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Abstract

This paper examines the capacity investment decisions of a processor that uses a commodi-

ty input to produce both a commodity output and a byproduct in the context of agricultural

industries. We employ a multi-period model to study the optimal one-time processing and (out-

put) storage capacity investment decisions—in addition to the periodic processing and inventory

decisions—when both input and output spot prices as well as production yield are uncertain.

We characterize the optimal decisions and perform sensitivity analysis to investigate how spot

price uncertainty affects the processor’s optimal capacity and profitability. Using a calibration

based on the palm industry, we study (both numerically and analytically) the performance of

a variety of heuristic capacity investment policies that can be used in practice. We find that

if the yield uncertainty is ignored in capacity planning, then basing those plans on the average

yield is preferable to basing them (as often occurs in practice) on the maximum yield. However,

planning based on the average yield performs well only when the relative (processing-to-storage)

capacity investment cost is high, otherwise it leads to a significant loss of profit. We also find

that ignoring spot price uncertainty in capacity planning results in a relatively small profit loss.

In contrast, ignoring byproduct revenue—which constitutes a small portion of total revenues—

during capacity planning substantially reduces the processor’s profit.

Keywords: capacity management, multi-product firm, commodity risk management, spot mar-

ket, agriculture, dynamic programming, processing, storage.
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1 Introduction

In this paper we study the capacity investment decisions of a processor that—in the context of

agricultural industries—uses a primary commodity input to produce a commodity output as well

as a byproduct. In particular, we analyze investment decisions related to input processing capacity

and output storage capacity. Our analysis is applicable to several agricultural industries, including

the oilseed industry (e.g., palm, soybean, rapeseed, sunflower seed, coconut) and the grain industry

(e.g., corn and wheat).

Consider, for example, the palm industry. In this industry, palm oil mills produce crude palm oil

(a commodity output) and palm kernel (a byproduct) from palm fresh fruit bunches (a commodity

input). As reported in Table 11 of the 2015 USDA Report1 on oilseeds, palm is the largest oilseed

industry globally with 59.29 million metric tons of crude palm oil produced between 2013 and 2014,

the estimated market value of which is more than $49 billion (US). In a palm oil mill, the palm fresh

fruit bunches go through several processing stations (receiving, sterilization, threshing, pressing and

centrifuge) to produce palm kernel and crude palm oil. Crude palm oil is transferred to storage

tanks prior to dispatch from the mill. The processing volume of the palm fresh fruit bunches is

constrained by the joint capacity of the processing stations, while crude palm oil production and

inventory volume is constrained by storage tank capacity. It follows that choosing the optimal levels

of processing and storage capacity is critical for a mill’s profitability. Similar capacity investment

decisions are of relevance to other oilseed processors, which produce crude vegetable oil and meal

or cake, and grain processors, which produce biofuel and animal feed.

In the operations management (OM) literature there is a vast amount of research that studies

capacity investment decisions in processing environments (for a review, see Van Mieghem 2003),

but a very limited amount of this research in the context of agricultural industries. Among the

few papers that focus on agricultural industries (e.g., Allen and Schuster 2004) there is no work

that considers the processing of a commodity product—a common characteristic of the majority

of agricultural products in practice. To this end, the literature most relevant to our paper is

the OM research on commodity processing. The papers in this field examine operating decisions

(e.g., processing and inventory) of a commodity processor in a variety of models. These studies

capture the idiosyncratic features of different commodity markets, including those for electricity

(Zhou et al. 2014), electronic equipment (Pei et al. 2011), metals (Plambeck and Taylor 2013),

natural gas (Secomandi 2010a and 2010b, Lai et al. 2011), petroleum (Dong et al. 2014), and

1http://www.fas.usda.gov/psdonline.
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semiconductors (Kleindorfer and Wu 2003) as well as commodity markets associated with such

agricultural industries as beef (Boyabatlı et al. 2011), citrus fruit (Kazaz and Webster 2011), cocoa

(Boyabatlı 2015), corn (Goel and Tanrısever 2013), olives (Kazaz 2004), processed food (Mehrotra

et al. 2011) and soybean (Devalkar et al. 2011 and 2014). Because the focus of these papers is on

operating decisions, they either assume (often implicitly) abundant processing and storage resources

or consider fixed capacity levels for these resources. In summary, there is no work that studies the

joint processing and storage capacity investment decisions of commodity processors in agricultural

industries. In this paper, we attempt to fill this void.
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Figure 1: Characteristics of palm fresh fruit palm bunches (FFB) and crude palm oil (CPO)

in the Malaysian Peninsula for the period January 2006 to December 2013, as reported by the

Malaysian Palm Oil Board. Prices are reported in Malaysian ringgit per metric ton, production

yields (extraction rates) are reported as percentages.

Processors in agricultural industries feature unique characteristics that present challenges for

capacity management. First, since both the input and the output are commodities, there exist

regional exchange or “spot” markets (Devalkar et al. 2011). So in buying and selling these com-

modities, processors are exposed to prevailing spot prices. The input and output spot prices are

closely linked and exhibit considerable variability, as shown for the palm industry in panel (a) of

Figure 1. The uncertainty in spot prices may affect capacity investment decisions because the profit

from processing depends on those prices. Moreover, the processor can hold inventory for sale at

a later date in order to benefit from fluctuations in output spot price, where that inventory can

be sourced from in-house production (Fackler and Livingston 2002) and the spot market (Kouvelis
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et al. 2013). Second, there is some uncertainty also in the production yield (extraction rate) from

each input, as plotted (again for the palm industry) in panel (b) of the figure. This uncertainty

is driven by several factors that include weather conditions and the extent of pests and diseases

during the input’s growing period (Boyabatlı et al. 2016), the harvest timing of the input and the

processing technology used (Chang et al. 2003). The uncertainty in production yield may affect

capacity investment decisions because profits from processing depend also on that yield.

Given these characteristics, our first objective is to study how the processor should determine

the optimal levels of investment in processing and storage capacity. Because there is substantial

variability in input and output spot prices observed in practice, our second objective is to inves-

tigate how spot price uncertainty affects the processor’s optimal capacity and profitability. Our

final research objective is to examine the performance of heuristic capacity investment policies that

are already used—or that can be used—in practice in comparison with the optimal capacity in-

vestment policy. Because these heuristic policies ignore some operational factors (e.g., production

yield, byproduct revenue) during capacity planning, this performance comparison is instrumental

in understanding the criticality of these operational factors for capacity investment to generate

valuable managerial insights.

To achieve these objectives, we model the processor’s decisions as a multi-period optimization

problem in which the firm: (i) procures an input commodity, where the marginal procurement

cost equals the commodity’s spot price; (ii) sells an output commodity, where the marginal sales

revenue equals this commodity’s spot price, and (iii) sells a byproduct that has a fixed marginal

sales revenue. The output can also be procured from the spot market for storage and speculative

sale with the marginal procurement cost equal to the output spot price. The firm maximizes its

expected total profit over a finite planning horizon. At the beginning of this horizon, the firm

chooses input processing and output storage capacity levels. In the rest of the planning horizon,

constrained by these capacity levels, the firm periodically makes decisions about the processing

volume and output inventory. More specifically, in each period, the processing volume is chosen

with respect to production yield uncertainty, and the output inventory level is chosen after this

uncertainty is realized.

We characterize the optimal levels of investment in processing and storage capacity (as well

as the periodic processing and inventory decisions) in closed form. We distinguish two optimal

capacity investment strategies based on the investment cost of processing capacity relative to storage

capacity. When that relative cost is sufficiently high, the firm invests in a storage-dominating
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portfolio, where the storage capacity is strictly greater than what is required for production (with

full utilization of processing capacity) under all yield realizations. When that relative cost is

sufficiently low, the firm invests in a high yield–balanced portfolio, where the processing capacity is

at the level required for production (with full utilization of storage capacity) under the maximum

yield. We complement our structural analysis with numerical analysis by calibrating our model

to represent a typical palm oil mill. We use publicly available data from the Malaysian Palm Oil

Board as well as publicly available and proprietary data from palm oil mills located in Malaysia.

Our main findings and their contribution can be summarized as follows.

1) We conduct sensitivity analyses, both analytically and numerically, to investigate the effects

of correlation between input and output spot prices and their respective volatility. We find that

the processor always benefits from a lower correlation but benefits from a lower input or output

price volatility when this volatility is low; otherwise a higher volatility is beneficial. These results

are reminiscent of the sensitivity results in Plambeck and Taylor (2013)—who examine the effect

of spot price uncertainty on a clean-tech manufacturer’s profitability—and Dong et al. (2014)—

who examine the effect of spot price uncertainty on the value of operational flexibility in the

context of an oil refinery. In both papers only a single period is modeled; we extend the sensitivity

analyses to a multi-period setting. In addition, we examine the effect of spot price uncertainty on

capacity investment decisions of a typical processor. We find that the optimal processing capacity

decreases with an increase in price correlation. The optimal processing capacity also decreases

with an increase in output or input price volatility but only when this volatility is low; otherwise

it increases with an increase in that volatility. In contrast, the optimal storage capacity increases

with an increase in output price volatility but it is not affected otherwise. These results showcase

the significant differences in how spot price uncertainty affects each capacity type.

2) We study the performance of a variety of heuristic capacity investment policies in comparison

with the optimal capacity investment policy. To this end, we numerically compute the profit loss

due to employing the heuristic policy, and also provide analytical bounds on this profit loss. We find

that should the production yield uncertainty be ignored in capacity planning, rather than making

the planning based on the maximum yield, as is often done in practice in the palm industry, it is

better to plan based on the average yield. However, planning based on the average yield performs

well only when the relative (processing-to-storage) capacity investment cost is sufficiently high;

otherwise it leads to considerable profit loss (an average profit loss of 14.53% in the numerical

instances considered). We also find that ignoring spot price uncertainty in capacity planning
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results in a relatively small profit loss (an average profit loss of 5.87% in the numerical instances

considered). Another finding of interest is that the processor’s profits are substantially reduced if

its capacity planning ignores byproduct revenue (a minimum profit loss of 61.86% in the numerical

instances considered)—even though that revenue accounts for just a small portion of the firm’s total

revenue. Based on our theoretical analysis, as a heuristic policy, we propose setting storage capacity

at the level required for production (with full utilization of processing capacity) under the maximum

yield. Because this policy assumes a particular relationship between processing capacity and storage

capacity, it provides an operational simplification in making capacity investment decisions. We show

that this heuristic policy is nearly optimal (an average profit loss of only 0.57% in the numerical

instances considered). These results contribute to the OM research on commodity processing. The

papers in this field (e.g., Devalkar et al. (2011), Lai et al. (2011), Zhou et al. (2014)) compare the

performance of heuristic operating policies with the performance of the optimal policy, and propose

near-optimal decision rules for making operating decisions. Our focus is similar but applied to

capacity investment decisions. Our results offer insights with potential practical relevance for both

optimal and approximate capacity investment decisions in agricultural processing.

The rest of the paper proceeds as follows. §2 describes the model and the basis for our as-

sumptions, and §3 derives the optimal strategy. §4 structurally examines the effects of spot price

uncertainty on the optimal capacity investment policy and on firm profitability; it also compares

the optimal policy’s performance with that of heuristic policies. §5 conducts the same analysis

numerically using a model calibration that represents a typical processor in the context of the palm

industry. §6 concludes with a discussion of the limitations of our analysis. All proofs are relegated

to the Technical Appendix.

2 Model Description

We use the following notation and convention throughout the paper. A realization of the random

variable ỹ is denoted by y. The expectation operator is denoted by E. We use (u)+ = max(u, 0).

Boldface letters represent row vectors. The monotonic relations (increasing, decreasing) are used

in the weak sense. Subscript t denotes period t. Superscript I denotes input-related parameters

and decision variables, while superscript O (B) denotes the parameters and variables related to the

output (byproduct).

We consider a firm that uses a commodity input to produce a commodity output and a byprod-

uct and that seeks to maximize its expected total (discounted) profit over a finite planning horizon.

5



The firm operates under capacity constraints related to input processing and output storage. At the

beginning of the planning horizon, the firm chooses its level of investment in each type of capacity.

In the rest of the horizon, the firm makes periodic decisions about processing volume and output

inventory subject to its chosen capacity levels.

Let K = (KI ,KO) denote the firm’s capacity investment portfolio, where KI is the input pro-

cessing capacity and KO is the output storage capacity. In agricultural industries, the processors

are located near the plantations where the input originates; because the available land is scarce, the

marginal capacity investment cost is increasing in the capacity level. In line with this observation,

we assume that the capacity investment cost C(K) is convex increasing in K.2 Specifically, we

consider a quadratic cost with parameters βI and βO: C(K)
.
= βI(KI)2 + βO(KO)2. The struc-

tural analysis of §3 holds also for a general convex increasing C(K) (except for the closed-form

characterization of the capacity portfolio, which requires a specific functional form).

We assume the marginal procurement cost of the commodity input to be given by that commod-

ity’s spot price. In practice, this case is relevant when the input is procured through an exchange

(spot) market or when the input is procured through bilateral contracts under which the unit price

is benchmarked to the exchange market price. Similarly, we assume that the marginal sales revenue

of the commodity output is given by its spot price. Input and output spot prices are assumed to

follow correlated Markovian stochastic processes; in other words, current spot price realizations are

sufficient to characterize the distribution of future spot prices. We defer the specification of these

stochastic processes to §4 because the structural analysis in §3 is not affected thereby.3 The firm

may also procure output from the spot market for the purpose of storage and speculative sale; we

assume that the marginal procurement cost is given by the spot price. Output storage incurs a

per-period unit holding cost of h.

We consider a per-period unit processing cost c > 0. For each unit of the processed input,

the production yield of the output (byproduct) is given by a (aB). We assume that aB ∈ (0, 1) is

constant and that the byproduct is not stored but sold at a fixed unit price pB. Hence, c
.
= c−aBpB

is the effective processing cost, which can be negative if the byproduct revenue is sufficiently high.

The output production yield ã is uncertain and independent and identically distributed across

2In a general processing environment the convexity of the capacity investment costs can also be attributed to limits

on production technology and increasing managerial complexity or maintenance cost with additional investment.
3In our model, decisions are made under the true pricing measure that reflects the firm’s actual expectations of

the spot market prices. A stream of papers (e.g., Devalkar et al. 2011) considers models in which decisions are made

under the risk-neutral pricing measure that reflects the spot price expectation in a competitive equilibrium.
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periods. We assume that ã is statistically independent of the spot price processes, which is a

reasonable assumption in the palm industry (as verified empirically in §5). We consider a Bernoulli

distribution for ã: a = al with probability q ∈ [0, 1] and a = ah with probability 1 − q for

0 < al < ah ≤ 1− aB, where the last inequality follows because the overall production yield cannot

exceed 1. Let ā = qal + (1− q)ah denote the average production yield. The structural analysis in

§3 will also hold for a general discrete distribution of ã with more than two realizations.

The storage capacity KO affects processing activities because output is placed in the storage

facility before being dispatched from the plant. Profitability will decline if the output yield from

processing exceeds the available storage capacity. This reduction in profitability can result from the

cost associated with process interruption due to retrieving the excess output from the facility or the

cost of using temporary storage tanks to handle the excess output. The reduction in profitability

can also be driven by the decline in the marginal sales revenue due to the output’s inferior quality

as a result of improper storage conditions. In the oilseeds industries, for example, the quality of

crude vegetable oil decreases not only with metal (e.g., iron) contamination, which occurs when

the storage facility is not lined with suitable protective coating, but also with solidification and

fractionation, which occurs if the storage facility cannot maintain a specific temperature. In the

palm industry, palm oil mills in practice minimize quality issues related to storage conditions by

planning operations in such a way that the entire volume of output (crude palm oil) go through

the storage facility after processing. In line with this observation we assume that the firm adopts a

policy of no excess production—that is, processing volume is chosen in such a way that the available

output storage capacity is sufficient under all yield realizations.4

We formulate the firm’s problem as a finite-horizon stochastic dynamic program. The per-period

processing capacity KI (in units of, say, metric tons of input per day) and the storage capacity

KO (metric tons of output) are determined at period t = 0, and they are fixed in all subsequent

periods. In each period t ∈ [1, T ], the sequence of events is as follows:

1. At the beginning of period t, the firm observes the input and the output spot prices Pt =

(pIt , p
O
t ) as well as the output inventory level st−1 (carried from period t − 1); the firm then

decides on the input processing volume zt within the processing capacity level KI , and consid-

ering the available output storage capacity KO − st−1 due to policy of no excess production.

4In the unabridged version of this paper (which is available from the first author’s website) we relax this assumption

and show that it is not a critical assumption in our model.
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2. The production yield a is realized, which determines the available output volume, and the firm

decides on the output inventory level st within the storage capacity KO. Required inventory

that is not provided by the available output volume is procured from the spot market; output

volume that is not stored is sold to the spot market.

The firm’s immediate payoff in period t ∈ [1, T ] is given by

L(zt, st | st−1,Pt)
.
= −pIt zt − czt − hst + Eã

[
−pOt (st − (st−1 + ãzt))

+
+ pOt (st−1 + ãzt − st)+

]
. (1)

In (1), the first two terms capture the effective processing and procurement cost, the third term

denotes the inventory holding cost and the last term expresses the expected cash flows resulting

from the realized production yield. The first term in these expected cash flows denotes the spot

procurement cost for the inventory level beyond the available output volume, and the second term

denotes the spot sale revenue for the available output volume that is not stored.

Let Vt(st−1,Pt) for t ∈ [1, T ] be the optimal value function from period t onward given st−1

and Pt; this function satisfies

Vt(st−1,Pt) = max
zt≥0,st≥0

{
L(zt, st | st−1,Pt) + δEt[Vt+1(st, P̃t+1)]

}
(2)

s.t. zt ≤ min

(
KI ,

KO − st−1

ah

)
, st ≤ KO,

with boundary condition VT+1(sT ,PT+1) = 0 and initial inventory level s0 = 0, where δ ∈ [0, 1]

is the discounting factor and Et[·] is our shorthand notation for E[· | Pt]. In (2), the constraint

zt ≤ KO−st−1

ah
captures the no excess production assumption, where KO−st−1

ah
denotes the input

volume required to fill the available output storage capacity under the high yield realization.

At period t = 0, the firm observes P0 and chooses K = (KI ,KO) thereby incurring the capacity

investment cost C(K) = βI(KI)2 +βO(KO)2. The firm’s optimal expected total (discounted) profit

over the planning horizon is given by Π∗ = maxK≥0 δE0[V1(0, P̃1)]− C(K).

3 Characterization of the Optimal Strategy

In this section, we describe the firm’s optimal strategy. In particular, we first characterize the

periodic input processing and output inventory decisions (§3.1) and then characterize the optimal

capacity investment decisions (§3.2).

To facilitate the analysis, we make the following observation. It costs the same to source inven-

tory from the output available in-house (i.e., the realized output yield after processing combined

with the inventory carried over from the previous period) as it does from the output spot market:
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in both cases, the cost is the prevailing output spot price. For the in-house case, this cost is the

opportunity cost of not selling to the spot market (spot sale revenue); when sourced from outside,

it is the spot procurement cost. Therefore, the firm’s immediate payoff in period t ∈ [1, T ], as given

by (1), can be decoupled into two components:

Lpr(zt | st−1,Pt)
.
= (−pIt − c+ āpOt )zt + pOt st−1,

Lsc(st | Pt)
.
= (pOt + h)st;

where the subscripts “pr” and “sc” refer (respectively) to “processing return” and “storage cost”.

This decoupling suggests that one can view same-period processing and inventory decisions as

being independent. Thus, the firm first decides on the processing volume to sell to the output spot

market (together with the inventory carried over from the previous period), which generates the

processing return Lpr(zt | st−1,Pt); and then chooses the output inventory level st to source from

the spot market incurring the storage cost Lsc(st | Pt). The processing decision does not affect any

other decisions, and the inventory decision affects only the subsequent period’s processing decision

through limiting the available storage capacity. Therefore, the optimization problem given by (2)

can be written in terms of independent two-stage optimization problems by grouping the inventory

decision in period t− 1 with the processing decision in period t; see Figure 2.

0 1 2 3 … T

P0 P1 P2 P3 … PTInformation
Decision K = (KI, KO) z1 z2 z3 … zTs1 s2 s3 sT

Cash Flow - C(K) Lpr(z1) Lpr (z2) Lpr (z3) … Lpr (zT)-Lsc(s1) -Lsc (s2) -Lsc (s3) -Lsc (sT)

G1(P1) G2(P2) GT-1(PT-1)

Period

…

ã ã ã ã

Figure 2: Schematic representation of the formulations in (2) and (3).

Because inventory is not needed in period T , Lsc(· | PT ) = 0 and so the optimal value function

in period t ∈ [1, T − 1] can be written as

Vt(st−1,Pt) = max
0≤zt≤min

(
KI ,

KO−st−1

ah

){Lpr(zt | st−1,Pt)
}

+
T−1∑
τ=t

δτ−tEt
[
Gτ (P̃τ )

]
, (3)

where the optimal expected profit Gt(Pt) for the two-stage problem in period t is given by

Gt(Pt)
.
= max

0≤st≤KO

−Lsc(st | Pt) + δEt

 max
0≤zt+1≤min

(
KI ,

KO−st
ah

)Lpr(zt+1 | st, P̃t+1)

 , (4)

with Lsc(st | Pt) = (pOt + h)st, and Lpr(zt+1 | st,Pt+1) = (−pIt+1 − c+ āpOt+1)zt+1 + pOt+1st.

9



3.1 Periodic Input Processing and Output Inventory Decisions

We now derive the optimal solution for (4). We first characterize the optimal processing volume

z∗t+1(st,Pt+1) for a given output inventory level st and then characterize the optimal output inven-

tory level s∗t (Pt).

Lemma 1 The optimal processing volume z∗t+1(st,Pt+1) is given by

z∗t+1(st,Pt+1) =

0 if − pIt+1 − c+ āpOt+1 ≤ 0,

min
(

KO−st
ah ,KI

)
if − pIt+1 − c+ āpOt+1 > 0.

Here −pIt+1 − c + āpOt+1, the difference between the output spot sale revenue per expected yield

and the sum of input spot procurement and unit processing costs, denotes the processing margin

per input. If this margin is not positive then it is not profitable to process. Otherwise the firm

optimally processes up to KO−st
ah

unless constrained by the processing capacity KI .

Using Lemma 1 in (4), the optimal inventory decision becomes the solution to

max
0≤st≤KO

(
−pOt − h+ δEt[p̃Ot+1]

)
st + δEt

[(
−p̃It+1 − c+ āp̃Ot+1

)+]
min

(
KI ,

KO − st
ah

)
. (5)

Proposition 1 The optimal output inventory level s∗t (Pt) is characterized by

s∗t (Pt) =


0 if − pOt − h+ δEt[p̃Ot+1] ≤ 0,(
KO − ahKI

)+
if 0 < −pOt − h+ δEt[p̃Ot+1] ≤ δ

ah
Et
[(
−p̃It+1 − c+ āp̃Ot+1

)+]
,

KO if − pOt − h+ δEt[p̃Ot+1] > δ
ah
Et
[(
−p̃It+1 − c+ āp̃Ot+1

)+]
.

(6)

Here −pOt − h+ δEt[p̃Ot+1], the difference between the discounted expected spot sale revenue in the

subsequent period and the storage cost (the sum of output spot procurement and holding costs),

denotes the storage margin per output. If the storage margin is not positive then it is not profitable

to hold inventory. Otherwise, it is profitable to hold inventory and s∗t (Pt) is determined by the

trade-off between the storage margin and the opportunity cost of holding inventory (i.e., since doing

so limits the subsequent period’s processing volume because then there is less unoccupied storage

capacity). In particular, δ
ah
Et
[(
−p̃It+1 − c+ āp̃Ot+1

)+]
, the discounted expected positive part of

subsequent period’s processing margin per output (and thus, scaled by the high yield realization),

denotes this opportunity cost. If the opportunity cost is higher than the storage margin then the

firm only stores up to
(
KO − ahKI

)+
so that the subsequent period’s processing volume is not

10



limited by the unoccupied storage capacity under any yield realization. If the opportunity cost is

lower than the storage margin then the firm stores up to the full storage capacity KO.

It is clear from Proposition 1 that the firm’s rationale for holding inventory is to benefit from

output spot price fluctuations across periods. In particular, instead of selling the output to the spot

market in period t, the firm stores the output for later sale to the spot market at what is expected

to be a higher price. That benefit does not exist if, for instance, the discounted output spot price

follows a Martingale process. In this case, since δEt[p̃Ot+1] = pOt it follows that the storage margin

is negative, and so, by Proposition 1, the firm does not hold inventory.

Substituting the optimal inventory level s∗t (·) in the optimal processing volume z∗t+1(st,Pt+1)

for a given inventory level st, as characterized by Lemma 1, we observe that when the processing

margin −pIt+1 − c + āpOt+1 is strictly positive z∗t+1(s∗t ,Pt+1) = min
(
KI , K

O

ah

)
unless s∗t = KO (in

which case the firm optimally does not process because there is no available storage capacity for the

output to be placed after processing). Using this observation the optimal expected profit Gt(Pt)

for the two-stage problem in period t, as given in (4), can be written as

Gt(Pt) = max

(
−pOt − h+ δEt[p̃Ot+1],

δ

ah
Et
[(
−p̃It+1 − c+ āp̃Ot+1

)+])
min

(
ahKI ,KO

)
(7)

+
(
−pOt − h+ δEt[p̃Ot+1]

)+ (
KO − ahKI

)+
.

For the first ahKI units of the storage capacity KO the firm faces the trade-off between holding

inventory this period—which has a unit profit of storage margin per output—versus processing in

the subsequent period—which has a unit expected profit of discounted processing margin (when it

is profitable to process) scaled by the high yield realization. Therefore, marginal revenue of these

capacity units is given by the maximum profit from the two options. For the remaining (KO−ahKI)

units of the storage capacity, holding inventory this period does not limit the subsequent period’s

processing volume. Therefore, marginal revenue of these capacity units is given by the storage

margin (when it is profitable to hold inventory).

3.2 Capacity Investment Decisions

Next we solve for the firm’s optimal capacity investment decision. At period t = 0, the firm observes

P0 and chooses the capacity portfolio K = (KI ,KO), while incurring the capacity investment cost

C(K) = βI(KI)2+βO(KO)2, so as to maximize its expected total (discounted) profit over the entire

planning horizon: maxK≥0 V (K)−C(K), where V (K)
.
= δE0[V1(0, P̃1)] signifies the expected profit

11



for a given capacity portfolio K. It follows from (3) that

V1(0,P1) = max
0≤z1≤min

(
KI ,K

O

ah

){(−pI1 − c+ āpO1 )z1

}
+
T−1∑
τ=1

δτ−1Et
[
Gτ (P̃τ )

]
,

and using Lemma 1 and the characterization of Gt(Pt) given in (7) the expected total (discounted)

profit over the planning horizon for a given K can therefore be written as

Π(K) = M1 min
(
ahKI ,KO

)
+M2

(
KO − ahKI

)+
− βI(KI)2 − βO(KO)2, (8)

where

M1
.
=

δ

ah
E0

[(
−p̃I1 − c+ āp̃O1

)+]
+ E0

[
T−1∑
t=1

δt max

(
−p̃Ot − h+ δEt[p̃

O
t+1],

δ

ah
Et

[(
−p̃It+1 − c+ āp̃Ot+1

)+])]
,

M2
.
= E0

[
T−1∑
t=1

δt
(
−p̃Ot − h+ δEt[p̃

O
t+1]

)+]
. (9)

In (9), M2 denotes the total expected storage profit over the entire planning horizon; this term

is relevant for the storage capacity units
(
KO − ahKI

)+
which have no effect on the processing

activities. The term M1 denotes the expected marginal revenue of the first ahKI units of the

storage capacity KO. For these capacity units, because holding inventory in each period limits the

subsequent period’s processing volume, the expected marginal revenue is given by the maximum of

the storage margin and the expected processing benefit per output—that is, expected discounted

processing margin (when it is profitable to process) scaled by the high yield realization. Because

storage is empty at the beginning of the planning horizon, the first period’s processing volume is

not constrained by inventory, and so only the processing benefit per output is relevant.

Proposition 2 characterizes the optimal solution for the firm’s capacity investment decision.

Proposition 2 The optimal capacity investment portfolio K∗ = (KI∗,KO∗) is characterized by

(KI∗,KO∗) =


(
ah(M1−M2)

2βI
, M2

2βO

)
if β ∈ Ω1 =

{
β : βI

βO
> (ah)2

(
M1
M2
− 1
)}

(
ahM1

2βI+2(ah)2βO
, (ah)2M1

2βI+2(ah)2βO

)
if β ∈ Ω2 =

{
β : βI

βO
≤ (ah)2

(
M1
M2
− 1
)}

,

where β = (βI , βO) and Mi for i = 1, 2 is as given in (9) . The optimal expected profit is given by

Π∗ =


(ah(M1−M2))

2

4βI
+ (M2)2

4βO
if β ∈ Ω1

(ahM1)2

4(βI+βO(ah)2)
if β ∈ Ω2.

The optimal processing and storage capacity levels are characterized by the ratio of the expected

marginal revenue of an additional capacity unit to its marginal investment cost. The marginal
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investment cost of each capacity type is given by 2βj for j ∈ {I,O} if β ∈ Ω1, and by 2βI+2(ah)2βO

if β ∈ Ω2 in which case KO∗ = ahKI∗. The expected marginal revenue of each capacity type

takes different forms based on the capacity investment costs β = (βI , βO). When the processing

capacity cost relative to the storage capacity cost is sufficiently high (i.e., β ∈ Ω1), there is excess

storage capacity—that is, this capacity is strictly larger than what is required for production (with

full utilization of processing capacity) under both yield realizations (KO∗ > ahKI∗). We denote

the optimal capacity portfolio in this case as storage-dominating portfolio. Because there is no

production benefit to having additional storage capacity, its marginal revenue is given by the total

expected storage profit M2. In contrast, an additional unit of processing capacity can be used

for production (because there is excess storage capacity); therefore its marginal revenue is given

by the additional benefit of processing margin over the storage margin M1 −M2 per input (and

thus, scaled by the high yield realization ah). When the relative (processing-to-storage) capacity

cost is sufficiently low (i.e., β ∈ Ω2), there is no excess storage capacity in the optimal solution

(KO∗ = ahKI∗). We denote the optimal capacity portfolio in this case as high yield–balanced

portfolio because the processing capacity is at the level required for production (with full utilization

of storage capacity) under high yield realization. In this case, because there is no excess storage

capacity, M2 has no effect on the expected marginal revenue of either capacity type.

4 Comparative Statics and Heuristics

In this section, we study the effects of spot price uncertainty on the processor’s optimal capacity

investment policy as well as on its profitability (§4.1), and the performance of the optimal capacity

investment policy in comparison with a variety of heuristic policies (§4.2).

Throughout this section, we make two additional assumptions for the sake of tractability. First,

we assume that the processing margin is nonnegative for all price realizations: −pIt − c+ āpOt ≥ 0.

In §5.1, we employ the same data used for calibrating our numerical experiments to verify that this

is a reasonable assumption in the palm industry. Based on this assumption, when characterizing

the optimal capacity investment portfolio and the optimal expected profit given in Proposition 2,

we replace Et[(−p̃It+1 − c+ āp̃Ot+1)+] for t ∈ [0, T − 1] with Et[−p̃It+1 − c+ āp̃Ot+1] in M1. Second, in

order to study the effects of spot price uncertainty, we impose additional structure on our model of

the spot price process. In particular, we use a single-factor, bivariate, mean-reverting price process

to describe how both the input and output spot prices evolve.5 Thus input and output spot prices

5In the literature correlated mean-reverting processes are also used to model the evolution of the natural logarithm
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at time τ , Pτ = (pIτ , p
O
τ ), are now modeled in as follows:

dpIτ = θI(p̄I − pIτ )dτ + σIdW̃ I
τ , (10)

dpOτ = θO(p̄O − pOτ )dτ + σOdW̃O
τ ,

where θj > 0 is the mean-reversion parameter, p̄j is the long-term price level, and σj is the volatility

for j ∈ {I,O}; we use (dW̃ I
τ , dW̃

O
τ ) to denote the increment of a standard bi-variate Brownian

motion with correlation ρ. We assume ρ > 0 throughout our analysis. This is a reasonable

assumption in the palm industry as we empirically demonstrate in §5.1. Because the capacity

investment and operating (processing and storage) decisions are made at discrete time periods

t ∈ [0, T ], although the price process in (10) evolves on a continuous time τ , we only need to focus

on the price evolution at these discrete time periods. We assume that τ and t are in the same

time units (which we consider to be a weekday for our model calibration in §5.1). This price model

implies that, at period t̂ and with realized spot prices Pt̂ = (pI
t̂
, pO
t̂

), the spot prices P̃t = (p̃It , p̃
O
t )

at a future period t > t̂ follow a bivariate normal distribution with

E[p̃jt | Pt̂] = e−θ
j(t−t̂)pj

t̂
+
(

1− e−θj(t−t̂)
)
p̄j ,

VAR[p̃jt | Pt̂] =
1− e−2θj(t−t̂)

2θj
(σj)2,

COV[p̃It , p̃
O
t | Pt̂] =

1− e−(θI+θO)(t−t̂)

θI + θO
ρσIσO,

where VAR and COV denote variance and covariance, respectively.

4.1 Effects of Spot Price Uncertainty

In this section we conduct sensitivity analyses to study the effects of spot price correlation (ρ) and

of input and output spot price volatility (σI and σO, respectively) on the firm’s optimal capacity

investment portfolio K∗ and optimal expected profit Π∗. The key observation from Proposition 2 is

that price correlation and price volatility affect K∗ and Π∗ through their impacts on the expected

marginal revenue terms M2 (which, in each period t ∈ [1, T −1], depends on the positive part of the

storage margin −p̃Ot −h+δEt[p̃Ot+1]) and M1 (which, in each period, depends on the maximum of the

storage margin and the discounted expected processing margin per output δ
ah
Et[−p̃It+1− c+ āp̃Ot+1]

and that, in turn, is characterized by the processing margin −p̃It − c+ āp̃Ot in that period).

Proposition 3 (Price correlation ρ) ∂KI∗

∂ρ < 0, ∂KO∗

∂ρ ≤ 0, and ∂Π∗

∂ρ < 0, where ∂KO∗

∂ρ = 0 only

when K∗ is given by the “storage-dominating” portfolio.

of commodity spot prices—see, for example, Secomandi (2010b) and Secomandi and Wang (2012).
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Because the storage margin only depends on the univariate distribution of the output spot price,

M2 is independent of the spot price correlation ρ. Therefore, the effect of ρ on K∗ (and on Π∗) is

characterized by how it affects M1 which, in each period, depends on the maximum of the storage

and the processing margins. A lower ρ makes it more likely that when the input spot price is

low (high), the output spot price will be high (low). Therefore, because the processing margin

depends on the difference between output and input spot prices, a lower ρ increases the variability

of the processing margin while the storage margin remains unaffected. With increasing variability

of the processing margin the maximum of the storage and processing margins increases: a higher

processing margin increases this maximum whereas a lower processing margin does not decrease it

because the maximum value is given by the storage margin. Therefore, M1 increases. Thus a lower

ρ increases both K∗ and Π∗.

Proposition 4 (Input price volatility σI) There exist σI < σI such that ∂KI∗

∂σI
< 0, ∂Π∗

∂σI
< 0

for σI < σI ; and ∂KI∗

∂σI
> 0, ∂Π∗

∂σI
> 0 for σI > σI . If K∗ is given by the storage-dominating portfolio

then ∂KO∗

∂σI
= 0; otherwise, ∂KO∗

∂σI
< 0 for σI < σI and ∂KO∗

∂σI
> 0 for σI > σI .

Much as with the effect of ρ, M2 is independent of the input price volatility σI and thus, the effect

of σI on K∗ (and on Π∗) is characterized by how it influences the maximum of the storage and the

processing margins in each period. Since ρ > 0, a higher σI decreases (increases) the processing

margin variability when σI is low (high). Therefore, there exists a unique σ̂It threshold in period

t ∈ [1, T − 1] such that the maximum of the storage and the processing margins decreases in σI

when σI is lower than this threshold, and increases in σI otherwise. Because the threshold is

period dependent, we can identify the effect of σI on M1 only when σI is either sufficiently low

(σI < σI
.
= min{σ̂It }∀t) or sufficiently high (σI > σI

.
= max{σ̂It }∀t).

Proposition 5 (Output price volatility σO) There exist σO < σO such that

(i) if K∗ is given by the high yield–balanced portfolio then ∂KI∗

∂σO
< 0, ∂K

O∗

∂σO
< 0, and ∂Π∗

∂σO
< 0 for

σO < σO whereas ∂KI∗

∂σO
> 0, ∂K

O∗

∂σO
> 0, and ∂Π∗

∂σO
> 0 for σO > σO;

(ii) if K∗ is given by the “storage-dominating” portfolio then ∂KI∗

∂σO
< 0 for σO < σO, and ∂KO∗

∂σO
> 0.

The influence of σO on K∗ (and Π∗) is determined by its effect on both M1 and M2. Recall that

in each period M2 depends on the positive part of the storage margin. A higher σO increases the

storage margin variability. While a high storage margin is beneficial, a low storage margin is less

consequential because the firm optimally chooses not to hold inventory. Therefore, M2 is increasing
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in σO. The impact of σO on M1 parallels the σI effect. In particular, there exists a unique σ̂Ot

threshold in period t such that the maximum of the storage and the processing margins decreases

in σO when σO is lower than this threshold, and increases in σO otherwise. This threshold, too, is

period dependent, so the effect of σO can only be partially characterized: M1 decreases (increases)

with σO if σO < σO
.
= min{σ̂Ot }∀t (if σO > σI

.
= max{σ̂Ot }∀t). When K∗ is given by the high

yield–balanced portfolio, the impact of σO is characterized by its effect on M1; otherwise, its effect

on M2 is also relevant. In this latter case, KO∗ increases in σO because M2 increases, whereas KI∗

decreases in σO when σO is low because then M1 decreases and M2 increases.

4.2 Heuristic Capacity Investment Policies

In this section, we compare the performance of the optimal capacity investment policy with that of

heuristic capacity investment policies. Toward this end, we define the profit loss due to employing

a heuristic policy (hp) as ∆hp
.
=
[

Π∗−Π(Khp)
Π∗

]
, where Π∗ is the optimal expected profit (as given

by Proposition 2) and Π(Khp) is the expected total profit (as given by (8)) evaluated with the

capacity portfolio Khp = (KI
hp,K

O
hp) which is chosen by the heuristic policy. Here we introduce

the heuristic policies considered and provide analytical bounds on the profit loss ∆hp with each

heuristic policy. Later in §5.3 we use these analytical bounds to frame our numerical investigation

of the heuristics in the context of the palm industry. For ease of notation we define η
.
= βI

βO
, the

relative (processing-to-storage) capacity investment cost.

Heuristics Based on Ignoring the Production Yield Uncertainty. We consider two

heuristic policies in which the firm ignores production yield uncertainty and plans for capacity

based on a single number representing the yield. In the deterministic yield (maximum) or

DYM heuristic, capacity planning is based on the maximum possible yield; this policy is the one

most often implemented by palm oil mills in practice. The optimal capacity investment with this

policy, KDYM , can be obtained from Proposition 2 by replacing ā with ah:

(KI
DYM ,K

O
DYM ) =


(
ah(M1(ah)−M2)

2βI
, M2

2βO

)
if η

(ah)2 >
M1(ah)
M2

− 1(
ahM1(ah)

2βI+2(ah)2βO
, (ah)2M1(ah)

2βI+2(ah)2βO

)
if η

(ah)2 ≤
M1(ah)
M2

− 1,

whereM1(ah)
.
= δ

ah
E0

[
−p̃I1 − c+ ahp̃O1

]
+E0

[∑T−1
t=1 δt max

(
−p̃Ot − h+ δEt[p̃Ot+1], δ

ah
Et
[
−p̃It+1 − c+ ahp̃Ot+1

])]
.

In the deterministic yield (average) or DYA heuristic, capacity planning is based on the

average yield. The optimal capacity investment with this policy, KDY A, can be obtained from
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Proposition 2 by substituting ah for ā:

(KI
DY A,K

O
DY A) =


(
ā(M1(ā)−M2)

2βI
, M2

2βO

)
if η

(ā)2 >
M1(ā)
M2

− 1(
āM1(ā)

2βI+2(ā)2βO
, (ā)2M1(ā)

2βI+2(ā)2βO

)
if η

(ā)2 ≤ M1(ā)
M2

− 1,

whereM1(ā)
.
= δ

āE0

[
−p̃I1 − c+ āp̃O1

]
+E0

[∑T−1
t=1 δt max

(
−p̃Ot − h+ δEt[p̃Ot+1], δāEt

[
−p̃It+1 − c+ āp̃Ot+1

])]
.

If production yield uncertainty is ignored, then should capacity planning be based on the average

yield or the maximum yield? Our next proposition shows that the answer is the average yield when

η is sufficiently high—that is, when the firm invests in a storage-dominating portfolio under the

optimal policy as well as under both DYM and DYA heuristic policies.

Proposition 6 When η > max
(

(ah)2
(
M1(ah)
M2

− 1
)
, ahā

(
M1(ā)
M2

− 1
))

, ∆DYM > ∆DY A.

Recall from Proposition 2 that processing capacity in a storage-dominating portfolio is determined

by ah(M1 −M2), which, in each period, depends on the difference between the processing margin

−pIt−c+āpOt and the storage margin (per input) ahsmt where smt
.
= (−pOt −h+δEt[p̃Ot+1]). Because

−pIt −c+ahpOt > −pIt −c+ āpOt , a firm that uses the DYM heuristic will overestimate the processing

margin and consequently overinvest in processing capacity (i.e., KI
DYM > KI∗). There is no such

effect on the processing margin for a firm that uses the DYA heuristic, although that firm will then

underestimate the storage margin per input (i.e., āsmt < ahsmt) and consequently overinvest in

processing capacity (i.e., KI
DY A > KI∗). It turns out that overestimating the processing margin

has a more significant impact than underestimating the storage margin and so more significant

processing capacity misspecification occurs when using the DYM heuristic (i.e., KI
DYM > KI

DY A).

Therefore, the profit loss is higher than when using the DYA heuristic.

Given that it is better to base the capacity planning on the average yield, how significant is then

the profit loss when using this heuristic policy? Proposition 7 provides bounds on the profit loss

∆DY A when η is sufficiently high—that is, when the firm invests in a storage-dominating portfolio

under the optimal and the DYA heuristic policies (i.e., KO∗ > ahKI∗ and KO
DY A > ahKI

DY A), and

when η is sufficiently low—that is, when the firm does not invest in a storage-dominating portfolio

under the optimal and the DYA heuristic policies (i.e., KO∗ = ahKI∗ and KO
DY A = āKI

DY A).

Proposition 7 Case (i): When η > max
(

(ah)2
(
M1
M2
− 1
)
, ahā

(
M1(ā)
M2

− 1
))

, ∆DY A ≤
(

1− ā

ah
M1
M2
−1

)2

.

Case (ii): When η ≤ max
(

(ah)2
(
M1
M2
− 1
)
, ā2
(
M1(ā)
M2

− 1
))

, if η
(ah)2 + 1 ≈ η

(ah)2 then 1−
(
ā
ah

)2 ≤
∆DY A ≤ 2

(
1− ā

ah

)
.
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In both cases ā
ah

plays a critical role for the significance of the profit loss due to employing DYA

heuristic policy. For example, the proposed upper bound in each case—and thus the actual profit

loss ∆DY A—will be low if ā
ah

is close to 1 (ā < ah by definition). As ā
ah

decreases ignoring yield

uncertainty in capacity planning will have more severe consequences. This can be observed from

Case (ii) where the proposed lower bound—and thus the actual profit loss—will be high if ā
ah

is

low (which, in the next section, we will show to hold true in the context of the palm industry).

Deterministic Price (DP) Heuristic. Under this heuristic, the firm ignores spot price

uncertainty and plans for capacity based on expected spot prices. The optimal capacity investment

with such a policy, KDP , can be obtained from Proposition 2 by substituting the processing and

storage margins in each period with their expected values:

(KI
DP ,K

O
DP ) =


(
ah(M1−M2)

2βI
,
M2

2βO

)
if η

(ah)2 >
M1
M2
− 1(

ahM1

2βI+2(ah)2βO
,

(ah)2M1

2βI+2(ah)2βO

)
if η

(ah)2 ≤
M1
M2
− 1,

(11)

where

M1
.
=

δ

ah
E0[−p̃I1 − c+ āp̃O1 ] +

[
T−1∑
t=1

δt max

(
E0[−p̃Ot − h+ δEt[p̃Ot+1]],

δ

ah
E0[−p̃It+1 − c+ āp̃Ot+1]

)]
,

M2
.
=

T−1∑
t=1

δt(E0[−p̃Ot − h+ δEt[p̃Ot+1]])+.

Failing to account for spot price uncertainty leads the firm to underinvest in each capacity type,

i.e., KDP < K∗—this follows from M1 < M1 and M2 < M2 which can be easily established using

Jensen’s inequality. Recall that the firm’s rationale for holding inventory is to benefit from output

spot price fluctuations—instead of selling the output to the spot market, the firm stores the output

for later sale to the spot market at what is expected to be a higher price. When the uncertainty

in output spot price is ignored, such benefit will be less significant and thus, M2, total expected

storage profit over the planning horizon, will be considerably small. Therefore, the firm is likely

to invest in high yield–balanced portfolio when DP heuristic is employed (second case in (11))—a

conjecture that we will show in the next section to hold true in the context of the palm industry.

Proposition 8 provides a lower bound on the profit loss ∆DP in the limiting case where M2 = 0.

Proposition 8 Assume M2 = 0. Case (i): When η ≤ (ah)2
(
M1
M2
− 1
)

, ∆DP =
(

1− M1
M1

)2
.

Case (ii): When η > (ah)2
(
M1
M2
− 1
)

, if η
(ah)2 +1 ≈ η

(ah)2 and M1
M2
−1 ≈ M1

M2
then ∆DP >

(
1− M1

M1

)2
.

The lower bound on the profit loss equals the actual profit loss when η is low enough that the firm

invests in a high yield–balanced portfolio under the optimal policy, i.e., Case (i). In both cases
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M1
M1

plays a critical role for the significance of the profit loss due to employing DP heuristic policy.

Because M2 = 0 by assumption, the expected storage margin in each period is practically zero,

and thus, M1 depends on the expected processing margin in each period. Under the price process

specified in (10) this expected processing margin converges to a fixed quantity—where the input

and output spot prices are at their long term means—after certain number of periods. Therefore,

this fixed quantity crucially determines M1, and thus the loss of profit under the DP heuristic. We

will show in the next section that this fixed quantity is sufficiently low, and the profit loss is small

in the context of the palm industry.

No-Byproduct (NB) Heuristic. Under this heuristic, the firm does not account for byprod-

uct revenue when planning for capacity. The optimal capacity investment with such a policy, KNB,

can be obtained from Proposition 2 by substituting the effective processing cost c = c− aBpB for

c, i.e., substituting M1 for

MNB
1

.
=

δ

ah
E0

[
−p̃I1 − c+ āp̃O1

]
+E0

[
T−1∑
t=1

δt max

(
−p̃Ot − h+ δEt[p̃Ot+1],

δ

ah
Et
[
−p̃It+1 − c+ āp̃Ot+1

])]
.

Intuitively, failing to account for byproduct revenue leads the firm to underestimate the processing

margin in each period, and thus, to underinvest in capacity, i.e. KNB ≤ K∗—this follows from

MNB
1 < M1. Proposition 9 gives an upper bound on the profit loss when η is high enough that the

firm invests in a storage-dominating portfolio under both the optimal and the heuristic policies.

Proposition 9 Let χ
.
= M1

M2
and χ

.
=

MNB
1
M2

. When η > (ah)2(χ−1), ∆NB ≤
(

1− χ

χ

)(
1− (χ−1)

(χ−1)

)
.

In this case, failing to account for byproduct revenue leads to underinvestment in processing capacity

and no change in storage capacity. Because the processing capacity is determined by the maximum

of the processing margin and the storage margin in each period, the proposed upper bound crucially

depends on the relative magnitude of the two margins. When both margins are of the same order of

magnitude, underestimating the processing margin—that is, by not accounting for the byproduct

revenue—is less consequential. Suppose, for example, that underestimation of the processing margin

leads to a 10% reduction in χ—that is, χ = 0.9χ; then the upper bound on ∆NB × 100 is only 1%

(i.e., the profit loss is of extremely low magnitude). We will show in the next section that this

example is not relevant in the context of the palm industry.

High Yield–Balanced Portfolio (HYBP) Heuristic. Under this heuristic, the firm chooses

its capacity investment portfolio by assuming KO = ahKI . The optimal capacity investment under

this policy is characterized by KI
HY BP = ahM1

2βI+2(ah)2βO
and KO

HY BP = (ah)2M1

2βI+2(ah)2βO
. The following

proposition provides an upper bound for the profit loss experienced under this heuristic policy.
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Proposition 10 Let η > (ah)2
(
M1
M2
− 1
)

such that ∆HY BP > 0. If η
(ah)2 +1 ≈ η

(ah)2 then ∆HY BP ≤
η

(ah)2

η

(ah)2
+
(
M1
M2

)2 .

The proposed upper bound—and thus the actual profit loss—will be low if η
(ah)2 is sufficiently

large, so η
(ah)2 + 1 ≈ η

(ah)2 holds, and M1
M2

is very large (in other words, the processing margin is

substantially higher than the storage margin in each period) and so
(
M1
M2

)2
significantly outweighs

η
(ah)2 . We will show in the next section that these conditions hold in context of the palm industry.

5 Numerical Analysis: Application to the Palm Industry

In this section, we discuss an application of our model in the context of the palm industry. In this

industry, a palm oil mill processes palm fresh fruit bunches to produce crude palm oil and palm

kernel. The fresh fruit bunches first pass through receiving and sterilization stations where high-

pressure steam is applied. The palm fruits are then separated from the bunches at the threshing

station before being crushed at the pressing station to produce palm kernel and crude palm oil,

from which water and waste are then removed via centrifuge. The crude palm oil is transferred to

storage tanks prior to dispatch from the mill. In the context of our model, the palm fresh fruit

bunch (FFB) is the input, the crude palm oil (CPO) is the output, and the palm kernel is the

byproduct. The joint capacity of the receiving, sterilization, threshing, pressing and centrifuge

stations corresponds to KI ; the CPO storage tank capacity corresponds to KO.

The rest of this section is organized as follows. In §5.1 we describe the data and calibration on

which our numerical experiments will be based. §5.2 investigates the effect of spot price uncertainty

on the firm’s optimal capacity investment policy and profitability. Finally, in §5.3 we compare the

performance of optimal and heuristic capacity investment policies.

5.1 Data, Model Calibration and Computation for Numerical Experiments

Our focal unit of analysis is a palm oil mill located in Southeast Asia. Within this region, Malaysia

and Indonesia share many characteristics; they are the two largest players in the palm oil industry,

accounting for 86% of world palm oil production for the 2013–2014 period (USDA Report 2015,

Table 11). Our numerical experiments use publicly available data from the Malaysian Palm Oil

Board (MPOB) complemented by proprietary and publicly available data from palm oil mills located

in Malaysia. Hereafter we shall often use “RM” to denote the Malaysian ringgit (currency) and

“mt” to denote metric ton (equal to 1,000 kg, or about 1.1 US tons). Throughout this section we

use x̂ to denote the calibrated value for parameter x.

20



Calibration for Price Process Parameters. In our computational experiments, each period

corresponds to a weekday in practice. We use the daily prices of FFB and CPO reported in MPOB

from 1 January 2006 to 31 December 2013; this period encompasses 1,940 weekdays. The daily FFB

price varies as a function of the palm fruit’s origin (i.e., the north, south, west, or east subregion of

the Malaysian Peninsula) and quality (i.e., Grade A, B, or C), so we use the average of FFB prices

across subregions and grades. The daily CPO prices varies as a function of the delivery month (i.e.,

to be delivered in the same month, next month etc.). Consistent with our model we use the CPO

prices that correspond to immediate delivery (i.e., within in the same month). The daily prices

used in our calibration (in RM/mt) are plotted in panel (a) of Figure 1. According to the price

process specified in (10), the daily spot prices evolve as follows:

p̃It = e−θ
I
pIt−1 + (1− e−θI )p̄I + σI

√
1− e−2θI

2θI
z̃I ; (12)

p̃Ot = e−θ
O
pOt−1 + (1− e−θO)p̄O + σO

√
1− e−2θO

2θO
z̃O,

where (z̃I , z̃O) follows a standard bivariate normal distribution with correlation ρ. The expressions

in (12) can be viewed as a system of simultaneous equations of (p̃It , p̃
O
t ) on (pIt−1, p

O
t−1); that is,

p̃jt = αjpjt−1 + ϕj + ε̃j for j ∈ {I,O}. Because the error terms (ε̃I , ε̃O) are correlated, we use the

“seemingly unrelated” regression (SUR; see Zellner 1962) to estimate αj , ϕj , and the covariance

matrix of (ε̃I , ε̃O). We can then use these estimates together with (12) to obtain θ̂I = 0.00345,

p̂I = 532.75, σ̂I = 8.60, θ̂O = 0.00437, p̂O = 2689.87, σ̂O = 39.08, and ρ̂ = 0.734. According to the

McElroy’s R2, the SUR equations can explain 99.36% of the variation in the spot prices observed.

Calibration for Production Yield Parameters. The most granular data from MPOB are

the monthly average production yields (extraction rates) in the Malaysian Peninsula. As plotted

in panel (b) of Figure 1, the CPO yield from January 2006 to December 2013 ranges from 18.51%

to 20.37% with a mean of 19.72% and a standard deviation of 0.43%. Proposition 2 suggests

that the average production yield ā and the high yield realization ah are sufficient for numerical

computation. Accordingly, we set ̂̄a = 19.72%, which is the average yield in our data set, and

âh = 20.37%, which is the highest yield recorded in our data set. As discussed in §2, we assume

that the production yield and spot price distributions are statistically independent. To verify the

reasonableness of this assumption we examine the correlation between CPO yield and the CPO

price change lagged by k months for k ∈ [1, . . . , 5] and find that (results not reported here) this

correlation lies in the range [−0.08,−0.02].
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Calibration for Other Operational Parameters. For processing cost, we set ĉ = 40 RM

per metric ton of FFB, which is representative of the palm industry. For instance, in the 2013

annual report of Sime Darby (a major palm producer in Malaysia), the average “mill cost” between

2008 and 2012 is given as 199.75 RM/mt of CPO, which corresponds to 39.39 RM/mt of FFB at

the average production yield of 19.72%. As in §4, we continue to assume a nonnegative processing

margin for all price realizations. To verify that this is a reasonable assumption, we examine the

observed processing margin apO + aBpB − c− pI (with c = 40) using the daily FFB (pI) and CPO

(pO) prices together with the monthly CPO (a) and palm kernel (aB) production yield reported in

MPOB. We find that the observed margin is strictly positive for all 1,940 weekdays excepting only

two (on which the margins are −0.83 and −0.17). For the inventory holding cost we use ĥ = 1

RM/day per metric ton of CPO, which is approximately 10% of the CPO value if the inventory

is held in storage for an entire year (based on the long-term CPO price level p̂
O

= 2689.87 and

counting 250 weekdays annually). For the palm kernel byproduct, we use the overall average of

the data reported in MPOB within our time frame for both the price (p̂B = 1,510.70 RM/mt)

and the production yield (âB = 5.53%). These values entail an effective processing cost of ĉ =

ĉ− âB p̂B = −39.47 RM/mt of FFB. Capacity cost parameters βI and βO are calibrated based on

the following capacity cost information obtained from a palm oil mill located in Malaysia. The cost

of processing facilities (fruit receiving, sterilization, threshing, pressing, and centrifuge stations)

with a capacity of 30 mt of FFB per hour (or 300 mt of FFB daily in our model if we assume there

are 10 production hours per day) is 6,723,940 RM; the cost of storage tank that can hold 2,000 mt

of CPO is 969,570 RM. Given this information, we estimate β̂I = 75 and β̂O = 0.25. We do not

consider fixed costs (e.g., land) in our numerical experiments. For the discount factor δ, we take

an annual compound interest rate r and set δ = (1 + r)−1/250 (i.e., based again on 250 weekdays

per year). In the baseline scenario we assume that r̂ = 10%.

Numerical Computation. It follows from Proposition 2 that K∗ and Π∗ depend on E0[(−p̃Ot −

h+ δEt[p̃Ot+1])+] and E0

[
max

(
−p̃Ot − h+ δEt[p̃Ot+1], δ

ah
Et[−p̃It+1 − c+ āp̃Ot+1]

)]
for t ∈ [1, T − 1]. It

can be proven that at period 0
(
−p̃Ot − h+ δEt[p̃Ot+1],Et[−p̃It+1 − c+ āp̃Ot+1]

)
for t ∈ [1, T −1] follow

a bivariate normal distribution, so these expressions can be written in closed form (using the

moments as well as the probability density function and cumulative distribution function of the

standard normal distribution). Numerical computation can therefore be carried out in an efficient

manner. We initialize the FFB and CPO prices at the beginning of the planning horizon to their

last available values in the data set: pI0 = 528.5 RM/mt and pO0 = 2,570.5 RM/mt. We consider a
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five-year planning horizon, which is equivalent to 1250 weekdays (i.e., T̂ = 1,250).

Baseline Scenario. In our baseline scenario the optimal capacity investment is given by the

storage-dominating portfolio with KI∗ = 858.91 mt/day and KO∗ = 1,653.66 mt (where M1 =

633, 308.421 and M2 = 826.83), and the optimal expected profit is 56,012,483.86 RM over the

five-year planning horizon.

5.2 Effects of Spot Price Uncertainty

Here we illustrate our analytical sensitivity results, as discussed in §4.1, using numerical studies in

the context of the palm industry. We analyze (but refrain from plotting here) the effect of changing

price correlation in our baseline scenario for ρ ∈ [0.5, 0.975] in increments of 0.025. We observe in

all instances that K∗ is given by the storage-dominating portfolio and so, in line with Proposition 3,

KO∗ is not affected by ρ while KI∗ and Π∗ are both decreasing in ρ.
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Figure 3: Effects of changing input spot price volatility (σI) on optimal levels of processing capacity

(KI∗) and storage capacity (KO∗) and on optimal expected profits, where σI ∈ [−50%, 50%] of the

baseline value σ̂I = 8.60 in 5% increments. In the two panels, baseline scenario is indicated by the

circle (•) aligned (horizontally) with 0.

Figure 3 plots the effects of changing input price volatility in our baseline scenario for σI ∈

[−50%, 50%] of the baseline value σ̂I = 8.60 in 5% increments. We can see that K∗ is always given

by the storage-dominating portfolio (KO∗ > ahKI∗ as observed in the first panel) and so, in line

with Proposition 4, KO∗ is unaffected by σI . In Figure 3, as σI increases in its specified range,
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we observe a unique σI threshold where KI∗ decreases in σI when σI is below this threshold, and

increases in σI otherwise (the decreasing behavior is less visible than the increasing behavior in

the figure because the decreasing behavior is less significant in magnitude). The same pattern also

holds for the effect of σI on Π∗. These observations are consistent with Proposition 4 which proves

that both KI∗ and Π∗ are decreasing (increasing) in σI when σI is sufficiently low (high).

Figure 4 plots the effects of changing output price volatility in our baseline scenario for σO ∈

[−50%, 50%] of the baseline value σ̂O = 39.08 in 5% increments. If σO is low then K∗ is given by

the high yield–balanced portfolio (KO∗ = ahKI∗ as observed in the first panel). Otherwise, K∗

is given by the storage-dominating portfolio and, in line with Proposition 5, KO∗ increases with

σO. We again observe a unique σO threshold where KI∗ decreases in σO when σO is below this

threshold, and increases in σO otherwise; the same pattern also holds for the effect of σO on Π∗.

These observations are also consistent with Proposition 5.
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Figure 4: Effects of changing output spot price volatility (σO) on optimal levels of processing

capacity (KI∗) and storage capacity (KO∗) capacity and on optimal expected profits, where σO ∈

[−50%, 50%] of the baseline value σ̂O = 39.08 in 5% increments. Circles again indicate the baseline

scenario.

Two remarks are in order. First, we observe from Figure 4 that when K∗ is given by the

storage-dominating portfolio, as σO increases, KO∗ changes at a larger extent than Π∗—that is,

the optimal profit is more robust to changes in σO than the optimal storage capacity level. Second,
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comparing the second panels in Figure 3 and 4 reveal that the optimal profit is less sensitive to

changes in input price volatility than to changes in output price volatility.

To summarize, we find that the palm oil mill benefits from a lower spot price correlation and

also from a lower (higher) FFB or CPO price volatility when this volatility is low (high). How

do the changes in spot price uncertainty affect the processing and storage capacities of a typical

palm oil mill (that invests in a storage-dominating portfolio)? Our results highlight the significant

differences in how spot price uncertainty affects each capacity type. In particular, we find that

the optimal processing capacity decreases with an increase in price correlation or an increase (a

decrease) in CPO or FFB volatility when this volatility is low (high). In contrast, the optimal

storage capacity increases with an increase in CPO volatility but it is not affected otherwise.

5.3 Performance of Heuristic Capacity Investment Policies

Here we numerically compare the performance of the optimal capacity investment policy with that

of heuristic capacity investment policies discussed in §4.2 in the context of the palm industry. Recall

that the profit loss due to employing a heuristic policy (hp) is defined as ∆hp
.
=
[

Π∗−Π(Khp)
Π∗

]
, where

Π∗ is the optimal expected profit and Π(Khp) is the expected profit evaluated with the capacity

portfolio Khp = (KI
hp,K

O
hp) which is chosen by the heuristic policy. We relate our numerical results

to the analytical results (bounds on the profit loss with each heuristic policy) presented in §4.2.

We extend our numerical instances in order to assess the sensitivity of our results to several key

parameters. In particular, for η = βI

βO
we consider η ∈ [−30%, 30%] of the baseline value η̂ = 300 in

10% increments. We also consider the maximum yield ah ∈ [20.37%, 22.37%] in 0.05% increments as

well as holding costs h ∈ {0.5, 1, 2} and interest rates r ∈ {0%, 10%, 20%}. Altogether we evaluate

315 numerical instances.

Before discussing our key findings, we make two crucial observations based on our numerical

results. First, η
(ah)2 is sufficiently greater than 1 (with an average value of 6,590 while ranging

between 4,196 and 9,399) and so the condition η
(ah)2 + 1 ≈ η

(ah)2 in Propositions 7 and 8 is satisfied.

Second, M1
M2

is very high in our numerical instances (with an average value of 2,838 while ranging

from 439 to 10,676) and so the condition M1
M2
− 1 ≈ M1

M2
in Proposition 8 is also satisfied. Another

implication of this observation is that processing margin is significantly higher than the storage

margin in each period; recall that, in each period, M1 is characterized by the maximum of the

processing and storage margins while M2 is characterized simply by the storage margin. These

observations will be critical in delineating the intuition behind the results that follow.
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Optimal Policy (% instances)
Percentage Loss (%)= ∆hp × 100

DYM DYA DP NB HYBP

K∗ is storage-dominating (87.9%) 67.68 0 5.95 65.12 0.57

η
(ah)2

>
(
M1
M2
− 1
)

(6.99, 161.97) (0, 0) (5.35, 8.78) (61.86, 66.96) (0, 3.50)

K∗ is high yield–balanced (12.1%) 73.98 14.53 5.31 67.32 0

η
(ah)2

≤
(
M1
M2
− 1
)

(7.83, 162.65) (1.78, 23.70) (5.30, 5.36) (66.14, 67.51) (0, 0)

Table 1: Performance of heuristic capacity investment policies in the palm industry, where DYM =

deterministic yield (maximum) heuristic, DYA = deterministic yield (average) heuristic, DP =

deterministic price heuristic, NB = no-byproduct heuristic, and HYBP = high yield–balanced

portfolio heuristic. For each of these heuristics, the boldface values report the average percentage

loss observed in the relevant numerical instances while the other values report the minimum and

the maximum percentage loss observed.

Table 1 summarizes the percentage profit loss ∆hp × 100 incurred under each heuristic policy

using a classification of the numerical instances based on the optimal capacity investment policy

(storage-dominating or high yield–balanced). We now present our key findings.

1. If the production yield uncertainty is ignored, then capacity planning should be based on the

average yield and not on the maximum yield. In all numerical instances, the profit loss under the

DYM heuristic is greater than the corresponding loss under the DYA heuristic. This observation

is consistent with Proposition 6. As discussed in §4.2, a firm that uses the DYM heuristic will

overestimate the processing margin while a firm that uses the DYA heuristic will underestimate the

storage margin per input. Yet because the processing margin dominates the storage margin in our

numerical instances, this latter underestimation is less consequential—that is, a firm that uses the

DYA heuristic does not significantly deviate from the optimal processing capacity level. Consis-

tent with these arguments, we observe that the maximum absolute percentage misspecification of

processing capacity with the DYA heuristic, i.e.
∣∣∣KI∗−KI

DY A

KI∗

∣∣∣× 100, is only 0.06% in our numerical

instances while the minimum absolute percentage misspecification of processing capacity with the

DYM heuristic is 26.97%. Therefore, the profit loss is lower when using the DYA heuristic than

the profit loss when using the DYM heuristic.

2. Ignoring the production yield uncertainty while using the average yield when planning for

capacity does not affect profitability when the relative (processing-to-storage) capacity investment

cost is high; otherwise it leads to a significant loss of profit. Table 1 shows that, in all numerical

instances with sufficiently high η (i.e., such that the firm invests in a storage-dominating portfolio
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with the optimal policy), the loss under the DYA heuristic is negligible (0%) whereas in the numeri-

cal instances with sufficiently low η (i.e., such that the firm invests in a high yield–balanced portfolio

with the optimal policy) the average profit loss is 14.53%. Because processing capacity under the

DYA policy differs little from the optimal level, these observations are driven by the magnitude

of storage capacity misspecification. In a storage-dominating portfolio, per Proposition 2, storage

capacity is determined by the storage margin per output, i.e., −pOt − h + δEt[p̃Ot+1]. Because this

margin is not affected by the DYA heuristic, the firm chooses the same storage capacity level as un-

der the optimal policy. Therefore, there is no loss of profit. In a high yield–balanced portfolio, the

firm underinvests in storage capacity under the DYA policy because that capacity is determined by

KO = āKI rather than by KO = ahKI . In the relevant numerical instances, we observe an average

percentage misspecification of storage capacity with the DYA heuristic, i.e.
[
KO∗−KO

DYA

KO∗

]
× 100,

of 7.23%. That storage capacity misspecification leads to a sizable profit loss. These numerical

observations are consistent with our analytical results in Proposition 7. In particular, the proposed

upper bound with sufficiently high η (Case (i))—and thus, the actual profit loss ∆DY A—is practi-

cally zero because M1
M2

is very large (as discussed before) and it significantly outweighs ā
ah

(which

ranges between 0.88 and 0.97 in our numerical instances). Moreover, the proposed lower bound

with sufficiently low η (Case (ii)) on ∆DY A × 100 is larger than 5.91%—that is, the actual loss is

significant. In this case, the proposed upper bound on ∆DY A × 100 ranges from 6% to 24%. We

observe that this upper bound is tight in our numerical instances where the maximum deviation

from the actual ∆DY A × 100 is only 0.01%.

3. Ignoring the spot price uncertainty when planning for capacity leads to a relatively small

loss of profit. Table 1 shows that the average profit loss under the DP heuristic is 5.87% (which is

obtained from the two average profit losses 5.95% and 5.31% reported in the table) in our numerical

instances. As discussed in §4.2, when the output spot price uncertainty is ignored the incentive for

holding inventory will be lower, and thus, total expected storage profit over the planning horizon

(as captured by M2) will be considerably small. Consistent with this observation, in all numerical

instances we observe M2 ≈ 0 and the firm invests in high yield–balanced portfolio when DP

heuristic is employed. Because M2 = 0 condition is satisfied, the analytical results in Proposition 8

are relevant. In particular, the proposed lower bound on ∆DP × 100 ranges from 5.34% to 5.47%

in numerical instances with sufficiently high η (Case (ii)). One may argue that the profit loss

under the DP heuristic is not as high as what is expected. This result crucially depends on two key

observations. First, the processing margin when input and output spot prices are at their long-term
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means is sufficiently high in the palm industry (37.16 RM/mt in our baseline scenario)—recall that

this margin is the main determinant of M1 because the expected storage margin in each period

is practically zero. Second, FFB (input) and CPO (output) prices are highly positively correlated

(ρ̂ = 0.734 in our baseline scenario) and so the variability of processing margin in each period is

low—recall that higher processing margin variability is beneficial for the firm under the optimal

policy. Therefore, ignoring the price uncertainty does not lead to a sizable loss of profit.

4. Although byproduct revenue constitutes a small portion of a palm oil mill’s total revenues,

ignoring it during capacity planning substantially reduces the firm’s profit. In our baseline scenario

the processing cost is ĉ = 40 RM/mt and the effective processing cost is ĉ = ĉ − âB p̂B = −39.47

RM/mt, and so the byproduct revenue is 79.47 RM/mt. When the production yield is assumed

to be at its average and the output spot price is assumed to be at its long-term mean byproduct

revenue constitutes to only 13% of the total revenues. Yet, as confirmed by the values reported in

Table 1, ignoring byproduct revenue when planning for capacity leads to substantial profit loss—

an average of 65.39% in our numerical instances. As discussed in §4.2, the relative magnitude

of the processing and storage margins plays a key role in the profit loss experienced under this

heuristic policy. In our numerical instances, because the processing margin significantly outweighs

the storage margin, not accounting for the byproduct revenue in the processing margin leads (on

average) to a 81% reduction in M1
M2

, i.e.,
MNB

1
M2

= 0.19M1
M2

. Therefore, the proposed upper bound in

Proposition 9 is not small (average lower bound on ∆NB × 100 is 65.61%).

5. Using a high yield–balanced portfolio in capacity planning is a near-optimal heuristic policy.

Table 1 shows that, for those numerical instances in which η is high enough to result in positive

profit loss (because the optimal policy is storage-dominating), the average profit loss is only 0.57%.

This observation can be explained by our proposed upper bound on the actual profit loss ∆HY BP in

Proposition 10. This upper bound is low because, as established previously, M1
M2

is very large (since

the processing margin is substantially higher than the storage margin) and so
(
M1
M2

)2
significantly

outweighs η
(ah)2 . In the relevant numerical instances, we observe that the average upper bound on

∆HY BP × 100 is only 0.73% within a range from 0.02% to 3.88%.

6 Conclusion

This paper contributes to the operations management literature by studying the joint processing

and storage capacity investment decisions of a commodity processor in the context of agricultural

industries. Previous work on commodity processors has focused on operating decisions (e.g., pro-
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cessing and inventory), and usually assumes exogenously given capacity levels for processing and

storage resources. We study how these capacity levels are chosen. Toward this end, we develop

a stylized multi-period model to help devise a characterization of capacity investment policy that

has useful ramifications in terms of numerical computation and sensitivity analysis. We provide in-

sights on how spot price uncertainty shapes the firm’s capacity investment policy and profitability,

and insights on the benefits of using the optimal capacity investment policy rather than heuristic

policies.

Our work has several limitations due to our specific modeling assumptions; further research is

needed in order to validate the relevance of our insights when those assumptions are relaxed. First,

we assume that the capacity levels, once chosen, remain fixed during the planning horizon. In prac-

tice, however, it is not uncommon for firms to own multiple processing facilities (e.g., Wilmar in the

palm industry). In that case, the firm can temporarily increase one facility’s processing capacity

by shifting processing to other facilities. Incorporating flexible capacity into our framework would

be a promising avenue for future research. Second, our model assumes that the firm does not face

frictions in transportation. In practice, however, there may be constraints (on input procurement

or output sales) that arise from limits to transportation capacity (Devalkar et al. 2011). There

could also be marginal costs associated with transferring output from the storage facility to the

market, resulting in a spread between the output’s marginal spot procurement cost and marginal

spot sales revenue (Kazaz and Webster 2011). When these frictions in transportation are of sig-

nificant nature, they will provide another rationale for the firm to hold inventory.6 Incorporating

these frictions into our model should prove to be an interesting avenue for future research. Third,

our model calibration was based on the palm industry. Because other oilseeds and grain industries

share common characteristics with the palm industry—for instance, a significantly higher cost of

processing capacity than of storage capacity and the expected dominance of the processing margin

over the storage margin,—we expect that the majority of our findings is valid for those industries

as well.7 That being said, future research is still needed to verify this conjecture by using our

6In our model the firm’s rationale for holding inventory is to benefit from fluctuations in the output spot price—

which is one of the most common reasons for holding inventory in agricultural industries (Westlake 2005).
7As a first attempt to address the relevance of our insights outside of the palm industry we conduct additional

numerical experiments in which we alter several key parameters that were kept constant at their calibrated values in

§5. The details of this analysis are relegated to the unabridged version of this paper. We find that our main insights

about the heuristic capacity investment policies continue to hold except for one: in contrast with the palm setting,

ignoring the spot price uncertainty when planning for capacity leads to a substantial loss of profit.
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paper’s methodology to calibrate the model based on a different agricultural industry.
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TECHNICAL APPENDIX TO

CAPACITY MANAGEMENT IN AGRICULTURAL COMMODITY

PROCESSING AND APPLICATION IN THE PALM INDUSTRY

We use the following notation and results throughout the appendix. Let pmt
.
= −pIt − c+ āpOt

and smt
.
= −pOt − h + δEt[p̃Ot+1] denote the processing margin (per input) and the storage margin

(per output) in period t, respectively. Let φ(.) and Φ(.) denote the p.d.f and c.d.f. of the standard

normal random variable, respectively. φ
′
(z) = −zφ(z), φ(z) = φ(−z),

∫ v
−∞ zφ(z)dz = −φ(v). The

following result is from Cain (1994):

Lemma 2 Let X̃ = (X̃1, X̃2) follow a bivariate normal distribution with mean vector µ = (µ1, µ2),

and covariance matrix Σ where Σjj = σ2
j for j = 1, 2 and Σ12 = ρσ1σ2 and ρ denotes the correlation

coefficient.

E[max(X̃1, X̃2)] = µ1Φ

(
µ1 − µ2

ξ

)
+ µ2Φ

(
µ2 − µ1

ξ

)
+ ξφ

(
µ2 − µ1

ξ

)
,

where ξ
.
=
√
σ2

1 + σ2
2 − 2ρσ1σ2.

Proof of Lemma 1: The proof is omitted.

Proof of Proposition 1: Recall that pmt = −pIt − c + āpOt and smt = −pOt − h + δEt[p̃Ot+1].

The optimal inventory level s∗t (Pt) is given by the solution to (5). By expanding the expression

min
(
KO−st
ah

,KI
)

, the objective function in (5) can be written as

 smtst +KIδEt
[(
p̃mt+1

)+]
if 0 ≤ st ≤

(
KO − ahKI

)+
,(

smt − δ
ah

Et
[(
p̃mt+1

)+])
st + δ

ah
Et
[(
p̃mt+1

)+]
KO if

(
KO − ahKI

)+ ≤ st ≤ KO.

The first order derivative is smt if 0 ≤ st ≤
(
KO − ahKI

)+
,(

smt − δ
ah
Et
[(
p̃mt+1

)+])
if

(
KO − ahKI

)+ ≤ st ≤ KO.

Because smt ≥ smt − δ
ah
Et
[(
p̃mt+1

)+]
, the objective function is piece-wise linear and concave in

the inventory level st. It is easy to verify that it is continuous at the boundaries. Therefore,

s∗t (Pt) =


0 if smt ≤ 0,(
KO − ahKI

)+
if smt − δ

ah
Et
[(
p̃mt+1

)+] ≤ 0 < smt,

KO if 0 < smt − δ
ah
Et
[(
p̃mt+1

)+]
.
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Proof of Proposition 2: We first characterize the optimal storage capacity KO∗(KI) for a given

processing capacity KI . For a given KI , Π(KO|KI) is −βI
(
KI
)2 − βO (KO

)2
+M1K

O if 0 ≤ KO < ahKI ,

−βI
(
KI
)2 − βO (KO

)2
+ ah(M1 −M2)KI +M2K

O if ahKI ≤ KO.

where M1,M2 are as given in (9). It is easy to verify that Π(KO|KI) is continuous in KO. The

first order derivative is

∂Π(KO|KI)

∂KO
=

 g1(KO)
.
= −2βOKO +M1 if 0 ≤ KO < ahKI ,

g2(KO)
.
= −2βOKO +M2 if ahKI ≤ KO.

Because M1 ≥M2, g1(ahKI) ≥ g2(ahKI). Therefore, Π(KO|KI) is concave in KO. Let K̂O
i denote

the solutions to gi(KO) = 0 (for i = 1, 2), where K̂O
1
.
= M1

2βO
and K̂O

2
.
= M2

2βO
. The optimal solution

KO∗(KI) depends on the ordering among K̂O
i and ahKI . Since K̂O

1 ≥ K̂O
2 , we have the following

cases:

1. K̂O
1 < ahKI : Π(KO|KI) increases for KO ≤ K̂O

1 , and then decreases afterwards. Thus,

KO∗(KI) = K̂O
1 .

2. K̂O
1 ≥ ahKI : Π(KO|KI) increases for KO ≤ ahKI , its behavior after ahKI depends on the

ordering between K̂O
2 and ahKI :

2.1. K̂O
2 < ahKI : Π(KO|KI) decreases for KO > ahKI . Thus, KO∗(KI) = ahKI .

2.2. K̂O
2 ≥ ahKI : Π(KO|KI) continues to increase for ahKI < KO ≤ K̂O

2 , but decreases

afterwards. Therefore KO∗(KI) = K̂O
2 .

Combining these arguments yields

KO∗(KI) =


K̂O

1 if ahKI ≥ K̂O
1 ,

ahKI if K̂O
1 > ahKI ≥ K̂O

2 ,

K̂O
2 if ahKI < K̂O

2 .

By substituting KO∗(KI) in Π(KI ,KO), we obtain Π(KI), which is continuous in KI . The first

order derivative is given by

∂Π(KI)

∂KI
=


f1(KI)

.
= −2βIKI + ah(M1 −M2) if 0 ≤ KI <

K̂O
2

ah
,

f2(KI)
.
= −2(βI + β2(ah)2)KI + ahM1 if

K̂O
2

ah
≤ KI <

K̂O
1

ah
,

f3(KI)
.
= −2βIKI if KI ≥ K̂O

1

ah
.
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It is easy to verify that ∂Π(KI)
∂KI is continuous in KI and thus, Π(KI) is concave in KI . Let K̂I

i

be the solution to f i(KI) = 0 for i = 1, 2, where K̂I
1
.
= ah(M1−M2)

2βI
, K̂I

2
.
= ahM1

2βI+2(ah)2βO
. Note that

f3(KI) ≤ 0 for any KI ≥ 0 and the firm never invests in processing capacity more than the storage

capacity. This is consistent with the no excess production assumption. Using a similar approach

as in the previous part of the proof, we obtain

1. K̂I
1 <

K̂O
2

ah
: Π(KI) increases forKI ≤ K̂I

1 , and then decreases afterwards. Thus, (KI∗,KO∗) =(
K̂I

1 , K̂
O
2

)
. This case corresponds to β ∈ Ω1.

2. K̂I
1 ≥

K̂O
2

ah
: This case also implies that K̂I

2 ≥
K̂O

2

ah
. Also note that, from their respective defi-

nitions, K̂I
2 <

K̂O
1

ah
. Therefore, Π(KI) increases for KI ≤ K̂I

2 , and then decreases afterwards.

Thus, (KI∗,KO∗) =
(
K̂I

2 , a
hK̂1

2

)
. This case corresponds to β ∈ Ω2.

Proof of Proposition 3: Recall that pmt = −pIt − c+ āpOt and smt = −pOt − h+ δEt[p̃Ot+1]. Let

Yt
.
= δ

ah
Et[p̃mt+1]. Using the positive processing margin assumption it follows from Proposition 2

that M1 = Y0 + E0

[∑T−1
t=1 δt max

(
s̃mt, Ỹt

)]
and M2 = E0

[∑T−1
t=1 δts̃m+

t

]
. We first establish the

distribution of (s̃mt, Ỹt) for t = 1, ..T − 1 at period 0 based on our price model given in (10):

Lemma 3 Let κI
.
= exp(−θI) and κO

.
= exp(−θO). At period 0, (s̃mt, Ỹt) for t = 1, ..T − 1 follow

a bivarite normal distribution with

E0[s̃mt] = −h− (1− δκO)(κO)t(pO0 − p̄O)− (1− δ)p̄O,

E0[Ỹt] =
δ

ah
(
−c−

[
(κI)t+1pI0 + (1− (κI)t+1)p̄I

]
+ ā

[
(κO)t+1pO0 + (1− (κO)t+1)p̄O

])
,

VAR0[s̃mt] = (1− δκO)2(1− (κO)2t)
(σO)2

2θO
,

VAR0[Ỹt] =

(
δ

ah

)2(
(1− (κI)2(t+1))

(σI)2

2θI
+ ā2(1− (κO)2(t+1))

(σO)2

2θO
− 2ā(1− (κI)t+1(κO)t+1)

ρσIσO

θI + θO

)
,

COV0(s̃mt, Ỹt) =
δ(1− δκO)

ah

[
κI(1− (κI)t(κO)t)

ρσIσO

θI + θO
− āκO(1− (κO)2t)

(σO)2

2θO

]
.

Because the marginal distribution of s̃mt is independent of ρ, so is M2. Therefore, the impact of ρ

on K∗ (and Π∗) is characterized by its impact on M1. Because (s̃mt, Ỹt) follow a bi-variate normal

distribution, using Lemma 2, and after some algebra, we obtain

∂E0[max(s̃mt, Ỹt)]

∂ρ
= φ

(
E0[Ỹt]− E0[s̃mt]

ξ

)
∂ξ

∂ρ
,
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where ξ =
√

VAR0(s̃mt) + VAR0(Ỹt)− 2COV0(s̃mt, Ỹt)). The first term on the right-hand side is

positive, and the second term is negative because, as follows from Lemma 3, VAR0[Ỹt] is decreasing

in ρ and COV0[s̃mt, Ỹt] is increasing in ρ. Therefore, ∂ξ∂ρ < 0, and thus, ∂E0[max(s̃mt,Ỹt)]
∂ρ < 0. Because

Y0 = E0[Ỹt] for t = 0 is independent of ρ, M1 is strictly decreasing in ρ. It is straightforward to

verify that KI∗, KO∗, and Π∗ in Proposition 2 are continuous in β. Therefore, ∂K
I∗

∂ρ < 0, ∂K
O∗

∂ρ ≤ 0,

and ∂Π∗

∂ρ < 0, where ∂KO∗

∂ρ = 0 only when β ∈ Ω1, in which case KO∗ is independent of M1.

Proof of Proposition 4: Recall that pmt = −pIt − c + āpOt , smt = −pOt − h + δEt[p̃Ot+1],

Yt = δ
ah
Et[p̃mt+1], M1 = Y0 +E0

[∑T−1
t=1 δt max

(
s̃mt, Ỹt

)]
and M2 = E0

[∑T−1
t=1 δts̃m+

t

]
. Similar to

the ρ impact, M2 is independent of σI , and thus, the impact of σI on K∗ (and Π∗) is characterized by

its impact on M1. Using similar steps with the proof of Proposition 3, we obtain ∂E0[max(s̃mt,Ỹt)]
∂σI

=

φ
(
E0[Ỹt]−E0[s̃mt]

ξ

)
∂ξ
∂σI

, where

∂ξ

∂σI
=

1

2ξ

(
δ

ah

)2 [
(1− (κI)2(t+1))

σI

θI
− 2ā(1− (κI)t+1(κO)t+1)

ρσO

θI + θO
− 2

ah

δ
(1− δκO)κI(1− (κI)t(κO)t)

ρσO

θI + θO

]
.

The term inside the bracket can be written as AσI −B, where A > 0 and B > 0. Therefore there

exists a unique σ̂It
.
= B

A threshold for t = 1, ..T − 1 such that ∂E0[max(s̃mt,Ỹt)]
∂σI

< 0 for σI < σ̂It

and ∂E0[max(s̃mt,Ỹt)]
∂σI

> 0 for σI > σ̂It . Because Y0 = E0[Ỹt] for t = 0 is independent of σI , for

M1 = Y0 + E0

[∑T−1
t=1 δt max

(
s̃mt, Ỹt

)]
, there exist σI

.
= min{σ̂It }∀t and σI

.
= max{σ̂It }∀t such

that ∂M1

∂σI
< 0 for σI < σI ; and ∂M1

∂σI
> 0 for σI > σI . This property also holds for KI∗, KO∗, and

Π∗ because they are either linear or quadratic functions of M1. The only exception is that under

storage-dominating portfolio (β ∈ Ω1), KO∗ is independent of M1 and hence σI .

Proof of Proposition 5: Following the similar steps with the proof of Proposition 4, it can be

proven that there exist σO < σO such that ∂M1

∂σO
< 0 for σO < σO; and ∂M1

∂σO
> 0 for σO > σO.

Different from Proposition 4, σO also impacts M2. Because s̃mt follows a normal distribution with

mean E0[s̃mt] and variance VAR0[s̃mt] as given in Lemma 3, we obtain

E0[(s̃mt)
+] = E0[s̃mt]Φ

(
E0[s̃mt]√
VAR0[s̃mt]

)
+
√

VAR0[s̃mt]φ

(
E0[s̃mt]√
VAR0[s̃mt]

)
,

and thus, ∂E0[(s̃mt)+]
∂σO

= φ

(
E0[s̃mt]√
VAR0[s̃mt]

)
∂
√

VAR0[s̃mt]

∂σO
. Because VAR0[s̃mt] strictly increases in σO

(as follows from Lemma 3), E0[(s̃mt)
+] for t = 1, .., T − 1, and thus, M2 = E0

[∑T−1
t=1 δts̃m+

t

]
strictly increases in σO.

With high yield–balanced portfolio, i.e., when β ∈ Ω2, since KI∗, KO∗, and Π∗ are linear or
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quadratic functions of M1, ∂KI∗

∂σO
< 0, ∂KO∗

∂σO
< 0, ∂Π∗

∂σO
< 0 for σO < σO, and ∂KI∗

∂σO
> 0, ∂KO∗

∂σO
> 0,

∂Π∗

∂σO
> 0 for σO > σO. With storage-dominating portfolio, i.e., when β ∈ Ω1, KO∗ is increasing in

σO because it is linear in M2. KI∗ is decreasing in σO when σO < σO, because M1 is decreasing

and M2 is increasing.

Proof of Proposition 6: Because ah > ā, −pIt − c + ahpOt > −pIt − c + āpOt , and thus,

M1(ah) > M1. When η > (ah)2
(
M1(ah)
M2

− 1
)

, KDYM is given by the storage-dominating portfolio,

where (KI
DYM ,K

O
DYM ) =

(
ah(M1(ah)−M2)

2βI
, M2

2βO

)
; and since M1(ah) > M1, K∗ is also given by the

storage-dominating portfolio. Using Π∗ for β ∈ Ω1 in Proposition 2 and obtaining Π(KDYM ) from

Π(K) = M1 min
(
ahKI ,KO

)
+M2

(
KO − ahKI

)+ − (βI(KI)2 + βO(KO)2) we establish

∆DYM =
(YDYM − 1)2

1 +
(

M2
M1−M2

)2
η

(ah)2

,where YDYM
.
=
M1(ah)−M2

M1 −M2

.

When η > max
(

(ah)2
(
M1
M2
− 1
)
, ahā

(
M1(ā)
M2

− 1
))

, K∗ and KDY A are given by the storage-

dominating portfolios, where (KI
DY A,K

O
DY A) =

(
ā(M1(ā)−M2)

2βI
, M2

2βO

)
with KI

DY A < ahKO
DY A. After

some algebra, we obtain

∆DY A =
(YDY A − 1)2

1 +
(

M2
M1−M2

)2
η

(ah)2

,where YDY A
.
=

ā
ah

(M1(ā)−M2)

M1 −M2
.

To prove ∆DYM > ∆DY A, we will prove i)YDYM > 1, ii)YDY A > 1, and iii)YDYM > YDY A.

i) It follows from M1(ah) > M3.

ii) We need to show ā(M1(ā)−M2) > ah(M1 −M2). Using the definitions of M1(ā) and M1, it is

sufficient to show that in each period t ∈ [1, T − 1],

ā

(
δt
(

max

(
smt,

δ

ā
Et[p̃mt+1]

)
− sm+

t

))
> ah

(
δt
(

max

(
smt,

δ

ah
Et[p̃mt+1]

)
− sm+

t

))
,

where pmt+1 = −pIt+1 − c + āpOt+1 and smt = −pOt − h + δEt[p̃Ot+1]. Using Et[p̃mt+1] > 0 and

max(a, b) = a+(b−a)+, this condition can be written as
(
δEt[p̃mt+1]− āsm+

t

)+
>
(
δEt[p̃mt+1]− ahsm+

t

)+
,

which holds because ah > a.

iii) We need to show ah(M1(ah) −M2) > ā(M1(ā) −M2). Using the definitions of M1(ah) and

M1(ā), it is sufficient to show that in each period t ∈ [1, T − 1],

ah
(
δt
(

max

(
smt,

δ

ah
Et[p̃mt+1

]

)
− sm+

t

))
> ā

(
δt
(

max

(
smt,

δ

ā
Et[p̃mt+1]

)
− sm+

t

))
,
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where pm
t+1

= −pIt+1 − c + ahpOt+1, pmt+1 = −pIt+1 − c + āpOt+1 and smt = −pOt − h + δEt[p̃Ot+1].

Using Et[p̃mt+1
] > Et[p̃mt+1] > 0, and max(a, b) = a + (b − a)+, this condition can be written

as
(
δEt[p̃mt+1

]− ahsm+
t

)+
>
(
δEt[p̃mt+1]− āsm+

t

)+
. Using the definitions of pm

t+1
, pmt+1 and

smt, and the identity min(a, b) = a− (a− b)+, this condition is equivalent to(
δEt[−p̃It+1 − c] + ah min

(
pOt + h, δEt[p̃Ot+1]

))+
>
(
δEt[−p̃It+1 − c] + āmin

(
pOt + h, δEt[p̃Ot+1]

))+
,

which holds because ah > a.

Proof of Proposition 7: Recall that pmt = −pIt − c + āpOt and smt = −pOt − h + δEt[p̃Ot+1].

It follows from the proof of Proposition 6 that when η > max
(

(ah)2
(
M1
M2
− 1
)
, ahā

(
M1(ā)
M2

− 1
))

∆DY A = (YDYA−1)2

1+
(

M2
M1−M2

)2
η

(ah)2

where YDY A
.
=

ā

ah
(M1(ā)−M2)

M1−M2
. We obtain ā

ah
M1(ā) = δ

ah
E0[p̃m1] +

E0

[∑T−1
t=1 δt max

(
ā
ah
s̃mt,

δ
ah
Et[p̃mt+1]

)]
≤ M1, where the inequality follows because ah > ā and

Et[p̃mt+1] > 0. The upper bound on ∆DY A is established by replacing M1(ā) in YDY A with ah

ā M1.

When η ≤ max
(

(ah)2
(
M1
M2
− 1
)
, (ā)2

(
M1(ā)
M2

− 1
))

it follows from Proposition 2 that K∗ is

given by the high yield–balanced portfolio, and KI
DY A = āM1(ā)

2βI+2(ah)2βO
, KO

DY A = āKI
DY A. After

some algebra, we obtain ∆DY A = 1 −
[ η

(ah)2
+1

η

(ā)2
+1

] [
M1(ā)
M1

(
2− M1(ā)

M1

)]
. Let x

.
= M1(ā)

M1
and denote

∆DYM (x). It is easy to establish that x > 1, and thus, ∂∆DYA
∂x > 0. We have already established

x < ah

ā . Therefore, ∆DY A ∈
[
∆DY A(1),∆DY A

(
ah

ā

)]
. The lower bound (upper bound) is obtained

from ∆DY A(1)
(

∆DY A

(
ah

ā

))
by using η

(ah)2 + 1 ≈ η
(ah)2 and thus,

η

(ah)2
+1

η

(ā)2
+1
≈
(
ā
ah

)2
.

Proof of Proposition 8: Because M2 = 0 by assumption, KDP is given by the high yield–

balanced portfolio, i.e., (KI
DP ,K

O
DP ) =

(
ahM1

2βI+2(ah)2βO
,

(ah)2M1

2βI+2(ah)2βO

)
. When η ≤ (ah)2

(
M1
M2
− 1
)

(Case (i)) K∗ is also given by the high yield–balanced portfolio. After some algebra, we obtain

∆DP =
(

1− M1
M1

)2
.

When η > (ah)2
(
M1
M2
− 1
)

(Case (ii)), K∗ is given by the storage-dominating portfolio. After

some algebra, we obtain

∆DP = 1−

( η
(ah)2

η
(ah)2 + 1

)(
2M1M1 −M2

1

(M1 −M2)2 +M2
2

η
(ah)2

)
.

If η
(ah)2 + 1 ≈ η

(ah)2 (by assumption) then ∆DP = 1− 2M1M1−M2
1

(M1−M2)2+M2
2

η

(ah)2
. Because η

(ah)2 > (M1
M2
− 1)

(as follows from the definition of the storage-dominating portfolio), replacing η
(ah)2 with (M1

M2
− 1)
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and after some algebra we obtain

∆DP > 1−
(ν
ν

)(2ν − ν
ν − 1

)
,

where ν
.
= M1

M2
and ν

.
=

M1
M2

. If M1
M2
− 1 ≈ M1

M2
(by assumption), i.e., ν − 1 ≈ ν, then it is easy to

establish that
(

2ν−ν
ν−1

)
> ν

ν . Therefore, ∆DP >
(
1− ν

ν

)2
, i.e., ∆DP >

(
1− M1

M1

)2
.

Proof of Proposition 9: Recall that pmt = −pIt − c+ āpOt and smt = −pOt − h+ δEt[p̃Ot+1]. Let

pm
t

= pmt − aBpB. Because pm
t
< pmt, M

NB
1 < M1. When η > (ah)2

(
M1
M2
− 1
)

, K∗ and KNB

are given by the storage-dominating portfolios. After some algebra, we obtain

∆NB =
(YNB − 1)2

1 +
(

M2
M1−M2

)2
η

(ah)2

,where YNB
.
=
MNB

1 −M2

M1 −M2
.

The upperbound on ∆NB can be obtained by using χ = M1
M2

, χ =
MNB

1
M4

, and replacing η
(ah)2 with

(χ−1) (because η
(ah)2 > (χ−1) as follows from the definition of the storage-dominating portfolio).

Proof of Proposition 10: When η > (ah)2
(
M1
M2
− 1
)

, K∗ is given by the storage-dominating

portfolio. After some algebra, we obtain ∆HY BP = 1−
[ η

(ah)2
η

(ah)2
+1

][ (
M1
M2

)2

(
M1
M2
−1
)2

+ η

(ah)2

]
. If η

(ah)2 + 1 ≈

η
(ah)2 then

η

(ah)2
η

(ah)2
+1
≈ 1 and ∆HY BP = 1 −

[ (
M1
M2

)2

(
M1
M2
−1
)2

+ η

(ah)2

]
≤ 1 −

[ (
M1
M2

)2

(
M1
M2

)2
+ η

(ah)2

]
=

η

(ah)2

η

(ah)2
+
(
M1
M2

)2 .
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