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Abstract

We propose a new approach to portfolio optimization by separating asset return distributions into

positive and negative half-spaces. The approach minimizes a newly-defined Partitioned Value-at-Risk

(PVaR) risk measure by using half-space statistical information. Using simulated data, the PVaR

approach always generates better risk-return tradeoffs in the optimal portfolios when compared to

traditional Markowitz mean-variance approach. When using real financial data, our approach also

outperforms the Markowitz approach in the risk-return tradeoff. Given that the PVaR measure is

also a robust risk measure, our new approach can be very useful for optimal portfolio allocations

when asset return distributions are asymmetrical.

Keywords: Risk Management · Asymmetric Distributions · Partitioned Value-at-Risk · Portfolio

Optimization · Robust Risk Measures

1

ppyeo
Typewritten Text
Published in European Journal of Operational Research, Volume 221, Issue 2, September 2012, Pages 397-406
https://doi.org/10.1016/j.ejor.2012.03.012



1 Introduction

In the pioneering work by Markowitz (1952) [33], an optimal portfolio allocation is obtained by mean-

variance optimization. However, researchers have found that two key assumptions made in the Markowitz

approach are often violated in real data and experience. First, Tobin (1958) [43] and Chamberlain (1983)

[12] show that the mean-variance optimization is appropriate to capture the tradeoff between risk and

return only if the distribution of returns is elliptically symmetric. Once this assumption is violated,

the mean and variance will not be sufficient statistics for investors to make optimal asset allocation

decisions. Many empirical studies have reported evidence of asymmetries and large kurtosis in asset

return distributions. For example, Mandelbrot (1963) [34], Fama (1965) [22] and Kon (1984) [31] find

that extreme returns occur more frequently than would be under normal distribution. Simkowitz and

Beedles (1980) [41] find that individual stock returns are positively skewed. Alles and Kling (1994)

[1] show that both equity and bond indices have negative skewness. Theodossiou (1998) [42] reports

skewness in international stock returns, foreign exchange rates, and commodity returns. Bekaert, Erb,

Harvey and Viskanta (1998) [7] and Erb, Harvey and Viskanta (1999) [21] also find that emerging mar-

kets equities and bonds display skewness. More recently, Ang and Chen (2002)[2] document that equity

portfolios are more correlated for downside moves than upside moves and the asymmetries in the data

reject the null hypothesis of multivariate normal distributions.

Second, the Markowitz approach assumes that people do not differentiate positive (upside risk)

and negative (downside risk) deviations from the mean. There is a growing body of research evidence

that investors have asymmetrical risk attitudes towards upside and downside risks. Arditti (1967) [3]

and Scott and Horvath (1980) [39] show that investors prefer positive skewness to negative skewness.

Investors such as fund managers might derive very different utility from meeting versus falling-short of

the target returns. Mitton and Vorkink (2007) [35] find that investors in a sample of discount brokerage

transactions hold less optimal portfolios with lower Sharpe ratios but positive skewness. Given the

findings, Barberis and Huang (2007) [6] and Brunnermeier, Gollier and Parker (2007) [11] propose a

theoretical framework for the tradeoff between diversification and skewness in portfolio allocation, in

a dramatic contrast to the initial Markowitz approach. Kerstens, Mounir and Woestyne (2011) [30]

also propose an improved Markowitz approach by solving for optimal portfolios under mean-variance-

skewness efficient frontier.

Better risk-return tradeoffs in the presence of asymmetric distributions are documented by Harvey

and Siddique (2000) [25]. They show that systematic skewness commands an average risk premium of
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3.6 percent per year. Simkowitz and Beedles (1978) [40] and Conine and Tamarkin (1981) [16] also

claim that though diversification can change skewness exposure, the remaining idiosyncratic skewness

is relevant in asset pricing. Therefore, the portfolio optimization under asymmetric distribution is a

significant topic for research.

Robust optimization literature is developed to improve the estimation errors and handle the unstable

nature of asset return distributions. The key idea is to find a portfolio that maximizes (or minimizes) the

expected utility (disutility) value in the midst of infinitely many possible ambiguous distributions of the

returns fitting the given mean-variance estimations. Hence, lower partial moments, value-at-risk (VaR),

conditional value-at-risk (CVaR), or worst-case mean-covariance value-at-risk (WVaR) approaches are

developed and improved to find optimal portfolio allocations. However, many recent improvements of

robust optimization are still focusing on the conventional mean-variance framework (e.g. Chen, He, and

Zhang, 2011 [15]; Delage and Ye, 2010 [17]; DeMiguel and Nogales, 2009 [18]).

In this paper, we study how to make optimal portfolio allocations in the presence of asymmetry in

asset returns. We define a new robust risk measure,termed Partitioned Value-at-Risk (PVaR), which

extends the WVaR risk measure proposed by El Ghaoui, Oks, and Oustry (2003) [20], to incorporate

asymmetry in the distributions of asset returns. We show that when asset returns are asymmetrically

distributed, PVaR-minimized portfolio allocations require lower capital reserves for the same percentage

of tail risk as compared to WVaR-minimized portfolios. This advantage is especially useful for optimal

portfolio allocation during market downturns when fat-tailed and skewed return distributions are often

observed.

Morever, PVaR has appealing properties as a risk measure. When augmented with the support of

asset returns, PVaR becomes a coherent risk measure, satisfying the coherence axioms of Artzner et

al. (1999) [4], unlike conventional risk measures such as variance and Value-at-Risk (VaR). PVaR is

also a robust measure of risk, as it is defined over a family of probability distributions, whereas the

classical VaR measure is defined over a single probability distribution. Finally, the PVaR measure does

not require the strong assumptions made in the Asymmetry-Robust VaR (AR-VaR) (Natarajan et al.,

2008 [36]) and is easy to implement empirically.

The rest of this paper is organized as the follows. Section 2 provides a background discussion of

the robust portfolio optimization literature to motivate our PVaR approach. Section 3 presents the

definition of PVaR and the portfolio optimization approach based on it. Section 4 reports three sets

of empirical results on the performance of the PVaR approach in comparison with the conventional

mean-variance approach, using both simulated and actual stock returns data that are widely available.
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Section 5 concludes.

Notations: Throughout this paper, we denote a random variable, r̃, with the tilde sign. Bold face

lower case letters such as x represent vectors. We use the prime symbol “ ′ ” to denote transpose and

the functionals P(·) and E(·) to denote the probability of an event and the expectation of a random

variable respectively. In particular, EP(·) denotes expectation under the probability distribution P. Let

(Ω,F ,P) be the probability space and let r̃1, . . . , r̃n be P-measurable random returns of n risky assets.

The support of asset returns is denoted by W = {r̃(ω) : ω ∈ Ω} ⊆ <n. The vector of mean asset

returns is denoted by r̄. We define the universe of portfolio returns as follows

V = {ṽ : ṽ = y + x1r̃1 + . . .+ xnr̃n where ∃(y, x1, . . . , xn) ∈ <n+1}.

The set V encompasses all possible portfolio returns generated by the n risky assets and riskless cash

holding y. Any ṽ ∈ V can be expressed as ṽ = y+ r̃′x for some (y,x) ∈ <n+1. We will use the notation

ṽ ≥ w̃ for ṽ, w̃ ∈ V to represent state-wise dominance, i.e., ṽ(ω) ≥ w̃(ω) for all ω ∈ Ω.

2 Existing VaR Measures in Portfolio Optimization

In this section, we first review some common approaches in portfolio optimization. Specifically, we

review the concept of VaR, Conditional VaR, and Worst-Case Mean-Covariance VaR.

2.1 Classical VaR Approach

Under the international BASEL Accord, VaR has become a popular risk measure used by both regulated

banks as well as investment practitioners. In the conventional setting, the VaR measure is used to

gauge the overall risk of the underlying portfolios when the aggregated portfolio return is deemed to

be generated by a single probability distribution. Given a random variable, ṽ ∈ V denoting random

portfolio returns, the VaR measure is defined as follows:

VaR1−ε (ṽ)
∆
= min{a : P(a+ ṽ ≥ 0) ≥ 1− ε},

which is the (1− ε)-quantile of the portfolio return, or alternatively, that ε is the confidence level. This

quantity, a > 0, can also be interpreted as the smallest amount of capital necessary to add to ṽ to ensure

that the augmented portfolio ṽ + a is positive with probability at least 1− ε. Then, the minimum VaR
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portfolio optimization problem can be formulated as

min
x

VaR1−ε
(
r̃′x
)

s.t. x ∈ X

where X represents the feasible space of asset weights. For simplicity, we consider the set

X =
{
x : x′e = 1, r̄′x = τ

}
,

where e denotes a vector of ones, X is a set of normalized portfolio allocations, and the target expected

return of the portfolio is τ . The feasible set does not impose any short-selling restrictions.

The problem of minimizing over VaR measure is a classical chance-constraint optimization, which

is first proposed by Charnes et al. (1958) [14]. There are some fundamental issues with optimizing over

the VaR measure, the first being its computational tractability. Unlike the mean-variance approach,

the optimal VaR portfolio is hard to compute unless the distribution of returns is assumed to be normal

or lognormal. Duffie and Pan (1997) [19], and Jorion (2000) [29] discuss this issue in their papers.

Gaivoronski and Pflug (2005) [24] and Larsen et al. (2002) [32] have proposed empirical procedures to

optimizing sample VaR. The minimum empirical VaR (EVaR) portfolio can be obtained by solving the

following mixed-integer (MIP) optimization problem:

(EVaR) min
x,y,γ

γ

s.t. γ + (ri)′x ≥ −Kyi, i = 1, . . . , T

y′e = bεT c

y ∈ {0, 1}T

r̄′x = τ

e′x = 1

(1)

for some large constant K and a sample of T vectors of realized asset returns, r1, . . . , rT . b·c denotes

the integral value of its argument. To check that the optimal γ in the above problem is indeed the

optimal VaR over the T empirical returns, notice that in the optimal solution, yi = 1 for the highest

bεT c realizations of portfolio losses (negative returns), and yi = 0 for the remaining realizations of

portfolio losses. For the set of indices i for which yi = 0, the constraints

γ ≥ −(ri)′x

ensure that the optimal γ will take the lowest value that is higher than the lowest (1− ε)T of all losses.

This is exactly the definition of sample VaR at a confidence level of ε. For the remaining indices i (those
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for which yi = 1), the constraints

γ + (ri)′x ≥ −Kyi

are not binding.

Unfortunately, even under strong assumptions that the empirical asset returns are stationary and

independent across time, the relation between the EVaR and its true VaR has not been clear. It is

conceivable that the number of observations needed to achieve any meaningful confidence of reliability

is of the order of 1/ε. In practice, the choice of the reliability parameter is often arbitrary, e.g. ε = 1% or

5%. Indeed one may require an unrealistically large sample size of stationary and independent returns

before the optimal EVaR might be reasonably close to the true VaR. As a result, the computation

of EVaR may not scale well with portfolio variability. Moreover, solving EVaR in the context of

mathematical programming is conceptually and computationally intractable mainly due to the lack of

convexity.

2.2 Conditional VaR (CVaR) Approach

Apart from the difficulties encountered in applying VaR empirically, Artzner et al. (1999) [4] argue

against the VaR measure by stating that it does not have all the desirable properties of a risk measure.

They introduce the idea of ”coherent risk” to characterize desirable properties of risk measures. A

coherent risk measure, ρ, is a functional defined on V that satisfies the following four axioms.

(i) Translation invariance: For all ṽ ∈ V and a ∈ <, ρ(ṽ + a) = ρ(ṽ)− a.

(ii) Subadditivity: For all ṽ, w̃ ∈ V, ρ(ṽ + w̃) ≤ ρ(ṽ) + ρ(w̃).

(iii) Positive homogeneity: For all ṽ ∈ V, and λ ≥ 0, ρ(λṽ) = λρ(ṽ).

(iv) Monotonicity: For all ṽ, w̃ ∈ V such that ṽ ≥ w̃, ρ(ṽ) ≤ ρ(w̃).

The translation invariance axiom ensures that ρ(ṽ + ρ(ṽ)) = 0, so that the risk associated with the

portfolio return ṽ after compensation with ρ(ṽ) of capital is nullified. The subadditivity axiom states

that the risk associated with the sum of two allocations is not more than the sum of their individual

risk. In other words, it is never worse off to diversify the portfolio. The classical VaR fails to satisfy

this axiom. The positive homogeneity axiom implies that risk measure scales proportionally with its

size. The final monotonicity axiom rules out common risk measures such as standard deviation.
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A popular example of such a coherent risk measure is Conditional VaR (CVaR) as discussed in

Rockafellar and Uryasev (2000, 2002) [37, 38]. The CVaR measure can be written as

CVaR1−ε (ṽ)
∆
= min

a∈<

(
a+

1

ε
E(max{−ṽ − a, 0})

)
.

It is well known that CVaR is the best coherent risk measure that approximates VaR (see for instance,

Föllmer and Schied (2004) [23]) and that direct optimization of CVaR is a convex optimization problem.

However, evaluation of CVaR involves precise knowledge of the underlying distributions and the need

to perform multi-dimensional integral, which is typically computationally prohibitive beyond the fourth

dimension. Nevertheless, the minimum empirical CVaR (ECVaR) portfolio optimization problem is a

linear optimization problem as follows:

ECVaR min
x,y,a

a+ 1
εT

∑T
t=1 yt

s.t. yt ≥ −rt′x− a t = 1, . . . , T

yt ≥ 0, t = 1, . . . , T

r̄′x = τ

e′x = 1.

(2)

However, as in the case of EVaR, the relation between the optimal ECVaR and its true CVaR is not well

understood. The number of observations needed to achieve any meaningful confidence of reliability is of

the order of 1/ε and hence, the computation of CVaR may not scale well with portfolio variability. This

observation agrees with empirical findings in Yamai and Yoshiba (2002) [44] that estimation of CVaR

can be very unstable for relatively small samples. More recently, Zhu and Fukushima (2009) [45] and

Huang, Zhu, Fabozzi, and Fukushima (2010) [26] propose further improvements in the CVaR approach

to select optimal portfolios, but they still do not consider asymmetrical distributions explicitly.

2.3 Worst-Case Mean-Covariance VaR (WVaR) Approach

The classical VaR and CVaR measures are evaluated under an assumed probability distribution of asset

returns. In reality, it is impossible to determine all the outcomes of the underlying asset returns and

their associated probability distributions. Nevertheless, we could still obtain the empirical descriptive

statistics of the asset returns such as the mean, covariance and so on. Motivated by developments

in robust optimization in addressing the ambiguity in return distributions, we consider the worst case

impact of the VaR over a family of probability distributions F as follows

VaR1−ε,F (ṽ)
∆
= min

{
a : inf

P∈F
P(a+ ṽ ≥ 0) ≥ 1− ε

}
.

7



Such a family of distributions could, for instance, be one that generates the same descriptive statistics of

asset returns observed from empirical data. The rationale of considering a family of distribution is one of

robustness over the assumption of probability distributions. Instead of of assuming an underlying joint

distribution of the asset returns and then estimating the parameters from empirical data, we specify a

family of distributions that exhibits certain traits that we can observe from analyzing empirical asset

returns.

In general, it is difficult to characterize the worst-case VaR over a family of probability distributions,

as discussed in Bertsimas and Popescu (2005) [9]. Nevertheless, there are tractable instances. El Ghaoui

et al. (2003) [20] considered a family of probability distributions that preserves the mean and covariance

of the underlying asset returns as follows,

F(r̄,Σ) =
{
P : EP(r̃) = r̄,EP((r̃ − r̄)(r̃ − r̄)′) = Σ

}
.

They propose the worst-case mean-covariance VaR (WVaR) defined on V as follows

WVaR1−ε
(
y + r̃′x

)
= −y − r̄′x +

√
1− ε
ε
‖Σ1/2x‖2.

Using results of Bertsimas and Popescu (2005) [9], El Ghaoui et al. (2003) [20] established that there

exists a set Ω and returns r̃1, . . . , r̃n on Ω such that

WVaR1−ε
(
y + r̃′x

)
= VaR1−ε,F(r̄,Σ)

(
y + r̃′x

)
.

The corresponding minimum WVaR portfolio optimization problem becomes

(WVaR) min
x

−r̄′x +
√

1−ε
ε ‖Σ

1/2x‖2

s.t. r̄′x = τ

e′x = 1.

(3)

Note that the constraint r̄′x = τ ensures that the portfolio with minimal WVaR is equivalent to

the one with minimal variance, which is essentially the solution of Markowitz portfolio optimization

problem. Therefore, the WVaR is criticized as a symmetric risk measure whereas VaR is a downside

risk measure. More recently, Natarajan et al. (2008) [36] propose a computationally tractable modified

VaR measure - Asymmetry-Robust VaR (AR-VaR), that is also coherent and addresses distributional

asymmetry. However, AR-VaR requires asset returns to be affinely dependent on a set of stochastically

independent random factors, which may not be easily identified from empirical data.
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3 Partitioned Value-at-Risk (PVaR) Approach

In this section, we propose a new tractable approach to finding optimal portfolios by extending the

WVaR measure (El Ghaoui et al.(2003) [20]) in the previous section. We accomplish this by extracting

more statistical information from the distribution of the assets. Essentially, we partition the space of

random returns into positive and negative half-spaces. This is a natural partition because the half-spaces

map directly into profit and loss respectively in the portfolio outcomes. Using the statistical information

on these two half-spaces, such as the mean and covariance matrix, we define a Partitioned VaR (PVaR)

risk measure. Furthermore, after adding information about the support of the asset returns, this risk

measure becomes coherent.

We partition the returns, r̃ into its positive and negative random vectors (r̃1, r̃2) ∈ <2n, in which

r̃1
i = max{r̃i, 0} and r̃2

i = min{r̃i, 0}. Hence, r̃ = r̃1 + r̃2. Clearly, r̃1 and r̃2 isolate the statistical

information whenever returns are positive and negative respectively. We let (r̄1, r̄2) ∈ <2n and Σ̂ ∈

<2n×2n be respectively the mean and covariance of (r̃1, r̃2). We call (r̄1, r̄2, Σ̂) the partitioned statistics

of the asset returns.

We notice that r̄1 (respectively r̄2) is a vector with non-negative (respectively non-positive) com-

ponents and we have

r̄ = r̄1 + r̄2.

Note that the variance of (r̃1, r̃2) is a 2n by 2n positive semidefinite matrix given by

Σ̂ = var

((
r̃1

r̃2

))
=

 var(r̃1) cov(r̃1, r̃2)

cov(r̃2, r̃1) var(r̃2)

 ,
where

cov(x̃, ỹ)
∆
= E

(
(x̃− E(x̃))(ỹ − E(ỹ))′

)
and

var(x̃)
∆
= cov(x̃, x̃).

Moreover,

var(r̃′x) = x′Σx = var(r̃1′x + r̃2′x) = (x′ x′)Σ̂
(x
x

)
. (4)

Hence,

Σ = var(r̃1) + cov(r̃1, r̃2) + cov(r̃2, r̃1) + var(r̃2).
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Therefore, the mean and covariance of the asset returns can be derived from the partitioned statistics

of the asset returns. We can therefore define the family of distributions with partitioned statistics:

F̂(r̄1, r̄2, Σ̂) ,

{
P ∈ F(r̄,Σ) : EP

((
r̃1

r̃2

))
=

(
r̄1

r̄2

)
,EP

((
r̃1 − r̄1

r̃2 − r̄2

)(
r̃1 − r̄1

r̃2 − r̄2

)′)
= Σ̂

}
.

We define the PVaR on V, over the family of distributions F̂ as follows

PVaR1−ε
(
y + r̃′x

) ∆
= −y − r̄′x + min

s,t≥0

{√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s

x + t

)∥∥∥∥
2

+ r̄1′s− r̄2′t

}
.

We note that the auxilliary variables s and t are simply variables to be optimized over and do not carry

any particular meaning.

Hence, the minimum-PVaR portfolio optimization problem is equivalent to solving the following

quadratic optimization problem,

(PVaR) min
x,s,t

−r̄′x +
√

1−ε
ε

∥∥∥Σ̂1/2
(
x−s
x+t

)∥∥∥
2

+ r̄1′s− r̄2′t

s.t. r̄′x = τ

e′x = 1

s, t ≥ 0.

(5)

Levering on the fact that partitioned statistics of the asset returns carry more information in addition

to the first and second moments, we next show that the PVaR measure provides a better bound to VaR

than WVaR.

Theorem 1 Suppose r̃ has partitioned statistics, (r̄1, r̄2, Σ̂), then

VaR1−ε
(
y + r̃′x

)
≤ PVaR1−ε

(
y + r̃′x

)
≤WVaR1−ε

(
y + r̃′x

)
for all y + r̃′x ∈ V.

Proof : Refer to online supplementary materials available at electronic version of this paper at

http://www.sciencedirect.com.

Since the first inequality above holds for all returns r̃ having probability distributions P in the family

F̂(r̄1, r̄2, Σ̂), the optimized portfolio weights x∗ obtained from solving Model (5) is, by design, robust

against mis-specifications of P within this family. In contrast, the standard (non-robust) VaR measure

is sensitive to the implicit or explicit specification of P.

Comparing PVaR with the WVaR risk measure, which is also distributionally robust, PVaR provides

a tighter bound to VaR than WVaR. This is because in the PVaR optimization, asymmetry is explicitly
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modeled and exploited, while WVaR disregards any asymmetry in distribution. Therefore, PVaR can

be viewed as a tractable conic approximation of the worst case VaR using the new set of information

called partitioned statistics, which contains more information than mean and covariance. It is a natural

extension to El Ghaoui et al.(2003) WVaR, which only includes mean and covariance information and

hence insensitive to distributional asymmetry.

Nevertheless, similar to the WVaR, the PVaR measure is not a coherent risk measure as it violates

the axioms on monotonicity. We will first show in the next proposition that PVaR satisfies the other

axioms of coherent risk measure.

Proposition 1 The PVaR measure satisfies the axioms of translation invariance, subadditivity and

positive homogeneity.

Proof : Refer to online supplementary materials available at electronic version of this paper at

http://www.sciencedirect.com.

Although the PVaR measure does not satisfy the axiom on monotonicity, we can easily fix this

problem. The monotonicity axiom implicity implies that we can specify the support of asset returns,

W, so that one can ascertain whether ṽ ≥ w̃ holds. Therefore, to construct a coherent version of the

PVaR, we just need the support of the asset returns,W. Hence, we can define the Coherent Partitioned

VaR (CPVaR) as follows

CPVaR1−ε
(
y + r̃′x

) ∆
= −y−r̄′x+ min

s,t≥0,w

{√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x−w − s

x−w + t

)∥∥∥∥
2

+ r̄1′s− r̄2′t + r̄′w − min
r∈W

w′r

}
.

The minimum CPVaR portfolio optimization problem is equivalent to solving the following convex

optimization problem,

(CPVaR) min
x,s,t,w,v

−r̄′x +
√

1−ε
ε

∥∥∥Σ̂1/2
(
x−w−s
x−w+t

)∥∥∥
2

+ r̄1′s− r̄2′t + r̄′w + v

s.t. −w′r ≤ v ∀r ∈ W

r̄′x = τ

e′x = 1

s, t ≥ 0.

(6)

Note that in the context of robust optimization, the first set of constraints of Model (6) is known as

the robust counterpart. If W is a set whose cardinality is a small finite number, the robust counterpart

can be expanded into a set of |W| linear constraints. However, it is conceivable that the cardinality of

W is exponentially large or infinite. Under such circumstances, Model (6) remains a computationally
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tractable problem if the convex hull of W can be compactly represented by linear or more generally

conic constraints. In this case, the robust counterpart can be represented by the dual conic constraints

projected from higher dimensions. We refer interested readers to Ben-Tal and Nemirovski (1998) [8] or

Bertsimas and Sim (2004) [10] for details. Theorem 2 shows that the CPVaR is a coherent risk measure.

Theorem 2 The CPVaR measure satisfies the axioms of a coherent risk measure.

Proof : Refer to online supplementary materials available at electronic version of this paper at

http://www.sciencedirect.com.

Moreover, the CPVaR provides a tighter bound to VaR than PVaR. This is intuitive as the additional

support information of asset returns under CPVaR approach helps to narrow the risk bound compared

to PVaR approach.

Theorem 3 Suppose r̃ has partitioned statistics, (r̄1, r̄2, Σ̂) and support W, then

VaR1−ε
(
y + r̃′x

)
≤ CVaR1−ε

(
y + r̃′x

)
≤ CPVaR1−ε

(
y + r̃′x

)
≤ PVaR1−ε

(
y + r̃′x

)
Proof : Refer to online supplementary materials available at electronic version of this paper at

http://www.sciencedirect.com. Note that since CPVaR is a coherent risk measure, it must also be

an upper bound to CVaR, which has been established as the coherent risk measure with the best upper

bound to VaR.

Lastly, we can establish the direct links between the PVaR and CPVaR in a special case.

Corollary 1 If V comprises asset returns whose support W is the space <n, then PVaR = CPVaR.

Moreover, PVaR is coherent on V.

Proof : Note that when W is unbounded, min
r∈W

r′w takes the value of zero if w = 0 and negative

infinity otherwise. Hence, PVaR = CPVaR.

In summary, we have introduced a new portfolio optimization approach by minimizing the PVaR

of the portfolio. The PVaR measure provides a tighter bound to classical VaR than the symmetric

WVaR and accommodates distributional asymmetry. With support information, the PVaR measure

turns into a coherent risk measure. In the next section, we empirically investigate the performance of

this approach by comparing it with conventional portfolio optimization approaches.
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4 Empirical Results

We compare the performance of minimizing-portfolio PVaR under our approach with minimizing port-

folio variance under the classical Markowitz approach in this section. We employ three sets of data

to perform the empirical analyses. Firstly, we use simulated asset returns and show that our PVaR

approach performs well for negatively-skewed returns. Secondly, we compare both optimization ap-

proaches by employing a widely available data set of industry portfolio returns, “48Ind” from Kenneth

French’s website. Finally, we use historical daily stock returns from NYSE and AMEX.

4.1 Simulated Data

We consider the portfolio allocation problem of 5 simulated asset returns, each distributed with skewed

normal distributions (see Azzalini (1985) [5]), of increasing negative skewness. The random variables

are scaled and shifted such that the means of the asset returns are

µi = 0.01 + 0.0025i, ∀i ∈ {0, 1, 2, 3, 4}

while their standard deviations are identical at σ = 0.03. Simulated data allow us to control for portfolio

attributes such as skewness, and thus enable a more sensitive evaluation of the portfolio performances.

We follow Azzalini [5] in constructing the skewness as γi = (2 − π/2)δ3
i (π/2 − δ2

i )
−3/2, and chose the

skewness parameter to be δi = −0.24975i, ∀i ∈ {0, 1, 2, 3, 4} such that assets with higher mean returns

have higher negative skewness to reflect the positive tradeoff between risk and return. For different

target returns, we separately minimize the 99% portfolio PVaR and the portfolio variance.

Panels (a) to (c) of Figure 1 compare the mean-risk efficient frontiers of the optimized portfolios

using different risk measures, such as standard deviation, empirical VaR, and PVaR. As expected, the

Markowitz and PVaR approaches perform well when measured by their respective risk metrics. The

Markowitz approach dominates the PVaR approach when risk is measured in standard deviation. The

PVaR approach dominates the Markowitz approach when risk is measured in PVaR. More importantly,

we find that the PVaR-optimized portfolio outperforms the Markowitz-optimized portfolio by having

smaller empirical VaR measures. This means a smaller loss risk.

The intuition underlying these results is illustrated in Panel (d) of Figure 1, which shows the portfolio

weights for a target return of 0.0165. Other targets could be constructed, but this case allows for easy

comparison due to linear weights under the Markowitz approach. In this case, the Markowitz approach

yields a diversified portfolio with the smallest portfolio standard deviation by having a linear weighting of
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the assets to achieve the target return. However, the Markowitz portfolio, being indifferent to skewness,

places a large weight on Asset 5, which has a large negative skew, thereby increasing the overall portfolio

empirical VaR. In contrast, the PVaR optimization heavily penalizes Asset 5, due to its large negative

skewness. To achieve the target portfolio mean, the PVaR approach in compensation assigns a larger

weight instead to Asset 4. The deviation from linearity increases the standard deviation in the PVaR

optimal portfolio in comparison with that in the Markowitz approach, but reduces the empirical VaR.

Figure 1: Panel a to Panel c plot the efficient frontiers of portfolio return against three risk metrics for 5 skew-

normal distributed assets respectively: sigma (i.e. standard deviation), 99.0% EVaR, and 99.0% PVaR. Panel d

plots the weights of the optimal portfolio for a target return of 0.0165.

(a) (b)

(c) (d)

Table 1 compares various normalized or mean-to-risk metrics for the PVaR-optimized and Markowitz-

optimized portfolios, with respect to different target returns. For simplicity, assuming that the risk free

rate is zero, we shall henceforth interpret the µ/σ ratio as the Sharpe ratio, which is intuitively recog-

nized as the reward to risk ratio. Thus, in addition to the Sharpe ratio, we also tabulated the ratios
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of mean over Empirical VaR (EVaR) and mean over PVaR, to measure the normalized tail risk of the

portfolios. Similar to the Sharpe ratio, larger values of these normalized metrics indicate larger reward-

risk ratios and thus better performance of the portfolio. The parameter α controls the target return τ

for each optimization portfolio, and represents the percentage increase over the computed return of the

equal-weighted portfolio, rEW , where

τ = (1 + α)rEW .

Table 1: Comparison of normalized risk metrics for different target returns between PVaR optimization and

mean-variance (M-V) optimization, for the simulated dataset. The third column, ∆, records the difference of

each risk metric between the PVaR optimization and M-V optimization, where ∆ = PVaR − M-V.

α µ
σ

µ
EV aR99%

µ
PV aR99%

PVaR M-V ∆ PVaR M-V ∆ PVaR M-V ∆

0.0000 1.0856 1.0926 (0.0070) 0.8226 0.8091 0.0135 0.2323 0.2304 0.0019

0.0053 1.0916 1.0988 (0.0072) 0.8301 0.8126 0.0175 0.2337 0.2318 0.0019

0.0105 1.0971 1.1044 (0.0073) 0.8206 0.8115 0.0091 0.2350 0.2331 0.0019

0.0158 1.1020 1.1094 (0.0074) 0.8285 0.8139 0.0146 0.2362 0.2343 0.0019

0.0211 1.1064 1.1140 (0.0076) 0.8342 0.8163 0.0179 0.2374 0.2354 0.0020

0.0263 1.1102 1.1180 (0.0078) 0.8344 0.8228 0.0116 0.2383 0.2363 0.0020

0.0316 1.1135 1.1214 (0.0079) 0.8395 0.8274 0.0121 0.2392 0.2372 0.0020

0.0368 1.1163 1.1243 (0.0080) 0.8407 0.8259 0.0148 0.2400 0.2379 0.0021

0.0421 1.1185 1.1266 (0.0081) 0.8306 0.8243 0.0063 0.2406 0.2385 0.0021

0.0474 1.1202 1.1284 (0.0082) 0.8333 0.8278 0.0055 0.2412 0.2390 0.0022

0.0526 1.1214 1.1297 (0.0083) 0.8375 0.8217 0.0158 0.2416 0.2394 0.0022

0.0579 1.1221 1.1305 (0.0084) 0.8333 0.8169 0.0164 0.2419 0.2397 0.0022

0.0632 1.1222 1.1307 (0.0085) 0.8314 0.8117 0.0197 0.2421 0.2398 0.0023

0.0684 1.1219 1.1305 (0.0086) 0.8276 0.8070 0.0206 0.2422 0.2399 0.0023

0.0737 1.1212 1.1298 (0.0086) 0.8196 0.8005 0.0191 0.2422 0.2399 0.0023

0.0789 1.1200 1.1286 (0.0086) 0.8184 0.7859 0.0325 0.2420 0.2397 0.0023

0.0842 1.1183 1.1270 (0.0087) 0.8086 0.7807 0.0279 0.2418 0.2395 0.0023

0.0895 1.1162 1.1250 (0.0088) 0.7999 0.7710 0.0289 0.2415 0.2392 0.0023

0.0947 1.1138 1.1226 (0.0088) 0.7917 0.7636 0.0281 0.2411 0.2388 0.0023

0.1000 1.1109 1.1198 (0.0089) 0.7839 0.7527 0.0312 0.2407 0.2383 0.0024

Similar to the results on the efficient frontiers shown earlier, we observe that the Markowitz portfolios
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perform marginally better than the PVaR portfolios when Sharpe ratio is used. However, under the

normalized 99%-EVaR and 99%-PVaR risk metric, the PVaR optimized portfolios outperforms the

Markowitz portfolios in every case of different target returns. This result indicates that the PVaR

optimized portfolios have lower tail risks than the Markowitz portfolios.

4.2 Industry Portfolio Data

In this subsection, we report the empirical results of the out-of-sample performance of PVaR-minimized

portfolios in comparison with the mean-variance optimized portfolios. The dataset comprises the daily

returns of 48 industry portfolios from July 1, 1963 to August 31, 2007 (48Ind). The returns featured a

significant departure from normality as the Jarque-Bera test (1980) [28] for normality on each industry

portfolio yielded p-values of less than 0.001 in all cases.

Similar to many studies of portfolio strategies, we employ the rolling-window procedure to estimate

the optimal portfolios. In particular, we employ 5 years of historical data, with each year being 250

trading days, to estimate the required moments and compute the optimal portfolios. We then hold

this portfolio for half a year, M = 125 trading days, to obtain out-of-sample statistics for performance

evaluation. We repeat the exercise by moving forward one half-year at a time.

Let T denote the total number of daily returns in the dataset. We let rt denote the vector of returns

on the tth trading day, ordered such that the most recent day corresponds to t = 1. We let L = 10M

(5 years) denote the length of estimation window. For both portfolio optimization strategies, we use the

returns rkM+1, . . . , rkM+L to compute the respective portfolios xk, for a given target return, in each

period for k = 1, . . . ,Kmax, where the maximum number of periods, Kmax =
⌊
T−L−M

M

⌋
. Expressing

t = kM + t̂, the out-of-sample realized return on the tth day is determined by

skM+t̂ = xk+1
′rkM+t̂

for k = 0, . . . ,Kmax − 1 and t̂ = 1, . . . ,M . Denoting the actual number of days used in the experi-

ment as N = MKmax, we obtain the out-of-sample portfolio mean, variance, and 99% Empirical VaR

respectively by:

µ̂ =
1

N

N∑
j=1

sj

σ̂2 =
1

N − 1

N∑
j=1

(sj − µ̂)2

̂EV aR99% = −s(b0.01Nc)
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where s(·) denotes the order statistics of s1, . . . , sN such that s(1) ≤ s(2) ≤ . . . ≤ s(N). We repeat the

experiment for different target returns. The target returns were selected so its average is the equal-

weighted portfolio return.

Figure 2: Panel a to Panel c plot the efficient frontiers of portfolio return against three risk metrics for 48

Industry dataset respectively: sigma, 99.0% EVaR, and 99.0% PVaR.

(a) (b)

(c)

Figure 2 shows the efficient frontiers of the optimized portfolios under different risk measures. Similar

to the simulated experiment, we observe that under both the 99%-PVaR and the 99%-Empirical VaR

risk metrics, the out-of-sample PVaR-optimized portfolios perform better in the sense of smaller risk

than the Markowitz portfolios for a large range of target returns. Even under the standard deviation

risk metric, there is a range of target returns in which the PVaR-optimized portfolios actually have

smaller standard deviations in the out-of-sample performance compared to the Markowitz portfolios.

Table 2 details the out-of-sample empirical results of the normalized risk measures of the PVaR and

Markowitz portfolios over different target returns. From the table, we observe that the Sharpe ratio for
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Table 2: Out-of-Sample comparison of normalized risk metrics for different target returns between PVaR opti-

mization and mean-variance (M-V) optimization, for the 48 Industry portfolio returns (48Ind dataset). The third

column, ∆, records the difference of each risk metric between the PVaR optimization and M-V optimization,

where ∆ = PVaR − M-V.

α µ
σ

µ
EV aR99%

µ
PV aR99%

PVaR M-V ∆ PVaR M-V ∆ PVaR M-V ∆

0.0000 0.0629 0.0650 (0.0021) 0.0236 0.0242 (0.0006) 0.0126 0.0126 0.0000

0.0263 0.0627 0.0646 (0.0019) 0.0236 0.0242 (0.0006) 0.0126 0.0125 0.0001

0.0526 0.0624 0.0642 (0.0018) 0.0239 0.0241 (0.0002) 0.0126 0.0125 0.0001

0.0789 0.0620 0.0638 (0.0018) 0.0239 0.0240 (0.0001) 0.0125 0.0125 0.0000

0.1053 0.0618 0.0634 (0.0016) 0.0238 0.0239 (0.0001) 0.0125 0.0124 0.0001

0.1316 0.0615 0.0629 (0.0014) 0.0237 0.0238 (0.0001) 0.0125 0.0124 0.0001

0.1579 0.0612 0.0623 (0.0011) 0.0237 0.0237 0.0000 0.0125 0.0123 0.0002

0.1842 0.0609 0.0618 (0.0009) 0.0235 0.0235 0.0000 0.0124 0.0122 0.0002

0.2105 0.0607 0.0614 (0.0007) 0.0234 0.0232 0.0002 0.0124 0.0122 0.0002

0.2368 0.0605 0.0610 (0.0005) 0.0234 0.0232 0.0002 0.0124 0.0121 0.0003

0.2632 0.0602 0.0607 (0.0005) 0.0233 0.0230 0.0003 0.0123 0.0121 0.0002

0.2895 0.0601 0.0604 (0.0003) 0.0234 0.0229 0.0005 0.0123 0.0120 0.0003

0.3158 0.0600 0.0603 (0.0003) 0.0237 0.0228 0.0009 0.0123 0.0120 0.0003

0.3421 0.0603 0.0605 (0.0002) 0.0238 0.0230 0.0008 0.0124 0.0121 0.0003

0.3684 0.0609 0.0610 (0.0001) 0.0240 0.0234 0.0006 0.0124 0.0121 0.0003

0.3947 0.0657 0.0658 (0.0001) 0.0251 0.0244 0.0007 0.0129 0.0126 0.0003

0.4211 0.0656 0.0655 0.0001 0.0250 0.0244 0.0006 0.0129 0.0125 0.0004

0.4474 0.0655 0.0653 0.0002 0.0249 0.0243 0.0006 0.0128 0.0125 0.0003

0.4737 0.0653 0.0650 0.0003 0.0250 0.0244 0.0006 0.0128 0.0124 0.0004

0.5000 0.0650 0.0647 0.0003 0.0249 0.0242 0.0007 0.0128 0.0124 0.0004

18



mean-variance optimized portfolios generally outperforms the PVaR-optimized portfolios. However, the

PVaR optimized portfolios generally perform better with higher return-risk ratios under the normalized

99%-EVaR and 99%-PVaR risk metrics. This finding again, reconfirms that the PVaR approach is an

improvement from the classical Markowitz approach for minimizing tail risk, especially when the return

distributions are not normal.

4.3 Daily Stock Returns

Intuitively, our PVaR approach should perform better than the Markowitz approach in optimizing over

assets which exhibit strong negative skewness. We use the standard random sample selection procedure

as Chan et al. (1999) [13] and Jagannathan and Ma (2003) [27], employing historical daily returns

of stocks traded on the NYSE and the AMEX from 1962 to 2006. 500 stocks were randomly selected

for each year during the sampling period. The stocks had prices greater than 5 dollars and market

capitalization more than the 80th percentile of the size distribution of NYSE firms. A particular stock

was also selected provided that it had 6 years of subsequent daily returns in the year in which it was

selected. Similar to the rolling window approach used in the previous subsection, we consider the first

5 years of daily returns as in-sample data, and use this data for moment estimation and optimization.

The next one year of daily returns are used as out-of-sample testing data to evaluate the performance

of the optimized portfolios. When a daily return is missing, the equally weighted market return of that

day is used instead.

To prepare the data, we began by rank-ordering the stocks in order of skewness (using the first 5

years of training data). In the computation of skewness for rank ordering, we omitted the maximal and

minimal daily return from each stock over the 5 years to avoid outliers due to data entry errors. We

next grouped these 500 stocks into 20 groups of 25 stocks each, still in order of increasing skewness.

We then created 20 assets from the groups, by performing an equal-weighted portfolio return in each

group. Finally, we sorted the 20 assets according to skewness, and as in the simulation case, chose the

most negatively skewed 5 assets for our performance evaluations.

We now use the first 5 years of data to estimate the statistics of the 5 assets, and we apply both

PVaR and Markowitz approaches to separately find the optimal portfolios, with a target mean equal

to that of an equal-weighted portfolio of assets. For the PVaR optimization, we optimize at a level of

99%. As in the previous empirical procedure, we hold the optimized portfolios in the next or 6th year in

an out-of-sample test to evaluate various normalized risk metrics. The entire experiment was repeated

40 times for different samples of 500 stocks since the sample period (1962-2006) allows us to break the
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datasets into 40 over-lapping sub-samples with 6 years data in each of them. Table 3 shows the results

of each of the 40 runs of the experiment, as well as the exact number of data points used for in-sample

(L) and out-of-sample (M) measurements respectively.

To evaluate the performance of the respective optimized portfolios, we take the difference between

the normalized risk metrics of the PVaR-optimized portfolios and the Markowitz portfolios, and compare

the fraction of runs in which the PVaR-optimized portfolios outperform the the Markowitz portfolios.

We further conduct a Z-test to test whether this fraction is significantly larger than 0.5, and report the

p-values for the tests. As expected, we observe that for the dataset of negatively-skewed assets, the

PVaR portfolios performed significantly better than the Markowitz portfolios. More specifically, the

PVaR approach generates a higher risk-return tradeoff than the Makovitz approach about 65.0% of the

time when we use the most negative skewed five portfolios for test.

The reason we focus on the improvement of negatively-skewed portfolio is because according to

Mitton and Vorkink (2007) [35], investors prefer positive skewness over Sharpe ratio. Therefore, we are

more concerned about the the optimal portfolio when underlying return distributions are negatively

skewed, especially during market downturns. Hence, it is important to show that our new approach

works well for negatively-skewed portfolios.

5 Conclusion

In this study, we present a new PVaR approach to portfolio optimization when underlying return

distributions are ambiguous and asymmetrical. Our theoretical results show that the proposed PVaR

is a very useful risk measure. Not only does the PVaR provides a tighter bound to theoretical VaR

than other existing robust risk metrics, such as WVaR, it is also a coherent risk measure when the

distributional support is given, whereas conventional risk measures such as variance and VaR fail to

do so. The ordering of the magnitudes of CPVaR, PVaR, and WVaR also show that given more

information from the partitioned statistics of the asset returns, we could avoid unnecessarily large capital

allocation due to robust estimations of VaR. More importantly, our PVaR measure is an asymmetric

risk measure whereby the conventional symmetric risk measures such as standard deviation do not take

into consideration of the distinct difference between investors’ preferences for upside risk versus the

aversion to downside risk.

Empirically, we use both simulated and real financial data to demonstrates that our approach im-

proves on existing mean-variance portfolio optimization. When return distributions are not elliptically
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Table 3: Comparison of out-of-sample normalized risk metrics of a portfolio of 5 most negatively skewed assets.

The summary table shows the percentage of experiments in which the respective risk metrics for the PVaR

optimization outperforms the M-V optimization.

summary statistics

S/No L M µ
σ

µ
EV aR99%

µ
PV aR99%

PVaR M-V ∆ PVaR M-V ∆ PVaR M-V ∆

1 1259 251 0.02858 0.02682 0.00176 0.00939 0.00877 0.00062 0.00495 0.00466 0.00029

2 1259 224 0.23502 0.23461 0.00041 0.09576 0.09490 0.00086 0.04433 0.04404 0.00029

3 1232 251 (0.08254) (0.08125) (0.00130) (0.03776) (0.03782) 0.00006 (0.01489) (0.01474) (0.00015)

4 1230 255 0.06286 0.06189 0.00097 0.02164 0.02123 0.00041 0.01104 0.01087 0.00017

5 1232 254 0.03158 0.03292 (0.00134) 0.01419 0.01456 (0.00037) 0.00608 0.00633 (0.00025)

6 1235 250 (0.08629) (0.08779) 0.00151 (0.02892) (0.02958) 0.00066 (0.01588) (0.01620) 0.00032

7 1234 252 (0.04641) (0.04459) (0.00182) (0.01515) (0.01434) (0.00081) (0.00768) (0.00735) (0.00033)

8 1262 252 0.00592 0.00326 0.00266 0.00253 0.00139 0.00114 0.00121 0.00067 0.00054

9 1263 255 0.14891 0.14661 0.00230 0.06308 0.06284 0.00024 0.03010 0.02954 0.00056

10 1263 253 0.05437 0.05419 0.00017 0.02144 0.02112 0.00031 0.01011 0.01005 0.00006

11 1262 251 0.01576 0.01389 0.00188 0.00597 0.00523 0.00074 0.00290 0.00255 0.00035

12 1263 253 0.08064 0.07985 0.00079 0.02691 0.02665 0.00026 0.01327 0.01317 0.00011

13 1264 253 0.02491 0.02342 0.00148 0.00537 0.00505 0.00032 0.00347 0.00326 0.00021

14 1265 252 0.24830 0.24817 0.00013 0.07847 0.07846 0.00001 0.04438 0.04432 0.00006

15 1262 253 (0.07450) (0.06976) (0.00474) (0.02002) (0.01877) (0.00125) (0.01192) (0.01115) (0.00077)

16 1262 254 0.21667 0.21651 0.00016 0.07360 0.07348 0.00013 0.04517 0.04516 0.00001

17 1265 253 0.06566 0.06757 (0.00191) 0.02806 0.02829 (0.00023) 0.01286 0.01324 (0.00038)

18 1265 252 0.06426 0.07005 (0.00580) 0.03238 0.03307 (0.00068) 0.01338 0.01487 (0.00149)

19 1264 251 0.17600 0.16933 0.00667 0.07760 0.07305 0.00454 0.03763 0.03592 0.00171

20 1263 254 0.08899 0.08955 (0.00056) 0.02881 0.02721 0.00160 0.01456 0.01467 (0.00012)

21 1264 254 (0.01588) (0.01643) 0.00055 (0.00397) (0.00412) 0.00015 (0.00208) (0.00216) 0.00008

22 1264 252 0.12260 0.11884 0.00376 0.04848 0.04522 0.00327 0.02188 0.02067 0.00121

23 1263 253 0.05120 0.05339 (0.00220) 0.01408 0.01503 (0.00095) 0.00718 0.00753 (0.00035)

24 1264 251 0.03732 0.03696 0.00035 0.01285 0.01279 0.00006 0.00627 0.00621 0.00006

25 1264 255 0.05832 0.06994 (0.01162) 0.01922 0.02183 (0.00262) 0.01079 0.01307 (0.00229)

26 1265 253 0.16549 0.14521 0.02029 0.05370 0.04559 0.00811 0.03156 0.02741 0.00415

27 1264 254 0.04751 0.04716 0.00035 0.01386 0.01339 0.00047 0.00761 0.00753 0.00009

28 1266 252 0.09517 0.09601 (0.00084) 0.03853 0.03918 (0.00065) 0.01692 0.01712 (0.00020)

29 1265 252 0.18845 0.18755 0.00091 0.05482 0.05464 0.00018 0.03009 0.02995 0.00014

30 1266 252 0.09607 0.09458 0.00149 0.02937 0.02842 0.00095 0.01665 0.01634 0.00031

31 1263 253 0.21022 0.21313 (0.00291) 0.05978 0.06043 (0.00064) 0.03227 0.03281 (0.00054)

32 1263 252 (0.04366) (0.04509) 0.00143 (0.01073) (0.01110) 0.00037 (0.00693) (0.00716) 0.00023

33 1261 254 0.03597 0.04093 (0.00496) 0.01491 0.01690 (0.00198) 0.00711 0.00813 (0.00102)

34 1263 251 0.06622 0.06392 0.00229 0.02481 0.02408 0.00073 0.01207 0.01156 0.00050

35 1262 246 0.09647 0.09940 (0.00293) 0.02593 0.02686 (0.00094) 0.01669 0.01722 (0.00052)

36 1256 253 (0.04926) (0.04921) (0.00005) (0.01891) (0.01889) (0.00001) (0.00857) (0.00857) (0.00001)

37 1256 253 0.26106 0.25607 0.00499 0.11330 0.10867 0.00463 0.05407 0.05271 0.00135

38 1257 251 0.08723 0.08700 0.00023 0.02791 0.02787 0.00004 0.01461 0.01456 0.00004

39 1254 253 0.13885 0.13883 0.00001 0.05566 0.05566 0.00000 0.02592 0.02592 0.00000

40 1256 250 0.09569 0.09067 0.00503 0.03336 0.03164 0.00172 0.01636 0.01557 0.00079

Summary Table

Risk Metric % (PVaR > M-V) p-value

µ
σ

65.00% 0.02889

µ
EV aR99%

70.00% 0.00571

µ
PV aR99%

65.00% 0.02889

21



symmetrical or multivariate normal, and/or are negatively skewed, the PVaR approach offers significant

empirical improvements compared to conventional approaches in terms of higher return-to-risk ratios

measured in conventional empirical VaR and/or our PVaR risk metrics.
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Proof of Theorem 1: Observe that

PVaR1−ε
(
y + r̃′x

)
= −y − r̄′x + min

s,t≥0

{√
1−ε
ε

∥∥∥Σ̂1/2
(
x−s
x+t

)∥∥∥
2

+ r̄1′s− r̄2′t
}

≤ −y − r̄′x +
√

1−ε
ε

∥∥∥Σ̂1/2 (x
x
)∥∥∥

2

= −y − r̄′x +
√

1−ε
ε ‖Σ

1/2x‖2

= WVaR1−ε
(
y + r̃′x

)
,

where the first inequality follows from choosing s = t = 0 and the second equality follows from Equality

(4). To show that VaR1−ε
(
y + r̃′x

)
≤ PVaR1−ε

(
y + r̃′x

)
, it suffices to show that for all r ∈ <,

PVaR1−ε
(
y + r̃′x

)
≤ r ⇒ VaR1−ε

(
y + r̃′x

)
≤ r,

which, from the definition of the VaR measure, is equivalent to showing

P(−(r̃′x + y) > r) ≤ ε.

We first consider the inner minimization in the PVaR definition, of the function f(s, t), on the domain

s, t ∈ <n+, where

f(s, t) =

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s

x + t

)∥∥∥∥
2

+ r̄1′s− r̄2′t

we notice that f(s, t) diverges to +∞ when (s, t) is unbounded, since r̄1′s − r̄2′t ≥ 0 on its domain.

Further, f(s, t) is finite for (s, t) = (0,0). This guarantees us the existence of finite optimizers of f(s, t),

denoted by s∗, t∗. Now we let

PVaR1−ε
(
y + r̃′x

)
= −y − r̄′x +

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s∗

x + t∗

)∥∥∥∥
2

+ r̄1′s∗ − r̄2′t∗

Suppose PVaR1−ε
(
y + r̃′x

)
≤ r, we have

−y − r̄′x +

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s∗

x + t∗

)∥∥∥∥
2

+ r̄1′s∗ − r̄2′t∗ ≤ r. (7)

Hence,

P(−(r̃′x + y) > r)

≤ P
(
−(r̃′x + y) > −y − r̄′x +

√
1−ε
ε

∥∥∥Σ̂1/2
(
x−s∗
x+t∗

)∥∥∥
2

+ r̄1′s∗ − r̄2′t∗
)

using Inequality (7)

= P
(
−r̃′x + r̄1′(x− s∗) + r̄2′(x + t∗) >

√
1−ε
ε

∥∥∥Σ̂1/2
(
x−s∗
x+t∗

)∥∥∥
2

)
since r̄ = r̄1 + r̄2.
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Observe that since r̃1 ≥ 0 and that r̃2 ≤ 0, we have r̃1′s∗ ≥ 0 and −r̃2′t∗ ≥ 0. Therefore,

P

(
−r̃′x + r̄1′(x− s∗) + r̄2′(x + t∗) >

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s∗

x + t∗

)∥∥∥∥
2

)

≤ P

(
−r̃′x + r̃1′s∗ − r̃2′t∗ + r̄1′(x− s∗) + r̄2′(x + s∗) >

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s∗

x + t∗

)∥∥∥∥
2

)

= P

(
−r̃1′(x− s∗)− r̃2′(x + t∗) + r̄1′(x− s∗) + r̄2′(x + t∗) >

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s∗

x + t∗

)∥∥∥∥
2

)

= P

(
−(r̃1 − r̄1)′(x− s∗)− (r̃2 − r̄2)′(x + t∗) >

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s∗

x + t∗

)∥∥∥∥
2

)
,

where the first equality is due to r̃ = r̃1 + r̃2. Finally, we use a well known one sided Tchebychev

inequality that for any random variable z̃ with zero mean and standard deviation σ,

P(z̃ > kσ) ≤ 1

1 + k2
.

Clearly, the random variable −(r̃1 − r̄1)′(x − s∗) − (r̃2 − r̄2)′(x + t∗) has zero mean and standard

deviation,
∥∥∥Σ̂1/2

(
x−s∗
x+t∗

)∥∥∥
2
. Hence,

P(−(r̃′x + y) > r)

≤ P

(
−(r̃1 − r̄1)′(x− s∗)− (r̃2 − r̄2)′(x + t∗) >

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s∗

x + t∗

)∥∥∥∥
2

)
≤ ε.

Proof of Proposition 1: It is trivial to show translation invariance. Note that PVaR1−ε (0) = 0.

To show positive homogeneity, we observe that for all k > 0

PVaR1−ε
(
k(y + r̃′x)

)
= −ky − kr̄′x + min

s,t≥0

{√
1− ε
ε

∥∥∥∥Σ̂1/2
(
kx− s

kx + t

)∥∥∥∥
2

+ r̄1′s− r̄2′t

}

= −ky − kr̄′x + min
ks,kt≥0

{√
1− ε
ε

∥∥∥∥Σ̂1/2
(
kx− ks
kx + kt

)∥∥∥∥
2

+ kr̄1′s− kr̄2′t

}

= −ky − kr̄′x + k min
ks,kt≥0

{√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s

x + t

)∥∥∥∥
2

+ r̄1′s− r̄2′t

}

= −ky − kr̄′x + k min
s,t≥0

{√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x− s

x + t

)∥∥∥∥
2

+ r̄1′s− r̄2′t

}
= kPVaR1−ε

(
y + r̃′x

)
2



The second and forth equalities follow from substituting the nonnegative variables s, t with ks, kt.

Finally, to show subadditivity, we note that the epigraph of the risk measure, PVaR1−ε
(
y + r̃′x

)
≤ r

is a classical conic quadratic feasible space, which is convex in (y,x, r). Therefore, PVaR1−ε
(
y + r̃′x

)
is convex over (y,x). Hence, for all y1 + r̃′x1, y2 + r̃′x2 ∈ V, we have

PVaR1−ε
(
y1 + r̃′x1 + y2 + r̃′x2

)
= 2PVaR1−ε

(
1
2(y1 + r̃′x1) + 1

2(y2 + r̃′x2)
)

Positive homogeneity

≤ PVaR1−ε
(
y1 + r̃′x1

)
+ PVaR1−ε

(
y2 + r̃′x2

)
Convexity.

Proof of Theorem 2: It is trivial to show translation invariance, and the proof of that posi-

tive homogeneity and subadditivity is similar to the exposition of proposition (1). Finally, to show

monotonicity, we first show that for any (y,x) satisfying y + r̃′x ≥ 0 or equivalently,

y + min
r∈W

r′x ≥ 0

we have CPVaR1−ε
(
y + r̃′x

)
≤ 0. Indeed,

CPVaR1−ε
(
y + r̃′x

)
= −y − r̄′x + min

s,t≥0,w

{√
1− ε
ε

∥∥∥∥Σ̂1/2
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x−w − s

x−w + t
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2
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w′r

}
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1− ε
ε
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x−w + t
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2

+ r̄1′s− r̄2′t + r̄′w − min
r∈W

w′r

: w = x, s = t = 0

}
= −y − min

r∈W
r′x ≤ 0

Finally, given y1 + r̃′x1, y2 + r̃′x2 ∈ V such that y1 + r̃′x1 ≥ y2 + r̃′x2 we have

CPVaR1−ε
(
y1 + r̃′x1 − y2 − r̃′x2

)
≤ 0.

Hence,

CPVaR1−ε
(
y1 + r̃′x1

)
≤ CPVaR1−ε

(
y1 + r̃′x1 − y2 − r̃′x2

)
+ CPVaR1−ε

(
y2 + r̃′x2

)
Subadditivity

≤ CPVaR1−ε
(
y2 + r̃′x2

)
.
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Proof of Theorem 3: For all (y,x) ∈ <n+1, we have

CPVaR1−ε
(
y + r̃′x

)
= −y − r̄′x + min

s,t≥0,w

{√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x−w − s

x−w + t

)∥∥∥∥
2

+ r̄1′s− r̄2′t + r̄′w − min
r∈W

w′r

}

≤ −y − r̄′x + min
s,t≥0,w

{√
1− ε
ε
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2
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}
= PVaR1−ε

(
y + r̃′x

)
.

Similar to the proof of Theorem 1, to show that VaR1−ε
(
y + r̃′x

)
≤ CPVaR1−ε

(
y + r̃′x

)
, it suffices

to show that for all r ∈ <, CPVaR1−ε
(
y + r̃′x

)
≤ r, implies

P(−(r̃′x + y) > r) ≤ ε.

We consider the inner minimization problem of the function g(s, t,w), on the domain s, t ∈ <n+,w ∈ <n,

where

g(s, t,w) =

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x−w − s

x−w + t

)∥∥∥∥
2

+ r̄1′s− r̄2′t + h(w)

and

h(w) = r̄′w − min
r∈W

w′r

Since the vector of mean returns lies within the support, i.e. r̄ ∈ W, we have the inequality h(w) ≥

0, ∀w ∈ <n, since

h(w) = r̄′w − min
r∈W

w′r ≥ r̄′w −w′r̄ = 0

Hence, when (s, t,w) is unbounded, g(s, t,w) diverges to +∞, since r̄1′s − r̄2′t + h(w) ≥ 0 on the

domain of g. On the other hand, g(0,0,0) is finite. We are therefore guaranteed finite optimizers

(s∗, t∗,w∗) of g(s, t,w). Now we express

CPVaR1−ε
(
y + r̃′x

)
= −y− r̄′x+

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x−w∗ − s∗

x−w∗ + t∗

)∥∥∥∥
2

+ r̄1′s∗− r̄2′t∗+ r̄′w∗−min
r∈W

w∗′r

Suppose CPVaR1−ε
(
y + r̃′x

)
≤ r, we have

−y − r̄′x +

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x−w∗ − s∗

x−w∗ + t∗

)∥∥∥∥
2

+ r̄1′s∗ − r̄2′t∗ + r̄′w∗ − min
r∈W

w∗′r ≤ r. (8)

Hence, using Inequality (8) and substituting r̄ = r̄1 + r̄2, we have

P(−(r̃′x + y) > r)

≤ P

(
−r̃′x + min

r∈W
w∗′r + r̄1′(x− s∗ −w∗) + r̄2′(x + t∗ −w∗) >

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x−w∗ − s∗

x−w∗ + t∗

)∥∥∥∥
2

)
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Observe that since r̃1 ≥ 0, r̃2 ≤ 0 and min
r∈W

w∗′r ≤ w∗′r̃ we have

r̃1′s∗ − r̃2′t∗ + w∗′r̃ ≥ min
r∈W

w∗′r

Therefore, using one sided Tchebychev inequality, we have

P

(
−r̃′x + min

r∈W
w∗′r + r̄1′(x− s∗ −w∗) + r̄2′(x + t∗ −w∗) >

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x−w∗ − s∗

x−w∗ + t∗

)∥∥∥∥
2

)

≤ P

(
−(r̃1 − r̄1)′(x− s∗ −w∗)− (r̃2 − r̄2)′(x + t∗ −w∗) >

√
1− ε
ε

∥∥∥∥Σ̂1/2
(
x−w∗ − s∗

x−w∗ + t∗

)∥∥∥∥
2

)
≤ ε.

5


	Portfolio value-at-risk optimization for asymmetrically distributed asset returns
	Citation

	tmp.1521601848.pdf.WTfJ9

