
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection Yong Pung How School Of
Law Yong Pung How School of Law

1-2019

Privacy-preserving attribute-based keyword search in shared Privacy-preserving attribute-based keyword search in shared

multi-owner setting multi-owner setting

Yibin MIAO

Ximeng LIU
Singapore Management University, xmliu@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Robert H. DENG

Jjguo LI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sol_research

 Part of the Information Security Commons

Citation Citation
MIAO, Yibin; LIU, Ximeng; DENG, Robert H.; DENG, Robert H.; LI, Jjguo; LI, Hongwei; and MA, Jianfeng.
Privacy-preserving attribute-based keyword search in shared multi-owner setting. (2019). IEEE
Transactions on Dependable and Secure Computing. 1-15.
Available at:Available at: https://ink.library.smu.edu.sg/sol_research/3163

This Journal Article is brought to you for free and open access by the Yong Pung How School of Law at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection Yong
Pung How School Of Law by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sol_research
https://ink.library.smu.edu.sg/sol_research
https://ink.library.smu.edu.sg/sol
https://ink.library.smu.edu.sg/sol_research?utm_source=ink.library.smu.edu.sg%2Fsol_research%2F3163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsol_research%2F3163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yibin MIAO, Ximeng LIU, Robert H. DENG, Robert H. DENG, Jjguo LI, Hongwei LI, and Jianfeng MA

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sol_research/3163

https://ink.library.smu.edu.sg/sol_research/3163

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Privacy-Preserving Attribute-Based Keyword
Search in Shared Multi-owner Setting

Yinbin Miao, Ximeng Liu, Kim-Kwang Raymond Choo, Senior Member, IEEE, Robert
H. Deng, Fellow, IEEE, Jiguo Li, Hongwei Li, and Jianfeng Ma

Abstract—Ciphertext-Policy Attribute-Based Keyword Search (CP-ABKS) facilitates search queries and supports fine-grained access
control over encrypted data in the cloud. However, prior CP-ABKS schemes were designed to support unshared multi-owner setting,
and cannot be directly applied in the shared multi-owner setting (where each record is accredited by a fixed number of data owners),
without incurring high computational and storage costs. In addition, due to privacy concerns on access policies, most existing schemes
are vulnerable to off-line keyword-guessing attacks if the keyword space is of polynomial size. Furthermore, it is difficult to identify
malicious users who leak the secret keys when more than one data user has the same subset of attributes. In this paper, we present a
privacy-preserving CP-ABKS system with hidden access policy in Shared Multi-owner setting (basic ABKS-SM system), and
demonstrate how it is improved to support malicious user tracing (modified ABKS-SM system). We then prove that the proposed
ABKS-SM systems achieve selective security and resist off-line keyword-guessing attack in the generic bilinear group model. We also
evaluate their performance using real-world datasets.

Index Terms—Ciphertext-policy attribute-based encryption, shared multi-owner setting, hidden access policy, user tracing, off-line
keyword-guessing attack.

F

1 INTRODUCTION

C LOUD computing [1], [2] is widely used by both in-
dividuals and organizations (including government a-

gencies), for example to store and process large volume
of data (e.g., text, image, and video), which are typically
encrypted prior to outsourcing [3], [4], [5]. Searchable En-
cryption (SE) schemes [6], [7], [8], [9] enable data users to
securely search and selectively retrieve records of interest
over encrypted data (outsourced to the cloud), according
to user-specified keywords. There are, however, other de-
sirable properties when dealing with encrypted data out-
sourced to the cloud. For example, when encrypting signif-
icant volume of data, conventional encryption approaches
suffer from limitations due to having multiple copies of
ciphertexts (e.g., in public key encryption schemes) and
complex and expensive key management (e.g., in symmetric
encryption schemes). Ciphertext-Policy Attribute-Based En-
cryption (CP-ABE) schemes are designed to mitigate these
two limitations, as well as enhancing access permissions in
multi-user setting and facilitating one-to-many encryption
(rather than one-to-one) [10], [11], [12], [13].

• Y. Miao, J. Ma are with the Department of Cyber Engineering and
Shaanxi Key Laboratory of Network and System Security, Xidian Univer-
sity, Xi’an 710071; and Key Laboratory of Optical Communication and
Networks, Chongqing 4000565, China. E-mail: ybmiao@xidian.edu.cn,
jfma@mail.xidian.edu.cn

• X. Liu, R.H. Deng are with the Department of Information Systems,
Singapore Management University, 80 Stamford Road, Singapore. Email:
xmliu@smu.edu.sg, robertdeng@smu.edu.sg

• K.-K. R. Choo is with the Department of Information Systems and Cyber
Security, The University of Texas at San Antonio, San Antonio, TX 78249
USA. Email: raymond.choo@fulbrightmail.org

• J. Li is with the College of Mathematics and Informatics, Fujian Normal
University, Fuzhou 350117, China. Email: ljg1688@163.com

• H. Li is with the Department of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu
610051, China. Email: hongweili@uestc.edu.cn

However, in standard CP-ABE schemes, an access policy
in plaintext is associated with a ciphertext may result in
leakage of sensitive information. For example, in an e-health
system, hospital A encrypts a patient’s electronic medical
record (EMR) using CP-ABE with an access policy, such
as (“ID: 1788” AND “Hospital: Hospital A”) OR (“Doctor:
Cardiologist” AND “Hospital: Hospital B”) – see Fig. 1.
Hence, one can easily infer from the user attribute set (“Car-
diologist”,“Hospital B”) that patient (“ID: 1788”) in Hospital
A likely suffers from a heart condition. Such privacy leakage
is clearly not appropriate, particularly if the medical con-
dition is more sensitive (e.g., sexually transmitted diseases
such as chlamydia, gonorrhea, and human papillomavirus
infections). In addition, medical organizations are subject
to exacting regulatory oversight in most developed juris-
dictions. Hence, there have been efforts to design CP-ABE
scheme with hidden access policies [14].

Access policy

(Cardiologist AND Hospital B)

OR (1788 AND Hospital A)

Attribute set

(Cardiologist , Hospital B)

Data owner Data userCloud server

Heart

disease

Fig. 1. An example of privacy leakage in access policy.

There have also been efforts to design schemes that allow
a data owner to delegate his/her search capability in a fine-
grained manner, which allows other data users to search,
retrieve and decrypt encrypted data of interest. Examples
include Ciphertext-Policy Attribute-Based Keyword Search

Published in IEEE Transactions on Dependable and Secure Computing, 2019
https://doi.org/10.1109/TDSC.2019.2897675

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

(CP-ABKS) [15], [16], [17], [18], [19]. However, in many
applications, data records are co-owned by a number of
data owners, rather than a single data owner. That is to say,
each file is encrypted by multiple data owners, and the data
user can access the file, if and only if, he/she obtains autho-
rizations from several data owners. For example, the EMR
for a certain patient is controlled by multiple departments
(e.g., clinical departments such as infectious diseases and
psychiatry) and/or medical organizations (e.g., San Antonio
Behavioral Healthcare Hospital, Texas Center for Infectious
Disease, and Texas Infectious Disease Institute). Deploying
CP-ABKS schemes [15], [16] in the unshared multi-owner
setting (where multiple data owners manage different data
records) incur significant computational and storage costs.
Another realistic, but more complex, setting is the shared
multi-owner setting, where each record is co-owned by mul-
tiple data owners. The differences between unshared multi-
owner setting and shared multi-owner setting are described
in Fig. 2.

…

…

…

…

Unshared multi-owner settings Shared multi-owner settings

Fig. 2. Differences between unshared and shared multi-owner setting.

Most CP-ABKS schemes do not consider the case where
dishonest data users may share their secret keys with unau-
thorized entities, resulting in unauthorized entities having
the same privileges as dishonest data users. Thus, it is
necessary to support traceability in CP-ABKS schemes, in
order to trace malicious data users who sell or leak their
secret keys [20] .

At the time of this research, there is no practical CP-
ABKS system that supports hidden access policy and
traceability simultaneously in shared multi-owner setting.
Hence, in this paper we first propose a privacy-preserving
Attribute-Based Keyword Search system with hidden access
policy in Shared Multi-owner setting (basic ABKS-SM sys-
tem), then extend this basic system to support traceability
(modified ABKS-SM system). Specifically, the main contri-
butions of this paper are as follows.

• Shared multi-owner setting. Both ABKS-SM systems
consider the shared multi-owner setting and enable
data owners to provide enhanced access control over
their shared data with multiple permissions.

• Hidden access policy. Both ABKS-SM systems pro-
vide hidden access policy, so that the access structure
attached to the ciphertexts does not leak sensitive
information about the encrypted data and its priv-
ileged recipients.

• Tracing of malicious data users. To prevent dis-
honest data users from leaking their secret keys
to others (e.g., for profits), the modified ABKS-SM
system provides traceability by securely embedding
their identity information in the secret keys.

We formally prove that the basic and modified ABKS-
SM systems guarantee the security of shared data and
access policies, achieve selective security, and resist off-line
keyword-guessing attack in the generic bilinear group mod-
el. We also demonstrate performance1 of the basic ABKS-SM
system using experiments on real-world datasets.

2 RELATED WORK

The first symmetric SE scheme and asymmetrical SE scheme
were presented by Song et al. [6] and Boneh et al. [7], respec-
tively. Subsequent SE schemes were designed to support a
range of features, such as single keyword search [21], [22],
multi-keyword search [8] and ranked keyword search [23],
[24].

CP-ABE was designed to allow fine-grained access con-
trol over ciphertexts, and CP-ABKS was designed to sup-
port both fine-grained access control and keyword search
simultaneously. For example, Zheng et al. [25] presented
the CP-ABKS scheme that enables data owners to grant
fine-grained search permissions, Sun et al. [16] presented
an owner-enforced CP-ABKS scheme that supports user
revocation and is shown to be selectively secure against
chosen-keyword attack. However, the computational costs
of these two schemes grow linearly as the number of system
attributes increases. This is not scalable in practice. To min-
imize computational costs and ciphertext size required in
such schemes, Li et al. [26] implemented a keyword search
function in attribute-based encryption (ABE) scheme, by
outsourcing key-issuing and decryption operations. Dong
et al. [27] also designed an efficient CP-ABKS scheme vi-
a an online/offline approach when considering resource-
constrained mobile devices.

One serious limitation of CP-ABE schemes is that the
access policy embedded in the ciphertexts may leak sensi-
tive information to authorized data users, as discussed in
the preceding section. Thus, Nishide et al. [28] constructed a
more practical CP-ABE scheme, which allows the encryptor
to use wildcards to represent certain attributes in a hidden
solution. Similarly, Phuong et al. [14] proposed a hidden
access policy scheme, which supports AND-gate with wild-
card by utilizing inner product encryption. These prior CP-
ABE schemes with partially hidden access policy have high
computational costs and do not support keyword search
over encrypted data. To resist off-line keyword-guessing
attacks, Qiu et al. [29] presented a secure CP-ABKS scheme
supporting keyword search and hidden access structure.
Also, as discussed earlier, such schemes generally consider
only unshared multi-owner setting. For example, Zhang et
al. [30] provided privacy-preserving ranked multi-keyword
search in the multi-owner model and prevented attackers
from eavesdropping secret keys. Miao et al. [15] designed
an efficient multi-keyword search scheme with fine-grained
access control. Should these schemes be deployed in a
shared multi-owner setting, they will need the same random
parameter for each individual data owner, which clearly is
impractical in practice particularly as the number of data
owners increases.

1. We just present the performance analysis of the basic ABKS-SM
system as the modified ABKS-SM systems have approximately similar
performance due to efficient traceability algorithm.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

Another limitation of CP-ABKS schemes is that an
honest-but-curious cloud service provider may seek to learn
additional sensitive information, other than the stored ci-
phertexts and submitted trapdoors. Also secret keys (or
decryption keys) are defined over different attribute sets,
rather than their corresponding identities. Hence, while CP-
ABKS schemes can achieve one-to-many encryption and
support expressive access control, they are not capable of
identifying data users leaking the secret keys if the ‘culprits’
have the same subset of attributes as other honest data users.
Hence, a data user may choose to deliberately trade his/her
(partial or entire) decryption privileges for profit without
being caught. Thus, traceability should be incorporated in
the design of CP-ABKS schemes to facilitate accountability.
Based on the traceable CP-ABE technique [31], we extend
the traceability feature in the basic ABKS-SM system to
construct the modified ABKS-SM system so that the re-
quirements of real-world applications can be satisfied. A
comparative summary is presented in TABLE 1.

TABLE 1
Features in different CP-ABKS schemes: a comparative summary

Schemes F1 F2 F3 F4 F5

[15] ! !

[16] ! !

[25] !

[29] ! !

[30] !

[31] !

ABKS-SM ! ! ! ! !∗

Notes. “∗”: Basic ABKS-SM system cannot achieve this feature;
F1: Attribute-based keyword search;
F2: Hidden access structure; F3: Unshared multi-owner;
F4: Shared multi-owner; F5: Traceability.

3 PRELIMINARIES AND DEFINITIONS

Let G,GT be two multiplicative cyclic groups of prime order
p, g denotes a generator of group G, and e be the bilinear
map G × G → GT with several properties: (1) Bilinearlity.
e(~ℓ11 , ~

ℓ2
2) = e(~1, ~2)ℓ1ℓ2 for all ~1, ~2 ∈ G, ℓ1, ℓ2 ∈R Zp;

(2)Non-degeneracy. There are elements ~1, ~2 ∈ G satisfy-
ing e(~1, ~2) ̸= 1; (3) Computability. There is an efficient
algorithm to compute e(~1, ~2) for ∀~1, ~2 ∈ G. x ∈R X
is defined as choosing an element x uniformly at random
from the setX , and [1,Υ] denotes an integer set {1, 2, ...,Υ},
where Υ is an integer.

3.1 Access Structure

There are several access structures utilized in the CP-
ABE scheme, such as threshold structure [32], linear secret
sharing structure [11], tree-based access structure [10], and
AND-Gates on multi-valued attributes structure [29]. Next,
we will present the definition of access structure used in our
construction, which is similar to the scheme in [29].

Let there be n attributes {A1, A2, · · · , An} in the
system, and each attribute Ai(i ∈ [1, n]) has a set
of possible values Vi = {vi,1, vi,2, · · · , vi,ni}. First, let
Att = {Att1, Att2, · · · , Attn} be an attribute list, VAtt =

{v1,y1 , v2,y2 , · · · , vn,yn} be the corresponding attribute val-
ue set, where vi,yi ∈ Vi. Then, the access policy is represent-
ed as P = {P1, P2, · · · , Pn}, where Pi ⊆ Vi. If the attribute
list Att matches with the access policy P (Att |= P), namely
Atti ∈ Pi or Pi = ∗, then the ciphertexts embedded with P
can be decrypted by the data user with Att.

3.2 Linear Secret Sharing Schemes (LSSS)

Linear Secret Sharing Schemes (LSSS) [11] converts any
monotonic boolean formula into the LSSS representation, as
well as enhancing access control based on multiple parties’
requirements. The secret-sharing scheme Π over a group of
parties P = {P1,P2, · · · ,Pl} is called linear over field Zp if
the following conditions hold.

• The shares for each party Pi(i ∈ [1, l]) form a vector
over Zp.

• Given the sharing-generating matrix M with l rows
and n columns, the i-th row in M can be labeled
by a monotone function ρ(i)(i ∈ [1, l]), where ρ(i)
denotes a certain party in P . Given the vector v⃗ =
(s, r2, · · · , rn), λ⃗ = M × v⃗⊤ = {λ1, λ2, · · · , λl} is
the vector of l shares of the secret s, and the share λi
belongs to party Pi, where elements r2, · · · , rn are
randomly selected in field Zp and s is the secret to be
shared.

Based on the above definitions, LSSS has the property
of linear reconstruction. Let Π be an LSSS structure for the
given access structure A, S ∈ A be any authorized set, and
I ⊂ {1, 2, · · · , l} denotes I = {i : ρ(i) ∈ S}. If the tuple
{λi} is the valid share set of any secret s over Π, then
there are constants {ωi}i∈I such that

∑
i∈I ωiλi = s. These

elements {ωi} can be found in polynomial time in the size
of the matrix M.

3.3 Decisional Bilinear Diffie-Hellman (DBDH) Assump-
tion

As for the challenger C, it randomly selects x1, x2, x3 ∈R Zp

prior to flipping a fair binary coin y ∈ {0, 1}. If y = 1,
it returns the tuple (g, gx1 , gx2 , gx3 , e(g, g)x1x2x3). If y = 0,
then C outputs the tuple (g, gx1 , gx2 , gx3 , e(g, g)z). The goal
of adversary A is to output a guess y′ of y, and A has at
least an advantage ϵ in solving the DBDH problem if Eq. 1
holds, where the probability is over the randomly selected
elements x1, x2, x3, z and the random bits consumed by A.∣∣∣∣∣Pr[A(g, gx1 , gx2 , gx3 , e(g, g)x1x2x3) = 1]

− Pr[A(g, gx1 , gx2 , gx3 , e(g, g)z) = 1]

∣∣∣∣∣ ≥ 2ϵ. (1)

3.4 Generic Bilinear Group Model

Following the definition in [10], there are two random
encodings ξ(·), ξT (·) :R Zp → {0, 1}ℓ, where ℓ > 3 log(p),
and G = {ξ(x) : x ∈R Zp}, GT = {ξT (x) : x ∈R Zp}. We
use oracles to execute the respective actions on G,GT and
compute a non-degenerate bilinear map e : G × G → GT .
We also use a random oracle to represent the hash function.
In here, G is considered a generic bilinear group.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

3.5 ϕ-Strong Diffie-Hellman (ϕ-SDH) Assumption

Let G be the cyclic group of prime order p, and g is a
generator of G. The definition of the ϕ-SDH assumption
is defined as follows: take the tuple (g, gx, gx

2

, · · · , gxϕ

) as
input, the goal of the ϕ-SDH problem is to output a pair
(c∗, g1/(c

∗+x)), where c∗, x ∈R Zp. Then, we can say there
exists an algorithm A with advantage ϵ in solving the ϕ-
SDH problem if Pr[A(g, gx, · · · , gxϕ

) = (c∗, g1/(c
∗+x))] ≥ ϵ.

One would also note that the advantage is over the random
choice of x in field Zp and the random bits consumed by A.

4 PROBLEM FORMULATION

The system and threat models, basic and modified ABKS-
SM systems definition, security model and privacy require-
ments are described in Sections 4.1 to 4.4, respectively.

Cloud service provider

Multiple data owners Trusted third-party Data users

Ciphertexts Search

Results

Keys

Linear secret-sharing scheme

x1,1 x1,2 … x1,l

x2,1 x2,2 x2,l

xd,1 xd,2 xd,l

…

… … … …

…

Fig. 3. Basic (or modified) ABKS-SM system model.

4.1 System and Threat Models

The system model for the basic and modified ABKS-SM sys-
tems comprises four types of entities, namely: multiple Data
Owners (DOs), Data Users (DUs), Cloud Service Provider
(CSP) and Trusted Third-Party (TTP) – see Fig. 3. It is
worth noticing that the modified ABKS-SM system supports
traceability, which is shown by the red curve in Fig. 3. First,
DOs extract keywords from each file and build indexes,
before encrypting the files and the symmetric keys respec-
tively using conventional symmetric encryption algorithm
and the LSSS. The encrypted indexes and ciphertexts are
then sent to CSP. When a DU wishes to issue search queries
over encrypted cloud data, he/she submits a search token
generated for the intended keyword to CSP. The latter then
seeks to match the search token with indexes and returns
the corresponding search results to DU. Then, DU decrypts
them if he/she has obtained relevant authorizations from
multiple DOs. The task of each entity is described in more
details below:

• DOs: When taking the shared multi-owner setting
into consideration, DOs encrypt the file encryption
keys using LSSS, build indexes using access policy
based on AND-Gates, and upload the ciphertexts to
CSP – see step 1⃝.

• DUs: Authorized DU can search encrypted files of
interest and gain access to the plaintext once he/she
has been accredited by multiple DOs. Note that the
DU can decrypt the final search results if he/she has

obtained relevant authorizations assigned by multi-
ple DOs.

• CSP: The cloud server provides many services, such
as data storage, computation and retrieval. When a
DU issues a search query by submitting a search
token generated according to his/her interested key-
word in step 3⃝, the CSP will attempt to match
it with the indexes and return the relevant search
results to the DU in step 4⃝.

• TTP: Firstly, it is responsible for initializing the sys-
tem and generating the public/secret key pairs for
cloud clients including DOs and DUs, as shown in
step 2⃝. Secondly, it can trace the DU who leaks the
secret key to unauthorized entities, as shown by the
red curve in Fig. 3.

Both DOs and TTP are considered to be fully trusted.
However, CSP is assumed to be honest-but-curious, which
honestly follows the established protocols but seeks to in-
fer/obtain sensitive formation from the access patterns or
search patterns. DUs are also semi-trusted as malicious DUs
may intentionally leak partial or modified secret keys for
profits.

4.2 Overview of Basic ABKS-SM System
As the modified ABKS-SM system has the similar algorithm-
s as the basic ABKS-SM system except for the traceability
algorithm, we just give the algorithm definitions of the
basic ABKS-SM system. Before showing the basic ABKS-SM
system definition, we first give some notations used in the
basic ABKS-SM system in TABLE 2. The basic ABKS-SM
system is a tuple of six algorithms, namely: Setup, Keygen,
Enc, Trap, Search and Dec – see Fig. 4.

TABLE 2
Notations in basic ABKS-SM system

Notations Descriptions
A = {A1, A2, · · · , An} System attribute set
Vi = {vi,1, vi,2, · · · , vi,ni} Possible values for attribute Ai

O = {O1,O2, · · · ,Od} Multiple DOs
(PKOτ , SKOτ) Public/secret key pair of DO (Oτ)
(PKu, SKu) Public/secret key pair of DU
Att = {Att1, Att2, · · · , Attn} Attribute set of DU
{v1,y1 , v2,y2 , · · · , vn,yn} Attribute values for Att
F = {f} File set
C = (C′, C′′, {Cτ}) Key ciphertexts
v⃗ = {s, r2, · · · , rl} ∈R Zl

p Chosen column vector
W = {w} Keyword set
P = {P1, P2, · · · , Pn} Access policy
Iw = (I′, I′′, {Ii}, {Ii,j}) Index for keyword w
Tw′ = (T ′, T ′′, {Ti,1, Ti,2}) Trapdoor for queried keyword w′

{c′} Returned search results
ID Identity of a certain DU
ID′ Identity of a queried DU
{Autτ} Decryption authorizations

We also present the architecture of basic ABKS-SM sys-
tem – see Fig. 5. The Setup algorithm performs the system
initialization, such as generating the public keys and master
keys. The Keygen algorithm includes KeyGenDO and Key-
GenDU subalgorithms, which generate public/secret key
pairs for multiple DOs and DUs, respectively. As for Enc
algorithm, multiple DOs first extract keywords from the
files before outputting the file key ciphertexts and encrypted

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Algorithm definitions in proposed ABKS-SM system

• Setup(1k): Given the security parameter k, TTP runs the algorithm to output the master key MSK and public
key PK .

• KeyGenDO(PK,O): Given the public key PK and data owner set O, TTP outputs public/secret key pairs
{PKOτ , SKOτ }τ∈[1,d] for multiple DOs.

• KeyGenDU (PK,MSK, ID,Att): Taking the identity ID and attribute set Att of a DU, TTP outputs the DU’s
public/secret key pair {PKu, SKu}.

• Enc(PK,F,W,M,P, {PKOτ }): Given the file set F , keyword set W , matrix access structure M, and corre-
sponding access policy P, DOs runs the algorithm to output the ciphertexts CT and indexes I . Note that
M denotes the multiple DOs’ authorizations for accredited DUs, and P represents the access policy used to
construct indexes.

• Trap(PK,w′, SKu, Att): Given the queried keyword w′, a DU runs the algorithm to generate the search token
(or trapdoor) Tw′ and submits it to CSP.

• Search(PK, ID′,P, Att, Tw′ , CT, I): After gaining the trapdoor Tw′ , CSP first checks whether Att matches with
P, then it returns the relevant search results {c′} to the DU.

• Dec(PK, {c′, C}, SKu, ID
′): In this algorithm, only the legitimate DU authorized by multiple DOs can decrypt

the returned search results {c′}.

Fig. 4. Definition of basic ABKS-SM system

Files

Encryption

File key ciphertexts

Indexes

K
e
y

w
o

rd
s

Encryption algorithm

Matrix

Policy

User list

Queried keywordTrapdoor

Trapdoor algorithm

Secret key Secret key

Search results

Search algorithm

Key generation algorithm

Communication

Data owners Trusted third-party

Cloud

Data users

Decryption algorithm

Fig. 5. Architecture of basic ABKS-SM system.

indexes, by using LSSS and access policy respectively. In
Trap algorithm, a DU submits the trapdoor generated ac-
cording to his/her queried keyword to CSP. After that, the
CSP conducts Search algorithm and sends the authorized
search results to DU. Before decrypting the encrypted search
results in Dec algorithm, DU needs to obtain the relevant
authorizations by interacting with DOs, which is shown
by the red dotted line in Fig. 5. After being accredited by
multiple DOs, DU obtains the plaintext results.2

4.3 Security Model
In this section, we describe the security model for the basic
ABKS-SM, based on the following security game [28]. We
also claim that the basic ABKS-SM system achieves selective
security in the generic bilinear group model if there is no

2. For example, given an file f which includes the keyword w, 5 DOs
first specify the file encryption key kf used to encrypt f as c, LSSS
(M5×3) used to encrypt kf as C, access policy P used to encrypt w as
Iw . If DU’s attributes Att satisfy P, then the CSP can check whether
the trapdoor Tw′ matches with Iw . If these two conditions hold (Att |=
P,w = w′), the DU gets the search results (c, C). However, the DU can
obtain kf , if and only if, he gains at least 3 decryption authorizations
from 5 DOs.

probabilistic polynomial-time adversary A that can break
the game with a non-negligible advantage. Note that the
modified ABKS-SM system also achieves the selective secu-
rity in the generic bilinear group model. Due to the space
limitation, we omit the selective security of the modified
ABKS-SM system. One would also note that the selective
security goals mainly focus on the indistinguishability of
access policies and keywords. The selective security game
for the basic ABKS-SM system is as follows:

• Setup: A selects two challenging access policies
P0,P1 before sending them to C. After that, C first
calls the Setup algorithm to generate the public key
PK and master key MSK , then it sends PK to A
and keeps MSK itself.

• Phase 1: A picks an attribute list Att and issues the
following oracle queries:

– OKeyGenDU (Att): If Att simultaneously satis-
fies both chosen access policies P0,P1, C runs
KeyGenDU to output the secret key SK before
returning it to A.

– OTrap(Att, w
′): Given the submitted keyword

w′, C executes Trap algorithm to generate the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

trapdoor (or search token) Tw′ by leveraging
SK , and then sends it to A.

• Challenge: A chooses two keywords w0, w1 ∈ W
before returning them to C. If A gets access to Tw′ on
the condition that Att satisfies both access policies
P0,P1 in Phase 1, we define w0 = w1. Then, C
selects a random element y ∈ {0, 1} and uses Enc
algorithm to generate the ciphertext {Iwy} by utiliz-
ing the corresponding Py . Finally, C sends {Iwy} to
A.

• Phase 2: A repeatedly performs the operations in
Phase 1. If w0 ̸= w1, then A cannot find Att that
simultaneously satisfies P0,P1.

• Guess: A returns a guess bit y′ ∈ {0, 1}, and A wins
the security game if y′ = y.

A’s advantage ϵ in this selective security game is taken
over the random bits used between A and C. Because A
should conduct the challenging access policies P0,P1 before
the Setup phase. This model is similar to the selective-
ID model used in Identity-Based Encryption (IBE) schemes.
However, the non-selective-ID model shown in CP-ABE
scheme [10] is proven secure in the generic bilinear group
model. In the non-selective-ID security game, A can submit
an attribute set Att, which satisfies both access policies
P0,P1, and then A can obtain the corresponding search
results. We further remark that A cannot gain sensitive
information about P0,P1, except for the returned search
results. This echoes the existing design of CP-ABE schemes
with hidden access policy scheme [28].

Generally, off-line keyword-guessing attacks are easier
to conduct when keywords have low entropy. For example,
keywords are chosen from a small keyword space, which
allows an attacker to guess some candidate keywords in an
off-line manner by utilizing the low-entropy characteristic
of keywords. That is, given a trapdoor, an attacker can learn
which keyword is used to generate the trapdoor as data
user usually queries the commonly-used keywords with low
entropy. Thus, to resist off-line keyword guessing attack,
the above security definition also requires that malicious
attackers should not be able to distinguish between the
ciphertexts (or indexes) of two challenging keywords w0

and w1 of his/her choice.

Definition 1. The basic ABKS-SM system achieves selective
security in the generic bilinear group model, if there is an
adversary A that can win the above non-selective-ID secu-
rity game with a negligible advantage ϵ = |Pr[y′ − y]− 1

2 |.

Next, we present the traceability definition [20] in the
modified ABKS-SM system. The traceability definition is
described by a security game between an adversary and
a challenger. Let q′ be the total number of key generation
queries performed by the adversary A, and the game be-
tween challenger C and A is as follows:

• Setup: C calls Setup(1k) algorithm and returns the
public parameters PK to A.

• Key generation query: A selects a series of tu-
ples {(ID∗

1 , Att
∗
1), · · · , (ID∗

q′ , Att
∗
q′)} to ask the se-

cret keys {SK∗
u,1, · · · , SK∗

u,q′}.

• Key forgery: A chooses a secret key SK∗
u. If

Trace(PK,MSK ′, SK∗
u,Γt′,n′) /∈ {ID∗

1 , · · · , ID∗
q′},

then A wins the game; otherwise, it fails.

Definition 2. The modified ABKS-SM system is fully trace-
able if there exists no polynomial time A that has a non-
negligible advantage in breaking the above game.

4.4 Security Requirements

Similar to security requirements in typical private informa-
tion retrieval schemes [33], both the basic and modified
ABKS-SM systems should ensure the following privacy
requirements:

• Data privacy. DUs can access the shared data, if and
only if, they have valid authorization from multiple
DOs.

• Privacy for DUs. CSP is convinced that DU’s search
queries are authorized by DOs, without learning any
potential information about the queried content.

• Privacy for DOs. Even if a part of DOs is corrupted,
the adversary cannot forge valid authorizations from
remaining DOs as there exist no interactions and ad-
ditional computing operations among multiple DOs.

As will be shown in Theorem 3 in Section 6.1, the basic
and modified ABKS-SM systems satisfy the above privacy
requirements if they achieve selective security in the generic
bilinear group model.

5 PROPOSED ABKS-SM SYSTEMS

In this section, we first present the concrete construction
of the basic ABKS-SM system, which supports fine-grained
keyword search and hidden access policy. Then, we explain
how the basic ABKS-SM system is extended to achieve
malicious user tracing in the modified ABKS-SM system.

5.1 Construction of Basic ABKS-SM Syetem

Unlike existing CP-ABKS schemes, we consider a shared
multi-owner setting where each file is co-owned by a group
of DOs. In the basic ABKS-SM system, we use conventional
symmetric encryption algorithm (AES, DES, etc.), access
matrix Md×l (or (d, l)-LSSS), and access policy P, to respec-
tively encrypt files, file encryption keys and keywords. Even
though a certain DU can issue search queries and obtain the
returned search results, he/she cannot decrypt the encrypt-
ed data without valid authorizations from multiple DOs.
Moreover, in practice, the access policies contain sensitive
information and should also be protected. However, existing
CP-ABKS schemes with hidden access policies are not prac-
tical since any malicious DU having the same attribute set
with others, can leak his/her decryption privilege without
fear of being caught.

Thus, we further extend the traceability function in the
modified ABKS-SM system, and present a concrete construc-
tion. Note that we design a two-level access control over
outsourced files, which is shown in Fig. 6. As for the first-
level access control over file decryption, we design an access
matrix Md×l , which is used to encrypt each file encryption
key according to DU’s identity list by leveraging LSSS.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

…
 Extraction

File keys

File

Access matrix

Access policy

Keywords
…

Keys ciphertexts

Search query

Search results

Request for decryption authorizations

Multiple decryption authorizations

Decryption

key

Second-level access control

First-level access control

Data user

plaintext

Data owners

Indexes

File ciphertexts

Keys ciphertexts

Cloud server

Fig. 6. Two-level access control in basic ABKS-SM system.

For the second-level access control over encrypted files, an
access policy is specified to generate indexes according to
DU’s attributes by utilizing AND-Gates on multi-valued
access structure. Note that DU can request the first-level
access control, if and only if, he/she satisfies the second-
level access control.
Setup(1k): On input the security parameter k and the
system attribute set A = {A1, A2, · · · , An}, where each
attribute Ai(i ∈ [1, n]) has a set of possible values Vi =
{vi,1, vi,2, · · · , vi,ni} and vi,j(j ∈ [1, ni]) ∈R Z∗

p, TTP selects
two anti-collision hash functions H : {0, 1}∗ →R Z∗

p,
H ′ : {0, 1}∗ → G and random elements xi,j(i ∈ [1, n], j ∈
[1, ni]), α, b ∈R Z∗

p. Then, TTP computes Vi,j = gxi,j ,
θ = e(g, g)α, β = gb before returning the public key PK
and master key MSK – see Eq. 2, where g is the generator
of group G.

PK = (g, {Vi,j}i∈[1,n],j∈[1,ni],H,H
′, θ, β);

MSK = (α, b, {xi,j}i∈[1,n],j∈[1,ni]).
(2)

KeyGenDO(PK,O): Given multiple data owners O =
{O1,O2, · · · ,Od}, TTP selects a random element uτ ∈R Z∗

p

and sets the public/secret key pair of Oτ (τ ∈ [1, d]) as
PKOτ = guτ , SKOτ = uτ .
KeyGenDU (PK,MSK, ID,Att): On input the identi-
ty ID of a DU and his/her attribute set Att =
{Att1, Att2, · · · , Attn} with the corresponding attribute
value set {v1,y1 , v2,y2 , · · · , vn,yn}, TTP picks random ele-
ments γ, u, zi ∈R Z∗

p, sets DU’s public key as PKu =

θu = e(g, g)uα and computes K1 = g(α+γ)/b, K2 = gα+bu,
K3 = gαH ′(ID)b, Ki,1 = gγ+xi,yi

zi , Ki,2 = gzi . Finally,
TTP outputs the public/secret key pair {PKu, SKu} of DU
by Eq. 3, respectively, where K0 = u.

PKu = e(g, g)uα, SKu = (K0,K1,K2,K3, {Ki,1,Ki,2}).
(3)

Enc(PK,F,W,M,P, {PKOτ }): Given a file set F = {f},
each file f is encrypted as c with the symmetric key
kf ∈R Z∗

p. Then, multiple DOs encrypt kf with the ac-
cess matrix Md×l, where a function ρ(τ) maps each row
Mτ (τ ∈ [1, d]) of Md×l to a DO. DOs choose a column
vector v⃗ = {s, r2, · · · , rl} ∈R Zl

p, compute λτ = Mτ v⃗,

and set the key ciphertext as C = (C ′, C ′′, {Cτ}), where
C ′ = kf · θs = kf · e(g, g)sα, C ′′ = gs, Cτ = βλτPK−s

Oτ
=

gbλτ g−uτs. Next, DOs extract keywords from file set F =
{f} according to the keyword set W = {w}.

CT = {c, C} = {c, C ′, C ′′, {Cτ}};
I = {Iw} = {I ′, I ′′, {Ii}, {Ii,j}}.

(4)

Algorithm 1: Generating ciphertexts and indexes
Input: Public keys PK, files F = {f}, keywords W = {w},

access matrix Md×l, access policy
P = {P1, P2, · · · , Pn}, Public keys {PKOτ }

Output: Ciphertexts CT , indexes I
1 for each file f ∈ F do
2 Generate ciphertext c with symmetric encryption key kf ;
3 Select a column vector v⃗ = {s, r2, · · · , rl} ∈R Zl

p and
compute (C′, C′′) ;

4 for 1 ≤ τ ≤ d do
5 Compute λτ = Mτ v⃗ and Cτ ;

6 Set key ciphertext as C = (C′, C′′, {Cτ}) ;

7 for Each keyword w ∈ W do
8 for 1 ≤ i ≤ n do
9 Pick πi ∈R Z∗

p(i ∈ [1, n]) such that π =
∑n

i=1 πi ;
10 Compute I′, I′′, Ii ;
11 for 1 ≤ j ≤ ni do
12 if vi,j ∈ Pi then
13 Set Ii,j = V

πi
i,j = gxi,jπi ;

14 else
15 Set Ii,j as a random element in group G ;

16 Set Iw = (I′, I′′, {Ii}, {Ii,j}) ;

17 Return indexes I = {Iw}, ciphertexts CT = {c, C}.

Given the access policy P = {P1, P2, · · · , Pn}, where
Pi ⊆ Vi(i ∈ [1, n]), multiple DOs build the encrypted
index Iw for keyword w. For each attribute, DOs select
πi ∈R Z∗

p(i ∈ [1, n]) such that π =
∑n

i=1 πi, then com-
pute I ′ = θπ = e(g, g)απ , I ′′ = βπ/H(w) = g(bπ)/H(w),
Ii = gπi . If vi,j ∈ Pi(i ∈ [1, n], j ∈ [1, ni]), then DOs set
Ii,j = V πi

i,j = gxi,jπi ; otherwise, define Ii,j as a random
element chosen in group G. Finally, the encrypted index
is denoted as Iw = (I ′, I ′′, {Ii}, {Ii,j}). To reduce local
storage and computational costs, multiple DOs upload the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

ciphertexts CT along with indexes I = {Iw} to CSP – see
Eq. 4. Besides, the access policy P is also sent to CSP, but the
CSP cannot deduce any sensitive information. The specific
process for generating ciphertexts is shown in Algorithm 1.

Besides, when a new DU (with identity ID) joins the
system, the system randomly chooses π ∈R Z∗

p and com-
putes ϖID = PK−π

u , then stores the user-list (ID,ϖID) on
CSP.
Trap(PK,w′, SKu, Att): When a queried DU with an at-
tribute set Att wants to issue search query for keyword
w′, he first selects µ ∈R Z∗

p before generating the search

token Tw′ , then computes T ′ = u + µ, T ′′ = K
H(w′)µ
1 and

Ti,1 = Kµ
i,1, Ti,2 = Kµ

i,2 for each attribute in Att – see Eq. 5.
Finally, he submits the trapdoor (or search token) Tw′ to
CSP.

Tw′ = (T ′, T ′′, {Ti,1, Ti,2}i∈[1,n]). (5)

Search(PK, ID′,P, Att, Tw′ , CT, I): Once gaining the
search query Tw′ from a queried DU with identity ID′, the
CSP first checks whether DU is in the user-list. If this DU
is not a legal entity, the CSP aborts this query; otherwise,
it runs this algorithm to compute φ1 =

∏n
i=1 e(Ii, Ti,1). For

each attributeAtti(i ∈ [1, n]), the CSP continues to compute
φ2 =

∏n
i=1 e(Ii,yi , Ti,2) if vi,yi ∈ Pi. Finally, the CSP gains

φ = φ1/φ2 on the condition that the submitted attribute
set Att matches with the access policy P, and returns the
relevant search results {c′} and corresponding ciphertexts
{C} if the following Eq. 6 holds. The specific ciphertexts
search process is shown in Algorithm 2.

e(I ′′, T ′′)φ−1 = I ′T
′
·ϖID′ . (6)

Algorithm 2: Searching ciphertexts
Input: Public keys PK, attribute set Att, trapdoor Tw′ ,

ciphertexts CT , indexes I , access policy P, identity ID′

of a queeried DU
Output: Search results {c′}, related ciphertexts {C}

1 for Each w ∈ W do
2 if ID′ is an illegal entity then
3 CSP aborts this query ;

4 else
5 CSP continues this process ;
6 for 1 ≤ i ≤ n do
7 Compute φ1 =

∏n
i=1 e(Ii, Ti,1) ;

8 if vi,yi ∈ Pi then
9 Mark down Ii,yi ;

10 else
11 Ignore Ii,yi ;
12 Compute φ2 =

∏n
i=1 e(Ii,yi , Ti,2) ;

13 Compute φ = φ1/φ2 ;

14 Check e(I′′, T ′′)φ−1 ?
= I′T

′ ·ϖID′ (3) ;
15 if Eq.(3) holds then
16 it shows w′ = w and CSP returns the ciphertexts

containing w′ ;

17 else
18 it shows w′ ̸= w and CSP returns ⊥ ;

19 CSP returns the search results {c′}, related ciphertexts {C}.

Dec(PK, {c′, C}, SKu, ID
′): In this algorithm, a queried

DU first needs to gain the corresponding file encryption key
set {kf ′}. DU can decrypt these returned results, if and only

if, he/she obtains valid authorizations {Autτ}(τ ∈ [1, d])
from multiple DOs (O), where Autτ = H ′(ID′)uτ . For
example, when multiple DOs encrypt each shared file with
the common access matrix based on (d, l)-LSSS in Enc
algorithm, an individual who has obtained the search results
{c′} in Search algorithm must obtain at least l decryption
authorization {Autτ} from d DOs in this algorithm before
he/she decrypts {c′}. As DOs (O) have the authorized
user identity list, each DO (Oτ) can generate the valid
decryption authorization Autτ with his/her own secret key
SKOτ and queried DU’s identity ID′ rather than DU’s
secret key SKu. The security channels needs to be deployed
between the queried DU and multiple DOs, when DU asks
for the decryption authorizations. Assume that A is the
matrix access structure and S ∈ A is an authorized set with
I = {l : ρ(l) ∈ S} ⊂ {1, 2, · · · , d}, there is a constant set
{ωl} such that

∑
l∈I λlωl = s. Prior to obtaining key kf ′ , the

DU concerned performs Eq. 7. Finally, DU gets the secret
key kf ′ = kf = C′

e(g,g)sα .

e(C ′′,K3)∏
l∈I(e(Cl,H ′(ID′))e(Autt, C ′′))ωl

= e(g, g)sα. (7)

Remarks: In the basic ABKS-SM system, to determine
who can access the encrypted files, we devise an access
policy P according to attribute set A, and a queried DU can
obtain the search results {c′} on condition that his/her sub-
mitted attributes Att match with P. However, he/she still
cannot decrypt {c′} without obtaining sufficient decryption
authorizations {Autτ} from multiple DOs. Thus, in Enc al-
gorithm, we also specify an access matrix Md×l according to
DO set O, each DO is equal to an attribute in access policy of
CP-ABE schemes; and the multiple DOs who have returned
valid {Autτ} can be treated as the submitted attributes.
Thus, the DU who has obtained {c′} can further obtain
the secret value s or e(g, g)sα by utilizing LSSS. Moreover,
the fine-grained access control with hidden access policy
can be achieved in the basic ABKS-SM system. Although
the submitted attribute set (or trapdoor) satisfies the access
policy (or indexes), DU cannot decrypt the returned search
results unless he/she gains sufficient valid authorizations
from multiple DOs. Thus, the basic ABKS-SM system can
guarantee data and access policy privacy to a certain extend.
To trace malicious DUs who leak partial or entire secret
keys to other unauthorized entities, we will extend the
basic ABKS-SM system to incorporate traceability [20] and
identify suspicious DUs in the modified ABKS-SM system.

5.2 Construction of Modified ABKS-SM System
To trace malicious DU, we will utilize Shamir’s threshold
scheme [34] Γt′,n′ and a probabilistic encryption algorithm.
Thus, the modified ABKS-SM system only stores t′−1 points
and the value f ′(0) on the polynomial f ′(x′) at system
initialization, so that the storage cost of user tracing is
constant. Due to limited space, we present the content that
differs from the original algorithm, as shown in Fig. 7.

6 SECURITY AND PERFORMANCE ANALYSIS

In this section, we first prove that the security and pri-
vacy of the basic and modified ABKS-SM systems can be

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

Modified algorithms to achieve traceability

To achieve traceability, we modify Setup algorithm and KeyGenDU algorithm and add Trace algorithm in the basic
ABKS-SM system. In other words, the other algorithms (Enc, KeyGenDO , Trap, Search, etc.) remain unchanged.
Besides, the additional Trace algorithm allows to trace the suspected DU.
Setup(1k): TTP first selects a probabilistic symmetric-key encryption algorithm (Enc,Dec), which maps an arbitrary
binary string to field Zp with two secret keys k′, k′′. Then, it initializes an instance of Shamir’s threshold scheme Γt′,n′

with a secret polynomial y′ = f ′(x′) and t′ − 1 points {(x′1, y′1), · · · , (x′t′−1, y
′
t′−1)}, where k′, k′′ are stored as part of

the master key MSK ′.
MSK ′ = (α, b, {xi,j}i∈[1,n],j∈[1,ni], k

′, k′′). (8)

KeyGenDU (PK,MSK, ID,Att): For a DU with identity ID, TTP runs this algorithm to compute x′ = Enck′(ID),
y′ = f ′(x′), K0 = u = Enck′′(x′||y′), where u is a part of secret key SKu and not distinguished from a random
element.
Trace(PK,MSK ′, SKu,Γt′,n′): TTP first checks whether the secret key SKu of the target DU is a well-formed secret
key. If not, then it does not need to trace the target DU; otherwise, it executes the following steps:

• Step 1: TTP extracts (x′′ = x′, y′′ = y′) by running the algorithm x′||y′ = Deck′′(K0 = u).
• Step 2: If the tuple (x′′ = x′, y′′ = y′) ∈ {(x′1, y′1), · · · , (x′t′−1, y

′
t′−1)}, TTP calls Deck′(x′′) to identity the target

DU with an identity ID; otherwise, TTP proceeds to next step.
• Step 3: TTP computes f∗(0) by interpolating with t′ points {(x′1, y′1), · · · , (x′t′−1, y

′
t′−1), x

′′ = x′, y′′ = y′)}. If
f∗(0) = f ′(0), TTP calls Deck′(x′′) to determine the identity of target DU; otherwise, TTP declares that the
target DU is not the malicious entity leaking the secret key.

Fig. 7. Definition for modified algorithms

guaranteed by the following theorems. Next, we give their
performance analysis.

6.1 Security Analysis

First, based on the aforementioned generic bilinear map
model, the basic and modified ABKS-SM systems can
achieve selective security. Second, the modified ABKS-SM
system can achieve the full traceability under ϕ-SDH as-
sumption. Finally, the privacy protection (including privacy
for data, DUs and DOs) can be also achieved under DBDH
assumption in the basic and modified ABKS-SM systems.

Theorem 1. Given the parameters (ξ(x), ξT (x),G,GT) in
the generic bilinear group model, if any adversary A makes
at most q oracle queries in order to compute the interaction
with the non-selective-ID selective security, we have that
A’s advantage in this security game isAdvABKS−SM

A (1k) =
O(q2/p).

Proof: In this selective security game defined in Sec-
tion 4.3, the simulator B plays the following game with A
owning two lists of pairs LG = {⟨ψh, ξh(·)⟩ : h = 1, · · · , σ},
LGT = {⟨ψT,hT , ξT,hT (·)⟩ : hT = 1, · · · , σT }, where ψ,ψT

are two multi-variant polynomials for A’s oracle queries,
ξh = ξ(ψh), ξT,hT = ξT,hT (ψT,hT) are two random strings.
Let ψ1 = 1, ψT,1 = 1, then the symbols ξ(1), ξT (1) denote
the g, e(g, g) in groups G,GT , respectively. Note that, in
the following oracle queries, the group elements in G,GT

are represented by ξh(·), ξT,hT (·), respectively. First, the
challenger C randomly selects real values in each oracle
query and keeps them in the lists, while B just maintains
two multi-variant polynomials ψ,ψT in the lists. When A
issues the oracle queries, then B updates its lists and sends
the corresponding new random strings to A. Besides, B
returns the tuples of q oracle queries [35] so that A can check

the consistency of this selective security game. The concrete
proof of Theorem 1 is given in Supplemental Material A.

Due to the privacy disclosure on access policies, most
of existing CP-ABKS schemes are vulnerable to off-line
keyword-guessing attacks if the keyword space has a
polynomial size. In prior schemes, the vulnerabilities of
keyword-guessing attack come from that the trapdoors are
usually generated by combining queried keywords and
DUs’ secret keys. In other words, once an adversary A
(i.e., the inside attacker or outside attacker, etc.) gains the
access policy P specified in the given ciphertexts (or in-
dexes), A outputs all indexes of possible keywords, even
the keywords embedded in a certain index. Finally, A is
able to deduce the combination with public keys by utiliz-
ing pairing operation and then issue the off-line keyword-
guessing attack [36]. Fortunately, the two ABKS-SM systems
can achieve the selective security which guarantees the in-
distinguishability of access policies and keyword ciphertexts
(or indexes). Thus, our both ABKS-SM systems can resist
the off-line keyword-guessing attack in the generic bilinear
group model. Due to the space limitation, the specific proof
can refer to the HP-CPABKS scheme [29].

Except for the selective security in the generic bilin-
ear group model, the modified ABKS-SM system can also
achieve the property of traceability according to the ϕ-SDH
(Strong Diffie-Hellman) assumption [37], as shown as in
Theorem 2.

Theorem 2. Our modified ABKS-SM system is fully trace-
able on condition that the ϕ-SDH assumption holds, where
q′ < ϕ.

Proof: The detailed traceability proof is similar to the
white-box traceability scheme [20]. Assume that there exists
a probabilistic polynomial time (PPT) adversary A that has a

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

non-negligible advantage in breaking the traceability game
after performing q′ key generation queries, then we set
ϕ = q′ + 1 and construct a PPT algorithm B that can break
the traceability game with a non-negligible probability. The
detailed proof of Theorem 2 is shown in Supplemental
Material B.

Theorem 3. In the basic and modified ABKS-SM systems,
the privacy requirements for data, DUs and DOs can be
achieved on the condition that the DBDH assumption holds.

Proof: As shown in Section 4.4, the basic and modified
ABKS-SM systems should satisfy the established privacy
requirements. The detailed security analysis is presented as
follows:

Privacy for data. In practice, as the data security and
privacy concerns which are not yet solved will impede the
practicability of cloud computing, the sensitive data should
be encrypted before outsourcing. For file keys encrypted by
LSSS, we assume that certain DU with identity ID gains
partial secret key K3 = gαH ′(ID)b and decryption autho-
rizations {Autt = H ′(ID)uτ }τ∈[1,d], while the authorized
set does not satisfy the matrix access structure. Then, we set
H ′(ID)uτ = H ′(xτ)

u∗
, gαH ′(ID)b = gαgbu

∗
such that the

elements u∗, xτ could be proved to exist. Finally, the key ci-
phertext Cτ = gbλτ g−uτs is rewritten as Cτ = gbλH ′(xτ)

−s.
Based on the similar CP-ABE scheme [10], the privacy for
data (file encryption keys) in both ABKS-SM systems can be
guaranteed under the DBDH assumption. Due to the limited
space, we omit the concrete security proof in this paper.

Privacy for DUs. When performing search operations,
the CSP returns the relevant search results, if and only if,
Eq. 6 holds. Besides, the search token is generated accord-
ing to DU’s secret key (K0,K1, {Ki,1,Ki,2}i∈[1,n]), and an
illegal DU cannot forge the valid trapdoor to access the
sensitive data on behalf of legal DUs. Similar to the PEKS
scheme [7], both the basic and modified ABKS-SM systems
are also semantically secure against keyword-chosen attack
under the DBDH assumption.

Privacy for DOs. As shown in Dec algorithm, the gener-
ation of decryption authorization set Autτ = H ′(ID′)uτ

is similar to the signature technique [38]. There exist no
adversaries forging the valid authorization set as they can-
not deduce the secret set {uτ}τ∈[1,d] of authorizers. Fur-
thermore, other entities do not need to issue additional
interactions with the multiple authorizers, thereby further
reducing the risks of privacy disclosure. Hence, the privacy
for authorizers is preserved under the DBDH assumption,
and its similar security proof is illustrated in [38].

Last but not the least, both ABKS-SM systems can resist
the collusion attacks to some extent. First, each authorizer
can only generate his authorization, but cannot forge other
authorizations on behalf of other authorizers. Second, more
than one DU cannot obtain the valid decryption autho-
rizations by simply joining respective authorizations due to
their different identities. In other words, the malicious DUs
issuing collusion attack cannot gain e(g, g)sα. Furthermore,
the hidden access policy can further preserve the privacy
of both encryptors (or DOs) and decryptors (DUs). There-
fore, the basic and modified ABKS-SM systems can achieve
the aforementioned privacy requirements under the DBDH
assumption. This completes the proof of Therorem 3.

6.2 Performance Analysis

The traceability algorithm in modified ABKS-SM system is
much efficient because there exist no time-consuming op-
erations (e.g. pairing operation, exponentiation operation).
Hence, we just evaluate the performance of the basic ABKS-
SM system, the CP-ABKS scheme in [25], and the ABKS-UR
scheme in [16].

For the theoretical analysis, we mainly focus on the
computational and storage costs and only on costly oper-
ations, i.e., bilinear pairing operation P , hash operation H ′,
exponentiation operation E (resp. ET) in group G (resp.
GT). From TABLE 3, one observes that the ABKS-SM system
does not incur additional computational costs even when it
supports shared multi-owner setting and hidden access poli-
cy. For example, in KeyGen algorithm3, the basic ABKS-SM
system is slightly less efficient than the ABKS-UR scheme
due to the need to generate public/secret key pairs for
multiple DOs. However, it outperforms CP-ABKS scheme
due to d ≪ n. Although the basic ABKS-SM system has
higher computational overhead than the other two schemes
during the execution of Enc algorithm, this does not affect
the user’s search experience as this is just a one-time cost.
In the execution of Trap algorithm, the computational cost
of the basic ABKS-SM system is similar to that of the ABKS-
UR scheme but less than that of the CP-ABKS scheme. In
the execution of Search algorithm, the computational cost
of the basic ABKS-SM system is slightly more than that of
the ABKS-UR scheme, but less than that of the CP-ABKS
scheme. As the basic ABKS-SM system needs to obtain valid
authorizations from multiple DOs before decryption, we
only evaluate the computational cost of the execution of
Dec algorithm in the basic ABKS-SM system. Clearly, this
algorithm is acceptable due to a small d value.

Given the element lengths |G|, |GT |4 and |Zp| in
G,GT ,Zp, respectively, we present the storage costs of the
aforementioned three schemes in TABLE 4. In the execution
of KeyGen algorithm and Enc algorithm, as each attribute
has multiple possible values, the storage cost of the basic
ABKS-SM system is more than those of the CP-ABKS and
ABKS-UR schemes. In the execution of Trap algorithm, the
storage cost of the basic ABKS-SM system is approximately
equal to that of the ABKS-UR scheme, but it is slightly less
than that of the CP-ABKS scheme. Besides, the storage cost
of the basic ABKS-SM system is much less than those of
other two schemes in the execution of Search. Similarly, in
the execution of Dec algorithm, the basic ABKS-SM system
does not incur additional storage cost due to a small d value.
Thus, the basic ABKS-SM system is suitable for resource-
constrained mobile terminals due to the efficient operations
in the execution of Trap and Dec algorithms.

Now, we present the evaluation using the real-world
Enron Email Dataset5, which includes half a million records
from 150 users, mostly senior management of Enron. This
public email dataset has been used in the evaluations of
SE schemes, and the Enron corpus contains a total of about
0.5M message. The evaluation is implemented on an Ubuntu

3. This algorithm includes KeyGenDO and KeyGenDU subalgo-
rithms.

4. In this paper, the element length in GT is the same as that of G.
5. http://www.cs.cmu.edu/∼enron/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

TABLE 3
Computational cost comparison

Algorithms Basic ABKS-SM CP-ABKS [25] ABKS-UR [16]
KeyGen (2n+ d+ 4)E + ET +H′ (2n+ 2)E + nH′ (2n+ 1)E + ET

Enc (
∑n

i=1 ni + 2d+ n+ 2)E + 3ET (2n+ 4)E + nH′ (n+ 1)E + ET

Trap (2n+ 1)E (2n+ 4)E (2n+ 1)E
Search (2n+ 1)P + ET (2n+ 3)P + nET (n+ 1)P + ET

Dec dE + dET + 3P +H — —

Notes. “d”: number of DOs; “n”: number of system attributes; “ni”: number of possible values for attribute Ai.

TABLE 4
Storage cost comparison

Algorithms Bsic ABKS-SM CP-ABKS [25] ABKS-UR [16]
KeyGen (n+ d+ 2)|Zp|+ (d+ 2n+ 3)|G|+ |GT | (n+ 1)|Zp|+ (2n+ 1)|G| |Zp|+ (2n+ 1)|G|
Enc (n+ 2)|Zp|+ (

∑n
i=1 ni + d+ n+ 2)|G|+ 3|GT | 2|Zp|+ (2n+ 3)|G| (2n+ 1)|G|+ |GT |

Trap 2|Zp|+ (2n+ 1)|G| 2|Zp|+ (2n+ 3)|G| |Zp|+ (2n+ 1)|G|
Search 3|GT |+ |G| (n+ 3)|GT | (n+ 3)|GT |
Dec d|G|+ |GT | — —

Server 15.04 with Intel Core i5 Processor 2.3 GHz, and using
C and Paring Based Cryptography (PBC) Library. In the PBC
Library, Type A is denoted as E(Fq) : y2 = x3 + x, and
the group G and group GT of order p are subgroups of
E(Fq), where the parameters p and q are equivalent to 160
bits and 512 bits, respectively. Then, we set |Zp| = 160 bits,
|G| = |GT | = 1024 bits. We also assume each attribute has
one possible value (namely ni = 1) and set n ∈ [1, 50],
d ∈ [1, 10]. In line with both ABKS-UR and CP-ABKS
schemes, we choose 10000 files from the public dataset and
conduct the experimental tests 100 times. Next, we only
show the performance of main algorithms: KeyGen algo-
rithm, Enc algorithm, Trap algorithm and Search algorithm.

0 10 20 30 40 50
0

240

480

720

960

1200

Ke
y

ge
ne

ra
tio

n
tim

e
(m

s)

Number of system attributes (n)

 ABKS-SM
 CP-ABKS
 ABKS-UR

(a)

0 10 20 30 40 50
0

300

600

900

1200

C
ip

he
rte

xt
 g

en
er

at
io

n
tim

e
(s

)

Number of system atributes (n)

 ABKS-SM
 CP-ABKS
 ABKS-UR

(b)

Fig. 8. Computational costs in various algorithms: (a) KeyGen algorithm;
(b) Enc algorithm.

In Fig. 8(a), for comparison, we set d = 10 and vary the
value of n from 1 to 50. We observe that the key generation
time in these three schemes increases with the number
of system attributes (n). As the value of d is very small
in practice, the computational cost of KeyGen algorithm
in the basic ABKS-SM system is only slightly more than
that of ABKS-UR scheme due to the additional operations
(d + 3)E + H ′. However, as the hash operation H ′ that
maps the arbitrary string to the group G is much more time-
consuming than exponentiation operations (E,ET), the CP-
ABKS scheme has a higher computational burden than the
other two schemes. For example, when setting n = 20, the
basic ABKS-SM system needs 291ms to generate keys, and

both CP-ABKS and ABKS-UR schemes need 423 ms and 263
ms, respectively.

Assuming that each attribute has one possible value
and d = 10, n ∈ [1, 50] in Fig. 8(b), the ciphertexts
generation time increases with increasing n. As the basic
ABKS-SM system needs to encrypt the encryption keys and
build indexes simultaneously, it needs additional operations
(
∑n

i=1 ni+2d+1)E+2ET when compared with the ABKS-
UR scheme, while the basic ABKS-SM system is still much
efficient than the CP-ABKS scheme in terms of ciphertexts
generation time due to the consuming hash operations nH ′

in [25]. For example, when setting n = 50, the basic ABKS-
SM system needs 937ms, and the CP-ABKS and ABKS-UR
schemes need 1290 ms, 608 ms, respectively. However, Enc
algorithm does not affect the user search experience since
it is just a one-time cost. Thus, the basic ABKS-SM system
is still acceptable in practice, which can be applied in the
setting with resource-limited terminals.

0 10 20 30 40 50
0

100

200

300

400

Tr
ap

do
or

 g
en

er
at

io
n

tim
e

(m
s)

Number of system attributes (n)

 ABKS-SM
 CP-ABKS
 ABKS-UR

(a)

0 10 20 30 40 50
0.0

3.0x104

6.0x104

9.0x104

1.2x105

1.5x105

Le
ng

th
 o

f t
ra

pd
oo

r (
bi

t)

Number of system attributes (n)

 ABKS-SM
 CP-ABKS
 ABKS-UR

(b)

Fig. 9. Performance analysis in Trap algorithm: (a) computational cost;
(b) storage cost.

In Fig. 9(a) and (b), we analyze the performance of Trap
algorithm for the schemes being studied, for n ranging from
1 to 50. We observe that the computational and storage
costs of this algorithm almost linearly increase with n.
Furthermore, the performance of both ABKS-SM and ABKS-
UR schemes is similar, and the basic ABKS-SM system has
a slightly better performance than CP-ABKS. For example,
when setting n = 40, the computational and storage over-
head of ABKS-SM is 301 ms and 11.27 KB, and for CP-ABKS

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

and ABKS-UR schemes (318 ms, 11.27 KB) and (308 ms,
11.13 KB), respectively.

0 10 20 30 40 50
0

150

300

450

600

C
ip

he
rte

xt
s

se
ar

ch
 ti

m
e

(m
s)

Number of system attributes (n)

 ABKS-SM
 CP-ABKS
 ABKS-UR

(a)
0 10 20 30 40 50

0.00

1.20x104

2.40x104

3.60x104

4.80x104

6.00x104

Le
ng

th
 o

f c
ip

he
rte

xt
s

se
ar

ch
 (b

it)

Number of system attributes (n)

 ABKS-SM
 CP-ABKS
 ABKS-UR

(b)

Fig. 10. Performance analysis in Search algorithm: (a) computational
cost; (b) storage cost.

Fig. 10 (a) and (b) present the computational and storage
costs for Search algorithm, respectively. For the ciphertext
search time, the basic ABKS-SM system needs to conduc-
t additional pairing operations nP , unlike the ABKS-UR
scheme. As the CP-ABKS incurs additional exponentiation
operations nET , the computational cost of basic ABKS-SM
system is more than that of ABKS-UR, but it is slightly
less than that of CP-ABKS. When setting n = 30, the basic
ABKS-SM system takes 200 ms to perform ciphertext search
operation, and both CP-ABKS and ABKS-UR schemes re-
quire 244 ms and 156 ms, respectively. For Search algorithm,
the storage cost of basic ABKS-SM system remains almost
unchanged whilst the storage costs of CP-ABKS and ABKS-
UR schemes increase linearly with the number of system
attributes (n). For example, when setting n = 50, the storage
cost of the basic ABKS-SM system is 0.61 KB, and those of
the CP-ABKS and ABKS-UR schemes are 6.57 KB and 6.69
KB, respectively.

0 2 4 6 8 10
0

20

40

60

80

100

C
ip

he
rte

xt
s

de
cr

yp
tio

n
tim

e
(m

s)

Number of data owners (d)

Performance of Dec
algorithm in ABKS-SM

Computational cost

Storage cost

0

2500

5000

7500

10000

12500

Le
ng

th
 o

f D
ec

 a
lg

or
ith

m
 (b

it)

Fig. 11. The performance of Dec algorithm in ABKS-SM.

As a queried DU must obtain valid authorizations from
multiple DOs before decrypting the search results, we now
present the performance evaluation of Dec in the basic
ABKS-SM system. The computational and storage costs of
ciphertext decryption almost linearly increase with the num-
ber of DOs (d ∈ [1, 10]), rather than the number of system
attributes (n ∈ [1, 50]), where the computational overhead is
shown by the red line and the storage overhead is denoted
by the black dash line in Fig. 11. For example, when fixing
d = 10, the ciphertext decryption process requires 79.1 ms,
and its storage length is 1.42 KB. Thus, the basic ABKS-
SM system is suitable for deployment on resource-limited
devices, such as mobile terminals and sensor nodes.

To further evaluate the performance of these three
schemes (i.e., basic ABKS-SM system, CP-ABKS scheme,

and ABKS-UR scheme), we use a testbed including 11
mobile terminals (Honor 8, CPU: Kirin 950 processor with 4
cores, RAM: 4G) and a high-performance workstation server
(CPU: Inter Core E5-2609v3 Processor with 6 cores; RAM:
8GB RDIMM) acting as the cloud server – see Fig. 12. Note
that 10 of the mobile devices play the role of DOs, namely
d = 10, and one mobile device plays the role of DU. All 10
DOs can communicate with each other in the same Local
Area Network (LAN) with a multicast protocol [39](dotted
ellipse), and the DOs, DU and server can communicate
with each other using Wi-Fi or 4G technology [40](red
curve). We also conduct a series of experiments over other
datasets, namely: Enron Email dataset, National Science
Foundation Research Awards Abstract 1990-2003 dataset (or
NSF dataset)6 and the Request For Comments database (or
RFC dataset)7. For comparison, we set n = 50, randomly
select 10000 files from these three datasets, and conduct the
experiments 100 times. The experimental results are shown
in TABLEs 5 to 7.

Ciphertexts

Indexes

Trapdoor

Results

Decryption authorizations

10 data owners Workstation Data users

Fig. 12. System structure of the testbed.

From these three tables, we observe that all three
schemes have similar performance (i.e., computational costs,
storage costs, etc.) for the three different datasets. As the
resource-limited mobile devices need to initialize when
executing algorithms in the basic ABKS-SM system, CP-
ABKS and ABKS-UR schemes, these devices require slightly
higher computational and storage costs in actual tests than
those of a simulation. Although Enc algorithm has a high
computational cost, it does not affect user search experience
as it is a one-time cost. In other words, the basic ABKS-
SM system does not incur high computational and storage
overheads on resource-limited mobile devices during the
execution of Keygen, Trap, Search and Dec algorithms in
practice.

7 CONCLUSIONS

In the paper, we presented a practical attribute-based key-
word search scheme supporting hidden access policy in the
shared multi-owner setting. Furthermore, we demonstrated
how the basic ABKS-SM system can be extended to support
traceability (i.e., tracing of malicious DUs) in the modified
ABKS-SM system, if desired. The formal security analysis
showed that the basic and modified ABKS-SM system-
s achieve selective security and resist off-line keyword-
guessing attack in the generic bilinear group model. We also
demonstrated the utility of the proposed ABKS-SM system-
s by evaluating their performance using three real-world

6. http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
7. http://www.ietf.org/rfc.html

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

TABLE 5
Computational costs of KeyGen and Enc algorithms in different schemes

Algorithms KeyGen Enc
Schemes ABKS-SM CP-ABKS [25] ABKS-UR [16] ABKS-SM CP-ABKS [25] ABKS-UR [16]

Simulation
Enron Dataset 663 ms 1062 ms 640 ms 937 s 1290 s 608 s
NSF Dataset 653 ms 1059 ms 631 ms 928 s 1264 s 599 s
RFC Dataset 668 ms 1078 ms 649 ms 953 s 1307 s 617 s

Testbed
Enron Dataset 689 ms 1113 ms 678 ms 974 s 1336 s 643 s
NSF Dataset 671 ms 1089 ms 672 ms 971 s 1318 s 631 s
RFC Dataset 699 ms 1125 ms 691 ms 992 s 1354 s 657 s

TABLE 6
Computational costs of Trap, Search and Dec algorithms in different schemes (ms)

Algorithms Trap Search Dec
Schemes ABKS-SM CP-ABKS [25] ABKS-UR [16] ABKS-SM CP-ABKS [25] ABKS-UR [16] ABKS-SM

Simulation
Enron Dataset 351 372 356 352 412 260 79
NSF Dataset 342 359 342 339 408 253 71
RFC Dataset 369 387 371 361 428 279 93

Testbed
Enron Dataset 381 413 377 393 458 287 96
NSF Dataset 377 391 369 381 455 279 82
RFC Dataset 391 432 390 409 482 302 106

TABLE 7
Storage costs of Trap, Search and Dec algorithms in different schemes (KB)

Algorithms Trap Search Dec
Schemes ABKS-SM CP-ABKS [25] ABKS-UR [16] ABKS-SM CP-ABKS [25] ABKS-UR [16] ABKS-SM

Simulation
Enron Dataset 13.65 13.90 13.46 0.61 6.57 6.69 1.42
NSF Dataset 13.58 13.80 13.41 0.53 6.50 6.61 1.35
RFC Dataset 13.67 13.97 13.56 0.66 6.62 6.77 1.49

Testbed
Enron Dataset 13.69 13.94 13.51 0.63 6.60 6.76 1.45
NSF Dataset 13.62 13.84 13.45 0.55 6.54 6.68 1.39
RFC Dataset 13.73 14.01 13.61 0.69 6.67 6.84 1.53

datasets and on a testbed including 11 mobile terminals and
a high-performance workstation server.

One limitation of the proposed ABKS-SM systems is that
as the number of system attributes increases, so does the
computational and storage costs. Thus, we intend to im-
prove the efficiency of the ABKS-SM systems in the future.
Also, to facilitate the efficient locating of search results and
minimizing the number of irrelevant search results, we will
focus on expressive search (e.g., multi-keyword search and
fuzzy keyword search) in our future work.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (No. 61702404, No. 61702105,
No. 61672413, No. 61472310, No. U1736112), the Chi-
na Postdoctoral Science Foundation Funded Project (No.
2017M613080), the Fundamental Research Funds for the
Central Universities (No. JB171504), the 111 project (No.
B16037), the Key Program of NSFC (No. U1405255), and the
Shaanxi Science & Technology Coordination & Innovation
Project (No. 2016TZC-G-6-3) and the Cloud Technology
Endowed Professorship.

REFERENCES

[1] J. Li, W. Yao, Y. Zhang, H. Qian, and J. Han, “Flexible and fine-
grained attribute-based data storage in cloud computing,” IEEE
Transactions on Services Computing, vol. 10, no. 5, pp. 785–796, 2017.

[2] J. Li, H. Yan, and Y. Zhang, “Certificateless public integrity check-
ing of group shared data on cloud storage,” IEEE Transactions on
Services Computing, vol. PP, pp. 1–1, 2018.

[3] D. Wu, J. Yan, H. Wang, D. Wu, and R. Wang, “Social attribute
aware incentive mechanism for device-to-device video distribu-
tion,” IEEE Transactions on Multimedia, vol. 19, no. 8, pp. 1908–1920,
2017.

[4] D. Wu, Q. Liu, H. Wang, D. Wu, and R. Wang, “Socially aware
energy-efficient mobile edge collaboration for video distribution,”
IEEE Transactions on Multimedia, vol. 19, no. 10, pp. 2197–2209,
2017.

[5] D. Wu, S. Si, S. Wu, and R. Wang, “Dynamic trust relationships
aware data privacy protection in mobile crowd-sensing,” IEEE
Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2017.

[6] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symposium on Security
and Privacy (SP 2000), 2000, pp. 44–55.

[7] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Pub-
lic key encryption with keyword search,” in Proc. International
conference on the theory and applications of cryptographic techniques
(EUROCRYPT 2004), 2004, pp. 506–522.

[8] H. Li, Y. Yang, T. H. Luan, X. Liang, L. Zhou, and X. S. Shen,
“Enabling fine-grained multi-keyword search supporting classi-
fied sub-dictionaries over encrypted cloud data,” IEEE Transactions
on Dependable and Secure Computing, vol. 13, no. 3, pp. 312–325,
2016.

[9] R. Chen, Y. Mu, G. Yang, F. Guo, and X. Wang, “Dual-server
public-key encryption with keyword search for secure cloud stor-
age,” IEEE transactions on information forensics and security, vol. 11,
no. 4, pp. 789–798, 2016.

[10] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proc. IEEE Symposium on Security
and Privacy (SP 2007), 2007, pp. 321–334.

[11] B. Waters, “Ciphertext-policy attribute-based encryption: An ex-
pressive, efficient, and provably secure realization,” in Proc. Inter-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

national Conference on Practice and Theory in Public Key Cryptography
(PKC 2011), 2011, pp. 53–70.

[12] J. Li, Y. Wang, Y. Zhang, and J. Han, “Full verifiability for out-
sourced decryption in attribute based encryption,” IEEE Transac-
tions on Services Computing, vol. PP, pp. 1–1, 2017.

[13] J. Li, W. Yao, J. Han, Y. Zhang, and J. Shen, “User collusion
avoidance cp-abe with efficient attribute revocation for cloud
storage,” IEEE Systems Journal, vol. 12, no. 2, pp. 1767–1777, 2018.

[14] T. V. X. Phuong, G. Yang, and W. Susilo, “Hidden ciphertext policy
attribute-based encryption under standard assumptions,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 1, pp.
35–45, 2016.

[15] Y. Miao, J. Ma, X. Liu, F. Wei, Z. Liu, and X. A. Wang, “m2-abks:
Attribute-based multi-keyword search over encrypted personal
health records in multi-owner setting,” Journal of medical systems,
vol. 40, no. 11, p. 246, 2016.

[16] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your
right: verifiable attribute-based keyword search with fine-grained
owner-enforced search authorization in the cloud,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 27, no. 4, pp. 1187–
1198, 2016.

[17] Y. Miao, J. Ma, X. Liu, J. Weng, H. Li, and H. Li, “Lightweight
fine-grained search over encrypted data in fog computing,” IEEE
Transactions on Services Computing, vol. PP, pp. 1–1, 2018.

[18] Y. Miao, J. Ma, X. Liu, X. Li, Q. Jiang, and J. Zhang, “Attribute-
based keyword search over hierarchical data in cloud computing,”
IEEE Transactions on Services Computing, vol. PP, pp. 1–1, 2017.

[19] Y. Miao, J. Ma, X. Liu, X. Li, Z. Liu, and H. Li, “Practical attribute-
based multi-keyword search scheme in mobile crowdsourcing,”
IEEE Internet of Things Journal, vol. PP, pp. 1–1, 2017.

[20] J. Ning, X. Dong, Z. Cao, L. Wei, and X. Lin, “White-box traceable
ciphertext-policy attribute-based encryption supporting flexible
attributes,” IEEE Transactions on Information Forensics and Security,
vol. 10, no. 6, pp. 1274–1288, 2015.

[21] H. Li, D. Liu, Y. Dai, and T. H. Luan, “Engineering searchable
encryption of mobile cloud networks: when qoe meets qop,” IEEE
Wireless Communications, vol. 22, no. 4, pp. 74–80, 2015.

[22] R. Chen, Y. Mu, G. Yang, F. Guo, X. Huang, X. Wang, and Y. Wang,
“Server-aided public key encryption with keyword search,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 12, pp.
2833–2842, 2016.

[23] H. Li, D. Liu, Y. Dai, T. H. Luan, and X. S. Shen, “Enabling efficient
multi-keyword ranked search over encrypted mobile cloud data
through blind storage,” IEEE Transactions on Emerging Topics in
Computing, vol. 3, no. 1, pp. 127–138, 2015.

[24] H. Li, D. Liu, Y. Dai, T. H. Luan, and S. Yu, “Personalized search
over encrypted data with efficient and secure updates in mobile
clouds,” IEEE Transactions on Emerging Topics in Computing, no. 1,
pp. 97–109, 2018.

[25] Q. Zheng, S. Xu, and G. Ateniese, “Vabks: verifiable attribute-
based keyword search over outsourced encrypted data,” in Proc.
IEEE International Conference on Computer Communications (INFO-
COM 2014), 2014, pp. 522–530.

[26] J. Li, X. Lin, Y. Zhang, and J. Han, “Ksf-oabe: outsourced attribute-
based encryption with keyword search function for cloud stor-
age,” IEEE Transactions on Services Computing, vol. 10, no. 5, pp.
715–725, 2017.

[27] Q. Dong, Z. Guan, and Z. Chen, “Attribute-based keyword search
efficiency enhancement via an online/offline approach,” in Proc.
International Conference on Parallel and Distributed Systems (ICPADS
2015), 2015, pp. 298–305.

[28] T. Nishide, K. Yoneyama, and K. Ohta, “Attribute-based encryp-
tion with partially hidden encryptor-specified access structures,”
in Proc. International Conference on Applied Cryptography and Net-
work Security (ACNS 2008), 2008, pp. 111–129.

[29] S. Qiu, J. Liu, Y. Shi, and R. Zhang, “Hidden policy ciphertext-
policy attribute-based encryption with keyword search against
keyword guessing attack,” Science China Information Sciences,
vol. 60, no. 5, p. 052105, 2017.

[30] W. Zhang, Y. Lin, S. Xiao, J. Wu, and S. Zhou, “Privacy preserving
ranked multi-keyword search for multiple data owners in cloud
computing,” IEEE Transactions on Computers, vol. 65, no. 5, pp.
1566–1577, 2016.

[31] Z. Liu, Z. Cao, and D. S. Wong, “White-box traceable ciphertext-
policy attribute-based encryption supporting any monotone ac-
cess structures,” IEEE Transactions on Information Forensics and
Security, vol. 8, no. 1, pp. 76–88, 2013.

[32] J. Herranz, F. Laguillaumie, and C. Rafols, “Constant size cipher-
texts in threshold attribute-based encryption,” in Proc. International
Conference on Practice and Theory in Public-Key Cryptography (PKC
2010), 2010, pp. 19–34.

[33] M. Layouni, M. Yoshida, and S. Okamura, “Efficient multi-
authorizer accredited symmetrically private information re-
trieval,” in Proc. International Conference on Information and Com-
munications Security (ICICS 2008), 2008, pp. 387–402.

[34] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[35] J. T. Schwartz, “Fast probabilistic algorithms for verification of
polynomial identities,” Journal of the ACM, vol. 27, no. 4, pp. 701–
717, 1980.

[36] L. Fang, W. Susilo, C. Ge, and J. Wang, “Public key encryption with
keyword search secure against keyword guessing attacks without
random oracle,” Information Sciences, vol. 238, pp. 221–241, 2013.

[37] X. Liang, Z. Cao, J. Shao, and H. Lin, “Short group signature with-
out random oracles,” in Proc. International Conference on Information
and Communications Security (ICICS 2007), 2007, pp. 69–82.

[38] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the weil pairing,” in Proc. International Conference on the Theory
and Application of Cryptology and Information Security (ASIACRYPT
2001), 2001, pp. 514–532.

[39] J. Lim, J. Lee, S. Chin, and H. Yu, “Group-based gossip multicast
protocol for efficient and fault tolerant message dissemination
in clouds,” in Proc. International Conference on Grid and Pervasive
Computing (GPC 2011), 2011, pp. 13–22.

[40] K. Nakauchi and N. Nishinaga, “Software-defined exchange for
the virtualized wifi network towards future mobile cloud ser-
vices,” in Proc. IEEE International Conference on Communication (ICC
2016), 2016, pp. 736–741.

Yinbin Miao received the B.E. degree with the
Department of Telecommunication Engineering
from Jilin University, Changchun, China, in 2011,
and Ph.D. degree with the Department of T-
elecommunication Engineering from xidian uni-
versity, Xi’an, China, in 2016. He is currently
a Lecturer with the Department of Cyber Engi-
neering in Xidian University, Xi’an, China. His
research interests include information security
and applied cryptography.

Ximeng Liu (M’16) received the B.E. degree
with the Department of Electronic Engineering
from Xidian University, Xi’an, China, in 2010 and
Ph.D. degree with the Department of Telecom-
munication Engineering from Xidian University,
Xi’an, China in 2015. He is currently a post-
doctoral fellow with the Department of Informa-
tion System, Singapore Management University,
Singapore. His research interests include ap-
plied cryptography and big data security.

Kim-Kwang Raymond Choo (SM’15) received
the Ph.D. in Information Security in 2006 from
Queensland University of Technology, Australia.
He currently holds the Cloud Technology En-
dowed Professorship at The University of Texas
at San Antonio (UTSA). He is the recipient of
various awards including the UTSA College of
Business Col. Jean Piccione and Lt. Col. Philip
Piccione Endowed Research Award for Tenured
Faculty in 2018, ESORICS 2015 Best Paper
Award. He is an Australian Computer Society

Fellow, and an IEEE Senior Member.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

Robert H. Deng (F’16) is AXA Chair Professor
of Cybersecurity and Professor of Information
Systems in the School of Information Systems,
Singapore Management University since 2004.
His research interests include data security and
privacy, multimedia security, network and system
security. He served/is serving on the editorial
boards of many international journals, including
TFIS, TDSC. He has received the Distinguished
Paper Award (NDSS 2012), Best Paper Award
(CMS 2012), Best Journal Paper Award (IEEE

Communications Society 2017). He is a fellow of the IEEE.

Jiguo Li received his Ph.D. degree in comput-
er science from Harbin Institute of Technology,
Harbin, China in 2003. He was a visiting scholar
with the School of Computer Science & Software
Engineering, University of Wollongong, Australi-
a, and with Institute for Cyber Security in the U-
niversity of Texas at San Antonio, in 2006, 2013,
respectively. He is currently a professor with the
College of Mathematics and Informatics, Fujian
Normal University, Fuzhou, China. His research
interests include cryptography and information

security, cloud computing, wireless security and trusted computing etc.

Hongwei Li (M’12) received the Ph.D. degree
in computer software and theory from the U-
niversity of Electronic Science and Technology
of China, Chengdu, China, in 2008. He is cur-
rently a professor with the School of Computer
Science and Engineering, University of Electron-
ic Science and Technology of China. He has
worked as a post-doctoral fellow in Department
of Electrical and Computer Engineering from the
University of Waterloo, Waterloo, ON, Canada,
in 2012. His research interests include network

security, applied cryptography, and trusted computing.

Jianfeng Ma received the Ph.D. degree in com-
puter software and telecommunication engineer-
ing from Xidian University, Xi’an, China, in 1995.
From 1999 to 2001, he was a Research Fel-
low with Nanyang Technological University of
Singapore. He is currently a professor and a
Ph.D. Supervisor with the Department of Com-
puter Science and Technology, Xidian University,
Xi’an, China. His current research interests in-
clude information and network security, wireless
and mobile computing systems, and computer

networks.

	Privacy-preserving attribute-based keyword search in shared multi-owner setting
	Citation
	Author

	tmp.1593688072.pdf.qatWz

