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There are a number of models available for examining the interac-
tion between cities and the atmosphere over a range of scales, from
small scales - such as individual facades, buildings, neighbourhoods
- to the effect of the entire conurbation itself. Many of these models
require detailed morphological characteristics and material proper-
ties along with relevant meteorological data to be initialised. How-
ever, these data are difficult to obtain given the heterogeneity of
built forms, particularly in newly emerging cities. Yet, the need for
models which can be applied to urban areas (for instance to address
planning problems) is increasingly urgent as the global population
becomes more urban. In this paper, a modeling approach which de-
rives the required land cover parameters for a mid-complex urban
energy budget and water budget model (SUEWS) in a consistent
manner is evaluated in four cities (Dublin, Hamburg, Melbourne
and Phoenix). The required parameters for the SUEWSmodel are de-
rived using local climate zones (LCZs) for land cover, and meteoro-
logical observations from off-site synoptic stations. More detailed
land cover and meteorological data are then added to the model in
stages to examine the impact on model performance with respect
to observations of turbulent fluxes of sensible (QH) and latent (QE)
heat. Replacing LCZ land cover with detailed fractional coverages
was shown to marginally improve model performance, however
the performance of model coupled with ‘coarse’ LCZ data was within
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the same range of error (20–40 W m−2 for QE and 40–60 W m−2 for
QH) as high resolution data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There has been considerable progress in the representation of urban-scale processes within atmospheric
models. A variety of urban-scale models now exist which are capable of simulating the urban heat island ei-
ther empirically or using physicalmodels (Taha et al., 1988;Myrup, 1969; Atkinson, 2003; Bottyán andUnger,
2003; Kusaka and Kimura, 2004; Hoffmann et al., 2012), urban air quality (Shir and Shieh, 1974; Huang et al.,
2000; Karppinen et al., 2000), human thermal comfort in the outdoor urban environment (de Dear and
Brager, 1998; Ali-Toudert and Mayer, 2006), energy demand and anthropogenic emissions of heat (Block et
al., 2004; Fan and Sailor, 2005; Allen et al., 2011). There are a wide number of surface schemes for modeling
fluxes of mass, momentum and energy in urban areas (i.e. the urban energy balance - UEB), which vary in
complexity in terms of their parameterisation and hence, their input requirements. More complex UEB
schemes have been shown to be very useful in examining, for instance, the detailed hygrothermal impact
of different urban forms and functions on the micro-scale climate (Barlow et al., 2004; Harman et al., 2004;
Dupont et al., 2004). Such models are invaluable for understanding the processes in operation within urban
environments. Moreover, there are some examples of where UEB models have been coupled with meso-
scale models (Harman and Belcher, 2006; Bueno et al., 2013; Stewart et al., 2014; Onomura et al., 2015; De
Ridder et al., 2015) which would effectively allow for micro-scale meteorological forecasts.

These complex UEBmodels however are incapable of being run inmany data poor settings, or at least rou-
tinely, for cities in the economically developingworldwhere the application of suchmodels to planning prob-
lems and adaptation to extreme weather conditions would have the largest potential benefit. There is now a
clear need to overcome this knowledge gap so as to allow greater integration of urban climate knowledge
with the planning and policy communities (Mills et al., 2010; Ching, 2013; Hebbert and Mackillop, 2013;
Heaphy, 2015). For instance, a comparison of 33 models by Grimmond et al. (2010) highlighted the large
number (145) of input parameters required by the group of models considered. Providing such parameters
for a single neighbourhood is challenging, and this is beforewe consider the parameters required for an entire
urban area. In order to carry out simulations across an entire urban domain, generalisations will be needed in
the interim.

Obtaining the necessary input parameters in data poor settings is only part of the problem, greater rigour in
evaluating models in differing background climates and in different cities is also urgently needed. As stated by
Oke (2006), without extensive model evaluation exercises the utility of UEB models for planning problems
remains dubious. The international urban climate model comparison (Grimmond et al., 2010; Grimmond et
al., 2011) went a large way towards discovering the general ability of UEBmodels in simulating the urban effect
on turbulent fluxes and prioritising the most important input parameters. Research on specific model
performance in different settings is also beginning to emerge (Loridan and Grimmond, 2012). Despite this
there is still a noted lack of integration of urban climate knowledge in the planning process. Very few examples
exist of UEBmodels being applied to real planning problems in collaborationwith city planners (Eliasson, 2000).
In order to bridge this knowledge gap, more specific evaluation of individual UEB models needs to be
undertaken, with clearer links to planning applications, as proposed by Masson et al. (2014). It is unlikely that
there will emerge a one-model-fits-all scheme that will apply to all situations, however a starting point may
be to seek a balance between realistically representing urban processes, ensuring good model accuracy and
requiring readily obtained input parameters that are derived in a consistent manner so as to allow inter-city
comparisons.

While concerted effort has been placed on model development (Hidalgo et al., 2008) to better represent
urban climate processes and move towards operational use in forecasting models, there is a clear need for
more general models which are also capable of studying the impacts of urbanisation on the environment
with fewer input requirements. One example is the local scale urbanmeteorological parameterisation scheme
(LUMPS – Grimmond and Oke, 2002) which has been shown to accurately simulate the UEB inmultiple cities
requiring only simple input parameters. The simple treatment of vegetation and water availability i.e. urban
water balance (UWB) within LUMPS limits its application to real planning challenges. Hence a mid-complex
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scheme, the surface urban energy and water balance scheme (SUEWS – Järvi et al., 2011) was subsequently
developedwhich has a high potential to fill this intermediate space between complex parameterisation, accu-
racy and ease of implementation.

SUEWS requires more input parameters than LUMPS, however it is still relatively straightforward to carry
out simulations and due to its inclusion of the UWB can be applied for planning problems. The model has al-
ready been evaluated in Helsinki, Los Angeles (Järvi et al., 2011; Järvi et al., 2014) andDublin (Alexander et al.,
2015) where the necessary inputs to force the model and evaluate its performance were available.

Here we evaluate SUEWS further in three additional background climates and urban configurations. How-
ever, our primary aim is to consider the impact of data quality and evaluate model accuracy in a systematic
way across multiple sites. In order to derive a means to apply SUEWS in data poor situations we employ a
modeling approach which links the local climate zone (LCZ) classification (Stewart and Oke, 2012) with
SUEWS. LCZ are linked with SUEWS to derive the necessary land cover parameters easily and in a consistent
manner across an entire urban domain. Here, we extend the proof of concept established in a previous paper
(Alexander et al., 2015) to include additional background climates andmultiple urban environments in order
validate the LCZ-SUEWS approach and answer the following questions:

1) Can off-site meteorological data be used to force SUEWS and what is the impact on performance?
2) Is the impact of “low quality” (i.e. LCZ) land cover data on SUEWS performance comparable across differ-

ent cities?

The answer to these questions will have a direct impact on applying themodel in data-poor settings such
as rapidly expanding urban areas. Prior to outlining the methods employed in this paper, the use of LCZ with
the SUEWS model is discussed.

2. LCZ-SUEWS approach

The traditional approach formodeling urban areas involves a number of procedures. Firstly, the urban area
is parameterised in terms of fraction coverage (λ) of buildings, roads and pathways, vegetation, soils and
water. Building form (morphology) and vegetation are then derived based either from LiDAR, aerial imagery
or field work. From these other parameters are derived for example the sky view factor (ψ) and height/width
(H/W) ratio. The function (as well building materials) is derived using local expert knowledge. Finally, the
derivation of meteorological forcing data, either from observations made on site or through an atmospheric
model such as a regional climate model. A number of different methods and data can be employed in each
of these stages, a standard does not exist for any scale, and thus inter-site comparisons remain largely elusive.
Moreover, in some data starved regions the availability of high-quality data (i.e. multispatial, multitemporal)
required by some methods is sparse or simply non-existent.

The basic premise of the linked LCZ-SUEWS approach addresses this disparity. Rather than view the urban
area as a collection of individual surfaces (walls, rooftops, roads, materials) the approach employs as its
starting point the notion that the urban area is a collection of discrete homogenous neighbourhoods of similar
characteristics, seeks to identify these neighbourhoods and standardise the approach for deriving parameters
for these neighbourhoods required by models.

The thermal differentiation of urban areas using LCZ as a basis has already been demonstrated both empir-
ically and through modeling (Fenner et al., 2014; Stewart et al., 2014; Leconte et al., 2015; Colunga et al.,
2015).Moreover, the ability to identify LCZ across entire urban areas i.e. tomap LCZhas also been demonstrat-
ed (Bechtel et al., 2015). Therefore, LCZ are ideally placed for standardising the collection ofmodel parameters
and for applying the outputs of UEB models across a much larger domain, thus reducing computational ex-
pense. There are a number of advantages of the approach:

1. The LCZ scheme itself is defined based on fractional coverages of different land cover types and urban param-
eters (building height/roughness, ψ and H/W) thus enables a first estimate of these parameters for models;

2. The classification of a city into LCZ enables subsequent strategic sampling of the urban area to derive de-
tailed parameter values and characteristics such as building materials, population density and land use;

3. LCZwere designed to better describe the site characteristics of urban temperature sensors, hence can aid in
the placement of instruments, the interpretation and evaluation of model simulations based on these
observations;
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4. The schemewas designed to be universally understood and since they employ standard building forms are
likely to coincide (either in part or entirely) with other land use land cover classifications that have already
been established (Alexander and Mills, 2014; Leconte et al., 2015).

Fig. 1 illustrates the approach in terms of linking LCZ to a UCM across multiple urban scales, highlighting
points 1–4 from above. Methods are currently being tested to create LCZ maps for most cities using readily
obtained open source data (Bechtel et al., 2015). Therefore, we are assuming for the approach either (i) a
LCZ map of the urban area is available or (ii) another LULC map which can be translated into LCZ is available.

It should be noted there are only a few examples of where LCZ have been linked to microscale (≤100 m)
models (see Middel et al. (2014) for example) essentially where subsets of a neighbourhood are examined
using the LCZ framework. There are currently no examples in literature of linking LCZ to building scale
(≤10m)models. Thismay be possible in some instanceswhere particular forms and functions can be inferred
from individual LCZ classes (for instance, it would be unlikely LCZ 10 would ever describe a residential area
and more likely to be required to conform to particular design/material regulations). While examining build-
ing scale through the LCZ may seem impractical, it potentially allows for later upscaling to micro, local and
meso scale therefore may be useful. However, for this work the approach employs the local scale (500–
1000 m) to derive model parameters and apply model outputs.

3. Experimental outline

We test the effect of using LCZ data which is derived in a consistent way on SUEWS performance by car-
rying out simulations of the UEB at four locations and compare the results against observations of turbulent
fluxes of sensible (QH) and latent heat (QE). The SUEWS model (v.2014b) is outlined in detail in (Järvi et al.,
2011) and (Järvi et al., 2014). In brief, the model calculates hourly radiative fluxes (Q* = K* + L*) using the
net all-wave radiation parameterisation (NARP - Offerle et al., 2003) latent heat, QE, using a modified Pen-
man-Monteith equation (Grimmond and Oke, 1991) heat storage, ΔQS, using the Objective Hysteresis
Model (OHM - Grimmond and Oke, 1999) and anthropogenic heat, QF, using the Sailor and Vasireddy ap-
proach (Sailor and Vasireddy, 2006). Finally, QH is calculated as the residual from the calculated fluxes i.e.
QH = Q*− [QE + ΔQS + QF].

3.1. Experimental setup

In order to evaluate the LCZ-SUEWS approach, we designed a systematic experiment to test the impact of
improving data quality on model performance. Our evaluation is carried out in four cities. The locations and
data descriptions are outlined in Section 3.2 below, herewe provide an outline of the experimental procedure
– see Table 1 for overview.

We adopted a similar approach to the inter-model comparison project (Grimmond et al., 2011) whereby
SUEWS was initially run using baseline land cover parameters and off-site meteorology (“low” quality data
sampled using LCZ maps). Subsequently more detailed land cover fractions and meteorological data were
added in stages. Each stepwas intended to reveal the importance of information quality on themodel output.
Due to the uncertainty/assumptions required in relation to QF for several of the sites we opted to exclude this
flux from themodel runs – though estimates are provided for some of the sites which indicate themagnitude
is low (≤30 W m−2).

Data from urban flux observations sites and proximateWMO standard synoptic stationswere obtained by
contacting data holders at each of the four sites. Once these data were released and collated for a period of ap-
proximately one year for each site, we generated a LCZ classification following themethod outlined in Bechtel
et al. (2015) for each city where data were available. Land cover parameters were then derived by sampling
LCZs (excluding the area surrounding the flux sites) and manually computing fractional coverages, this was
done in Google Earth Pro similar to the method proposed by See et al. (2015). For high-resolution land
cover we used the reported meta-data values for the flux sites. Where this was unavailable, we derived de-
tailed fractional coverages, building heights and vegetation type(s) surrounding each of the sites out to radius
of 500 m from the flux platforms.

Themodelwas span up prior to each of the experiments using the following approach: for each of the sites,
we saturated the surrounding landscape i.e. soil moisture content (SMC)was set tomaximum, and themodel

199P.J. Alexander et al. / Urban Climate 17 (2016) 196–215



200 P.J. Alexander et al. / Urban Climate 17 (2016) 196–215



was span up until SMC reached an equilibrium and appropriate estimates of leaf area indexwere thus obtain-
ed for the initiation period (January 1st).

3.2. Test locations

Table 2 and Fig. 2 provide an overview of the four sites included in this work. SUEWS has mostly been ap-
plied in temperate climates though the simpler model LUMPS has been applied in arid environments before
(Middel et al., 2012). Here we applied SUEWS to a newly (b2 years) instrumented site in Dublin, Ireland; a
long term (5–10 years) site in Hamburg; Germany; a long term site in Melbourne, Australia; and an
established site (2–4 years) in Phoenix, USA. The latter two sites represent environments with low precipita-
tion and high annual temperatures, whereas the former two represent (i) a cool temperate climate with little
annual temperature variation and high precipitation and (ii) a warm humid continental climate respectively.
In Table 3, we highlight the required fractional values of land cover types required by SUEWS as computed
using high resolution data and the LCZ approach.

The first site, Dublin Ireland –DUB – the flux observations aremade on amast located in a recently instru-
mented flat rooftop located on the grounds of a technical institute, just south of the centre of the urban area
amidst a mix of dense commercial units and residential apartments (Sunderland et al., 2013; Keogh, 2015).
The buildings surrounding the flux site are between 15 and 20 m tall, compact spacing with little vegetation.
The site was not present during the initial test case of the LCZ-SUEWS approach in Dublin (Alexander et al.,
2015). The synoptic station for DUB is located approximate 15 km north of the urban centre adjacent Dublin
International Airport conforming toWMO standards; large homogenous fetch of short grass, no tall trees, and
no nearby buildings.

The second site, Hamburg Germany – HAM – the flux observations are made at various height levels of a
large telecommunicationsmast located 8 km east of the urban centre (Brümmer et al., 2012). This site essen-
tially straddles two differing LCZs, to the west of the flux site, is characterised by large warehousing
units b 15m tall with little vegetation. To the East of themast there is largely green vegetation, trees and little
building coverage. The synoptic station for HAM is located at Hamburg International Airport approximately
11 km north of the urban centre, again conforming to WMO standards.

The third site, Melbourne Australia – MEL – here the flux observations are made in Preston, a suburban
area located approximately 10 km north of the centre of Melbourne (Coutts et al., 2007). The instruments
are located on a mast surrounded by medium density residential houses 5–8 m tall, open spacing and an
ample amount of vegetation both grass and trees. The accompanying synoptic data were obtained fromMel-
bourne Airport, located 23 km north-west of the urban centre.

The final site, Phoenix USA – PHX – for this location, observations aremadewithin a residential area locat-
ed 7.5 km North-West of downtown Phoenix in the suburban area of Maryvale (Chow et al., 2014). The sur-
rounding area is comprised almost entirely of low rise residential housing 5-8 m tall with dry xeric
landscaping i.e. little green vegetation. The synoptic data for this site were obtained from Phoenix Skyharbor
airport which is proximate to the centre of the urban area (approximately 3.5 km southeast of downtown
Phoenix). Solar radiation datawere unavailable at Skyharbor airport, therefore solar radiation data for a near-
by Arizona Meteorological network (AZMET) station located 1 km northwest of the airport at Encanto were
used.

Fig. 3 provides annual wind roses from each location based on the flux data, Fig. 4 shows LCZ descriptions
applicable immediately below and surrounding each of the sites along with satellite imagery. These LCZ de-
scriptions (along with wind direction) were used to filter the observational data to ensure the source area
for each site was consistent with the LCZ type used for the model runs. For example, for DUB site, this
meant including westerly vectors while excluding easterly winds. For HAM, observational data were split
into 2 sub datasets corresponding with LCZ 8 (westerly flows) and LCZ D (easterly flows). For the purposes
of this study we only considered the LCZ 8 data for the Hamburg site. For both MEL and PHX the relative

Fig. 1. LCZ-SUEWS approach: At the mesoscale (10s–100s of km2), model parameters are derived by integrating all LCZ across the entire
domain. At the local scale (1–10s of km2) specific model parameters for individual LCZ types are derived. At themicroscale and building
scale (10s–100s of m2) the approach is as yet untested, but would involve the addition of building dimensions and spacing, individual
vegetative species as well as detailed material data.
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homogeneity of the surrounding urban area (along with the low wind speeds) meant no additional filtering
was carried out on the provided observational data.

3.3. Evaluation of experiments

The performance of SUEWS run in each stage of the experiment is evaluated against the observations at
each of the sites. Table 4 highlights the observational data available against which the model is judged,
Table 5 highlights the raw data post-processing steps undertaken at each site along with the instruments
used at each site. We employed root mean squared error (RMSE) and mean fractional bias (MFB) and Taylor
diagrams which further employ the centred RMSE (E′), the correlation coefficient (R), and the standard devi-
ation (σ) (Taylor, 2001) to assess the model performance in each of the stages highlighted previously. Addi-
tionally, regression analysis was carried out between model simulations and observations, for this the
coefficient of determination (R2) is reported. For comparing seasonal model performance across stages, the
RMSE is normalised (nRMSE) using a normalisation factor, which is computed using the difference between
the maximum and minimum observed values (Shcherbakov et al., 2013).

4. Results

In the following sections the results of the systematic experiment for the four flux sites across each of the
stages are presented. The differences inmodel performance between stages and how these differences related
across the four sites is the primary focus. The performance of SUEWS in simulating the radiative fluxes where
they have direct bearing on the subsequent estimation of the turbulent fluxes is also highlighted. Our analysis
focused on two key temporal scales; (i) hourly/mean diurnal simulations and (ii) daily flux densities.We also
examined seasonal performance focusing on two key periods where solar insolation is at a minimum / max-
imum and where phenological conditions result in different surface processes occurring, namely (i) winter-
time, conventionally defined as the months of December January and February (DJF) in the northern hemi-
sphere and (ii) summer-time, defined as June July and August (JJA). When reporting seasonal results, the
months of DJF are used for MEL for summer and JJA for winter.

Table 2
Meta-data of the sites included in this study. Shown is the year in which observations were obtained, the background climate type, the
location of both the flux sites and alternative synoptic stations. Shown also in meters are the instrument height of the flux towers (Zm)
the displacement height (Z0) and the mean building height surrounding the site (Zb).

Location Year Köppen Site LAT LONG WMO ID Zm Z0 Zb

Dublin, Ireland
Site code: DUB

2013 Cfb Flux 53.34 −6.27 – 37 0.6 16.3
Synoptic 53.43 −6.25 39690

Hamburg, Germany
Site code: HAM

2014 Dfb Flux 53.52 10.10 – 50 0.6 8.8
Synoptic 53.63 10.00 101470

Melbourne, Australia
Site code: MEL

2004 Cfb Flux −37.73 145.01 – 40 0.4 6.4
Synoptic −37.67 144.83 948660

Phoenix, USA
Site code: PHX

2012 BWh Flux 33.48 −112.14 – 22.1 0.5 4.5
Synoptic 33.42 −112.02 722780

Table 1
Outline of systematic experiment used to test the LCZ-SUEWS approach across multiple sites/climates/urban configurations. Each stage
subsequent to stage 1 adds additional detail, hence, when interpreting results, the additional effort in providing these data should be
considered.

Stage Experiment
alias

Land cover data use for model run Meteorological data used for model run

1 Base-line Local climate zone fractions derived from sampling
sites across the urban area

Proximate WMO standard synoptic station
(airport sites): T, RH, K↓, Pr, P, U, V

2 Detailed land
cover

Fractional values derived from 1 km2 immediately
surrounding flux site

Proximate WMO standard synoptic station
(airport sites): T, RH, K↓, Pr, P, U, V

3 Detailed
meteorology

Fractional values derived from 1 km2 immediately
surrounding flux site

Meteorological data collected adjacent flux
observation platforms: T, RH, K↓, L↓, Pr, P, U, V
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Fig. 2. Location of the four sites used in this experiment (A) is Dublin, Ireland (B) is Hamburg, Germany (C) isMelbourne, Australia (D) is Phoenix, USA. Shown are the locations of the synoptic andflux sites.
Urban land cover obtained from Global Rural-Urban Mapping Project, Version 1 (GRUMPv1).
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4.1. Stage 1: daily and hourly performance results

The first stage of the experiment established a base-line performance against which the subsequent addi-
tion of more detailedmeteorological and land cover data is judged. In this stage of the experiment, land cover
data are not obtained directly from the area surrounding each of the flux sites, but rather by sampling the LCZ.
The performance for each of the sites is highlighted in Table 6.

The ranking from lowest to highest RMSE (values reported in parenthesis) based on the daily estimates of
QE-PHX performed best in stage 1 (9.66 W m−2), followed by DUB (9.98 W m−2), MEL (30.99 W m−2) and
HAM (37.72 W m−2). In terms of model bias, PHX and MEL underestimate QE (−1.02,−0.18 respectively).

Fig. 3. Annual wind roses collected at the flux sites, each coloured bar represents a different wind speed (m s−1), wind direction was
partitioned into16 (22.5°) compass vectors.

Table 3
Land cover fractions (λ) used to force themodel calculated using the LCZ approach (stage 1) and traditional approach using high resolu-
tion (HR) data immediately surrounding the sites (stages 2 and 3).

Location Land cover Building Pavements Unmanaged Trees Grass Water

Dublin, Ireland [DUB] LCZ 2 - compact midrise 33 55 00 06 06 0
HRa 39 49 00 10 02 0

Hamburg, Germany [HAM] LCZ 8 - large low-rise 40 20 10 17 11 2
LCZ Db - low plants 05 02 07 35 49 2
HRa 27 15 07 22 18 11

Melbourne, Australia [MEL] LCZ 6 - openset low-rise 37 16 0 21 26 0
HRc 44 16 0 29 11 0

Phoenix, USA [PHX] LCZ 6 - openset low-rise 49 18 27 02 04 0
HRd 26 22 37 05 10 0

a Based on 1 km immediately surrounding flux site, λ calculated using 2.5 m imagery in Google Earth ProTM.
b Data not used in this study.
c Based on values reported in Coutts et al. (2007).
d Based on values reported in Chow et al. (2014).
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Fig. 4. Top: Conceptual LCZ description of the land cover immediately surrounding each flux site. Bottom: Satellite imagery surrounding each of the sites (~500 × 500 m) from Google Earth Pro©.
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DUB and HAM both showed negligible negative and positive biases (−0.02 and 0.02) respectively. For QH the
ranking from lowest to highest daily RMSE values was DUB (24.65 W m−2) HAM (32.07 W m−2) MEL
(32.31 W m−2) and PHX (47.27 W m−2) in stage 1. QH was underestimated for the DUB site (−0.16) and
overestimated for HAM (0.67), MEL (0.62) and PHX (0.31).

For QE the highest R2 value achieved in stage 1 was for HAM the lowest value was for PHX followed by MEL
and DUB. QH in stage 1 is characterised by relatively high R2 values compared to QE (ranging from 0.26 to 0.69).

The calculation of RMSE based on hourly values often includes large isolated errors which can occur be-
tween specific hourly flux densities, these errors can arise either due to observational errors which were
not filtered correctly or poor model performance. Unsurprisingly for most sites/variables, hourly RMSE was
higher than daily RMSE, for instance, for DUB QE RMSE was 37.11 W m−2 which was approximately 3.5
times higher (i.e. worse) than the daily performance, though this was an extreme example. Generally hourly
performance was 1.5 times poorer than daily for QE and QH in stage 1.

4.1.1. Stage 2 and stage 3: performance results
In the second stage of the experiment, the land cover types used for the model runs were modified using

fractional values calculated out to 1 km2 surrounding each site.While these fractional values relate to the area
directly surrounding the flux site, they require additional effort to compute. The largest difference between
stages 1 and 2 in terms of land cover fractionswas HAM and PHXwhich both had significantly lower building
fractions than those calculated using the LCZ approach – recall Table 3. This was borne out in the model per-
formance – Table 6. The impact of high resolution land cover was to increase daily RMSE marginally for QE at
all sites. The largest RMSE increase was 9.3 Wm−2 compared to stage 1 for HAM, followed by PHX, RMSE in-
creased by 3.5Wm−2. The increase was 0.53Wm−2 and 1.71Wm−2 for DUB andMEL respectively. The im-
pact on daily QH was less consistent across the sites compared to QE. For MEL and PHX a slight improvement
was seen (RMSEdecreased by 0.54 and 4.77Wm−2 respectively)whereas performance decreased slightly for
DUB (0.83 W m−2) and HAM (6.89 W m−2).

Model bias did not change direction in stage 2, for HAM the positive bias (i.e. model overestimation) for QE

increased by 0.18. ForMEL and PHX, which both exhibited negative bias (i.e. model underestimation) in stage
1 also had negative biases in stage 2. The bias increased by 0.17 for MEL but a significant improvement was
seen in PHX, bias was reduced by 0.22, though the model still underestimated QE. For DUB, there was no
change in bias for QE and QH between stages 1 and 2. Interestingly, the impact on RMSE calculated from the
hourly flux densities in stage 2 was an average reduction in RMSE of 2.5 W m−2. The largest improvement
in hourly flux calculation was QE for DUB which reduced RMSE by 15.57 W m−2.

Table 4
Descriptive statistics illustrating the availability of flux data (top rows) as a percentage of the entire year considered. Note: DOY 1 = -

January 1st. Also given are the means (μ) and standard deviations (σ) of wind speed (u) relative humidity (rh) air temperature (Tair)
air pressure (pres) and insolation (kdown) recorded at the synoptic sites. For precipitation (rain), the maximum hourly value recorded
is given along with the annual sum.

Site DUB HAMLCZ 8 MEL PHX

Year 2013 2014 2004 2012

DOY span 1–109, 149–305 1–365 1–70, 87–183, 210–242,
275–333

1–77, 108–110, 121–157, 164–223,
242–366

N (valid) 3567 (45%) 4536 (57%) 3705 (47%) 6784 (86%)

U μ 5.6 4.2 5.3 1.1
[m s−1] σ 2.9 2.1 2.8 0.9
RH μ 81.7 80.7 67.5 28.2
[%] σ 12.3 15.4 18.8 16.8
Tair μ 9.5 10.8 13.7 25.1
[°C] σ 5.5 7 5.3 9.3
pres μ 101.4 101.4 101.6 101.1
[kPa] σ 1.2 0.8 1.7 1.2
rain Max 12.9 14.9 8.5 14.7
[mm] Sum 763.9 679.4 448.6 114.19
kdown μ 115.1 121 164.38 231.49
[W m−2] σ 188.2 197.7 253.29 308.92
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Table 5
Meta-data illustrating instrumentation at the four flux site along with corrections carried out on flux measurements.

Site

DUB HAM MEL PHX

Instruments
[model]

Tower (48 m AGL)

• 3D sonic anemometer [WindMaster Pro,
Gill]

• Gas analyser [LI-7200]
• Temperature-relative humidity sensor
[HMP45C]

• Net radiometer [NR-01]
47 m
Roof level (37 m)

• Tipping bucket rain gauge [ARG100]

Tower (50 m AGL)

• 3D sonic anemometer [USA-1]
• Gas analyser [LI-7500]
• Thermometer [Pt-100]
• Humidity sensor [HMP 45]
12 m

• Pyranometer [Kipp + Zonen]
• Pyrgeometer [Eppley]
Ground level

• Pressure sensor [PTB 200 A]
• Tipping bucket rain gauge

Tower (40 m AGL)

• 3D sonic anemometer [CSAT3]
• Infrared gas analyser [LI-7500]
• Krypton hygrometer [KH20]
• Temperature-relative humidity
[HMP45C]

• Net radiometer [Q7.1]
• Albedometer [CM 7B]
• Pyrgeometer [CG2]

Tower (22 m AGL)

• 3D sonic anemometer [CSAT3]
• Infrared gas analyser [LI-7500]
• Temperature-relative humidity sensor
[HMP45AC]

• Net radiometer [NR-01]
Ground level

• Rain gauge [TB4]

10/20 Hz
data
corrections

1. Planar fit rotation (Wilczak et
al., 2001)

2. Block averaged (30 min)
3. Offset for sensor lag

(co-variance maximization)
4. Signal de-spiking (Vickers and

Mahrt, 1997), accepted spikes:
1%

5. Missing sample allowance 10%
6. Density effects (Webb et al.,

1980)
7. Flagging according Foken 2003,

QC ≥ 7 discarded Foot print
model:
Kormann and Meixner, 2001

1. Double rotation
2. Block averaged (60 min)
3. Offset for sensor lag

(co-variance maximization)
4. Signal de-spiking (Mauder et al.,

2013), accepted spikes: 2%
5. Missing sample allowance 10%
6. Density effects (Webb et al.,

1980)
7. Flagging according Foken 2003,

QC ≥ 7 discarded Foot print
model:
Kormann and Meixner, 2001

1. Signal de-spiking
2. Oxygen absorption

(Tanner et al., 1993)
3. Offset for sensor lag
4. Block averaged (30 min)
5. Density effects (Webb et

al., 1980) Foot print
model:
None reported

1. Signal de-spiking
2. Aligned into natural wind coordi-

nates (w = 0) (Kaimal & Finnigan,
1994)

3. Offset for sensor lag
4. Block averaged (30 min)
5. Frequency response correction
6. Density effects (Webb et al., 1980)

Foot print model:
Schmid et al., 1991
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Table 6
Root Mean Square Error (RMSE) statistics (W m−2) calculated for daily mean flux density and individual hourly flux densities. Also shown are mean fractional bias (MFB) calculated using the daily flux
densities (−2 to+2). Also shown is the coefficient of determination (R2). Below presents a colour key summary for highest and lowest daily RMSE scores illustrating the best performance (lowest RMSE)
to worse performance (highest RMSE): Lowest RMSE (best performance) = green, highest RMSE (worst performance) = red, intermediate RMSE = yellow.
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Table 7
Seasonal RMSE values calculated for each site. Summer refers to June July and August for DUB, HAM and PHX andDecember January February forMEL.Winter refers to December January February for DUB,
HAM and PHX and June July and August for MEL. RMSE values are inW m−2. RMSE values are derived using daily flux densities thus are slightly more conservative than hourly RMSE values. Given also is
the nRMSE which normalises the RMSE using the range of observational data, hence the effect of larger flux magnitudes in summer are removed. Highlighted are values where the mean observed flux
density was close to 0 W m−2 meaning the normalised values should be interpreted with caution.

QE QH

Stage Metric DUB HAM MEL PHX Stage Metric DUB HAM MEL PHX

Summer Summer

1 RMSE 12.13 27.69 16.08 29.27 1 RMSE 25.86 46.86 39.29 48.70

2 RMSE 12.75 26.76 17.05 22.46 2 RMSE 27.39 35.22 40.89 39.65

3 RMSE 18.09 25.98 16.84 31.40 3 RMSE 28.85 31.74 34.37 57.04

1 nRMSE 51.7% 22.9% 24.1% 23.0% 1 nRMSE 16.7% 36.7% 20.9% 32.3%

2 nRMSE 54.4% 22.1% 25.6% 17.6% 2 nRMSE 17.7% 27.6% 21.8% 26.3%

3 nRMSE 77.1% 21.5% 25.2% 24.6% 3 nRMSE 18.6% 24.8% 18.3% 37.8%

Winter Winter

1 RMSE 8.28 10.78 20.39 13.32 1 RMSE 23.05 21.93 39.92 17.59

2 RMSE 8.73 12.08 20.38 18.71 2 RMSE 25.40 22.87 44.31 20.82

3 RMSE 21.42 41.36 19.90 13.65 3 RMSE 41.85 48.32 24.44 23.47

1 nRMSE 21.4% 19.6% 16.7% 84.8% 1 nRMSE 15.2% 19.9% 38.4% 24.3%

2 nRMSE 22.6% 21.9% 18.3% 119.1% 2 nRMSE 16.7% 20.8% 42.2% 28.8%

3 nRMSE 55.4% 75.1% 17.7% 86.9% 3 nRMSE 27.6% 43.9% 24.1% 32.5%
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For thefinal stage of the experiment, off-sitemeteorological forcingdatawas replacedwithmeasurements
made on site. The most significant difference for this stage is the use of observations of the incident radiation
(K↓, L↓) made at the four sites. There was little impact on daily RMSE in stage 3 for HAM,MEL and PHXwhen
compared to values for stage 2. For DUB, daily RMSE increased by 8.96 and 14.41Wm−2 for QE andQH respec-
tively. For HAM, RMSE increased by 4.51 and 1.78 W m−2 for QE and QH, whereas for PHX, RMSE was de-
creased by 5.17 W m−2 for QE and increased by 1.78 W m−2 for QH. RMSE for MEL was practically
unchanged in terms of QE between stages 2 and 3 (improved model performance by 0.03 W m−2) similarly
to HAM and PHX the difference in QH was b2 W m−2 (1.89 W m−2).

A larger impactwas seen in the hourlyflux density RMSE, particularly for HAM-moving from stages 2 to 3,
RMSE increased by a similar amount for both QE (21.03 W m−2) and QH (21.61 W m−2) though the bias
remained positive indicating overestimation by the model compared to the observations. For DUB, model
RMSE also increased between stages 2 and 3 by 4.25 and 7.27 Wm−2 for QE and QH. For MEL, hourly perfor-
mance improved (RMSE decreased) slightly for QE (2.2 Wm−2) and QH (10.5 Wm−2) between stages 2 and
3. There was no impact on hourly RMSE for PHX between stages 2 and 3 (0.03 and 0.92 Wm−2) – though it
should be noted hourly QH RMSEwas the highest amongst the four siteswith a persistent positive bias (model
over estimation of QH compared to observations).

4.2. Seasonal and annual performance results

The seasonal RMSE values are given in Table 7. Model performance tended to be better in winter than sum-
mer for all sites during all stages based on the RMSE. RMSE for QEwas lower than QH for all sites in both seasons.
Looking initially at difference between the seasonal RMSE for individual stages, the largest difference in model
performancewas for QH for PHX, performance in summerwas 31.11, 18.83 and 33.57Wm−2worse thanwinter
in stages 1, 2 and 3 respectively. The smallest difference in seasonal performance was for QE for DUB.

Examining the seasonal difference across all stages reinforces the trend between summer and winter per-
formance. The performance in summer is worse for both QH and QE, the exception was QE for MEL which ex-
hibits higher RMSE in winter and QH for DUB which was slightly higher, though this was due to large
wintertime RMSE in stage 3: for stage 1 and 2 RMSEwas higher in summer.While therewas a clear difference
in the seasonal performance for all sites, the difference between stageswere small with only some exceptions.

To account for the seasonal differences in themagnitude of available energy betweenwinter and summer
and enable comparison across seasons, the nRMSE was also calculated, which normalises the RMSE using the
range of observed turbulent flux magnitude. This relates the magnitude of the error to the magnitude of the
observed flux. Where the mean of the observed flux approaches 0 W m−2 (values highlighted in Table 7)
the nRMSE should be interpreted with some caution. Nevertheless, nRMSE for QE and QH tended to be
lower in winter than summer for stages 1-2.

The overall annual performance for each of the sites is presented as Taylor diagrams in Fig. 5, which com-
pares the individual stages. Taking the entire annual performance across all sites, the difference between
stages 1 and 2 is generally lower than between stages 1 and 3. The centred RMSE for QH tended to be slightly
higher for all sites, therewas also stronger correlationwith observations for QH than for QE. The simulated an-
nual variation (σ) across the entire period was close with the variation in observations, the clear exceptions
were QE for DUB which exhibited significant higher variation in observations compared to the model in all
stages. The other exception was QH for MEL which illustrated higher variation in the model compared with
the observations. Stage 1 (LCZ derived inputs) and stage 2 (high-resolution land cover) exhibited similar per-
formances on an annual basis.

5. Discussion

Despite differences in background climate, urban land cover type, building materials, and vegetative spe-
cies, the performance of SUEWS in simulating the turbulent fluxes QE and QH is broadly consistent between
sites. RMSE for QE falls into a range of between 20 and 30 W m−2 while a RMSE range of 40–60 W m−2 for
QH captures all sites, ranges similar to those reported in Järvi et al. (2011) for Los Angeles and Vancouver.
The improved ability of the model in simulating QE is evident, errors were consistently lower than QH for
most of the sites.
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The addition of high resolution land cover fractions did not significantly impact on model performance
across any of the sites considered, despite large differences between those calculated by the LCZ approach.
Given the increased amount of effort required to derive the high resolution fractions, it appears LCZ fractional
values can satisfactorily be used in combination with the SUEWS model.

In all stages, themodel captureswell the relative differences between the four siteswhen considering both
latitude and urban density. For the urban LCZ considered here, QH N QEwhile QE is higher in summer owing to
phenological development and higher amount of energy. Both of these factors may explain the seasonal var-
iation in performance whereby performance was better in winter than summer. Vegetation, even small
amounts, have been identified as a critical component for most UEB models (Loridan et al., 2010;
Grimmond et al., 2011), here single species (i.e. deciduous or coniferous) were used for all sites, it is possible
that increased detail on annual phenological development, observed LAI progression for example, along with
multiple species will reduce the seasonal differences in model performance.

As different levels of data are added to the model for the experiment, the impact on performance relative
to the observation sites was broadly consistent across all domains. In terms of hourly simulations of QH, using
additional details on surrounding land cover fractions improved the model performance, though the reduc-
tion in RMSE was relatively minor (often b15Wm−2) compared to stage 1 - there was no impact on bias di-
rection. Similar magnitudes were found in previous work.

The impact of adding meteorological data collected adjacent the flux sites is the most difficult finding to
explain. Generally, performance was diminished using on-site meteorological data coupled with high resolu-
tion land cover in all cases except PHX, though the differences were extremely small. This may be due to ob-
servational error whereby the meteorological data collected alongside the towers are unduly influenced by
local effects whereas the flux platforms themselves have a more representative fetch. This would certainly
be the case for DUB and HAM which had relatively heterogeneous fetches surrounding the flux sites.

As with previous studies, errors should not be attributed solely to model performance; observations of QE

are notoriously difficult and subject to large errors/uncertainty particularly immediately during and after pre-
cipitation events. Observations at each of the flux sites included underwent post processing of some kind
however some observational errors may have been included despite this and despite the additional filtering
carried out using the LCZ approach andwind vectors. For instance, themagnitude of observed QE for DUB [LCZ

Fig. 5. Taylor diagrams based on all (i.e. hourly) observations for QE (top panels) and QH (bottom panels). Data have been normalised
using observations to allow comparisons between sites and stages, hence, RMSEmagnitude is expressed in standard deviations compared
to observed data.
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2] was larger than would be expected given the sparse amount vegetation surrounding this site. A similarly
instrumented site also classed as LCZ 2 (reported in Alexander et al., 2015) exhibited amuch lowermagnitude
and range of QE during summermonths, where themaximumobserved valuewas about 60Wm−2 and ame-
dian value of 25 Wm−2. Here, the observed median value for DUB during summer was 67.57Wm−2 with a
maximum of 215Wm−2 aroundmidday. There is nothing that readily accounts for the largemagnitude of QE

observed at this site, again given the lack of vegetation. The instruments for DUB are located about 5 m lower
than the alternative LCZ 2 site, so it is unlikely to be due to measurements being made within the roughness
sublayer. However, this only occurred for the diurnal profiles, averaging over multiple hours and days goes
some ways towards filtering out such erroneous observations. In terms of the HAM site, the addition of
more detailed land cover data resulted in a decrease in model performance – this is likely attributed to the
source area of the observations following the filtering process. Note the fractional values immediately sur-
rounding the site have a higher fraction of vegetation and water coverage however the observational dataset
sought to exclude the influence of these land cover types. It is unsurprising themodel overestimated themag-
nitude of QE in this instance.

Another important component for UEB model performance is net radiation. Here, there was a consistent
overestimation of QH for PHX, this was due to the model underestimation of albedo (α) leading to lower
value of K↑ (not shown). The model estimated α to be 0.15 – however in reality, the building material in
PHX are much lighter than the group average, as such, α based on observations was ~0.25. Therefore, the
model retainedmore energy, leading to overestimation of both QE andQH. Thismeans a subset of LCZmaterial
properties may need to be compiled for applying the model in environments with similar building materials,
but it should be noted the partitioning of energy normalised by available energy, that is QH/Q* and QE/Q*, was
similar between observations and the modelled fluxes.

Nevertheless, SUEWS simulations for both daily and hourly turbulent fluxes agree well with observations
using the LCZ approach, with errors well within previously reported ranges. This enables us for the first time
to carry out inter-site comparisons in theUEB across similar LCZ types. Fig. 6 shows thediurnal flux profiles for
three LCZ 6 sites (derived using the setup in stage 1) to illustrate this point. As shown, the partitioning of en-
ergy amongst these sites is remarkably similar. Day length (i.e. positive Q*) is shown to be slightly longer in
the DUB data with a lower amount of energy at midday as would be expected of this climate. As a conse-
quence, Q* at midday was 457.25 W m−2, 65 W m−2 lower than MEL and 132 W m−2 lower than PHX.

Fig. 6. LCZ 6 summer time Diurnal profile for MEL, PHX and also shown is LCZ 6 site for DUB as presented in Keogh et al. (2012) and Al-
exander et al. (2015) Top left panel is Q*, followed by QH (top right), ΔQS (bottom left) and QE (bottom right).
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PHX exhibits slightly higher proportion of energy expended towards QH throughout the course of the day
compared to both DUB andMEL, aswould be expected given the lack of vegetation/water in this environment.
The differences in land cover can also be examined e.g. buildingmaterial and artificial surface extent across all
sites can be examined in detail to explore the effect on ΔQS – a principle component of nocturnal UHI
formation.

The use of a standardised method for collecting land cover (LCZ) andmeteorological data in order to pre-
form initial assessments of an area's urban energy andwater balance should not discourage the continued es-
tablishment of high-quality and long-term flux towers in cities. Here, we considered only three LCZ classes,
namely LCZ 2, 6 and 8 as these represented the sites with available data. As additional instrumented sites be-
come available, the approach outlined here should undergo further evaluation.

While the approach has obvious applications in overcoming fiscal/computational limitations in cities with
limited resources, the application of the approach needs to be further validated in sparse urban environments,
as well as non-urban environments. Different background climates should also be considered. While we re-
quested urban flux data for a range of background climates the four sites included in this study were the
only cities for which data were made available. Therefore, eddy-covariance platforms are still an essential in-
vestment in any city. Despite the limited sites included here, the extension of the LCZ-SUEWS approach into
additional arid/continental type climates undertaken here builds upon the original case study, which further
supports the notion that the approach employed with the SUEWSmodel is capable of realistically simulating
the UEB in a variety of circumstances and urban environments.

6. Conclusions

In this studywe systematically tested amodeling approachwhich seeks to overcomedata scarcity in terms
of urban morphology and meteorological observations made within the urban environment. To that end, we
coupled the local climate zone (LCZ) scheme of Stewart and Oke (2012) with the surface energy and water
balance scheme (SUEWS) v.2014b (Järvi et al., 2014). The approach was tested in four background climates
and different urban configurations. Detailed land cover data and meteorological observations were added
to the SUEWS model in stages to examine the impact on model performance relative to the coarse LCZ data
and meteorological observations made at airports conforming to WMO standards.

The results show that the addition of detailed data on model performance varied across the sites consid-
ered, however root mean squared error (RMSE) consistently fell within a range of between 20 and 40 W m
−2 for QE and between 40 and 60 W m−2 for QH. The difference between the use of LCZ and detailed land
cover was generally small indicating that utilising LCZ data with SUEWS for the initial assessment of the
urban energy and water balance is an appropriate approach to take. Furthermore, meteorological observa-
tions which are designed to exclude the urban effect are appropriate as forcing data for SUEWS, without
impacting significantly on model performance. The results indicate that this modeling approach can be
used in data poor settings to rapidly derive in a consistentmanner the parameters required bymost urban cli-
mate models, provided an LCZ map of the city is available.
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