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ABSTRACT
Determining the similarity between two objects is pertinent to
many applications. When the basis for similarity is a set of object-
to-object relationships, it is natural to rely on graph-theoretic mea-
sures. One seminal technique for measuring the structural-context
similarity between a pair of graph vertices is SimRank, whose un-
derlying intuition is that two objects are similar if they are con-
nected by similar objects. However, by design, SimRank as well as
its variants capture only a single view or perspective of similar-
ity. Meanwhile, in many real-world scenarios, there emerge multi-
ple perspectives of similarity, i.e., two objects may be similar from
one perspective, but dissimilar from another. For instance, human
subjects may generate varied, yet valid, clusterings of objects. In
this work, we propose a graph-theoretic similarity measure that is
natively multiperspective. In our approach, the observed object-to-
object relationships due to various perspectives are integrated into
a unified graph-based representation, stylised as a hypergraph to
retain the distinct perspectives. We then introduce a novel model
for learning and reflecting diverse similarity perceptions given the
hypergraph, yielding the similarity score between any pair of ob-
jects from any perspective. In addition to proposing an algorithm
for computing the similarity scores, we also provide theoretical
guarantees on the convergence of the algorithm. Experiments on
public datasets show that the proposed model deals better with
multiperspectivity than the baselines.
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1 INTRODUCTION
Determining whether two objects are similar is a fundamental task
in many real-world applications. When browsing a product online,
a customer may be presented other similar products to consider.
On Pinterest, a visual discovery platform, as users pin images onto
boards, they may wish to discover other related images. Search
engines, such as Google, support similar button under a result link,
which would return similar pages to the link. Similarity is also an
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elemental component of data-driven tasks such as clustering [9],
entity resolution [1], retrieval [16], recommendation [2], etc.

There are various ways to measure similarity. Some, such as
cosine similarity, are based on content or features, e.g., whether
two documents contain the same words, or two products have the
same attributes. Others, such as KL-divergence, are based on prob-
ability distributions. Yet other measures may be domain-specific,
such as sequence alignment [5]. These diverse types of similarity
are orthogonal, reflecting various aspects. They are not so much
alternatives as complements, and indeed they have been used in
conjunction in some applications such as entity resolution.

Problem. In thiswork, we focus on the notion of graph-theoretic
similarity, based on object-to-object “relationships” (the specific
definition of which may be domain-dependent). For instance, a
Web page may link to another; two images may belong to the same
Pinterest’s board. In each case, object-to-object relationships be-
come the basis for inferring the similarity between any two objects
of interest (pages, images). Naturally, such notion of relationship-
based similarity lends itself well to a graph-based formulation, with
vertices for objects, and edges for relationships between objects.

SimRank [11] lays a foundation for graph-based similarity mea-
surement, premised on the intuition that the similarity between a
pair of objects is dependent on the similarity of other object pairs.
We consider two objects (i, j) similar, if the two objects are respec-
tively related to other objects k (related to i) and l (related to j) that
are themselves similar. Under this definition, two Web pages are
similar if they respectively link to two other pages that are similar.
Two images on Pinterest are similar if they respectively belong to
the same boards as two other images that are themselves similar.
Two users are similar if they respectively adopt similar products.

However, SimRank is a uniperspective measure. It assumes only
one perception of similarity. In some scenarios, there are actually
multiple perspectives of similarity. What may be similar accord-
ing to one perspective may be different according to another. This
may arise due to different facets of relationships, e.g., two products
may be “related” in different ways: browsed together, purchased
together, same manufacturer, etc. This may also arise due to differ-
ent agents that express the relationships, e.g., someone may group
tourist attractions based on activities (strolling, amusement park),
while another based on artistic value (architecture, museums) or
neighborhoods [22]. A uniperspective approach (e.g., SimRank) is
not designed for capturing “different strokes for different folks”.

How then do we cope with the presence of multiple perspec-
tives? There are a couple of naive approaches. One is to ignore the
multiplicity, creating a uniperspective measure by merging the dis-
parate relationships into a single graph and applying the SimRank
on this one graph. Another is to isolate each perspective, creat-
ing multiperspective measures by maintaining a distinct graph for
each perspective and applying SimRank on each graph separately.
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The formermay underfit, due to a lack of capacity tomodel idiosyn-
cratic nuances of similarity. The latter may overfit, due to the spar-
sity of relationships within each perspective and the potential to
capture incidental relationship instances that may not generalize.

Proposed Approach. Therefore, we propose a natively multi-
perspective approach to measuring graph-theoretic similarity. As
input, we are given not one graph, but multiple graphs correspond-
ing to multiple perspectives, with each graph reflecting relation-
ships among objects from a specific perspective. As output, we seek
to measure the similarity between a pair of objects according to a
particular perspective. The key intuition underlying this formula-
tion is to model not only the perspective-specific inter-object sim-
ilarity between any pair of objects, but also the inter-perspective
similarity between any two perspectives. The latter allows the for-
mer to be learned simultaneously across all perspectives, rendering
an advantage in sharing information across similar perspectives,
which helps to address the sparsity of relationship instances.

Contributions. In this work, we make several contributions.
First, to our best knowledge, we are the first to define the problem
of multiperspective graph-theoretic similarity. Second, we propose
a multiperspective formulation capable of expressing both intra-
perspective similarity between two objects and inter-perspective
similarity between two perspectives (Section 3).Third, we describe
a straightforward solution that works as a pipeline whereby we
first learn inter-perspective similarities followed by perspective-
specific inter-object similarities (Section 4). Fourth, we further pro-
pose a computationally more efficient joint solution where both
are learned simultaneously (Section 5). For each solution, we de-
scribe its learning algorithm and provide arguments for the exis-
tence of its solution. Fifth, in Section 6, we conduct experiments
on public datasets to validate the effectiveness of the multiperspec-
tive graph-theoretic approach, showing its outperformance when
compared to uniperspective graph-based baselines, and multiper-
spective non-graph baseline. Finally, Section 7 analyzes the stor-
age and computational complexities of the models, and describes
a clustering-based heuristic to approximate the multiperspective
similarities, offering a trade-off between speed and accuracy.

2 RELATEDWORK
Similarity measurement is a broad topic. Since our key thrust is in-
corporatingmultiperspectivity into graph-theoretic similaritymea-
sure, in the following we relate our work to the closest branches in
the literature, namely other methods for graph-theoretic similarity
as well as other notions of multiperspective similarity.

Graph-Theoretic Similarity. Most of the previous works in
graph-based similarity are based on SimRank [11]. We first briefly
review SimRank. Given a graph G(V ,E), SimRank measures the
similarity between two vertices based on the graph structure. Each
vertex represents one object. Formally, the SimRank similarity score
S(a,b) between two vertices a,b is defined as follows:

S(a,b) =


C

|N (a) | |N (b) |

|N (a) |∑
i=1

|N (b) |∑
j=1

S(Ni (a),Nj (b)), if a , b,

1, if a = b

(1)

in which C is the damping factor between 0 and 1; N (a) and N (b)
comprise the neighbors of a and b respectively. In other words, the
SimRank score between a,b is defined in terms of the SimRank
scores of their neighbors. The base case is the similarity between a
vertex and itself, which is always 1. If a vertex a has no neighbor,
then we have S(a,b) = 0 for any vertex b , a.

SimRank has been extended in diverse directions, of which we
cite a few here, as a complete enumeration would not have been
feasible. [13] proposed non-iterative computation for dynamically
changing graphs. [8] parallelized the similarity computation using
GPUs. [14] optimized the computation when the target was com-
puting the similarity of a single pair of objects. [12] sought to speed
up the computation for extremely large graphs. In the context of
translation lexicons, [4] presented a modification of SimRank to
measure similarity across two graphs (one object in each graph);
this is distinct from the notion of multiperspective as there is only
one perspective. We are not aware of any SimRank extension in-
corporating multiperspective similarity as we are proposing.

Besides SimRank, there are other notions of graph-based simi-
larity. Most are based on random walk variants [19] (e.g., Person-
alized PageRank [10, 17] or hubs and authorities [7]). [18] was con-
cerned with metapaths in heterogeneous information networks.

Multiperspective Similarity.Outside of graph-theoreticmeth-
ods, there exists other methods that could be interpreted as learn-
ing multiperspective similarities. The closest is [22], which uses
matrix factorization to learn personalized clustering of objects; each
person could be seen as a perspective and two objects are similar if
they belong to the same cluster. However, instead of graph theory,
it is framed in terms of similarity learning [3], where the objective
is to derive a function mapping features to similarity labels. In the
absence of features, it turns into learning latent representations
from similar labels. In Section 6, we compare to the latter.

The notion of crowdsourced clustering [20, 21] deals with the
problem of learning clustering from similarity labels generated by
Turkers. There, the focus is not so much to reflect a variety of per-
spectives as to arrive at the common consensus.

3 OVERVIEW
In this section, we provide an overview of the problem formulation
and solutions. After formally introducing our notations and defin-
ing the data representation in terms of our hypergraph formula-
tion, we outline the solution framework for deriving the perspective-
specific inter-object similarities and inter-perspective similarities.

3.1 Problem Formulation
Let O = {o1,o2, . . . ,on } be the universal set of objects for which
we seek to infer similarities. Suppose that we are interested inmod-
elingm different perspectives P = {p1,p2, . . . ,pm } over the simi-
larities of objects in O. For each perspective p ∈ P, we are given a
graph Gp(O,Ep), where Ep ⊆ O × O comprises edges between
pairs of objects that p considers related. The collection of such
graphs G = {G1,G2, . . . ,Gm } make up the input to the problem.
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Figure 1: Illustration of the Hypergraph Representation

Because the respective Gp ’s are defined over the same set of
vertices O, we seek a unified representation that allows the inte-
gration of them separate graphs. There are several equivalent rep-
resentations for what is essentially the same data. One is a multi-
labeled graph, with perspectives serving as edge labels. Another
is a bipartite graph, with perspectives as one type of vertices, and
object pairs as the other type. Since we are as concerned with the
inter-perspective similarity as we are with the inter-object simi-
larity, for most of the subsequent discussions, we resort to a repre-
sentation where perspectives and objects are both vertices. A natu-
ral candidate for such a representation is a 3-uniform hypergraph,
whereby each edge relates exactly three vertices: one perspective
vertex and two object vertices considered similar by the former.

From the input G, we construct a 3-uniform hypergraph H =
(X, E) consisting of a set of vertices X = P ∪ O and a set of hy-
peredges E = {(pk ,oi ,oj ) : 1 ≤ k ≤ m; 1 ≤ i, j ≤ n}, in which
(pk ,oi ,oj ) ∈ E means that oi and oj are related according to per-
spective pk , i.e., (oi ,oj ) ∈ Epk in Gpk . Figure 1 illustrates an ex-
ample hypergraph with two perspectives P = {p1,p2} (red) and
four objects O = {o1,o2,o3,o4} (green). Hyperedges (p1,o1,o4)
and (p1,o2,o3) indicate that according to perspective p1, object o1
is related to object o4, while object o2 is related to object o3. In
contrast, according to p2, o1 is related to o2, and o3 is related to o4.

Given a multiperspective hypergraph H(X,E), the similarity
score of two objects oi ,oj ∈ O according to perspective p ∈ P is
denoted as Sp(oi ,oj ), whose value is bounded by [0, 1]. A special
case is Sp(oi ,oj ) = 1 when i = j. We are now ready to state the
problem formally as follows.

Problem 1 (Multiperspective Similarity). Given a multiper-
spective hypergraphH , determine the similarity score Sp(oi ,oj ) for
each perspective p ∈ P and pair of objects oi , oj ∈ O.

3.2 Framework for Multiperspective Solutions
A naive solution to multiperspectivity (i.e., Problem 1) is to run
SimRank (Equation 1) on each perspective’s component graph Gp
separately. We refer to this solution as Disjoint-SimRank. While
this produces perspective-specific inter-object similarities, themain
issue is that there may not be sufficient information within each
Gp to learn the similarities among objects effectively. If every per-
spective is distinct and unique, then perhaps we could do no bet-
ter than this. However, realistically, the various perspectives may

Table 1: List of Notations

Symbols Description
P {p1,p2, . . . ,pm }-perspective vertices
O {o1,o2, . . . ,om }-object vertices
X set of all vertices, i.e., P ∪ O
E set of all hyperedges, i.e.,

{(p,oi ,oj ) : oi and oj are related, according to p}
m number of perspectives
n number of objects
Np(oi ) {oj ∈ O|(p,oi ,oj ) ∈ E}
Sp(oi ,oj ) similarity score between vertices oi and ok ,

according to perspective p
Sp [Sp(oi ,oj )]n×n : perspective-specific

inter-object similarity score matrix
Wp Column-normalized matrix (size n × n) of the

adjacency matrix with respect to perspective p ∈ P
sim(p,p′) similarity between two perspective vertices p,p′
C damping factor
In identity matrix with size n

share some degree of agreement in how they perceive the similar-
ities among objects. If so, then there would be an opportunity to
let a perspective collaborate with other similar perspectives, filling
the gaps in each other’s knowledge of object similarities.

Therefore, for a truly multiperspective solution, we advocate en-
abling information sharing across perspectives, to a degree corre-
lated with the similarity among the corresponding perspectives.
Let’s denote sim(p,p′) ∈ [0, 1] to be the similarity between two
perspectivesp,p′ ∈ P. How these values may be derived forp,p′ ∈
P will be discussed shortly.

To infer the similarity Sp(oi ,oj ) between two objects oi and oj
according top, we propose to expand the definition in Equation 1 to
incorporate inter-perspective similarity sim(p,p′), in such a way
that Sp(oi ,oj ) is expressed in terms of the corresponding object
similarities according to other perspectives p′ as well, as shown in
Equation 2. Here, Np(oi ) comprises the neighbors of oi in Gp .

Sp (oi , oj ) =
C
|P |

∑
p′∈P

sim(p, p′)
∑

ok ∈Np′(oi )

∑
ol ∈Np′(oj )

Sp′(ok , ol )

|Np′(oi ) | |Np′(oj ) |
,

(2)

Equation 2 captures a couple of fundamental principles. First,
the similarity between two objects depends on the similarities be-
tween other objects related to those objects of interest. Second,
distinctly in our formulation, the similarity between two objects
of interest according to a specific perspective also depends on the
similarities between related objects as seen by similar perspectives.

Let Sp = [Sp(oi ,oj )]n×n be the matrix representation of the
perspective-specific inter-object similarity scores, and Wp be the
column-normalized matrix of the adjacency matrix with respect
to p ∈ P. We can express Equation 2 in matrix form as follows:

Sp =
C

|P |

∑
p′∈P

sim(p,p′).Wp′
TSp′Wp′ (3)



In this multiperspective framework, one important component
is the inter-perspective similarity sim(p,p′), determining the de-
gree to which information is shared between one perspective and
another. The straightforward solution is to treat it as a pipeline:
first compute the similarity between perspectives, then solve Equa-
tion 2 to compute the perspective-specific inter-object similarities.
We refer to this as Pipelined-SimRank (Section 4). In Section 5,
we further propose a refined formulationMP-SimRank to compute
the inter-perspective similarities and the perspective-specific inter-
object similarities simultaneously. We expect that jointly learning
both types of similarities would reinforce the performance of the
framework at lower complexities than the former solution.

4 STRAIGHTFORWARD SOLUTION:
PIPELINED-SIMRANK

In this section, we describe Pipelined-SimRank that still enables
information sharing across perspectives through a pipelined solu-
tion. The key idea is to induce unidirectional dependency from the
inter-perspective sim(p,p′) to the inter-object Sp(oi ,oj ), but not
the other way around. This directionality implies that sim(p,p′)
has to be inferred from the multiperspective hypergraphH itself.

4.1 Inter-Perspective Similarity
As mentioned in Section 3, each perspective p is associated with
a graph of object-to-object relationships Gp . Intuitively, we con-
sider two perspectives p and p′ to be similar, if their corresponding
graphs Gp and Gp′ are similar, which implies that when p consid-
ers two objects related, it is likely that p′ does as well. We express
this intuition in graph-theoretic form as follows.

Let us transform the input hypergraphH = ({P,O},E) into a
bipartite graph B with two types of vertices, as illustrated in Fig-
ure 2 (unrelated to Figure 1). The first type are perspective vertices
P (left). The second type are “object-pair” vertices O × O, formed
from all pairs of non-identical objects (right). An edge from a per-
spective p to an object-pair vertex oi j exists in this bipartite graph
B iff (p,oi ,oj ) ∈ E in the original hypergraphH .
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Figure 2: Pipelined-SimRank: Bipartite graph for computing

similarity between perspective nodes

Once the bipartite graph B is in place, we can apply a graph-
theoretic measure such as the bipartite variant of SimRank [11] to
compute the inter-perspective similarity sim(p,p′), which will be
used in the next phase for computing Sp(oi ,oj ).

4.2 Learning Algorithm
Algorithm 1 encapsulates the pipelined solution Pipelined-SimRank,
which involves two phases. In the first phase, we compute inter-
perspective similarities sim(p,p′) for all p,p′ ∈ P as described
above.Thereafter, in the second phase, we use these inter-perspective
similarities in Equation 2 to compute the inter-object similarities
for each perspective. Note that sim(p,p′) is now fixed in the sec-
ond phase. The initial values S(0)p (∗, ∗)∀p ∈ P at the start of the
iterations (line 7) of Algorithm 1 are specified in Equation 4 below:

S
(0)
p (oi ,oj ) = 0 if i , j and 1 if i = j (4)

The solution to Equation 2 can be reached by iteration to a fixed-
point (lines 8–9). Finally, the algorithm returns the converged inter-
object similarities, as well as the inter-perspective similarities.

Algorithm 1 Pipelined-SimRank
Require: HypergraphH (defined as in Section 3)
1: /*—- create bipartite graph from hypergraph —- */
2: B ← bipartiteTransform(H)
3: /*—- compute the similarity between perspectives —- */
4: {sim(∗)(p,p′)}∀p,p′∈P ← bipartiteSimRank(B)
5: Initialize S(0)p ← In ,∀p ∈ P
6: while not converged do {

S
(t+1)
p (oi ,oj ) =

C

|P |

∑
p′∈P

sim(∗)(p,p′) (5)

×
∑

ok ∈Np′(oi )

∑
ol ∈Np′(oj )

S
(t)
p′ (ok ,ol )

|Np′(oi )| |Np′(oj )|
,

(for 1 ≤ i , j ≤ n)

and S(t+1)
p (oi ,oi ) = 1( for 1 ≤ i ≤ n)

7: Return {Sconvergedp (oi ,oj ),∀p ∈ P,oi ,oj ∈ O}
8: and {sim(∗)(p,p′),∀p,p′ ∈ P}.

4.3 Convergence Property
We now prove that Algorithm 1 will eventually converge, showing
the existence of a simultaneous solution of Equation 2.

Lemma 4.1. The sequence of perspective-specific similarity score
produced by Algorithm 1 is non-decreasing and bounded by [0, 1],
i.e., for p ∈ P,oi ,oj ∈ O, t ≥ 0.

1 ≥ S
(t+1)
p (oi ,oj ) ≥ S

(t)
p (oi ,oj ) ≥ 0,

Proof: From the initialization step and update equations (5) (de-
scribed in Algorithm 1), it is straightforward to see that:

S
(1)
p (oi ,oj ) ≥ 0 = S

(0)
p (oi ,oj ),∀p ∈ P,oi , oj ∈ O

and S(1)p (oi ,oi ) = 1 = S
(0)
p (oi ,oi ),∀p ∈ P,oi ∈ O.

That means Lemma 4.1 is true for t = 0. By induction, one can
verify the statement in Lemma 4.1 still hold true for ∀t ≥ 1.



Hence, each sequence {S(t)p (oi ,oj )}t ≥0 is non-decreasing and
bounded. By the Completeness Axiom of calculus, each sequence
{S(t)p (oi ,oj )}t ≥0 therefore converges to a limit Sp(oi ,oj ) ∈ [0, 1].
Moreover, {Sp(oi ,oj )} and {sim(∗)(p,p′)} are the solution for Eq. 2.

5 JOINT SOLUTION: MP-SIMRANK
Wenowdescribe our proposed joint solutionMultiPerspective Sim-
Rank or MP-SimRank. The key idea is to induce bidirectional de-
pendencies between the inter-perspective sim(p,p′) and the inter-
object Sp(oi ,oj ) similarities.

5.1 Inter-Perspective Similarity
Thedependency from the inter-perspective sim(p,p′) to inter-object
Sp is already encoded in Equation 2. To induce the dependency in
the opposite direction, we need to define sim(p,p′) in terms of Sp .
While there could be many possible definitions, we propose the
following definition in Equation 6, which, as we will show later
would still preserve the convergence property.

sim(p,p′) = 1 −




Sp − S′p


F
n

, (6)

The similarity between two perspectives p,p′ is inversely propor-
tional to the Frobenius norm between Sp and Sp′ . If they are sim-

ilar, i.e.,




Sp−S′p 


F
n is close to 0 then sim(p,p′) is close to 1. Other-

wise, if Sp and Sp′ are extremely different, i.e.,




Sp−S′p 


F
n is close

to 1, then sim(p,p′) is close to 0.

5.2 Learning Algorithm
Algorithm 2 shows the joint-learning solution for Equation 2. We
initialize the perspective-specific similarity score S

(0)
p (∗, ∗)∀p ∈

Algorithm 2 MP-SimRank
Require: HypergraphH (defined as in Section 3)
1: Initialize S(0)p ← In ,∀p ∈ P
2: Initialize sim(0)(p,p′) = 1 if p = p′ and 0 if p , p′
3: while not converged do {
4:

S(t+1)
p (oi ,oj ) =

C

|P |

∑
p′∈P

sim(t)(p,p′) (7)

×
∑

ok ∈Np′(oi )

∑
ol ∈Np′(oj )

S(t)p′ (ok ,ol )

|Np′(oi )| |Np′(oj )|
,

(for 1 ≤ i , j ≤ n)

and S(t+1)
p (oi ,oi ) = 1 (for 1 ≤ i ≤ n)

5: sim(t+1)(p,p′) = 1 −




S(t+1)
p −S(t+1)

p′





F

n ,∀p,p′ ∈ P
}

6: Return {Sconvergedp (oi ,oj ),∀p ∈ P,oi ,oj ∈ O}
7: and {simconverged(p,p′),∀p,p′ ∈ P}.

P as in Equation 4. For the similarity between perspectives, we
initialize sim(0)(p,p′)∀p,p′ ∈ P as in Equation 8 below.

sim(0)(p,p′) = 0 if p , p′ and 1 if p = p′ (8)

In contrast to the two-phase Algorithm 1, in this Algorithm 2 we
iterate the computation of inter-object similarity in line 4 and that
of inter-perspective similarity in line 5 until both converge.

5.3 Convergence Property
For MP-SimRank, we show that the computations for both types
of similarities will converge to a fixed point.

Lemma 5.1. The sequence of similarity between perspectives pro-
duced by Algorithm 2 is non-decreasing and bounded by [0, 1], i.e.,
for t ≥ 1,

1 ≥ sim(t+1)(p,p′) ≥ sim(t)(p,p′) ≥ 0,∀p,p′ ∈ P . (9)

Proof: Proving that, for t ≥ 0:


S(t+1)
p − S(t+1)

p′





F
≤



S(t)p − S(t)p′





F
, (10)

From Equation 3, ∀p,p′ ∈ P we have:


S(t+1)
p − S(t+1)

p′





F

=







 C

|P |

∑
p′′∈P

(
sim(t)(p,p′′) − sim(t)(p′,p′′)

)
WT
p′′ · S

(t)
p′′ ·Wp′′








F

≤ C

|P |

∑
p′′∈P

���sim(t)(p,p′′) − sim(t)(p′,p′′)
��� . 


WT

p′′ · S
(t)
p′′ ·Wp′′





F

=
C

|P |

∑
p′′∈P

���
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⇒ sim(t+1)(p,p′) ≥ sim(t)(p,p′).

Since, 0 ≤




S(t)
p −S

(t)
p′





F

n ≤ 1,∀t ≥ 1 and p,p′ ∈ P, we also have
sim(t)(p,p′) ∈ [0, 1],∀t ≥ 0 and p,p′ ∈ P. By the Completeness
Axiom of calculus, sim(t)(p,p′) converges to a limit sim(p,p′).

From Lemma 5.1 and by induction, we can prove that Lemma
4.1 still holds true for the perspective-specific sequences produced
by Algorithm 2. That means {S(t)p (oi ,oj )}t ≥0 converges to a limit
Sp(oi ,oj ) ∈ [0, 1] and {sim(t+1)(p,p′)}t ≥0 converges to a limit
sim(p,p′). Moreover, Sp(oi ,oj ) and sim(p,p′) solve Equation 2.

6 EXPERIMENTS ON EFFECTIVENESS
Our experimental objectives are to study the comparative perfor-
mance of the proposed graph-theoretic multiperspective approach
against comparable baselines, and to investigate the role and effec-
tiveness of inter-perspective similarities.



6.1 Experimental Settings
Datasets. For experiments, we seek publicly available datasets that
could reflect the notion of multiperspectivity. We identify the fol-
lowing three datasets, whereby the first two model multiperspec-
tivity due to different facets or attributes of objects, and the third
models multiperspectivity due to different agents.

Zoo1 contains 101 animals with 17 attributes (excluding name),
e.g., #legs, type (mammals, birds, etc.). We treat attribute as per-
spective and animal as object, and model the varying similarity of
animals according to attributes. We form a hyperedge (p,oi ,oj ) if
oi and oj have the same value for p. For example, one hyperedge is
(#legs, elephant, giraffe), since elephant and giraffe have four legs.

Congressional Voting Records (or HouseVote)2 contains 435 instances
(congress members) and 16 attributes (votes). After excluding in-
stances with missing values, we get a dataset with 232 instances.
Considering each attribute as a perspective, we generate hyper-
graph in the same way as we do with Zoo dataset.

Paris Attractions3 has 237 users organize 250 attractions in Paris
into clusters. Each is a group of similar attractions from the per-
spective of a user. We induce hyperedges involving two attractions
i and j that the user (perspective) puts into the same cluster.

The density ratio is measured by dividing the number of present
hyperedges by the maximum number of hyperedges possible, i.e.,
m ∗ n2. Paris Attractions has the lowest density at 0.16%, as com-
pared to 57.2% for Zoo and 52.3% for HouseVote.

Task and Metrics. We evaluate similarity methods as follows.
In each dataset, a perspective is associated with a clustering of ob-
jects (based on attribute values or groupings). For each cluster, we
sample 70% of objects for training, and keep the 30% hidden for
testing. From the training set, we induce a hypergraph, and learn
the similarity scores. At the prediction stage for each perspective,
we measure the affinity between a hidden object and the clusters,
and assigns the object to the highest-affinity cluster. Here, affinity
is the average similarity (as measured by the comparative method)
between the hidden object and the known objects in the cluster.

While presence of hyperedges indicate similarity, absences may
not necessarily indicate dissimilarity (maybemissing values).Thus,
we evaluate predictions via two recall-oriented metrics. We con-
duct stratified sampling to maintain the same ratio for each per-
spective and report the average results over ten train/test splits.

Recall: For a p ∈ P, hiding an object from one of its clusters
essentially creates hidden hyperedges in the test set involving the
perspective, the hidden object, and other objects in the cluster. Cor-
respondingly, at prediction stage, the assignment of a hidden ob-
ject to the highest-affinity cluster “predicts” another set of hyper-
edges. Let Ehidp denote the former, and Epredp the latter. Recall is the
fraction of Ehidp recovered by Epredp , averaged across perspectives.

Recall = 1

m

∑
p∈P

|Epredp ∩ Ehidp |
|Ehidp |

(11)

PRES:As the recall measure above relies on discrete assignments,
we use a second metric that relies on rankings. For a cluster, we
1https://archive.ics.uci.edu/ml/datasets/Zoo
2https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
3http://projects.yisongyue.com/collab_cluster/

rank the candidate objects based on the affinity scores. We then
evaluate the rank positions of the ground-truth hidden objects us-
ing PRES (Patent Retrieval Evaluation Score) [15], which had been
designed for recall-oriented retrieval tasks. Equation 12 shows the
formula for a cluster of a given perspective, where n is the num-
ber of ground-truth objects hidden from this cluster, ri is the rank
order of each ground-truth object in the output, and Nmax is the
total number of candidates. To report the overall result, we average
it across the clusters of a perspective, and then across perspectives.

PRES = 1 −

∑
ri
n −

n+1
2

Nmax
(12)

Methods. We compare the two methods4 described in this pa-
per: Pipelined-SimRank andMP-SimRank to several baselines. Since
our work is related to SimRank, and the key contribution is to in-
corporate native multiperspectivity, our main baselines are vari-
ants of SimRank. For all the graph-theoretic methods, including
ours, the damping factor C is set to 0.8, as recommended in [11].

Thefirst two are uniperspective SimRank-basedmethods.Merged-
SimRank is obtained by taking the union of graphs due to different
perspectives, and applying SimRank on themerged graph.Average-
SimRank is obtained by running SimRank on each perspective’s
graph independently, and then averaging the SimRank scores to be
used as a common inter-object score. Comparing to these uniper-
spective variants allows us to see the effect of multiperspectivity.

Disjoint-SimRank recognizesmultiperspectivity, but assumes they
can be obtained separately. For each perspective, we create a single
graph to represent its own similarity viewpoint. We then run clas-
sic SimRank on each graph independently. In this mode, each per-
spective can only learn from its own graph, without collaborating
with others. Comparing to this variant allows us to see the effect
of inter-perspective collaboration that underpins both Pipelined-
SimRank and MP-SimRank.

The final method Personalized Collaborative Clustering or PCC
[22] is not graph-theoretic per se. Given our focus, strictly speak-
ing it is not a baseline. However, it is included for completeness
because it supports some notion of multiperspectivity, but relies
on matrix factorization. We tune the parameters of PCC (learning
rate, dimension of latent space) for its best performance.

6.2 Comparison to Baselines
Wenowdiscuss the experimental results, focusing on the similarity
values among objects. Figure 3 shows the Recall of all comparative
methods across the three datasets.

Disjoint-SimRank is consistently the weakest. Its Recall for Zoo,
HouseVote, and Paris Attractions are 24.65%, 25.14%, and 0.65%. We
attribute this to the lack of information within each perspective,
since each only runs SimRank on its own graph.

Merged-SimRank achieves slightly better Recall than Disjoint-
SimRank on three datasets: 26.0% for Zoo, 41.7% for HouseVote, and
3.4% for Paris Attractions. By pooling together all the perspectives,
it learns the consensus view.Average-SimRank interestingly achieves
the best Recall values among all the baselines: 50.7% for Zoo, 55.3%
for HouseVote, and 3.7% for Paris Attractions. Perhaps it captures

4Implementation codes are available at https://github.com/PreferredAI/multiperspective_simrank

https://archive.ics.uci.edu/ml/datasets/Zoo
https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://projects.yisongyue.com/collab_cluster/
https://github.com/PreferredAI/multiperspective_simrank
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the dominant perspective, as this model would give higher simi-
larity score for those pairs of objects that have been clustered as
similar more frequently in the data than the score for other pairs.

The nativelymultiperspectivemodels perform better. Pipelined-
SimRank achieves Recall of 68.8% for Zoo, 74.3% forHouseVote, and
3.9% for Paris Attractions. MP-SimRank is even better, its Recall for
the three datasets are 70.2%, 75.0%, and 4.9% respectively. This sup-
ports our intuition that by modeling multiple perspectives, we can
capture nuances specific to some perspectives, and yet still allow
collaboration among similar perspectives.

The results for non-graph theoretic PCC aremiddling andmixed,
32.2% for Zoo, 27.8% for HouseVote, and 0.9% for Paris Attractions. It
is still better than Disjoint-SimRank, ostensibly due to the sharing
across perspectives. However, it is not always better than Merged-
SimRank and is generally worse than Average-SimRank.

Figure 4 presents the PRES values.The trends are consistentwith
the Recall values for all datasets, in terms of the relative perfor-
mance of the comparative methods. Compared to Recall, the PRES
values tend to be higher. Especially, the PRES of the two multiper-
spectivemodels are close to 1.This indicates that while recalling all
ground-truth objects may be challenging, those that we do recall
tend to be ranked almost at the top of the candidates.

Comparing the three datasets in this paper, Paris Attractions is
the most sparse, which explains why the Recall and PRES values of
all models for this dataset are relatively lower than that of the two
other datasets.

6.3 Inter-Perspective Similarities
As a byproduct of determining the similarities among objects, mul-
tiperspective models also produce the similarities among perspec-
tives. We are interested in investigating the inter-perspective sim-
ilarity sim(p,p′), ∀p,p′ ∈ P of the two models. Intuitively, for ef-
fective information sharing, two “similar” perspectivesp,p′ should
have higher sim(p,p′) value than two “dissimilar” perspectives.

To attempt to understand howmeaningful the sim(p,p′) values
are, we turn to the concept of Normalized Mutual Information or
NMI [6]. In particular, for Zoo and HouseVote, each perspective cor-
responds to an attribute, whose values effectively define a cluster-
ing of objects. Supposing we see the full dataset, we can quantity
how similar two attributes are, using NMI on the two clusterings
over the same objects. For each p ∈ P, we measure the Pearson
correlation of its NMI scores and its inter-perspective similarities
with other perspectives in P. We do not include Paris Attractions,
since each user only clusters a different subset of objects.

Table 2 and Table 3 show the Pearson correlation values of each
perspective for Pipelined-SimRank andMP-SimRank respectively.
Both achieve high correlation values between the NMI scores and
the inter-perspective similarities for each perspective. That means
both are able to reflect very well the underlying similarity between
two perspectives. The joint learning MP-SimRank seems to better
learn the similarity between two perspectives than the Pipelined-
SimRank. This explains the improvement in the performance of
MP-SimRank upon Pipelined-SimRank in the earlier experiment.



Table 2: Correlation between NMI scores
and inter-perspective similarities for Zoo (17 perspectives)

Perspective MP-SimRank Pipelined-SimRank
p1 0.9531 0.6914
p2 0.8163 0.7702
p3 0.9576 0.6430
p3 0.9451 0.6051
p5 0.8954 0.8514
p6 0.9669 0.8670
p7 0.9952 0.9891
p8 0.9191 0.7410
p9 0.7920 0.7612
p10 0.8434 0.8208
p11 0.8574 0.9832
p12 0.8445 0.8391
p13 0.9049 0.7840
p14 0.9229 0.8490
p15 0.9139 0.9932
p16 0.9846 0.9400
p17 0.8492 0.6174

6.4 Illustrative Case Study
To gain an intuition of how multiperspectivity plays a part in the
similarity measurement, here we include a small case study. For
this example, we use the Paris Attractions dataset to showcase the
role of multiperspective similarity measure.

Table 4 shows the clustering data of four users in the dataset,
each represented by user id. Each cluster is separated from another
by the symbol | |. Of particular interest to us are objects with id: 30,
50, 62, 76, and 88 (in bold). We can observe that users may cluster
objects similarly or differently from one another. For example, both
U53 and U86 place objects 30, 50, 62, and 88 in the same cluster. On
the other hand, U94 places object 62 and 88 in the same cluster, but
places object 50 in a different cluster. U168, however, places three
objects: 30, 76, and 88 in three different clusters.

We apply the MP-SimRank on the full Paris Attractions dataset
and investigate the inter-perspective similarities between the four
mentioned users. In Figure 5, each big circle represents the clus-
tering data of each user. Clusters are wrapped inside inner circles.
The values on the dashed lines represent the Frobenius distance be-
tween perspectives (users). We observe that the distance between
U53 and U86 is smaller than those between U53 and either U94,
U86 or U94. This is expected since U53 and U86 have more similar
perspectives. The inter-perspective distances reflect that U53 and
U86 are more similar to U94 than to U168. This is reasonable, since
U53, U86, and U94 place object 62 and object 88 in the same cluster.

7 DISCUSSION ON EFFICIENCY
In this section, we discuss the theoretical complexity and practical
efficiency of the SimRank-based methods.

Table 3: Correlation between NMI scores and
inter-perspective similarities for HouseVote (16

perspectives)

Perspective MP-SimRank Pipelined-SimRank
p1 0.9963 0.9763
p2 0.9999 0.9990
p3 0.9790 0.8295
p4 0.9764 0.7586
p5 0.9733 0.6552
p6 0.9789 0.8715
p7 0.9811 0.8732
p8 0.9749 0.7106
p9 0.9783 0.7335
p10 1.0000 0.9998
p11 0.9992 0.9975
p12 0.9763 0.7793
p13 0.9865 0.8866
p14 0.9641 0.8197
p15 0.9883 0.9335
p16 0.9713 0.9376

Table 4: Cluster data of four users from Paris Attractions

ID Clustering Data
U53 14 21||30 40 50 62 76 88||17 156||78 79 106 126 201 232 247
U86 72 78 96 109 164 208||2 30 50 62 88 178 224||79 84 207
U94 7 91 115 140 159 167 248||34 49 62 73 79 88 142 151 238||50 90 154
U168 40 48 73 84 85 88 89 90 117 154 166 171||45 51 61 76 111 116 126

133 146 200||28 30 52 60 78 86 100 128 132 195||21

Table 5: Complexity analysis (per iteration) of all
SimRank-based methods

Methods Storage Time
Merged-SimRank O

(
n2

)
O

(
n2dmax

)
Average-SimRank O

(
n2

)
O

(
mn2dmax

)
Disjoint-SimRank O

(
mn2

)
O

(
mn2dmax

)
Pipelined-SimRank O

(
m2 + n4 +mn2

)
O

(
(m2 + n4 +mn2)dbi +m2n2dmax

)
MP-SimRank O

(
m2 +mn2

)
O

(
m2n2dmax

)
7.1 Complexity Analysis
First, we look into the theoretical storage and time complexities,
which are summarized in Table 5. For the uniperspective Merged-
SimRank, its complexities are the same as the original SimRank’s,
which is square to the number of object pairs, i.e., n2. Suppose for
a given perspective, dp is the average product of neighbor counts,
i.e., |Np(oi )|.|Np(oj )| across object pairs oi ,oj ∈ O. Then dmax is
the maximum such average among all perspectives ∀p ∈ P.

For the methods that require computation for each perspective,
Average-SimRank and Disjoint-SimRank, it is reasonable that the
complexitywill also scale withm the number of perspectives. How-
ever, both of these act independently for each perspective.

For the natively multiperspective methods, there is a need to
compute the inter-perspective similarities. For Pipelined-SimRank,
this is done by inducing a bipartite graph of perspectives-by-object



�

�

50

62

30
88

�
�

�

50

62

30
88

��
�

50

62
88�

�
�

�

76

76

88�

�
�

�

30

id:�	�

id:�
�
id:��


id:��
�

�����

�����

�����

���
�

�����

Figure 5: Illustrative example of multiperspective similarity from Paris Attractions dataset.

pairs.Therefore, in addition to the perspective-specific inter-object
similarities (mn2), we store and compute the inter-perspective sim-
ilarities (m2) and the similarity between any two object pairs (n4).
dbi is the average product of neighbor counts in the bipartite B
(Section 4). In terms of time, we further need to consider the com-
putation of perspective-specific inter-object similarities, iterated
over all perspectives, i.e., m2n2dmax . This is computationally in-
tensive, which motivates the development of MP-SimRank.

ForMP-SimRank, the joint computation of both inter-perspective
and inter-object similarities avoids the instantiation of the bipartite
graph, dropping the n4 term from the complexities. This dramati-
cally improves the running time of MP-SimRank.

We are also interested in how many iterations are generally re-
quired for convergence in practice. The convergence rate of the al-
gorithm is defined as follows:

Dt =
1

m

∑
p∈P




S(t+1)
p − S(t)p





F

n
,

as the algorithm converges, the value of Dt should approach 0 as
t goes to infinity. Overall, both models converge after reasonably
few iterations (less than 5 iterations for Zoo and HouseVote, and
less than 8 iterations for Paris Attractions).

7.2 Heuristic for More Efficient MP-SimRank
Since our main focus is multiperspectivity, one possible avenue to
further improve efficiency is to reduce the number of perspectives,
by grouping similar perspectives into a cluster with one represen-
tative perspective. We test the feasibility of this concept here.

Algorithm 3 describes clusteredMP-SimRank that adopts the
idea of clustering perspectives. We first run Disjoint-SimRank on
each graph and produce Sdisjoint

p ,∀p ∈ P (Step 1) with computa-
tional cost of O(mn2dmax). Next, we compute the Frobenious dis-
tance between all perspectives, cluster them using the k-medoids
algorithm (k ≤ m is given), and merge graphs of perspectives in
the same cluster together (Step 2 and 3). A medoid here is defined

as the perspective with the smallest average distance to all others
in the same cluster.These two steps require a computational cost of
O(m2 + km). We then run MP-SimRank on the new hypergraph
Hc , yielding the cluster-specific inter-object similarity Sc (Step 4)
with the cost of O(k2n2dmax). Finally, perspectives of the same
cluster share the same cluster-specific inter-object scores. The to-
tal computational cost is O(mn2dmax +m2 + km + k2n2dmax),
less complex than the cost of MP-SimRank, i.e., O

(
m2n2dmax

)
.

Figure 6 shows the performance of clusteredMP-SimRank and
its running time as we vary the number of clusters k . The horizon-
tal axis shows the required running time in second and the vertical
axis shows the peformances in terms of Recall (in blue) and PRES
(in red). We observe that by choosing a small number of clusters,
we can improve significantly the speed of the learning. As k in-
creases, clusteredMP-SimRank approaches the performance of
MP-SimRank (when k = m). With a reasonable choice of k , we
can speed up the learning process while still obtaining acceptable
level of performances from the learnt similarity scores.

8 CONCLUSION
In certain real world applications, there is a need for expressing
diverse perspectives of similarity. We propose a multiperspective
graph-based framework for learning similarity from data. The pro-
posed framework relies on a unified hypergraph representation
of object-to-object relationships. The key is to learn not only the
similarity between two objects for each perspective, but also the
similarities across perspectives so as to allow information sharing
across perspectives. We present two models, Pipelined-SimRank
and MP-SimRank, and provide their proof of convergence. Exper-
iments on publicly available datasets show that multiperspective
similarity models outperform baseline models that either ignores
multiplicity of perspectives or treats each perspective separately.
As future work, we will investigate strategies for improving the
efficiency of the proposed framework, towards creating potential
applications involving large-scale networks.
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Figure 6: PRES, Recall, and running time of clusteredMP-SimRank with different number of clusters k .

Algorithm 3 clusteredMP-SimRank
Require: HypergraphH and number of clusters k
1: /*– Step 1: run disjoint-simrank on each perspective graph – */
2: Sdistjoint

p ← Disjoint − SimRank(Gp),∀p ∈ P .
3:
4: /*- Step 2: compute Frobenius distances between perspectives - */
5: F = [F (p,p′)]p,p′∈P , where
6:

F (p,p′) =



Sdistjoint
p − Sdistjoint

p′





F

7:
8: /*– Step 3: cluster perspectives and merge graphs – */
9: C ← K −Medoids(F ,k); Hc ← merge − graph(H ,C)

10:
11: /*– Step 4: run MP-SimRank on the new hypergraphHc – */
12: {Sc }c ∈C ←MP-SimRank(Hc )
13:
14: /*– Step 5: assign each perspective the inter-object similarity –
15: – of the cluster it belongs to–*/
16: Sp ← Sc ,∀p ∈ P, c ∈ C, and p ∈ c
17:
18: Return {Sp ,∀p ∈ P}
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