
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2015

TagCombine: Recommending Tags to Contents in Software TagCombine: Recommending Tags to Contents in Software

Information Sites Information Sites

Xin Yu WANG
Zhejiang University

Xin XIA
Zhejiang University

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
WANG, Xin Yu; XIA, Xin; and David LO. TagCombine: Recommending Tags to Contents in Software
Information Sites. (2015). Journal of Computer Science and Technology. 30, (5), 1017-1035.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/2860

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2860&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Wang XY, Xia X, Lo D. TagCombine: Recommending tags to contents in software information sites. JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY 30(5): 1017–1035 Sept. 2015. DOI 10.1007/s11390-015-1578-2

TagCombine: Recommending Tags to Contents in Software
Information Sites

Xin-Yu Wang 1 (王新宇), Xin Xia 1,∗ (夏 鑫), Member, CCF, ACM, IEEE, and David Lo 2, Member, ACM, IEEE

1College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
2School of Information Systems, Singapore Management University, Singapore, Singapore

E-mail: {wangxinyu, xxia}@zju.edu.cn; davidlo@smu.edu.sg

Received March 20, 2015; revised July 9, 2015.

Abstract Nowadays, software engineers use a variety of online media to search and become informed of new and interesting

technologies, and to learn from and help one another. We refer to these kinds of online media which help software engineers

improve their performance in software development, maintenance, and test processes as software information sites. In this

paper, we propose TagCombine, an automatic tag recommendation method which analyzes objects in software information

sites. TagCombine has three different components: 1) multi-label ranking component which considers tag recommendation

as a multi-label learning problem; 2) similarity-based ranking component which recommends tags from similar objects; 3)

tag-term based ranking component which considers the relationship between different terms and tags, and recommends tags

after analyzing the terms in the objects. We evaluate TagCombine on four software information sites, Ask Different, Ask

Ubuntu, Freecode, and Stack Overflow. On averaging across the four projects, TagCombine achieves recall@5 and recall@10

to 0.619 8 and 0.762 5 respectively, which improves TagRec proposed by Al-Kofahi et al. by 14.56% and 10.55% respectively,

and the tag recommendation method proposed by Zangerle et al. by 12.08% and 8.16% respectively.

Keywords software information site, online media, tag recommendation

1 Introduction

Online media has changed the way people commu-

nicate, collaborate, and share information with one

another. Online media is playing a more and more

important role in the whole life cycle of software

engineering[1-2]. There are various forms of online me-

dia that are regularly used by software engineers. Stack

Overflow 1○ is a popular Q&A (Question and Answer)

site which focuses on technical questions about soft-

ware development. SourceForge 2○ and Freecode 3○ are

two popular project information sites which allow users

to share information about their projects. We refer to

these kinds of online media which help software engi-

neers to improve their performance in software deve-

lopment, maintenance, and test processes as software

information sites.

In software information sites, tags are popular.

They provide a form of metadata applied to software

objects such as questions in Stack Overflow, projects in

SourceForge and Freecode. They can be used to search,

describe, identify, and bookmark various software ob-

jects. For software development, tags also help to

bridge the gap between social and technical aspects[3-4].

Regular Paper

Special Section on Software Systems

This research was partially supported by China Knowledge Centre　for Engineering Sciences and Technology under Grant
No. CKCEST-2014-1-5, the National Key Technology Research and Development Program of the Ministry of Science and Technology
of China under Grant Nos. 2015BAH17F01 and 2013BAH01B01, and the Fundamental Research Funds for the Central Universities of
China.

A preliminary version of the paper was published in the Proceedings of MSR 2013.
∗Corresponding Author
1○http://stackoverflow.com/, July 2015.
2○http://sourceforge.net/, July 2015.
3○http://freecode.com/, July 2015.

©2015 Springer Science+Business Media, LLC & Science Press, China

1018 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

Most software information sites allow users to tag vari-

ous objects with their own words, and users increas-

ingly use tags to describe the most important features

of their posted contents or projects. The flexibility of

tags makes them easy to use and tagging becomes pop-

ular among users. However, we notice that not all ob-

jects are well tagged. Some objects are not sufficiently

tagged with descriptive words. Also, as tagging inher-

ently is a distributed and uncoordinated process, some

similar objects are tagged differently.

Some software information sites require users to add

tags after they post an object. Selecting appropriate

tags is not an easy task if users are not familiar with

the site. If we could have a method which would reco-

mmend some tags according to the object a user posts

and the previous tags of objects that other users have

already posted, then the user could add appropriate

tags easier, and the tag synonyms problem can also be

avoided.

In this paper, we address the following research

question: how to recommend appropriate tags for ob-

jects in software information sites? We propose Tag-

Combine, which analyzes software objects in software

information sites to improve the performance of tag

recommendation. We mainly consider the text infor-

mation in these software objects. TagCombine is a

composite method, which has three different compo-

nents: multi-label ranking component, similarity-based

ranking component, and tag-term based ranking com-

ponent. In multi-label ranking component, we consider

the tag recommendation problem as a multi-label learn-

ing problem[5], where each tag maps to a label. We infer

the appropriate label sets (tags) using multi-label learn-

ing algorithms, and rank the tags according to their

likelihood scores. In similarity-based ranking compo-

nent, we search similar software objects of the untagged

objects, and recommend tags from the similar objects.

In tag-term based ranking component, we first com-

pute the affinity scores between tags and terms based

on the historical tagged software objects. For an un-

tagged object, we compute the ranking scores of various

tags using the terms in the object and the pre-computed

affinity scores.

We evaluate our solution on four software informa-

tion sites, Ask Different, Ask Ubuntu, Freecode, and

Stack Overflow, which contain 13 351, 37 354, 39 231,

and 47 668 text documents, respectively, and 153, 346,

243, and 437 tags, respectively. Experimental results

show that for Ask Different, our TagCombine achieves

recall@5 and recall@10 scores of 0.674 9 and 0.821 4, re-

spectively; for Ask Ubuntu, our TagCombine achieves

recall@5 and recall@10 scores of 0.568 6 and 0.727 3,

respectively; for Freecode, it achieves recall@5 and re-

call@10 scores of 0.639 1 and 0.777 3, respectively; for

Stack Overflow, our TagCombine achieves recall@5 and

recall@10 scores of 0.596 4 and 0.723 9, respectively. We

compare our work with two similar work in the litera-

ture: 1) Al-Kofahi et al. proposed a tag recommenda-

tion system for software work item system such as IBM

Jazz, which is based on fuzzy set theory[6]; 2) Zangerle

et al. proposed a tag recommendation system for Twit-

ter short messages, which recommends tags according

to the tags of similar short messages[7]. We apply their

tag recommendation systems to our problem. Averag-

ing over Stack Overflow and Freecode results, for re-

call@5 and recall@10 scores, we improve TagRec pro-

posed in [6] by 14.56% and 10.55% respectively, and the

tag recommendation method proposed in [7] by 12.08%

and 8.16% respectively.

This paper extends a preliminary study published as

a research paper in a conference[8]. It extends the pre-

liminary study in various ways: 1) we investigate seve-

ral alternative algorithms of TagCombine which com-

bine two of the three components, and evaluate their

performance; 2) we add two more datasets, i.e., Ask

Different and Ask Ubuntu, to further evaluate the per-

formance of TagCombine; 3) we investigate the effect

of TagCombine with respect to different evaluation cri-

teria (ECs).

The main contributions of this paper are as follows.

1) There are limited studies on tag recommenda-

tion in the software engineering literature, especially

for software information sites. Our research fills this

gap.

2) We propose TagCombine, an accurate, automatic

tag recommendation algorithm which analyzes tag

recommendation problem from three different views,

using three different components.

3) We evaluate TagCombine on four popular soft-

ware information sites, Ask Different, Ask Ubuntu,

Freecode, and Stack Overflow. The experimental re-

sults show that TagCombine achieves the best perfor-

mance compared with state-of-the-art methods, i.e.,

TagRec and Zangerle et al.’s method[7].

The remainder of the paper is organized as follows.

In Section 2, we present the background and elabo-

rate the motivation of our work. In Section 3, we pro-

pose TagCombine, which contains three different com-

ponents, to automatically recommend tags in software

information sites. In Section 4, we report the results of

Xin-Yu Wang et al.: Recommending Tags to Contents in Software Information Sites 1019

our experiment which compares TagCombine with the

algorithms proposed by Al-Kofahi et al.[6] and Zangerle

et al.[7] In Section 6, we present related studies. Finally,

in Section 7, we conclude this paper and mention future

work.

2 Background and Motivation

In this section, we first briefly introduce tags in soft-

ware information sites, and then we elaborate the mo-

tivation of tag recommendation.

2.1 Tags in Software Information Sites

Tags are popular in software information sites.

They are used as a form of metadata to describe the

most important features of various software objects.

Figs.1 and 2 present two software objects from two soft-

ware information sites, Stack Overflow and Freecode,

respectively.

In Fig.1, a user posts a question about string con-

version in ASP.Net, which has three tags, i.e., “c#”,

“asp.net”, and “null”. These three tags describe the

question in the following ways: “c#” and “asp.net” in-

form that the question is about the programming lan-

guage C# and ASP.Net; “null” informs that the ques-

tion is related to null. Terms “c#” and “null” both ap-

pear in the description of the question; “asp.net” does

not appear in the description of the question, but de-

velopers who are familiar with C# can infer that the

question is about ASP.Net.

Fig.1. Question (ID = 14 688 802) posted in Stack Overflow
about string conversion in ASP.Net.

In Fig.2, a user posts a project called “actionpoll”,

a simple PHP script which provides support for on-

line voting. Four tags are given for this project, i.e.,

“Internet”, “Web”, “Dynamic Content”, and “CGI

Tools/Libraries”. “Internet” and “Web” describe the

environment that this project can be used; “Dynamic

Content” describes the functionality of this project:

it will capture dynamic content and analyze it; “CGI

Tools/Libraries” describes the project type: it is a CGI

tool and can also be used as a library. We notice that

all of the four tags do not appear in the description of

the project.

Fig.2. Project named “actionpoll ” in Freecode.

From the above two examples, we conclude that tags

help users to understand the software objects. They

summarize the features of objects from different views,

and users can search for appropriate objects more easily

by using these tags. Tags are different from traditional

keywords. Traditional keywords must appear in the

object descriptions, but tags can either appear or not

appear in the object descriptions.

2.2 Motivation

In this subsection, we present the motivation for au-

tomated tag recommendation in software information

sites in three aspects: tag synonyms, easier posting,

and better organization and search.

2.2.1 Tag Synonyms

Tag synonyms refer to tags which are syntactically

different (i.e., they are different strings of symbols) but

are semantically the same (i.e., they have the same

meaning). For example, tags “zombie” and “zombies”

both describe the zombie process in Unix; tags “xml-

parser”, “xml-parser”, and “xmlparsing” all describe a

parser of an xml file; tag “xsltproc” is an abbreviation

of tag “xsltprocessor”. Since there is no pre-defined tag

vocabulary, and users can add tags arbitrarily, tag syno-

nyms become an un-avoidable phenomenon in software

information sites. Fig.3 presents the tag synonym page

in Stack Overflow. We notice that this tag synonym

list is currently maintained manually, which takes a lot

of human resources.

Tag recommendation can help to avoid tag synonym

phenomenon. For a new software object, tag recom-

mendation will first learn the tags from historical ob-

jects. For synonymous tags, there will be a master

1020 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

tag (the tag which more users would like to use). Tag

recommendation will be likely to recommend this tag

since it is supported by more training data. With the

tag recommendation method employed, tag synonyms

could be better avoided.

Fig.3. Tag synonyms in Stack Overflow.

2.2.2 Easier Posting

Some software information sites require users to add

tags after they post an object. For example, in Stack

Overflow, users are requested to add at least three tags

after they submit a question. Choosing suitable tags is

not an easy task, especially for new users. Some users

just select terms in the object descriptions as the tags,

but these terms might not represent the most important

features of the object. There might be some latent tags

which can better describe the object. From Figs.1 and

2, we note that some tags do not appear in the object

descriptions. Tag recommendation makes the question

posting process easier as it would recommend tags by

mining historical software objects. The recommended

tags could be either some of the terms in the object

descriptions or some other latent terms.

2.2.3 Better Organization and Search

Software information sites use tags to organize the

objects and help users to search for related objects in

the community. For example, in Stack Overflow, users

can search from the tags to see whether their question

has already been posted and solved. However, the flexi-

bility of tags (i.e., the fact that users can enter arbi-

trary tags) may negatively affect the organization of

the information sites. For example, synonymous tags,

or non-human-understandable tags are some causes of

the problem. Different users would use different tags

to describe a single thing. Some of the tags are much

better than the others. If we could recommend high-

quality tags, then the organization of the sites can be

better, which would result in easier information search

for end users.

3 TagCombine: A Composite Method

In this section, we first present the overall frame-

work of our TagCombine method. Then we analyze

the three components of TagCombine, i.e., multi-label

ranking component, similarity-based ranking compo-

nent, and tag-term based ranking component. Finally,

we describe how these three components are combined.

3.1 Overall Framework

Fig.4 presents the overall framework of TagCom-

bine. The whole framework contains two phases: model

building phase and tag prediction phase. In the model

building phase, our goal is to build a model from histori-

cal software objects which have known tags. In the tag

prediction phase, this model would be used to predict

tags for untagged software objects.

Our framework first collects historical software ob-

jects and their tags from software information sites.

Then we pre-process the text information in these ob-

jects — tokenizing the text, removing stop words (e.g.,

“a”, “the”, “and”, and “we”), stemming the terms, and

filtering terms if their frequencies are less than a thresh-

old (in this paper, by default, we remove terms which

appear less than 20 times) (step 1). We represent these

text contents of objects as “bags of words”[9].

Then we build the three components of TagCom-

bine: multi-label ranking component, similarity-based

ranking component, and tag-term based ranking com-

ponent. To construct the multi-label ranking compo-

nent, we first use a multi-label learning algorithm to

build a multi-label classifier (step 2), and then we mod-

ify the classifier to output ranking scores for the tags

given an unlabeled software object 4○ (step 3). To con-

struct the similarity-based ranking component, we first

transform the “bags-of-words” into TF.IDF (term fre-

quency, inverse document frequency) vectors[9] (step 4).

We calculate the similarity between two software ob-

jects by computing the cosine similarity of their TF.IDF

vector representations 5○ (step 5). Next, we compute

the tag-term affinity scores using historical tagged ob-

jects (step 6). We then use these affinity scores to rank

4○More description is available in Subsection 3.2.
5○More description is available in Subsection 3.3.

Xin-Yu Wang et al.: Recommending Tags to Contents in Software Information Sites 1021

Training Software
Engineering

Objects & Tags

Text Pre-Processing
(Removing Stop

Words, Stemming)

Tag-Term Affinity
Computation

Multi-Label
Ranking

Component

Multi-Label
Classifier

Multi-Label
Ranking Scores

Un-Tagged Objects

Tag-Term Based
Ranking Scores

Top-N Tag
Recommendation

Tag-Term Based
Ranking

Component

TagCombine
Similarity-Based

Ranking
Component

TF.IDF
Transformation

Model Building Phase Tag Prediction Phase

Similarity-Based
Ranking Scores

1 2 3

5

9

12

10 11

13

8

7

4

6

Fig.4. Overall framework of TagCombine.

tags for a given unlabeled software object 6○ (step 7).

Finally, TagCombine uses these three components (step

8). It ranks tags based on the scores outputted by the

three components.

After TagCombine is constructed, in the prediction

phase, it is then used to recommend tags for a software

object with unknown tags. For each such object, we

first compute its multi-label ranking score, similarity-

based ranking score, and tag-term based ranking score

(steps 9∼11). We compute these scores using the three

trained ranking components constructed at steps 3, 5,

and 7. Then we input these scores into TagCombine

to get the final ranking score for each tag (step 12).

Finally, top-N ranked tags with the highest scores are

recommended for the object (step 13).

3.2 Multi-Label Ranking Component

Formally, multi-label learning[5,10] can be defined as

follows. Let χ denote the input space and let L denote

the set of labels. Given the multi-label training dataset

D = {(Xi, Yi)}ni=1 where Xi ∈ χ and Yi = {−1, 1}|L|

(Yi = 1 indicates that the instance is assigned the i-th

label and Yi = −1 indicates the instance is not as-

signed the i-th label), the goal of multi-label learning

is to learn a hypothesis h : χ → 2|L| which is used to

predict the label set for a new instance[5,10].

There are various multi-label learning algorithms,

which can be divided into two categories: prob-

lem transformation methods and algorithm adaptation

methods[5,10]. The problem transformation methods

transform the multi-label learning task into multiple

traditional classification tasks. Two popular problem

transformation methods are Binary Relevance (BR)

and Label Powerset (LP). The algorithm adaptation

methods extend specific learning algorithms in order to

handle multi-label data directly.

To adapt multi-label learning to our tag recommen-

dation problem, we use the pre-processed term spaces

in software objects as the input space χ, and the tags

as the set of labels L. Multi-label learning predicts

the proper label set for a new instance. We modify it

such that our multi-label ranking component outputs

the ranking scores for each tag, and these scores repre-

sent the confidence that a tag should be assigned to the

object. Given an instance whose labels are to be pre-

dicted, multi-label learning algorithms compute likeli-

hood scores for all the labels. If a label’s likelihood

score is higher than a threshold, then the multi-label

learning algorithms would predict that this label be-

longs to the instance. We modify multi-label learning

algorithms to directly output the likelihood scores. We

then normalize the scores.

Definition 1 (Multi-Label Ranking Scores). Con-

sidering a historical software object collection SE, and

its corresponding tag space TAGS, we build a multi-

label learning classifier MultiLabel to train SE. For a

new software object se, we use MultiLabel to get the

ranking score for each tag. We denote this ranking score

as MultiLabelse(tag) for tag ∈ TAGS.

We choose three state-of-the-art multi-label learn-

ing methods to construct the multi-label ranking com-

ponent: Binary Relevance (BR) method, random k-

labelsets (RAKEL)[11], and ML.KNN[12]. BR and

RAKEL are problem transformation methods, and

ML.KNN is an algorithm adaptation method.

6○More description is available in Subsection 3.4

1022 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

3.2.1 Binary Relevance (BR)

Binary Relevance (BR) method creates |L| binary
datasets from the input dataset. Each of the |L| binary
datasets represents one label from L[5,10]. It assumes

the tags in software objects are independent with one

another; thus it is efficient enough for large tag and

term spaces. We use multinomial naive Bayes as the

base classifier for BR since it shows good performance

for text classification and its computational complexity

is low compared with other classification algorithms,

c.f., [13]. We modify the implementation of Binary

Relevance (BR) method in Mulan[14] to construct the

multi-label ranking component.

3.2.2 Random k-Labelsets (RAKEL)

Random k-labelsets (RAKEL) is an extension of the

Label Powerset (LP) method. In general, Label Power-

set (LP) method treats each unique label set as a new

single label, and then it applies a multi-class classifica-

tion method to learn the suitable new single label for

a software object. For example, given a set of labels

L which contains a total of |L| labels, there would be

potentially 2|L| unique label sets, which correspond to

2|L| new single labels. By this way, LP transforms the

multi-label learning problem into a multi-class classifi-

cation problem, where an instance could only belong to

one of the 2|L| new single labels. One of the limitations

of the LP method is that it would suffer from the label

explosion problem, i.e., with the 2|L| labels, the train-

ing set would become extremely sparse, which would

cause underfitting problem[5,10].

Random k-labelsets (RAKEL) reduces the label ex-

plosion problem by constructing an ensemble of LP clas-

sifiers. The steps of using RAKEL in our framework are

as follows.

1) In the model building phase, RAKEL randomly

selects k labels (i.e., tags) from a total of L labels (i.e.,

tags), and constructs an LP classifier to output the la-

bel sets of the k labels by using a training set of soft-

ware engineering objects with known tags. We repeat

the process n times, and thus in total, RAKEL would

build a set of n LP classifiers. For the i-th LP classifier,

we denote it as LPi.

2) In the tag prediction phase, for a new untagged

software engineering object se, we apply each of the n

LP classifiers to predict the labels for se. The multi-

label ranking score for a label (i.e., tag) tag for se, de-

noted as MultiLabelse(tag), is defined as the number

of the LP classifiers which predict that the label tag is

assigned to se divided by n.

For example, suppose there are four labels (i.e.,

tags), i.e., {tag1, tag2, tag3, tag4}. We randomly select

k = 3 labels and n = 2 times from the four labels to con-

struct n = 2 LP classifiers, e.g., {tag1, tag2, tag3} and

{tag2, tag3, tag4}. For a new software engineering ob-

ject se, let its predicted labels by the two LP classifiers

be {tag2} and {tag2, tag3, tag4}. Since between the

two LP classifiers, only the second LP classifier predicts

that tag3 is assigned to se, then MultiLabelse(tag3) =

1/2. Since both of the two LP classifiers predict

that tag2 is assigned to se, MultiLabelse(tag2) =

2/2 = 1. Similarity, MultiLabelse(tag1) = 0, and

MultiLabelse(tag4) = 1/2.

Similar to the BR method, RAKEL could also be

paired with different base classifiers, such as KNN,

multinomial naive Bayes, C4.8 decision tree, and

SVM[15]. In this paper, we use multinomial naive Bayes

as the base classifier — similar to the setting we use for

the BR method presented in the previous subsection.

3.2.3 ML.KNN

ML.KNN is one of algorithm adaptation

methods[16]. For a new software engineering object

se, ML.KNN first gets its k-nearest neighbors knn(se)

from the training software engineering objects. For a

label (i.e., tag) tag in the label set L, it would com-

pute the number of instances (i.e., software engineering

objects) in knn(se) with the label tag. We denote the

number of objects assigned label tag as Cse(tag).

Next, based on the above count, ML.KNN com-

putes the estimated probability of se to belong to the la-

bel tag (denoted as Htag
1 (se)) and the estimated proba-

bility of se to NOT belong to label tag (denoted as

Htag
0 (se)). These two estimates do not necessarily sum

up to 1. The above two estimated probabilities are

computed for every label tag in the label set L. The

multi-label ranking score for the label (i.e., tag) tag for

se, denoted as MultiLabelse(tag), can be computed as:

MultiLabelse(tag) =
Htag

1 (se)

Htag
1 (se) +Htag

0 (se)
.

3.3 Similarity-Based Ranking Component

We represent the tags of the i-th software object

as tagSeti = {ti,1, ti,2, ..., ti,l}. The value of ti,j is

either 0 or 1; ti,j = 1 denotes that the j-th tag be-

longs to the i-th object, and ti,j = 0 denotes the j-th

tag does not belong to the i-th object. Following vec-

tor space modeling[9], we represent the text in the i-

th software object as a vector of term weights denoted

Xin-Yu Wang et al.: Recommending Tags to Contents in Software Information Sites 1023

by sei = (wi,1, wi,2, ..., wi,v). The weight wi,j denotes

the TF.IDF (i.e., term frequency.inverse document fre-

quency) score for the j-th term in the i-th object, which

is computed as follows:

wi,j =
tfi,j

number of terms in Obji
×

log

(
number of objects

dfj

)
.

In the above equation, Obji denotes the i-th object

in the collection, tfi,j denotes the term frequency of the

j-th term in the i-th object, dfi denotes the document

frequency of the j-th term. Term frequency tfi,j refers

to the number of times the j-th term appears in the i-

th object. Document frequency of the j-th term refers

to the number of objects in which the j-th term ap-

pears. We measure the similarity between two objects

by computing the cosine similarity[9] of their vector rep-

resentations sem and sen as follows:

SimScore(sem, sen) =
sem · sen
|sem||sen|

. (1)

More concretely, let sem = (wm,1, wm,2, ..., wm,v),

and sen = (wn,1, wn,2, ..., wn,v). The numerator of (1)

which is the dot product of the two vectors is computed

as follows:

sem ·sen = wm,1×wn,1+wm,2×wn,2+...+wm,v×wn,v.

|sem| and |sen| in the denominator of (1), denote

the sizes of the two vectors respectively. The size of a

vector sem is computed as follows:

|sem| =
√
w2

m,1 + w2
m,2 + ...+ w2

m,v.

The tag recommendation steps in the similarity-

based ranking component are as follows:

1) represent each software object as a TF.IDF score

vector;

2) for a new untagged software object se, use (1)

to compute the similarity scores between se and other

software objects sehistory in historical data;

3) retrieve the top-K objects with the highest simi-

larity scores. By default, we set K = 50. We extract

the tags that appear in the top-K objects. For each

of such tags, we compute the number of objects in the

top-K list that are tagged by these objects; let us de-

note this count for tag t as votet. The likelihood of tag

t, in tag space TAGS, belonging to se is then computed

as follows:
votet∑

t′∈TAGS(votet′)
.

Definition 2 (Similarity-Based Ranking Scores).

Considering a historical software object collection SE,

and its corresponding tag space TAGS, we build a

similarity-based ranking classifier SimRank. For a new

software object se, we use SimRank to get the ranking

score for each tag. We denote this ranking score as

SimRankse(tag) for tag ∈ TAGS.

3.4 Tag-Term Based Ranking Component

In tag-term based ranking component, we first con-

sider the relationship between tags and terms. For each

term and tag, the number of co-occurrences of the tag

and term represents the importance of the term with

respect to the tag. In this paper, we consider two dif-

ferent tag-term affinity scores: basic tag-term affinity

score and fuzzy tag-term affinity score. Basic tag-term

affinity score computes the fraction of the number of

software engineering objects where the tag and the term

both appear and the number of objects where the tag

appears. Fuzzy tag-term affinity score leverages fuzzy

set theory to compute the affinity score[6]. The defini-

tions of these two tag-affinity scores are as follows.

Definition 3 (Basic Tag-Term Affinity Score).

Consider a historical software engineering object col-

lection SE, and its corresponding tag space TAGS.

For each tag tag ∈ TAGS, and term t ∈ SE, the

basic tag-term affinity score of tag and t, denoted as

AffB(tag, t), is computed as follows:

AffB(tag, t) =
nt,tag

ntag
,

where nt,tag denotes the number of software objects

where term t and tag tag both appear, and ntag denotes

the number of objects that tag appears.

Definition 4 (Fuzzy Tag-Term Affinity Score).

Consider a historical software engineering object col-

lection SE, and its corresponding tag space TAGS.

For each tag tag ∈ TAGS, and term t ∈ SE, the

fuzzy tag-term affinity score of tag and t, denoted as

AffF (tag, t), is computed as follows:

AffF (tag, t) =
nt,tag

ntag + nt − nt,tag
, (2)

where nt,tag denotes the number of software objects

where term t and tag tag both appear, ntag denotes the

number of objects that tag appears, and nt denotes the

number of objects that term t appears.

To illustrate the basic and fuzzy tag-term affinity

scores, we take as an example the software engineering

objects shown in Table 1, which have four terms and

1024 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

three tags. In the table, the value 1 in a cell correspond-

ing to the i-th object, the n-th term or the m-th tag

means that the term appears in or the tag is assigned

to the i-th software engineering object. On the other

hand, 0 means the term does not appear in or the tag

is not assigned to the object. The object with identi-

fier “Test” is the object whose tags are to be predicted.

For term 1 and tag 1, we notice that tag 1 appears

in two objects (objects 1 and 3), i.e., ntag1 = 2; term

1 appears in three objects (objects 1, 3 and 4), i.e.,

nterm1 = 3; and objects 1 and 3 have term 1 and tag 1,

i.e., nterm1,tag1 = 2. Thus, the basic tag-term affinity

score for tag 1 and term 1 would be nterm1,tag1/ntag1 =

1, and the fuzzy tag-term affinity score would

be nterm1,tag1/(ntag1 + nterm1 − nterm1,tag1) = 0.67.

Similarly, the basic and fuzzy tag-term affinity scores

for tag 1 and term 4 would be nterm4,tag1/ntag1 =

0, and nterm4,tag1/(ntag1 + nterm4 − nterm4,tag1) = 0,

since nterm4,tag1 = 0.

Table 1. Example of a Dataset with 5 Objects,

4 Terms and 3 Tags

Object ID Term 1 Term 2 Term 3 Term 4 Tag 1 Tag 2 Tag 3

1 1 0 1 0 1 0 1

2 0 1 1 1 0 1 1

3 1 1 0 0 1 1 0

4 1 0 1 0 0 0 1

Test 1 0 0 1 ? ? ?

Definition 5 (Tag-Term Based Ranking Scores).

Consider a historical software object collection SE, and

its corresponding tag space TAGS. For a new software

object se, we compute the tag-term based ranking score

of tag ∈ TAGS, denoted as TagTermse(tag), as fol-

lows:

TagTermse(tag) = 1−
∏
t∈se

(1−Aff∗(tag, t)).

In the above equation, Aff∗(tag, t) could be the

basic (i.e., AffB(tag, t)) or fuzzy (i.e., AffF (tag, t))

tag-term affinity score. We refer to a tag-term based

ranking component which uses basic tag-term affinity

score as basic tag-term based ranking component, and

fuzzy tag-term affinity score as fuzzy tag-term based

ranking component.

In Table 1, since the test object only has terms 1

and 4, its basic tag-term based ranking score for tag 1

would be:

TagTermtest(tag1) = 1− (1− 1)× (1− 0) = 1,

and the fuzzy tag-term based ranking score for tag 1

would be:

TagTermtest(tag1) = 1− (1− 0.67)× (1− 0) = 0.67.

3.5 TagCombine

As shown in Subsections 3.2, 3.3 and 3.4, we can

get multi-label ranking scores, similarity-based ranking

scores, and tag-term based ranking scores for a new

software object se. In this subsection, we propose Tag-

Combine, which is a method that combines all of the

three components. A linear combination of the scores

of the three components is used to compute the final

TagCombine scores.

Definition 6 (TagCombine Scores). Consider a

new software object se, and a tag tag ∈ TAGS. The

TagCombine score TagCombinese(tag) of tag tag with

respect to object se is given by:

TagCombinese(tag)

= α×MultiLabelse(tag) + β × SimRankse(tag) +

γ × TagTermse(tag),

where α ∈ [0, 1], β ∈ [0, 1], and γ ∈ [0, 1] represent

the different contribution weights of multi-label rank-

ing score, similarity-based ranking score, and tag-term

based ranking score to the overall TagCombine score of

tag, respectively.

To automatically produce good α, β, and γ weights

for TagCombine, we propose a sample-based greedy

method. Algorithm 1 presents the detailed algorithm

to estimate good α, β, and γ weights. Due to the large

size of historical software object collection SE, we do

not use the whole collection to estimate α, β, and γ

weights. Instead, we randomly sample a small subset

of SE. In this paper, by default, we set the sample size

as 10% of SE.

Algorithm 1 accepts input criterion EC as an input.

We can set this input criterion EC as example-based

recall@k[5,10] defined in Definition 7.

Definition 7 (Example-Based Recall@k). Sup-

pose there are m software objects. For each object sei,

let the actual tags be Tagi. We recommend the top-

k ranked tags Ranki for sei according to our method.

The example-based recall@k for the m software objects

is given by:

recall@k =
1

m

m∑
i=1

|Ranki ∩ Tagi|
|Tagi|

.

Xin-Yu Wang et al.: Recommending Tags to Contents in Software Information Sites 1025

Algorithm 1:1. EstimateWeights(SE, TAGS, SampleSize, EC)

1: Inputs:
2: SE: historical software object collection
3: TAGS: tags space for SE
4: SampleSize: sample size
5: EC: evaluation criterion
6: Outputs: α, β, and γ
7: Method:
8: α = 0, β = 0, γ = 0;
9: Build multi-label ranking component using SE;
10: Build similarity-based ranking component using SE;
11: Build tag-term based ranking component using SE;
12: Sample a small subset SampSE of SE of size SampleSize;
13: for all object se ∈ SampSE do
14: for all tag tag ∈ TAGS do
15: Compute MultiLabelse(tag) according to Definition 1;
16: Compute SimRankse(tag) according to Definition 2;
17: Compute TagTermse(tag) according to Definition 5;
18: end for
19: end for
20: for all α from 0 to 1, every time increase α by 0.1 do
21: for all β from 0 to 1, every time increase β by 0.1 do
22: for all γ from 0 to 1, every time increase γ by 0.1 do
23: for all object se in SampSE do
24: Compute TagCombinese(tag) according to Definition 6 ;
25: end for
26: Evaluate the effectiveness of the combined model based on EC;
27: end for
28: end for
29: end for
30: Return α, β, and γ which give the best result according to EC

For example, suppose there are two software ob-

jects, and three tags are given to the objects. For ob-

ject 1, the actual tags are {1,2,3}, and for object 2, the

actual tags are {1}. The top-2 ranked tags are {1,2}
and {1,3} for objects 1 and 2, respectively. Then the

example-based recall@2 is:

recall@2 =
1

2
(
|{1, 2} ∩ {1, 2, 3}|

|{1, 2, 3}|
+

|{1, 3} ∩ {1}|
|{1}|

)

=
1

2

(
2

3
+

1

1

)
=

5

6
.

4 Experiments and Results

We evaluate our TagCombine method on the Stack

Overflow and Freecode. We compare our method with

TagRec proposed in [6], and the tag recommendation

method proposed in [7]. The experimental environment

is a Windows 7 64-bit, Intelr Xeonr 2.53 GHz server

with 24 GB RAM. We first present our experiment

setup and four research questions (Subsection 4.1). We

then present our experimental results that answer the

four research questions (Subsections 4.2, 4.3, 4.4, and

4.5). Finally, we describe some threats to validity (Sub-

section 5.2).

4.1 Experimental Setup

Table 2 presents the statistics of the four datasets,

i.e., Ask Different, Ask Ubuntu, Freecode, and Stack

Overflow. The columns correspond to the number of

objects collected (# Obj.), tags extracted from these

objects (# Tags), and terms extracted from these ob-

jects (# Terms). After filtering the tags appearing less

than 50 times and terms appearing less than 20 times,

Table 2. Statistics of Collected Software Objects in the 4 Software Information Sites

Community # Obj. # Tags # Terms # Final Obj. # Final Tags # Final Terms

Ask Different 14 196 0 984 05 965 13 351 153 1 816

Ask Ubuntu 39 354 2 064 21 313 37 354 346 3 206

Freecode 45 470 7 163 23 146 39 231 243 2 995

Stack Overflow 50 000 9 616 28 456 47 668 437 4 007

1026 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

we get the final number of object (# Final Obj.), final

tags extracted from the objects (# Final Tags), and

final terms extracted from the objects (#Final Terms)

which will be used to evaluate our TagCombine method.

For the Ask Different and the Ask Ubuntu datasets,

we download their data dump files from Stack

Exchange 7○. For the Freecode dataset, we use the same

dataset used by [17]. For the Stack Overflow dataset,

we parse the challenge data published in MSR 2013

mining challenge site 8○[18]. MSR challenge data con-

tains Stack Overflow data from 2008 to 2012, and it is

12 GB in size. We extract the first 50 000 questions and

their corresponding tags. These questions are originally

posted between July 2008 and December 2008. We in-

tentionally pick questions that have been published for

a long time to ensure that the set of tags assigned to

the questions has stabilized (i.e., no new tags are likely

to be added).

We use WVTool[19] to extract terms from these soft-

ware objects. WVTool is a flexible Java library for sta-

tistical language modeling, which is used to create word

vector representations of text documents in the vector

space model. We use WVTool to remove stop words,

do stemming, and produce “bags-of-words” from the

objects. We remove the terms which appear less than

20 times since we consider these terms do not have sig-

nificantly contributions for tag recommendation. More-

over, we remove tags which appear less than 50 times

in the collections since these tags are rare. Rare tags

are less important and less useful to serve as represen-

tative tags to be recommended to users. There are not

many people who use rare tags and thus recommending

these tags does not help much to mitigate the synonym

problem that is addressed in this paper. After we filter

terms and tags, we get 13 351 objects, 153 tags, and

1 816 terms for Ask Different, 37 354 objects, 346 tags,

and 3 206 terms for Ask Ubuntu, 39 231 objects, 243

tags and 2 995 terms for Freecode, and 47 668 objects,

437 tags, and 4 007 terms for Stack Overflow.

Stratified 10-fold cross validation is used to evaluate

TagCombine, i.e., we randomly divide the dataset into

10 folds, and we use nine folds to train the model, while

the remaining one fold is used to evaluate the perfor-

mance. We repeat the process 10 times and compute

the mean and the standard deviation. The distribu-

tions of tags in the training and test folds are the same

as that of the original dataset. For the evaluation met-

ric, we use recall@k described in Definition 7.

We reimplement the TagRec method proposed by

Al-Kofahi et al.[6], and use it to recommend tags in tag

space. For Zangerle et al.’s method[7], we implement

the method with similarity metric called “SimRank”,

which was shown to achieve the best performance. We

set the number of most similar objects to 50 which is

the same setting as the similarity-based ranking com-

ponent of TagCombine.

Notice that in TagCombine, we propose three multi-

label methods (i.e., binary relevance (BR), random k-

labelsets (RAKEL), and ML.KNN) to construct the

multi-label ranking component, and two methods (basic

tag-term affinity score and fuzzy tag-term affinity score)

to construct the tag-term based ranking component. In

total, there are six different versions of TagCombine.

By default, we choose Binary Relevance (BR) method

to construct the multi-label ranking component, and

basic tag-term affinity score method to construct the

tag-term based ranking component.

We are interested in answering the following re-

search questions.

RQ1. How do recall@5 and recall@10 of TagCom-

bine compare with those of TagRec and Zangerle et al.’s

method?

RQ2. What is the effect of using the six different

methods in the two components on the performance of

TagCombine?

RQ3. What is the effect of varying the number K

in the similarity-based ranking component on the per-

formance of TagCombine?

RQ4. What is the effect of optimizing TagCombine

with respect to different evaluation criteria (ECs) (see

Algorithm 1)?

The first research question is the most important

one. The answer would shed light on the effectiveness of

our approach when compared with state-of-the-art so-

lutions. In the subsequent research questions, we would

like to investigate the effect of using different methods

in the two components, varying the parameter K in

the similarity-based ranking component, and employing

different evaluation criteria (ECs) to the performance

of TagCombine.

4.2 RQ1: Recall@k of TagCombine

Table 3 and Table 4 present the experimental re-

sults of the comparison of TagCombine with TagRec

and Zangerle et al.’s method[7]. For Ask Different, Ask

7○http://stackexchange.com/, Aug.2015.
8○http://2013.msrconf.org/challenge.php, July 2015.

Xin-Yu Wang et al.: Recommending Tags to Contents in Software Information Sites 1027

Ubuntu, Freecode, and Stack Overflow, recall@5 of Tag-

Combine is 0.674 9, 0.568 6, 0.639 1, and 0.594 6 respec-

tively, and recall@10 is 0.821 4, 0.727 3, 0.777 3, and

0.723 9, respectively.

From Table 3, the improvement of TagCombine

over TagRec is substantial. Averaging over informa-

tion sites considered, TagCombine outperforms TagRec

by 14.56% and 10.55% for recall@5 and recall@10 val-

ues, respectively. For Freecode, TagCombine achieves

the highest improvements of 32.05% and 17.72% over

TagRec for recall@5 and recall@10, respectively.

From Table 4, the improvement of TagCombine over

Zangerle et al.’s method is substantial. Averaging over

information sites considered, TagCombine outperforms

Zangerle et al.’s method by 12.08% and 8.16% for re-

call@5 and recall@10, respectively. For Stack Over-

flow, TagCombine achieves the highest improvements

of 30.39%, 8.79% over Zangerle et al.’s method for re-

call@5 and recall@10, respectively. From these results,

we conclude that our TagCombine improves TagRec

more than Zangerle et al.’s method.

Moreover, we notice TagCombine improves recall@5

more than recall@10. An improvement in recall@5

is more important than that in recall@10 since users

of TagCombine would be more focused on the top 5

rather than the top 10 for practical purposes. Aver-

aging over techniques compared, the improvements on

recall@5 are 6.80%, 6.85%, 19.33%, and 21.82% for Ask

Different, Ask Ubuntu, Freecode, and Stack Overflow,

respectively, while the improvements on recall@10 are

6.96%, 8.18%, 11.82%, and 10.49%, respectively.

4.3 RQ2: Effect of Different Combinations

We propose three methods to construct the multi-

label ranking component, and two methods to con-

struct the tag-term ranking based component. In

total, we have six different versions of TagCombine.

We denote the combination of BR and basic tag-term

affinity score as default, and that of BR and fuzzy

tag-term score as BR+Fuzzy. Similarly, we denote

RAKEL, with basic and fuzzy tag-term affinity score as

RAKEL+Basic and RAKEL+Fuzzy respectively. And

we denote ML.KNN, with basic and fuzzy tag-term

affinity score as ML.KNN+Basic and ML.KNN+Fuzzy

respectively. Table 5 and Table 6 present the example-

based recall@5 and recall@10 scores for the different

versions of TagCombine.

We notice that the differences among the diffe-

rent versions of TagCombine are small. On ave-

rage across the four datasets, the recall@5 and re-

call@10 scores of different versions of TagCombine

vary from 0.590 2∼0.619 8, and 0.742 1∼0.763 5 respec-

tively. Among the six combinations, the default ver-

sion achieves the best recall@5 and recall@10 scores of

0.619 8 and 0.763 5 respectively. BR+Fuzzy achieves

Table 3. Example-Based Recall@5 and Recall@10 Comparison Between TagCombine and TagRec

Dataset TagCombine TagRec Improvement(%)

Ask Different Recall@5 0.674 9±0.007 7 0.648 4±0.005 2 04.09

Recall@10 0.821 4±0.005 4 0.792 0±0.006 2 03.71

Ask Ubuntu Recall@5 0.568 6±0.005 1 0.522 3±0.005 1 08.86

Recall@10 0.727 3±0.006 2 0.669 7±0.004 2 08.60

Freecode Recall@5 0.639 1±0.006 0 0.484 0±0.004 2 32.05

Recall@10 0.777 3±0.005 0 0.660 3±0.003 2 17.72

Stack Overflow Recall@5 0.594 6±0.003 4 0.525 1±0.003 9 13.24

Recall@10 0.723 9±0.003 3 0.645 3±0.005 0 12.18

Note: The result is recorded with format: mean±standard deviation. These are the means and the standard deviations of the 10
iteration results of 10-fold cross-validation.

Table 4. Example-Based Recall@5 and Recall@10 Comparison Between TagCombine and Zangerle et al.’s Method

Dataset TagCombine Zangerle et al. Improvement(%)

Ask Different Recall@5 0.674 9±0.007 7 0.616 4±0.011 5 09.50

Recall@10 0.821 4±0.005 4 0.745 4±0.010 5 10.20

Ask Ubuntu Recall@5 0.568 6±0.005 1 0.542 4±0.009 2 04.83

Recall@10 0.727 3±0.006 2 0.675 0±0.009 1 07.75

Freecode Recall@5 0.639 1±0.006 0 0.599 5±0.004 8 03.61

Recall@10 0.777 3±0.005 0 0.733 9±0.005 6 05.91

Stack Overflow Recall@5 0.594 6±0.003 4 0.456 0±0.026 0 30.39

Recall@10 0.723 9±0.003 3 0.665 4±0.006 0 08.79

1028 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

Table 5. Example-Based Recall@5 for Different Versions of TagCombine

Combination Ask Different Ask Ubuntu Freecode Stack Overflow Average

Default 0.674 9±0.007 7 0.568 6±0.005 1 0.639 1±0.006 0 0.594 6±0.003 4 0.619 8

BR+Fuzzy 0.658 9±0.008 6 0.549 8±0.005 6 0.609 6±0.006 1 0.542 6±0.005 3 0.590 2

RAKEL+Basic 0.684 9±0.007 0 0.578 4±0.006 2 0.634 4±0.005 4 0.560 1±0.007 7 0.614 5

RAKEL+Fuzzy 0.692 5±0.007 9 0.563 8±0.006 4 0.625 6±0.006 1 0.572 4±0.004 1 0.613 6

ML.KNN+Basic 0.683 3±0.007 1 0.590 5±0.008 6 0.622 0±0.004 7 0.524 0±0.007 3 0.605 0

ML.KNN+Fuzzy 0.701 5±0.007 4 0.569 1±0.007 9 0.630 0±0.004 9 0.542 6±0.005 3 0.610 8

Note: The last column (average) shows the average example-based recall@5 scores across the 4 datasets.

Table 6. Example-Based Recall@10 for Different Versions of TagCombine

Combination Ask Different Ask Ubuntu Freecode Stack Overflow Average

Default 0.821 4±0.005 4 0.727 3±0.006 2 0.777 3±0.005 0 0.723 9±0.003 3 0.762 5

BR+Fuzzy 0.817 9±0.006 9 0.704 4±0.006 2 0.763 8±0.005 2 0.682 1±0.006 6 0.742 1

RAKEL+Basic 0.817 8±0.006 5 0.725 0±0.005 8 0.771 0±0.005 8 0.719 1±0.006 7 0.758 2

RAKEL+Fuzzy 0.830 0±0.005 4 0.714 0±0.005 5 0.763 5±0.005 6 0.694 2±0.005 5 0.750 4

ML.KNN+Basic 0.829 0±0.005 6 0.727 5±0.008 2 0.770 5±0.004 5 0.710 5±0.008 6 0.759 4

ML.KNN+Fuzzy 0.835 5±0.006 1 0.702 2±0.007 1 0.765 2±0.004 5 0.682 1±0.006 6 0.746 3

the poorest performance, with recall@5 and recall@10

scores of 0.590 2 and 0.742 1 respectively. Since the de-

fault version achieves the best performance, in the fol-

lowing two research questions, we only investigate the

effect of varying various parameters on the default ver-

sion of TagCombine.

Recall that in the default version of TagCombine,

we use binary relevance (BR) to construct the multi-

label ranking component, and use basic tag-term affi-

nity score to construct the tag-term based ranking com-

ponent. This default option is better than the other

options due to the following reasons.

1) Compared with RAKEL and ML.KNN, binary

relevance (BR) builds an independent ranking model

for each tag, while RAKEL builds a number of ranking

models based on a subset of all the tags, and ML.KNN

recommends tags for an object by considering tags

assigned to its k-nearest-neighbors. Binary relevance

(BR) assumes the low level of dependencies among la-

bels (aka.tags). We manually check the tag distribu-

tions in our collected data, and we find that the co-

occurrences of many different pairs of labels are low,

which indicates that there are few dependencies among

many of the tags. For example, in the Stack Overflow

data, the tags “java” and “.net” only appear 72 times

while each of the tags appears 6 221 times and 5 063

times respectively, “c++” and “windows” only appear

54 times while each of the tags appears 2 650 times and

1 315 times respectively, and “C#” and “plugins” only

appear once while each of the tags appears 6 217 times

and 156 times respectively. Previous studies show that

binary relevance (BR) will perform better if there is a

low level of dependencies among the labels[5,10].

2) Comparing the basic tag-term affinity score for-

mula and the fuzzy tag-term affinity score formula,

we can note that the fuzzy tag-term affinity score for-

mula considers the number of objects that term t ap-

pears, i.e., nt. In our collected data, nt is much larger

than ntag (the number of objects that tag tag appears)

— since tags are sparsely distributed. Thus, for the

ntag + nt − nt,tag term in the fuzzy tag-term affinity

score formula (see (2)), nt has the dominant effect.

In such a case, the differences between fuzzy tag-term

affinity scores are small since nt dominates; this makes

the fuzzy tag-term affinity score have less discrimina-

tive power and as a result, it does not perform as well

as the basic tag-term affinity score.

To summarize, in practice, we recommend users to

use the default version of TagCombine.

4.4 RQ3: Effect of Varying K

The similarity-based ranking component of Tag-

Combine chooses K most similar objects. We would

like to investigate how the effectiveness of TagCom-

bine varies for various K values. In this subsec-

tion, we choose K in [5, 250] and compute recall@5

and recall@10 of TagCombine on the Ask Different,

Ask Ubuntu, Stack Overflow, and Freecode datasets.

Figs. 5∼8 present the experimental results of vary-

ing K in the similarity-based ranking component. For

Ask Different, recall@5 and recall@10 vary from 0.304 1

to 0.697 2 and 0.477 0 to 0.833 3, respectively. For

Ask Ubuntu, recall@5 and recall@10 vary from 0.370 6

to 0.576 6 and 0.558 4 to 0.729 1, respectively. For

Xin-Yu Wang et al.: Recommending Tags to Contents in Software Information Sites 1029

Freecode, recall@5 and recall@10 vary from 0.578 1 to

0.641 6 and 0.735 3 to 0.777 3, respectively. For Stack

Overflow, recall@5 and recall@10 vary from 0.569 7 to

0.597 8 and 0.695 2 to 0.728 5, respectively.

25

1.0

0.5

0

75 125 175 225 2505 50 100 150 200

Exampe-Based Recall@5

Exampe-Based Recall@10

Fig.5. Example-based recall@5 and recall@10 for TagCombine
with different K values (K ∈ [5, 250]) for the similarity-based
ranking component when evaluated on the Ask Different project.

1.0

0.5

0

Exampe-Based Recall@5

Exampe-Based Recall@10

25 75 125 175 225 2505 50 100 150 200

Fig.6. Example-based recall@5 and recall@10 for TagCombine
with different K values (K ∈ [5, 250]) for the similarity-based
ranking component when evaluated on the Ask Ubuntu project.

1.0

0.5

0

Exampe-Based Recall@5

Exampe-Based Recall@10

25 75 125 175 225 2505 50 100 150 200

Fig.7. Example-based recall@5 and recall@10 for TagCombine
with different K values (K ∈ [5, 250]) for the similarity-based
ranking component when evaluated on the Freecode project.

1.0

0.5

0

Exampe-Based Recall@5

Exampe-Based Recall@10

25 75 125 175 225 2505 50 100 150 200

Fig.8. Example-based recall@5 and recall@10 for TagCom-
bine with different K values (K ∈ [5, 250]) for the similarity-
based ranking component when evaluated on the Stack Overflow
project.

We notice that the performance of TagCombine

with K = 5 achieves the worst performance. Since

the collection is large (i.e., it contains about 40 000 ob-

jects), and the tags are imbalanced (i.e., for a particular

tag, the ratio of the number of objects with the tag and

the number of objects without the tag is small)[20], if

we choose K values which are too small (e.g., K = 5),

then the selected K most similar objects cannot repre-

sent the true distribution of relevant tags in the infor-

mation site. For other K values (e.g., K in [25, 250]),

TagCombine exhibits stable performance — the diffe-

rences among different K values are small. For AskDi-

fferent, Ask Ubuntu, and Stack Overflow, TagCombine

achieves the best performance when K is set to 75. For

Freecode, TagCombine achieves the best performance

when K is set to 25. If we choose a large K value, the

model building and prediction time will be increased.

Thus, in practice, we recommend users to choose a K

value in the interval of [25, 75].

4.5 RQ4: Effect of Optimizing with Different
ECs

To investigate the effect of different ECs on the per-

formance of TagCombine, we choose three ECs: re-

call@5, recall@10, and recall@20 evaluation criteria.

Table 7 and Table 8 present example-based recall@5

and recall@10 for TagCombine with different ECs re-

spectively. Recall@5 and recall@10 for Ask Different

vary from 0.611 9 to 0.674 9 and 0.720 7 to 0.821 4, re-

spectively. Recall@5 and recall@10 for Ask Ubuntu

vary from 0.533 5 to 0.568 6 and 0.701 0 to 0.721 3, re-

spectively. Recall@5 and recall@10 for Freecode vary

from 0.628 6 to 0.639 1 and 0.768 4 to 0.777 3, respec-

tively. Recall@5 and recall@10 for Stack Overflow vary

from 0.538 9 to 0.594 6 and 0.715 4 to 0.725 3, respec-

tively.

1030 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

Table 7. Example-Based Recall@5 for TagCombine with Different Evaluation Criteria

EC Ask Different Ask Ubuntu Freecode Stack Overflow Average

Recall@5 0.674 9±0.007 7 0.568 6±0.005 1 0.639 1±0.006 0 0.594 6±0.003 4 0.619 8

Recall@10 0.656 6±0.013 4 0.566 4±0.005 6 0.638 3±0.005 3 0.580 2±0.003 6 0.610 4

Recall@20 0.611 9±0.017 3 0.533 5±0.006 3 0.628 6±0.005 7 0.538 9±0.013 4 0.578 2

Table 8. Example-Based Recall@10 for TagCombine with Different Evaluation Criteria

EC Ask Different Ask Ubuntu Freecode Stack Overflow Average

Recall@5 0.819 1±0.008 5 0.717 7±0.006 2 0.776 2±0.004 4 0.725 3±0.002 7 0.734 6

Recall@10 0.821 4±0.005 4 0.727 3±0.006 2 0.777 3±0.005 0 0.723 9±0.003 3 0.762 5

Recall@20 0.720 7±0.021 1 0.701 0±0.005 2 0.768 4±0.004 9 0.715 4±0.006 5 0.726 4

We notice that recall@20 EC achieves the worst per-

formance compared with the other two ECs, i.e., re-

call@5 and recall@10. As stated in Algorithm 1, to

estimate the best α, β, γ values, we use the training ob-

jects to select the best values which achieve the best

EC values. Recall@20 EC selects too many tags, and

in our experiment, we only focus on recall@5 and re-

call@10 values. For this reason, recall@20 EC does not

perform well. Moreover, we notice that the differences

in the performance of recall@5 and recall@10 ECs are

small.

5 Discussion

5.1 How Can We Use the Tags Recommended
by TagCombine?

Given a new question, we can use TagCombine to

recommend a set of relevant tags. In this subsection,

we would like to investigate how to use these recom-

mended tags. Notice that in some software informa-

tion sites such as Ask Different and Stack Overflow, a

question can have a number of linked questions. For

example, Fig.9 presents a question 45316 and its linked

questions in Ask Different. Linked questions are simi-

lar questions that are manually identified by software

information site users.

Fig.9. Question 45316 and its related questions in Ask Different.

Following advances in information retrieval, given

a new question, we recommend its similar ques-

tions by computing the textual similarity (e.g., cosine

similarity[9]) between the new question and the other

questions, and then retrieve the top-K questions with

the highest similarity scores to the new question. To

compute textual similarity, we use terms in the textual

contents of the questions such as words in the title and

description fields of the questions. We refer to this ap-

proach as SimTerm.

By leveraging TagCombine, we can recommend a

set of tags to a new question. We would like to investi-

gate whether we can improve the performance of simi-

lar question detection by using the additional recom-

mended tags. To do this, given a new question new, we

first use TagCombine to recommend a set of tags. In

our study, we recommend five tags to the new question.

Next, we merge these tags into the terms extracted from

textual contents in the title and description fields of the

new question. Then, we compute the textual simila-

rity between the new question and other questions in

the historical set of questions, and retrieve the top-K

questions with the highest similarity scores to the new

question. We refer to this approach as SimTagCombine.

We also build a recommendation model which merges

the ground truth tags of the new question with the

terms extracted from textual contents, and refer to it

as SimIdeal.

We compare SimTagCombine with SimTerm and

SimIdeal. We extract 14 196 questions from AskDiffe-

rent, and sort them in chronological order of their crea-

tion time. We use the first 13 696 questions as the train-

ing set, and the remaining 500 questions as the test set.

For each question in the test set, we crawl the website

of Ask Different, and retrieve the questions in the “Re-

lated Question” section, and we use these questions as

the ground truth. Notice that some questions do not

Xin-Yu Wang et al.: Recommending Tags to Contents in Software Information Sites 1031

have the “Related Question” section, and we remove

these questions from the test set.

To measure the performance of SimTagCombine, we

use top-K prediction accuracies, which follows some

previous studies[21-24]. Top-K prediction accuracy is

the percentage of questions in the test set where their

ground truth similar questions are ranked in the top-k

positions in the returned ranked lists of similar ques-

tions. In this paper, we set K = 5 and 10.

Table 9 presents the top 5 and the top 10 pre-

diction accuracies for SimTagCombine compared with

SimTerm and SimIdeal. SimTagCombine achieves top-5

and top-10 prediction accuracies of 0.34 and 0.45 re-

spectively, which is much better than SimTerm which

only considers terms in the textual contents. More-

over, we find SimIdeal achieves a better performance

than SimTagCombine. SimIdeal is the ideal setting

where all tags are right. The purpose of comparing

SimTagCombine with SimIdeal is to measure the gap be-

tween SimTagCombine and the ideal setting. In the fu-

ture, we plan to further improve the tag recommenda-

tion approach to improve the performance of similar

question detection.

Table 9. Top-5 and Top-10 Prediction Accuracies for
SimTagCombine Compared with SimTerm and

SimIdeal for Ask Different Dataset

Approach Top 5 Top 10

SimTagCombine 0.34 0.45

SimTerm 0.27 0.38

SimIdeal 0.38 0.45

Besides linked question recommendation, the tags

recommended by our TagCombine can potentially be

used to solve other software engineering tasks. For

example, we can potentially use the tags to improve the

performance of duplicate question detection in Q&A

web sites such as Stack Overflow, expert finding in Q&A

web sites[20], and developer recommendation for a new

project in Freecode or SourceForge[21]. In the future,

we plan to solve these problems better by leveraging

our TagCombine.

5.2 Threats to Validity

There are several threats that may potentially affect

the validity of our study. Threats to internal validity re-

late to the errors in our experiments. We have double

checked our experiments and datasets, and still there

could be errors that we have not noticed. We use 10-

fold cross validation[15] to evaluate the performance of

our approach, which is a standard validation approach

used in many previous studies[22-25].

Threats to external validity relate to the generaliza-

bility of our results. We have analyzed four popular

software information sites and more than 149 000 soft-

ware objects. Analyzing a large number of objects is

important for the generalizability of the findings. Pre-

vious closely-related studies only investigate smaller

numbers of objects[6-7]. We extend these studies by

performing an evaluation based on a large number of

objects. In the future, we plan to reduce this threat

further by analyzing even more software objects from

more software information sites, e.g., sites with a dif-

ferent type of user base (such as Twitter), and sites in

other languages or cultures.

Threats to construct validity refer to the suitabi-

lity of our evaluation measures. We use recall@5 and

recall@10 as our evaluation measures. These are also

used by previous studies to evaluate the effectiveness of

tag recommendation[6-7,26]. Thus, we believe there is

little threat to construct validity.

6 Related Work

In this section, we briefly review related studies. We

first review TagRec and Zangerle et al.’s work[7] which

are most related to our paper. We then describe studies

on software information sites. Finally, we review stu-

dies on tagging in the software engineering literature.

6.1 Tag Recommendation

To our best knowledge, there is limited research on

tag recommendation in the software engineering litera-

ture. TagRec is one of the most recent studies; it recom-

mends tags in work item systems such as IBM Jazz[6].

The core technology of TagRec is based on fuzzy set

theory. In this work, we consider a different problem

setting, namely tag recommendation in software infor-

mation sites. We have also applied TagRec in our set-

ting and shown that our method could outperform it.

There are many tag recommendation studies in the

social network and data mining fields[7,27-28]. They

analyze social media sites such as Flickr, Delicious, and

Twitter. The work by Zangerle et al. is one of the latest

studies that recommend tags for short messages (aka.

microblogs) in Twitter[7]. In this work, we consider a

different setting, namely, the recommendation of tags

in software information sites. We have applied Zangerle

et al.’s method to our setting and shown that ours can

outperform it.

1032 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

6.2 Studies on Software Information Sites

A number of research studies have been performed

on software information sites and social media for soft-

ware engineering. Storey et al.[1] and Begel et al.[2]

wrote two position papers to describe the outlook of

research in social media for software engineering. They

proposed a set of research questions around the im-

pact of social media for software engineering at team,

project, and community levels. Hong et al. compared

developer social networks and general social networks

and examined how developer social networks evolve

over time[29]. Surian et al. employed graph mining

and graph matching to find collaboration patterns in

SourceForge.Net[30]. Surian et al. collected informa-

tion in SourceForge.Net, and built a large-scale de-

veloper collaboration network to recommend suitable

developers, using random walk with restart (RWR)

method[21].

Bougie et al.[31] and Tian et al.[32] analyzed mi-

croblogs related to software engineering activities to un-

derstand what software engineers do in Twitter. They

analyzed the contents of relevant short messages in

Twitter, categorized the types of tweets, and found that

Twitter is used by the software engineering community

for conversation and information sharing. Achananu-

parp et al. created an observatory of software-related

microblogs[33]. They created a web-based interface for

people to browse many software-related microblogs and

visually identify patterns. Prasetyo et al. proposed

an automated technique to classify software related mi-

croblogs into several categories[34]. Pagano and Maalej

analyzed the blogging behaviors of software developers

in four large communities[35]. Gottipati et al. devel-

oped a semantic search engine to find relevant posts

in software forums[36]. Henβ et al. extracted fre-

quently asked questions from mailing lists and internet

forums[37].

6.3 Tagging in Software Engineering Field

Treude and Storey analyzed tags in work item sys-

tems such as IBM Jazz, and they found that tags help to

bridge the gap between social and technical aspects of

software development[3-4]. In their study, the impact of

tagging is investigated in a large project team with 175

developers over two years. They found that lightweight

informal tool support such as tags, plays an important

role in helping to improve team-based software develop-

ment practices[3-4]. Wang et al. inferred semantically

related software terms and their taxonomy by analyz-

ing 45 470 projects along with their tags in Freecode[17].

They used a term taxonomy construction method which

is based on k-medoids clustering algorithm. Thung

et al. showed that tags are useful to detect similar

applications[38]. In their study, they collected tags from

SourceForge.Net, and performed weight inference to de-

tect similar applications. A user study and three diffe-

rent metrics (i.e., success rate, confidence, and preci-

sion) were used to evaluate their proposed method.

7 Conclusions

In this paper, we proposed TagCombine, to recom-

mend tags in software information sites. We first inves-

tigated the tags in software information sites, and con-

sidered the benefits of tag recommendation. Next, we

proposed a framework named TagCombine, which con-

tains three different components: multi-label ranking

component, similarity-based ranking component, and

tag-term based ranking component. In the multi-label

ranking component, we inferred suitable tags for un-

tagged objects using a multi-label learning algorithm.

In the similarity-based ranking component, we recom-

mended tags for untagged objects from the tags of sim-

ilar objects. In the tag-term based ranking compo-

nent, we first considered the affinity scores between tags

and terms from historical data (i.e., existing tagged ob-

jects); for an untagged object, we recommended suit-

able tags based on the terms in the objects and the

affinity scores. Finally, we proposed a sample-based

method to combine the three components. We evalu-

ated our method on four popular software information

sites, Ask Different, Ask Ubuntu, Freecode, and Stack

Overflow. Experimental results showed that for Ask

Different, our TagCombine achieves recall@5 and re-

call@10 scores of 0.674 9 and 0.821 4, respectively; for

Ask Ubuntu, our TagCombine achieves recall@5 and

recall@10 scores of 0.568 6 and 0.727 3, respectively; for

Freecode, it achieves recall@5 and recall@10 scores of

0.639 1 and 0.777 3, respectively; for Stack Overflow,

our TagCombine achieves recall@5 and recall@10 scores

of 0.596 4 and 0.723 9, respectively. For recommending

tags in software information sites, averaging over in-

formation sites considered, for recall@5 and recall@10

scores, we improved TagRec proposed by Al-Kofahi et

al.[6] by 14.56% and 10.55% respectively, and the tag

recommendation method proposed by Zangerle et al.[7]

by 12.08% and 8.16% respectively.

Xin-Yu Wang et al.: Recommending Tags to Contents in Software Information Sites 1033

In the future, we plan to investigate more software

information sites to evaluate the effectiveness of our

method, develop a better technique which could achieve

higher recall@5 and recall@10 scores, and consider more

tags in tag space. We also plan to experiment with

different algorithms to replace the various components

of our framework. For our multi-label ranking com-

ponent, various multi-label learning algorithms can be

used to replace our proposed three methods, for ex-

ample, LEAD[39], class chain method[40], could also be

used. In the similarity-based ranking component, we

can use different similarity metrics, for example, Eu-

clidean distance, Minkowski distance[15]. We can also

use latent semantic indexing (LSI)[41-42] instead of vec-

tor space model to cluster tags and terms to reduce tag

synonymity in the similarity-based ranking component.

In tag-term based ranking component, we can use other

methods which consider the relationships between tags

and terms to replace our proposed two methods. We

used linear combination to tune parameters in the three

components in this paper, and we can use other combi-

nation ways, e.g., we can perform principal component

analysis (PCA)[43] to determine the relative contribu-

tions of each component. We plan to investigate these

options as future work 9○.

Acknowledgment We would like to thank Wang

et al. for sharing their Freecode dataset[17].

References

[1] Storey M, Treude C, Deursen A, Cheng L. The impact of

social media on software engineering practices and tools.

In Proc. the FSE/SDP Workshop on Future of Software

Engineering Research, November 2010, pp.359-364.

[2] Begel A, DeLine R, Zimmermann T. Social media for soft-

ware engineering. In Proc. the FSE/SDP Workshop on Fu-

ture of Software Engineering Research, November 2010,

pp.33-38.

[3] Treude C, Storey M. How tagging helps bridge the gap be-

tween social and technical aspects in software development.

In Proc. the 31st IEEE International Conference on Soft-

ware Engineering (ICSE), May 2009, pp.12-22.

[4] Treude C, Storey M A. Work item tagging: Communicat-

ing concerns in collaborative software development. IEEE

Transactions on Software Engineering, 2012, 38(1): 19-34.

[5] Tsoumakas G, Katakis I. Multi-label classification: An

overview. International Journal of Data Warehousing and

Mining (IJDWM), 2007, 3(3): 1-13.

[6] Al-Kofahi J, Tamrawi A, Nguyen T T, Nguyen H A, Nguyen

T N. Fuzzy set approach for automatic tagging in evolving

software. In Proc. the 26th IEEE International Conference

on Software Maintenance (ICSM), September 2010.

[7] Zangerle E, Gassler W, Specht G. Using tag recommenda-

tions to homogenize folksonomies in microblogging environ-

ments. In Proc. the 3rd Int. Conf. Social Informatics, Oct.

2011, pp.113-126.

[8] Xia X, Lo D, Wang X, Zhou B. Tag recommendation in soft-

ware information sites. In Proc. the 10th Working Confer-

ence on Mining Software Repositories, May 2013, pp.287-

296.

[9] Baeza-Yates R A, Ribeiro-Neto B A. Modern Information

Retrieval — The Concepts and Technology Behind Search

(2nd edition). Boston, MA, USA: Addison-Wesley Publish-

ing Company, 2011.

[10] Tsoumakas G, Katakis I, Vlahavas I. Mining multi-label

data. In Data Mining and Knowledge Discovery Handbook,

Maimon O, Rokach L (eds.), Springer US, 2010, pp.667-685.

[11] Tsoumakas G, Katakis I, Vlahavas I. Random k-labelsets

for multilabel classification. IEEE Transactions on Knowl-

edge and Data Engineering, 2011, 23(7): 1079-1089.

[12] Zhang M, Zhou Z. Multilabel neural networks with applica-

tions to functional genomics and text categorization. IEEE

Transactions on Knowledge and Data Engineering, 2006,

18(10): 1338-1351.

[13] McCallum A, Nigam K. A comparison of event models for

naive Bayes text classification. In Proc. AAAI-98 Workshop

on Learning for Text Categorization, July 1998.

[14] Tsoumakas G, Spyromitros-Xioufis L, Vilcek J, Vlahavas I.

MULAN: A Java library for multi-label learning. Journal

of Machine Learning Research, 2011, 12: 2411-2414.

[15] Han J, Kamber M. Data Mining: Concepts and Techniques

(2nd edition). San Francisco, CA, USA: Morgan Kaufmann,

2006.

[16] Zhang M, Zhou Z. ML-KNN: A lazy learning approach

to multi-label learning. Pattern Recognition, 2007, 40(7):

2038-2048.

[17] Wang S, Lo D, Jiang L. Inferring semantically related soft-

ware terms and their taxonomy by leveraging collabora-

tive tagging. In Proc. the 28th IEEE International Confer-

ence on Software Maintenance (ICSM), September 2012,

pp.604-607.

[18] Bacchelli A. Mining challenge 2013: Stack Overflow. In

Proc. the 10th Working Conference on Mining Software

Repositories, June 2013.

[19] Wurst M. The word vector tool: User guide. December

2007. http://wvtool.sf.net, Mar. 2015.

[20] Yang L, Qiu M, Gottipati S, Zhu F, Jiang J, Sun H, Chen Z.

CQArank: Jointly model topics and expertise in community

question answering. In Proc. the 22nd ACM International

Conference on Conference on Information & Knowledge

Management, October 27-November 1, 2013, pp.99-108.

[21] Surian D, Liu N, Lo D, Tong H, Lim E, Faloutsos C. Rec-

ommending people in developers’ collaboration network. In

Proc. the 18th Working Conference on Reverse Engineering

(WCRE), Oct. 2011, pp.379-388.

9○The source code and datasets of TagCombine can be downloaded from https://github.com/xinxia1986/Tag2, July 2015.

1034 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

[22] Xia X, Lo D, Qiu W, Wang X, Zhou B. Automated configu-

ration bug report prediction using text mining. In Proc. the

38th IEEE Annual Computer Software and Applications

Conference (COMPSAC), July 2014, pp.107-116.

[23] Shihab E, Ihara A, Kamei Y, Ibrahim W M, Ohira M,

Adams B, Hassan A E, Matsumoto K I. Predicting re-

opened bugs: A case study on the Eclipse project. In

Proc. the 17th Working Conference on Reverse Engineering

(WCRE), Oct. 2010, pp.249-258.

[24] Osman M H, Chaudron M R, van der Putten P. An analysis

of machine learning algorithms for condensing reverse engi-

neered class diagrams. In Proc. the 29th IEEE International

Conference on Software Maintenance (ICSM), September

2013, pp.140-149.

[25] Xia X, Feng Y, Lo D, Chen Z, Wang X. Towards more ac-

curate multi-label software behavior learning. In Proc. the

2014 Software Evolution Week-IEEE Conference on Soft-

ware Maintenance, Reengineering and Reverse Engineering

(CSMR-WCRE), Feb. 2014, pp.134-143.

[26] Xia X, Lo D, Wang X, Zhou B. Accurate developer recom-

mendation for bug resolution. In Proc. the 20th Working

Conference on Reverse Engineering (WCRE), Oct. 2013,

pp.72-81.

[27] Marlow C, Naaman M, Boyd D, Davis M. HT06, tagging

paper, taxonomy, Flickr, academic article, to read. In Proc.

the 17th Conference on Hypertext and Hypermedia, August

2006, pp.31-40.

[28] Sigurbjörnsson B, Van Zwol R. Flickr tag recommendation

based on collective knowledge. In Proc. the 17th Interna-

tional Conference on World Wide Web, April 2008, pp.327-

336.

[29] Hong Q, Kim S, Cheung S, Bird C. Understanding a de-

veloper social network and its evolution. In Proc. the 27th

IEEE International Conference on Software Maintenance

(ICSM), September 2011, pp.323-332.

[30] Surian D, Lo D, Lim E P. Mining collaboration patterns

from a large developer network. In Proc. the 17th Working

Conference on Reverse Engineering (WCRE), Oct. 2010,

pp.269-273.

[31] Bougie G, Starke J, Storey M A, German D M. Towards

understanding Twitter use in software engineering: Prelim-

inary findings, ongoing challenges and future questions. In

Proc. the 2nd International Workshop on Web 2.0 for Soft-

ware Engineering, May 2011, pp.31-36.

[32] Tian Y, Achananuparp P, Lubis I, Lo D, Lim E. What

does software engineering community microblog about? In

Proc. the 9th IEEE Working Conference on Mining Soft-

ware Repositories (MSR), June 2012, pp.247-250.

[33] Achananuparp P, Lubis I N, Tian Y, Lo D, Lim E P. Obser-

vatory of trends in software related microblogs. In Proc. the

27th IEEE/ACM International Conference on Automated

Software Engineering, September 2012, pp.334-337.

[34] Prasetyo P K, Lo D, Achananuparp P, Tian Y, Lim E P.

Automatic classification of software related microblogs. In

Proc. the 28th IEEE International Conference on Software

Maintenance (ICSM), September 2012, pp.596-599.

[35] Pagano D, Maalej W. How do developers blog?: An ex-

ploratory study. In Proc. the 8th Working Conference on

Mining Software Repositories, May 2011, pp.123-132.

[36] Gottipati S, Lo D, Jiang J. Finding relevant answers in soft-

ware forums. In Proc. the 26th IEEE/ACM International

Conference on Automated Software Engineering, November

2011, pp.323-332.

[37] Henβ S, Monperrus M, Mezini M. Semi-automatically ex-

tracting FAQs to improve accessibility of software develop-

ment knowledge. In Proc. the 34th International Confer-

ence on Software Engineering, June 2012, pp.793-803.

[38] Thung F, Lo D, Jiang L. Detecting similar applications with

collaborative tagging. In Proc. the 28th IEEE International

Conference on Software Maintenance (ICSM), September

2012, pp.600-603.

[39] Zhang M, Zhang K. Multi-label learning by exploiting la-

bel dependency. In Proc. the 16th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Min-

ing, July 2010, pp.999-1008.

[40] Read J, Pfahringer B, Holmes G, Frank E. Classifier

chains for multi-label classification. Machine Learning,

2011, 85(3): 333-359.

[41] Deerwester S, Dumais S T, Furnas G W, Landauer T K,

Harshman R. Indexing by latent semantic analysis. Jour-

nal of the American Society for Information Science, 1990,

41(6): 391-407.

[42] Hofmann T. Probabilistic latent semantic indexing. In Proc.

the 22nd Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, Au-

gust 1999, pp.50-57.

[43] Jolliffe I. Principal Component Analysis. Springer-Verlag

New York, 2002.

Xin-Yu Wang received his Bachelor’s

and Ph.D. degrees in computer science

from Zhejiang University, Hangzhou, in

2002 and 2007 respectively. He was a

research assistant in Zhejiang University

during 2002∼2007. He is currently an

associate professor in the College of

Computer Science and Technology, Zhejiang University.

His research interests include software engineering, formal

methods, and very large information systems.

Xin Xia received his Ph.D. degree

in computer science from the College of

Computer Science and Technology, Zhe-

jiang University, Hangzhou, in 2014. He

is currently a research assistant professor

in the College of Computer Science and

Technology at Zhejiang University. His

research interests include software analytic, empirical

study, and mining software repository. He is a member of

CCF, ACM, and IEEE.

Xin-Yu Wang et al.: Recommending Tags to Contents in Software Information Sites 1035

David Lo received his Ph.D. degree

in computer science from the School

of Computing, National University of

Singapore, Singapore, in 2008. He is

currently an assistant professor in the

School of Information Systems, Singapore

Management University. He has close to 10 years of

experience in software engineering and data mining

research and has more than 130 publications in these

areas. He received the Lee Foundation Fellow for Research

Excellence from the Singapore Management University in

2009. He has won a number of research awards including

an ACM Distinguished Paper Award for his work on

bug report management. He has published in many

top international conferences in software engineering,

programming languages, data mining and databases,

including ICSE, FSE, ASE, PLDI, KDD, WSDM, TKDE,

ICDE, and VLDB. He has also served on the program

committees of ICSE, ASE, KDD, VLDB, and many

others. He is a steering committee member of the IEEE

International Conference on Software Analysis, Evolution,

and Reengineering (SANER) which is a merger of the two

major conferences in software engineering, namely CSMR

and WCRE. He will also serve as the general chair of ASE

2016. He is a leading researcher in the emerging field of

software analytics and has been invited to give keynote

speeches and lectures on the topic in many venues, such

as the 2010 Workshop on Mining Unstructured Data,

the 2013 Génie Logiciel Empirique Workshop, the 2014

International Summer School on Leading Edge Software

Engineering, and the 2014 Estonian Summer School in

Computer and Systems Science.

	TagCombine: Recommending Tags to Contents in Software Information Sites
	Citation

	tmp.1579069098.pdf.d4zAv

