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Abstract

We propose a novel concept of rationalization, called coarse rationalization,

tailored for the analysis of datasets where an agent’s choices are imperfectly

observed. We characterize those datasets which are rationalizable in this sense

and present an efficient algorithm to verify the characterizing condition. We

then demonstrate how our results can be applied through a duality approach

to test the rationalizability of datasets with perfectly observed choices but

imprecisely observed linear budget sets. For datasets that consist of both

perfectly observed feasible sets and choices but are inconsistent with perfect

rationality, our results could be used to measure the extent to which choices

or prices have to be perturbed to recover rationality.

Keywords: Coarse dataset, rationalization, revealed preference, Afriat’s

Theorem, perturbation index, price misperception index
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1 Introduction
The seminal results in revealed preference analysis begin with a dataset collected

from a consumer and find conditions that are necessary and sufficient for it to

be consistent with rationality. To be specific, suppose that the consumer chooses

bundles from the consumption space Rn
+. The dataset is a finite set of observations

O = {(At, Bt)}t∈T indexed by t, where At and Bt are nonempty subsets of Rn
+ with

At ⊆ Bt. With the interpretation that At is the set of bundles which the consumer

has been observed to choose from the budget set Bt, there are two natural concepts

of rationalization.

The first concept requires a preference %, i.e., a complete and transitive

binary relation on the consumption space, with its strict part denoted by �, such

that the optimal choices within Bt consist precisely of At, i.e.,

for all x ∈ At, we have x % y for all y ∈ Bt and x � y for all y ∈ Bt \ At.

Richter’s Theorem (Richter, 1966) characterizes those datasets O which are

rationalizable in this sense. The second concept requires a preference % such

that every bundle in At is optimal (with respect to %) but allows for the possibility

that bundles in Bt \ At are optimal; in other words, it simply requires that

for all x ∈ At, we have x % y for all y ∈ Bt.

Afriat’s Theorem (and its generalizations to nonlinear domains in Forges and Minelli

(2009) and Nishimura, Ok and Quah (2017)) characterize datasets that satisfy this

concept of rationalization. Loosely speaking, the first notion is the one commonly

used in the theoretical revealed preference literature, while empirical work using

revealed preference have mostly relied on the second (weaker) notion, which is

unsurprising since the second concept does not posit that the observer has observed

all the optimal choices, but only one, or some, of them.

A third concept of rationalization has been studied by Fishburn (1976). This

concept involves a different interpretation of the dataset, where the observations

are thought to be coarse. By this we mean that the observer knows that, when

presented with the budget Bt, the agent has chosen from among the bundles in
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At, but does not know precisely which bundle in At was chosen. To be precise,

Fishburn requires the existence of a preference % such that for every t ∈ T ,

there exists xt ∈ At with xt % y for all y ∈ Bt and xt � y for all y ∈ Bt \ At.

In other words, Fishburn’s concept of rationalization relaxes the first concept (of

rationalization) by allowing some elements of At to be nonoptimal, but it retains

the requirement that nothing outside of At is optimal. This suggests that a fourth

concept of rationalization may be useful in empirical applications: one that allows

for the possibility that some elements in At are nonoptimal (following Fishburn)

and also that some elements outside of At are optimal (following Afriat). Formally,

this concept simply requires the existence of a preference % such that for all t ∈ T ,

there exists xt ∈ At with xt % y for all y ∈ Bt.

This rationalization concept, which we shall refer to as coarse rationalization, is

the focus of our paper.

The revealed preference literature since the 1970s have by and large neglected

Fishburn’s rationalization concept. We think that Fishburn’s concept, as well as

the relaxation of that concept which we just proposed, deserves notice because they

are relevant to empirical applications of revealed preference. These concepts are

applicable whenever the observer knows (or hypothesizes) that there is an optimal

choice found in At, but is agnostic about precisely which alternatives within At are

optimal. There are at least three scenarios in which it is useful to think of coarse

rationalization.

(1) The most obvious cases are those where the bundles chosen are known to be

imprecise. For example, a researcher may have information on how much is spent

on broad categories of goods, without knowing the allocation within each category.

An economist can estimate a worker’s total income based on his hourly wage, but

may only have a rough idea of his choices regarding leisure and consumption goods.

Alternatively, a researcher may have records on a consumer’s credit card purchases,

which puts a lower bound on how much is spent each month on different goods.

Since there could be goods bought with cash, relying merely on such records, the

researcher may not be able to recover the consumer’s precise breakdown of monthly
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expenditure on each good.

(2) There could be situations where some alternative xt is recorded as the choice

from Bt but, in testing for rationality or estimating the preference, the researcher

may wish to accommodate the possibility that choices were observed with error;

this could be accomplished by defining a neighborhood At around xt (in some sense

appropriate to the specific context) and then checking if O is coarsely rationalizable.

(3) In experimental settings, it is common to find subjects whose choice behavior are

not exactly consistent with rationality. Since the choices xt are typically observed

perfectly, the rationality violations are not due to observational errors. Nonetheless,

one could still use the size of the neighborhood At around xt (suitably measured)

as a way of comparing the rationality of different experimental subjects; those who

require larger Ats to rationalize their behavior can be deemed less rational.

In Section 2 of this paper we formulate a condition called the never-covered

property (NCP) which is necessary and sufficient for a dataset O = {(At, Bt)}t∈T to

admit a coarse rationalization (i.e., rationalization according to the fourth concept)

by a continuous and strictly increasing utility function.1 This result could be thought

of as a generalization of Afriat’s Theorem, which characterizes rationalizability

by a continuous and strictly increasing utility function in the case where At is a

singleton.2 It is well-known that in Afriat’s Theorem, rationalization is characterized

by the generalized axiom of revealed preference (GARP); this concept coincides

with the never-covered property when Ats are singleton sets. It is well-known that

GARP can be easily checked; we show that there is a computationally efficient way

of checking NCP, which facilitates the use of the concept in empirical applications.

Our concept of coarse rationalization pertains to situations in which a

consumer’s choices are not perfectly observed. A related and natural question

is how to test the rationalizability of a consumer’s choices when the budget set is

not precisely known, perhaps because prices are imperfectly observed. In this case

1 By this we mean that O has a coarse rationalization by a preference that can be represented
by such a utility function.

2 In this case, the second and fourth concepts of rationalization coincide.
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a dataset has the form O∗ = {(xt, {Bt,s}s∈Gt)}t∈T where for each observation t ∈ T ,

the bundle xt is the observed choice made by the consumer, while the true budget

set from which xt is chosen is only known to be a set in the collection {Bt,s}s∈Gt .

We could then ask whether O∗ has a dual coarse rationalization in the sense that

there is a selection st ∈ Gt, for every observation t ∈ T , and a preference such that

xt is optimal in Bt,st for all t ∈ T .

In Section 3, we show that when the budget sets Bt,s are classical budget sets

(so Bt,s = {x ∈ Rn
+ : pt,s ·x ≤ 1}, for some vector of strictly positive prices pt,s), then

the dual coarse rationalizability of O∗ is equivalent to the coarse rationalizability

of some dataset O∗∗ = {(At, Bt)}t∈T (which can be straightforwardly constructed

from O∗). Therefore, the characterization result and the efficient algorithm that

we developed in Section 2 can be applied to ascertain if O∗ admits a dual coarse

rationalization by a continuous and strictly increasing utility function.

Section 4 applies our results to the computation of rationality indices. We

assume that At is a singleton and that Bt is a classical budget set, so the dataset

has the form D = {(xt, L(pt))}t∈T , where xt ∈ Rn
+ is the observed choice from the

budget set L(pt) = {x ∈ Rn
+ : pt · x ≤ 1}, where pt is a vector of strictly positive

prices. Afriat’s Theorem tells us that GARP is a necessary and sufficient condition

for D to be rationalized by a continuous and strictly increasing utility function.

However, in most empirical applications, it is common for subjects to fail GARP.

Various indices have been proposed to measure the severity of a subject’s departure

from rationality and we focus on two such indices.

One index, which we call the perturbation index measures the seriousness of

rationality violations by measuring the extent to which the observed bundles xt have

to be perturbed for the dataset to be rationalizable (while keeping the budget set at

observation t fixed at L(pt)). Such an approach is intuitive and very similar to the

one adopted by Varian (1985) to measure deviations from cost-minimizing factor

demand in a production model (see Appendix for a fuller discussion). Another

index, the price misperception index was proposed by de Clippel and Rozen (2023)

and measures the extent to which the price vectors pt have to be altered (which can
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be interpreted as misperception by the consumer) in order to restore rationality.

Our main results enable both indices to be calculated with ease. We also provide

an illustration of the performance of our algorithm by computing the perturbation

indices of subjects in a portfolio choice experiment carried out by Choi et al. (2007).

2 Coarse Rationalizability
In this section, we formulate the notion of coarse rationalization and develop a

necessary and sufficient condition — called the never-covered property — under

which a dataset admits such a rationalization.

2.1 Basic Concepts

Let the consumption space be Rn
+. A consumer’s preference % is a binary relation

on Rn
+ that is complete and transitive. We use � to denote the asymmetric part of

%, and refer to it as a strict preference.3 A preference % is continuous if, whenever

x � y, there are open neighborhoods Nx and Ny of x and y respectively, such that

for all x′ ∈ Nx and y′ ∈ Ny, x′ � y′. It is well-known that any continuous preference

on Rn
+ admits a continuous utility representation U : Rn

+ → R, i.e., U(x) ≥ U(y)

if and only if x % y (see Debreu (1954)). A preference % is locally nonsatiated if,

for every x ∈ Rn
+ and every open neighborhood Nx of x, there is x′ ∈ Nx such that

x′ � x. Local nonsatiation holds if % is increasing; by this we mean that x % y

if x ≥ y and x � y if x � y.4 The preference % is strictly increasing if x � y

whenever x > y. Clearly, if % admits a utility representation U : Rn
+ → R, then

U will be an increasing (strictly increasing) function if % is increasing (strictly

increasing).5 We refer to U as regular if it is continuous and strictly increasing.

3 A binary relation R on X is a nonempty subset of X ×X. We write xRy to mean that
(x, y) ∈ R. The binary relation R is reflexive if for all x ∈ X, xRx, transitive if for all x, y, z ∈ X,
xRy and yRz imply xRz, and complete if for all x, y ∈ X, either xRy or yRx holds. The
asymmetric part of R is the binary relation P on X such that xPy if xRy but not yRx.

4 For any two n-dimensional vectors x and y, x ≥ y means that for each i = 1, ..., n, xi ≥ yi,
x > y means that x ≥ y and x 6= y, and x� y means that for each i = 1, ..., n, xi > yi.

5 To be precise, we refer to a function g : Rn
+ → R as increasing if for all x, y ∈ Rn

+, x ≥ y
implies g(x) ≥ g(y) and x� y implies g(x) > g(y). We refer to g as being strictly increasing if,
for all x, y ∈ Rn

+, x > y implies g(x) > g(y).
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For x ∈ Rn
+ and B ⊆ Rn

+, we write x % B if x % y for all y ∈ B and x � B if

x � y for all y ∈ B. We say that x is %-optimal in B if x ∈ B and x % y for all

y ∈ B; the set of %-optimal elements in B is denoted by max(B; %). Obviously,

if % admits a utility function U , then for all x ∈ max(B; %) and y ∈ B, we have

U(x) ≥ U(y).

Suppose a researcher has collected a finite set of observations O =

{(At, Bt)}t∈T (indexed by t), where At and Bt are nonempty subsets of Rn
+ and

At ⊆ Bt. We interpret Bt as the budget set from which the consumer chooses at

observation t and At as the subset of Bt from which the choice was made. Following

Forges and Minelli (2009), we assume that, for each t,

Bt = {x ∈ Rn
+ | gt(x) ≤ 0}

where gt : Rn
+ → R is a continuous and increasing function. Clearly, this formulation

covers the case where Bt is a classical linear budget set; in this case, there is a price

vector pt � 0 prevailing at observation t, such that Bt consists of those bundles

that cost less than the agent’s wealth (normalized at 1), i.e., Bt = L(pt) where, for

any p� 0,6

L(p) = {x ∈ Rn
+ | p · x ≤ 1}. (1)

In this case, gt(x) = pt ·x− 1, which is a continuous and strictly increasing function

of x.

The following rationalization concept on O is the focus of our paper.

Definition 1. O = {(At, Bt)}t∈T has a coarse rationalization by the preference %

on Rn
+ if for all t ∈ T ,

max(Bt; %) ∩ At 6= ∅.

When we refer to O as being coarsely rationalized by a utility function U ,

we mean that it is being rationalized by the preference U induces. When At is a

singleton for all t, a coarse rationalization by a preference % would simply require

6 It is always without loss of generality to normalize the agent’s wealth to 1: for any price
vector pt and wealth It > 0 with which the associated budget set is Bt = {x ∈ Rn

+ | pt · x ≤ It},
we can consider an alternative price vector p̂t = 1

It p
t such that Bt = L(p̂t).
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the unique element in At to be %-optimal; in this case, we shall simply refer to a

coarse rationalization as a rationalization.

2.2 The Never-Covered Property

When does a dataset O = {(At, Bt)}t∈T admit a coarse rationalization? As stated,

our question has a trivial answer, since any dataset can be coarsely rationalized

by a preference where all bundles are deemed to be indifferent. However, as we

shall see, once we require the preference to be locally nonsatiated, then it is no

longer the case that every dataset is coarsely rationalizable. Our main result is

a generalization of the well-known theorem of Afriat (1967), which characterizes

those datasets which are rationalizable by a locally nonsatiated preference, in the

special case where At is a singleton.

To motivate our characterization of coarse rationalizability, we first suppose

that O = {(At, Bt)}t∈T has a coarse rationalization by a locally nonsatiated

preference %. By definition, there is x ∈ At with x % Bt. Since % is locally

nonsatiated, x /∈
◦
Bt.7 Thus, At cannot be covered by (in other words, contained in)

◦
Bt.

This argument could be generalized to more than one observation. For any

nonempty T ′ ⊆ T , let

A(T ′) :=
⋃
t∈T ′

At and B(T ′) :=
⋃
t∈T ′

Bt.

Notice that if x̂ satisfies x̂ % Bt for all t ∈ T ′ then x̂ /∈
◦
B(T ′). Such an x̂ ∈

A(T ′) indeed exists: for each t ∈ T ′, pick xt ∈ At such that xt % Bt and let

x̂ ∈ max({xt}t∈T ′ ;%) ⊆ A(T ′). Thus, A(T ′) cannot be covered by
◦
B(T ′). Let t̂ be

an observation at which x̂ ∈ At̂.

We are now ready to introduce the procedure that we call the iterated exclusion

of dominated observations. Given a nonempty T ′ ⊆ T , let Φ0(T ′) := ∅, and let

Φ1(T ′) consist of t such that At is covered by
◦
B(T ′), i.e.,

Φ1(T ′) :=
{
t ∈ T ′ : At ⊆

◦
B(T ′)

}
.

7 For any set K, we write
◦
K to denote its interior.
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Since t̂ /∈ Φ1(T ′), we have Φ1(T ′) 6= T ′. Let

Φ2(T ′) :=
{
t ∈ T ′ : At ⊆

◦
B(T ′)

⋃
B(Φ1(T ′))

}
.

Obviously, Φ1(T ′) ⊆ Φ2(T ′). Since x̂ �
◦
B(T ′), we obtain x̂ � At for each t ∈ Φ1(T ′);

since At ∩ max(Bt;%) 6= ∅, we know that x̂ � Bt for each t ∈ Φ1(T ′). Thus,

x̂ � B(Φ1(T ′)). We conclude that A(T ′) (which contains x̂) cannot be covered

by
◦
B(T ′)⋃B(Φ1(T ′)) and so t̂ /∈ Φ2(T ′). We may repeat this argument for

m = 2, 3, . . . , where

Φm+1(T ′) :=
{
t ∈ T ′ : At ⊆

◦
B(T ′)

⋃
B(Φm(T ′))

}
.

Since Φm(T ′) is an increasing sequence in m (in the set inclusion sense) and

T ′ is finite, the procedure stops at some m∗ when Φm∗(T ′) = Φm∗+1(T ′). Let

Φ(T ′) := Φm∗(T ′); we refer to Φ(T ′) as the set of revealed dominated observations

(or simply dominated observations) in T ′. Since
◦
B(T ′)⋃B(Φ(T ′)) cannot contain

x̂, we obtain t̂ /∈ Φ(T ′). Thus, Φ(T ′) is a strict subset of T ′.

Definition 2. O = {(At, Bt)}t∈T satisfies the never-covered property (NCP) if for

every nonempty T ′ ⊆ T , Φ(T ′) 6= T ′.

We have shown that NCP is a necessary condition for O to be coarsely

rationalizable. Theorem 1 below shows that it is also sufficient. Indeed, whenever

O satisfies NCP then it can be coarsely rationalized by a continuous and increasing

utility function.

Theorem 1. The following statements on O = {(At, Bt)}t∈T are equivalent:

(1) O can be coarsely rationalized by a locally nonsatiated preference.

(2) O satisfies NCP.

(3) O can be coarsely rationalized by a continuous and increasing utility function.

Our proof of Theorem 1 makes use of known results in the case where At is

a singleton. We refer to a dataset with this property as a standard dataset and

write it as D = {(xt, Bt)}t∈T . It is well-known that D is rationalizable by a locally

nonsatiated preference % (in the sense that xt % Bt for all t ∈ T ) if and only if it

obeys the generalized axiom of revealed preference (GARP). To understand this
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property, let Y = {xt}t∈T . For xt and xt
′ in Y , we say that xt is revealed preferred

to xt′ and denote it by xtRxt′ if xt′ ∈ Bt, and we say that xt is revealed strictly

preferred to xt′ and denote it by xt P xt′ if xt′ ∈
◦
Bt. GARP requires that there does

not exist xt1 , xt2 . . . , xtn in Y such that

xt1 Rxt2 R · · ·Rxtn and xtn P xt1 . (2)
It is straightforward to check that if D is rationalizable by a locally nonsatiated

preference then it must obey GARP and, in fact, the converse is also true (see Forges

and Minelli (2009) and Nishimura, Ok and Quah (2017)).8 To prove Theorem 1,

it suffices to show that when the coarse dataset O = {(At, Bt)}t∈T satisfies NCP,

then we can find xt ∈ At such that D = {(xt, Bt)}t∈T satisfies GARP. The details

of how this is done are found in the Appendix.

In the case where Bt are linear budget sets (see (1)) with pt � 0, we can

sharpen Theorem 1. As usual, we can find xt ∈ At such that D = {(xt, Bt)}t∈T
satisfies GARP. The eponymous theorem of Afriat (1967) is then applicable and

guarantees that D can be rationalized by a utility function that is regular (in the

sense of being continuous and strictly increasing) and concave.

Theorem 2. The following statements on O = {(At, L(pt))}t∈T are equivalent:

(1) O can be coarsely rationalized by a locally nonsatiated preference.

(2) O satisfies NCP.

(3) O can be coarsely rationalized by a strictly increasing, continuous and concave

utility function.

Example 1. The coarse dataset depicted in Figure 1a consists of two observations,

so we may write T = {1, 2}. For T ′ = {1}, we have Φ(T ′) = ∅ since A1 is on the

boundary of B1 and so Φ(T ′) 6= T ′ as required by NCP. Clearly, the same holds

for T ′ = {2}. For T ′ = {1, 2}, notice that x1 ∈ A1 is not contained in
◦
B1 ∪

◦
B2 and

neither is x2 ∈ A2. Thus Φ(T ′) = Φ1(T ′) = ∅ 6= T ′. We conclude that this dataset

satisfies NCP. It follows that there ought to be a selection from A1 and A2 so that

8 Proofs of this result when Bt are linear are found in Afriat (1967) and Varian (1982). The
term generalized axiom of revealed preference follows Varian (1982).
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(b) Indifference curve through x1 and x2

Figure 1: Coarse Rationalization

the resulting dataset obeys GARP; indeed D = {(x1, B1), (x2, B2)} obeys GARP.

Figure 1b depicts the indifference curve passing through x1 and x2 of a preference

that rationalizes the data; notice that this indifference curve is not convex. Indeed

it is quite clear that any locally nonsatiated preference that coarsely rationalizes O

must have both x1 and x2 as optimal bundles in B1 (and in B2) and that such a

preference cannot be convex. This does not contradict Theorem 2 since B2 is not a

linear budget set.

Variations on Coarse Rationalization. Nishimura, Ok and Quah (2017) extend

Afriat’s Theorem by characterizing D = {(xt, Bt)}t∈T that can be rationalized by a

utility function that is continuous and increasing with respect to a given preorder

(with the product order as a special case). For example, when an agent is choosing

among bundles of contingent consumption, with states having commonly known

probabilities, it would be natural to require a rationalizing utility function to be

increasing with respect to first order stochastic dominance; there is a suitably

modified version of GARP that could test if D admits such a rationalization.

Theorem 1 can be similarly extended to characterize, via suitably modified versions

of NCP, coarse rationalizability with respect to the types of utility families studied

in Nishimura, Ok and Quah (2017). For details, see Hu et al. (2022).
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Partial Congruence Axiom. Fishburn (1976) studies when O = {(At, Bt)}t∈T
can be rationalized by a preference % in the following sense: for all t ∈ T , there is

xt ∈ At with xt % Bt and xt � Bt \ At. It shows that this holds if and only if O

satisfies the partial congruence axiom, which requires

A(T ′) 6⊆
⋃
t∈T ′

(Bt \ At) for all nonempty T ′ ⊆ T. (3)

Notice that Fishburn’s rationalization concept is not comparable with coarse

rationalization as characterized by Theorem 1. It is weaker in the sense that % is

not required to be locally nonsatiated or strictly increasing, but it is stronger in the

sense that it requires elements in Bt \ At to be non-optimal. Correspondingly, the

partial congruence axiom is neither stronger nor weaker than NCP. For example, a

single observation (A1, B1) with A1 in the interior of B1 violates NCP but satisfies

the partial congruence axiom. On the other hand, the dataset depicted in Figure 1a

violates (3) (and hence the partial congruence axiom) for T ′ = T . This is consistent

with the fact that x1 and x2 are in both B1 and B2 and thus there cannot be a

preference % for which x1 is optimal in B1 but not x2 and x2 is optimal in B2 but

not x1.9

Coarse Rationalization as an Alternative to Product Aggregation. In

studies of consumer demand, a researcher would often not have information on the

demand for every relevant good. One way of addressing this issue is to perform

an aggregation procedure across goods, even though this approach is strictly valid

only under stringent conditions on the utility function and/or the pattern of prices

changes. To be specific, suppose that at observation t, the information available

consists of the prices of all goods pt ∈ Rn
++, the demand for the first m− 1 goods,

and the total expenditure on the remaining goods (which we denote by ctm,n). In

other words, the specific demands for goods m, m + 1, . . . , n are not observed.

To get round this problem, the researcher could construct a price index for those

9 Fishburn’s result allows T to be an infinite set and At and Bt to be nonempty sets in an
arbitrary space of alternatives. We follow Afriat’s Theorem by requiring T to be finite and At

and Bt to be in a Euclidean space because we want to impose topological conditions on the
rationalization. In our setting, rationalization is by a continuous utility function; this guarantees
important features such as the existence of optima on compact sets.
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goods, p̄tm, which would be a function of their prices (ptm, ptm+1, . . . , p
t
n), with the

corresponding demand for the composite good being x̄tm = ctm,n/p̄
t
m. In this way,

the researcher creates a dataset of the standard form, with observation t consisting

of the price vector (pt1, pt2, . . . , p̄tm) and the demand (xt1, xt2, . . . , x̄tm) for the m goods.

Coarse rationalization offers an alternative approach to tackle this problem.

At observation t, since xti for i = 1, . . . ,m− 1 and ctm,n are observed, the bundle

chosen by the consumer must lie in the set

At =
{
x ∈ Rn

+ : xi = xti for i = 1, . . . ,m− 1 and ∑n
i=m pixi = ctm,n

}
.

The corresponding coarse dataset is O = {(At, Bt)}t∈T , where

Bt =
{
x ∈ Rn

+ : pt · x ≤
m−1∑
i=1

ptix
t
i + ctm,n

}
.

Theorem 1 can be used to ascertain the rationalizability of this coarse dataset.

As an illustration, suppose that O consists of two observations where

p1 = (2, 2.5, 3.5), x1
1 = 1.5, c1

2,3 = 9;

p2 = (4, 3, 3), x2
1 = 3, c2

2,3 = 4.5.
This dataset is coarsely rationalizable. Indeed, x̃ = (1.5, 9/2.5, 0) is in A1 but

p2 · x̃ = 16.8 > 16.5, so it is not in B2. This guarantees that O satisfies NCP. On

the other hand, suppose we aggregate goods 2 and 3 into a composite commodity,

with the price of the composite being 3 (the average price of its constituent goods)

at both observations 1 and 2. Then the demand for the composite good at these

observations are x̄1
2 = 9/3 = 3 and x̄2

2 = 4.5/3 = 1.5. The corresponding two-good

dataset has
p1 = (2, 3), x1 = (1.5, 3), I1 = 12;

p2 = (4, 3), x2 = (3, 1.5), I2 = 16.5.

It is straightforward to check that this dataset violates GARP.

2.3 Algorithm

Given a subset T ′, it is usually straightforward to check whether Φ(T ′) = T ′. Thus,

Theorem 1 provides a way of checking if a dataset is coarsely rationalizable: we

need to check whether Φ(T ′) 6= T ′ for all T ′ ⊆ T . However, this is not promising as

an empirical strategy, since for a dataset with m observations, we would have to go
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through all 2m− 1 nonempty subsets of T to guarantee NCP. In this subsection, we

provide a simple algorithm to check whether NCP holds. This algorithm requires

us to check whether Φ(T ′) 6= T ′ for at most m subsets of T . Thus, NCP can be

checked in an efficient manner.

Following the convention in the computer science literature, we use k′ to

denote the updated value of a variable k.

Algorithm I. Set T 0 := T . Set k := 1.

Start. Derive T k := Φ(T k−1). Consider the following mutually exclusive cases:

(a). T k = ∅: Stop and output NCP holds.

(b). ∅ 6= T k ( T k−1: Go to Start with k′ = k + 1.

(c). ∅ 6= T k = T k−1: Stop and output NCP fails.

Note that Algorithm I is effectively checking whether Φ(T k) = T k for an

endogenous sequence of subsets of T . We emphasize that, for a dataset with m

observations, Algorithm I necessarily terminates within m steps, and we only need

to check at most m subsets of T .

Proposition 1 below provides the justification for Algorithm I.

Proposition 1. O = {(At, Bt)}t∈T satisfies NCP if and only if Algorithm I outputs

“NCP holds.”

3 Dual Coarse Rationalizability
The notion of coarse rationalizability is founded on the imperfect observability of

choice: instead of observing exactly the bundle chosen from a budget set Bt, the

observer could only tell that it is drawn from At ⊆ Bt. But it is also possible for

observations of prices to be imperfect and, in this section, we explain how this leads

to a dual notion of coarse rationalizability.

We consider a dataset of the form

O∗ =
{

(xt, {L(pt,s)}s∈Gt)
}
t∈T

14



where T 6= ∅ is finite and, for every t ∈ T , xt ∈ ∩s∈GtL(pt,s). We interpret xt as the

choice observed to be made by a consumer in observation t and {L(pt,s)}s∈Gt as the

collection of possible budget sets from which the consumer’s choice was made. In

other words, the researcher observes perfectly the bundle chosen by the consumer

but may have imprecise information on the corresponding price vector. We are

interested in identifying those datasets where there is a preference such that, at

each t, the bundle xt is optimal according to that preference for some budget set

among those in {L(pt,s)}s∈Gt . This is stated formally as follows.

Definition 3. O∗ = {(xt, {L(pt,s)}s∈Gt)}t∈T has a dual coarse rationalization by

the preference % on Rn
+ if there exists a selection st ∈ Gt for every t ∈ T such that

for all t ∈ T ,

xt ∈ max
(
L(pt,st); %

)
.

We refer to O∗ as being dual coarsely rationalized by a utility function U if it

is dual coarsely rationalized by the preference induced by U .

We are interested in the non-trivial case in which the preference % that

dual-coarsely rationalizes the dataset O∗ is locally nonsatiated. Therefore, without

loss of generality, we can consider a dataset such that for every t ∈ T and s ∈ Gt,

xt · pt,s = 1: whenever we have xt · pt,s̄ < 1, we can simply remove L(pt,s̄) from the

set of candidate budget sets at observation t, since local nonsatiation implies that

xt cannot be the optimal bundle in L(pt,s̄) in such a case.

To motivate our next result, suppose that O∗ = {(xt, {L(pt,s)}s∈Gt)}t∈T
admits a dual coarse rationalization by a locally nonsatiated preference. This means

that there is a selection L(pt,st) from {L(pt,s)}s∈Gt such that the standard dataset

D = {(xt, L(pt,st))}t∈T can be rationalized by a locally nonsatiated preference. But

Afriat’s Theorem guarantees that D can also be rationalized by a regular utility

function U ; furthermore, with no loss of generality, we can choose U to be bounded

above by ū ∈ R.10 For each p ∈ Rn
++, we can associate it with an indirect utility

10 The boundedness of U can be ensured by taking the monotone and continuous transformation
arctan(·) for U .

15



level, denoted by V (p), such that

V (p) = max
x∈L(p)

U(x).

We further extend V to the whole domain of Rn
+ such that for all p̂ ∈ Rn

+\Rn
++,

V (p̂) = ū+ 1, and define W : Rn
+ → R such that W = −V .

It is straightforward to check that W is locally nonsatiated.11 Furthermore,

for every t ∈ T and p ∈ Rn
++ with xt · p ≤ 1, we have

V (pt,st) = U(xt) ≤ max
x∈L(p)

U(x) = V (p),

where the first equality is by the fact that U rationalizes D, and the inequality

holds since xt ∈ L(p) whenever xt · p ≤ 1. In other words, pt,st is the vector that

maximizes W in {p ∈ Rn
+ : xt · p ≤ 1}.

Therefore, a necessary condition for O∗ to admit a dual coarse rationalization

by a locally nonsatiated preference is the existence of a locally nonsatiated utility

function W that coarsely rationalizes the dataset

O∗∗ :=
{
{pt,s}s∈Gt , {p ∈ Rn

+ : xt · p ≤ 1}
}
t∈T

;

less obviously, we show that this property on O∗∗ is also sufficient for the dual

coarse rationalization of O∗. This characterization gives us a test of the dual

coarse rationalizability of O∗ since we know (from Theorem 2) that the coarse

rationalizability of O∗∗ can be checked through the never-covered property. The

following theorem states these claims formally.

Theorem 3. The following statements on O∗ = {(xt, {L(pt,s)}s∈Gt)}t∈T are

equivalent:

(1) O∗ can be dual coarsely rationalized by a locally nonsatiated preference.

(2) O∗∗ satisfies NCP.

(3) O∗ can be dual coarsely rationalized by a strictly increasing, continuous and

concave utility function.

Example 2. The dataset O∗ depicted in Figure 2a contains two observations:

11It suffices to show that for all p, p̂ ∈ Rn
+, if p� p̂, then W (p) > W (p̂). Indeed, p� p̂ implies

either (i) p̂ ∈ Rn
+\Rn

++ and p ∈ Rn
++, indicating W (p) ≥ −ū > −ū− 1 = W (p̂), or (ii) p̂, p ∈ Rn

++,
which further implies W (p) > W (p̂) as a result of the monotonicity of U .
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(x1, {B1,1, B1,2}) and (x2, {B2,1}), where

x1 = (1, 4), B1,1 = L(p) = L(1
6 ,

5
24), B1,2 = L(q) = L(1

9 ,
2
9); and

x2 = (4, 1), B2,1 = L(r) = L(2
9 ,

1
9).

Note that no matter whether B1,1 or B1,2 is the true budget set, we can always

reveal that x1 is strictly better than x2 and vice versa, indicating that O∗ is not

dual-coarsely rationalizable by a locally non-satiated preference. The dual dataset

O∗∗ of O∗ is depicted in Figure 2b. Since r is in the interior of {p̃ ∈ Rn
+ : x1 · p̃ ≤ 1}

and both p and q are in that of {p̃ ∈ Rn
+ : x2 · p̃ ≤ 1}, we conclude that NCP fails

for O∗∗.

x1

x2

B2,1

B1,1 B1,2

0

x1

x2

(a) O∗ = {(x1, {B1,s}2s=1), (x2, {B2,1})}

p̃1

p̃2

x1 · p̃ ≤ 1

x2 · p̃ ≤ 1

0

pq

r

(b) The dual dataset O∗∗ of O∗

x1

x2

B̂2,1

B̂1,1

B̂1,2

0

x1

x2

(c) Ô∗ = {(x1, {B̂1,s}2s=1), (x2, {B̂2,1})}

p̃1

p̃2

x1 · p̃ ≤ 1

x2 · p̃ ≤ 1

0

p̂
q

r

(d) The dual dataset Ô∗∗ of Ô∗

Figure 2: Dual Coarse Rationalization

Next, consider the dataset Ô∗ depicted in Figure 2c with two observations:
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(x1, {B̂1,s}2
s=1) and (x2, {B̂2,1}), where

B̂1,1 = L(p̂) = L(1
3 ,

1
6), B̂1,2 = L(q) = L(1

9 ,
2
9); and

B̂2,1 = L(r) = L(2
9 ,

1
9).

That is, Ô∗ is the same as O∗ except that we replace p in B1,1 with p̂. By selecting

B̂1,1, one can show that x2 is revealed preferred to x1 while the inverse is not

true. Thus, the dataset Ô∗ is dual coarsely rationalizable by a locally nonsatiated

preference. In Figure 2d, the dual dataset Ô∗∗ of Ô∗ satisfies NCP as p̂ is clearly

not covered.

4 Rationality Indices
For a standard dataset of the form D = {(xt, L(pt))}t∈T , where xt ∈ Rn

+ is the

observed choice from the budget set L(pt) = {x ∈ Rn
+ : pt ·x ≤ 1}, Afriat’s Theorem

tells us that GARP is a necessary and sufficient condition for D to be rationalized

by a regular utility function. However, in most empirical applications, it is common

for subjects to fail GARP. Various indices have been proposed to measure the

severity of a subject’s departure from rationality, with the most commonly used

measure being the critical cost efficiency index (CCEI) due to Afriat (1973).12 The

CCEI is defined as

e∗ := sup{e : D is rationalized at efficiency level e by a regular utility function},

where a utility function U rationalizes D at cost efficiency level e ∈ (0, 1] if

U(xt) ≥ U(x) for x ∈ Rn
+ that satisfies pt · x ≤ e. Obviously, if D is rationalized

by a regular utility function, then its CCEI is 1. One reason for the popularity of

this index is its simplicity: it is easy to calculate because rationalizability at any

efficiency level e can be ascertained by a modified version of GARP.

In this section, we discuss two alternative rationality indices that, following

from our results in the earlier sections, are also easy to compute and which also

constitute natural ways of measuring departures from rationality.

12 Papers that use this concept or a related version due to Varian (1990) include Harbaugh,
Krause and Berry (2001), Andreoni and Miller (2002), Choi et al. (2007), Choi et al. (2014),
Fisman, Kariv and Markovits (2007), Carvalho, Meier and Wang (2016), and Halevy, Persitz and
Zrill (2018).
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4.1 Perturbation Index

A natural way of measuring the severity of departures from rationality is to measure

the extent to which the chosen bundles xt have to be perturbed before the perturbed

dataset becomes rationalizable. Such a measure was used by Varian (1985) in his

analysis of production data, where the chosen bundles are bundles of factor demand.

In that context, it is natural to assume that output levels at each bundle of factors

are observable, which considerably simplifies the calculation of such an index,

whereas the same exercise in the context of consumption is more complicated,

essentially because it is not reasonable to assume that utility levels are observable

(see Appendix for more details). Nonetheless, our extension of Afriat’s Theorem

(with Algorithm I for checking NCP) makes it feasible to implement such a rationality

measure.

To be precise, suppose the researcher records the consumer choosing xt from

L(pt); to accommodate the possibility that xt was observed with error, the researcher

could allow the true consumption bundle to be in the set

At,κ :=
{
x ∈ L(pt) : pt · x = 1 and |ptixi − ptixti| ≤ κ for all i

}
, (4)

where κ ∈ [0, 1]. In other words, the true expenditure on good i is allowed to

deviate from ptix
t
i but not by more than the fraction κ of income. In experimental

settings, where there is no question that xt is indeed the observed choice, we could

interpret κ as a measure of the extent to which we allow the subject to make

mistakes. Whatever the interpretation, we can test, via NCP, whether there is a

regular utility function U : Rn
+ → R that coarsely rationalizes

Oκ =
{(
At,κ, L(pt)

)}
t∈T

.

If so, then there are bundles x̃t, such that |ptix̃ti − ptixti| ≤ κ for all i and t, and

D̃ = {(x̃t, L(pt)}t∈T is rationalized by U . This is illustrated in Figure 3, where

the actual dataset {(x1, L1), (x2, L2)} is not rationalizable, but {(A1, L1), (A2, L2)}

(as depicted) is coarsely rationalizable. Indeed, so long as we choose y ∈ A1 \ L2,

then D = {(y, L1), (x2, L2)} obeys GARP and is rationalizable by a regular utility

function.
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x1

x2

L2

L1

0

x1

x2

A1

A2

Figure 3: {(x1, L1), (x2, L2)} is not rationalizable, but {(A1, L1), (A2, L2)} (as
depicted) is coarsely rationalizable.

Since we can determine the coarse rationalizability of Oκ, we can calculate

the critical perturbation index (or perturbation index, for short)

κ∗ := inf{κ : Oκ is coarsely rationalizable by a regular utility function}

by binary interpolation.13 The index gives the smallest perturbation needed to

guarantee that the coarsened dataset Oκ admits a coarse rationalization by a

regular utility function. Obviously, if D is rationalizable to begin with, then its

perturbation index equals zero.14

As we indicated in Section 2.2, there are modified versions of NCP that could

test if a coarse dataset such as Oκ admits a coarse rationalization by a utility

function belonging to certain families. Thus perturbation indices with respect to

such utility families could also be calculated.

4.1.1 Computing the Perturbation Index

By Theorems 1 and 2, Oκ can be coarsely rationalized by a regular utility function

if and only if NCP holds. The latter could be ascertained using Algorithm I, which

requires checking whether T ′ = Φ(T ′) for a nested sequence of observations T ′ ⊆ T .

13 If κ = 1, then At = L(pt) \
◦
L(pt) for all t ∈ T and O1 is coarsely rationalizable. Thus the

perturbation index is always well-defined.
14 There are other implementable variations on the perturbation index. These are discussed in

the Appendix. The Appendix also discusses an alternative way of computing the perturbation
index via the Afriat inequalities.
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For a given T ′, the check of whether T ′ = Φ(T ′) requires calculating an increasing

sequence of subsets Φ1(T ′), Φ2(T ′), etc, that terminates at Φ(T ′).

Implementing this procedure is straightforward because checking if an

observation belongs to Φm(T ′) (for a given m) reduces to checking if there is

a solution to a system of linear inequalities. Recall that

Φ1(T ′) =
{
t ∈ T ′ : At ⊆

⋃
t∈T ′

◦
L(pt)

}
.

We calculate Φ1(T ′) by checking whether each As (for s ∈ T ′) is contained in⋃
t∈T ′

◦
L(pt) and this in turn can be verified by checking if there is a solution z ∈ Rn

to the following system of linear inequalities:

z ≥ 0

ps · z = ps · xs

|psizi − psixsi | ≤ κ for each good i

pt · z ≥ 1 for all t ∈ T ′. (5)

Clearly, As ⊆ ⋃ t∈T ′
◦
L(pt) if and only if there is no solution to this system of linear

inequalities.

Having calculated Φ1(T ′) we can then calculate Φ2(T ′) (which contains Φ1(T ′)),

where

Φ2(T ′) :=
{
t ∈ T ′ : At ⊆

(⋃
t∈T ′

◦
L(pt)

) ⋃ (⋃
t∈Φ1(T ′) L(pt)

)}
.

This can be done using a similar inequality system, with (5) replaced by

pt · z ≥ 1 for all t ∈ T ′ and pt · z > 1 for all t ∈ Φ1(T ′).

We continue in this manner until Φm(T ′) = Φm+1(T ′) at which point we can check

whether Φ(T ′) := Φm(T ′) is a strict subset of T ′.

Checking whether Oκ satisfies NCP can be accomplished in polynomial time.

This is because, for each m = 1, 2, . . . , calculating Φm(T ′) requires us to solve

at most |T ′| + 1 − m systems of linear inequalities. Thus establishing whether

T ′ = Φ(T ′) involves solving at most |T ′|(|T ′|+1)/2 linear problems and establishing

if Oκ satisfies NCP involves solving no more than
|T |(|T |+ 1)

2 + (|T | − 1)|T |
2 + (|T | − 2)(|T | − 1)

2 + . . . = |T |(|T |+ 1)(|T |+ 2)
6
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linear problems.15

4.1.2 Empirical Illustration

We study the data collected from the portfolio choice experiment in Choi et al.

(2007). The experiment was performed on 93 undergraduate subjects at UC Berkeley.

Every subject was asked to make choices in 50 decision problems. In each problem,

the subject divided her budget between two Arrow-Debreu securities, with each

security paying 1 token (equivalent to US$0.50) if the corresponding state was

realized, and 0 otherwise. We focus on the symmetric treatment where each state

of the world occurred with a commonly known probability of 1/2. This treatment

was applied to 47 subjects (subject ID 201-219 and 301-328). The prices of the

Arrow-Debreu securities were chosen at random (over some compact interval) and

varied across problems and subjects, with income normalized at 1 throughout.

For each state s ∈ {1, 2}, let xs denote the demand for the security that pays

off in that state and let ps denote its price. For each subject and in each decision

problem t ∈ T = {1, . . . , 50}, the state prices pt = (pt1, pt2) were randomly chosen

and the subject faced a budget set

L(pt) = {x ∈ R2
+ : pt1x1 + pt2x2 ≤ 1}.

Thus the set of observations collected from a subject can be written as D =

{(xt, L(pt))}50
t=1, where xt is the subject’s choice in L(pt).

In calculating the perturbation index, we apply Algorithm I on Oκ for different

values of κ; the index can then be obtained by binary interpolation. As an

illustration, Table 1 shows the steps involved when Algorithm I is applied to Subject

201’s data. The algorithm involves calculating the set of revealed dominated

observations T 1 := Φ(T ) and then checking whether T 1 = T ; if not, it calculates

T 2 := Φ(T 1) and checks whether T 2 = T 1; and so forth until either T k = T k−1 (in

which case Oκ fails to satisfy NCP) or T k = ∅ (in which case Oκ satisfies NCP).

T 1, T 2, T 3 . . . form a nested sequence of sets; the number of elements in each set is

15 For algorithms to check the solvability of a system of linear inequalities see Karmarkar
(1984).
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indicated in Table 1. We see that when κ = 0.2, Oκ fails NCP because T 11 = T 10

and is nonempty while Oκ satisfies NCP when κ = 0.3, because T 16 is empty.

Thus κ∗ lies between 0.2 and 0.3. Indeed, by binary interpolation, we find that

κ∗ = 0.2151.

κ = 0.2 κ = 0.3
|T 1| 48 47
|T 2| 47 46
|T 3| 45 44
|T 4| 41 39
|T 5| 39 36
|T 6| 37 31
|T 7| 33 25
|T 8| 27 20
|T 9| 21 18
|T 10| 18 16
|T 11| 18 13
|T 12| 8
|T 13| 4
|T 14| 2
|T 15| 1
|T 16| 0

Table 1: Testing NCP on Subject 201.

Similar calculations are carried out for the other 46 subjects. We find that 12

subjects pass the test exactly and so have an index of 0. The median value of the

index is 0.0778, with 0.1504 and 0 being the 75th and 25th percentiles respectively.

The cumulative distribution of the perturbation index (κ∗) is depicted in Figure 4.

For each r ∈ [0, 1], we plot the percentage of subjects whose index are less than or

equal to r.

How does the index compare with Afriat’s CCEI? Since the CCEI is increasing

with rationality while the opposite holds for the perturbation index, the two indices

are naturally negatively correlated. We find that the rank correlation coefficient is
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Figure 4: Distribution of κ∗.

−0.919 while the linear correlation coefficient is −0.795 (using the CCEI calculated

for these subjects in Polisson, Quah and Renou (2020)). So the two indices are

correlated, but not perfectly. In empirical work where conclusions are drawn based

on the CCEI, one could use the perturbation index as a way of checking the

robustness of those conclusions. For example, there is evidence that rationality, as

measured by the CCEI, can be helpful in explaining broader economic outcomes,

including family wealth (see Choi et al. (2014)); it is interesting to check whether

conclusions such as these are sensitive to the rationality index used.

4.2 FOC-Departure Index

In this section, we demonstrate how our results can be applied to compute the first

order condition (FOC)-departure index introduced and axiomatized by de Clippel

and Rozen (2023). In contrast to the perturbation index, where the bundles are

perturbed in order to restore rationality, this index could be thought of as measuring

a dataset’s closeness to rationality by measuring the extent to which prices have to

be perturbed to recover rationality.

Consider an observation (xt, L(pt)) where the consumer chooses bundle xt

under price vector pt. If xt is an interior bundle in Rn
+ and the consumer is

maximizing a regular and quasi-concave utility function U that is differentiable at
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xt with g = ∂u(xt) being the corresponding gradient, then the first order condition

requires p = g. By contrast, if the consumer’s choice xt is not the optimal one in

L(pt), then p 6= g. Motivated by this observation, de Clippel and Rozen (2023)

propose to use the function

δ(p, g) = max
i,j∈{1,...,n}:i 6=j

{
pi/pj
gi/gj

,
gi/gj
pi/pj

.

}
(6)

as a measure of the consumer’s departure from rationality. Note that δ is always

greater than or equal to 1: δ = 1 means that there is no deviation from rationality,

while a larger value of δ corresponds to a larger deviation from rationality.

A notion of approximate rationalizability can then be developed based on δ.

A dataset D = {(xt, L(pt))}t∈T is said to be ε-rationalizable if there is a regular and

quasi-concave utility function U such that for every t ∈ T , there is a vector g in

the quasi-gradient set ∂u(xt)16 such that

δ(pt, g) ≤ 1
1− ε. (7)

Afriat’s Theorem tells us that D can be rationalized by a regular and concave

utility function if and only if it satisfies GARP; in this case, D is 0-rationalizable.

When D is not 0-rationalizable, we can enlarge ε until we can find some regular

and quasi-concave U that ε-rationalizes D. The FOC-departure index, FDI(D), is

defined as the infimum of such ε, i.e.,

FDI(D) := inf{ε ∈ [0, 1] : D is ε-rationalizable by a regular and quasi-concave U}.

Following de Clippel and Rozen (2023), we can relate the FOC-departure index

with the price misperception index. For a given dataset D, the price misperception

index of D, denoted by PMI(D), is the infimum over all ε ∈ [0, 1] that satisfies the

16The quasi-gradient set is defined as

∂u(xt) = {g ∈ Rn
++ : ∀y ∈ Rn

+, u(y) ≥ u(xt)⇒ g · y ≥ g · xt}.
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following condition:

∃ regular and quasi-concave U and {p̂t}t∈T ⊆ Rn
++ such that

∀t ∈ T, xt · p̂t = 1,

∀t ∈ T,∀i, j ∈ {1, ..., n} with i 6= j, 1− ε ≤
pti/p

t
j

p̂ti/p̂
t
j

≤ 1
1− ε,

∀y ∈ L(p̂t), U(xt) ≥ U(y).

(8)

We can interpret p̂t as the misperceived price vector of the bundle xt, so that the

consumer is maximizing utility with respect to those misperceived prices rather than

the true prices pt. The price misperception index is the minimum misperception we

must allow the consumer in order for the data to be rationalized by some regular

and quasi-concave utility function.

Proposition 2 of de Clippel and Rozen (2023) shows that PMI(D) = FDI(D)

for all datasets D. This identity is useful because calculating PMI(D) — and hence

FDI(D) — is straightforward given our results. Indeed, for a given ε, checking

whether condition (8) holds is equivalent to checking the dual coarse rationalizability

of the dataset

O∗ε =
{

(xt, {L(p̂t)}p̂t∈Zδ,ε(pt))
}
t∈T

, (9)

where for each t,

Zδ,ε(pt) :=
{
p̂t ∈ Rn

++ : δ(pt, p̂t) ≤ 1
1− ε and xt · p̂t = 1

}
.

By Theorem 3, this is equivalent to the coarse rationalizability of

O∗∗ε =
{

(Zδ,ε(pt), L(xt))
}
t∈T

,

where L(xt) := {p ∈ Rn
+ : xt · p ≤ 1}, which is in turn equivalent to checking that

O∗∗ε obeys NCP.

Using Algorithm I, we know that NCP can be checked in polynomial time.

Indeed, the procedure outlined in Section 4.1.1 applies here, mutatis mutandi. In

particular, suppose that we want to check whether Φ(T ′) = T ′ for a nonempty

subset T ′ ⊆ T and assume that we have obtained Φk(T ′) with Φk(T ′) ( T ′. Then

the set Φk+1(T ′) is given by

Φk+1(T ′) =
{
t ∈ T ′ : Zδ,ε(pt) ⊆

(⋃
t∈T ′

◦
L(xt)

) ⋃ (⋃
t∈Φk(T ′) L(xt)

)}
. (10)
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To check whether some given s ∈ T ′ belongs to Φk+1(T ′), we can check if there is a

solution p ∈ Rn to the following system of inequalities which, crucially, are linear

in p:

p ≥ 0

xs · p = 1

(1− ε)pj ·
psi
psj
≤ pi ≤

pj
1− ε ·

psi
psj

for all goods i 6= j

xt · p ≥ 1 for all t ∈ T ′

xt · p > 1 for all t ∈ Φk(T ′). (11)

Clearly, t ∈ Φk+1(T ′) if and only if there is no solution to this system of linear

inequalities.17

Appendix
Proof of Theorem 1. Since every increasing utility function generates a increas-

ing, thus locally nonsatiated, preference, (3) implies (1). We have already shown in

the main text that (1) implies (2). It remains to show that (2) implies (3). We do

this by first setting out the procedure with which xt can be chosen from At so that

D = {(xt, Bt)}t∈T obeys GARP.

Denote by E(T ′) the set of bundles that are revealed to be dominated through

the procedure of iterated exclusion of dominated observations, i.e.,

E(T ′) :=
◦
B(T ′)

⋃
B (Φ(T ′)) .

Since O satisfies NCP, for any nonempty T ′ ⊆ T , Φ(T ′) is a strict subset of T ′,

which implies that A (T ′) \ E(T ′) 6= ∅.

Let T1 := T and S1 := A(T1) \ E(T1). We proceed by induction. Suppose that

we have constructed Tk and Sk for some k ≥ 1. If Tk 6= ∅, construct Tk+1 and Sk+1:

Tk+1 := Φ(Tk) = {t ∈ Tk : At ⊆ E(Tk)} and Sk+1 := A(Tk+1) \ E(Tk+1).

Since O satisfies NCP, if Tk 6= ∅, then Tk+1 = Φ(Tk) ( Tk and Sk = A(Tk)\E(Tk) 6=

∅. The construction stops when Tk∗ 6= ∅ and Tk∗+1 = ∅ for some k∗.

17See the Appendix for a discussion of alternative methods for calculating PMI/FDI.
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We are now ready to select xt in At for each t ∈ T such that D = {(xt, Bt)}t∈T
obeys GARP. For each 1 ≤ k ≤ k∗, let Vk := Tk \ Tk+1 denote the collection of

observations that are eliminated when constructing Tk+1 from Tk. Clearly, {Vk}k
∗
k=1

is a partition of T . By definition, for each k and each t ∈ Vk = Tk \ Tk+1, we have

At \ E(Tk) 6= ∅ and hence At ∩ Sk = At ∩ (A(Tk) \ E(Tk)) 6= ∅.

For each k and each t ∈ Vk = Tk \ Tk+1, we pick an arbitrary xt ∈ At ∩ Sk.

We claim that D = {(xt, Bt)}t∈T obeys GARP. Let k(t) be the corresponding index

k such that t ∈ Vk. It suffices to show that (1) xtRxt′ implies that k(t) ≤ k(t′); and

(2) xtPxt′ implies that k(t) < k(t′). Suppose that xtRxt′ but k(t) > k(t′). Then

t ∈ Φ(Tk(t′)) due to the construction of {Vk}k
∗
k=1. It follows that At ⊆ E(Tk(t′)) and

Bt ⊆ E(Tk(t′)). Since xtRxt
′ , we have xt′ ∈ Bt ⊆ E(Tk(t′)), which contradicts with

xt
′ ∈ Sk(t′) = A(Tk(t′)) \ E(Tk(t′)). Hence, xtRxt

′ implies k(t) ≤ k(t′). Suppose that

xtPxt
′ but k(t) ≥ k(t′). If k(t) > k(t′), then we have the same contradiction as

argued above. If k(t) = k(t′) = k for some k, then both xt and xt′ belong to Sk.

Since Sk = A(Tk) \ E(Tk) and
◦
B(Tk) ⊆ E(Tk), we have

xt, xt
′ ∈ Sk ⊆ A(Tk) \

◦
B(Tk).

But this is impossible since xtPxt′ implies xt′ ∈
◦
Bt. Hence, xtPxt′ implies k(t) <

k(t′).

By Proposition 3 of Forges and Minelli (2009), there are numbers vt and

λt > 0 such that, for all t, s ∈ T ,

vs ≤ vt + λtgt(xs),

and the utility function

U(x) = min
t∈T
{vt + λtgt(x)} (12)

rationalizes D and hence coarsely rationalizes O. Since gt are continuous, so is U ,

and since gt are increasing, U is also increasing.

Proof of Theorem 2. Given Theorem 1, the only part of this result that still

needs proving is the claim that the utility function that coarsely rationalizes O can

be chosen to be strictly increasing, continuous and concave. But this is clear from

the form of the utility function (12). Indeed, L(pt) = {x ∈ Rn
+ : gt(x) ≤ 0}, where

28



gt(x) = pt · x− 1. Since g is continuous, strictly increasing, and linear, U is strictly

increasing, continuous and concave.

Proof of Proposition 1. “Only if”: If O satisfies NCP, then Φ(T ′) 6= T ′ for

any nonempty T ′ ⊆ T . Thus, Case (c) never occurs when we run Algorithm I on

this dataset. Furthermore, T k is strictly decreasing in k in the set inclusion sense,

and T k∗ = ∅ for some k∗. Therefore, Algorithm I outputs NCP holds.

“If”: We first claim that the operator Φ(·) is monotonically increasing in

the set inclusion sense, i.e., if T ′ ⊆ T ′′ then Φ(T ′) ⊆ Φ(T ′′). Indeed, the iteration

procedure in Section 2.2 that defines Φ(·) satisfies, inductively, Φm(T ′) ⊆ Φm(T ′′)

for each m = 1, 2, . . . , which results in Φ(T ′) ⊆ Φ(T ′′).

Now suppose that Algorithm I outputs NCP holds. We then have a sequence of

subsets of T , {T 0, T 1, . . . , T k
∗}, where T k = Φ(T k−1) ( T k−1 for all k = 1, 2, . . . , k∗

and T k∗ = ∅. For any nonempty T ′ ⊆ T , there exists some k such that T ′ ⊆ T k

and T ′ 6⊆ T k+1. Since Φ(·) is monotonically increasing, Φ(T ′) ⊆ Φ(T k) = T k+1.

Since T ′ 6⊆ T k+1, we have Φ(T ′) 6= T ′. Thus, the dataset satisfies NCP.

Proof of Theorem 3. It suffices to show that if O∗∗ is coarsely rationalizable (by

a locally nonsatiated preference), thenO∗ is dual-coarsely rationalizable (by a locally

nonsatiated preference). To see this, note that if O∗∗ is coarsely rationalizable, then

by Theorem 1, there exists a selected dataset

D∗∗ =
{

(pt,st , {p ∈ Rn
+ : xt · p ≤ 1})

}
t∈T

,

with st ∈ Gt for every t ∈ T , such that it is rationalizable. Define the revealed

preference relations (R∗∗, P ∗∗) among {pt,st}t∈T such that for all t, t̂ ∈ T ,

(1) pt,stR∗∗pt̂,st̂ if and only if xt · pt,st ≥ xt · pt̂,st̂ , and

(2) pt,stP ∗∗pt̂,st̂ if and only if xt · pt,st > xt · pt̂,st̂ .18

By Afriat’s Theorem, the rationalizability of D∗∗ is equivalent to the acyclicity of

(R∗∗, P ∗∗). However, note that pt,stR∗∗pt̂,st̂ is equivalent to 1 ≥ xt · pt̂,st̂ which is

further equivalent to xt̂ · pt̂,st̂ ≥ xt · pt̂,st̂ , and similarly, pt,stP ∗∗pt̂,st̂ is equivalent to

xt̂ · pt̂,st̂ > xt · pt̂,st̂ . It follows from the acyclicity of (R∗∗, P ∗∗) that (R,P ) is also

18See Deb et al. (2023) for a similar revealed preference relation among prices.
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acyclic, where R and P are revealed preference relations defined over {xt}t∈T such

that for all t, t̂ ∈ T , xtRxt̂ if and only if xt · pt,st ≥ xt̂ · pt,st , and xtPxt̂ if and only

if xt · pt,st > xt̂ · pt,st . By Afriat’s Theorem, the dataset D = {xt, L(pt,st)}t∈T is

rationalizable. Therefore, O∗ is dual-coarsely rationalizable.

Perturbation Index and Varian (1985). The idea of relaxing a revealed

preference test to allow for measurement error was also explored by Varian (1985).

That paper uses this idea to test the hypothesis that a firm is cost minimizing.

Using our language, the introduction of measurement error leads to a coarsening

of the dataset, where the true choice made by the firm is allowed to be in a ball

around the observed choice xt. Because the hypothesis being tested is different

(cost-minimization rather than utility-maximization), the test used in that paper is

not related to the never-covered property. To be precise, Varian (1985) assumes

that the observer has information on factor prices, factor demand (imperfectly

observed) and the output level. In the context of consumption data, the analog

to the output level would be the utility level, but notice that we do not require

this information (even in an ordinal form) to be part of our observations. It is the

absence of this information that makes testing the utility-maximization hypothesis

(with or without coarsening) a different exercise from testing cost-minimization.

Alternative Methods for Calculating Rationality Indices. We know from

Afriat’s Theorem that a dataset D = {(xt, L(pt))}t∈T obeys GARP (and is thus

rationalizable) if and only if there are ut and λt (for t ∈ T ) that solve the Afriat

inequalities

λt > 0

us ≤ ut + λtpt · (xs − xt) for s 6= t.

To calculate the perturbation index, we need to determine if Oκ is rationalizable.

Instead of checking this with NCP, we can appeal to the Afriat inequalities and

check whether there are ut, λt, and bundles zt (for all t ∈ T ) that solve

zt ≥ 0
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|psizsi − psixsi | ≤ κ for each good i

λt > 0

us ≤ ut + λtpt · (zs − zt) for s 6= t.

This approach is not satisfactory because the system of inequalities is bilinear in the

unknowns and solving a bilinear system of inequalities is, in general, an NP-hard

problem (see Toker and Ozbay (1995)). On the other hand, we have explained in

the paper that checking whether Oκ is rationalizable can in fact be accomplished

in polynomial time.

Similarly, a crucial step in calculating the price misperception index is to

determine the dual coarse rationalizability of O∗ε (see (9)) for a given ε > 0. As

observed by de Clippel and Rozen (2023), this can be obtained by solving the Afriat

inequalities in a procedure similar to the one described above, except that one will

have to solve for a set of unknown prices (rather than a set of unknown bundles).

Once again, such an approach is not satisfactory because the system of inequalities

will be bilinear in the unknowns when, in fact, one could ascertain the dual coarse

rationalizability of O∗ε in polynomial time.

In the case where there are just two goods, de Clippel and Rozen (2023)

propose a different and simple method for calculating the price misperception index.

That method relies crucially on the well-known result (see Banerjee and Murphy

(2006)) that when there are just two goods, every revealed preference cycle with a

strict relation (see (2)) must contain a shorter cycle of length two. That approach

will not work in settings where there are three or more goods (see, for example,

Ahn et al. (2014)).

Variations on the Perturbation Index. The perturbation and price

misperception indices share a characteristic with Afriat’s CCEI: in all three cases

the permissible ‘deviation’ to restore rationality is uniform across all observations.

In the case of the perturbation index, the bound of κ is uniformly applied to all

observed bundles (see (4)); in the price misperception index, the price misperception

is measured by δ and is uniformly bounded between 1/(1− ε) and 1− ε at each
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observation (see (8)); lastly, in the CCEI, a common cost efficiency e is imposed

on all observations. Varian (1990) proposes a modification of the CCEI where the

cost efficiency level at different observations are allowed to vary and a dataset’s

departure from rationality is measured by some average of the cost efficiency across

all observations. A similar idea can be applied to both the perturbation and price

misperception indices.

We explain this more carefully in the context of the perturbation index. Let

At,κ
t :=

{
x ∈ L(pt) : pt · x = 1 and |ptixi − ptixti| ≤ κt for all i

}
,

where κt ∈ [0, 1]. (This definition coincides with that given in (4)) except that the

bound κt is allowed to vary with the observation t.) For any κ = (κ1, κ2, . . . , κT ),

we can test, via NCP, whether there is a regular utility function U : Rn
+ → R that

coarsely rationalizes

Oκ =
{(
At,κ

t

, L(pt)
)}

t∈T
.

Let S : [0, 1]T → R be an aggregation rule defined on different values of κ. For

example, if we set S(κ) = ∑T
t=1 κ

t/T , then we are simply taking the arithmetic

average over κt. Based on S, we have a generalized perturbation index

S∗ := inf{S(κ) : Oκ is coarsely rationalizable by a regular utility function}

This index corresponds to the (standard) perturbation index if S(κ) = maxt≤T κt.

Calculating the index S∗ is, in general considerably more difficult than

calculating the (standard) perturbation index κ∗. Checking ifOκ = {At,κt , L(pt)}t∈T
satisfies NCP is straightforward using our algorithm; the fact that the bounds κt are

allowed to vary with t does not create any difficulty. However, finding S∗ requires

searching over {κt}t∈T , which lives in a T -dimensional space.19 This computational

difficulty is exactly analogous to the difficulty involved in calculating Varian’s index.

Different approaches have been developed that are effective in calculating Varian’s

index (see Halevy, Persitz and Zrill (2018)) (by searching through the T -dimensional

space more efficiently) and those approaches could also be used to calculate S∗.

19 Note that this is unlike the case of calculating κ∗ where we can require κt to be equal
across observations with no loss of generality, effectively reducing the search to a one-dimensional
problem.
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