Raspberry Pi 3. Deep learning models are implemented using Tensorflow [1]. MFCC feature
extraction is done using Java Speech Toolkit (JSTK).2 SVM training is done using LibSVM, while the testing for
Android utilize Libsvm-androidjni.3 GMM and Logistic Regression training is done using SciKit [41] and GMM
inference code from SciKit was ported to Android. For different parameter configurations, we measured the
accuracy, balanced accuracy, model loading time, inference time and model size. The average along with standard
deviation is reported for all the measured metrics except model loading time and inference time or when standard
deviation was very small (<0.5%). For loading and inference times we show the measured time from the fold
with worst accuracy which was the same for all the experiments and the breathing gestures. Accuracy shows
the number of correctly identified instances during user identification task. Balanced Accuracy is used in the
user verification task and is defined as the average of TPR and TNR and is used to provide accuracy in case of
imbalanced test sets [13]. TPR is the percentage of instances where a user is correctly verified when the user’s
own samples are fed into the classifier. In the context of user verification, by True Positive we mean how many
times a genuine user was correctly verified to be the claimed user on the basis of some threshold to get legitimate
access to the system. While, True Negative means how many times an illegitimate user was correctly identified
to be an impostor.

We also measured the feature extraction time. Additionally, we explore the effect of inference time and model
size on accuracy, which can be leveraged when porting deep learning models to resource-constrained devices if
the accuracy drop is not significant and model size is small.

4 RESULTS
In this section, we discuss the performance of LSTM and MLP deep learning models (uncompressed and com-
pressed) on sniff and deep breathing gestures on multiple devices. Unmodified (U) is the original uncompressed
model. There are three types of compression strategies applied to the uncompressed model. The first type of
compression is Fact − n, (denoted by F–n) where the number n indicates the level of factorization indicated by

2https://code.google.com/p/jstk/
3https://github.com/cnbuff410/Libsvm-androidjni

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:12 •

Table 3. Hardware Configuration of the Used Devices

Name OS CPU GPU Memory

Pixel Android 8.0 2.15 GHz
Quad-Core

Adreno 530 (650 Mhz) 4 GB

Nexus 6P Android 6.0 4x1.55 GHz,
4x2 GHz -
Octa-Core

Adreno 430 (630 MHz) 3 GB

LG G Watch R Android Wear 2.0 1.2 GHzQuad-
Core

Adreno 305 (450 MHz) 512 MB

Raspberry Pi 3 Android Things 5.0 1.2 GHzQuad-
Core

Broadcom VideoCore IV (400 MHz) 1 GB

the number of elements we select in the
∑

matrix. The values of n were 5, 10, 20, 40, 60, 80 and 100. The next
type of compression includes a Quantized only model (Q). The final type are: Quant + Fact − n, denoted by
Q+F–n, which implements quantization with different levels of factorization. As a baseline, we compared the
performance of deep learning models with SVM for user identification and with GMM and Logistic Regression
for user verification. The feature extraction time for all the devices is in the range of 40–60 ms for the sniff and in
the range of 126–484 ms for deep breathing gesture. As expected, Pixel (the most powerful platform) and the
smartwatch (least powerful platform), impose the least and highest feature extraction times, respectively.

4.1 User Identification
4.1.1 Baseline: SVM. Contrary to our expectations, the size of SVM model using all the training data is very

large. For linear kernel based SVM the average model size for sniff is 198.6 MB and 2.8 GB for deep breathing
gesture. Similarly, the average model size for sniff is 585.4 MB for RBF kernel based SVM. We were not able to
create RBF kernel based SVM models for the deep breathing gesture as the training process never converged
to a solution. The large size of SVM models is due to a large number of support vectors needed to support the
multi-class classification. With linear kernel based SVM model we obtained an accuracy of 83.64% and 57.36% for
the sniff and deep breathing gesture respectively. The accuracy for sniff breathing gesture with RBF kernel based
SVM is 84.23%. We find the accuracies of the linear and RBF kernel based SVM models to be similar. The model
loading time varied between 5,383–30,729 ms while the inference time varied between 244–3,112 ms on all the
devices for the sniff breathing gesture on linear kernel based svm models. Although model loading time is very
high for SVM based model, it does not impact real-time requirements of the authentication process as model
loading is a one time step and can be performed during the initial booting of the device. However, as the memory
footprint of SVM models is very high especially on smartwatch with only 512 MB of memory, the performance of
other apps or processes running on the device can get impacted. Very large size of models in other cases made it
impossible for them to work on all the devices and hence were not tested. We will see in the next subsections as
to how SVM’s performance fares in comparison to deep learning models.
Majority Voting and Probability Fusion Testing: As discussed briefly in Section 3.1, we also created two

additional test sets. For creating the first test set, three consecutive windows (beginning from first) from each
testing sample was taken. The next consecutive three windows were taken from the window next to the last used
window. This process was repeated until no three consecutive windows could be formed. For the second set, the

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:13

aforementioned process was performed with number of windows fixed as five instead of three. After creating the
two test sets, we tested the performance of the classifiers on the test sets in two scenarios. The first scenario is of
majority voting and the other one is of probability fusion. In majority voting, consecutive samples are tested
in batches of three or five depending on the test set. In case of three, two of the samples should be correctly
identified or verified to make the final decision as positive. While in case of five, at least three samples should be
correctly identified or verified. In probability fusion scenario [12, 33], the probability scores from each class was
added for all the samples in a batch (three or five). The class with the maximum average score is predicted as
the output. The majority voting and probability fusion scenario were performed to see if the accuracy of the
classifiers can be enhanced by not only relying on single testing sample (window) and thereby obtaining a more
secure system. We will refer to majority voting with three and five samples asMV − 3 andMV − 5 respectively
in the rest of the paper. Accordingly, probability fusion will be referred to as PF − 3 and PF − 5.
The results for majority voting and probability fusion methods for SVM show that on an average 5%–10%

increase in accuracy can be achieved with majority voting or probability fusion compared to testing based on a
single sample. A higher increase is seen for deep breathing gesture. However, at the same time increased accuracy
comes at the expense of higher inference times. The inference time for testing based on three samples and five
samples is three times and five times higher than single sample testing. Provided that inference timing with SVM
models is already high for single samples, the inference time based on three or five samples would be quite high
especially if a user wants to get authenticated quickly.

4.1.2 LSTM. Figure 6, Figure 7 and Table 4 shows the accuracy and size respectively for different LSTM
models for the test set. We show only results for fewer models to ensure better readability and save space.
The accuracy achieved with sniff (deep) breathing gesture is around 92%–94% (80%) for the unmodified models.
Combining information from the figures and the tables, we can make the following observations:

U
F-20

F-100

Q+F-20

Q+F-100 Q
0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

(a) LSTM (2/32)

U
F-20

F-100

Q+F-20

Q+F-100 Q
0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

Single Sample

MV - 3

MV - 5

PF - 3

PF - 5

(b) LSTM (4/64)

Fig. 6. Average Accuracy in % - User Identification - LSTM for Sniff Breathing Gesture

(1) Compared to SVM, the LSTM models are much smaller in size (ranging from 20 KB to 180 KB) and achieve
better accuracy for both the breathing gestures. This suggests that LSTM models do not have high memory

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:14 •

U
F-20

F-100

Q+F-20

Q+F-100 Q
0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

(a) LSTM (2/32)

U
F-20

F-100

Q+F-20

Q+F-100 Q
0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

(b) LSTM (4/64)

Fig. 7. Average Accuracy in % - User Identification - LSTM for Deep Breathing Gesture

requirements and can be loaded even on devices with minuscule memory and achieve high authentication
accuracy,

Table 4. Average Model Size in MB (Std. Dev.) - User Identification - LSTM for Breathing Gestures. Sizes for Fact - 40, Fact -
60, Fact - 80 is similar to Fact - 20 model. Sizes for Quant + Fact - 40, Quant + Fact - 60, Quant + Fact - 80 is similar to Quant
+ Fact - 20 model.

Gesture Sniff Deep
Layers 2 4 2 4
Hidden Units 32 64 32 64 32 64 32 64
Unmodified 0.05 0.15 0.05 0.15 0.08 0.18 0.08 0.18
Fact - 20 0.04 0.13 0.04 0.13 0.04 0.13 0.04 0.13
Fact - 100 0.05 0.17 0.05 0.16 0.05 0.16 0.05 0.16
Quant + Fact - 20 0.02 0.06 0.02 0.06 0.02 0.06 0.02 0.06
Quant + Fact - 100 0.03 0.07 0.03 0.07 0.03 0.072 0.03 0.076
Quant only 256 0.03 0.07 0.03 0.07 0.06 0.1 0.06 0.1
SVM - Linear 198.6 (6.8) 2800 (489.9)
SVM - RBF 585.4 (15.4) -

(2) With increasing number of layers and hidden units, the LSTM model size tend to increase (2–3 fold) as the
number of deep learning parameters increase with increasing network complexity. However, in general,
this seems to have minimal impact on the accuracy,

(3) Compressed version of LSTM model (Quant + Fact - 100 and Quantized only) can achieve similar accuracy
as the unmodified model yet with smaller memory footprint. The size of models with compression: Quant
+ Fact - 100 and Quantized only are 40%–54% smaller in size compared to the unmodified model for sniff
breathing gesture with the accuracy drop being 5% in worst case. Similarly, the reduction achieved for

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:15

deep breathing gesture on compressed models are 25% to 60% depending on the number of hidden units.
Higher reduction is seen for models with more hidden units. This is because with increasing complexity,
the number of parameters gets larger and hence provide more opportunities to the compression methods
to reduce the size of the model.

(4) Compressed models which are Quantized only or Quantized as well as Factorized are better than models
compressedwith Factorization only. They are better because they provide similar accuracy as the unmodified
models with smaller model sizes. Compressedmodels with Factorization only have similar memory footprint
as the unmodified models. Observations (2), (3) and (4) suggest that compressed models (Quantized only or
Quantized and Factorized) and with lesser complexity (smaller number of layers and hidden units) should
be preferred over more complex and unmodified models as they have smaller memory footprint but achieve
similar (high) accuracy.

(5) The impact of majority voting or probability fusion methods is different for the sniff and deep breathing
gesture. As the accuracy for single sample testing achieved with sniff breathing gesture is already very
high the improvement with MV or PF methods is minimal (1%–2%). However, the same methods help to
improve the accuracy by 5%–10% over single sample testing for deep breathing gesture.

The model loading time and inference time for the three devices for 2 layers with 32 hidden units and 4 layers
with 64 hidden units are shown in Figure 8 and Figure 9 as they represent the best and worst case for LSTM
model complexity. The times for Nexus 6P are in similar range as Pixel and hence not shown in the paper. The
following observations hold on the basis of results:
(1) The inference time on Pixel is 7 ms (9 ms), 18 ms (46 ms) on smartwatch and 11 ms (28 ms) on Pi for an

unmodified LSTM model with 2 layers and 32 hidden units for the sniff (deep) breathing gesture. The
inference time is increased by 5%–40% as the number of layers are increased from two to four across devices
and different breathing gestures. Unlike SVM where the inference time was quite high for a single sample
testing, more accuracy can be achieved by the system with MV or PF method at the expense of slight
increase in inference time for LSTM models. Note that it would still remain below 1 second. These timings
are much smaller than SVM based model (244–3,112 ms) and shows that running LSTM model on all the three
devices is suitable for real-time user authentication,

(2) Compression has negligible impact on the inference time and model loading time,
(3) Increasing the number of hidden units or the number of layers has minimal impact on model loading time.

Hence, running less complex (small number of layers and small hidden units) and compressed models is most
effective on resource-constrained devices as their inference time is smallest, they achieve very high accuracy
and imposes very small memory footprint.

4.1.3 MLP. Figure 10 and Table 5 shows the accuracy and model sizes respectively for different MLP models
for sniff breathing gesture. While Figure 11 shows model loading and inference timings. Only MLP (32) models
for deep breathing gesture could be evaluated and the results are shown in Table 5 and Figure 12. Further, F - 80
and Q + F - 80 were the best (highest sized) models which could be executed on all the devices for MLP (32) for
deep breathing gesture. The training on MLP (64) for deep breathing gestures did not converge. From the results,
we observe that,

(1) The best accuracy achieved with either uncompressed or compressed models for sniff breathing gesture
is around 90% which is slightly less than LSTM based model (94%) but higher than SVM based models
(83%–84%). The highest accuracy achieved by MLP for deep breathing gesture is 63%–64% which is lower
than LSTM based models (80%). Also, model sizes for MLP (0.03–21 MB) are smaller than SVM based models
(200–600 MB) but bigger than LSTM models (0.02–0.17 MB) for sniff breathing gesture. The model sizes of
MLP for deep breathing gesture ranges from 0.05 MB to 184 MB,

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:16 •

U
F-20

F-100

Q+F-20

Q+F-100 Q
0

100

200

T
im

e
 (

m
s
)

Model Load Time (2/32)

Inference Time (2/32)

Model Load Time (4/64)

Inference Time (4/64)

(a) Pixel

U
F-20

F-100

Q+F-20

Q+F-100 Q
0

100

200

300

400

500

600

700

800

T
im

e
 (

m
s
)

(b) Smartwatch

U
F-20

F-100

Q+F-20

Q+F-100 Q
0

100

200

300

400

500

T
im

e
 (

m
s
)

(c) Pi

Fig. 8. Model Loading and Inference Times for three devices for Sniff breathing gesture on LSTM models

U
F-20

F-100

Q+F-20

Q+F-100 Q
0

20

40

60

80

100

120

140

T
im

e
 (

m
s
)

(a) Pixel

U
F-20

F-100

Q+F-20

Q+F-100 Q
0

100

200

300

400

500

600

700

T
im

e
 (

m
s
)

(b) Smartwatch

U
F-20

F-100

Q+F-20

Q+F-100 Q
0

50

100

150

200

250

300

350

400

450

T
im

e
 (

m
s
)

(c) Pi

Fig. 9. Model Loading and Inference Times for three devices for Deep breathing gesture on LSTM models

(2) Like LSTM, compression on MLP allows models to have smaller memory footprints and provide similar
accuracy as the unmodified models. The size of the compressed models: Quant + Fact - 80 and higher, Fact -
80 and higher and Quantized only are 46%–77% (53%–80%) smaller in size compared to the unmodified
model but provide similar accuracy as the unmodified model for sniff (deep) breathing gesture. The size of
such compressed models ranges from 4.8–21 MB for sniff and 31–80 MB for deep breathing gesture. These
results show that unlike LSTM models which can operate on devices with less than 1 MB of memory, the best
MLP models need more than 4 MB of memory which might not be available on some devices such as MediaTek
MT2621,

(3) Unlike LSTM based models, compression significantly impacts the inference time of MLP models. On one
hand side, a compressed model such as Quant + Fact - 5 can be 5–20 times faster than the unmodified
model on all the devices. On the other hand, a compressed model such as Qaunt + Fact -100 can be two
times slower than the unmodified model on all the devices. Similarly, compression impacts model loading
time as well.

(4) The inference time for MLP models is always higher than LSTM models in general. For example, inference
time for an LSTM (2/32) unmodified model is 8 ms, 11 ms and 18 ms on Pixel, Raspberry Pi and smartwatch
respectively for sniff breathing gesture. While, the inference timings for MLP (32) model are 14 ms, 72

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:17

U
F-80

F-100

Q+F-80

Q+F-100 Q
0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

(a) LSTM (2/32)

U
F-80

F-100

Q+F-80

Q+F-100 Q
0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

Single Sample

MV - 3

MV - 5

PF - 3

PF - 5

(b) LSTM (4/64)

Fig. 10. Average Accuracy in % - User Identification - MLP for Sniff Breathing Gesture

Table 5. Model Size (MB)–User Identification with MLP for different Breathing Gestures

Gesture Sniff Deep Sniff Deep
Layers 32 64 32 32 64 32
Unmodified 21.09 21.11 170 Quant + Fact - 5 0.02 0.02 0.05
Fact - 5 0.03 0.04 0.11 Quant + Fact - 10 0.03 0.03 0.09
Fact - 10 0.06 0.03 0.19 Quant + Fact - 20 0.05 0.05 0.16
Fact - 20 0.1 0.1 0.36 Quant + Fact - 40 0.1 0.11 0.54
Fact - 40 0.21 0.23 1.23 Quant + Fact - 60 1.67 1.69 8.25
Fact - 60 3.84 3.89 19.16 Quant + Fact - 80 4.94 4.85 31.12
Fact - 80 11.38 11.21 72.28 Quant + Fact - 100 15.29 15.27 79.75
Fact - 100 35.3 35.3 184.8 Quant only 256 9.07 9.04 73.31

ms and 97 ms for the three devices in the same order. The exception to the aforementioned observation
happens with highly compressed MLP models. A Fact - 5 MLP (32) model can perform inference faster (only
3.5 ms) than LSTM (2/32) models but at accuracy (11%) which is not suitable for any form of authentication.
Likewise, a Quant + Fact - 60 MLP (64) model can achieve higher accuracy (64% vs. 13%) and lower inference
time (6 ms vs. 8 ms) compared to a similar Quant + Fact - 60 LSTM (4/64) model but at the expense of a
much bigger model size (1.69 MB vs. 0.06 MB). Note that Quant + Fact - 60 MLP (64) still fails to surpass the
performance obtained with unmodified LSTM (2/32) model. Similar results hold for deep breathing gesture.
This result suggests although some very highly compressed MLP models can provide better inference time and
accuracy than similarly compressed LSTM models, such models still fail to surpass the accuracy, model size
and inference timings achieved for best LSTM models.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:18 •

U F-5
F-100

Q+F-5

Q+F-100 Q
0

100

200

300

400

500

600

700

T
im

e
 (

m
s
)

Model Load Time (32)

Inference Time (32)

Model Load Time (64)

Inference Time (64)

(a) Pixel

U F-5
F-100

Q+F-5

Q+F-100 Q
0

1000

2000

3000

4000

5000

6000

7000

8000

T
im

e
 (

m
s
)

(b) Smartwatch

U F-5
F-100

Q+F-5

Q+F-100 Q
0

500

1000

1500

2000

2500

T
im

e
 (

m
s
)

(c) Pi

Fig. 11. Model Loading and Inference Times for three devices for Sniff breathing gesture on MLP models

F-5
F-80

Q+F-5

Q+F-80
0

200

400

600

800

T
im

e
 (

m
s
)

Model Load Time (32)

Inference Time (32)

(a) Pixel

F-5
F-80

Q+F-5

Q+F-80
0

2000

4000

6000

8000

T
im

e
 (

m
s
)

(b) Smartwatch

F-5
F-80

Q+F-5

Q+F-80
0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
 (

m
s
)

(c) Pi

Fig. 12. Model Loading and Inference Times for three devices for Deep breathing gesture on MLP models

Overall, we can conclude that in terms of accuracy and minimal resource requirements, LSTM is superior to
SVM and MLP.

4.1.4 Statistical Significance Results. We did statistical significance test on single samples testing accuracy
to check if the accuracy between the classifiers (unmodifiedmodels) does not happen due to a chance (randomness).
As we have five different folds (datasets) and more than five different classifiers to test for significance testing,
we applied a non-parametric Friedman test [15, 16] followed by a posthoc test named Nemenyi test [14] at 0.05
level of significance. We chose a non parametric test because it does not depend on the assumptions for data to
be following a certain type of distribution. When many folds or datasets are present and many classifiers are to
be compared, a Friedman test is performed to check the hypothesis that there exists no significant differences
between the performance of classifiers is true or not. If the Friedman test shows that a significant difference
exists between the classifiers then a pairwise Nemenyi test is performed to find the classifiers between which
significant differences exist. After applying Friedman or Nemenyi test, a value is obtained which is compared
against a critical value to check for the significant difference at different significance level. For the difference to
be significant, the value obtained must be higher than the critical value. As previously mentioned we used the
significance level of 0.05. The critical values can be obtained from standard statistical tables.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:19

Sniff: When applying Friedman test we found the value of Friedman statistic to be 22.75 which is higher than
the critical value of 15.5 (significance level 0.05 and the number of compared classifiers is 8 including SVM, LSTM
and MLP). This shows that the performance based on accuracy is indeed significantly different between the
classifiers. Further analysis based on Nemenyi test is shown in Table 6. The critical value to pass the Nemenyi
test is 3.03. The entries marked in bold in the Table 6 shows that the performance differences between the two
classifiers fail to cross the critical value of 3.03 and is hence not significant.
Deep:When applying Friedman test we found the value of Friedman statistic to be 25 which is higher than

the critical value of 14.07 (significance level 0.05 and number of classifiers is 7). This shows that the performance
based on accuracy is indeed significantly different between the classifiers. Further analysis based on Nemenyi
test is shown in Table 6. The critical value is 2.94.

The overall results suggest that the difference in accuracy between the SVM’s, between the MLP’s and between
the LSTM’s are in general not significantly different. However, the significance between the performance is
apparently clear between the SVM, MLP and the LSTM models. This again shows that LSTM should be favoured
upon SVM or MLP and deep learning classifiers perform better than shallow machine learning classifiers for user
identification tasks.

Table 6. Statistical Significance –User Identification for Breathing Gestures. Bold entries means no significance.

Classifier SVM - Linear SVM - RBF MLP (32) MLP (64) LSTM (2/32) LSTM (4/32) LSTM (2/64) LSTM (4/64)
Gesture Sniff Deep Sniff Deep Sniff Deep Sniff Deep Sniff Deep Sniff Deep Sniff Deep Sniff Deep

SVM - Linear 1.29 7.75 4.7 8.39 6.22 16.14 13.91 16.78 16.83 14.52 18.30 10.01 16.83
SVM - RBF 6.45 7.1 14.85 15.49 13.23 8.7
MLP (32) 0.65 1.46 8.39 9.15 9.04 12.08 6.78 13.54 2.26 12.08
MLP (64) 7.75 7.69 8.39 10.61 6.13 12.08 1.61 10.61

LSTM (2/32) 0.65 2.93 1.61 4.39 6.13 2.93
LSTM (4/32) 2.26 1.46 6.78 0.00
LSTM (2/64) 4.52 1.46
LSTM (4/64)

4.2 User Verification
4.2.1 Baseline (GMM). The size of the trained GMM model for sniff with one GMM component is 1.04 MB

and 11.5 MB for deep breathing gesture (number of components = 1). GMM models for sniff could achieve a
balanced accuracy of 88.73%. With majority voting and probability fusion based methods the balanced accuracy
further increases by 2%–3%. The model loading time varied between 1,128–10,335 ms while the inference time
varied between 18–86 ms on all the devices. GMM model for deep breathing gesture could achieve 75.3% balanced
accuracy. With majority voting and probability fusion based methods the balanced accuracy further increases by
0.5%–1%. The model loading time varied between 14,664–36,660 ms while the inference time varied between
188–1,554 ms on all the devices. The results with GMM show that although sniff has small memory overhead and
small inference time, the deep breathing gesture imposes significant overhead (high memory footprint and 1.5
seconds of inference time).

4.2.2 (Logistic Regression). The size of the trained LR models for sniff is 240 KB and achieve a balanced
accuracy of 84.21%. As LR models did not provide better accuracies than GMM models for sniff breathing gesture,
we did not evaluate them further.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:20 •

4.2.3 LSTM–GMM. The verification process for deep learning models works in two steps: (a) Features called
d-vectors are extracted from the second-last layer of LSTM or MLP model and then (b) d-vectors are fed to
the GMM classifier to obtain final classification output. As a result, the total inference time consists of time to
obtain d-vectors from the deep learning model and obtaining outcome from the GMM classifier which adds
some extra latency. Similarly, extra storage is required to store GMM model. The number of d-vectors depends
on the number of hidden units in LSTM or the number of hidden layers in MLP i.e. 32 or 64. The number of
components used in the GMM classifier is nine for the sniff and four for deep breathing gestures. GMM classifier
used diagonal covariance. Details on d-vectors and verification process were presented in Section 3.3.1. The
balanced accuracy results are shown in the Figure 13. Note that we do not test all the models as only a few models
showed accuracy comparable to the unmodified models during the user identification tasks. We can make the
following observations from the figure and the data analysis done on model sizes and the inference timings:

U

Q+ F -1
00

0

20

40

60

80

100

B
a
la

n
c
e
d

 A
c
c
u

ra
c
y
 (

%
)

Single Sample

MV - 3

MV - 5

PF - 3

PF - 5

(a) LSTM (2/32) - Sniff

U

Q+ F -1
00

0

20

40

60

80

100

B
a
la

n
c
e
d

 A
c
c
u

ra
c
y
 (

%
)

(b) LSTM (4/64) - Sniff

U

Q+ F -1
00

0

20

40

60

80

100

B
a
la

n
c
e
d

 A
c
c
u

ra
c
y
 (

%
)

(c) LSTM (2/32) - Deep

U

Q+ F -1
00

0

20

40

60

80

100

B
a
la

n
c
e
d

 A
c
c
u

ra
c
y
 (

%
)

(d) LSTM (4/64) - Deep

Fig. 13. Average Balanced Accuracy in % - User Verification - LSTM–GMM for Breathing Gestures

(1) Verification yields high balanced accuracy for both uncompressed and compressed models. This suggests
that d-vectors obtained from deep learning models are good at discrimination and can be used as features to
train a shallow classifier. Also compressed models providing similar performance as uncompressed models
results in reducing memory footprint,

(2) The inference time is not significantly different between identification and verification for any device for
the same number of layers either for an unmodified or compressed model. This suggests that the overhead
added by GMM is minimal in terms of time. In fact, the additional time introduced by GMM is in range of 2
ms (1 ms) for Pixel, 6 ms (3 ms) on smartwatch and 4 ms (2 ms) for Pi for sniff (deep) breathing gesture for
a 32 d-vector. With 64 d-vectors, the additional time increases roughly 50–100% but is still very small,

(3) Like inference time, the extra storage required to perform verification is slightly higher (few KBs) than
identification. Note that for verification, the system has to store both deep learning and GMM model. The
GMM model size for 32 and 64 d-vectors for sniff breathing gesture is around 120 KB and around 230 KB
respectively. The size roughly decreased by four times for deep breathing gestures. This suggests that the
overhead added by GMM is minimal in terms of space.,

(4) The performance obtained by LSTM–GMM models is better compared to baseline GMM model. For sniff
breathing gesture, an unmodified LSTM-GMM (2/32) model achieved 95.95% balanced accuracy with a
model size of 170 KB (50 KB + 120 KB) compared to 88% balanced accuracy obtained for GMM with model
size of 1.04 MB. Also, for the same gesture, the inference time varied between 18–86 ms for GMM baseline
model compared to 10–25 ms for LSTM–GMM(2/32) model on all devices. Similar trend is observed for
deep breathing gesture.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:21

4.2.4 MLP-GMM. The observations for MLP-GMM models stays same as LSTM–GMM models. Note that
MLP–GMM models could only be evaluated with MLP (32) for deep breathing gesture. Verification obtains
high balanced accuracy for both unmodified and compressed models (see Figure 14) in case of MLP-GMM. The
balanced accuracy achieved with MLP–GMM are similar to LSTM–GMM. As MLP–GMM models uses GMM
classifier with the same configuration as that of LSTM–GMMmodels, the extra overhead due to GMM is similar in
terms of storage requirements and latency which is very small. However, the total inference time for verification
with MLP–GMM models is higher than LSTM–GMM models. This is because firstly the overhead introduced by
GMM is similar for both MLP-GMM models and LSTM-GMM models and secondly the MLP models in general
(c.f. Section 4.1.3) always provide higher inference time than LSTM models as shown in previous sections. Also,
LSTM models (KBs) are smaller than MLP based models (MBs). Less storage requirements, better inference timings
along with similar performance results suggest that LSTM–GMM models should be preferred over MLP–GMM models
for user verification like user identification. With respect to GMM baseline model, MLP-GMM models achieved
a mixed bag of results. In general, MLP-GMM models can obtain high balanced accuracy than GMM baseline
model at the cost of larger model sizes. The inference timings can be higher or lower for MLP-GMM models
compared to GMM baseline model depending on the level and type of compression.

U

Q+ F -1
00

0

20

40

60

80

100

B
a
la

n
c
e
d

 A
c
c
u

ra
c
y
 (

%
)

(a) MLP (32) – Sniff

U

Q+ F -1
00

0

20

40

60

80

100

B
a
la

n
c
e
d

 A
c
c
u

ra
c
y
 (

%
)

(b) MLP (64) – Sniff

U

Q+ F -1
00

0

20

40

60

80

100

B
a
la

n
c
e
d

 A
c
c
u

ra
c
y
 (

%
)

(c) MLP (32) – Deep

Fig. 14. Average Balanced Accuracy in % - User Verification - MLP–GMM for Breathing Gestures

Overall, we can say that like identification, verification also yields good performance (high balanced accuracy)
at the expense of very small extra memory footprint (few KBs) and extra processing time (few ms) introduced by
GMM.

4.2.5 Statistical Significance Results. We did statistical significance testing on balanced accuracy with
five different folds (datasets) and seven different classifiers in case of user verification. When applying Friedman
test we found the value of Friedman statistic to be 15.17 (14.37) which is slightly higher than the critical value of
14.5 (12.59) at a significance level of 0.05 for sniff (deep) breathing gesture. This shows that the performance based
on balanced accuracy is indeed significantly different between the classifiers. Further analysis based on Nemenyi
test is shown in Table 7. The critical value is 2.94 and 2.85 for the sniff and deep breathing gestures respectively.
Overall, the results show that the performance between GMM and the other deep learning models is indeed

significantly different. Unlike identification, the same cannot be said about MLP and LSTM. For both sniff and
deep breathing gesture, one of the MLP models was not found to be significantly different than LSTM based
models and provide similar accuracies (as seen in previous section). However, due to the mentioned reasons at
the end of the last subsection, LSTM should be picked over MLP for user verification tasks.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:22 •

Table 7. Statistical Significance –User Verification for Breathing Gestures. Bold entries means no significance. For sniff and
deep breathing gesture the number of compared classifiers is 8 and 6 respectively.

Classifier GMM MLP (32) MLP (64) LSTM (2/32) LSTM (4/32) LSTM (2/64) LSTM (4/64) LR
Gesture Sniff Deep Sniff Deep Sniff Deep Sniff Deep Sniff Deep Sniff Deep Sniff Deep Sniff Deep
GMM 7.10 15.2 10.97 14.85 16.9 9.68 11.83 13.56 10.98 11.62 8.45 3.23

MLP (32) 3.87 7.75 1.69 2.58 3.3 6.45 4.22 4.52 6.76 10.32
MLP (64) 3.87 1.29 2.58 0.65 14.2

LSTM (2/32) 5.16 5.07 1.29 5.9 3.23 8.45 18.07
LSTM (4/32) 3.87 0.84 1.94 3.3 12.9
LSTM (2/64) 1.94 2.53 16.78
LSTM (4/64) 14.84

LR

4.3 GPU Results
We investigate what kind of performance can be achieved by using GPU on LSTM models as these models
have shown the best performance among all the compared classifiers. Note that TensorFlow in Android only
supports CPU. MobiRNN framework [6] provides GPU support by using RenderScript on smartphones. We
used and extended the MobiRNN framework for smartwatch and Raspberry Pi. Figure 15 shows the results of
running unmodified LSTM models on different devices. It shows the speed-up ratio: CPU/GPU. It is estimated by
dividing inference time obtained using CPU by the inference time obtained using GPU. We can make following
observations:

Pixel Smartwatch Pi
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

dU
p

Ra
ti

o

2/32
4/32
2/64
4/64

(a) Sniff

Pixel Smartwatch Pi
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

dU
p

Ra
ti

o

2/32
4/32
2/64
4/64

(b) Deep

Fig. 15. GPU/CPU SpeedUP Ratio on Multiple Devices for different Breathing Gestures on LSTM model

(1) In general, the performance of GPU improves over CPU when there is an increase in the number of layers
while keeping the same number of hidden units. The speedup achieved is 2–4 times on all the devices.
With an increasing number of layers, the number of deep learning parameters increases but not enough to
saturate the memory bandwidth. Also, as the model complexity increases with increasing number of layers
the parallelization offered by GPU helps in increasing the speedup.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:23

(2) As the number of hidden units goes higher from 32 to 64, the speed-up diminishes drastically for the smart-
phones, while for smartwatch and Raspberry Pi the CPU tends to outperform GPUs (GPU on smartwatch
and Pi are of lower quality than GPU on smartphones). The reason for diminishing performance is the fact
that with more hidden units more information is flowing in the deep learning network and the memory
bandwidth of the device becomes the bottleneck, which decreases the amount of parallelization in GPUs.

(3) Devices with tighter resource constraints such as smartwatch and Pi get more benefit from using GPU
than smartphones as long as memory bandwidth does not become the bottleneck. This might be because
Pixel already possesses a very powerful CPU and hence the benefits of GPU get offset when compared to
smartwatch or Pi.

These result suggest that running less complex models (smaller number of layers and hidden units) on GPU
of resource-constrained devices yield greater benefits than running the same models on CPU or running more
complex (higher number of layers and hidden units) models on GPU.

5 DISCUSSION
While our work establishes the feasibility of executing LSTM-based classifiers on embedded devices, there are
still open issues to the use of an LSTM-based breathing acoustics user authentication.

5.1 Practicality of Breathing Based Authentication
Our results have shown that breathing based authentication is practical on resource constrained devices, providing
best-case accuracy of around 96% for sniff breathing gestures and 85% for deep breathing gestures. However,
this accuracy level may not be high enough for standalone primary authentication, especially compared to
fingerprint and iris based mechanisms which typically have error rates lower than 0.1%. However, breathing-
based authentication can still be an attractive option for ubiquitous applications:

(1) Breathing based authentication can be used as a second form of authentication in a multi-factor authentica-
tion [40]–for example, when combined with passwords or face recognition [47]. As an example, consider a
use case involving the use of a sensitive tool in a factory environment. While passwords or face recognition
can provide an initial entry-point authentication (when the worker picks up the tool), breathing can serve
as the secondary mechanism for subsequent, periodic or continual user verification. Breathing-based ap-
proaches have the advantage that they are effortless and non-intrusive, and also does not require specialized
hardware such as fingerprint or iris scanners.

(2) The level of acceptable authentication accuracy also depends on the type of application. For example,
the level of security needed to perform financial transactions needs to be much higher than managing
personalized interactions in a smart home. In scenarios where a very high degree of security is not required
(e.g., in an elderly smart home where the attack likelihood is low), breathing based biometrics can work as
a standalone weak biometrics [3] to support services such as dispensing daily medication.

Overall, this paper does not seek to establish breathing acoustics as a superior authentication modality. Instead,
our goal is to use such acoustic authentication as a credible exemplar of a ubiquitous application that benefits
from the executing of a deep learning-based classifier and study the performance profile of such classifiers on
multiple, commonplace pervasive platforms.

5.2 Scalability
The scalability of authentication systems is an important issue, especially when deployed on a non-personal IoT
device (e.g., a factory equipment with multiple users). Scalability is less of an issue on a personal device (e.g.,
smartphone), as the platform is typically concerned only with user verification. In particular, an increase in the

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

0:24 •

number of users would potentially negatively affect the training time, accuracy, model sizes and the inferencing
times of an authentication mechanism. We discuss these issues one by one.

(1) Impact on Training Time: With increasing number of users, the system has to be retrained with the
new data coming from the new users. The naive approach of retraining with the entire dataset would
require progressively increasing time and computational resources. We believe that this can be tackled
by the use of transfer learning and incremental learning approaches, widely used in machine learning
literature [26, 42–44, 49]. Incremental learning helps existing system to learn new examples from the same
classes, and could be used when the system receives training data from an existing user pool. In contrast,
transfer learning helps an existing system to accommodate new classes and could be used to bootstrap the
mechanism for new users.

(2) Impact on Performance: The increasing number of users will impact accuracy and the resource requirements
of any authentication system in a negative manner, and the BreathPrint system is likely to be no exception.
However, there are some possible ways to improve the system’s scalability. Multimodal or multifactor
authentication systems offers a reasonable way to maintain a high accuracy (security) with increasing
number of users. Such systems has some extra user overhead (multiple input actions) and have higher
inference times than the standalone systems, but provide higher security guarantees as the number of
users grows. An alternative way to increase the scalability is to create multiple models, each consisting of a
fixed number and set of users (i.e., partitioning the database or system). The number of users can always
be decided based on some acceptable threshold on either the model size or the authentication latency–for
example, the number of users in a set can be such that the total model size does not exceed 1 MB and the
inference time (on a resource-constrained device) does not exceed 2-3 seconds. To combat the issue of
decreasing accuracy with an increased number of users, the set of users in a single model can be chosen
such that their behavioural biometrics are highly dissimilar. Techniques based on distance similarities or
knn can be used to identify such user sets.

6 CONCLUSION
Our study shows that an LSTM based approach for user authentication on breathing acoustics is better than
both traditional shallow approaches (SVM, GMM) and a more practical approach than deep learning approach
based on MLP because of smaller inference timings, smaller memory footprint and similar performance. LSTM
models are robust, provide good accuracy for a secondary authentication modality and are also lightweight (a
couple of hundred KB) so that they can run effectively on a variety of resource-constrained devices. The time to
authenticate a user is very small (<=200 ms) for smartphones and is within acceptable bounds (<= 1 second)
for the highly resource-constrained smartwatch platform. Additionally, compressed models can provide similar
accuracy as unmodified (original) model and thus help to reduce storage and memory footprint on such devices.
The inference time for LSTM models can be improved 2–4 times by using GPUs instead of CPUs. To conclude,
our investigations suggest that LSTM models offer a compelling lightweight authentication solution based on
breathing acoustics to authenticate users in an unobtrusive and natural way on mobile, wearable and IoT devices
without connecting to the network.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey

Irving, Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale Machine Learning.. In OSDI, Vol. 16. Usenix, Savannah, GA,
USA, 265–283.

[2] Ossama Abdel-Hamid and Hui Jiang. 2013. Fast speaker adaptation of hybrid NN/HMM model for speech recognition based on
discriminative learning of speaker code. In ICASSP. IEEE, Vancouver, Canada, 7942–7946.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

Performance Characterization of Deep Learning Models for Breathing-based Authentication on
Resource-Constrained Devices • 0:25

[3] Heikki Ailisto, Elena Vildjiounaite, Mikko Lindholm, Satu-Marja Mäkelä, and Johannes Peltola. 2006. Soft biometricsâĂŤcombining
body weight and fat measurements with fingerprint biometrics. Pattern Recognition Letters 27, 5 (2006), 325–334.

[4] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel, and Yoshua Bengio. 2016. End-to-end attention-based large
vocabulary speech recognition. In ICASSP. IEEE, Lujiazui, China, 4945–4949.

[5] Sourav Bhattacharya and Nicholas D Lane. 2016. Sparsification and separation of deep learning layers for constrained resource inference
on wearables. In SenSys. ACM, Stanford, USA, 176–189.

[6] Qingqing Cao, Niranjan Balasubramanian, and Aruna Balasubramanian. 2017. MobiRNN: Efficient Recurrent Neural Network Execution
on Mobile GPU. In EMDL (EMDL ’17). ACM, Niagara Falls, USA, 1–6.

[7] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. 2016. Listen, attend and spell: A neural network for large vocabulary
conversational speech recognition. In ICASSP. IEEE, Lujiazui, China, 4960–4964.

[8] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and
technology (TIST) 2, 3 (2011), 27.

[9] Jorge Chang and DeLiang Wang. 2017. Robust speaker recognition based on DNN/i-vectors and speech separation. In ICASSP. IEEE,
New Orleans Riverside, USA, 5415–5419.

[10] Jagmohan Chauhan, Yining Hu, Suranga Seneviratne, Archan Misra, Aruna Seneviratne, and Youngki Lee. 2017. BreathPrint: Breathing
Acoustics-based User Authentication. In MobiSys. ACM, Niagara Falls, USA, 278–291.

[11] J. Chauhan, S. Seneviratne, Y. Hu, A. Misra, A. Seneviratne, and Y. Lee. 2017. BreathRNNet: Breathing Based Authentication on
Resource-Constrained IoT Devices using RNNs. ArXiv (2017). arXiv:1709.07626

[12] Robert T Clemen. 1989. Combining forecasts: A review and annotated bibliography. International journal of forecasting 5, 4 (1989),
559–583.

[13] Cory Cornelius, Ronald Peterson, Joseph Skinner, Ryan Halter, and David Kotz. 2014. A wearable system that knows who wears it. In
Proceedings of the 12th annual international conference on Mobile systems, applications, and services. ACM, 55–67.

[14] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning research 7, Jan (2006), 1–30.
[15] Milton Friedman. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the

american statistical association 32, 200 (1937), 675–701.
[16] Milton Friedman. 1940. A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical

Statistics 11, 1 (1940), 86–92.
[17] Gartner. 2017. Gartner Says Worldwide Wearable Device Sales to Grow 17 Percent in 2017. https://www.gartner.com/newsroom/id/

3790965. (2017).
[18] Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton. 2013. Speech recognition with deep recurrent neural networks. In ICASSP.

IEEE, Vancouver, Canada, 6645–6649.
[19] Nils Y. Hammerla, Shane Halloran, and Thomas Plötz. 2016. Deep, Convolutional, and Recurrent Models for Human Activity Recognition

Using Wearables. In AAAI. AAAI Press, Phoenix, USA, 1533–1540.
[20] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing deep neural networks with pruning, trained

quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015).
[21] Georg Heigold, Ignacio Moreno, Samy Bengio, and Noam Shazeer. 2016. End-to-end text-dependent speaker verification. In ICASSP.

IEEE, Lujiazui, China, 5115–5119.
[22] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. DeepMon: Mobile GPU-based Deep Learning Framework for Continuous

Vision Applications. In MobiSys. ACM, Niagara Falls, USA, 82–95.
[23] Md Tamzeed Islam, Bashima Islam, and Shahriar Nirjon. 2017. SoundSifter: Mitigating Overhearing of Continuous Listening Devices. In

Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. ACM, Niagara Falls, USA, 29–41.
[24] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. 2015. Compression of deep convolutional

neural networks for fast and low power mobile applications. arXiv preprint arXiv:1511.06530 (2015).
[25] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[26] Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo. 2013. From n to n+ 1: Multiclass transfer incremental learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. 3358–3365.
[27] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A

software accelerator for low-power deep learning inference on mobile devices. In IPSN. ACM. IEEE, Vienna, Austria, 1–12.
[28] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, and Fahim Kawsar. 2015. An early resource characterization

of deep learning on wearables, smartphones and internet-of-things devices. In International Workshop on IoT-App. IEEE, Seoul, South
Korea, 7–12.

[29] Nicholas D. Lane, Petko Georgiev, and Lorena Qendro. 2015. DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic
Environments Using Deep Learning. In UbiComp. ACM, Osaka, Japan, 283–294.

[30] Hank Liao. 2013. Speaker adaptation of context dependent deep neural networks. In ICASSP. IEEE, Vancouver, Canada, 7947–7951.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

http://arxiv.org/abs/1709.07626
https://www.gartner.com/newsroom/id/3790965
https://www.gartner.com/newsroom/id/3790965

0:26 •

[31] Aloysius Low. 2017. Mobile payments to overtake credit cards by 2019, says UN report. https://www.cnet.com/news/
come-2019-users-will-prefer-to-pay-by-mobile-instead-of-credit-cards-says-un-report/. (2017).

[32] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9, Nov (2008),
2579–2605.

[33] Spyros Makridakis and Robert L Winkler. 1983. Averages of forecasts: Some empirical results. Management Science 29, 9 (1983), 987–996.
[34] Inderjeet Mani and I Zhang. 2003. kNN approach to unbalanced data distributions: a case study involving information extraction. In

Proceedings of workshop on learning from imbalanced datasets, Vol. 126.
[35] Akhil Mathur, Nicholas D. Lane, Sourav Bhattacharya, Aidan Boran, Claudio Forlivesi, and Fahim Kawsar. 2017. DeepEye: Resource

Efficient Local Execution of Multiple Deep Vision Models Using Wearable Commodity Hardware. In MobiSys. ACM, Niagara Falls, USA,
68–81.

[36] Daisuke Miyashita, Edward H Lee, and Boris Murmann. 2016. Convolutional neural networks using logarithmic data representation.
arXiv preprint arXiv:1603.01025 (2016).

[37] Abdel-Rahman Mohamed, George E Dahl, and Geoffrey Hinton. 2012. Acoustic modeling using deep belief networks. IEEE Transactions
on Audio, Speech, and Language Processing 20, 1 (2012), 14–22.

[38] Netimperative. 2017. Health and fitness app usage grew 330% in just 3 years. http://www.netimperative.com/2017/09/
health-fitness-app-usage-grew-330-just-3-years/. (2017).

[39] Dzung Tri Nguyen, Eli Cohen, Mohammad Pourhomayoun, and Nabil Alshurafa. 2017. SwallowNet: Recurrent neural network detects
and characterizes eating patterns. In Pervasive Computing and Communications Workshops (PerCom Workshops), 2017 IEEE International
Conference on. IEEE, Hawaii, USA, 401–406.

[40] Lawrence O’Gorman. 2003. Comparing passwords, tokens, and biometrics for user authentication. Proc. IEEE 91, 12 (2003), 2021–2040.
[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter

Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research
12, Oct (2011), 2825–2830.

[42] Amir Rosenfeld and John K Tsotsos. 2017. Incremental learning through deep adaptation. arXiv preprint arXiv:1705.04228 (2017).
[43] Stefan Ruping. 2001. Incremental learning with support vector machines. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International

Conference on. IEEE, 641–642.
[44] Syed Shakib Sarwar, Aayush Ankit, and Kaushik Roy. 2017. Incremental Learning in Deep Convolutional Neural Networks Using Partial

Network Sharing. arXiv preprint arXiv:1712.02719 (2017).
[45] Suranga Seneviratne, Yining Hu, Tham Nguyen, Guohao Lan, Sara Khalifa, Kanchana Thilakarathna, Mahbub Hassan, and Aruna

Seneviratne. 2017. A survey of wearable devices and challenges. IEEE Communications Surveys & Tutorials 19, 4 (2017), 2573–2620.
[46] Prakash Shrestha and Nitesh Saxena. 2017. An Offensive and Defensive Exposition of Wearable Computing. ACM Computing Surveys

(CSUR) 50, 6 (2017), 92.
[47] Terence Sim, Sheng Zhang, Rajkumar Janakiraman, and Sandeep Kumar. 2007. Continuous verification using multimodal biometrics.

IEEE transactions on pattern analysis and machine intelligence 29, 4 (2007), 687–700.
[48] Statista. 2018. Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in billions). https://www.statista.

com/statistics/471264/iot-number-of-connected-devices-worldwide/. (2018).
[49] Prahalathan Sundaramoorthy, Gautham Krishna Gudur, Manav Rajiv Moorthy, R Nidhi Bhandari, and Vineeth Vijayaraghavan. 2018.

HARNet: Towards On-Device Incremental Learning using Deep Ensembles on Constrained Devices. (2018).
[50] Ehsan Variani, Xin Lei, Erik McDermott, Ignacio Lopez Moreno, and Javier Gonzalez-Dominguez. 2014. Deep neural networks for small

footprint text-dependent speaker verification. In ICASSP. IEEE, Florence, Italy, 4052–4056.
[51] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment: from error visibility to structural

similarity. IEEE transactions on image processing 13, 4 (2004), 600–612.
[52] Chao Weng, Dong Yu, Shinji Watanabe, and Biing-Hwang Fred Juang. 2014. Recurrent deep neural networks for robust speech

recognition. In ICASSP. IEEE, Florence, Italy, 5532–5536.
[53] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016. Quantized convolutional neural networks for mobile

devices. In CVPR. IEEE, Las Vegas, USA, 4820–4828.
[54] Jian Xue, Jinyu Li, Dong Yu, Mike Seltzer, and Yifan Gong. 2014. Singular value decomposition based low-footprint speaker adaptation

and personalization for deep neural network. In ICASSP. IEEE, Florence, Italy, 6359–6363.
[55] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. 2017. Incremental network quantization: Towards lossless cnns with

low-precision weights. In ICLR. Vancouver, Canada, 1–2.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: .

https://www.cnet.com/news/come-2019-users-will-prefer-to-pay-by-mobile-instead-of-credit-cards-says-un-report/
https://www.cnet.com/news/come-2019-users-will-prefer-to-pay-by-mobile-instead-of-credit-cards-says-un-report/
http://www.netimperative.com/2017/09/health-fitness-app-usage-grew-330-just-3-years/
http://www.netimperative.com/2017/09/health-fitness-app-usage-grew-330-just-3-years/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

	Performance characterization of deep learning models for breathing-based authentication on resource-constrained devices
	Citation
	Author

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Learning Models for Acoustics Modeling
	2.2 Deep Learning on Resource-Constrained Devices

	3 Methodology
	3.1 Dataset
	3.2 User Identification
	3.3 User Verification
	3.4 Model Compression
	3.5 Performance Metrics

	4 Results
	4.1 User Identification
	4.2 User Verification
	4.3 GPU Results

	5 Discussion
	5.1 Practicality of Breathing Based Authentication
	5.2 Scalability

	6 Conclusion
	References

