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Abstract

Scientific models are frequently discussed in philosophy of science. A great deal of the

discussion is centred on approximation, idealisation, and on how these models achieve their

representational function. Despite the importance, distinct nature, and high presence of toy

models, they have received little attention from philosophers. This paper hopes to remedy

this situation. It aims to elevate the status of toy models: by distinguishing them from

approximations and idealisations, by highlighting and elaborating on several ways the Kac

ring, a simple statistical mechanical model, is used as a toy model, and by explaining why

toy models can be used to successfully carry out important work without performing a

representational function.
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Introduction

Scientific models are frequently discussed in philosophy of science. A great deal of the

discussion is centred on approximation, idealisation, and on how these models achieve their

representational function. Some philosophers have tried to get clear on approximations and

idealisations.1 Some dissect them, typically idealisation, into types.2 Some have highlighted and

discussed their differences.3 Some have discussed their representational functions and ideals.4

Many have discussed how these models achieve their representational function.5 Some have

questioned and discussed what these models can tell us about reality.6 Some have questioned

and discussed their role in scientific explanations.7 The list goes on.

Toy models are easily confused with approximations and idealisations. They are, however,

distinct. Unlike idealisations and approximations, toy models do not perform a representational

function. That is, they do not represent anything. They are nonetheless important for science.

Toy models are models that are not intended to perform a representational function, but rather

to perform one or more of the following functions:

1. To learn to use, or to become comfortable with, certain formal techniques (e.g. renormal-

ization). That is, as a pedagogical device.

2. To elucidate certain ideas relevant to a theory. That is, to reach a clearer understanding

of an idea, its implications, and its relation to other ideas within a theory.

3. To test the compatibility of various concepts (i.e. in a consistency proof).

4. To generate hypotheses about other systems.

One commonly finds authors using simple models to perform one or more of these functions

in the introductory chapters of physics textbooks. When they do so, and do not intend for them

to perform a representational function, it is appropriate to regard their models as toy models.

Some examples common to statistical mechanics include: Mark Kac’s ring model, Paul and

Tatyana Ehrenfests’ urn (dog-flea) and wind-tree models, the baker’s transformation, the Ising

model, and the Arnold cat map.

1See, for example, Achinstein (1968), Bunge (1973), and Laymon (1990).
2See, for example, Frigg and Hartmann (2012: Sec.1.1), McMullin (1985), and Weisberg (2007).
3See Norton (2012), for example.
4See Weisberg (2007), for example.
5See, for example, Aronson, Harré, and Way (1995), Bailer-Jones (2003), Bartels (2006), Frigg and Hartmann

(2012) (and the references therein), Giere (2010), Godfrey-Smith (2006), Mundy (1986), Pincock (2012), Suárez
(2015), Suppes (2002), Swoyer (1991), and Weisberg (2013).

6See Frigg and Hartmann (2012: Sec.3) and Swoyer (1991), for example.
7See, for example, Bokulich (2009, 2011, 2012), Cartwright (1983: Ch. 8), Elgin and Sober (2002), Frigg and

Hartmann (2012: Sec. 5.4), and Woodward (2003).
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Despite the importance, distinct nature, and presence of toy models, they have received

little attention from philosophers.8 Perhaps this is because many philosophers and scientists

mistakenly think of them as either a kind of approximation or idealisation. Or perhaps it is

because many of the models used in the ways listed above are, on other occasions, used to

represent other systems, and this obscures the distinction between these model types. Whatever

the case may be, it would be beneficial for our understanding of scientific models to more deeply

explore toy models and to engage in focused discussions of them. This paper hopes to advance

this goal. It aims to elevate the status of toy models and to encourage more focused discussions

of them. This will be achieved by distinguishing them from approximations and idealisations,

by highlighting and elaborating on several ways the Kac ring is used as a toy model, and by

explaining why it can be successfully used in these ways without performing a representational

function. This paper will focus on ways in which the Kac ring can be used to successfully perform

functions 2-4, since the claim that it can be used to successfully achieve 1, without performing

a representational function, is uncontroversial. In speaking by way of the Kac ring model, this

paper intends to support the claim that toy models play an important role in science, despite

them not performing a representational function.

The next section notes some standard claims made about approximations, idealisations,

and scientific representation. These are noted so as to distinguish approximations and ideali-

sations from toy models. Parts of the third section draw on the work of Gottwald and Oliver

(2009: Sec.3). The section begins by highlighting some of the Kac ring’s features. The model

is then used to elucidate two important statistical mechanical ideas: the reversibility objection

and the recurrence objection. Its ability to successfully perform this task without performing

a representational function is also discussed in this section. Discussion of the recurrence and

reversibility objections encourages using the Kac ring in other ways: as part of a consistency

proof and to suggest interesting things about other systems, including real systems. The fourth

section includes the consistency proof and a discussion of why an agent can use the model to

successfully perform these tasks, despite it not performing a representational function. The fifth

section highlights and continues to discuss its use in generating hypotheses about other systems

without performing a representational function. The paper ends with a few concluding remarks

and with some suggestions about the direction of future work.

Approximations, Idealisations, Scientific Representations, and Toy Models

Approximations and idealisations are frequently discussed in the literature on modelling.

Despite there being disagreement about how to precisely characterise these model types, there

are certainly some things that can be said about them that are uncontroversial. An approximate

8Michael Weisberg (2013: Ch.7.3) has discussed, what he calls, targetless models. Targetless models are like
toy models in that they are not intended to perform a representational function. It is unclear, however, from
Weisberg’s short discussion of targetless models, whether they are similar to toy models in other respects—such
as how and why they can be used to carry out important work.
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model inexactly represents a target system. Typically this is some aspect of the world. Idealised

models also represent target systems. These models, however, introduce some kind of deliberate

simplification or distortion. These modifications are usually introduced to make it easier to

deal with the target. Importantly, approximations and idealisations perform a representational

function.

While it is a subject of debate within philosophy of science as to what exactly constitutes a

model’s representation of a target, there are good reasons to think that the representation can

neither simply be reduced to a similarity relation that holds between the model and the target

nor to some kind of morphism relation (e.g. isomorphism) that holds between the structures

that are instantiated by both the model and the target.9 On the positive side, it seems fair

to say that a model performs a representational function only if its user intends for it to per-

form a representational function. This fits with a promising and growing view that scientific

representation is a practice performed by intentional agents.10 As Ronald Giere (2004: p.747)

explains, scientists use models to represent portions of the world for various purposes. But, as

he continues, it is not the model that is doing the representing; it is the scientist using the model

who is doing the representing. If we embrace both of these views of scientific representation,

as we will in the remainder of this paper, then we can maintain that models can be used as

toy models and that these models do not perform a representational function. That is, that an

agent can use a model to successfully perform one or more of the functions 1-4 without intending

that it perform a representational function and that in these circumstances these models do not

perform a representational function. The next few sections intend to highlight these facts, and

to explain why they are so, for functions 2-4.

Models, such as the Kac ring, can be used by agents to do a lot of interesting and important

work simply because either they instantiate certain properties (see the discussions of functions

2-3) or because they instantiate certain properties that are also known to be instantiated by

other systems (see the discussion of function 4). In the latter type of case, these similarities

permit treating the model as an analogue. Moreover, these similarities permit, and are sufficient

for, analogical reasoning.11 That is, they permit, and are sufficient for, employing some version

of the following argument schema, where S is some model and T is some other system:

P1. S is similar to T in certain (known) respects.

P2. S has some further feature Q.

C. Therefore, T also has the feature Q, or some feature Q∗ similar to Q.

9See Suárez (2015) and Suárez (2003) for more on this point. And see Suárez (2015) for a state-of-the-art
review of the philosophical literature on scientific representation.

10See Suárez (2015).
11See Bartha (2013) for a comprehensive discussion of analogies and analogical reasoning.
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Importantly, however, as Mauricio Suárez (2015) has argued, by drawing on Nelson Good-

man’s (1968) argument against resemblance theories of artistic representation, similarity is not

sufficient for representation.12 Similarity, as it is typically understood, is a reflexive and symmet-

ric relation. Scientific representations, on the other hand, do not have these logical properties. If

similarity were sufficient for representation then, for example, a dilute gas would be a scientific

representation of a billiard ball model and itself. But it is neither of these things, so similarity is

not sufficient for scientific representation. So then, even if a model instantiates properties that

are also instantiated by other systems, this does not entail that it represents any or all of those

systems, or anything at all.

The Kac Ring

The Kac ring first appeared in a series of lectures given by Mark Kac in1959 at the University

of Colorado. The purpose of these lectures was to furnish an introduction to probability theory

and its applications to an audience that had little knowledge of these subjects.13 In a lecture on

classical statistical mechanics, Kac (1959: p.99) used the ring model to introduce his audience

to the statistical mechanical treatment of irreversible phenomena.

The Kac ring is a simple, explicitly solvable model. It is similar, in certain respects, to

a dilute gas. In the model, N sites are arranged around a circle, forming a one-dimensional

periodic lattice. Sites are joined to their neighbours by an edge, and 0 < n < N of the edges

carry a marker. Each site is occupied by either a black ball or a white ball.14 The balls and

markers are similar to the molecules that comprise a gas.

The system evolves on a discrete set of ticks t ∈ Z from state t to state t+ 1 in the following

way: each ball moves in a clockwise direction to its nearest neighbour. When a ball passes a

marker its colour changes. This is analogous to changes in the velocities of molecules of a gas

as they collide with one another.

The Kac ring has a number of interesting features. Its microdynamics are symmetric under

time-reversal. Any reversed sequence of states is compatible with the dynamics of the system.

The system is strictly periodic, and so displays recurrence. The ring, after a series of ticks,

returns to its initial state. After N ticks, each ball has reached its initial site and changed

colour n times. If n is even, the initial state recurs. If n is odd, it takes at most 2N ticks for

the initial state to recur.

The Kac ring can be used, as it often is, to elucidate ideas relevant to statistical mechanics

and thermodynamics.15 A nice example is its use in elucidating the reversibility and recurrence

objections; two important statistical mechanical concepts.

12See also Suárez (2003).
13See the forward and preface to Kac (1959).
14Similar descriptions of the model can be found in Bricmont (1995: Appendix 1), Bricmont (2001: p.10),

Dorfman (1999: Sec.2.3), Kac (1959: p.99), and Gottwald and Oliver (2009: Sec.3).
15See, for example, Bricmont (1995: Appendix 1), Bricmont (2001), Dorfman (1999: Sec.2.3), Kac (1959: Ch.3

Sec.14-15), Gottwald and Oliver (2009), Schulman (1997: Sec.2.1), and Thompson (1972: Sec.1.9).
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Figure 1: A Kac ring with N = 8 lattice sites and n = 5 markers.

We say that an isolated macroscopic system is behaving thermodynamically if it is in equilib-

rium or if it is spontaneously approaching equilibrium. Every macroscopic system we encounter

seems to exhibit thermodynamic behaviour. It is a goal of classical statistical mechanics to

account for this behaviour in terms of the behaviour of the microscopic parts that constitute

these systems.16 These systems are standardly described as having a microdynamics that is

symmetric under time-reversal. They also display recurrence, if they have bounded phase space

energy hyper-surfaces.

Ludwig Boltzmann famously attempted to account for thermodynamic behaviour in a clas-

sical framework. Or, at least, one instance of it. In 1872, Boltzmann considered how the distri-

bution of velocities of the molecules of a contained dilute gas could be expected to change under

collisions and argued that there was a unique distribution—now called the Maxwell-Boltzmann

distribution—that was stable under collisions.17 Boltzmann further argued that a gas that ini-

tially had a different distribution would move toward the Maxwell-Boltzmann distribution. To

argue for this, Boltzmann defined a quantity, which we now call H, showed that it reached a

minimum value for the Maxwell-Boltzmann distribution, and argued that it would monotoni-

cally decrease to its minimum.18 This result is now known as Boltzmann’s H-theorem. It is a

straightforward consequence of Boltzmann’s transport equation. Importantly, it is a temporally

asymmetric result.19

16It is worth noting that this is not the only or primary goal of statistical mechanics. See Wallace (2013) for
more on this point.

17See Boltzmann (1872).
18The quantity we call H was originally denoted E in Boltzmann’s early work. See Boltzmann (1872).
19See Brown, Myrvold, and Uffink (2009) for more on Boltzmann’s H-theorem.
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In the wake of this result many began to wonder how Boltzmann arrived at it, having

only assumed a dynamics that is symmetric under time-reversal. It was later discovered that

he did not, and two famous objections have shown that he could not. These are known as the

reversibility and recurrence objections. The former is usually credited to Josef Loschmidt and the

latter to Ernst Zermelo.20 The reversibility objection applies to systems whose microdynamics

are symmetric under time-reversal. In the case of Boltzmann’s gas, it says that for any set of

trajectories of the molecules of the gas, the time-reversed trajectories are also compatible with

the dynamics. So not all microstates of the gas at any time lead to a monotonic decrease of H.

The recurrence objection applies to classical systems with bounded phase space energy hyper-

surfaces. That is, to systems, with total fixed energy, such as Boltzmann’s gas. If we consider a

small open neighbourhood of the system’s initial state, and ask, will the system, after it leaves

that neighbourhood, ever return to it? Then the answer, which makes use of Henri Poincarè’s

recurrence theorem, is yes, it will, for almost all initial phase space-points, i.e. for all except a

set of Lebesgue measure zero. More plainly, but less precisely, the objection notes that no initial

microstate will yield a monotonic decrease of H.

To derive Boltzmann’s original, asymmetric, result, one needs more than what is given by

simply applying Newton’s laws of motion to molecular collisions. For Boltzmann, it was a

temporally asymmetric assumption that appeared in the derivation of his transport equation.

The assumption, which posits an absence of correlations between the velocities of colliding

molecules at all times, is now known as the Stoßzahlansatz.21

This brief discussion has touched on two interesting and important foundational statistical

mechanical concepts. These ideas are also important, historically. They may, however, be diffi-

cult to grasp or to fully appreciate—especially for those new to statistical mechanics. Happily,

many are able to reach a clearer understanding of the objections, their implications, and how

they relate to other ideas in statistical mechanics, by examining the Kac ring.

Recall the model. Let B(t) denote the total number of black balls and b(t) the number of

black balls that pass a marker on the next tick. Similarly, let W (t) denote the number of white

balls and w(t) the number of white balls that pass a marker on the next tick. It follows that

B(t+ 1) = B(t) + w(t)− b(t) (1)

and

W (t+ 1) = W (t) + b(t)− w(t). (2)

We can study the difference between the number of black and white balls at various times.

20See Uffink (2007) and Brown et al. (2009) for more on these objections.
21The term “Stoßzahlansatz” was coined by Paul and Tatiana Ehrenfest (1907). See Uffink (2007) and Brown

et al. (2009) for more on the Stoßzahlansatz.
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∆(t) = W (t)−B(t) (3)

and

∆(t+ 1) = W (t+ 1)−B(t+ 1) = ∆(t) + 2b(t)− 2w(t). (4)

The system is in equilibrium when W (t) ≈ B(t). W , B, and ∆ are macroscopic quantities.

Many different microstates give rise to the same macroscopic quantities. In contrast, w and b

give local information about individual sites. They cannot be calculated without knowing the

location of each marker and the colour of the ball at each site. Importantly, the evolution of W ,

B, and ∆ cannot be determined using only macroscopic state information.

This limitation, however, can be overcome if we make the following non-dynamical assump-

tion: suppose that the fraction of white or black balls that change colour at each tick is equal to

the probability µ that an edge has a marker on it, where µ is equal to the number of markers,

n, divided by the number of edges, N . That is,

µ =
n

N
=

w(t)

W (t)
=

b(t)

B(t)
. (5)

This assumption is the analogue of assuming that the Stoßzahlansatz holds at all times. We

too have posited an absence of correlation. Here, the colour of each ball is taken, at each tick,

to be probabilistically independent of whether there is a marker in front of it. We have also

introduced a temporally asymmetric element into the model. There are sequences of states of the

system that are compatible with the assumption whose time reverse is not. For example, consider

a ring that has a white ball at each site and whose markers have been randomly distributed.

Now let the system evolve for one tick. All and only the balls that have changed colour have

passed a marker. The assumption, which holds for this sequence of states, does not hold for its

time reverse. In the later case, ball colours are correlated with the locations of markers. Black

balls are found at all and only those sites that have a marker in front of them.

Importantly, the assumption introduced above enables us to express (4) as

∆(t+ 1) = ∆(t) + 2µB(t)− 2µW (t) = (1− 2µ)∆(t). (6)

This yields,

∆(t) = (1− 2µ)t∆(0). (7)

Eqn. (7) is a transport equation, like Boltzmann’s equation. It, like Boltzmann’s equation,

tracks the system’s behaviour, including, importantly, its approach to equilibrium. Since 0 <

µ < 1, (7) tells us to expect |∆(t)| → 0 as t → ∞. This is the analogue of Boltzmann’s H-

theorem. Importantly, this result, like Boltzmann’s, is inconsistent with the system’s dynamics.
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The system’s dynamics are symmetric under time-reversal, so not all microstates of the system

compatible with its macroscopic properties at any time lead to a monotonic decrease of |∆(t)|.
This is an instance of the reversibility objection. Moreover, because the system is strictly

periodic, no initial microstate yields a monotonic decrease of |∆(t)|. This is an instance of the

recurrence objection.

Those who intend to more clearly understand the objections, their implications, and their

relation to other statistical mechanical ideas, by analysing the model in the way outlined above,

are using it to provide an elucidation. If, in proceeding, a user does not intend the model to

perform a representational function, then it does not perform a representational function. In

such a situation, the Kac ring model is a toy model.

An agent can use the Kac ring to elucidate the recurrence and reversibility objections, with-

out intending that it perform a representational function, because it instantiates a set of proper-

ties that are central to the objections. These properties are very general and so are instantiated

by many systems, both real and abstract. While it is true that the objections were originally

levelled at Boltzmann’s dilute gas, there is nothing special about the objections that prohibits

an agent from running them against any system that instantiates the set of properties that gave

rise to them in the Boltzmannian case, whenever an assumption is introduced that is analogous

to assuming that the Stoßzahlansatz holds at all times.

What properties are central to the objections? One is that a system possess macroscopic

states which are characterised by its microscopic state. Another is that it has a microdynamics

that is symmetric under time-reversal. A third is that it displays recurrence. Another is that

it permits meaningful talk about equilibrium and nonequilibrium. The objections arise when

a suitable assumption is added to systems with these properties. The assumption should posit

an absence of correlation at all points in time between certain microscopic parts of the system,

and it should enable us to derive, solely on the basis of macroscopic information, a result that

predicts a monotonic approach to equilibrium. These properties and this assumption, when

taken together, give rise to the objections. They are necessary and jointly sufficient. Since the

relevant properties are perfectly general, a number of systems possess them. That is why we

can appeal to any system that instantiates all of them to illustrate and elucidate the objections.

Naturally, if our purpose is to more clearly understand the objections, then it is reasonable to

first choose a simple system, such as the Kac ring, to perform this task. Let us call the set of

systems that instantiate all of these properties J . The ring model is a member of J .

All that is needed for an elucidation is that the ring model instantiate the properties that give

rise to the objections. Now while it is true that other systems also instantiate these properties,

the model’s similarity to those systems is not sufficient for it to be said to represent those

systems. In particular, just because the Kac ring is similar to each member of J , this does not

mean that the Kac ring represents any other member of the set. It also does not mean that the

Kac ring represents the set J . The Kac ring is simply a member of J , like Boltzmann’s dilute
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gas.

Using the Kac Ring in a Consistency Proof

In helping agents better understand and appreciate the objections, the Kac ring reveals

things about the nature of the introduced assumption and it suggests things about the nature of

other Stoßzahlansatz -like assumptions. It reveals that the introduced assumption is temporally

asymmetric, and it suggests that other Stoßzahlansatz -like assumptions are temporally asym-

metric. The model suggests that these assumptions cannot hold for all microstates of the systems

they apply to at any time and that they cannot hold for all times given any microstate. The Kac

ring also suggests that (5) could be true, or approximately true, for times short compared to

recurrence times for rings whose initial ball colour distributions are independent of the locations

of markers, since there is no mechanism in the system that correlates a ball’s colour with mark-

ers it has yet to pass. And this idea, in turn, can be thought to suggest situations in which it

may be reasonable to make use of temporally asymmetric Stoßzahlansatz -like assumptions, and

the transport equations they help derive (e.g. Eqn. (7), Boltzmann’s transport equation, etc.).

In the case of the Kac ring, for rings whose initial ball colour distributions are independent of

the distribution of markers, and for times that are short compared to recurrence times. In the

Boltzmannian case, for gases comprised of colliding molecules whose initial incoming velocities

are uncorrelated, and for times short compared to recurrence times. It is because these and

other suggestions so easily emerge from an examination of the Kac ring that make it such a

useful hypothesis generating tool.

Why is any of this important? Answer: The reversibility and recurrence objections make it

clear that strict interpretations of results such as (7), Boltzmann’s equation, and Boltzmann’s

H-theorem, are untenable. On the other hand, there is something very appealing about them.

Eqn. (7), like other transport equations, predicts irreversible behaviour at the macroscopic

level. This fits extremely well with experience. Moreover, as David Wallace (2013: p.14) rightly

notes, many transport equations, including Boltzmann’s, actually work. Boltzmann’s equation

predicts, quantitatively, and accurately, how dilute gases away from equilibrium actually behave.

Naturally, it is worth locating the circumstances in which these equations hold for classical

systems that are members of J . This will shed light onto the nature and behaviour of many

nonequilibrium systems, both real and abstract. It will help us understand why and how systems

with a dynamics that is deterministic, recurrent, and symmetric under time-reversal, exhibit

irreversible macroscopic behaviour, and why temporally asymmetric transport equations can

accurately predict their behaviour.

Since identifying the circumstances in which transport equations accurately predict the be-

haviour of actual systems is often very difficult, it can be helpful to use simple models to offer

up suggestions of what these circumstances could be. Happily, we can generate reasonable hy-

potheses about what the circumstances could be for complicated systems on the basis of results
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that can be shown to hold for simpler systems, such as the Kac ring, say, that are similar to

them. While these results do not offer the final word on the matter, they do offer a good way

to start the conversation.

The first step in the process is to establish a consistency proof. That is, to show that under

certain conditions a system with a dynamics that is deterministic, recurrent, and symmetric

under time-reversal, exhibits irreversible macroscopic behaviour—which can be described accu-

rately by a temporally asymmetric transport equation. It is worth noticing that these properties

are perfectly general. A number of systems possess them. Both Boltzmann’s gas and the Kac

ring instantiate these properties. They are similar to one another in these respects. So then, if

we discover and can show that under certain conditions the Kac ring consistently instantiates

these properties, then we can reason, on the basis of its similarity to Boltzmann’s gas, that

the gas may also consistently instantiate these properties under these (or similar) conditions by

appealing to an argument from analogy (of the form outlined in section 2). Generally speaking,

if we discover and can show that under certain conditions the Kac ring consistently instantiates

this set of properties, then we can reason, on the basis of its similarity to systems that also in-

stantiate these properties, that these other systems may also consistently instantiate them under

these (or similar) conditions by appealing to an argument from analogy. While we are free to

consider and test any system with a dynamics that is deterministic, recurrent, and symmetric

under time-reversal, that exhibits irreversible macroscopic behaviour, it is, in this context, worth

considering the Kac ring first. It is simple, and it has already presented us with conditions under

which these properties may be consistently instantiated.

It can be demonstrated that the evolution of an ensemble (i.e. a collection of rings that

share the same number of sites, N , and initial configuration of black and white balls, but whose

number of markers vary) is precisely described by (1 − 2µ)t, for very large N , for times much

shorter than recurrence times, and whose markers have initially been distributed at random.22

Importantly, such a result establishes an affirmative answer to the compatibility question. It

also suggests truths about the microphysics. Namely that a Stoßzahlansatz -like assumption,

which is only taken to hold exactly at t = 0, in fact contributes to the appearance of irreversible

macroscopic behaviour in the model. The result also lends weight to the suggestion of when it

is reasonable to make use of temporally asymmetric Stoßzahlansatz -like assumptions and the

transport equations they help derive. Notice, however, that this result, if valid, is strictly weaker

than (7). It claims only that irreversible macroscopic behaviour appears on average. But since

the objections show that a strict reading is untenable, this is a happy result.

Consistency Proof: Consider an ensemble in which the number of sites possessed by its

constituent rings is very large, say of the order of 1023, (∼the number of molecules that constitute

a gas), and consider values of t� N . Since we are interested in an irreversible move from some

nonequilibrium state to equilibrium, suppose, to keep things simple, that the ensemble’s initial

22Proof of this result appears in a number of texts. See, for example, Kac (1959: Ch.3 Sec.15).
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configuration is B(0) = 0. To calculate ∆(t), we introduce 2N variables

ηi(t) =

{
+1 if the ball at site i at t is white

−1 if the ball at site i at t is black,
(8)

and

εi =

{
+1, if the edge in front of i does not have a marker

−1, if the edge in front of i has a marker.
(9)

Then we add up the +1’s and -1’s for the N sites. Since the colour of the ball at site i + 1

depends on its colour at i at the previous tick, and whether there was an intervening marker,

we have

∆(t) =
N∑
i=1

εi−1εi−2 . . . εi−t. (10)

If we suppose that markers are set for each ring according to the outcome of a coin toss

whose probability of success is 0 < µ < 1
2 , that is

Pr{εj = −1} = µ and Pr{εj = 1} = 1− µ, (11)

then

〈∆(t)〉 = (1− 2µ)t. (12)

This result shows that for very large N and for any t� N the evolution of an ensemble whose

markers are distributed at random and that begins with a white ball at every site is precisely

described by (1− 2µ)t. Alternatively, it shows that the evolution of any ring, chosen at random

from the ensemble, will be approximately described by (1 − 2µ)t. Each ring has a dynamics

that is symmetric under time-reversal and deterministic. They also display recurrence. Most

rings exhibit irreversible behaviour. In fact, irreversible behaviour occurs on average. What

we have then, is a model that consistently maintains the properties we are interested in. If, in

constructing and establishing this consistency proof, or one like it, a user does not intend for

the model to perform a representational function, then it does not perform a representational

function. In such a situation, the Kac ring model is a toy model. An agent can use the model

in a consistency proof, without intending that it perform a representational function, because it

instantiates the set of properties whose compatibility is being tested.

Using the Kac Ring To Generate Hypotheses

The Kac ring has been used to elucidate the reversibility and recurrence objections, to estab-

lish the compatibility of certain properties under certain conditions, and to suggest interesting

12



and important things about other systems, including real systems. This section continues to

discuss its constructive, hypothesis generating use.

As we have seen, the ring model quite naturally suggests conditions in which other classical

systems exhibit irreversible macroscopic behaviour. We were able to generate hypotheses about

other systems, using what we learned from the objections, as they applied to the ring model,

by reasoning analogically. These hypotheses gained support from the consistency proof offered

in the previous section. The success of the proof makes it reasonable to expect a dilute gas

to exhibit irreversible macroscopic behaviour for times short compared to recurrence times, if

initially the incoming velocities of colliding molecules of a gas are uncorrelated. Moreover, the

proof suggests that one would not go too far wrong, in such a situation, if one were to assume that

the Stoßzahlansatz holds at all times across an appropriate time interval, and were to describe

the gas’s behaviour using Boltzmann’s transport equation. So the Kac ring can be used to

help guide the way we think about other systems, including actual systems, such as dilute gases,

because it can be used to generate hypotheses about them. It can be used in this way because we

can more easily establish results with it and because these results can be linked to systems that

instantiate properties shared by the model, by arguing from analogy. Importantly, all of this can

be done without intending that the Kac ring represents any or all of these other systems. All

that matters is that the ring model instantiates properties that other systems instantiate. These

similarities alone permit employing an argument from analogy, whose conclusion we interpret as

a hypothesis about the system that shares properties with the ring model. And since similarity

is not sufficient for representation and a user’s intention is necessary, then if a user does not

intend the Kac ring to perform a representational function while generating a hypothesis in

this manner, then it does not perform a representational function. In this way, the Kac ring

can be used to generate hypotheses about other systems without performing a representational

function. And in situations such as these, the Kac ring is a toy model.

Interestingly, it is not only through known similarities (positive analogies) that models, such

as the Kac ring, can be used to develop hypotheses about other systems, including actual sys-

tems. We can also develop reasonable hypotheses by trading on known dissimilarities (negative

analogies).23

Here is an example. Kac ring markers are fixed and do not interact with one another. Balls

only interact with markers. They do not interact with each other. This means that when markers

are uncorrelated with the colours of balls they have yet to encounter, this lack of correlation

persists until they come into contact. That is, balls only become correlated with markers once

they have passed them. Compare these features to an isolated dilute gas. None of the molecules

are fixed and there are no prohibitions on which molecules collide. This means that once the

system begins to evolve from an uncorrelated state, correlations almost immediately appear.

23See Bartha (2013) for a discussion of positive and negative analogies and their role in analogical reasoning.
This terminology was originally introduced in Keynes (1921).
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Importantly, correlations emerge between the velocities of molecules that have yet to collide.

But we know that a predictively accurate transport equation can be generated for the gas if

we assume that the Stoßzahlansatz holds at all times (which we know cannot strictly be true)

and that a predictively accurate transport equation can be generated for the ring both with

and without introducing an analogous assumption. So it is reasonable to think, on the basis

of these considerations, that the gas behaves in such a way so as to ensure that the velocities

of its molecules behave more like the Kac ring’s balls and markers prior to collisions. Since

the pre-collision velocities of any pair of molecules could not be uncorrelated, except initially, it

appears that they would have to be, what will be called, effectively uncorrelated. That is, that

the pre-collision velocities of any pair of molecules would have to be such that it is safe, for the

purposes of making accurate predictions about the system’s behaviour, to treat them as if they

were uncorrelated.

So we have again generated a reasonable hypothesis that concerns actual systems by rea-

soning analogically. The suggestion that the pre-collision velocities of any pair of molecules

of a dilute gas are effectively uncorrelated, at least after some initial time, was arrived at by

trading on similarities between the Kac ring and a dilute gas and, importantly, on some of

their dissimilarities. This hypothesis generating use of the model depends, in this instance, only

on the ring’s instantiation of certain properties a dilute gas also instantiates and on the ring’s

instantiation of properties the gas lacks. These similarities and dissimilarities alone enable us

to use an argument from analogy to generate the hypothesis.24 Since similarity is not sufficient

for representation, then if an agent uses the model to generate a hypothesis about dilute gases

in this manner and does not intend that it perform a representational function, then the model

would not perform a representational function. In such a situation, the ring model would be a

toy model.

Some Concluding Remarks

In a recent review article, Frigg and Hartmann (2012: Sec.4.2) have said that toy models:

. . . are models which do not perform a representational function and which are not

expected to instruct us about anything beyond the model itself.

While Frigg and Hartmann are right to claim that toy models do not perform a representa-

tional function, it seems misleading to claim that we do not expect them to instruct us about

anything beyond themselves. What is true is that many of the models that are commonly

used as toy models (e.g. the Kac ring, urn model, wind-tree model, etc.) often instruct us

about things beyond themselves. As an earlier section highlighted, the Kac ring can be used

to elucidate the reversibility and recurrence objections. By examining the Kac ring, one can

24In cases like this, however, the following premise is added to the general argument scheme: P3. S is dissimilar
to T in certain (known) respects.
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develop a more clear understanding of the objections, their implications, and their relation to

other statistical mechanical ideas. The ring model can also help us better understand other

systems, including actual systems, through its use as a hypothesis generating tool. In testing

these hypotheses on actual systems, we can obtain a better understanding of the mechanisms

responsible for thermodynamic behaviour and why temporally asymmetric transport equations

are predictively accurate.

This paper distinguished toy models from approximations and idealisations. Unlike approxi-

mations and idealisations, these models do not perform a representational function. Nonetheless,

they play an important role in science. This paper highlighted the important work these models

carry out by discussing several ways the Kac ring is used as a toy model. It also explained

why the Kac ring can be successfully used in these ways without performing a representational

function. Of course, it is natural to wonder about how well this discussion speaks for other

toy models. Happily, such a concern only furthers one of the main ambitions of this paper:

to encourage a much greater philosophical discussion of these interesting and under-explored

models. We should examine how other models are used in ways 1-4. Only through a much

larger discussion will we achieve a richer understanding of toy models and better understand

the subtle ways in which they differ from other scientific models. Part of this larger discussion

may involve examining and carefully articulating the consequences that follow from the dis-

tinction between representational and non-representational models, which thinking about toy

models brings out. For example, approximations and idealisations can be, and often are, used

to successfully perform function 4.25 These models, however, also perform a representational

function. Interestingly, this additional function appears to have consequences for the manner

in which they are used to generate hypotheses about other systems. Unlike toy models, which,

as we saw, generate hypotheses about actual systems via arguments from analogy, approximate

and idealised models can be used to generate them directly. If we suppose that the Kac ring

represents the generic features of a class of systems (and so is an idealisation), then any con-

clusion we reach about them by studying the model can be applied directly to any member of

the class. Similarly, if we suppose that the Kac ring represents either approximately or in an

idealised manner some particular system, then any conclusion we reach by analysing the model

can be directly applied to its target.26

Hopefully, by way of this entire discussion, this paper has elevated the status of toy models

and cultivated a greater interest in them.

25In fact, approximations and idealisations can also be, and often are, used to successfully perform functions
1-3.

26Of course, this says nothing about the truth of these inferences. Just that it is reasonable for them to be
drawn.
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