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Abstract 

New or modified methods for semiparametric analysis of fractional long memory in time 
series are described and applied to twenty-six stock prices and two stock indices. Evidence is 
found that some, but not all, of the stocks have long memory, while one of the indices exhibits 
mean reversion. 

A M S  Subject Classifications: 62M10, 60G18 

Keywords: Long memory; Semiparametric model 

1. Introduction 

This paper  appl ies  new and modif ied  m e t h o d o l o g y  for invest igat ing the possible  

presence of f ract ional  long m e m o r y  in f inancial  t ime series. Let  xt, t = 1, 2 . . . . .  be 

a covar iance  s t a t ionary  t ime series having a spectral  densi ty  

1 
= ~ 7x ( j ) cos j2 ,  -- ~ < 2 ~< rt, (1.1) 

where 7x(j) = C o v ( x .  xt+~) is the lag-j  au tocovar iance  of  xt. Assume that  

0 <f~(0)  < oo. (1.2) 

A series with p rope r ty  (1.2) will be te rmed an I(0) series. The simplest  example  of  an 

I(0) series is a series of uncorre la ted ,  homoscedas t ic ,  r a n d o m  variables.  N o w  consider  
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a series Yt, t = 1, 2 . . . . .  such that 

(1 -- L)ay, = x,, t = 1,2 . . . . .  (1.3) 

where L is the lag operator, so Lyt = y,-  1, and d is a real number. A series Yt given by 
(1.2) and (1.3) will be termed an l(d) series. We say that y, exhibits long memory if 

d > 0. By far the most familiar such situation is when d = 1 is assumed, when y, has 
unit root, and other integer values of d are sometimes assumed (see e.g. Box and 
Jenkins, 1970). We say that Yt exhibits fractional long memory when d > 0 but d is 
non-integer. In case 0 < d < 3 then Yt inherits the covariance stationarity of x ,  When 

d ~> 3, Yt is non-stationary. When d = 0, that is y, is an I(0) process, Yt is said to have 
no long memory. 

We employ some methods of point estimation and statistical inference on d which 
are semiparametric in that the parametric relation (1.3), involving the unknown 
parameter  d and the known functional form (1 - L) a, is complemented by a non- 

parametric fx(2), satisfying (1.2) but no other assumptions apart  perhaps, from mild 
regularity assumptions in a neighbourhood of zero frequency. In particular, fx(2) 

might be infinite or zero at non-zero frequencies in ( - rt, zt]. When d < ½, (1.2) and (1.3) 
imply that Yt has spectral densityfy(2) (defined analogously tof~(2) in (1.1)) satisfying 

fr(2) ,-~ C2 -2d, as 2--+0 +, (1.4) 

for 0 < C < ~ .  Thusfr(2) tends to infinity as 2--* 0 + i f0  < d < ½, but its behaviour 
away from zero frequency is unrestricted. For d >~ 3, fy(2) is not well-defined, but 
a suitable amount  of integer differencing produces a covariance stationary time series 
in I(d) for d < 3. Notice that if Yt is in l(d) for 3 ~< d < 1, the first differenced series 
z, = (1 - L)yt is in l(d) for - 1 ~< d < 0, so that z, has spectral densityf~(~) satisfying 

fz ( ) - )~C2  2~, a s 2 ~ 0  +, - 3 ~ < d < 0 ,  (1.5) 

and so fz(0) = 0. Furthermore,  overdifferencing of a stationary or non-stationary 
series also leads to a process with zero spectrum at zero frequency. Notice that our 
concept of long memory pertains only to zero frequency. The concept can be extended 
to apply to other frequencies but we will not discuss this here. The literature on the 
analysis of long memory time series has been reviewed by Robinson (1994a). 

The following section reviews experience of modelling economic and financial time 
series, in relation to non-fractional and fractional l(d) series. Section 3 describes 
methods of estimation and inference on d. Section 4 applies the methodology to 
financial series of stocks and stock indices. Section 5 contains some brief concluding 

remarks. 

2. Long memory in financial and economic time series 

The issue of whether macroeconomic variables and financial variables exhibit long 
memory is of great interest because it has important  implications for economic 
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planning and financial planning. The focus of macroeconomists is on time series that 
are related to the level of economic activity such as GNP,  industrial production 
output and employment. For financial analysts, the focus is on stock prices and 

indices. 
A general practice in macroeconomics is to model the series of interest as two 

separate components, namely a secular or growth component and a cyclical compo- 
nent. The secular component, assumed to be non-stationary, is associated with growth 
factors such as capital accumulation, population growth and technology improve- 
ment. The cyclical component, on the other hand, is associated with fundamental 
factors which are the primary cause of movement in these series, and is assumed to be 
covariance stationary, indeed typically I(0), in that it contains no long memory. 

Since the publication of the influential paper by Nelson and Plosser (1982), atten- 
tion has focussed principally on modelling the non-stationary components of macro 
time series. It is common practice to attempt to take care of the non-stationary 
component either by regressing the series on time, or some function of time, or by first 
or second differencing of the series. In either case the residuals, if they appear 
stationary, are interpreted as approximating the cyclical component. There is a funda- 
mental difference between these two approaches for approximating the secular or 
stationary component. The first approach of regressing on a function of time assumes 
a model of form 

y, = g(t; O) + x, 

for the observed time series, where 9(t; O) is a given function of t and an unknown 
parameter vector 0, while xt is an 1(0) series. This model is consistent with a determin- 
istic trend, and implies that the only information about the future is embodied in its 
mean. No past or future events will alter the long horizon expectation, and un- 
certainty is bounded, in the sense that the forecast error variance is finite. The second 
approach of differencing, on the other hand, assumes a model of form (1.3) with 
d = 1 or some other integer, where again xt is an I(0) series. This model is consistent 
with a stochastic trend, and implies that the long range forecast of the series will 
always depends on past events and that the variance of the forecast error will be 
unbounded. 

To macroeconomists, any shock to the economic system will have a permanent 
effect on output if the series is thought to be generated by a process consistent with the 
second, differencing, approach. From a theoretical view point, this has important 
implications for modelling the business cycle. But, so far as practical economic 
planning is concerned, it implies that policy action is required to bring the variable 
back to its original long term projection if that is desired. In many developing 
countries, this is desired if one has targeted a certain level of G D P  growth to be 
achieved by a certain time frame, for example, in 10 years. This is because a decline in 
output in the past will lower the forecasts of future output permanently. On the other 
hand, if the series is generated by a process which is consistent with the first, 
regression, approach, then there is not such a strong basis for policy action because 
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the long term expectation of the series has not changed and the series will return to its 
trend, or potential output, sometime in the future. 

However, the observed time series may not belong to one of the two classes 
described above, and in particular may satisfy (1.2) with non-integer d, so that Yt has 
fractional long memory. Indeed, Cochrane (1988) has provided evidence, using a 
variance-ratio test, that US GNP is not an I(l) series but may have fractional long 
memory. One interesting interpretation of this observation given by Campbell and 
Mankiw (1987) is that the shock will appear to be persistent, but it will eventually 
move towards the original trend, but 'it does not get all the way there'. Other related 
theoretical and empirical papers include Haubrich and Lo (1989). Porter-Hudak 
(1990) and Sowell (1992a, b). 

In the empirical analysis of financial time series, one of the most hotly debated 
topics is whether the holding period returns on a risky asset are serially independent. 
While earlier empirical evidence has supported the efficient market hypothesis by 
finding no evidence against it, recent studies by various authors have produced 
evidence that contradict earlier findings. Lo and MacKinlay (1988), Poterba and 
Summers (1988), using a variance-ratio test, have demonstrated that the lagged 
k variance ratio, which is defined to be k times the variance of the k-period return 
divided by the variance of the one-period return, is not unity as implied by the random 
walk hypothesis. In fact, stock returns exhibit mean reversion behaviour, that is there 
is a tendency for the returns to move away from the trend, then reverse direction, 
overshooting the trend before returning to it again. This is characterised by variance 
ratios below unity for lags longer than a year and above unity for shorter time periods. 
It is also consistent with the observations that there is negative autocorrelation 
for intervals longer than a year and positive autocorrelation for shorter periods. 
Using a generalized form of rescaled range (R/S) statistic, Lo (1991) has found no 
evidence against the random walk hypothesis for the stock indices, contradicting 
his earlier finding using variance-ratio tests. For financial analysis, the implication 
for investment planning and strategy is relatively straightforward in the case of 
transitory deviations from equilibrium which are strong and persistent as suggested 
by the mean reversion hypothesis. If one knows where the expected mean is for 
a stationary and long memory series, one can devise rules to buy and sell at the 'right 
time'. 

Macro time series have been analyzed for long memory (e.g. Diebold and 
Rudebusch, 1989), but are apt to be short, almost certainly too short to justify the 
application of large sample inference rules based only on a semiparametric model for 
the data, while no finite sample theory yet exists even for rules of parametric inference 
on long memory. However, many financial time series can be very lengthy, seemingly 
sufficiently so to warrant semiparametric exploration of long memory. We examine 
individual stock returns and stock indices from the Singapore Stock Market. 
The methods we use have only recently been proposed, and their use on financial 
series is novel. One of the methods is Robinson's (1995) modified (trimmed and 
efficiency-improved) version of the log-periodogram estimate of d proposed by 
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Geweke and Porter-Hudak (1983), and an alternative estimate based on the (un- 
logged) periodogram due to Robinson (1994a, b). 

The study of long range dependence in macroeconomic and financial variables has 
been on-going for at least fifteen years. A number of results, mainly based on the R/S 
statistic and variance ratio tests, have suggested the presence of long memory in 
financial series. These studies include Booth et al. (1982b) and Diebold et al. (1991) on 
the foreign exchange market; Booth et al. (1982a) on the gold market; Helms et al. 
(1984) on commodity futures; Greene and Fielitz (1977), Poterba and Summers (1988), 
Lo and MacKinlay (1988) and Fong (1992) on stock prices; Shea (1991) on interest 
rates. However, recently, Lo (1991) has produced results that contradict some of these 
findings, citing the low power of previous tests in the presence of short term depen- 
dence as the main reason for their rejection of the random walk hypothesis. The 
empirical results are now mixed. However, it appears that Lo and MacKinlay's (1988) 
results have suggested that individual stock returns exhibit long memory behaviour, 
but not the indices. One reason could be that individual stocks may not be traded as 
often. Lo (1988), however, has argued that one can form a portfolio of stocks to 
overcome the problem of the thin trading. 

3. Semiparametric inference on long memory 

We assume that (1.2) and (1.3) obtain for the observable, covariance stationary, time 
series y,, t = 1, 2 . . . . .  so that the spectral densityfy(2) of y, satisfies (1.4) with d < ½. The 
series Yt is observed at t = 1,2 . . . . .  n. Given a correct, fully parametric model forfr(2 ) 
at all frequencies, x/n-consistent estimates of d and the other parameters are available; 
in particular, Gaussian maximum likelihood estimates are not only x/n-consistent but 
asymptotically efficient in case Yt is Gaussian, see Fox and Taqqu (1986), Dahlhaus 
(1989). However, if the parametric model is misspecified, such estimates of d will be 
inconsistent. Sowell (1992b), in his application, considered a sequence of parameteriz- 
ations to guard against misspecification, choosing a model based on procedures such 
as AIC, although the theoretical behaviour of the determination procedures in 
fractional models for d > 0 has yet to be studied. We exploit the large value of 
n available to employ semiparametric procedures which are not x/n-consistent but 
can be justified as consistent in the absence of parametric model assumptions. Our 
procedures also have some computational advantage over Gaussian maximum likeli- 
hood estimates in that they are given in closed form. 

Our estimates are functions of the periodogram 

1(2) = (21tn)-1 [ ,=1 ~ y'ei'~ 2. 

We estimate 1(2) only at frequencies for 2 = 2k = 21rk/n, for k = 1 . . . . .  m, where 
m < n. For  such 2, 1(2) is invariant to location, so that mean-correction of Yt is 
unnecessary. The integer m is a user-chosen 'bandwidth number'. In asymptotic 
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theory for our estimates, m is regarded as increasing as n tends to infinity, but at 
a slower rate. 

To define our first estimate of d, introduce a user-chosen 'trimming number' z, 
which is a small non-negative integer in practice but in the theory is regarded as 
tending to infinity slower than m, and a user-chosen 'pooling number' J, which is also 
a small integer but it says fixed in the asymptotic theory. Now introduce 

Wk(J) = log { ~ I(J.k,j)} . . . . .  m, k = z  + J , z  + 2J 
j = l  

where we have implicitly assumed that (m - r)/J is an integer, though end effects when 
this is untrue are asymptotically negligible. Now write 

= - tr ~s) k = z + J , r + 2 J  . . . .  m, (3.1) "kw~s) c{S) d(21og2k) + v k , 

where c ~s) = log C + ~,(J) and q/is the digamma function, C being the scale factor in 
(1.4). Define dl to be the least squares estimate of d based on the 'regression model' 
(3.1), where the U~ s} are regarded as unobservable disturbances. 

On choosing r = 0 and J = 1, and replacing 2 log 2k by log(4 sin 2 2k/2), dl becomes 
the estimate of Geweke and Porter-Hudak (1983). These authors attempted a proof of 
asymptotic properties of this estimate only under the assumption - ½ < d < 0 (so 
that there is no long memory) but their proof was incomplete, as shown by Robinson 
(1995). Robinson (1995) provided a hopefully correct proof which allows - ½ < d < ½ 
but depends on the trimming number z (possibly relating to the large bias in Geweke 
and Porter-Hudak's estimate found by Agiaklogou et al. (1993)), and also on Gaus- 
sianity of y~. The pooling innovation was also introduced by Robinson (1995): 
asymptotic efficiency of dl increases monotonically in J. The central limit theorem 
established by Robinson (1995) implies that 

dl - d 

SE(d~) ~ d N(O, 1), (3.2) 

where SE(dl ) is the usual least squares standard error from the regression (3.1). Notice 
that there is no asymptotic difference in using log(4 sin z 2d2) in place of 2 log 2k in (3.1). 

To define a second estimate, introduce the 'averaged periodogram', 

P(2) 2rt t.~/2,1 
= - -  Z I(2k), 

?l k = l  

where [. ] means that the integer part is taken. Robinson (1994a) proposed estimating 
d by 

d2 = ½ [1 - log {F(qJ,,)/P(2m)}/log q], 

where q is a fixed constant chosen by the user to be within the interval (0, 1). Robinson 
(1994a) showed that d2 is consistent for d under conditions that are far weaker than 
Gaussianity, requiring little more than (1.4) and the requirement that m ~ 0o slower 
than n. Indeed consistency obtains also if (1.4) replaces C by a slowly varying function 
of 2 that is possibly of unknown from, so that a more general class than the I(d) class is 
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covered. Asymptotic distribution theory for dz is discussed by Lobato and Robinson 
(1996). 

4. Empirical results 

We employ daily data from 2 January 1975 (750102) to 31 July 1991 (910731) 
obtained from the Financial Database, National University of Singapore. Two stock 
indices are used for analysis together with twenty-six blue-chip stocks. The two indices 
are the Singapore Stock Exchange of Singapore (SES) All-Share Price Index and the 
Straits Times Industrial Index (STI). The twenty-six stocks are the component stocks 
of the STI index and details are listed in the Appendix. 

The SES All-Share Price Index is based on 100% coverage of the prices of all the 
listed companies. A conventional value-weighted method is used to calculate the SES 
index, that is, the index number is expressed as a percentage of the current aggregate 
market value to the base aggregate market value. The weight reflects the importance 
of the share as reflected by their paid-up capital. The index is adjusted for rights issue, 
new listing and delisting. 

The Straits Times Industrial Index has a much longer history than the SES Index. 
The STI was first introduced in 1948 while the SES Index was officially launched in 
1984. The STI is unweighted and is adjusted for new listing and delisting. 

Denote by p, the stock price or index level at time t. We shall apply the methods of 
the previous section to the returns Yt = log(p,/pt-1). 

Fig. l(a) and (b) are plots of the periodogram and a weighted autocovariance 
estimate of the spectral density using a Bartlett window for the returns for the 
Yt computed from the SES Index from 750102 to 870930. In Fig. 1 (b), we can see that 
as frequency approaches zero, the spectral density estimate rapidly increases. The 
shape displayed in Fig. 1 (b) is the 'typical spectral shape' of many observed economic 
time series (Granger, 1966). Taking the first difference of the same return series, we 
observe in Fig. 1 (c) that the spectral density estimate is zero at zero frequency and 
then tends to increase with 2. These results are consistent with a model for the returns 
of form (1.2) and (1.3) with 0 < d < ½. Corresponding plots for the STI Index are given 
in Fig. 2(a)-(c). 

There are empirical results which suggest that the detection of long memory in 
stock prices can be strongly influenced by a period of uncertainty. Kim et al. (1991), 
using variance-ratio tests, have found no evidence of long memory in stock prices after 
World War II. Using data from 1871 to 1987, McQueen (1992) has also found that 
there is no evidence of long memory in stock indices, citing the large variance of stock 
prices during periods of uncertainties as the reason; two particular events. World War 
II and the Great Depression, are the source of the heteroscedasticity. Using generaliz- 
ed least squares randomization tests, the random walk hypothesis is not rejected. Thus 
in addition to estimating d from the full sample, we use also a subsample from 
2 January 1975 through 31 September 1987 in order to avoid the October 1987 Crash. 
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(a) Plot o f  Periodogram for SES Returns 
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Fig. 1. Continued. 

Frequency 

Results for the individual stocks are presented in Tables  1-3. In Table  1 we repor t  
dl as well as the least squares est imate of  c (s) in (3.1). T h r o u g h o u t  we take J = 4 and 

= 4. In choosing m we m a k e  use of the results of  Robinson (1994b). He showed that  
for 0 < d < ¼, a bandwidth  that  asymptot ical ly  minimizes a mean  squared error  
criterion is 

(1 -- 2d + ~)2 t l /2a+l  
m = [ E ~ 2 ~ ) ~ i - - - - - 4 d )  n2,/2,+ ,, 

where ~ and  E,  are given by the relation 

(4.1) 

f (2 )  
C ~  - 2d 

- I + E , F + o ( F ) ,  as 2 --+ 0 +, 

for the largest  possible ~ in (0, 2]. Thus  ~ is a sort  of  smoothness  pa ramete r  and we fix 
it at  its maximal  value of 2. We choose E~ arbi trar i ly to be 2. We also employ  the 'rule 
of  t humb '  bandwid th  m = n u 2 ,  which typically turns out  to be three or four times 
smaller  than  (4.1). 

Fo r  mos t  of  the stocks, dl falls in the interval (0.01, 0.3), as is consistent with most  of  
the point  est imates given in previous studies where long m e m o r y  has been detected. 
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(a) Plot of Periodogram for STI Returns 
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Table 1 
dl Estimates 

Fig. 2. Continued. 

Frequency 

No. Full sample 

rn (m - ~)/J dl Test (dl) 

Sub sample 

m (m - r)/S d, Test (dO 

1 32 7 0.148 1.37 
68 16 0.159 4.48 

2 64 15 0.215 4.22 
216 53 0.080 3.26 

3 44 10 0.102 1.49 
120 29 - 0 . 0 1 5  0.11 

4 24 5 0.262 2.97 
52 12 -0 .091  1.11 

5 64 15 0.095 0.40 
216 53 0.000 0.00 

6 64 15 - 0.024 0.04 
216 53 0.010 0.05 

7 64 15 0.116 0.98 
216 53 0.085 3.41 

56 13 0.241 5.95 
176 43 0.056 1.26 

32 7 0.057 0.19 
72 17 - 0 . 0 6 2  0.79 

56 13 0.055 0.12 
176 43 - 0 . 0 3 2  0.38 

56 13 0.007 0.00 
176 43 0.013 0.10 

56 13 0.156 1.22 
176 43 0.224 13.99 
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Table 1 Continued. 

No. Full sample Sub sample 

m (m - T)/J dl Test (all) m (m - z)/J dl Test (aYl) 

8 64 15 - 0.009 0.00 56 13 -- 0.069 0.65 
216 53 0.124 6.46 176 43 0.066 1.60 

9 52 12 0.431 21.05 40 9 0.319 7.69 
152 37 0.107 3.85 108 26 0.171 4.70 

10 40 9 0.309 14.50 24 5 0.379 5.09 
100 24 0.183 7.44 52 12 -- 0.051 0.23 

11 64 15 0.129 2.25 56 13 0.250 11.80 
216 53 0.067 2.16 176 43 0.096 4.11 

12 48 11 0.426 13.54 40 9 0.069 0.09 
144 35 0.137 4.93 100 24 0.017 0.04 

13 64 15 0.029 0.09 56 13 0.062 0.21 
216 53 0.022 0.29 176 43 0.001 0.00 

14 32 7 0.078 0.13 
76 18 0.045 0.30 

15 64 15 0.184 5.43 56 13 0.216 2.19 
216 53 0.071 3.21 184 45 0.071 2.11 

16 36 8 0.187 2.20 
88 21 0.048 0.57 

17 52 12 0.104 3.08 44 10 0.016 0.27 
160 39 0.030 0.39 116 28 0.076 2.11 

18 40 9 0.232 3.06 24 5 0.112 0.23 
100 24 0.043 0.43 52 12 - 0.084 0.60 

19 56 13 0.270 8.71 48 11 0.141 1.72 
180 44 0.047 0.82 136 33 - 0.041 0.37 

20 64 15 0.043 0.15 56 13 - 0.109 0.45 
216 53 - 0.138 12.37 176 43 -0 .210  17.71 

21 24 5 -0 .075  0.41 
44 10 - 0.060 0.40 

22 64 15 0.012 0.01 56 13 0.111 0.83 
216 53 0.116 4.92 176 43 0.203 11.00 

23 64 15 -0 .070  1.00 56 13 --0.101 1.71 
216 53 -0 .039  0.94 176 43 --0.113 5.70 

24 64 15 -0 .108  1.02 56 13 -0 .271 5.26 
216 53 -0 .505  168.5 176 43 -0 .619  218.9 

25 24 5 0.264 1.35 
44 10 0.121 1.12 

26 64 15 - 0.040 0.28 56 13 - 0.022 0.11 
216 53 0.020 0.25 176 43 0.056 1.41 

Note: Refer to the appendix for the corresponding stock and period. The starting period is 750102 or the 
day the stock is listed whichever is later. The end period for the full sample for each stock is 910 731, and for 
the subsample is 870930. 
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Table 2 
d2 Estimates 
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No. Full sample Sub sample No. Full sample Sub sample 

rn d~ m d~ m d~ m d~ 

1 32 0.001 14 34 0.006 
70 0.105 76 0.050 

2 65 0.082 57 0.119 15 65 0.124 59 0.149 
216 0.029 176 0.022 216 0.002 186 0.029 

3 45 0.060 33 0.031 16 37 0.001 
120 -0 .049  72 -0 .127  90 -0 .059  

4 27 - 0.048 17 54 0.000 44 - 0.034 
52 -0 .088  162 -0 .039  118 0.051 

5 65 0.071 57 0.081 18 41 0.072 26 0.156 
216 -0 .046  176 -0 .012  102 -0 .039  52 -0 .105 

6 65 -0 .050  57 0.005 19 58 0.114 49 0.137 
216 -0 .038  176 0.012 180 -0.041 136 -0 .093 

7 65 0.051 57 0.068 20 65 0.055 57 -0 .010  
216 0.051 176 0.210 216 -0 .196  176 - 0.203 

8 65 0.071 57 -0 .126  21 24 0.171 
216 0.054 176 0.056 44 0.026 

9 52 0.243 42 0.186 22 65 0.004 57 - 0.003 
152 0.032 108 0.094 216 0.061 176 0.193 

10 41 0.080 26 0.212 23 65 -0 .129  57 - 0.133 
102 0.038 52 -0 .126  216 -0 .075  176 -0 .138 

11 65 0.106 57 0.098 24 65 -0 .087  57 -0 .367  
216 -0 .013  176 0.032 216 -0 .692  176 -0 .784  

12 51 0.176 40 0.061 25 24 0.134 
146 0.068 100 0.059 44 0.115 

13 65 -0 .068  57 0.061 26 65 -0 .165  57 -0 .105 
216 -0 .019  176 0.004 216 -0 .023  176 0.025 

Note: Refer to the appendix for the corresponding stock and period. The starting period is 750102 or the 
day the stock is listed, whichever is later. The end period for the full sample for each stock is 910 731, and for 
the sub-sample is 870 930. 

There is often considerable sensitivity to the choice of m. We also report the test 
statistics Z2 = {dl/SE(dl)}2; in view of (3.2), the null hypothesis of d = 0, or no longer 
memory in the first differences of the logged stocks, is rejected when X 2 is significantly 
large relative to the X 2 distribution. In more than half the stocks, we cannot reject the 
hypothesis that the returns are I(0), that is that the logged stocks are I(1). However, 
some returns exhibit stationary long memory, while (undifferenced) stock 24 may have 
the just non-stationary d = ½, thus exhibiting the so-called 1/f noise long memory 
behaviour. Our results also suggest that the 1987 October crash did not make much 
difference to our conclusion regarding long memory behaviour. The d2 estimates are 
reported in Table 2(a) and (b), and do not differ qualitatively from the dl estimates. 
The estimate for stock 24 is again negative and close to - ½. 
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Table 3 
Lo's rescaled range test 

No. Fullsample Subsample No. Fullsample Subsample No. Fullsample Subsample 

Q( 90) 1 0.98 10 5.23 6.34 19 1.19 1.43 
Q (180) 1.42 7.36 8.35 1.08 1.27 
Q (270) 1.72 8.58 10.07 1.05 1.19 
Q (360) 1.66 9.10 10.87 1.06 1.17 
Q 1.01 0.75 0.75 1.11 1.25 

Q( 90) 2 1.17 1.32 11 1.44 1.83 20 3.89 4.07 
Q (180) 1.19 1.26 1.41 1.69 4.66 4.80 
Q (270) 1.25 1.28 1.45 1.69 5.20 5.27 
Q (360) 1.39 1.40 1.52 1.74 5.10 5.06 
Q 1.54 1.79 2.02 2.75 0.78 0.76 

Q( 90) 3 0.95 1.75 12 0.99 1.46 21 0.95 
Q(180) 1.05 1.67 1.05 1.34 1.31 
Q (270) 1.13 1.54 1.09 1.30 1.86 
Q (360) 1.17 1.47 1.16 1.28 1.93 
Q 1.01 1.73 1.34 1.93 1.21 

Q( 90) 4 1.20 13 1.01 1.44 22 1.35 1.49 
Q(180) 1.50 1.07 1,34 1.55 1.61 
Q (270 1.96 1.09 1,30 1.62 1.61 
Q(360) 2.39 1.07 1.26 1.56 1.53 
Q 1.07 0.99 1.35 1.56 1.79 

Q( 90) 5 0.72 1.16 14 1.14 23 1.30 1.52 
Q(180) 0.85 1.28 1.15 1.35 1.56 
Q(270) 0.94 1.38 1.19 1.37 1.54 
Q (360) 0.91 1.31 1.22 1.40 1.56 
Q 0.79 1.24 1.48 0.73 0.74 

Q( 90) 6 1.11 1.21 15 1.47 1.47 24 2.96 3.24 
Q(180) 1.17 1.21 1.42 1.39 3.83 4.32 
Q (270) 1.23 1.20 1.37 1.32 4.44 4.96 
Q (360) 1.23 1.17 1.36 1.31 4.96 5.44 
Q 1.05 1.09 1.99 2.04 0.72 0.73 

Q(90) 7 1.47 16 1.33 25 1.18 
Q(180) 1.52 1.36 1.65 
Q(270) 1.52 1.36 1.71 
Q(360) 1.52 1.39 1.80 
Q 2.07 1.42 1.59 

Q(90) 8 1.13 1.74 17 1.12 1.43 26 1.09 1.09 
Q(180) 1.24 1.75 1.14 1.31 1.12 1.12 
Q(270) 1.35 1.72 1.21 1.29 1.14 1.14 
Q(360) 1.35 1.64 1.32 1.35 1.17 1.17 
Q 1.39 2.01 1.10 1.68 1.01 1.01 

Q( 90) 9 1.54 1.70 18 1.12 1.20 
Q (180) 1.49 1.56 1.41 1.42 
Q (270) 1.49 1.52 1.55 1.63 
(2 (360) 1.51 1.50 1.75 1.72 
Q 2.15 2.50 1.04 1.17 

Note: We can reject the null hypothesis with 95% level of confidence if the test statistic falls outside the 
range [0.809, 1.862]. 
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Table 4 
Analysis for SES and ST indices 

169 

Stock Exchange of  Sin#apore (SES) index 
Full sample Subsample 

m (m - ~)/J dl Test(all ) m (m - -  " ~ ) / J  d 1 Test (dl) 

64 15 0.122 1.99 56 13 0,195 2.25 
208 51 - 0 . 1 2 1  5.94 168 41 0.230 19.05 

m d2 m d2 

64 0.022 56 0.081 
210 - 0.268 170 0.202 

Lo's test Full sample Subsample 

Q ( 9 0 )  1.21 1.62 
Q 080) 1.31 1.60 
Q(270) 1.35 1.54 
Q (360) 1.39 1.53 
Q 0.90 2.78 

Straits Times Industrial (STI) index 
Full sample 

m (m - r)/J dl Test(d1 ) 

Subsample 

m (m - r)/J dl Test(d1) 

64 15 0.004 0.00 56 13 --0.338 
208 51 --0.118 1.57 168 41 --0.129 

m J2 m d2 

64 - 0.232 
210 0.008 

Lo's test Full sample 

56 - 0.183 
170 0.018 

Subsample 

1.73 
1.42 

Q ( 9 0 )  0.66 0.95 
Q(180) 0.90 1.26 
Q (270) 1.31 1.58 
Q(360) 1.21 1.48 
Q 0.39 0.57 

In Table 3 we report Lo (1991)'s augmented rescaled range test for comparison. We 
present the test statistics for 3 months (Q(90)), 6 months (Q(120)), 9 months (Q(180)), 
1 year (Q(360)) and the original rescaled range statistics (Q). Although there is evidence 
that the test is not very powerful (see the Monte Carlo results of Lo (1991)), the results 
still suggest that there are a few stocks that rejected the null hypothesis. Large test 
statistics are reported for stocks 10, 20 and 24 suggesting that these stocks are not 
generated by a random walk process. 

The results for the stock indices are reported in Table 4. Those for SES are 
interesting. For the full samples period, dl is significantly negative at the 5% level. 
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However, for the reduced sample period, the estimate is significantly positive. This 
suggests that taking the 1987 October Crash into account has made the price series less 
non-stationary. In other words, the results suggest that prices revert towards the expected 
mean but 'not all the way'. The d2 estimates exhibit the same pattern while Lo's test is 
inconclusive. As for the STI index, there is no evidence that the series is not I(0) from the 
Z 2 tests. This is further confirmed by the insignificant test statistics for Lo's test. 

To obtain further evidence of the sensitivity to bandwidth, the plots of the estimates 
dl (z -- 2, J = 2), dl (r = 4, J = 4) and d E against m for the SES index are given in 
Figs. 3-5, respectively. The X 2 test statistics are plotted in Figs. 3(b) and 4(b) to gauge 
the sensitivity of our conclusions to bandwidth choice. 

5. Conclusion 

Deseasonalised time series can be viewed as consisting of two components, a long 
memory and a short memory component, as opposed to an earlier perception that the 
series has stationary and non-stationary components. We have produced some 
evidence of long memory of a stationary nature in stock returns in this study. We have 
presented estimates of d and tests that d -- 0, of a semiparametric character. It is perhaps 
not surprising that some returns exhibit long memory bchaviour while others do not, 
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but it is interesting to note that the SES index is mean reverting. Note that the usual 
unit root rests, including ones which correct for short-memory autocorrelation, are 
not robust to long memory. 

A semiparametric estimate of d can be the first step in building a parametric time 
series model, such as a fractional ARIMA, for use in forecasting, though there is as yet 
little evidence of the performance of these models in forecasting. An eventual parametric 
model is especially suitable in case of macro series, and policy makers in developing 
countries will also be interested in findings regarding the possible presence of long 
memory in their macro series, to add to the evidence for industrialised countries. 
Research in this direction will be fruitful and will certainly contribute to the public and 
economic policy debate and planning in developing and newly industrialised countries. 

Appendix 

Names of the companies and sample period are listed in Table 5. 

Table 5 

No. Name of company No. of obs. First obs. 

1 Avimo Singapore Limited 
2 Cycle & Carriage Limited 
3 Cerebos Pacific Limited 
4 Cold Storage Holdings Limited 
5 Fraser & Neave Limited 
6 Haw Par Brothers International Limited 
7 Inchcape Bhd 
8 Intraco Limited 
9 Keppel Corporation 

10 Lum Chang Holdings Limited 
11 Metro Holdings Limited 
12 Neptune Orient Lines Limited 
13 Natsteel Limited 
14 Resources Development Corporation Limited 
15 Sembawang Shipyard Limited 
16 Singapore Airlines Limited 
17 Sime Singapore Limited 
18 Singapore Press Holdings Limited 
19 Singapore Bus Service Limited 
20 Straits Trading Company Limited 
21 Times Publishing Limited 
22 United Engineers Limited 
23 United Industrial Corporation Limited 
24 Wearne Brothers Limited 
25 Wing Tai Holdings Limited 
26 Yeo Hiap Seng Limited 

1073 870507 
4293 750102 
2073 830707 

751 880801 
4293 750102 
4293 750102 
4293 750102 
4292 750103 
2777 801024 
1687 841228 
4292 750103 
2630 810519 
4293 750102 
1157 870109 
4293 750102 
1434 851218 
2992 791218 
1693 841220 
3386 780626 
4293 750102 

593 890317 
4292 750103 
4293 750102 
4293 750102 

611 890221 
4289 750108 

Note: The number of observations refers to the full sample period. We have 30 Blue-Chip stocks in the ST1 
index. Four of these are newly listed stocks, which have been excluded from our study. For the sub-sample, 
we have 968 observations fewer. For those stocks having fewer than 1500 observations for the full sample 
period, we decided not to run the results for the subsample period. 
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