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Abstract—We study the important problem of user alignment
in e-commerce: to predict whether two online user identities
that access an e-commerce site from different devices belong to
one real-world person. As input, we have a set of user activity
logs from Taobao and some labeled user identity linkages. User
activity logs can be modeled using a heterogeneous interaction
graph (HIG), and subsequently the user alignment task can
be formulated as a semi-supervised HIG embedding problem.
HIG embedding is challenging for two reasons: its heterogeneous
nature and the presence of edge features. To address the
challenges, we propose a novel Heterogeneous Embedding Prop-
agation (HEP) model. The core idea is to iteratively reconstruct a
node’s embedding from its heterogeneous neighbors in a weighted
manner, and meanwhile propagate its embedding updates from
reconstruction loss and/or classification loss to its neighbors.
We conduct extensive experiments on large-scale datasets from
Taobao, demonstrating that HEP significantly outperforms state-
of-the-art baselines often by more than 10% in F-scores.

Index Terms—E-commerce User Alignment, Heterogeneous
Interaction Graph, Heterogeneous Embedding Propagation

I. INTRODUCTION

E-commerce user alignment is the task of linking different
user identities on an e-commerce site if they belong to one
real-world person. A typical scenario faced by Taobao, a
leading e-commerce site, is that online users can access Taobao
through different devices (e.g., mobile or PC), and they may
not log into their accounts. Being able to link these devices to
the real-world Taobao user is of great importance: it not only
helps the company profile its customers more accurately, but
also offers users a seamless shopping experience.

In this paper, we focus on predicting whether a Mobile
device ID (MID) and a PC device ID (PID) refer to the same
Taobao user. As input, we have user activity logs from Taobao.
An example of such logs is shown in Table I. Each row is an
activity record about which device a user used, which IP she
had, which shop she visited, which auction she browsed, and

This material is based upon work partially supported by National Research
Foundation, Prime Minister’s Office, Singapore under its Campus for Re-
search Excellence and Technological Enterprise (CREATE) programme, and
Alibaba Group under its Alibaba Innovative Research (AIR) programme. Any
opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views
of the funding agencies.

TABLE I
EXAMPLES OF E-COMMERCE USER ACTIVITY LOGS.

Time User ID IP Keyword Auction Shop
04/05/2017 16:21:41 PID1 IP2 Keyword1 - Shop3
05/05/2017 22:16:00 MID3 IP2 Keyword2 Auction1 Shop2

... ... ... ... ... ...

which keywords she searched. Some fields are empty, since
an activity may not involve all actions. As output, we predict
a binary label for a candidate pair of PID and MID, indicating
whether they belong to the same Taobao user.

Data model. We choose to model the user activity logs as a
Heterogeneous Interaction Graph (HIG). Next, we define what
an HIG is and explain our motivation.

In our Taobao user alignment task, an HIG is a heteroge-
neous graph, whose network schema is defined in Fig. 1. Each
node refers to an entity in the user activity logs, such as an
MID, a PID, an IP, a keyword, an auction or a shop. MID and
PID are about users, whereas the other entities are about items.
Hence in this paper, we call a PID or an MID as a user ID,
whereas we call an IP, a keyword, an auction or a shop as an
item ID. Each edge indicates interactions between two nodes,
and we extract a time-aware feature vector to describe such
interactions. Particularly, a user-item edge (e.g., PID-shop)
indicates how a user browses an item, and its feature vector
describes when and how frequently such browsing happens.
An item-item edge (e.g., IP-shop) indicates how two items co-
occur in the user activity logs, and its feature vector describes
when and how frequently such co-occurrence happens. HIG
is a generalization to a recent concept of “bipartite interaction
graph” [1], which was proposed to model time-dependent
interactions between two types of entities (e.g., investors and
stocks). HIG has a unique advantage as our data model—its
relational structure is suitable for discovering rich semantics
of each user and item.

We find that, although there are some alternative data
models, they are not as effective as HIG for our user alignment
task. For example, we can represent each user ID with a
feature vector about when and how frequently she browses
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Fig. 2. Overall framework of HEP.

each item, and uses these feature vectors for classification,
but this approach leaves out the item interactions. We can
also model the item co-occurrence by topic modeling [2], and
represent each user ID by her interactions with each item
group, but this approach is hard to factor in time information.
Finally, we can also model each user as a time series of user-
item interactions, and use a recurrent neural network [3] to
learn a low-dimensional representation for classification, but
this approach still does not fully exploit the user relations as
each user’s sequence is treated as independent.

Challenges. To leverage the relational structure of HIG, we
formulate our user alignment task as a semi-supervised HIG
embedding problem. We face two challenges below to embed
HIG in e-commerce user alignment.

• Node heterogeneity. We cannot simply treat the nodes in HIG
as homogeneous, as a user clearly has different semantics from
an item. Typical graph embedding methods [4], [5] focus on
homogeneous graphs.

• Edge features. Despite the success of recent heterogeneous
graph embedding methods, such as Metapath2vec [6] and HNE
[7], they do not consider edges with features.

Technical model. To address the above challenges, we propose
a novel Heterogeneous Embedding Propagation (HEP) model.
As shown in Fig. 2, the core idea is to iteratively “reconstruct”
a node’s embedding from its heterogeneous neighbors, and
“propagate” its embedding updates to its neighbors. To han-
dle node heterogeneity, HEP treats nodes of different types
severally. For example, to learn embedding of a PID node
v in Fig. 2, HEP first aggregates v’s neighbors of each type
(e.g., all its IP neighbors), before transforming the aggregation
of each node type to reconstruct v’s embedding. To leverage
edge features, HEP considers each node v as receiving dif-
ferent contributions from its neighbors. When aggregating v’s
neighbors of the same type, HEP assigns different weights to
different neighbors according to their edge features.

Contributions. First, we study a real-world e-commerce user
alignment task, and formulate it as a semi-supervised HIG
embedding problem. Second, we propose a novel HEP model,
which addresses the challenges of node heterogeneity and edge
features. Third, we evaluate HEP on two large-scale datasets
from Taobao, and the results are promising.

II. RELATED WORK

The user alignment is related to several concepts, including
network alignment [8], network anchoring [9], and link predic-
tion [10]. Network alignment aims to align nodes across mul-
tiple homonegenous networks, such as to link user accounts in
two social networks, whereas user alignment on HIG focuses
on one network. Network anchoring aims to align nodes across
multiple heterogeneous networks, such as to link user accounts
from a check-in network (e.g., Foursquare) to an online social
network (e.g., Twitter) where each network contains hetero-
geneous nodes such as users, locations and texts. In other
words, network anchoring also focuses on multiple networks,
thus not applicable to our task either. Finally, Link prediction
aims to connect two nodes in one network. The state-of-
the-art methods employ graph embedding [11], [10], which
learns low-dimensional node representations from the network
topology and/or content. In general, our user alignment task
can be seen as link prediction on a HIG. Next, we shall review
the state of the art in graph embedding.

Graph embedding has been a popular graph analytics ap-
proach. Early methods were mainly designed to reduce the
dimensionality of non-relational data by projecting them into
a low-dimensional manifold, as summarized in a recent survey
[12]. Recent graph embedding methods use neural networks,
with either shallow [13], [4] or deep architectures [14], [15],
[7]. DeepWalk [11] and Node2vec [4] try to preserve the first-
order graph proximity for node embedding. LINE [16] and
SDNE [15] preserve both first and second-order proximity.
Compared with the above methods, which focus on homoge-
neous graphs, our HEP considers a heterogeneous graph.

On heterogeneous graphs, metapath2vec [6] uses predefined
meta-path patterns to sample paths, and HNE [7] uses separate
deep neural networks to learn embedding for each type of
nodes before aggregating them. In contrast, HEP does not
require sampling, and considers additional edge features to
differentiate heterogeneous edges.

III. PROBLEM FORMULATION

We first introduce our terminologies and notations, as sum-
marized in Table II.

Definition 1: A heterogeneous interaction graph (HIG)
is G = (V,E,C, φ, F ), where V is a set of nodes, E is
a set of edges, C = {c1, ..., cn1

} is a set of distinct node
types, φ : V → C is a node type function, F is a set of



TABLE II
LIST OF COMMONLY USED NOTATIONS.

Notation Description
G, V,E Graph G, nodes V , edges E
C, φ Node types C, node typing function φ : V → C
C′, φ Edge types C, edge typing function ψ : V × V → C′

F, f Edge feature set F , an edge’s feature vector f(v, u) ∈ Rd
D,m Set of training tuples D, with cardinality of m
n1, n2 Number of node types n1 and number of edge types n2

d, k Edge feature dimension d and node embedding dimension k
α, β Trade-off parameters for loss and regularizer
γ Slack parameter
ζ Number of negative samples

d-dimensional edge feature vectors, each of which describes
interaction between two nodes.

For example, in Fig. 1, we have C = {PID, MID, IP, shop,
auction, keyword}. We call PID and MID as user ID’s. We call
IP, shop, auction and keyword as item ID’s. For a node v ∈ V ,
φ(v) returns v’s node type from C. For an edge (v, u) ∈ E,
f(v, u) ∈ F returns a d-dimensional vector about the time-
dependent interaction features between v and u. For example,
if v is a PID and u is an IP, f(v, u) is a vector describing how
many days user v accesses IP u, how many times v accesses u
at hours of a day, days of a week, and weekday-vs.-weekend.
Similar time-dependent interaction features are extracted for
other types of edges. Finally, due to node heterogeneity, the
edges are heterogeneous too. For easier discussion later, we
denote ψ(v, u) : V × V → C × C as an edge type function.
In this paper, we let ψ(v, u) = ψ(u, v), and denote the set of
distinct edge types as C ′ = {c′1, ..., c′n2

}. In Fig. 1, we have
C ′ = {PID-IP, PID-shop, PID-auction, PID-keyword, MID-IP,
MID-shop, . . .}.

Problem inputs and outputs. As input of our problem, we
have a heterogeneous interaction graph G, and a set of training
tuples D = {(vi, ui, yi)|i = 1, ...,m, φ(vi) = PID, φ(ui) =
MID, yi ∈ {1,−1}}. As output of our problem, we wish to
learn an embedding vector hv ∈ Rk for each PID v and an
embedding vector hu ∈ Rk for each MID u. Then, given a
pair of (v, u), we can predict the probability of having a link
between v and u as

P (yi|vi, ui) = σ
(
yi · hTviWhui

)
, (1)

where σ(z) = 1
1+e−z is a sigmoid function. Besides, W ∈

Rk×k is a parameter matrix to enforce the bilinear interactions
between hv and hu.

Given training data D, we aim to optimize the classification
loss by minimizing the negative log-likelihood:

L1 = − 1
m

∑m
i=1 logP (yi|vi, ui). (2)

IV. HEP MODEL

The core idea of HEP is to iteratively “reconstruct” a node’s
embedding from its heterogeneous neighbors, and “propagate”
its embedding update to the neighbors for their own embed-
ding reconstruction later. We use Fig. 2 to illustrate embedding
learning for a user ID node v.

Node heterogeneity. In HIG, a user ID (PID or MID) node
v is connected with heterogeneous neighbors, whose types
can be IP, auction, shop or keyword. We aim to use these
neighbors to reconstruct v’s embedding. Different types of
neighbors indicate different types of interactions; e.g., an edge
between v and one IP indicates how v used this IP, whereas
another edge between v and one keyword indicates how v
searched that keyword. Due to such different semantics, these
different types of edges are not directly comparable. Therefore,
to use v’s neighbors to reconstruct v’s embedding, we have to
differentiate the neighbor types. As shown in Fig. 2, HEP tries
to aggregate the embedding from each type of neighbors sep-
arately (e.g., all the IP neighbors together, and all the keyword
neighbors together, etc), and then concatenate the outputs from
each neighbor type to reconstruct v’s embedding. Before we
proceed with the reconstruction, there is one more question
of how much each neighbor contributes to the reconstruction,
which can be addressed by edge features.

Edge features. To quantify how much contribution each
neighbor u makes in reconstructing v’s embedding, we use
the edge features f(v, u) ∈ Rd to compute an edge weight.
As neighbor nodes are heterogeneous, we differentiate the
edge types. For each edge type c′ ∈ C ′, we introduce two
parameters λc′ ∈ Rd and b′c′ ∈ R to compute the weight for
each edge with type c′. Formally, for an edge (v, u), whose
type is ψ(v, u), its edge weight is defined as

sv,u = σ
(
λψ(v,u) · f(v, u) + b′ψ(v,u)

)
. (3)

Due to node heterogeneity, sv,u is only comparable to sv,u′

if φ(u) = φ(u′). That is, all the edges of the same type share
the same parameters (λc′ , b

′
c′).

Reconstruction. We now use v’s neighbors and their edge
weights sv,u’s, to reconstruct v’s embedding. Denote Nv as
v’s neighbors, and N

(c)
v ⊂ Nv as v’s type-c neighbors; e.g.,

in Fig. 2, if c = IP, N (c)
v is the set of IP neighbors of v. For

each type c, We first aggregate v’s type-c’s neighbors by a
weighted average with sv,u’s:

g̃(c)
v =

∑
u∈N(c)

v

sv,u∑
u∈N(c)

v
sv,u

hu. (4)

Given different neighbor types, we concatenate all g̃(c)
v ’s:

g̃v = CONCAT
(
g̃(c1)
v , ..., g̃

(cn1
)

v

)
. (5)

Finally, we use g̃v to reconstruct v’s embedding h̃v . To
account for node heterogeneity, we introduce two type spe-
cific parameters W ′φ(v) ∈ Rk×kn1 and b′′φ(v) ∈ Rk for the
reconstruction. For each v ∈ V ,

h̃v = σ
(
W ′φ(v)g̃v + b′′φ(v)

)
. (6)

Reconstruction loss. Denote π(h̃v,hv) as the distance be-
tween the reconstructed embedding h̃v and the target em-



bedding hv . Here we adopt the Euclidean distance, although
alternatives are possible.

π(h̃v,hv) =
1

2
‖h̃v − hv‖22. (7)

Subsequently, we introduce a hinge loss such that the recon-
structed embedding h̃v is closer to hv than any other hu. That
is, ∀u 6= v,

`(v, u) =
[
γ + π(h̃v,hv)− π(h̃v,hu)

]
+
, (8)

where [z]+ returns z if z > 0, and 0 otherwise. γ > 0 is a
slack parameter. To save computation from evaluating every
possible u ∈ V \v, we adopt negative sampling [4] to sample a
set of u’s. Denote DEGu as the degree of node u. We define the
negative sampling probability of a node u by Pn(u) ∝ DEG

3/4
u .

We set the number of negative samples for each node v as ζ.
Finally, we have the overall reconstruction loss as

L2 = 1
|V |
∑
v∈V

∑
u∼Pn(u) `(v, u). (9)

V. END-TO-END TRAINING

Denote Θ = {W, b,λc′ , b′c′ ,W ′c,b′′c |c ∈ C, c′ ∈ C ′} as the
set of parameters. Denote H = {hv|v ∈ V } as the set of node
embedding. We train Θ and H by minimizing:

L(Θ, H) = L1 + αL2 + βΩ(Θ), (10)

where α > 0 and β > 0 are trade-off parameters. Ω is a
regularizer (i.e., the sum of each parameter’s `2-norm).

To solve Eq. 10, we adopt an alternate optimization ap-
proach to learn Θ and H iteratively, as follows.

Fix Θ, we optimize H . We perform stochastic gradient
descent (SGD). For each tuple (vi, ui, yi) in L1, we have its
gradients over H as

∂L1

∂hxi
= − 1

m
[1− P (yi|vi, ui)] yiWhxi , (11)

where xi ∈ {vi, ui}. For each node v and its negative sample
u’s, we have their gradients over H as

∂L2

∂hx
=

{
(−1)δ(x=u) 1

|V |

(
h̃v − hx

)
, if `(v, u) > 0;

0, otherwise,
(12)

where x ∈ {v, u}. The indicator function δ(x = u) = 1 iff
x = u. After hv and hu are updated in one iteration, they will
be used to reconstruct the neighbors of v and u in the next
iteration, effectivly propagting the gradients of hv and hu.

Fix H , we optimize Θ. We do SGD as well. For each tuple
(vi, ui, yi) in L1, we have its gradients over Θ as

∂L1

∂W
= − 1

m
[1− P (yi|vi, ui)] yihvihTui , (13)

∂L1

∂b
= − 1

m
[1− P (yi|vi, ui)] yi. (14)

For each edge (v, x) ∈ E, we have their gradients over Θ as

∂L2

∂λψ(v,x)
=

(
∂L2

∂h̃v

)T
· ∂h̃v
∂g̃

φ(x)
v

·∂g̃
φ(x)
v

∂sv,x
·sv,x(1−sv,x)f(v, x), (15)

∂L2

∂b′ψ(v,x)

=

(
∂L2

∂h̃v

)T
· ∂h̃v

∂g̃
φ(x)
v

· ∂g̃
φ(x)
v

∂sv,x
· sv,x(1− sv,x), (16)

∂L2

∂W ′φ(v)

=
∂L2

∂h̃v
◦ h̃v ◦

(
1− h̃v

)
· g̃Tv , (17)

∂L2

∂b′′φ(v)

=
∂L2

∂h̃v
◦ h̃v ◦

(
1− h̃v

)
, (18)

∂L2

∂h̃v
=

{
1
|V | (hu − hv) , if `(v, u) > 0;

0, otherwise,
(19)

∂h̃v

∂g̃
φ(x)
v

= diag
(
h̃v ◦

(
1− h̃v

))
·R
(
W ′φ(v), φ(x)

)
, (20)

∂g̃
φ(x)
v

∂sv,x
=

∑
u∈Nφ(x)v \{x} sv,u

(
∑
u∈Nφ(x)v

sv,u)2
hx, (21)

where “diag(z)” returns a diagonal matrix whose diagonal
entries are z, “◦” is an element-wise multiplication, and
R
(
W ′φ(v), ci

)
returns a sub-matrix of W ′φ(v) from row 1 to

row k and from column (i − 1)k + 1 to column ik (i.e., the
columns about type ci).

Finally, we compute gradients for Θ w.r.t. its regularizer
Ω(Θ). For typical regularizers, such as `2- or `1-norm, it is
straightforward to compute their gradients ∇ΘΩ(Θ). Hence,
we skip the details here.

Convergence. Because L1 ≥ 0, L2 ≥ 0 and Ω ≥ 0, we
have L(Θ, H) ≥ 0. We start with initializing Θ and H , and
continuously minimize L(Θ, H). Since L(Θ, H) is bounded,
we reach convergence eventually.

VI. EXPERIMENTS

In this section, we study the empirical performance of HEP
on the real-world Taobao datasets.

A. Datasets and Settings

Dataset generation. We prepared two datasets, from one
week’s user activity logs from Taobao in a city of China. We
processed these logs in a format as Table I shows. Each record
of the logs shows whether it comes from a mobile device (i.e.,
MID) or a PC device (i.e., PID). We then used Taobao accounts
to annotate these records. That is, for each MID or PID, if
we observed any Taobao account login , we associated all its
activity log records with that Taobao account. Generally, it is
possible that one MID/PID is associated with multiple Taobao
accounts, if several real world persons logged into Taobao on
the same device (e.g., on public computers). In this study, we
only kept those devices (and their activity records) which are
associated with one Taobao account. Furthermore, we removed
the activity records that are not annotated with any Taobao
account as well as those associated with only PID or MID.



TABLE III
DATASETS AND LABEL STATISTICS.

#record #PID #MID #IP #shop #auction #keyword #pos #neg
TB-Top 73,394K 204K 53K 277K 1,125K 3,718K 1,317K 147K 10,611K
TB-Rnd 31,202K 99K 46K 167K 495K 1,082K 437K 57K 2,363K

Finally, to ensure data quality, we removed the activity records
whose PID or MID are “abnormal” (e.g., per day occurrence in
the log exceeds one million, etc.). After filtering, we obtained
an annotated subset of the original user activity log. In this
subset, each record is annotated with one Taobao account, so
does each PID or MID. We denote the set of distinct Taobao
accounts as U , and the set of annotated records as X . We used
U and X to prepare two datasets for experiments as follows,
which are summarized in Table III.

• TB-Top: We selected top 10% “active” Taobao accounts
from U (totaling 45K accounts), and used their corresponding
records from X as our first dataset. Activeness is defined by
the account’s number of associated activity records.

• TB-Rnd: We randomly sampled 10% accounts from U , and
used their records from X as our second dataset.

Labels. For both TB-Top and TB-Rnd, we prepared tuples
D = {(vi, ui, yi)}, where vi is a PID, ui is an MID, and yi ∈
{+1,−1}, as labels for training and evaluation. Specifically,
for each dataset, we employed a set of practical rules that are
currently used in production at Taobao: each PID and MID in
a candidate pair must co-occur with the same IP(s), the same
router(s), etc. We label a candidate pair as +1 iff both the PID
and MID are associated with the same Taobao account. We
summarize the label statistics in Table III.

We randomly split about 50% of the tuples in D for training,
25% for validation and the remaining 25% for testing. We
repeated the split for five times, and reported the average
results of these data splits for each method.

B. Performance Comparison

Baselines for data model. We first design baselines to validate
the choice of HIG as the data model for the user activity log.

• FEM: Feature Engineering Method represents each user ID
with four feature vectors, each of which describes when and
how frequently the user browsed each item ID of a particular
type (i.e., IP, shop, auction and keyword). As the resulting
feature vectors are very high dimensional and sparse, we
further hashed1 each feature vector into 128 dimensions. After
that, to feed the four feature vectors of a PID and those of an
MID to a classifier, we chose2 to compute the cosine similarity
between each feature vector for PID and the corresponding one
for MID. In the end, we obtained a 4-dimensional vector for
binary classification with logistic regression.

1https://en.wikipedia.org/wiki/MurmurHash
2We also tested other strategies, such as feature concatenation or feature

differences between PID and MID, but their performances were not as good.

• LDA: Latent Dirichlet Allocation [2] sees each user ID
as a “document”, and its co-occurred item IDs as “words”.
For each type of items, we learned a 128-dimensional topic
distribution vector for each user ID by LDA. We performed
the final classification similar to FEM.

• GRU: Gated Recurrent Unit [3] is a recurrent neural network,
and it is used to model the sequence of user activity logs
for each user ID. To avoid having over-lengthy sequences for
each user ID, we discretized time into half-day slots. In each
time slot, we used FEM to similarly obtain a 128-dimensional
feature vector for each type of item ID, and then concatenated
them as inputs for GRU. We fed the last hidden output of a
PID’s GRU and that of an MID’s GRU with a classifier, as
defined in Eq. 2, for end-to-end training.

Baselines for technical model. We compare to state-of-the-art
baselines to validate the use of HEP as the technical model
for addressing node heterogeneity and edge features.

•Metapath2vec: we applied Metapath2vec [6] on HIG. Specif-
ically, we first designed a set of meta-path patterns, including
“user-item-user”, “user-item-item-user” and “user-item-user-
item-user”, where “user” can be PID or MID, “item” can be
IP, shop, auction or keyword. Then, we sampled path instances
from HIG for these meta-path patterns, and fed them into
Metapath2vec to learn a 128-dimensional embedding for each
user ID. Finally, we trained a classifier, as defined in Eq. 2,
based on these user ID embedding.

• EP: we adapted Embedding Propagation [17] on HIG as
well. Specifically, we reconstructed each node’s embedding
by mean pooling of all its neighbors’ embedding without
differentiating node heterogeneity or edge weight. As EP is
unsupervised, we trained a separate classifier on the learnt
user ID embedding, as defined in Eq. 2.

• HEP-: we designed a weaker variant of HEP, where edge
features are ignored and all edge weights are treated as one.

Hyperparameter settings. We tuned the hyperparameters for
all the methods. For logistic regression used in FEM and LDA,
we used `2 regularization with weight 1.0. For LDA, we used
Google’s implementation3, and set its α = 0.4, β = 0.01
and number of burn-in iterations to 150. For GRU, we used
the TensorFlow implementation. For Metapath2vec, we set the
sampled path length as 20, number of paths per node as 20,
context window size as 2 and number of negative samples as
64. For EP, we also adopted a similar negative sampling design
as HEP (Eq. 9) to evaluate its reconstruction loss. We set the
hinge loss slack γ = 0.1 and number of negative samples as
ζ = 5. For both HEP- and HEP, we set d = 34, k = 128,
α = 0.1, β = 0.1, γ = 0.1 and ζ = 5.

Results and analysis. We report the results of our methods
HEP and HEP-, as well as the baselines, in Table IV. Overall,
HEP outperforms all competitors in F1 scores. Next, we
discuss why each method works or fails in our task.

3https://github.com/openbigdatagroup/plda



TABLE IV
COMPARISON WITH BASELINES.

TB-Top TB-Rnd
Precision Recall F1 Precision Recall F1

FEM 60.3 3.4 6.4 68.7 1.9 3.7
LDA [2] 70.4 10.6 18.5 68.3 6.1 11.3
GRU [3] 51.8 26.2 34.8 52.6 22.1 31.2

Metapath2vec [6] 1.7 62.9 3.4 2.3 58.7 4.4
EP [17] 34.3 6.7 11.2 35.0 6.1 10.4

HEP- (our variant) 32.9 31.3 32.1 34.7 25.0 29.0
HEP (our model) 36.5 39.2 37.8 44.5 40.5 42.4

1) Validation of Data Model:

• FEM achieves high precision, but has very low recall on
both datasets, as shown in Table IV. This coincides with
our intuitions, as discussed in Sect. I. On the one hand,
FEM’s features are rich to describe the interactions between
users and items, leading to high precision. On the other hand,
FEM overlooks items with similar semantics (e.g., a keyword
“shoes” and an auction about Nike), resulting in low recall.

• LDA improves recall over FEM without compromising
precision. The reason is LDA benefits from item co-occurrence
through topic modeling. With a better understanding of the
item semantics (i.e., similar items are grouped into “topics”),
LDA is able to represent each user ID with a more compact
feature vector about how the user interacts with different item
groups instead of individual items.

• GRU achieves much higher recall than FEM and LDA.
The improvement on recall is credited to learning meaningful
representations from its input FEM features through neural
network. Overall, GRU still has a limitation of not fully
exploiting the relations among users and items as GRU treats
each user’s sequence as independent.

• HEP is better than the above in terms of recall and F1,
because it can fully exploit the HIG’s relational structure to
learn both item-item relations and user-item relations. Besides,
HEP is able to explicitly consider the time information en-
coded in the edge features. On the contrary, GRU only models
each user’s activity as sequences, losing valuable temporal
information (e.g., time of day and day of week).

2) Validation of Technical Model:

• Metapath2vec achieves very low precision and high recall.
The high recall is credited to exploiting the relations among
users. In particular, we used meta-path patterns to guide the
path sampling. These meta-path patterns tend to relate user
ID’s who browse a similar set of items.

• EP achieves relatively high precision but low recall. The high
precision is credited to exploiting both item-item and user-item
relations. EP also reconstructs a user ID by all its interacted
items, and propagates the embedding over the graph. Hence it
is likely to well characterize each user ID and achieve higher
precision. However, since EP overlooks node heterogeneity
and edge features, it cannot fully leverage the HIG.

• HEP- and HEP both achieve relatively high precision and
recall. HEP also outperform all the baselines in terms of
F1. Compared with Metapath2vec, our methods are free from
path sampling, which is less ideal when there are also edge
features. Besides, Metapath2vec still embed users and items
in the same space, and thus does not fully account for node
heterogeneity. Compared with EP, we are advantageous for
modeling node heterogeneity and edge features. Additionally,
HEP- and HEP are trained in an end-to-end framework,
whereas EP is unsupervised. Finally, HEP outperforms HEP-,
demonstrating the need to model edge features.

VII. CONCLUSION

In this paper, we study an important task of e-commerce
user alignment, to classify whether user identities across de-
vices are about the same real-world person. We chose to model
the user activity logs as a heterogeneous interaction graph
(HIG), and formulated the task as a semi-supervised HIG
embedding problem. To address the challenges of node hetero-
geneity and edge features, we proposed a novel heterogeneous
embedding propagation (HEP) model. Finally, experiments on
Taobao datasets showed that HEP can significantly outperform
state of the art in terms of F1 scores.
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