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Abstract
The pervasiveness of smartphone engagement among young adults has attracted growing interest regarding its impact on
cognitive processes. However, research on the relation between smartphone use and executive function (EF)—a set of adaptive,
goal-directed control processes—remains inconclusive due to imprecise estimation of EF dimensions and inconsistent
operationalisation of smartphone use in past studies. Therefore, we examined how two indices of smartphone use—screen time
and checking frequency—would predict EF (common EF, shifting-specific-, and working-memory-specific components), using
a latent-variable approach based on a comprehensive battery of EF tasks. We also examined the moderating role of problematic
smartphone use in the link between smartphone use and EF components.We found that screen time positively predicted working-
memory-specific and shifting-specific abilities, whereas frequent checking was associated with enhanced shifting-specific, but
poorer common EF, abilities. Importantly, problematic smartphone use moderated the relation between checking frequency and
common EF. Overall, our findings demonstrate that different indices of smartphone use asymmetrically predict EF facets, thereby
highlighting the construct distinctiveness of the various markers of smartphone engagement. Our findings imply that checking
frequency and problematic use, rather than screen time, are the most promising targets for interventions that aim to circumvent
cognitive impairments by curtailing smartphone use, especially in educational settings.

Keywords Smartphone use . Problematic smartphone use . Executive function . Smartphone checking behaviour

Withmore than 90%of young adults owning a smartphone (Pew
Research Center, 2019), the ubiquity of smartphone use among
young adults has attracted a surge of interest from researchers. In
particular, prior research has focused on the impact of
smartphone use on executive function (EF), a group of core
cognitive control processes—inhibition, shifting, and working
memory—that is crucial in regulating goal-directed behaviours
(Miyake et al., 2000). Mixed findings, however, have been re-
ported (e.g., Chen et al., 2016; Pluck et al., 2020), which could be
attributed to methodological limitations, such as the task-

impurity issue in EF tasks and ill-defined constructs of
smartphone use. To resolve these issues, we sought to examine
how the various indicators of smartphone use (i.e., self-reported
daily screen time and frequency of phone checking) could be
related to the multifaceted aspects of EF using a latent-variable
approach. In view of the empirical importance of problematic
smartphone use (e.g., Ward et al., 2017), we also investigated
its role as amoderator in the association between smartphone use
and EF.

Smartphone Use and Executive Function

Executive Function

EF has been theorised to comprise three interrelated, but sep-
arable, cognitive processes (Miyake et al., 2000): (a) inhibi-
tion, which is the ability to suppress irrelevant stimuli; (b)
shifting, which is the ability to switch back and forth between
different task sets; and (c) working memory, which refers to
the ability to retain and manipulate information. However, in
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recent theories (i.e., the nested factor model), common EF—
the ability to sustain task goals to guide ongoing processing—
has been proposed as a unitary factor that represents the shared
variance among the three EF processes. Further, working-
memory-specific (i.e., the gating of information in one’s
mind) and shifting-specific (i.e., flexible switching between
different tasks) factors are proposed to account for the remain-
ing variance in working memory and shifting tasks, respec-
tively, after common variance has been extracted (Miyake &
Friedman, 2012). Moreover, the inhibition-specific factor per-
fectly correlates with the common EF factor, thereby obviat-
ing the need for the inhibition-specific factor (Banich &
Depue, 2015; Miyake & Friedman, 2012). Corroborating this
notion, Dosenbach et al.’s (2008) dual-networks model of top-
down control proposes that the fronto-parietal network en-
ables the maintenance of task-relevant information in a readily
accessible form to adjust control rapidly (i.e., shifting-specif-
ic), whereas the cingulo-opercular network stably maintains
task sets (i.e., common EF). Together, these systems imple-
ment top-down control, enabling flexible and highly stable
human behaviour. Despite the theoretical and empirical im-
portance of the revised EF framework (Friedman & Miyake,
2017), prior research has primarily focused on the relation of
smartphone use to either single facets of EF or non-EF pro-
cesses (e.g., attention, memory, delay of gratification, and
everyday cognitive functioning; for details, see Wilmer
et al., 2017). Hence, our study aimed to extend the growing
body of smartphone research by examining the links between
smartphone use and the various components of the nested-
factor EF model (i.e., common EF, working-memory- and
shifting-specific factors). In the next section, we review prior
studies that have examined the association between
smartphone use and each aspect of EF.

Smartphone Use and Inhibition

Smartphones serve as an attractive source of distraction that
draws attention from the focal task. Thus, it is plausible that
excessive smartphone use adversely affects the inhibition of im-
pulsive thoughts or actions that is essential for the regulation of
behaviours in line with task goals (Miyake et al., 2000). For
instance, it has been shown that prolonged and heavy use of
smartphones is concomitant with poorer impulse control and
inattention problems (Hadar et al., 2017), which ultimately un-
dermines attentional efficiency and effectiveness. Similarly,
Chen et al. (2016) demonstrated that problematic smartphone
use predicted poorer inhibition on a modified go/no-go task at
the electrophysiological level. Further, smartphone alerts and no-
tifications have been shown to increase distractibility and gener-
ate task-irrelevant thoughts, and therefore interrupt and impair
attentional focus on the primary task (Oulasvirta et al., 2011;
Stothart et al., 2015). In contrast, other studies found no relation
between smartphone use and inhibition. For instance, Chen et al.

(2016) and Gao et al. (2020) found that problematic smartphone
users did not show diminished performance on inhibition tasks
(i.e., modified go/no-go). Similarly, a longitudinal study reported
no significant differences between heavy and new smartphone
users on the stop-signal task (Hadar et al., 2017). Taken together,
the findings suggest mixed evidence on the impact of excessive
smartphone use on inhibition.

Further, there is a growing consensus that successful perfor-
mance on inhibition tasks is predominantly driven by the general
goal-management abilities representative of common EF
(Friedman & Miyake, 2017). Notably, neuroimaging evidence
has shown that brain regions (e.g., right inferior frontal gyrus)
previously thought to be responsible for inhibition may instead
be more relevant to general goal-management (i.e., common EF)
abilities (Banich&Depue, 2015), which underscores the central-
ity of common EF in explaining EF operations. Hence, previous-
ly reported findings based on inhibition measures in the
smartphone and EF literature may be more reflective of the link
between common EF and smartphone use.

Smartphone Use and Shifting

Relatively few studies have examined the relation between
smartphone use and the shifting aspect of EF. On the one hand,
some studies suggest a positive association between
smartphone use and shifting. Because smartphone use often
involves simultaneous engagement in multiple smartphone
apps (e.g., listening to music while scrolling social media),
shifting between different apps is required to complete intended
tasks. Consistently, the literature on media multitasking sug-
gests that extensive switching between different media appli-
cations entails proficient shifting operations, such as the
efficient adaptation to new tasks and the inhibition of previous,
no-longer-relevant tasks (Alzahabi & Becker, 2013). On the
other hand, it is possible that frequent multitasking on
smartphones interrupts the cognitive processes that suppress
the activation of irrelevant task sets and, as a result, hampers
the ability to effectively switch between tasks. In this vein,
previous studies provide evidence that heavy media
multitaskers are less effective in task switching (Ophir et al.,
2009). Hence, the relation between smartphone use and shifting
remains inconclusive and requires more in-depth investigation.

Smartphone Use and Working Memory

Smartphone use entails frequent consumption and management
of multiple media sources, which may impair working memory
capacity (Uncapher et al., 2016). Specifically, frequent multitask-
ing may broaden attentional scope, which increases the likeli-
hood of task-irrelevant information competing with task-
relevant information. This, in turn, impairs the processing and
maintenance of goal-relevant information within working mem-
ory (Uncapher et al., 2016). In line with this notion, Abramson
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et al. (2009) found that greater mobile phone use, in terms of
messaging and calls, was associated with poorer working mem-
ory performance on the n-back task. However, this finding
should be interpreted with caution, since it may not accurately
reflect smartphone use in today’s context.

Alternatively, smartphone engagement may be associated
with better working memory. Considering that smartphones al-
low access to multiple sources of content, their use necessarily
involves interruptions in the form of messages, notifications, or
updated content from other applications (e.g., real-time news and
social media feed refreshing; Deng et al., 2018). Accordingly, it
has been suggested that interruptions from other smartphone
applications require individuals to hold current information in
mind before they resume the interrupted application and update
new information regularly (Leiva et al., 2012). Further, Alloway
and Alloway (2012) found that checking friends’ status updates
on Facebook, which encourages information storage (e.g., indi-
vidual profiles) while frequently discarding irrelevant informa-
tion (e.g., friends’ previous status), predicted better working
memory capacity. Taken together, these conflicting findings
show that the relation between smartphone use and working
memory warrants further investigation.

Limitations of Previous Studies

Notwithstanding the surge in research on the relation between
smartphones and EF, previous studies have several limitations.
First, it is plausible that the inconsistent findings may be due to
inadequate operationalisation of smartphone use. Although
smartphone engagement has been largely indexed by time spent
on smartphones in past studies (e.g., Gao et al., 2020; Hadar
et al., 2017), screen timemay not precisely capture the downsides
of smartphone use. Drawing on the unified theory of acceptance
and use of technology (UTAUT; Venkatesh et al., 2003), indi-
viduals who perceive the smartphone as a useful tool that in-
creases productivity (i.e., performance expectancy) may fre-
quently use smartphones for constructive purposes (e.g., work).
Therefore, smartphone screen time may not necessarily reflect
problematic smartphone use (e.g., dependence, withdrawal
symptoms, and daily-life disturbances; Pluck et al., 2020).
Another crucial aspect of smartphone use that has received rela-
tively less attention is the frequency of checking (Wilcockson
et al., 2018). Studies have shown that checking frequency drives
overall smartphone use (Oulasvirta et al., 2011) but is not signif-
icantly associated with total screen time, which suggests that
these two indices may tap different aspects of smartphone use
and yield different cognitive outcomes. Therefore, it is crucial
that we consider not only screen time but also the frequency of
smartphone checking as separate behavioural measures of
smartphone use.

Second, there is a lack of understanding of how problematic
smartphone-use tendencies would modulate the relations

between smartphone use and EF. To illustrate, given the wide-
spread reliance on smartphones to accomplish various day-to-
day tasks, high levels of smartphone screen time or checking
frequency may not inevitably signify problematic smartphone
use. Indeed, some studies have shown that self-reported indices
of smartphone use (e.g., screen time and checking frequency) are
not associated with problematic smartphone use (Andrews et al.,
2015), although individuals who demonstrate problematic
smartphone behaviours may have increased screen time and
checking behaviours (Gökçearslan et al., 2016). Further, past
work has demonstrated that individuals with problematic tenden-
cies may suffer greater cognitive costs from smartphone use. For
instance, Hartanto and Yang (2016) showed that the negative
effect of smartphone separation on inhibition was more pro-
nounced in problematic smartphone users. Similarly, Ward
et al. (2017) found that individuals with higher levels of prob-
lematic smartphone use demonstrated poorer working memory
performance, due to the mere presence of their smartphones.
Despite these findings, previous studies have only loosely distin-
guished problematic smartphone use from nonproblematic forms
of smartphone use (Pluck et al., 2020). Therefore, it remains
unclear whether the cognitive consequences of smartphone use
may be contingent on problematic smartphone tendencies.

Third, considering that most EF tasks are not process-pure, as
they assess not only EF-specific abilities (e.g., inhibition) but also
non-EF abilities (e.g., verbal ability), inconsistent findings in the
literature can be attributed to the task-impurity issue that has
plagued a wide range of EF tasks. Further, since the majority
of previous studies have relied on a single task to measure EF,
it is difficult to isolate the EF components of interest (Miyake &
Friedman, 2012). Specifically, with the use of a single EF mea-
sure, non-EF abilities may obscure the true relation between
smartphone use and EF or spuriously drive the significant rela-
tion of smartphones to EF. Accordingly, further work is needed
tomore accurately estimate the construct-relevant components of
EF tasks and how they are associated with the various indicators
of smartphone engagement.

The Present Study

Considering the limitations of previous studies, we sought to
distinguish between specific aspects of smartphone engage-
ment (screen time and checking frequency) and examine their
relations to common EF, working-memory-specific, and
shifting-specific factors. Further, to resolve inconsistencies
in the literature, we aimed to shed light on the moderating role
of problematic smartphone use in the links between
smartphone use and different EF facets. Moreover, to address
the task-impurity issues inherent to EF measures, we used a
structural equation approach to model latent variables of EF
based on a comprehensive battery of EF tasks.
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Specifically, we predicted that smartphone checking
frequency may be inversely related to certain components
of EF. Frequent checking, which signals a preoccupation
with one’s smartphone and interferes with long-term goals
through goal-irrelevant thoughts (Oulasvirta et al., 2011;
Wilcockson et al., 2018), likely impedes common EF,
which is essential for sustaining attention for ongoing
tasks. However, frequent smartphone checking may be
positively associated with the shifting aspect of EF, since
it implicates persistent switching between non-smartphone
and smartphone-related activities.

In contrast, screen time may not be linked to impaired
common EF. Specifically, given that smartphone engagement
entails efficient switching between multiple applications (e.g.,
Alzahabi & Becker, 2013), greater screen time may be con-
comitant with better shifting. Similarly, we predicted that
smartphone screen time would be positively related to work-
ing memory, since attending to disruptions from other apps
requires users to maintain and update information whenever
they resume the interrupted task (Alloway & Alloway, 2012;
Leiva et al., 2012).

Additionally, in light of past findings that the negative ef-
fects of smartphone engagement on EF are magnified with
increasing levels of problematic smartphone use (Hartanto &
Yang, 2016; Ward et al., 2017), we hypothesised that the
cognitive costs of smartphone use would be moderated by
problematic tendencies. In particular, the negative impact of
smartphone checking frequency on EF would be more pro-
nounced for individuals with higher levels of problematic
smartphone tendencies.

Method

Participants

One hundred and seventy undergraduate students ages 18–28
(Mage = 21.68 years, SD = 2.03; 66.3% female) were recruited
from a local university over two academic semesters without
specific inclusion or exclusion criteria and received either
course credit or a monetary reward (S$30). The study was
approved by the university’s institutional review board, and
informed consent was obtained from all participants prior to
the study.

An a priori power analysis indicated that a minimum sam-
ple size of 137 was required to detect a medium effect size of
.30 at 80% power (Soper, 2020) for a structural equation mod-
el comprising four latent variables and 20 manifest variables
(see Results). Since the dataset for this study is part of a larger
project, we analysed only the core variables of interest along
with relevant demographic variables (see Table 1 for
descriptive statistics).

Measures

Smartphone Use

Participants’ smartphone use was assessed with respect to dai-
ly screen time (in hours) and checking frequency (in times), in
line with past research that has examined smartphone use and
cognitive abilities (e.g., analytical thinking, working memory;
Alloway & Alloway, 2012; Barr et al., 2015). Using sliding
scales, participants were asked to estimate how many hours
they use their smartphones per day (from 0 to 24 h) and how
many times they check their smartphones per day (from 0 to
200 times). Higher scores on these items denote greater
smartphone use and frequent smartphone checking per day.

Problematic Smartphone Use

To assess the extent of participants’ problematic smartphone
use, we used the smartphone addiction scale, which is well
established and widely used in relation to various outcomes
(Kwon et al., 2013; Samaha & Hawi, 2016). Participants
responded to 10 items (e.g., “I am having a hard time concen-
trating in class, while doing assignments, or while working
due to smartphone use”) using a 6-point scale (1 = strongly
disagree, 6 = strongly agree). Scores are summed to yield a
total score ranging from 10 to 60, with higher scores reflecting
greater levels of problematic smartphone use.

Inhibition

We employed three inhibition tasks to assess the ability to
suppress automatic prepotent responses (see Fig. 1;
Friedman & Miyake, 2017).

Antisaccade. To assess the ability to resist attentional interfer-
ence by the distracting cue, we used the antisaccade task
adapted from Unsworth and McMillan (2014). Participants
were directed to indicate, as fast and accurately as possible,
the target stimulus (B, P, or R) that was flashed very briefly on
one side of the screen, while ignoring a distracting cue (“=”)
that appeared on the other side of the screen; note that the
distractor and the target letter always appeared on opposite
sides of the screen. In each trial, a fixation point first appeared
on the screen for a varying duration (from 200 ms to 2200 ms
with 400ms intervals), and the distracting cue was then shown
to either the left or right of the fixation (11.33° of visual angle)
for 100 ms. Thereafter, a blank screen appeared for 50 ms and
was followed by the second appearance of the distracting cue
for 100 ms, such that the distracting cue appeared to be flash-
ing, and thus attracted more attention. Next, a 50-ms blank
screen followed and the target stimulus was shown for
150 ms. It was masked by the letter H (50 ms) and then by
the number 8 until a response was submitted.We administered
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24 practice and 72 main test trials. The proportion of correct
responses on the antisaccade trials represented better
performance.

Go/No-Go. We adapted the go/no-go task from Redick et al.
(2011). We asked participants to respond as quickly and ac-
curately as possible on the keyboard according to a letter
(either X or non-X) shown on the computer screen.
Participants had to press the spacebar in response to non-X
letters (go trials), but refrain from pressing the key in response
to the target X letter (no-go trials). In every trial, a letter

stimulus was first shown for 400 ms, and thereafter a blank
screen was shown for 900 ms or until a response key was
pressed. The intertrial interval ranged from 400 ms to
1300 ms. We had 445 go trials and 55 no-go trials, which
meant that the target stimulus was infrequently presented
(11% of the time). A higher proportion of correct responses
on the no-go trials indicated better performance.

Stroop.We adapted the task from Unsworth and McMillan
(2014). Participants were directed to indicate the colour of
a word as quickly and accurately as possible by pressing

Table 1 Descriptive Statistics of Predictors, Covariates, and Criterion Variables

M SD Min Max Skewness Kurtosis Reliabilitya

Predictorsb

Smartphone screen time 5.77 2.84 1.00 17.00 1.24 1.93 –

Smartphone checking 44.84 31.49 6.00 200.00 2.23 6.95 –

Problematic smartphone use 29.30 7.91 10.00 50.00 0.29 −0.08 .81

Criterion

Executive function (EF)c

Working memoryd

Operation span 0.85 0.15 0.02 1.00 −2.23 6.92 .76

Rotation span 0.68 0.19 0.07 1.00 −0.82 0.60 .73

Symmetry span 0.78 0.17 0.00 1.00 −1.56 3.47 .66

Inhibition

Antisaccaded 0.73 0.17 0.26 1.00 −0.76 −0.29 .93

Go/no-god 0.48 0.19 0.01 0.91 −0.18 −0.56 .93

Stroope 14.18 1.91 2.29 17.19 −2.55 11.00 .79

Shifting

Colour-shapee 14.20 1.90 3.24 17.19 −2.68 12.10 .80

Animacy-locomotione 13.94 2.00 4.17 17.32 −1.88 5.56 .89

Magnitude-paritye 13.43 2.08 3.39 17.24 −1.35 3.38 .86

Covariates

Gender (% female) 68.2 – – – – – –

Household incomef 4.22 2.38 1.00 9.00 0.54 −0.67 –

Fluid intelligenced 6.41 1.92 0.00 9.00 −0.76 0.21 .67

Extraversiong 2.82 0.94 1.00 4.75 0.14 −0.84 .84

Neuroticismg 3.06 0.83 1.00 5.00 −0.02 −0.11 .74

Note. a Reliability estimates were calculated using Spearman-Brown adjusted split-half correlations for Stroop, colour-shape, animacy-locomotion, and
magnitude-parity tasks. For all other measures, reliability estimates were computed based on Cronbach’s alpha.
b Smartphone screen time and smartphone checking were coded as number of hours and times per day, respectively. Problematic smartphone use was
calculated using the total score on the smartphone addiction scale (Kwon et al., 2013).
c As a result of administrative and technical errors, data were missing for the following EF tasks: antisaccade (n = 1); go/no-go (n = 1); operation span
(n = 1); symmetry span (n = 1); Stroop (n = 4); animacy-locomotion (n = 1); and magnitude-parity (n = 2).
d Accuracy scores were measured as the proportion of correct responses (i.e., operation-span, symmetry-span, rotation-span, antisaccade, and go/no-go
tasks) and total number of correct responses (i.e., fluid intelligence).
e For the Stroop, colour-shape, animacy-locomotion, and magnitude-parity tasks, average bin scores were reverse-coded such that higher values denote
better performance.
f Household income (monthly) was used as an index of socioeconomic status (1 = $2500, 9 = $20,000).
g Extraversion and neuroticism were coded as mean scores from the mini International Personality Item Pool-Five-Factor Model measure (Donnellan
et al., 2006).
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the R (for red), Y (yellow), G (green), or B (blue) key,
while ignoring the word (e.g., “blue” printed in red ink).
Each trial started with a fixation point (750 ms) followed
by the target word, which remained on the screen for
2000 ms or until participants pressed a response key. To
increase task difficulty, we administered a large proportion
of congruent trials (144) in which the colour and meaning
of the target were identical (e.g., “red” printed in red ink);
only 72 of those were incongruent trials, with the target
word in a different colour (e.g., “red” printed in blue ink).
Ten practice trials were administered prior to the main
task. To integrate both accuracy and RT scores, we used
reverse-coded bin scores to index inhibition (see Binning
Procedure), with higher values indicating better
performance.

Shifting

We employed three shifting tasks based on the task-switching
paradigm (see Fig. 2; Monsell, 2003). Performance on each
shifting task was indexed by reverse-scored bin scores (see
Results), with higher values denoting better performance.

Colour shape. Upon presentation of a given cue, partici-
pants were asked to sort a bivalent target (i.e., green circle or
red triangle) according to its colour (green or red) or shape
(circle or triangle). Two response keys were mapped to two
different attributes of the bivalent targets (the D key for circle
or red or the K key for green or triangle). Colour and shape
rules were cued by a colour gradient and a row of black
squares, respectively. In each trial, a fixation point was pre-
sented for 350 ms followed by a black screen for 150 ms, after

Note. The top, middle, and bottom panels depict the trial sequences of the antisaccade, Stroop, and go/no-go 

tasks, respectively. For the Stroop task, examples of congruent and incongruent trials are shown in the left and 

right panels, respectively. For the go/no-go task, examples of go and no-go trials are displayed in the left and 

right panels, respectively.  

Fig. 1 Trial Sequence of
Inhibition Tasks
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which the cue and the target were sequentially presented, with
an interval of 250 ms in between. The cue and target remained
on the screen until a response was entered. The inter-trial
interval was 850 ms.

We administered four blocks (36 trials each), with an equal
number of switch trials (e.g., colour rule followed by shape
rule) and repeat trials (e.g., shape rule for two consecutive
trials). Trial order was randomised, with the condition that
up to four repeat trials could be consecutively presented. We
administered 80 switch trials and 80 repeat trials, and the first
trial in each block was excluded from analysis.

Magnitude Parity. Depending on a given cue, participants
were asked to sort bivalent target numbers—2 (an even num-
ber less than five) and 7 (an odd number more than five)—by
either its magnitude (smaller or greater than five) or parity
(odd or even number). Participants pressed the D key for an
odd number or being smaller than five or theK key for an even
number or being greater than five. The magnitude rule was
cued by a row of circles that varied in size and the parity rule
by rows of odd-numbered and even-numbered squares. All
other methodological aspects were identical to the colour-
shape task.

Note. The top, middle, and bottom panels represent the trial sequences of the colour-shape, magnitude-parity, 

and animacy-locomotion tasks, respectively. For the colour-shape task, the shape and colour cues are shown in 

the top-left and top-right panels, respectively. For the magnitude-parity task, the parity and magnitude cues are 

illustrated in the middle-left and middle-right panels, respectively. For the animacy-locomotion task, the animacy

and locomotion cues are displayed in the bottom-left and bottom-right panels, respectively.

Fig. 2 Trial Sequence of Shifting
Tasks

Curr Psychol



Animacy Locomotion. Upon presentation of the cue, partici-
pants were instructed to sort a target (plane or rabbit) accord-
ing to its animacy (animate or inanimate) or locomotion (fly-
ing or nonflying) attributes by pressing either the D (animate
or flying) orK (inanimate or nonflying) key. The animacy rule
was cued by a picture of dog paws, and the locomotion rule by
a picture of roads and skies. All other methodological aspects
were identical to the colour-shape task.

Working Memory

To assess working memory (i.e., the ability to mentally retain
and process information), we adapted Foster et al.’s (2015)
complex span tasks that contained distractor and memory
components (encoding to-be-remembered items). Using the
partial-credit load (PCL) procedure, performance on these
tasks was indexed by the proportion of correctly remembered
items out of the total number of to-be-remembered items;
higher values reflected better performance.

Operation Span. Participants were presented with a series of
target letters (memory task) at a rate of 800 ms per item for a
later recall test. Each target letter was preceded by a simple ar-
ithmetic operation (e.g., (2 × 3) -1 = 5), which served as a
distractor task that required participants to verify its correctness.
After presentation of a series of arithmetic operations and to-be-
remembered letters, participants were shown a 4 × 3 matrix of
letters and asked to click the appropriate letters in the correct
order. The recall task remained on screen until participants com-
pleted their responses. The set size (i.e., the total number of letters
to be recalled) of a trial varied from three to seven and was
randomly presented across trials.

Rotation Span. Participants were presented with an arrow that
pointed in one of eight directions andwas either short or long and
asked to remember its length and directionality for the later recall
task. The presentation of each arrowwas preceded by a distractor
task, in which participants had to indicate whether a rotated letter
was presented correctly in an upright orientation or as its mirror
image. During the recall period, participants were presented with
a diagram displaying 16 arrows that varied in direction and
length and directed to choose the previously presented arrow
stimuli in the correct order. The total number of arrows to recall
(i.e., set size) ranged from two to five per trial and was
randomised across two blocks of trials. All other methodological
aspects were similar to the operation-span task.

Symmetry Span. Participants were presented with a series of
red squares on a 4 × 4 grid and asked to remember the
location of each. Presentation of each red square was pre-
ceded by a distractor task in which participants were
instructed to indicate whether a geometric figure was sym-
metrical along its vertical axis. During the recall,

participants were presented with the same 4 × 4 grid (with-
out the red squares) on the screen and asked to recall the
positions of the previously presented red squares in the
correct order. The set size of each symmetry-location se-
quence varied from two to five per trial and was
randomised across two blocks of trials. All other method-
ological details were identical to the operation-span task.

Covariates

Nonverbal fluid intelligence was assessed by the 9-item short
form of Raven’s Standard Progressive Matrices (RSPM-SF;
Bilker et al., 2012). Participants were presented with illustrations
of concrete or abstract figures and asked to solve visual analogies
of target stimuli. A higher number of correct responses reflected
better fluid intelligence. Extraversion (e.g., “I talk to a lot of
different people at parties”) and neuroticism (e.g., “I have fre-
quent mood swings”) were assessed using 4-item subscales (1 =
strongly disagree, 5 = strongly agree) from themini International
Personality Item Pool-Five-Factor Model measure (Mini-IPIP;
Donnellan et al., 2006), whereby higher mean scores denote
greater levels of extraversion and neuroticism.

Procedure

The study was conducted across three 1-h sessions, with a 1-day
interval between sessions. During the first session, participants
completed a demographic questionnaire and the RSPM-SF as a
measure of nonverbal intelligence. In the second session, we
administered smartphone questionnaires and the operation-span,
antisaccade, colour-shape, and rotation-span tasks. Lastly, the
magnitude-parity, go/no-go, symmetry-span, animacy-locomo-
tion, and Stroop tasks were administered in the third session.
Following past research on individual differences in EF (e.g.,
Miyake et al., 2000), the order of EF tasks was fixed to minimise
potential participant-by-order interactions, thereby allowing for
individuals’ scores to be more directly comparable. To attenuate
practice effects, we ensured that no two consecutive tasks
assessed the same EF facet. Further, a 2-min break was admin-
istered between each EF task to minimise fatigue effects.

Analytic Strategy

Considering the well-established merits of bin scores (see
Draheim et al., 2016), we used bin scores to index performance
on the Stroop and shifting tasks. Following Draheim et al.’s
(2016) procedures, we computed bin scores in five steps. First,
we excluded trials based on the following criteria: (a) incorrect
trials, (b) trials with RTs faster than 200 ms, and (c) trials with
RTs that departed from each participant’s mean RT bymore than
3 SD. Second, at thewithin-subject level, each participant’smean
RT for the baseline condition (i.e., congruent trials for the Stroop
task and repeat trials for the shifting tasks) was subtracted from
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the RT of every accurate trial in the critical condition (i.e., in-
congruent trials in the Stroop task or switch trials in the shifting
tasks). Third, at the between-subject level, all participants’ trial-
based difference scores computed above were rank-ordered into
deciles and assigned bin values ranging from 1 to 10, with 1
containing the fastest 10% and 10 the slowest 10%. Therefore,
a bin value of 1 for a particular trial indicates that the participant
was faster than 90% of other participants’ responses. Fourth, in
the calculation of accuracy bin scores, each inaccurate trial from
the critical condition (i.e., incongruent trials for the Stroop task
and switch trials for the shifting tasks) was assigned a bin value
of 20. The inclusion of inaccurate trials, relative to the reliance on
RT scores alone, has been shown to improve reliability and va-
lidity, yield better detection of relations with other cognitive con-
trol measures, and is more robust to variations in research para-
digms (e.g., individual-difference research versus experimental
research; Hughes et al., 2014). Further, while assigning a bin
value of 20 for every inaccurate trial appears arbitrary, past re-
search (Draheim et al., 2016; Hughes et al., 2014) has shown that
using different weights (e.g., 15 or 50) for inaccurate trials does
not substantially alter correlations between bin scores and other
constructs. Accordingly, these findings show that consideration
of accuracy scores is more crucial than the precise weight given
to accuracy. To integrate RT and accuracy scores, bin values
across all accurate and inaccurate trials were averaged for each
participant. Finally, each participant’s bin score was reverse
scored, with higher values denoting better performance.

We performed all analyses with Mplus 7.4 (Muthén &
Muthén, 2015), using the full information maximum likelihood
procedure. All three EF facets and problematic smartphone ten-
dencies were modelled as latent variables. Indicators for the in-
hibition latent factor were the accuracy scores for the antisaccade
and go/no-go tasks, and bin scores for the Stroop task. Indicators
for the working memory latent factor were partial-credit load
scores for the operation-span, symmetry-span, and rotation-
span tasks. Indicators for the shifting latent factor were bin scores
for the colour-shape, magnitude-parity, and animacy-locomotion
tasks. Indicators for the common EF factor were all nine EF
tasks. Indicators for the problematic smartphone use latent factor
were based on three parcels formed by the 10-item scale of the
smartphone addiction scale (Kwon et al., 2013). Parcelling is
suitable for unidimensional constructs and possesses psychomet-
ric and modelling-related advantages over item-level indicators
(e.g., better distribution of the target construct across indicators
and attenuation of random errors; Matsunaga, 2008). Daily
smartphone screen time and smartphone checking frequency
were modelled as manifest variables.

We first ensured that the indicators reflected their
intended latent factors by evaluating the measurement
models using confirmatory factor analyses. Next, structural
equation modelling was performed by regressing all three
EF constituents on smartphone screen time and smartphone
checking frequency separately. Next, the moderator and

covariates were added to the structural models to control
for third-variable effects. To assess the moderating role of
problematic smartphone use, we conducted latent moderat-
ed structural equation modelling by including the problem-
atic smartphone use x smartphone screen time and problem-
atic smartphone use x smartphone checking frequency in-
teraction terms in their individual models. Significant inter-
action effects were further examined using the Johnson-
Neyman procedure. In evaluating our models’ fit to the data,
we used the following criteria (Hair et al., 2009): root-mean-
square error of approximation (RMSEA) values equal to or
below .08 (acceptable) or .06 (good); standardised root-
mean-squared residual (SRMR) values equal to or below
.08 (good); and comparative fit index (CFI) close to or
greater than .90 (acceptable) or .95 (good). All reported
estimates were standardised. Zero-order correlations be-
tween all variables are presented in Appendix (Table 5).

Results

Measurement Model

Both the nested-factor EF model (Miyake & Friedman, 2012)
and the problematic smartphone usemodel achieved a good fit to
the data (see Table 2). To model the shared variance (i.e., com-
mon EF) among the three EF components (i.e., inhibition,
shifting, and working memory), all nine EF tasks were used to
extract a common EF factor, which reflects the general goal-
management ability to sustain task-relevant information that is
required in all types of EF tasks. Next, working-memory-specific
and shifting-specific factors were extracted from the working
memory and shifting tasks, respectively. Working-memory-
specific and shifting-specific factors represent the demands
unique to working memory (i.e., manipulating information with-
in the mental workspace) and shifting (i.e., switching between
various tasks) measures. Similar to Miyake and Friedman’s
(2012) nested-factor model, the inhibition-specific factor was
not modelled, because there was no unique variance left in the
inhibition tasks after the common EF factor had been extracted.
All factor loadings were significant (ps < .004; see Fig. 3), which
indicates that all indicators adequately represented their underly-
ing latent constructs. We also assessed how the nested-factor
model compared with alternative EF models. Importantly, the
nested-factor EF structure was the best-fitting model relative to
the one-, two-, and three-factor models (see Table 2). Together,
our confirmatory factor analyses indicate that the EF and prob-
lematic smartphone use models provide a good fit to the data.

Structural Models

Regarding the structural models (see Table 3 for a summary), we
found that smartphone screen time positively predicted working-
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memory-specific (γ = .29, SE = .09, p = .001) and shifting-
specific (γ = .26, SE = .13, p = .038) factors, but not common
EF (γ =−.14, SE= .10, p = .168).When problematic smartphone
use and covariates were added to the model, the predictive rela-
tions of smartphone screen time with working-memory-specific
(γ = .30, SE = .09, p < .001) and shifting-specific (γ = .27,
SE = .12, p = .029) factors remained significant (see Fig. 4).
Next, our latent moderated structural equation modelling analy-
ses revealed that none of the problematic smartphone use x
smartphone screen time interactions were significant for com-
mon EF, working-memory-specific, or shifting-specific aspects
of EF (|γ| < .04, ps > .72); this signifies that problematic
smartphone tendencies do not moderate the effect of smartphone
screen time on EF.

Smartphone checking frequency negatively predicted com-
mon EF (γ =−.27, SE = .10, p= .006) but positively predicted
the shifting-specific factor (γ= .36, SE = .16, p = .021). The as-
sociations of smartphone checking frequency with common EF
(γ = −.27, SE = .10, p = .007) and the shifting-specific factor
(γ = .52, SE = .17, p = .002) remained significant, even when
problematic smartphone use and covariates were controlled for
(see Table 3 and Fig. 4). Subsequently, our latent moderation
structural equation modelling analyses demonstrated that the
problematic smartphone use x smartphone checking frequency

interaction term was significant for common EF (γ = −.24,
SE = .09, p = .005) but not for working-memory-specific or
shifting-specific factors (|γ|s < .19, ps > .15). Specifically, the
negative effect of smartphone checking frequency on common
EF was more pronounced for higher levels (e.g., +1 SD), but not
for lower levels (e.g., −1 SD), of problematic smartphone use
(see Fig. 5). Therefore, the deleterious effect of smartphone
checking frequency on common EF is magnified with higher
levels of problematic smartphone tendencies.

Additionally, of the covariates, higher levels of fluid intel-
ligence were consistently associated with better common EF
and working-memory-specific abilities across both structural
models (Friedman et al., 2008). No other covariates were con-
sistently related to the three EF components.

As an exploratory analysis, we examined the relations be-
tween smartphone use and the reaction time coefficient of varia-
tion (RTCV; i.e., ratio of the standard deviation to the mean) for
the go/no-go and Stroop tasks, which have previously been used
to investigate reaction time variability (e.g., goal neglect, mind-
wandering, attentional lapses; Kofler et al., 2013; Smallwood &
Schooler, 2006; Smallwood et al., 2008).

We found that the latent factor comprising the RTCV
scores for the go/no-go and Stroop tasks was positively
correlated with problematic smartphone use (φ = .34,

Table 2 Fit Indices for Measurement and Structural Models

χ2 df RMSEA SRMR CFI

Measurement models

EF

One-factor model 124.50 27 .146 .090 .754

Two-factor models

Inhibition-WM merged 93.80 26 .124 .092 .829

Inhibition-shifting merged 48.28 26 .071 .050 .944

WM-shifting merged 114.98 26 .142 .087 .775

Three-factor model 37.88 24 .068 .042 .965

Nested-factor model 33.24 21 .059 .039 .969

Problematic smartphone usea 0.00 0 .00 .00 1.00

Full measurement modelb 54.40 45 .035 .042 .981

Structural models

Smartphone screen time

Unadjusted model 36.44 27 .045 .039 .977

Adjusted model with covariatesc 149.12 113 .043 .057 .938

Smartphone checking frequency

Unadjusted model 39.39 27 .052 .040 .969

Adjusted model with covariatesc 132.08 113 .032 .055 .966

Note. WM=working memory; RMSEA = root-mean-square error of approximation; SRMR= standardised root-mean-square residual; CFI = compar-
ative fit index.
a The measurement model was saturated, and thus the fit was perfect.
b The full measurement model includes both the nested-factor EF and problematic smartphone use models.
c Covariates were age, gender, socioeconomic status (household income), intelligence, extraversion, and neuroticism.
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SE = .16, p = .035) but not checking frequency (φ = .22,
SE = .12, p = .060) or screen time (φ = .02, SE = .11,
p = .847). These results indicate that a greater extent of
inattention (i.e., RT variability) corresponds to higher
levels of problematic smartphone use, but not checking
frequency or screen time. However, it should be noted
that RTCV scores may imply different forms of inatten-
tion, depending on the tasks employed. For instance, RT
variability may indicate boredom on a relatively simple
task or preoccupation with task demands on a more

challenging task. Since the go/no-go and Stroop tasks
differ in task demands, the theoretical interpretation of
the latent factor that reflects the RTCV scores for the
go/no-go and Stroop tasks is unclear. Therefore, we
present the correlations between the smartphone use in-
dices (i.e., screen time, checking frequency, and prob-
lematic tendencies) and the two RTCV scores for the
go/no-go and Stroop tasks separately. Specifically,
higher RTCV scores on the go/no-go task were corre-
lated with greater smartphone checking frequency and

Note. Ovals denote latent factors and rectangles represent manifest variables. Values for 

longer, single-headed arrows indicate factor loadings; values for shorter, single-headed 

arrows signify error variances; values for double-headed arrows denote interfactor 

correlations. WM = working memory. All factor loadings and residual variances were 

statistically significant (as marked in boldface), except for the residual variances for rotation

span (p = .16) and magnitude-parity (p = .39) tasks. Interfactor correlations, represented by 

curved, double-arrow values, between problematic smartphone use and the three EF facets 

were not significant (ps > .09).  

Fig. 3 Full Measurement Model
for EF and Problematic
Smartphone Use with
Standardised Estimates
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Note. Ovals signify latent variables and rectangles denote manifest variables. Values for 

longer, single-headed arrows represent path coefficients; values for shorter, single-headed 

arrows indicate residual variances; values for double-headed arrows specify correlations 

between exogenous variables. WM = working memory. Significant estimates are in boldface,

p < .05.  

Fig. 4 Structural Models for
Smartphone Screen Time and
Checking Frequency with
Standardised Estimates

Table 3 Standardised Parameter Estimates of Structural Models for Smartphone Screen Time and Checking Frequency

Screen time Checking frequency

CEF WM-specific Shifting-specific CEF WM-specific Shifting-specific

Focal predictor
Smartphone use −.07 (.10) .30 (.09) .27 (.12) −.27 (.10) .19 (.11) .52 (.17)

Moderator
Problematic use −.15 (.11) −.01 (.11) .19 (.14) −.02 (.12) −.08 (.12) .01 (.18)

Covariates
Age .08 (.11) .05 (.11) .01 (.14) .01 (.11) .10 (.11) .12 (.15)
Gender .09 (.12) −.06 (.11) −.21 (.15) .18 (.12) −.13 (.12) −.45 (.18)
Income −.10 (.10) −.07 (.09) .20 (.12) −.08 (.09) −.11 (.09) .17 (.14)
Intelligence .42 (.09) .31 (.10) .05 (.14) .41 (.09) .28 (.10) −.06 (.17)
Extraversion .07 (.10) −.05 (.09) −.18 (.12) .06 (.09) −.04 (.09) −.19 (.13)
Neuroticism .14 (.10) −.12 (.10) −.04 (.12) .19 (.09) −.17 (.10) −.20 (.15)

Note. Values denote standardised estimates with standard errors in parentheses. Significant values are marked in boldface; p < .05. CEF = common EF;
WM=working memory
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problematic tendencies; conversely, RTCV scores on the
Stroop task were not related to the three smartphone use
indices (see Table 4).

Discussion

This study investigated the effects of smartphone screen time,
checking frequency, and problematic smartphone tendencies
on EF. Our findings show that various operationalisations of
smartphone use are asymmetrically related to the three EF
facets. For instance, we found that smartphone screen time
was positively associated with the shifting-specific and

working-memory-specific aspects of EF. These findings sug-
gest that smartphone use entails proficient switching between
different applications or the information and attentional pro-
cessing of incoming stimuli (e.g., text notifications) on
smartphones while mentally maintaining or updating the cur-
rent state of the interrupted or ongoing application.
Considering the increasingly pivotal role of smartphones in
managing everyday demands across work, academic, and so-
cial domains, our findings are congruent with the idea that
efficient smartphone use implicates higher-order cognitive
processes, such as shifting and working memory (Alloway
& Alloway, 2012; Alzahabi & Becker, 2013; Leiva et al.,
2012). Our findings qualify prior assertions that smartphone
use is generally concomitant with negative cognitive out-
comes (Ellison, 2012) by showing that smartphone screen
time is positively, rather than negatively, associated with cer-
tain aspects of EF in college students.

However, we found a striking dissociation between
smartphone checking frequency and two EF processes.
Specifically, frequent smartphone checking was related to bet-
ter shifting-specific, but poorer common EF, abilities. On the
one hand, shifting abilities facilitate disengagement from the
current task to check updates and notifications on one’s
smartphone, which dovetails with previous findings that ha-
bitual switching between different media formats entails more
effective shifting abilities (Alzahabi & Becker, 2013). On the
other hand, persistent smartphone checking likely reflects

Table 4 Correlations Between Smartphone Use Indices and Reaction
Time Variability for Stroop and Go/no-go Tasks

1 2 3 4

1. Smartphone screen time –

2. Smartphone checking frequency .43 –

3. Problematic smartphone use .12 .33 –

4. Stroop .10 .07 .15 –

5. Go/no-go −.01 .17 .26 .27

Note. Reaction time variability was indexed by the coefficient of varia-
tion. Significant correlations marked in boldface, p < .05
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Note. This Johnson-Neyman plot depicts the slope of smartphone checking frequency 

predicting common EF (represented by the solid line, with dash-dot lines indicating 95% 

confidence intervals) against values of problematic smartphone use (mean-centred), which 

range from -1.72 (-3 SD) to +1.72 (+3 SD). The negative effect of smartphone checking 

frequency on common EF was significant at the problematic smartphone use (latent factor) 

value of 0.13 (i.e., +0.22 SD; as indicated by the vertical dashed line) and higher. 

Fig. 5 Moderation Analysis
using the Johnson-Neyman
technique
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behavioural impulsivity, as manifested by impoverished
sustained attention and goal maintenance. This finding is in
line with prior research showing the detrimental effects of
smartphone alerts and notifications, which—akin to
smartphone checking—are attentionally disruptive and, con-
sequently, impair goal maintenance and task productivity
(Oulasvirta et al., 2011; Stothart et al., 2015). Consistent with
the literature that highlights the opposing relations of common
EF and shifting with behavioural outcomes (e.g., rumination;
Altamirano et al., 2010), our findings support the notion of a
trade-off between mental stability and flexibility, whereby
weaker goal representations are more easily and quickly re-
placed by new goals (Friedman & Miyake, 2017).
Importantly, our findings demonstrate that habitual
smartphone checking frequency is oriented toward constant
switching between tasks at the expense of sustained attention
to a focal task.

In line with past work on the interactive effects of
problematic smartphone use with smartphone presence
and separation on EF processes (Hartanto & Yang, 2016;
Ward et al., 2017), we found that problematic smartphone
use moderated the relation between checking frequency
and common EF. Specifically, smartphone checking fre-
quency was associated with more impaired common EF
for higher, but not lower, levels of problematic
smartphone tendencies. These results imply that for indi-
viduals with higher problematic smartphone tendencies,
frequent smartphone checking may reflect an impulsive
habit that impedes the ability to remain focused on impor-
tant and goal-relevant tasks (e.g., browsing social media
during class). However, for those who have lower levels
of problematic smartphone tendencies, checking may de-
note purposive and well-regulated actions that do not neg-
atively detract from or disrupt goal maintenance and prog-
ress (e.g., keeping track of work-related emails at work).
In this regard, our moderation findings may account for
some of the inconsistent evidence on the relation between
smartphone use and inhibition. Specifically, it is plausible
that the null results of previous studies may be due to the
reliance on undergraduate samples with lower levels of
problematic smartphone use (e.g., Chen et al., 2016;
Johannes et al., 2019; Pluck et al., 2020). Crucially, our
moderation results demonstrate that the detrimental effect
of checking frequency on common EF is dependent on the
extent to which problematic smartphone use hampers at-
tentional focus and performance for ongoing tasks.

We found that problematic smartphone use was not related
to any of the EF facets. Though somewhat surprising, our
findings replicate previous work that has failed to find associ-
ations between problematic smartphone use and EF (e.g.,

inhibition; Chen et al., 2016; Gao et al., 2020; Hadar et al.,
2017; Pluck et al., 2020). A possible explanation is that these
null findings were based on undergraduate samples with peak
cognitive functioning and predominantly nonclinical levels of
problematic smartphone tendencies (e.g., Chen et al., 2016;
Johannes et al., 2019; Pluck et al., 2020). For instance, 67.1%
of our undergraduate sample reported nonclinical levels of
problematic smartphone use, based on the cutoff scores
established by Kwon et al. (2013). Further, it should be noted
that Kwon et al.’s clinical cutoff scores were delineated using
adolescent samples, who may differ in smartphone habits and
motivations for smartphone use (e.g., gaining peer acceptance;
Lee & Lee, 2017) compared with undergraduate cohorts.
Moreover, given that smartphone use is nowmore widespread
than ever before, Kwon et al.’s clinical cutoff scores may not
accurately reflect smartphone use in today’s context.
Therefore, future research should investigate the cognitive
profiles of populations with greater variation in problematic
smartphone tendencies using age-appropriate clinical cutoffs.

Our findings are incongruent with previous findings
that have shown negative associations of smartphone use
with working memory (Abramson et al., 2009; Ward
et al., 2017) and shifting (Ophir et al., 2009; cf. Pluck
et al., 2020). Such discrepancies could be attributed to
the methodological approaches we adopted in this study.
First, our use of latent-variable analysis minimises the
task-specific idiosyncrasies inherent to EF tasks. For in-
stance, at the individual-task level, we found that screen
time was related to the Stroop and rotation-span tasks,
while checking frequency was associated with the go/no-
go task. Problematic smartphone use was not associated
with any of the EF tasks. These findings indicate incon-
sistent relations between the different indices of
smartphone use and EF tasks that are supposed to measure
the same construct. Hence, results based on a single-task
EF measure may not necessarily generalise to other
construct-similar EF tasks. Second, given that working
memory and shifting comprise both common EF (i.e.,
shared variance among all EF factors) and construct-
specific (i.e., working-memory-specific and shifting-specif-
ic) aspects, previous studies were unable to determine
whether the negative relations of smartphone use with
working memory and shifting were driven by common
EF and/or the unique components attributed to working
memory and shifting. Therefore, our use of the nested-
factor model allows us to identify the specific components
of EF that would be affected by smartphone use:
Smartphone screen time is positively linked to the
working-memory-specific and shifting-specific aspects of
EF, but not common EF. Crucially, these findings
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underscore the need for future research to adopt latent-
variable and nested-factor approaches to allow for purer
and more precise estimates of the EF constructs of
interest.

Several limitations of our study should be acknowledged.
First, given the correlational design of our study, causal infer-
ences are limited. Specifically, although smartphone use var-
iables were used as predictors of EF in our models, it is pos-
sible that EF may instead influence smartphone use. For in-
stance, more proficient working-memory-specific and
shifting-specific abilities may afford better mental updating
of task-relevant information (e.g., status updates, checking
emails, etc.) and ease in switching from one application to
another. Likewise, poorer common EF may engender greater
susceptibility to interference from smartphone updates and
notifications (i.e., checking frequency). Hence, future work
should employ more controlled experimental designs and lon-
gitudinal analyses to ascertain the directionality of the links
between EF and the various indices of smartphone use.

Second, although screen time is a commonly employed
indicator of smartphone use (e.g., Andrews et al., 2015), it
may be somewhat generic; therefore, we were unable to shed
light on the specific aspects of smartphone screen time that are
linked to EF facets. To this end, further research is warranted
to perform more fine-grained assessments of screen time (e.g.,
time spent on different types of smartphone applications) to
better understand how screen time for specific smartphone
activities affects EF. Further, our study did not specify the
nature of smartphone checking. For instance, individuals
who immediately check and respond to notifications may
form a habit of frequent checking that is disruptive to current
goals (Oulasvirta et al., 2011). Accordingly, dissociating im-
mediate checking and responding in smartphone use is an
avenue that future studies can investigate.

Third, given the reporting biases associated with self-
reported data (Paulhus & Vazire, 2007), the obtained esti-
mates for smartphone use variables may not accurately reflect
actual use. For instance, in a study by Andrews et al. (2015),
the actual frequency of smartphone checking was higher than
self-reported estimates, whereas the actual and self-reported
estimates of screen time were comparable with each other. In
contrast, Junco (2013) demonstrated that self-reported and
actual time spent on Facebook were significantly discrepant,
thereby highlighting the inaccuracy of self-report measures.
Therefore, estimates of checking frequency and screen time
in our study may have been underestimated. Accordingly,
future research should verify our results using objective as-
sessments of smartphone screen time and checking frequency
(e.g., the Screen Time and Digital Wellbeing application;
Apple, 2020; Google, n.d.).

Fourth, our findings are based on undergraduate samples
and, therefore, may have limited generalisability. For instance,

our sample may differ from adolescent samples with respect to
smartphone habits and motivation (Kwon et al., 2013; Lee &
Lee, 2017). Further, younger individuals with higher educa-
tion and income, such as those in our sample, are likely to use
smartphones more frequently than older adults (Kim et al.,
2015). Thus, further replications of our findings with non-
university samples from other age groups (e.g., adolescents
and middle-aged adults) are warranted.

Conclusion

The ubiquity of smartphones among young adults has
sparked concerns regarding the potentially deleterious im-
pacts of habitual smartphone use on cognitive processes,
such as EF (Wilmer et al., 2017). Our findings qualify
such concerns by demonstrating that the effect of
smartphone use on EF is contingent on specific aspects
of smartphone engagement (i.e., screen time, checking fre-
quency, and problematic smartphone use). Specifically,
screen time may not always be negatively associated with
impaired EF. Prolonged screen time may benefit shifting
and working memory abilities, since switching between
applications requires that individuals hold the interrupted
content in mind. However, we caution against frequent
checking, because it can be disruptive and may impair
one’s ability to maintain current goals (i.e., common
EF). Importantly, individuals should be mindful of prob-
lematic smartphone reliance that can further hamper one’s
common EF. However, we note that although some re-
searchers advocate for the recognition of problematic
smartphone use (Potenza et al., 2018), others argue against
diagnosing it as addictive pathology due to the lack of
information prior to the reification of a diagnosis (News
Media, Public Education and Public Policy Committee,
2018). Hence, caution should be taken not to interpret
the conceptualisation of problematic smartphone use as
pathological dependency or addictive symptoms (Billieux
et al., 2015).

Our findings hold practical implications for policies and
interventions that aim to circumvent impairments in cognitive
functioning (e.g., attentional focus) by curtailing smartphone
use, especially in educational settings. Specifically, consider-
ing the asymmetric effects of the different indices of
smartphone use on EF, our results imply that checking fre-
quency and problematic use, rather than screen time, are the
most promising candidates for intervention studies.
Importantly, our results underscore the need to recognise the
construct distinctiveness of the various markers of smartphone
use in order to better elucidate the consequences of
smartphone use for cognitive processes.
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