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Abstract

We present a model of associative networks that captures how a decision

maker expands her consideration set through mental associations between

alternatives. This model serves as a tool to understand the influence of

association on decision making. As a proof of concept, we characterize this

model within a random attention framework and demonstrate that all the

relevant parameters are uniquely identifiable. Notably, in a novel choice

domain where not all observable alternatives are available, the presence of

unavailable alternatives can affect the choice frequencies of other alternatives

through association.
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1 Introduction

Memory and attention are fundamental cognitive processes essential for decision
making (Simon, 1955; Payne et al., 1993; Camerer, 1997). The impact of these
processes on decision making has been extensively studied in recent years (Bordalo
et al., 2020, 2022). Among the various memory patterns, mental association plays
a key role, linking the recall of one item to another based on an individual’s prior
experience or learning. In this paper, we adopt a choice-theoretical approach to
explore the impact of mental association on decision making and develop a choice
model to capture the effects of this cognitive process.

To fix ideas and highlight some of the motivations behind our analysis, we
consider the recent launch of the Xiaomi SU7, which has sparked considerable
online debate due to its striking resemblance to the Porsche Taycan. For reference,
images of both vehicles are provided below: the Porsche Taycan from Porsche’s
official website and the Xiaomi SU7 from Xiaomi’s official website.

The Xiaomi SU7 has drawn comparisons to the Porsche Taycan from internet
users, with some even dubbing it the “Mi Porsche.” This strategic move by Xiaomi
to boost its brand recognition through the association with Porsche is evident, and
it’s easy to understand why this could be valuable for the company. Potential buyers
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who admire the exterior design of the Porsche Taycan but find it prohibitively
expensive might turn to the Xiaomi SU7 as an alternative. To these buyers, while
Porsche Taycan is observable, it is unaffordable and effectively unavailable.

It might not be immediately obvious why Porsche would not be concerned
about the release of the Xiaomi SU7. Indeed, in an interview during the 4th
China International Consumer Goods Fair, Porsche China President and CEO
Michael Kirsch addressed the issue for the first time, stating:“As for the similarities
between the Xiaomi SU7 and Porsche, I think it’s probably that good design always
has something in mind.”1 Our model of associative networks offers one possible
explanation for this. For some buyers, factors such as premium branding outweigh
cost in their decision-making process. While many models are affordable, these
buyers might not initially consider all available options due to limited attention.
During the initial launch period of the Xiaomi SU7, the press conference, news
coverage, and the controversy surrounding its resemblance to the Porsche Taycan
likely drew significant attention to the Xiaomi SU7. This attention could lead
consumers to also consider the Porsche Taycan. Even though this association was
not intentionally created by Porsche, it could increase the chances that the Porsche
Taycan—but perhaps not other competitors like Maserati—ends up in consumers’
final consideration set. Ultimately, this could work to Porsche’s advantage.

Mental association is a cognitive process that allows the decision maker (DM)
to expand her consideration set by linking relevant alternatives that may not have
been initially considered. We represent this cognitive process through associative
networks, a conceptual model first introduced in cognitive psychology (Anderson
and Bower, 1973; Anderson, 1996; Raaijmakers and Shiffrin, 1981) and widely
applied in the marketing literature (Keller, 1993; Teichert and Schöntag, 2010;
Brandt et al., 2011; Cunha Jr et al., 2015). In an associative network, objects
(nodes) are connected based on their semantic or conceptual relationships. When a
specific node or input is activated, the network retrieves related nodes by spreading
activation through the links. In our study, we employ the associative network as a
descriptive model that captures how the attention to one alternative can trigger
the DM to consider another alternative, abstracting away from the underlying
conceptual similarities between alternatives that result in the association. More

1See link for a news report on this.
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specifically, in our model, a link from alternative x to y indicates that the attention
to x can prompt the DM to further consider y.

Notably, the process of mental association is not limited to available alternatives;
it can also be triggered by unavailable but observable alternatives. In the case of
Xiaomi SU7 versus Porsche Taycan, even before the Xiaomi SU7 was officially
launched and became available for purchase, the attention it received could still
prompt consideration of the Porsche Taycan. Similarly, while the Porsche Taycan
may be prohibitively expensive and therefore unaffordable for some buyers—
effectively making it unavailable to them—the attention drawn to it can still
influence their consideration of the Xiaomi SU7. The importance of including
observable but unavailable alternatives into the choice-theoretical framework has
been highlighted by the recent experimental studies. For instance, Soltani et al.
(2012) demonstrate that decoy alternatives can induce choice reversals, such as
the attraction effect and the compromise effect, even when these alternatives are
not available for selection.2 In an experimental design with differentiated products
and objective payoffs, Chadd et al. (2021) find that the presence of unavailable
alternatives can lead to suboptimal decisions and longer decision times, with
participants willing to pay significant amounts to avoid being exposed to these
alternatives.

Throughout the paper, we study a novel choice domain where not all observable
alternatives are available. Each menu is composed of two distinct sets of alternatives
and is represented as a pair (A, B). While all the alternatives in A and B are
observable, only the alternatives in A are available. Although the DM cannot
choose any alternative from B, the presence of these unavailable alternatives
can still influence the DM’s attention through association, thereby affecting their
choices. Choice scenarios are abundant where some alternatives are observable
but unavailable—whether due to high cost, being out of stock, or restricted access
for members or VIPs. Some items are costly, effectively making them unavailable.
Sold-out products remain to be displayed in many online shopping platforms. Some
products are exclusive to members, such as subscription-only movies on Netflix
or bags reserved for loyal customers in luxury stores, making them observable

2Lea and Ryan (2015) report similar choice reversals in the mate choice of Túngara frogs.

3



but not available to non-members.3 By incorporating observable but unavailable
alternatives, our primitive—a random choice rule—is a function that maps every
menu (A, B) to a distribution over A and a default option. This distribution
represents the DM’s choice frequencies of alternatives in A when presented with
the menu (A, B).

Section 3 introduces our choice model. When presented with a menu (A, B), the
DM initially considers a random subset of alternatives from A∪B, which we refer to
as her initial consideration set. Following Manzini and Mariotti (2014) (henceforth
MM14), we assume that each alternative has a fixed probability of being initially
considered by the DM, and that the DM directs her attention to each alternative
independently. The DM then associates relevant alternatives in A ∪B with those
in her initial consideration set, a process captured by the DM’s associative network,
which is represented by a directed graph over the alternatives. Each link in this
associative network is an ordered pair of alternatives (x, y), indicating that the
consideration of x prompts the DM to further consider y. The association process
continues until no further alternatives in A ∪ B can be linked to those already
considered, resulting in a final consideration set C. The DM then selects her most
preferred alternative among the available alternatives in C—she chooses her most
preferred alternative in A ∩ C if it is not empty; otherwise, the default alternative
is selected. We refer to the random choice rule induced by this choice procedure as
the Association Based Consideration rule (ABC).

Section 4 presents the axioms that characterize ABCs. These axioms separately
address the underlying attention distribution, the association procedure, the
associative network, and the revealed preference relation within our choice model.
Specifically:

• Axiom 1 specifies the attention distribution: The DM directs her initial
attention to each alternative independently.

• Axiom 2 states that if an observable but unavailable alternative x is revealed
to prompt the DM to consider some available alternative in a given menu,

3There are numerous anecdotes of consumers being unable to purchase popular items like
certain Hermès bags or Rolex watches even when they can afford the items and the items are in
stock. For example, see link that discusses how difficult it is to buy a Birkin bag:“Buying your
very first Birkin bag from a Hermès boutique is notoriously difficult. [. . .] you can’t simply waltz
into a store and buy one off the shelf.”
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then making x available does not affect the choice frequency of the default
alternative. By this axiom, the DM’s association procedure is only relevant
with the observability of the alternatives and is unaffected by their availability.
Consequently, so long as the attention to x leads to the consideration of
some available alternative, the choice of the default alternative is blocked, no
matter whether x is available or not.

• Axioms 3 and 4 characterize the associative network. Axiom 3 states that the
DM can associate more alternatives with a given alternative when there are
more observable alternatives. Axiom 4 states that if the DM can associate z

with x when y is observable but fails to do so when y is not observable, then
she must associate z with x through the intermediate alternative y.

• Axiom 5 characterizes the underlying preference relation identified from
the DM’s choices. The axiom states that, for two given alternatives, if
the availability of one alternative affects the choice frequency of the other
in some menu, then the inverse does not occur in any menu where both
alternatives are observable. Essentially, the axiom posits that an inferior
alternative can only affect the choice frequency of a better alternative through
its observability but not its availability.

Notably, all the relevant parameters of an ABC can be uniquely identified.
We extend the ABCs to account for the possibility that the DM may stop the

mental association process before considering all alternatives that can be associated.
This scenario could arise due to mental fatigue or when the DM feels that she has
considered enough options. Importantly, this extension captures the idea that when
alternatives are mentally more distant, meaning that the DM needs more rounds of
mental association to connect them, it is more challenging for the DM to initially
pay attention to one alternative and eventually include the other in her final
consideration set. Section 5 introduces a generalized choice rule called Association
Based Consideration with Termination rule (ABCT), which incorporates the
random termination of mental association. We show that this generalized rule
can be characterized by replacing Axiom 2 with two axioms: Axiom 6 imposes
a monotonicity condition on the choice frequency of the default alternative, and
Axiom 7 weakens Axiom 2 by stating that moving the observable but unavailable
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alternatives that are directly associated with available alternatives to the available
set has a consistent impact on the choice frequency of the default alternative.

Section 6 considers an application of our model in which a multi-product seller
seeks to enhance the sales of a specific product by adding an additional association
link to its existing network. This added link could be literal or metaphorical.
For instance, platforms like Amazon might create an association from x to y

by recommending y on the product page of x. Alternatively, firms could run
advertisements that strengthen consumers’ mental association from x to y. However,
constraints such as limited space on product pages or the high costs of advertising
limit the ability to add multiple links indiscriminately. We examine the optimal
strategy for the seller.

In Section 7 and the Online Appendix, we consider various extensions of the
ABCs that feature (i) limited data, (ii) random associative networks and preferences,
and (iii) general models of initial attention. We focus on the identification of
parameters in these generalized models.

1.1 Related Literature

Our paper belongs to the growing literature on choices with limited attention
or limited consideration.4 In particular, our approach is closely related to that
of MM14, as both models assume that the DM allocates her initial attention
randomly and independently. However, our model differs from the model of MM14
in that our DM has a follow-up procedure through which she continues to expand
her consideration set via mental association. When the DM does not engage in
any mental association, our model reduces to that of MM14. When every pair
of alternatives are associated with each other, our model reduces to the rational
choice model, where the DM always selects the best available alternative whenever
she initially pays attention to some observable option.

In a concurrent paper, Yegane and Masatlioglu (2023) consider a two-stage
stochastic consideration set formation process where the first stage follows MM14.
For a given initial consideration set (which they refer to as the awareness set), the

4See, for instance, Masatlioglu et al. (2012), MM14, Brady and Rehbeck (2016), Dean et al.
(2017), Lleras et al. (2017), Cattaneo et al. (2020), Dardanoni et al. (2020), Barseghyan et al.
(2021a), Barseghyan et al. (2021b), and Cattaneo et al. (2023).
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DM observes options sequentially and may forget previously observed ones due to
limited memory (Yegane, 2022). As a result, the final consideration set is a subset
of the initial one. By contrast, we focus on the mental association process, and the
final consideration set is a superset of the initial one.

Our model makes three novel contributions to the literature on limited
attention. First, we examine the cognitive process of mental association, which
is a fundamental mechanism in forming the DM’s consideration set. We provide
a concrete procedure (and a random version of it) for how this process operates.
Second, our model incorporates bottom-up attention (initial random attention)
and top-down attention (mental association), both of which have been shown
to be influential factors in decision making (Corbetta and Shulman, 2002; Geng
and Behrmann, 2005; Gazzaley and Nobre, 2012).5 Third, we investigate the
impact of unavailable but observable alternatives on the DM’s choices. While those
alternatives, which are also called “phantom” options (Farquhar and Pratkanis,
1993), have been studied theoretically in the literature (Guney et al., 2018;
Natenzon, 2019),6 we focus on investigating how those alternatives affect the
DM’s attention and obtain a unique identification of our model through those
alternatives.

There are a few papers studying the role of networks in individual decisions
(Masatlioglu and Nakajima, 2013; Masatlioglu and Suleymanov, 2021; Ellis and
Thysen, 2024; Valkanova, 2021). Among them the most related paper to ours is
Masatlioglu and Suleymanov (2021). In their model, the DM is endowed with an
undirected associative network. When faced with a menu of available products and
an exogenous starting point, she forms her consideration set by including objects
that are connected to the starting point through a path (with a potential cap on the

5Bottom-up attention involves the automatic processing of sensory stimuli in the environment,
such as sudden loud noises or bright lights, that capture an individual’s attention involuntarily.
By contrast, top-down attention usually refers to the deliberate allocation of attention that is
guided by the individual. In our model, the DM’s initial attention is more likely to be bottom-up,
as the DM is randomly attracted by the stimuli or salient features of the options. The second-
stage mental association is a mixture of bottom-up and top-down attention, as some associated
alternatives may come to mind unintentionally, and individuals may also direct their attention
towards options that are relevant to what they have considered in certain dimensions.

6Natenzon (2019) considers a DM who is imperfectly informed about the value of available
options and can derive additional information from phantom options. In the choice model of
Guney et al. (2018), the best phantom option may serve as aspiration, and the DM chooses the
closest available alternative to it.
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length of the path). In the working paper version of Masatlioglu and Suleymanov
(2021), the authors also study extensions with unobservable starting points and
random network.7 By comparison, our model studies the combination of both
initial random attention and mental association through a directed associative
network, and investigates the role played by unavailable but observable alternatives
in this process. Masatlioglu and Nakajima (2013) study a general model of how
behavioral search affects the formation of consideration sets. In their model, the
connections among the alternatives that determine the search order of the DM
can be represented as a network. Valkanova (2021) models the exploration of the
choice set as a discrete-time Markov chain in which DMs search sequentially by
making stochastic pairwise comparisons. Ellis and Thysen (2024) use a directed
acyclic network to represent the DM’s subjective casual model.

More broadly, our paper contributes to the literature on random choices. Various
models have been proposed to rationalize random choice behavior, including the
possibility that the DM has random utilities, leading to stochastic choices as a
result of utility maximization (Block and Marschak, 1960; Falmagne, 1978; Gul and
Pesendorfer, 2006; Gul et al., 2014),8 and the possibility that the DM randomizes
deliberately (Cerreia-Vioglio et al., 2019; Agranov and Ortoleva, 2022). While the
randomness in our DM’s choice behavior is driven by random attention, our work
emphasizes the importance of understanding mental associations as a important
channel for forming the consideration sets.

Our work also relates to the literature on how choices are influenced by
factors beyond the choice menu. These factors can include frames (Salant and
Rubinstein, 2008), the DM’s reference points or status quo (Masatlioglu and Ok,
2005, 2014; Kovach and Suleymanov, 2023), and recommendations from external
sources (Cheung and Masatlioglu, 2023, 2024), among others. While our approach
shares some similarities with the work of Kovach and Suleymanov (2023) which
examines how reference points can shape the DM’s attention, our study focuses on
understanding how unavailable but observable alternatives prompt the DM to pay

7In their extension with random network, the DM is assumed to consider the alternatives
that are directly linked to the starting point.

8Among the most influential random utility models are the multinomial logit (Luce, 1959)
and nested logit models (Ben-Akiva, 1973; McFadden, 1978), which are widely used in structural
estimations. See also Kovach and Tserenjigmid (2022) for their behavioral foundations.
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attention to available alternatives through mental association.

2 Preliminaries

There is a nonempty finite set of alternatives X, with generic elements denoted by
x, y, z, etc. Denote by M the collection of all subsets of X, with generic elements
denoted by A, B, C, etc. We allow the DM to not pick any alternative from a
set of alternatives, so we also assume the existence of a default alternative (e.g.,
walking away from the shop, abstaining from voting).9 When there is no confusion,
we write AB for A ∪B, Ax for A ∪ {x}, and A \ x for A \ {x}.

A menu consists of two distinct sets of alternatives and is represented by a
pair (A, B) ∈ M ×M with A ∩ B = ∅. While all the alternatives in AB are
observable, only the alternatives in A are available to the DM. In other words,
the DM can pay attention to alternatives in AB but can only choose from A or
choose the default alternative. For ease of reference, we refer to A as the set of
available alternatives, or simply the available set, and B as the set of observable
but unavailable alternatives. Let E denote the collection of all menus.

Let X = {(x, x) : x ∈ X}. A binary relation on X is a subset R ⊆ X ×X. We
say that R is reflexive if X ⊆ R. For all x, y ∈ X, we write xRy if (x, y) ∈ R
and use these two notations interchangeably. For all x ∈ X, let R(x) = {y ∈
X : xRy}, and for all nonempty A ⊆ X, let R(A) = ∪x∈AR(x). Let R0 = X .
For all k ∈ N+, define Rk such that xRky if and only if there exists 1 ≤ t ≤ k

and {x1, x2, . . . , xt+1} ⊆ X such that x1 = x, xt+1 = y, and xmRxm+1 for all
m ∈ {1, 2, . . . , t}. We define the transitive closure of R as R+ := ∪+∞

k=1Rk.
A random choice rule is a map ρ : X × E → [0, 1] such that for all (A, B) ∈ E ,

(i) A ̸= ∅ implies ∑x∈A ρ(x, (A, B)) ∈ (0, 1), and (ii) ρ(x, (A, B)) > 0 implies
x ∈ A. For ease of notation, we write ρ(x|A, B) rather than ρ(x, (A, B)). Define
Φρ(A, B) = 1−∑x∈A ρ(x|A, B). The interpretation is that (1) ρ(x|A, B) denotes
the probability that the DM chooses the alternative x in the menu (A, B), and (2)
Φρ(A, B) denotes the probability that the DM chooses the default alternative in
the menu (A, B).

9For recent work on allowing “not choosing” in a random choice setting, see MM14, Brady
and Rehbeck (2016), and Dardanoni et al. (2020), among others.
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In the definition of the random choice rule above, condition (i) states that
the probability of choosing the default alternative is positive in any menu, which
happens if the DM does not pay attention to any alternative in A. When A is the
empty set, clearly we have Φρ(A, B) = 1.

A preference ordering ≻ is a strict total order defined on X. We use max(A;≻)
to denote the ≻-maximal alternative in A whenever A is not empty.

3 Association Based Consideration

In this section, we formally introduce our choice model in which a DM forms her
consideration set through mental association.

Initial consideration set. Following MM14, we assume that each alternative
has a fixed probability of being initially considered by the DM, and that the
DM attributes her attention to each alternative independently.10 The attention
probability of each alternative is given by the function π : X → (0, 1). For a given
π, define π̊ : X → (0, 1) such that π̊(x) = 1− π(x) for all x ∈ X. To simplify the
notation, we write πx for π(x), π̊x for π̊(x), πA for ∏x∈A π(x), and π̊A for ∏x∈A π̊(x).
We use the convention that πA = π̊A = 1 when A is empty.

In a given menu (A, B), the DM initially considers a subset of AB. Since the
DM attributes her attention to each alternative independently, the DM initially
pays attention to some C ⊆ AB with probability πCπ̊(AB)\C.

Associative network and the final consideration set. The DM expands
her initial consideration set through an associative network N ⊆ X ×X, which is
a reflexive binary relation on X.11 If (x, y) ∈ N , then y is directly associated
with x, and the attention to x will prompt the DM to further consider y.

In a given menu (A, B), the DM’s mental association process only depends on
the restricted associative network NAB on AB, where NAB = {(x, y) ∈ N : x, y ∈
AB}. With NAB, the DM’s mental association process works as follows. For each
alternative x ∈ AB that she initially considers, she includes every alternative
y in NAB(x) into her consideration set.12 For each such alternative y, she then

10This attention rule is also studied by Manski (1977) and Barseghyan et al. (2021b).
11We will also use W,U and V to denote generic associative networks.
12Note that NAB is a binary relation and NAB(x) = {y ∈ X : xNABy}.
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expands her consideration set by including each alternative z in NAB(y). The
process terminates when there are no more alternatives in AB that are associated
with what the DM already considers.

Formally, the association procedure described above is modeled as follows.
Consider the transitive closure N+

AB of NAB.13 If (x, y) ∈ N+
AB, then there exists

a path, i.e., a sequence of alternatives x1, x2, . . . , xn+1 ∈ AB such that x1 = x,
xn+1 = y, and xk+1 is directly associated with xk for all k ∈ {1, 2, . . . , n}. Therefore,
the DM can finally consider y as long as she considers x. For a given menu (A, B),
we say that y is associated with x in (A, B) if (x, y) ∈ N+

AB.14 Note that if the
DM initially considers x, the set N+

AB(x) will be included in her final consideration
set. Thus, an initial consideration set C ⊆ AB leads to the final consideration set
N+

AB(C). Figure 1 is a graphic illustration of this process.

x1 y1

x2 y2

x3 y3

z1 z2

Figure 1: The menu contains 8 alternatives. The associative network is given by the
arrows. The initial consideration set of the DM is {x1, y1}, and after association,
her final consideration set is {x1, x2, x3, y1, y2, y3}. Alternatives z1 and z2 are not
considered because they are not directly associated with any considered alternative.

One important feature of our model is that the DM’s association process depends
on unavailable yet observable alternatives.15 In our model, such alternatives can
help the DM to consider more available alternatives through association. To see
this, consider two menus ({z}, {x}) and ({z}, {x, y}), and assume that y is directly
associated with x and z is directly associated with y, but z is not directly associated

13Throughout the paper, N+
AB denotes the transitive closure of NAB but not the transitive

closure of N restricted on AB. Similarly, N k
AB denotes (NAB)k but not (N k)AB.

14When there is no confusion about menu (A, B), we simply say that y is associated with x.
15The importance of understanding how such alternatives affect decision-making has also been

highlighted by Chadd et al. (2021).
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with x. If the initial consideration set of the DM is {x}, then she cannot further
consider z in menu ({z}, {x}), but can do so through an intermediate alternative
y in menu ({z}, {x, y}).

We note that our model can also accommodate the case in which the DM is able
to store the associated alternative y in her memory and use it for further association.
By doing so, she can directly associate z with x even in menu ({z}, {x}). This
seems incompatible with our model because an alternative that is not observable
serves as the intermediate alternative in the DM’s association process. In fact, our
model can accommodate such a case: If the DM can associate z with x through y

without y being observable, then it is as if the DM can directly associate z with x.
The two interpretations lead to the same choice behavior of the DM, and therefore,
we do not distinguish them in our choice model.

Preference and choice. In the menu (A, B), if the DM’s final consideration
set is C ⊆ AB, then she chooses max(A ∩ C;≻) if A ∩ C is not empty. Otherwise,
she chooses the default alternative.

Definition 1. A random choice rule ρ is an Association Based Consideration
rule (ABC ) if there exists a tuple (π,N ,≻), where π is an attention probability
function, N is an associative network, and ≻ is a preference ordering, such that

ρ(x|A, B) =
∑

C⊆AB: x=max(N +
AB(C)∩A; ≻)

πCπ̊(AB)\C (1)

for any (A, B) ∈ E and x ∈ A. The tuple (π,N ,≻) is said to represent ρ as an
ABC.

With an ABC, the choice probability of x in the menu (A, B) is the frequency
with which x is the best alternative in the final consideration set.16

16Following MM14, we assume a unique preference ordering. An interesting extension is to
allow heterogeneous preferences (Barseghyan et al. 2021a, Barseghyan et al. 2021b, Kashaev and
Aguiar 2022, Aguiar et al. 2023, Cattaneo et al. 2023, Cheung and Masatlioglu 2024). We discuss
it in Section 7.
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4 Axioms and Representation Theorem

In this section, we first introduce a reformulation of the ABC model to highlight
some of its key properties. Then we present the axioms and the representation
theorem, and discuss the comparative statics of our model.

4.1 Reformulation

A feature of our model is that not every available alternative in a menu is chosen
with a positive probability. In particular, if the attention to some alternative x

always prompts the DM to consider another better alternative, then x is never
chosen. The following proposition characterizes the set of alternatives that are
chosen with a positive probability in a given menu.

Proposition 1. Consider an ABC ρ that is represented by (π,N ,≻). For all
(A, B) ∈ E, ρ(x|A, B) > 0 if and only if x = max(N+

AB(x) ∩ A;≻).

In words, an alternative x is chosen with a positive probability in the menu
(A, B) if and only if there is no association path from x to any available alternative
y that is better than it. Otherwise, the attention to x always prompts the attention
to y in this menu, which blocks the choice of x.

Next, we investigate the choice frequency of each chosen alternative. For a
given menu (A, B), define HN (A, B) := {x ∈ AB : N+

AB(x) ∩ A ̸= ∅} as the set of
alternatives x in the menu (A, B) such that some alternative in A is associated
with x. Since N is reflexive, we have A ⊆ HN (A, B).

Proposition 2. Consider an ABC ρ that is represented by (π,N ,≻). For all
(A, B) ∈ E,

Φρ(A, B) = π̊HN (A,B). (2)

Furthermore, if {x ∈ A : ρ(x|A, B) > 0} = {x1, x2, . . . , xn} with x1 ≻ x2 ≻ . . . ≻
xn, then

ρ(x1|A, B) = 1− π̊C1 and ρ(xk|A, B) =
(
1− π̊Ck

) k−1∏
t=1

π̊Ct
, ∀k ≥ 2, (3)

where Ck = {y ∈ AB : xk = max(N+
AB(y) ∩ A;≻)} for all k ∈ {1, 2, . . . , n}.
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Equation (2) says that the probability for the default option to be chosen is
equal to the probability that none of the initially considered alternatives lead to
the consideration of any available alternative. Equation (3) is a reformulation of
our choice rule: The probability for an alternative to be chosen is equal to the
probability that it is finally considered through the association process while all
better available alternatives are not.

4.2 Characterization

The first axiom captures the independent attention distribution of the DM.

Axiom 1—Default Independence: For all x ∈ X and A, B ∈ M with
x ∈ A ∩B,

Φρ(A, ∅)
Φρ(A \ x, ∅) = Φρ(B, ∅)

Φρ(B \ x, ∅) .

Axiom 1 follows from the I-Independence axiom of MM14.17 When all observable
alternatives are available, the DM’s choice of the default option depends on whether
her initial consideration set is empty or not. The effect of removing an available
alternative on the frequency of choosing the default option is determined by the
extent to which it attracts the DM’s initial attention. Axiom 1 posits that the DM
has a constant probability of initially considering a given alternative.

Definition 2. For all x ∈ X, A, B ∈ M with A ∩ B = ∅, some alternative
in A is associated with x through B, denoted by x

B−→
ρ

A, if either x ∈ A or
Φρ(A, B) ̸= Φρ(A, B \ x).

When there is no confusion about ρ, we write x
B−→ A for x

B−→
ρ

A. To understand
Definition 2, note that if x is in A, then clearly some alternative in A (i.e., x) is
associated with x. If x is not in A, then the condition Φρ(A, B) ̸= Φρ(A, B \ x)
indicates x ∈ B. Furthermore, since removing x from B affects the choice frequency
of the default alternative, it follows that the attention of x must lead to the choice
of some alternative in A, i.e., some alternative in A is associated with x, possibly
through some intermediate alternatives in B.

17The I-Independence axiom is stronger than Axiom 1. It additionally requires that for all
x, y ∈ X and A, B ∈M with x, y ∈ A ∩B and x ̸= y, ρ(x|A\y,∅)

ρ(x|A,∅) = ρ(x|B\y,∅)
ρ(x|B,∅) .
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Axiom 2—Idempotence: For all x ∈ X and (A, B) ∈ E with x ∈ B, if x
B−→ A,

then Φρ(Ax, B \ x) = Φρ(A, B).

Axiom 2 states that if some available alternative in A is associated with some
observable but unavailable alternative x, then the DM’s attention to x will result
in the selection of an available alternative and block the choice of the default
alternative. Therefore, whether x is available or unavailable has no effect on the
choice frequency of the default alternative.

Axiom 3—Expansion: For all x ∈ X and (A, B), (C, D) ∈ E , if C ⊆ A and
CD ⊆ AB, then x

D−→ C implies x
B−→ A.

Axiom 3 states that if the attention to x leads to the consideration of some
available alternative in a given menu, then the same would be true in a less
restrictive menu with more observable alternatives and more available alternatives.
In other words, when there are more intermediate cues in the form of observable
alternatives, more alternatives become associated with x.

Axiom 4—Path Connectedness: For all x, y ∈ X and (A, B) ∈ E with
x ̸= y, if x

B−→ A and not x
B\y−−→ A \ y, then x

B\y−−→ {y} and y
B\x−−→ A.

Axiom 4 captures the key feature of the associative network: One alternative is
associated with another through paths in the network. To see this, note that if
the DM can associate some alternative z in A with x through B but cannot do so
when y is not observable, then either y = z or y is an intermediate alternative for
this association process.

Axiom 5—Association Asymmetry: For all x, y ∈ X and (A, B), (C, D) ∈
E with x ̸= y and x, y ∈ A ∩ C,

ρ(y|A, B) ̸= ρ(y|A \ x, Bx)⇒ ρ(x|C, D) = ρ(x|C \ y, Dy).

Axiom 5 is similar to the I-Asymmetry axiom of MM14.18 It states that if
the availability of an alternative x affects the choice frequency of alternative y,

18The I-Asymmetry axiom states that for all distinct x, y ∈ X and A, B ∈M, if ρ(y|A, ∅) ̸=
ρ(y|A \ x, ∅), then ρ(x|B, ∅) = ρ(x|B \ y, ∅).
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then the inverse will not occur. To understand this axiom, note that if the set of
observable alternatives is kept the same, so will be the distribution of the final
consideration sets. Under such circumstance, the availability of x affects the choice
of y only when x is better than y, and thus the inverse never occurs.

Together, Axioms 1-5 fully characterize our ABC model.

Theorem 1. A random choice rule ρ is an ABC if and only if it satisfies Axioms
1-5. The tuple (π,N ,≻) that represents ρ as an ABC is unique.

Identification of the parameters. The identification of the attention probability
function π is the same as that in MM14. For every x ∈ X, πx = ρ(x|{x}, ∅).

The preference ordering ≻ can be identified through the DM’s choice frequencies
in binary menus. Consider two alternatives x and y and assume x ≻ y. Following
the interpretation of Axiom 5, the choice frequencies of x are the same in the two
menus ({x, y}, ∅) and ({x}, {y}). However, the choice frequencies of y must differ
in the two menus ({x, y}, ∅) and ({y}, {x}): In the menu ({x, y}, ∅), the choice
frequency of y is at most π̊xπy, while in the menu ({y}, {x}), the choice frequency
of y is at least πy. Therefore, x ≻ y if and only if ρ(y|{x, y}, ∅) ̸= ρ(y|{y}, {x}).

For the associative network N , note that x is associated with y if and only
if ρ(x|{x}, {y}) ̸= ρ(x|{x}, ∅), i.e., removing the observable but unavailable
alternative y affects the choice frequency of x. Given our identification strategy,
the tuple (π,N ,≻) is unique.

Proof sketch of Theorem 1. We focus on the sufficiency part. With the
identified parameters (π,N ,≻), we briefly demonstrate how our axioms lead to
the desired representation. In Step 1, we show that for all menu (A, B) and
alternative x ∈ B, x

B−→ A if and only if some alternative in A is associated with
x, i.e., N+

AB(x) ∩ A ̸= ∅. By this, we can focus on a subset C ⊆ B such that C

contains all the alternatives with which some alternative in A is associated. By
the Idempotence axiom (Axiom 2) and the definition of B−→, we have Φρ(A, B) =
Φρ(AC, B \ C) = Φρ(AC, ∅). Essentially, the set AC is equal to HN (A, B), and we
can show that Φρ(A, B) = π̊HN (A,B).

In Step 2, we show that ≻ is defined for each distinct pair of alternatives and
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satisfies asymmetry and transitivity, i.e., it is indeed a preference ordering.19

The final step is to show that for any given menu, each alternative is chosen
with the probability specified by the model. To illustrate, we provide a simple
example. Consider a menu ({x, y, z, w}, {r}) such that

x ≻ y ≻ z ≻ w ≻ r and N{x,y,z,w,r} = X ∪ {(w, y), (r, z)}.

Since rN z, by Step 1, we have

∑
x̂∈{x,y,z,w}

ρ(x̂|{x, y, z, w}, {r}) = 1− Φρ({x, y, z, w}, {r})

= 1− Φρ({x, y, z, w, r}, ∅) = 1− π̊{x,y,z,w,r}.

(4)

Since for all x̂ ∈ {x, y, z}, x̂ ≻ w, by the Association Asymmetry axiom (Axiom 5),
making w unavailable does not affect the choice frequencies of x, y and z. Since
rN z and wN y, again by Step 1, we have

∑
x̂∈{x,y,z}

ρ(x̂|{x, y, z, w}, {r}) =
∑

x̂∈{x,y,z}
ρ(x̂|{x, y, z}, {w, r})

= 1− Φρ({x, y, z}, {w, r})

= 1− Φρ({x, y, z, w, r}, ∅) = 1− π̊{x,y,z,w,r}.

(5)

Similarly, we can consecutively move z and y to the observable but unavailable set
and obtain

∑
x̂∈{x,y}

ρ(x̂|{x, y, z, w}, {r}) =
∑

x̂∈{x,y}
ρ(x̂|{x, y}, {z, w, r})

= 1− Φρ({x, y}, {z, w, r})

= 1− Φρ({x, y, w}, ∅) = 1− π̊{x,y,w}.

(6)

ρ(x|{x, y, z, w}, {r}) = ρ(x|{x}, {y, z, w, r})

= 1− Φρ({x}, {y, z, w, r})

= 1− Φρ({x}, ∅) = 1− π̊x.

(7)

19The binary relation ≻ is asymmetric if for all x, y ∈ X, x ≻ y implies not y ≻ x, and is
transitive if for all x, y, z ∈ X, x ≻ y and y ≻ z imply x ≻ z.
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Note that equations (4)-(7) pin down the choice probabilities of x, y, z and w in
menu ({x, y, z, w}, {r}), which are consistent with equation (3) in Proposition 2.

Comparative Statics. We end this section by discussing the comparative
statics of our model. We show that we can directly compare two DMs’ associative
networks without imposing any restriction on the alignment of their preferences
or attention probabilities. The following proposition directly follows from the
construction of N , and its proof is omitted.

Proposition 3. For any two ABCs ρ1 and ρ2 that are represented by (π,N ,≻)
and (π′,W ,≻′) respectively, the following statements are equivalent:

(i) For all x ∈ X and (A, B) ∈ E with x /∈ AB,

Φρ1(A, B) ̸= Φρ1(A, Bx)⇒ Φρ2(A, B) ̸= Φρ2(A, Bx).

(ii) The associative network N is a subset of W.

5 Association Based Consideration with Termi-

nation

In this section, we examine a generalized model where the DM has a fixed probability
of terminating the consideration of additional alternatives at each round of the
mental association process. This generalized model becomes more relevant when
there are many alternatives or when the DM experiences mental fatigue and
chooses to halt mental association once a sufficient number of alternatives have
been considered. The model also captures the idea that when two alternatives
are mentally more distant, meaning that the DM needs more rounds of mental
association to connect them, it becomes more challenging for the DM to initially
pay attention to one alternative and eventually include the other in her final
consideration set.

Definition 3. A random choice rule ρ is an Association Based Consideration
with Termination rule (ABCT ) if there exists a tuple (π,N ,≻, η), where π is
an attention probability function, N is an associative network, ≻ is a preference
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ordering, and η ∈ (0, 1] such that for all (A, B) ∈ E and x ∈ A,

ρ(x|A, B) =
+∞∑
k=0

(1− η)ηk

 ∑
C⊆AB: x=max(N k

AB(C); ≻)
πC π̊(AB)\C


+(1−

+∞∑
k=0

(1− η)ηk)

 ∑
C⊆AB: x=max(N +

AB(C); ≻)

πC π̊(AB)\C

 .

(8)

The tuple (π,N ,≻, η) is said to represent ρ as an ABCT.

The new parameter η is the probability for the DM to continue one more round
of mental association. Thus, the probability for the DM to have exactly k rounds
of mental association is given by (1− η)ηk, in which case she expands her initial
consideration set C to N k

AB(C). The second term of the right-hand-side of equation
(8) captures the case η = 1, where the DM always expands her initial consideration
set C to N+

AB(C). In this case, an ABCT reduces to an ABC.
For a given ABCT, if an observable but unavailable alternative x can direct the

DM’s attention to some available alternative, the attention to x may not guarantee
that the DM chooses some available alternative in the end, since there is a chance
that the DM does not conduct any round of mental association. Therefore, moving
x to the available set may alter the choice frequency of the default option, and
Axiom 2 no longer holds. We replace Axiom 2 with the next two axioms.

Axiom 6—Default Monotonicity: For all (A, B), (C, D) ∈ E , if C ⊆ A and
CD ⊆ AB, then Φρ(A, B) ≤ Φρ(C, D).

Axiom 6 states that if there are more observable alternatives and more available
alternatives, then the frequency for the DM to choose the default option becomes
lower. Intuitively, more observable alternatives enable the DM to use mental
association to include more alternatives into her final consideration set, and with
more available alternatives, there is a higher chance that there is at least one
available alternative in the DM’s final consideration set.

For any set of alternatives A, define Dρ(A) := {x ∈ X \A : x
{x}−−→ A} as the set

of alternatives x in X \ A such that the attention to x leads to the consideration
of some alternative in A.

Axiom 7—Association Reduction: For all (A, B), (C, D) ∈ E , let B1 =
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B ∩ Dρ(A), B2 = B \B1, D1 = D ∩ Dρ(C) and D2 = D \D1. If B1, D1 ̸= ∅, then

Φρ(A, ∅)− Φρ(AB1, B2)
Φρ(A, ∅)− Φρ(A, B) = Φρ(C, ∅)− Φρ(CD1, D2)

Φρ(C, ∅)− Φρ(C, D) .

To understand Axiom 7, observe that the probability difference Φρ(A, ∅) −
Φρ(A, B) captures how the set of observable but unavailable alternatives B boosts
the chance for the DM to end up with considering some available alternative. Now,
consider the situation that we shift all alternatives in B that lead to the attention
of A through one round of mental association, i.e., the set B1, from the unavailable
set to the available set. This reduces exactly one round of mental association
for the DM’s to pay attention to some available alternative. Hence, the ratio
Φρ(A,∅)−Φρ(AB1,B2)

Φρ(A,∅)−Φρ(A,B) is precisely the probability for the DM to have one more round
of mental association, and thus is independent of the menu.

Although Axioms 6 and 7 are not direct relaxations of Axiom 2, we show in
Lemmas 5 and 6 that Axioms 6 and 7 can be implied by Axioms 1-3.

To avoid triviality, we consider a non-trivial random choice rule ρ such that
there exists menu (A, B) and x ∈ B with x

B−→ A.20 The next theorem characterizes
the ABCT and its uniqueness property.

Theorem 2. A random choice rule ρ is an ABCT if and only if it satisfies Axioms
1 and 3-7. Moreover, if ρ is non-trivial, then there is a unique tuple (π,N ,≻, η)
that represents ρ as an ABCT.

We conclude this section with some discussion of new choice behavior that can
be accommodated by ABCTs but not by ABCs. For any given ABC ρ, we argue
that for all menus (A, ∅) and (B, ∅) with A ⊆ B, and all x ∈ A and y ∈ X \B, the
following condition holds:

ρ(x|Ay, ∅) > ρ(x|A, ∅)⇒ ρ(x|By, ∅)− ρ(x|B, ∅) ≤ ρ(x|Ay, ∅)− ρ(x|A, ∅). (9)

We refer to condition (9) as the property of diminishing menu effects: If y creates
a menu effect on x (i.e., y boosts the choice frequency of x) in a smaller menu,
then this effect would be weakened when more alternatives are included. To see

20If the random choice rule is trivial, then the DM never expands her initial consideration set
through mental association. In such a case, the observable but unavailable set plays no role in
affecting the DM’s choices, and the ABCT model reduces to the model introduced by MM14.
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why condition (9) holds, note that if y boosts the choice frequency of x, then the
attention of y must prompt the consideration of x. Thus, ρ(x|Ay, ∅)− ρ(x|A, ∅) is
equal to the probability for y being initially considered multiplied by the probability
of the event that neither x nor alternatives better than x are finally considered in
(A, ∅). Since the DM can include all associated alternatives into her consideration
set, her final consideration set expands as the menu becomes larger, leading to a
higher chance for it to include x or an alternative that is better than x. Hence,
the menu effect should be weaker in a larger menu for an ABC.

By contrast, an ABCT may violate the property of diminishing menu effects: As
the menu becomes larger, the “association distance” between y and x may decrease,
meaning that it becomes easier for x to be associated with y. Consequently, y may
boost the choice frequency of x to a larger extent in a larger menu. We demonstrate
this observation through the following example.

Example 1. Let A = {x1, ..., x8, x}, B = {x1, ..., x8, x, z} and y ∈ X \B. Consider
an ABCT ρ represented by (π,N ,≻, η), where π assigns each alternative an
attention probability of 1

2 , N \X = {(xk, xk+1)}7
k=1 ∪{(x8, x), (y, x1), (y, z), (z, x)},

x is the ≻-best alternative in X, and η = 1
2 . It can be easily shown that ρ(x|Ay, ∅)−

ρ(x|A, ∅) = 1
219 < 1

213 < ρ(x|By, ∅)− ρ(x|B, ∅). The property of diminishing menu
effects fails because in menu (Ay, ∅), the DM needs 9 rounds of mental association
to associate x with y, while only 2 rounds are needed in the menu (By, ∅).

6 Application

In this section, we apply our model to the optimal design of associative networks
to promote the sales of a given product. This problem is relevant for multi-product
firms such as platforms like Amazon that match buyers and sellers, while also
selling their own products.

Consider a multi-product firm that sells a set of products X. We assume that
all products are always observable, but some products are sometimes out of stock.
With this assumption, we consider a probability distribution κ over menus of
the form (A, X \ A), and let κA denote the probability of menu (A, X \ A). The
firm desires to maximize the sales volume of a particular alternative x∗ ∈ X. We
assume that the demand faced by the firm is captured by the ABC ρ represented
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by (π,N ,≻). That is, when the menu is (A, B), the sales volume of good x is
given by ρ(x|A, B).21

We consider the firm can add an additional association link to the existing
network N to maximize the probability of the product being chosen. We briefly
discuss the feasibility of adding such links and the rationale behind limiting it to a
single additional link. This added link could be literal or metaphorical. For instance,
platforms like Amazon might create an association from x to y by recommending
y on the product page of x. Alternatively, firms could run advertisements that
strengthen consumers’ mental association from x to y. However, the firm faces
constraints, such as limited space on product pages or the high costs of advertising,
which prevent it from adding multiple links indiscriminately.

While our analysis below focuses on the optimal design of an associative network
when only one additional link is to be added, our framework allows us to explore
more general problems beyond this baseline application, such as the optimal
associative network when multiple links are allowed to be added or when the firm
is concerned with maximizing the total profits across all products. While all these
applications are of potential interest, to formally deal with them is beyond the
scope of the current paper, and we leave them for future research.

We define notations used in this section. Let ←−N be the inverse of N such that
xN y if and only if y

←−
Nx. Let ←−N+ be the transitive closure of ←−N . For a given menu

(A, X \ A), let Ā = {y ∈ X : yN+x∗ or for some z ∈ A, z ≻ x∗ and yN+z}. In
words, Ā contains alternatives such that the attention to any of them prompts
the consideration of an available alternative that is weakly better than x∗ in menu
(A, X \ A). The following proposition characterizes the optimal link to be added.

Proposition 4. The association link (y, x∗) that satisfies the following condition
is the link to be added that maximally increases the sales volume of x∗:

y ∈ arg max
z∈X

 ∑
A⊆X: ρ(x∗|A,X\A)>0

κAπ̊Ā

(
1− π̊←−N+(z)\Ā

).

For a given menu (A, X \A), if ρ(x∗|A, X \A) = 0, then x∗ is either unavailable
or prompts the attention of some better alternative in A. In this case, x∗ remains
unchosen no matter what link we add. To understand Proposition 4, note that

21While we focus on ABCs, the analysis can be readily extended to the more general ABCTs.

22



for a given menu in which x∗ is chosen, more alternatives in Ā indicate that it is
more likely that either x∗ is already considered or some available alternative that
is better than x∗ is considered. In either case, adding one more link does not affect
the choice frequency of x∗. By contrast, if the set←−N+(z) \ Ā is enlarged, the link is
more likely to boost the consideration and the choice of x∗. Thus, the value of κAπ̊Ā

can be regarded as the marginal benefit of boosting the attention of x∗ in menu
(A, X \ A). The size of the menu ←−N+(y) \ Ā can be interpreted as the additional
connectedness of x∗ in menu (A, X \ A) brought by the new link, and the value of
1− π̊←−N+(z)\Ā captures how the attention of x∗ can be boosted by the new link.

If the distribution of menus is not exogenous but can be determined by the firm,
then the firm would choose the deterministic menu ({x∗}, X \ x∗) to maximize
the sales of product x∗. In this case, the optimal link to be added is given by the
following corollary, which is an immediate implication of Proposition 4.

Corollary 1. Suppose that the firm can choose the distribution of the menus. To
maximize the sales volume of x∗, the firm can optimally choose menu ({x∗}, X \x∗)
and add a link (y, x∗) such that y ∈ arg minz∈X π̊←−N+(z)\←−N+(x∗). In particular, if
π(·) ≡ α ∈ (0, 1), then the link (y, x∗) satisfies y ∈ arg maxz∈X |

←−
N+(z) \←−N+(x∗)|.

When each product has the same chance to attract the attention of the
consumers, the connectedness of alternative x∗ is given by ←−N+(x∗). The link
we add is the simply one that increases the connectedness of x∗ the most.

7 Extensions

In this section, we explore extensions of our baseline model to consider (i) limited
data and (ii) random associative networks and preferences. The focus of our
discussion is to investigate to what extent we can identify the parameters in these
generalized models. The discussion of more general models of initial attention can
be found in the Online Appendix.

7.1 Limited Data

In many applications, we are unable to observe the DM’s choices in each possible
menu. Instead, we may only observe the random choice rule ρ defined on a

23



restricted collection of menus E ′ ⊆ E . In this section, we consider two special
cases of restricted collections of menus. We first consider the case in which every
observable alternative is available. Formally, E ′ = EF := {(A, B) ∈ E : B = ∅}.
We then consider the case in which while some alternatives can be unavailable, all
alternatives are observable. Formally, E ′ = EO := {(A, B) ∈ E : A ∪B = X}.

For any nonempty E ′ ⊆ E , we say that a random choice rule ρ is an ABC on E ′

if there is a tuple (π,N ,≻) such that for all (A, B) ∈ E ′ and x ∈ A, equation (1)
holds for ρ(x|A, B). The tuple (π,N ,≻) is said to represent ρ on E ′. Note that
when E ′ = EF , we are back to the standard random choice framework.

Case 1: E ′ = EF . Consider an ABC ρ on EF that is represented by (π,N ,≻).
We show that π and ≻ can be uniquely identified. For all x ∈ X, π(x) =
ρ(x|{x}, ∅). For all x, y ∈ X, x ≻ y implies ρ(x|{x, y}, ∅) ≥ πx = ρ(x|{x}, ∅) and
ρ(y|{x, y}, ∅) ≤ π̊xπy < ρ(y|{y}, ∅). Therefore, x ≻ y if and only if

ρ(y|{x, y}, ∅) < ρ(y|{y}, ∅). (10)

By contrast, the associative network N may not be uniquely identified. In what
follows, we provide a partial identification of N by showing that we can identify
the minimum associative network which is valid for representing the random choice
rule on EF . We illustrate the idea of identification by the following examples.

Example 2. Consider two distinct alternatives x and y. If ρ(y|{x, y}, ∅) > 0 =
ρ(x|{x, y}, ∅), then any tuple (π,N ,≻) that represents ρ as an ABC on EF must
satisfy xN y: Since x is never chosen in menu ({x, y}, ∅), the attention to x must
prompt the DM to consider some better alternative, which has to be y.

Note that Example 2 also demonstrates that the associative network cannot be
fully identified, since whether (y, x) is in the associative network is unclear and
does not affect the DM’s choice frequencies in this binary menu. The next example
generalizes the identification strategy in Example 2.

Example 3. Consider alternatives x, y, z and w, and a random choice rule ρ:

(i) In menu ({x, y, z, w}, ∅), only x is chosen with positive probability;
(ii) In menu ({x, y, w}, ∅), only x and w are chosen with positive probability;
(iii) In menu ({x, y}, ∅), only x is chosen with positive probability.
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Condition (i) implies that x is better than y, z and w. By conditions (ii) and (iii),
one can infer that x is directly associated with y, and neither y nor x is associated
with w, since otherwise the attention to w would prompt the consideration of x and
thus blocks the choice of w. Now, by adding z to menu ({x, y, w}, ∅), w becomes
unchosen. Hence, z must be directly associated with w. That is, for any tuple
(π,N ,≻) that represents ρ as an ABC on EF , we must have wN z.

The two examples above suggest the following identification of the associative
network. For a given random choice rule ρ, define

N [ρ] := X ∪
{
(x, y) ∈ X2 : x ̸= y, {y} = {w ∈ {x, y} : ρ(w|{x, y}, ∅) > 0}

}
∪{

(x, y) ∈ X2 : ∃A ⊆ X, z ∈ X \ x such that {x, z} = {w ∈ Ax : ρ(w|Ax, ∅) > 0}

and {z} = {w ∈ A ∪ {x, y} : ρ(w|A ∪ {x, y}, ∅) > 0} = {w ∈ A : ρ(w|A, ∅) > 0}
}

.

Note that for any set A and alternative z that satisfy the condition in the definition
of N [ρ], it can be revealed that z is the best alternative in A ∪ {x, y}, and that
the attention of each alternative can prompt the consideration of z when the menu
is either (A ∪ {x, y}, ∅) or (A, ∅). Since x is chosen with a positive probability in
menu (Ax, ∅), x cannot prompt the consideration of z in this menu. It follows
that no alternative in A is directly associated with x, and thus y must be directly
associated with x so that the attention of x can lead to the consideration of z

in menu (A ∪ {x, y}, ∅). Hence, the DM’s associative network must include N [ρ]
as a subset. Indeed, N [ρ] is exactly the minimal associative network such that
(π,N [ρ],≻) represents ρ as an ABC on EF .

Proposition 5. For any random choice rule ρ that can be represented by (π,N ,≻)
as an ABC on EF , π and ≻ can be uniquely identified. Furthermore, N [ρ] ⊆ N ,
and (π,N [ρ],≻) also represents ρ as an ABC on EF .

Since EF is the standard choice domain considered by the literature, for
completeness, we axiomatize ABCs on EF in the Online Appendix.

Case 2: E ′ = EO. Since for each menu (A, B) ∈ EO, the set of observable
alternatives is fixed to be X = A ∪ B, the DM’s mental association is governed
by the transitive closure of her associative network. That is, if a random choice
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rule ρ is represented by (π,N ,≻) as an ABC on EO, then ρ is also represented
by (π,N+,≻) as an ABC on EO. Therefore, one immediate observation is that
we cannot distinguish whether the DM’s true associative network is N or N+.
Nevertheless, the transitive closure N+ can be uniquely identified. To see this,
consider two distinct alternatives x and y. Note that xN+y is equivalent to
HN ({y}, X \ y) = HN ({x, y}, X \ {x, y}). Thus, xN+y if and only if

Φρ({y}, X \ y) = Φρ({x, y}, X \ {x, y}). (11)

For the preference relation, we can show that x ≻ y if and only if ρ(x|{x}, X \x) =
ρ(x|{x, y}, X \ {x, y}).22 Thus, ≻ can also be uniquely identified.

Proposition 6. For any random choice rule ρ that can be represented by (π,N ,≻)
as an ABC on EO, both N+ and ≻ can be uniquely identified. Furthermore, for
all A ⊆ X with N+(X \ A) ∩ A = ∅, π̊A can be uniquely identified, and no further
information regarding π can be obtained.

By Proposition 6, the attention probability function π can be partially identified.
Notably, whether π can be uniquely identified depends on N+. To see this, let
X = {xj}m

j=1. Define Aρ := {A ⊆ X : A ̸= ∅, N+(X \ A) ∩ A = ∅}, and let
Aρ = {Ai}n

i=1. Consider an n×m matrix Mρ such that for all i ∈ {1, ..., n} and
j ∈ {1, ..., m}, Mρ

i,j = 1 if xj ∈ Ai, and Mρ
i,j = 0 if xj ̸∈ Ai. Consider an m × 1

vector Π such that for all j ∈ {1, ..., m}, Πj = ln(̊πxj
), and an n× 1 vector Lρ such

that for all i ∈ {1, ..., n}, Lρ
i = ln(̊πAi

). The information for π we obtain from the
random choice rule can be summarized by the following equation:

Mρ · Π = Lρ. (12)

The unique identification of π is equivalent to the unique solution of Π in equation
(12). Therefore, we have the following proposition the proof of which is omitted.

Proposition 7. For any random choice rule ρ that can be represented by (π,N ,≻)
as an ABC on EO, π can be uniquely identified if and only if the rank of the matrix
Mρ equals |X|.

22The necessity follows from the proof of the necessity of Axiom 5 for ABCs (Lemma 3). For
sufficiency, note that if y ≻ x, then ρ(x|{x}, X \ x) < ρ(x|{x, y}, X \ {x, y}).
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Below, we provide one demonstration example.

Example 4. Let X = {x1, x2}. A random choice rule ρ satisfies ρ(x1|{x1, x2}, ∅) =
ρ(x1|{x1}, {x2}) = 3

4 , ρ(x2|{x1, x2}, ∅) = 0 and ρ(x2|{x2}, {x1}) = 1
2 . Following

our identification strategy, we have x1 ≻ x2, N+ = X ∪ {(x2, x1)} and Aρ =
{{x2}, {x1, x2}}. Let A1 = {x2} and A2 = {x1, x2}, and we have

Mρ =

0 1
1 1

 ,

which has rank 2. Therefore, π can be uniquely identified. Indeed, note that
ρ(x2|{x2}, {x1}) = 1

2 implies that πx2 = 1
2 . Combining it with ρ(x1|{x1}, {x2}) = 3

4

and x2Nx1, we have πx1 = 1
2 .

7.2 Random Association Based Consideration

In this section, we extend our analysis by introducing randomness to the associative
network and the preference ordering.

Let P be the set of all possible preference orderings over X. A random
preference is a probability distribution τ over P . Let N be the set of all possible
associative networks over X. A random associative network is a probability
distribution µ over N . A random associative network µ is said to be link-
independent if there is a link-formation probability function (LPF) θ : X2 → [0, 1]
such that (i) for all z ∈ X, θ(z, z) = 1, and (ii) for all N ∈ N ,

µ(N ) =
 ∏

(x,y)∈N
θ(x, y)

 ∏
(x,y)̸∈N

(1− θ(x, y))


The value of θ(x, y) is the probability that the DM can associate y with x. Condition
(ii) indicates that the DM forms each association link independently.

We say that a random choice rule ρ is a Random Association Based
Consideration rule (RABC) if there exists a tuple (π, µ, τ), where π is attention
probability function, µ is a random associative network, and τ is a random
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preference, such that for all (A, B) ∈ E and x ∈ A,

ρ(x|A, B) =
∑

≻∈P

∑
N ∈N

τ(≻)µ(N )

 ∑
C⊆AB: x=max(N +

AB(C)∩A; ≻)

πC π̊(AB)\C

 . (13)

If in addition, µ is link-independent, then ρ is said to be a Random Link-
independent Association Based Consideration rule (RLABC) rule.

We regard RLABCs, which are special cases of RABCs, as a suitable starting
point to investigate the joint effect of random attention, random association, and
random preferences, since the model assumes that the formation of each directed
association link, the realization of the preference, and the attention towards each
alternative are all independent. Below, we show that parameters of RLABCs have
nice identification properties.

For a given RLABC, the unique identification of the attention probability
function π is similar to that in our baseline model. The LPF θ can also be uniquely
identified as follows. For any two distinct alternatives x and y, we have

Φρ({y}, {x}) = (1− πy)(1− πxθ(x, y)),

i.e., the probability for y being unselected in menu ({y}, {x}) is equal to the
probability that y is not initially paid attention to and not considered through the
initial consideration of x. Thus, the probability for y being associated with x is

θ(x, y) = 1
πx

− Φρ({y}, {x})
πx − πxπy

.

While the distribution of preferences τ may not be uniquely identified, for each
nonempty A ⊆M and each x ∈ A, we can pin down the probability that x is the
best alternative in A under τ , i.e., we can identify

Z(x, A) :=
∑

≻∈P: x=max(A;≻)
τ(≻).

This is because with θ and π being identified, we can obtain the distribution of the
final consideration sets of the DM in each menu. In particular, if for all B ⊊ A,
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Z(·, B) is known, then we can inductively derive Z(·, A) by the following formula

∀x ∈ A, Z(x, A) = ρ(x|A, ∅)−∑B⊊AF(B, A)Z(x, B)
1−∑B⊊AF(B, A) ,

where F(B, A) denotes the probability that B is the final consideration set in menu
(A, ∅). Note that the set of preference distributions that generate {Z(·, A)}A⊆X can
be partially identified, although not always uniquely, through the Block-Marschak
polynomial introduced by Block and Marschak (1960).23 Thus, introducing the
channels of random attention and association does not make the identification of
random preferences more complicated under our independence assumption.24

However, if we relax the assumption of link-independence for the random
associative network by considering RABCs, then the uniqueness no longer holds.
The following example illustrates that two distinct random associative networks
can lead to the same random choice rule, even if the preference is deterministic.25

Example 5. Let X = {x, y}. Consider the following random choice rule ρ.

ρ(y|{x, y}, ∅) = 1
8 , ρ(x|{x, y}, ∅) = ρ(x|{x}, {y}) = ρ(y|{y}, {x}) = 5

8 ,

ρ(x|{x}, ∅) = ρ(y|{y}, ∅) = 1
2 .

It can be revealed that DM’s random preference τ satisfies τ(≻) = 1, where ≻
satisfies x ≻ y, and her attention probability function is given by πx = πy = 1

2 .
However, the random choice rule can be represented by more than one random
associative networks: Any random associative network µ can represent the random
choice rule if the probability of y being associated with x and that of x being

23Falmagne (1978) shows that with {Z(·, A)}A⊆X , for all x ∈ X and partition {D, D′} of
X \ x, we can uniquely identify the probability for x being better than all alternatives in D and
worse than all alternatives in D′. Any distribution over preference orderings that induces the
above probabilities is consistent with {Z(·, A)}A⊆X .

24If τ is deterministic, i.e., τ(≻) = 1 for some ≻∈P, then τ can be uniquely identified. The
unique identification property also holds for single-crossing random preferences (Apesteguia et al.,
2017; Barseghyan et al., 2021b). Another special class of random preferences is the Luce model,
where there is a weight function ω : X → R+ such that for all x ∈ A, Z(x, A) = ω(x)∑

y∈A
ω(y)

.

Clearly, since Z(·, ·) can be fully identified, ω can also be uniquely identified up to rescaling. A
similar observation is made in Cheung and Masatlioglu (2024).

25Although it is an intriguing open question to explore when two different random associative
networks lead to the same random choice rule, this question is beyond the scope of the current
paper and is left for future research.
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associated with y are both equal to 1
2 under µ. Thus, we can consider four

(deterministic) associative networks N = X , W = X ∪ {(x, y)}, V = X ∪ {(y, x)},
and U = X ∪ {(x, y), (y, x)}, and the two random associative networks µ1 and µ2,
with µ1(N ) = µ1(U) = 1

2 and µ2(W) = µ2(V) = 1
2 , can both represent ρ.

A Appendix

Proof of Proposition 1. If ρ(x|A, B) > 0, then there exists C ⊆ AB such that
x = max(N+

AB(C)∩A;≻). Since x ∈ N+
AB(C), we have N+

AB(x) ⊆ N+
AB(C), and thus

x = max(N+
AB(x) ∩ A;≻). Inversely, if x = max(N+

AB(x) ∩ A;≻), then x is chosen
when the initial consideration set is {x}. Thus, ρ(x|A, B) ≥ πxπ̊(AB)\x > 0.

Proof of Proposition 2. For equation (2), note that for any initial consideration set
C ⊆ AB, we have N+

AB(C) ∩ A ̸= ∅ if and only if N+
AB(x) ∩ A ̸= ∅ for some x ∈ C.

Thus, the default option is chosen if and only if any alternative x that satisfies
N+

AB(x) ∩ A ̸= ∅ is not initially considered. This leads to equation (2).

For equation (3), we just need to show that it holds for each k ∈ {2, ..., n}. When
the initial consideration set is D, xk is chosen if and only if N+

AB(D)∩{x1, ..., xk} =
{xk}. That is, D∩{y ∈ AB : xk = max(N+

AB(y)∩A;≻)} ≠ ∅ and for all m ≤ k−1,
D ∩ {y ∈ AB : xm = max(N+

AB(y) ∩ A;≻)} = ∅. This leads to equation (3).

Proof of Theorems 1 and 2. (Reformulation) Prior to the proof, we provide a
reformulation of the choice frequency of the default option. Consider an ABCT ρ

that is represented by (π,N ,≻, η). For any given menu (A, B), define H0
N (A, B) =

A. Then, we can define inductively Hk
N (A, B) for every k ∈ N+ such that

Hk
N (A, B) = {x ∈ AB : xN y for some y ∈ Hk−1

N (A, B)}.

To interpret, the set Hk
N (A, B) contains all alternatives in AB which can direct the

DM’s attention to some available alternative in A through no more than k rounds
of mental association. We reformulate Φρ(A, B) as:

Φρ(A, B) =
+∞∑
k=0

(1− η)ηkπ̊Hk
N (A,B) +

(
1−

(+∞∑
k=0

(1− η)ηk

))
π̊HN (A,B).
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Note that {Hk
N (A, B)}+∞

k=0 is an increasing sequence of sets, and there exists m ∈ N+

such that for all k ≥ m, Hk
N (A, B) = HN (A, B). For any such m, we also have

Φρ(A, B) =
m−1∑
k=0

(1− η)ηkπ̊Hk
N (A,B) + ηmπ̊Hm

N (A,B).

(Necessity) Since an ABC is a special ABCT, we first consider an ABCT ρ and
show that it satisfies Axioms 1 and 3-7. We then show that if ρ is an ABC, then it
satisfies Axiom 2.

Lemma 1. If a random choice rule ρ is an ABCT, then it satisfies Axiom 1.

Proof of Lemma 1. Let ρ be represented by (π,N ,≻, η). For all A ∈ M,
Φρ(A, ∅) = π̊A. Thus, for all x ∈ A, Φρ(A,∅)

Φρ(A\x,∅) = π̊x.

Lemma 2. If a random choice rule ρ is represented by (π,N ,≻, η) as an ABCT,
then for all (A, B) ∈ E and x ∈ AB, x

B−→ A if and only if N+
AB(x) ∩ A ̸= ∅.

Proof of Lemma 2. The case for x ∈ A is trivial. Consider the case where x ∈ B.
For necessity, suppose that N+

AB(x) ∩ A = ∅. By independent attention, we have
Φρ(A, B) = π̊xΦρ(A, B\x)+πxΦρ(A, B|x), where Φρ(A, B|x) denotes the probability
that the default option is chosen in menu (A, B) conditioning on that x is initially
paid attention to. However, note that for any initial consideration set C ⊆ AB

such that x /∈ C. We have N+
AB(C) ∩ A ̸= ∅ if and only if N+

AB(Cx) ∩ A ̸= ∅,
and for all k ∈ N, N k

AB(C) ∩ A ̸= ∅ if and only if N k
AB(Cx) ∩ A ≠ ∅. Therefore,

Φρ(A, B|x) = Φρ(A, B \ x), and we have Φρ(A, B) = Φρ(A, B \ x).

For sufficiency, suppose that N+
AB(x) ∩ A ̸= ∅. Consider an arbitrary set C ⊆

(AB) \ x. We have πCπ̊(AB)\(Cx) = πCπ̊(AB)\C + πCxπ̊(AB)\(Cx). Note that N+
(AB)\x(C) ∩

A ̸= ∅ implies N+
AB(C) ∩ A ̸= ∅ and N+

AB(Cx) ∩ A ≠ ∅, and for all k ∈ N,
N k

(AB)\x(C) ∩A ̸= ∅ implies N k
AB(C) ∩A ̸= ∅ and N k

AB(Cx) ∩A ̸= ∅. Thus, we have
Φρ(A, B) ≤ Φρ(A, B \ x), and to show Φρ(A, B) ̸= Φρ(A, B \ x), we need to show
Φρ(A, B) < Φρ(A, B \ x). Since every C ⊆ (AB) \ x has a positive probability to
be initially considered, it suffices to show that there exists C ⊆ (AB) \ x such that
N+

(AB)\x(C) ∩ A = ∅ and N+
AB(Cx) ∩ A ̸= ∅. By taking C = ∅, we are done.

Lemma 3. An ABCT ρ satisfies Axioms 3-7.
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Proof of Lemma 3. Let ρ be represented by (π,N ,≻, η). For Axiom 3, consider
two menus (A, B) and (C, D) with C ⊆ A and CD ⊆ AB. Since x

D−→ C, either
(1) x ∈ C or (2) Φρ(C, D) ̸= Φρ(C, D \ x). Case (1) directly implies x ∈ A since
C ⊆ A, and thus we have x

B−→ A. Case (2) implies N+
CD(x) ∩ C ̸= ∅ by Lemma 2,

and thus N+
AB(x) ∩ A ≠ ∅. It follows that either x ∈ A or x ∈ B. The former case

directly implies x
B−→ A, and the latter case implies x

B−→ A by Lemma 2.

For Axiom 4, consider x, y ∈ X and (A, B) ∈ E such that x ̸= y, x
B−→ A, and

not x
B\y−−→ A\y. It follows that x ∈ B, N+

AB(x)∩A ≠ ∅ and N+
(AB)\y(x)∩ (A\y) = ∅.

Since N+
AB(x) ∩ A ̸= ∅, there is a sequence (xk)n

k=1 in AB such that x1 = x,
{x1, ..., xn} ∩ A = xn, and for all k ∈ {1, ..., n − 1}, xkNxk+1. However, since
N+

(AB)\y(x) ∩ (A \ y) = ∅, for all such sequence, there exists k ∈ {2, ..., n} such that
xk = y. Therefore, we have x

B\y−−→ {y} and y
B\x−−→ A.

For Axiom 5, it suffices to show that if x ≻ y, then for all (A, B) ∈ E with
x, y ∈ A, we have ρ(x|A, B) = ρ(x|A\y, By). Note that since AB = (A\y)∪ (By),
we have for all C ⊆ AB and k ∈ N, x ≻ y implies that x = max(N k

AB(C)∩A;≻) if
and only if x = max(N k

(A\y)∪(By)(C)∩ (A \ y);≻). It then follows from the definition
of ABCT (equation (8)) that ρ(x|A, B) = ρ(x|A \ y, By).

For Axiom 6, note that in the proof of Lemma 2, we have shown that for all
menu (A, B) and x ∈ B, if N+

AB(x) ∩ A ̸= ∅, then Φρ(A, B) < Φρ(A, B \ x). If
N+

AB(x)∩A = ∅, then by Lemma 2, not x
B−→ A, and thus Φρ(A, B) = Φρ(A, B \ x).

In both cases, we have Φρ(A, B) ≤ Φρ(A, B\x). It remains to show that Φρ(Ax, B\
x) ≤ Φρ(A, B). Note that for all C ⊆ AB = (Ax)∪(B\x), N+

AB(C)∩A ̸= ∅ implies
N+

(Ax)∪(B\x)(C) ∩ (Ax) = N+
AB(C) ∩ (Ax) ̸= ∅, and for all k ∈ N, N k

AB(C) ∩ A ≠ ∅
implies N k

(Ax)∪(B\x)(C) ∩ (Ax) = N k
AB(C) ∩ (Ax) ̸= ∅. Thus, Axiom 6 holds.

For Axiom 7, note that since B1 = {x ∈ B : x
{x}−−→ A}, by Lemma 2, we

have x ∈ B1 if and only if N+
Ax(x) ∩ A ̸= ∅, which further implies that B1 =

{x ∈ B : xN y for some y ∈ A}. It then follows that for all k ∈ N, Hk
N (AB1, B \

B1) = Hk+1
N (A, B). Pick m ∈ N+ with m ≥ 3 such that for all k ≥ m − 1,
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Hk
N (A, B) = HN (A, B) and Hk

N (AB1, B \B1) = HN (AB1, B \B1). We have

Φρ(A, ∅)− Φρ(A, B) = π̊A −
m−1∑
k=0

(1− η)ηkπ̊Hk
N (A,B) − ηmπ̊Hm

N (A,B)

= ηπ̊A −
m−1∑
k=1

(1− η)ηkπ̊Hk
N (A,B) − ηmπ̊Hm

N (A,B)

= η

(
π̊A −

m−2∑
k=0

(1− η)ηkπ̊Hk
N (AB1,B\B1) − ηm−1π̊Hm−1

N (AB1,B\B1)

)

= ηΦρ(A, ∅)− ηΦρ(AB1, B \B1).

Since B1 ̸= ∅, we have Φρ(A, ∅) > Φρ(AB1, B \B1). Therefore, we have

Φρ(A, ∅)− Φρ(AB1, B \B1)
Φρ(A, ∅)− Φρ(A, B) = 1/η.

Hence, Axiom 7 holds for an ABCT.

Lemma 4. An ABC ρ satisfies Axiom 2.

Proof of Lemma 4. Let ρ be represented by (π,N ,≻). For a given menu (A, B)
and x ∈ B, we have HN (A, B) ⊆ HN (Ax, B \ x). To show Axiom 2, it suffices to
show that if x

B−→ A, then we have HN (Ax, B \x) ⊆ HN (A, B). To see this, consider
y ∈ HN (Ax, B \ x). It follows that N+

AB(y) ∩ (Ax) ̸= ∅. If N+
AB(y) ∩ A ̸= ∅, then

y ∈ HN (A, B). If x ∈ N+
AB(y), then N+

AB(x) ⊆ N+
AB(y). Since x

B−→ A, by Lemma 2,
we have N+

AB(x) ∩ A ̸= ∅, and thus N+
AB(y) ∩ A ̸= ∅. Hence, y ∈ HN (A, B).

(Sufficiency) Consider a random choice rule ρ. Throughout the proof of sufficiency,
we define π, N and ≻ as follows. Let the attention probability π be such that for
all x ∈ X, πx = ρ(x|{x}, ∅) ∈ (0, 1). Define the associative network N such that

N = X ∪ {(x, y) ∈ X2 : x ̸= y and ρ(y|{y}, ∅) ̸= ρ(y|{y}, {x})}.

Define the binary relation ≻ over X such that for any two distinct alternatives
x and y, x ≻ y if and only if ρ(y|{x, y}, ∅) ̸= ρ(y|{y}, {x}). Note that if Axiom
5 holds, then x ≻ y implies that for all menu (A, B) with x, y ∈ A, ρ(x|A, B) =
ρ(x|A \ y, By).

Lemma 5. For any random choice rule ρ, Axioms 1-3 imply Axiom 6.
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Proof of Lemma 5. Consider a random choice rule ρ that satisfies Axioms 1-3. Let
(A, B) and (C, D) be two arbitrary menus such that C ⊆ A and CD ⊆ AB. For
any x ∈ B such that Φρ(A, B) = Φρ(A, B \ x), i.e., not x

B−→ A, by Axiom 3, we
have not x

D−→ C, i.e., Φρ(C, D) = Φρ(C, D \ x). Therefore, we can consecutively
delete those alternatives in B to obtain B̂ ⊆ B such that Φρ(A, B) = Φρ(A, B̂) and
Φρ(C, D) = Φρ(C, D̂) where D̂ = D \ (B \ B̂). Now, for menu (A, B̂), we have for
all x ∈ B̂, x

B̂−→ A. By Axioms 2 and 3, we can consecutively shifting alternatives
from B̂ to A without affect the choice frequency of the default option, that is,
Φρ(A, B) = Φρ(A, B̂) = Φρ(AB̂, ∅). By a similar argument, we can show that
there exists some subset D̄ ⊆ D̂ such that Φρ(C, D) = Φρ(C, D̂) = Φρ(CD̄, ∅). By
Axiom 1, we have Φρ(A, B) = π̊AB̂ and Φρ(C, D) = π̊CD̄. Since CD̄ ⊆ CD̂ ⊆ AB̂,
we have Φρ(A, B) ≤ Φρ(C, D), i.e., Axiom 6 holds.

Lemma 6. For any random choice rule ρ, Axioms 1-3 imply Axiom 7.

Proof of Lemma 6. Consider menu (A, B) and nonempty B1 = {x ∈ B : x
{x}−−→ A}.

By Axioms 2 and 3, we have Φρ(A, B) = Φρ(AB1, B2) where B2 = B\B1. Following
a similar argument as the proof of Lemma 5, we have Φρ(AB1, B2) = Φρ(AB1G, ∅)
for some G ⊆ B2. Thus, by Axiom 1, we have Φρ(A, ∅) − Φρ(AB1, B2) ̸= ∅.
Therefore, Φρ(A,∅)−Φρ(A,B)

Φρ(A,∅)−Φρ(AB1,B2) is constantly equal to 1, and Axiom 7 holds.

Lemma 7. If a random choice rule ρ satisfies Axiom 4, then for all (A, B) ∈ E
and x ∈ B, x

B−→ A implies N+
AB(x) ∩ A ̸= ∅.

Proof of Lemma 7. Consider (A, B) ∈ E and x ∈ B such that x
B−→ A. It follows

that A ̸= ∅, since otherwise we have Φρ(A, B) = Φρ(A, B \ x) = 1. Since not
x

B−→ ∅, by Axiom 4 and a simple induction, there exists y ∈ A such that x
B−→ {y}.

It then suffices to show y ∈ N+
By(x), and we show this by induction.

First, if |B| = 1, then B = {x}. In this case, x
B−→ {y} is equivalent to x

{x}−−→ {y},
which further implies Φρ({y}, {x}) ̸= Φρ({y}, ∅). Since only y is available in menus
({y}, {x}) and ({y}, ∅), we conclude that ρ(y|{y}, {x}) ̸= ρ(y|{y}, ∅). By the
definition of N , we have xN y. Thus, we have y ∈ N+

{x,y}(x) = N+
By(x).

Next, assume by induction that when |B| ≤ n, x
B−→ {y} implies y ∈ N+

By(x).
We want to show that when |B| = n + 1, x

B−→ {y} also implies y ∈ N+
By(x).

To see this, note that if there exists z ∈ B \ x such that x
B\z−−→ {y}, then by
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the induction hypothesis, y ∈ N+
(By)\z(x) ⊆ N+

By(x). Otherwise, for all z ∈ B \ x,
x

B\z−−→ {y} does not hold. It then follows from Axiom 4 that for all z ∈ B \ x,
x

B\z−−→ {z} and z
B\x−−→ {y}. By our induction hypothesis, we have for all z ∈ B \ x,

z ∈ N+
B (x) ⊆ N+

By(x) and y ∈ N+
(By)\x(z) ⊆ N+

By(z). By the transitivity of N+
By, we

have y ∈ N+
By(x).

Lemma 8. If a random choice rule ρ satisfies Axiom 3, then for all x ∈ X and
(A, B) ∈ E with x ∈ B, N (x) ∩ A ̸= ∅ implies x

B−→ A.

Proof of Lemma 8. Consider x ∈ B with N (x)∩A ̸= ∅. It then follows that there
exists y ∈ A such that xN y, i.e., x

{x}−−→ {y}. By Axiom 3, we have x
B−→ A.

Lemma 9. If a random choice rule ρ satisfies Axioms 3 and 4, then for all x ∈ X

and A ∈M with x ̸∈ A, x ∈ Dρ(A) if and only if xN y for some y ∈ A.

Proof of Lemma 9. Suppose that x ∈ Dρ(A). By Lemma 7, we haveN+
Ax(x)∩A ̸= ∅.

It follows that there is y ∈ A such that xN y. Inversely, suppose that xN y for
some y ∈ A, i.e., N (x) ∩ A ̸= ∅. By Lemma 8, we have x ∈ Dρ(A).

Lemma 10. If a random choice rule ρ satisfies Axioms 1, 3, 4, 6 and 7, then
there exists η ∈ (0, 1] such that for all (A, B) ∈ E,

Φρ(A, B) =
+∞∑
k=0

(1− η)ηkπ̊Hk
N (A,B) +

(
1−

(+∞∑
k=0

(1− η)ηk

))
π̊HN (A,B); (14)

if ρ additionally satisfies Axiom 2, then η = 1 in equation (14).

Proof of Lemma 10. If for all (A, B) ∈ E and all x ∈ B, not x
B−→ A, then we have

N = X and Φρ(A, B) = Φρ(A, ∅) = π̊A. Equation (16) holds for any η ∈ (0, 1] since
Hk
N (A, B) = HN (A, B) = A for all k ∈ N+.

Consider the non-trivial situation in which there exists a menu (A∗, B∗) and
x ∈ B∗ such that x

B∗−→ A∗. By Lemma 7, N+
A∗B∗(x) ∩ A∗ ̸= ∅. It follows that the

set B∗
1 = B∗ ∩ Dρ(A∗) is not empty. Let B∗

2 = B∗ \ B∗
1 . By Axiom 6, we have

Φρ(A∗B∗
1 , B∗

2) ≤ Φρ(A∗, B∗) ≤ Φρ(A∗, B∗ \ x) ≤ Φρ(A∗, ∅). Since Φρ(A∗, B∗) ̸=
Φρ(A∗, B∗ \ x), we have Φρ(A∗B∗

1 , B∗
2) ≤ Φρ(A∗, B∗) < Φρ(A∗, B∗ \ x) ≤ Φρ(A∗, ∅).

Thus, we define
η := Φρ(A∗, ∅)− Φρ(A∗, B∗)

Φρ(A∗, ∅)− Φρ(A∗B∗
1 , B∗

2) ∈ (0, 1]. (15)
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Note that if Axiom 2 additionally holds, then Φρ(A∗, B∗) = Φρ(A∗B∗
1 , B∗

2). To
see this, note that for all Â ⊆ A∗B∗, if A∗ ⊆ Â and x ∈ (A∗B∗) \ Â, by Axiom
3, x

B∗−→ A∗ implies x
(A∗B∗)\Â−−−−−−→ Â. Thus, by Axiom 2, we can consecutively move

alternatives from B∗
1 to the available set without affecting the choice frequency of

the default option Φρ(·, ·). Therefore, we have Φρ(A∗, B∗) = Φρ(A∗B∗
1 , B∗

2). That
is, when Axiom 2 additionally holds, η = 1.

To proceed, consider an arbitrary menu (A, B). By Lemma 9, we have for all
k ∈ N,

Dρ(Hk
N (A, B)) ∩ (AB) = Hk+1

N (A, B) \Hk
N (A, B).

Note that there exists m ∈ N such that for all k ≥ m, Hk
N (A, B) = HN (A, B), and

for all k < m, Hk
N (A, B) ⊊ Hk+1

N (A, B). By Axiom 7, for all k < m, we have

Φρ(Hk
N (A, B), ∅)− Φρ(Hk

N (A, B), B \Hk
N (A, B))

Φρ(Hk
N (A, B), ∅)− Φρ(Hk+1

N (A, B), B \Hk+1
N (A, B))

= η. (16)

Since for all x ∈ B \ HN (A, B), N (x) ∩ HN (A, B) = ∅, by Lemma 9, we have
for all x ∈ B \ HN (A, B), x ̸∈ Dρ(HN (A, B)). Thus, for all x ∈ B \ HN (A, B),
N+

AB(x) ∩ HN (A, B) = ∅. It then follows that for all x ∈ B \ HN (A, B), not
x

B\HN (A,B)−−−−−−−→ HN (A, B). By Axiom 3, for all C ⊆ B \HN (A, B), for all x ∈ C, not
x

C−→ HN (A, B). Therefore, we can consecutively delete alternatives in B \HN (A, B)
and have Φρ(HN (A, B), B \HN (A, B)) = Φρ(HN (A, B), ∅).

Note that by Axiom 1, for all D ∈ M, we have Φρ(D, ∅) = π̊D. Combining it
with the fact that Φρ(Hm

N (A, B), B \HN (A, B)) = Φρ(HN (A, B), B \HN (A, B)) =
Φρ(HN (A, B), ∅), we can use equation (16) to inductively derive the following:

Φρ(A, B) =
m−1∑
k=0

(1− η)ηkπ̊Hk
N (A,B) + ηmπ̊Hm

N (A,B).

One can easily verify that the equation above is the same as equation (14) since
for all k ≥ m, Hk

N (A, B) = HN (A, B).

In the remaining part of the proof, we fix η to be the one in Lemma 10.

Lemma 11. If the random choice rule ρ satisfies Axioms 1 and 3-7, then the
revealed preference relation ≻ is asymmetric and satisfies that for all distinct
x, y ∈ X, either x ≻ y or y ≻ x.
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Proof of Lemma 11. By the definition of ≻ and Axiom 5, if x ≻ y, then not y ≻ x.
It remains to show that ≻ is well-defined for all distinct x, y ∈ X. Suppose to the
contrary that not x ≻ y and not y ≻ x. Then we have ρ(x|{x}, {y}) = ρ(x|{x, y}, ∅)
and ρ(y|{y}, {x}) = ρ(y|{x, y}, ∅). Since ρ(x|{x}, {y}) = 1 − Φρ({x}, {y}), by
Lemma 10, ρ(x|{x}, {y}) is either equal to (1− η)πx + η(1− π̊{x,y}) or πx, depending
on whether yNx holds or not. Similarly, ρ(y|{y}, {x}) is either equal to (1− η)πy +
η(1− π̊{x,y}) or πy. It follows that ρ(x|{x}, {y})+ρ(y|{y}, {x}) ≥ πx +πy > 1− π̊{x,y}.
However, ρ(x|{x}, {y}) + ρ(y|{y}, {x}) = 1− Φρ({x, y}, ∅) = 1− π̊{x,y}, which is a
contradiction. This indicates that either x ≻ y or y ≻ x.

Lemma 12. If the random choice rule ρ satisfies Axioms 1 and 3-7, then the
revealed preference relation ≻ is transitive.

Proof of Lemma 12. It suffices to show that for all pairwise distinct x, y, z ∈ X,
x ≻ y and y ≻ z imply x ≻ z. Suppose to the contrary that we have x ≻ y,
y ≻ z, and z ≻ x. By Axiom 5, we have ρ(x|{x, y, z}, ∅) = ρ(x|{x, z}, {y}) =
1 − Φρ({x, z}, {y}) − ρ(z|{x, z}, {y}) = 1 − Φρ({x, z}, {y}) − ρ(z|{z}, {x, y}) =
1 − Φρ({x, z}, {y}) − (1 − Φρ({z}, {x, y})) = Φρ({z}, {x, y}) − Φρ({x, z}, {y}).
Similarly, we have

ρ(y|{x, y, z}, ∅) = Φρ({x}, {y, z})− Φρ({x, y}, {z}),

ρ(z|{x, y, z}, ∅) = Φρ({y}, {x, z})− Φρ({y, z}, {x}).

It then follows that

1− Φρ({x, y, z}, ∅) = Φρ({x}, {y, z}) + Φρ({y}, {x, z}) + Φρ({z}, {x, y})

− Φρ({y, z}, {x})− Φρ({x, z}, {y})− Φρ({x, y}, {z}).
(17)

To prove the lemma, it suffices to show that equation (17) never holds. Note that
the left-hand-side (LHS) of equation (17) has a fixed value while the value of the
right-hand-side (RHS) of equation (17) depends on the associative network N .
We will show that the RHS is always strictly smaller than the LHS under any
associative network N . To do so, first note that for any menu (A, B) with |B| ≤ 2,
we can decompose Φρ(A, B) as the summation of the three terms: (1− η)Φ0

ρ(A, B),
(1− η)ηΦ1

ρ(A, B) and η2Φ2
ρ(A, B), where Φk

ρ(A, B) denotes the probability for the
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DM to choose the default option conditional on that the DM exercises k rounds of
mental association. Since for any menu (A, B), Φ2

ρ(A, B) ≤ Φ1
ρ(A, B), and |B| = 1

implies Φ2
ρ(A, B) = Φ1

ρ(A, B), to show that the value of the RHS of equation (17) is
strictly less than that of the LHS, it suffices to show the following two inequalities:

1− Φρ({x, y, z}, ∅) > Φ0
ρ({x}, {y, z}) + Φ0

ρ({y}, {x, z}) + Φ0
ρ({z}, {x, y})

− Φ0
ρ({y, z}, {x})− Φ0

ρ({x, z}, {y})− Φ0
ρ({x, y}, {z}),

(18)

1− Φρ({x, y, z}, ∅) > Φ1
ρ({x}, {y, z}) + Φ1

ρ({y}, {x, z}) + Φ1
ρ({z}, {x, y})

− Φ1
ρ({y, z}, {x})− Φ1

ρ({x, z}, {y})− Φ1
ρ({x, y}, {z}).

(19)

Note that the RHS of (18) minus the LHS of (18) is equal to

∑
w∈{x,y,z}

(Φρ({w}, ∅)− Φρ({x, y, z} \ w, ∅)) + Φρ({x, y, z}, ∅)− 1

= π̊x + π̊y + π̊z − π̊{x,y} − π̊{y,z} − π̊{x,z} + π̊{x,y,z} − 1 = −π{x,y,z} < 0.

Therefore, inequality (18) holds. It remains to show that inequality (19) holds.
Consider the following possible associative networks.

Case 1: N{x,y,z} = {(x, x), (y, y), (z, z), (x, z), (y, x), (z, y)}. In this case, the RHS
of (19) minus the LHS of (19) is equal to

Φρ({x, y}, ∅) + Φρ({y, z}, ∅) + Φρ({x, z}, ∅)− 2Φρ({x, y, z}, ∅)− 1

= π̊{x,y} + π̊{y,z} + π̊{x,z} − 2π̊{x,y,z} − 1 = 2π{x,y,z} − π{x,y} − π{x,z} − π{y,z} < 0.

Case 2: N{x,y,z} = {(x, x), (y, y), (z, z), (x, z), (y, z), (z, x)}. In this case, the RHS
of (19) minus the LHS of (19) is equal to

Φρ({x, z}, ∅) + Φρ({y}, ∅)− Φρ({x, y, z}, ∅)− 1

= π̊{x,z} + π̊y − π̊{x,y,z} − 1 = π{x,y,z} − π{x,y} − π{y,z} < 0.

Case 3: N{x,y,z} = {(x, x), (y, y), (z, z), (x, z), (y, x)}. In this case, the RHS of (19)
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minus the LHS of (19) is equal to

Φρ({x, y}, ∅) + Φρ({y}, ∅) + Φρ({x, z}, ∅)− Φρ({x, y, z}, ∅)− Φρ({x, y}, ∅)− 1

= π̊y + π̊{x,z} − π̊{x,y,z} − 1 = π{x,y,z} − π{x,y} − π{y,z} < 0.

Case 4: N{x,y,z} = {(x, x), (y, y), (z, z), (x, z), (y, z)}. In this case, the RHS of (19)
minus the LHS of (19) is equal to

Φρ({x}, ∅) + Φρ({y}, ∅)− Φρ({x, y}, ∅)− 1

= π̊x + π̊y − π̊{x,y} − 1 = −π{x,y} < 0.

Case 5: N{x,y,z} = {(x, x), (y, y), (z, z), (x, z)}. In this case, the RHS of (19) minus
the LHS of (19) is equal to

Φρ({x}, ∅) + Φρ({y}, ∅)− Φρ({x, y}, ∅)− 1

= π̊x + π̊y − π̊{x,y} − 1 = −π{x,y} < 0.

Case 6: N{x,y,z} = {(x, x), (y, y), (z, z)}. In this case, the RHS of (19) minus the
LHS of (19) is equal to

∑
w∈{x,y,z}

(Φρ({w}, ∅)− Φρ({x, y, z} \ w, ∅)) + Φρ({x, y, z}, ∅)− 1

= π̊x + π̊y + π̊z − π̊{x,y} − π̊{y,z} − π̊{x,z} + π̊{x,y,z} − 1 = −π{x,y,z} < 0.

It can be shown that for any other associative network N̂ that is not covered
by the above cases, there is one associative network N from the above cases such
that either N̂ is symmetric to N , or N̂ leads to the same value of Φ1

ρ({y, z}, {x}) +
Φ1

ρ({x, z}, {y}) + Φ1
ρ({x, y}, {z}) as N does but a lower value of Φ1

ρ({x}, {y, z}) +
Φ1

ρ({y}, {x, z}) + Φ1
ρ({z}, {x, y}) than N does. Therefore, inequality (19) holds for

all associative networks.

Lemma 13. A random choice rule ρ is represented by (π,N ,≻, η) as an ABCT if
and only if (i) for all menu (A, B), equation (14) holds, and (ii) for all x, y ∈ X,
if x ≻ y, then for all menu (C, D) with x, y ∈ C, ρ(x|C, D) = ρ(x|C \ y, Dy).

Proof of Lemma 13. As we have shown in the necessity part, if ρ is represented
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by (π,N ,≻, η) as an ABCT, then conditions (i) and (ii) hold. Inversely, suppose
that conditions (i) and (ii) hold. For any given menu (A, B), we can enumerate
alternatives in A such that A = {xi}n

i=1 with x1 ≻ ... ≻ xn. By condition (ii), we
have for all k ∈ {1, ..., n},

k∑
t=1

ρ(xt|A, B) =
k∑

t=1
ρ(xt|A \ {xk+1, ..., xn}, B ∪ {xk+1, ..., xn})

= 1− Φρ(A \ {xk+1, ..., xn}, B ∪ {xk+1, ..., xn}).

With condition (i), we can uniquely identify ρ(xi|A, B) for all i ∈ {1, ..., n}.
Therefore, there is a unique choice rule that satisfies conditions (i) and (ii). Since
the random choice rule that is represented by (π,N ,≻, η) as an ABCT also satisfies
conditions (i) and (ii), we conclude that any choice rule that satisfies conditions (i)
and (ii) is the one that is represented by (π,N ,≻, η) as an ABCT.

The sufficiency for Axioms 1 and 3-7 to guarantee ρ to be an ABCT can be
implied by Lemmas 10-13. If Axiom 2 is additionally satisfied, then η = 1, as we
have shown in the proof of Lemma 10. It then follows that the random choice rule
is an ABC. The uniqueness of π, N and ≻ is evident according to their definitions.
The uniqueness of η (defined by equation (15)) is guaranteed by the non-triviality
assumption on the random choice rule ρ.

Proof of Propsition 4. Let ρ̂(x∗|A, X \ A) be the choice frequency of x∗ in menu
(A, X \A) after the link (y, x∗) is added. It remains to show that when ρ(x∗|A, X \
A) > 0, we have ρ̂(x∗|A, X \ A) − ρ(x∗|A, X \ A) = π̊Ā

(
1− π̊←−N+(z)\Ā

)
. To see

this, consider a partition {Ā1, Ā2} of Ā with Ā1 = {y ∈ X : for some z ∈ A, z ≻
x∗ and yN+z} and Ā1 = Ā \ Ā1. Let events 1 and 2 denote that no alternative in
Ā1 and Ā2 is initially considered, respectively. If event 1 does not occur, then some
alternative better than x∗ in A will be considered and always blocks the choice x∗.
If event 2 does not occur, then x∗ already appears in the final consideration set,
and adding one more link cannot further boost the choice of x∗. Hence, the new
link only affects the choice of x∗ when both events occurs, of which the probability
is π̊Ā. Conditional on the two events, the extra choice probability of x∗ by the new
link equals the chance that some alternative prompts the attention to x∗ through
the new link, i.e., 1− π̊←−N+(z)\Ā.
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Proof of Proposition 5. Consider a random choice rule ρ that is represented by
(π,N ,≻) as an ABC on EF . It remains to show that ρ is also represented by
(π,N [ρ],≻) on EF . To simplify the notation, let W = N [ρ]. Since W ⊆ N , it
suffices to show that for all menu (A, B), x ∈ A and C ⊆ AB, if x = max(N+

AB(C)∩
A;≻), then x ∈ W+

AB(C). The case x ∈ C is trivial. Suppose that x /∈ C. Since
x = max(N+

AB(C) ∩ A;≻), there exists a sequence of mutually distinct alternatives
(xk)n+1

k=1 , where n ∈ N+, such that x1 ∈ C, xn+1 = x = max({xt}n+1
t=1 ;≻), and for all

k ≤ n, N (xk) ∩ {xt}n+1
t=k = {xk, xk+1}. It then suffices to show that for all k ≤ n,

xkWxk+1. We prove this by induction. If n = 1, then x2 ≻ x1 and x1Nx2 implies
ρ(x1|{x1, x2}, ∅) = 0, which further implies x1Wx2 by the definition ofW . Suppose
that our hypothesis is true for all n ≤ m. Consider the case where n = m+1. If the
second best alternative in {xt}n+1

t=1 is not x1, then apply our induction hypothesis
twice, and we are done. If the second best alternative in {xt}n+1

t=1 is x1, then by our
assumption on N , xn+1 is the only alternative chosen with positive probabilities in
menus ({xt}n+1

t=1 , ∅) and ({xt}n+1
t=3 , ∅), and x1 and xn+1 are the only two alternatives

chosen with positive probabilities in menu ({x1} ∪ {xt}n+1
t=3 , ∅). Therefore, by the

definition of W , we have x1Wx2. By applying the induction hypothesis to (xk)n+1
k=2 ,

we are done.

Proof of Proposition 6. Let A = {A ⊆ X : A ≠ ∅,N+(X \ A) ∩ A = ∅}. We have
for each A ∈ A, π̊A = Φρ(A, X \ A). Thus, it remains to show that only {π̊A}A∈A
can be identified. Note that for every menu (A, X \ A), HN (A, X \ A) ∈ A, and
we have Φρ(A, X \ A) = π̊HN (A,X\A). For every x ∈ A, let C = {y ∈ A : y ≻ x}. We
have

ρ(x|A, X \ A) = 1−
∑
y∈C

ρ(y|Cx, X \ (Cx))− Φρ(Cx, X \ (Cx))

= 1−
∑
y∈C

ρ(y|C, X \ C)− Φ(Cx, X \ (Cx)) = Φρ(C, X \ C)− Φρ(Cx, X \ (Cx)).

Thus, ρ does not reveal additional information on π given {π̊A}A∈A.
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Online Appendix (for online publication only)

This online appendix to “Associative Networks in Decision Making” is organized
as follows. In Section OA-1, we provide a characterization of the association based
consideration rule (ABC) restricted on the domain EF = {(A, B) ∈ E : B = ∅}
where every observable alternative is available. In Section OA-2, we discuss more
general models of initial attention distributions.

OA-1. Restricted Domain

In this section, we axiomatize ABCs on EF . The first axiom is the Default
Independence axiom that we introduced in the main text.

Axiom A1—Default Independence: For all x ∈ X and A, B ∈ M with
x ∈ A ∩B:

Φρ(A, ∅)
Φρ(A \ x, ∅) = Φρ(B, ∅)

Φρ(B \ x, ∅) .

For a given choice rule ρ and menu (A, ∅), let cρ(A, ∅) := {x ∈ A : ρ(x|A, ∅) > 0}
be the set of chosen alternatives in A, i.e., those in A that are chosen with positive
probabilities. We impose the next two axioms on the set of chosen alternatives.

Axiom A2—Sen’s α: For all A, B ∈M, B ⊆ A implies cρ(A, ∅)∩B ⊆ cρ(B, ∅).
Axiom A3—Reducibility: For all A ∈ M, if for every x ∈ A, cρ(A, ∅) ̸=

cρ(A \ x, ∅), then cρ(A, ∅) = A.

Axiom A2 states that if an alternative is selected from a larger menu, it must
also be selected from any smaller menu that contains it. To interpret, if a particular
alternative x is not chosen in a smaller menu, then given the presence of more
competitive alternatives in a larger menu, it should also remain unselected. In
our context, if an alternative is not chosen, its consideration must lead to the
consideration of a better alternative. Consequently, in a larger menu, the superior
alternative remains to be associated with x and thus blocks the choice of x.

The contrapositive of Axiom A3 states that if not all alternatives are selected,
then there exists an unselected alternative whose removal does not alter the set of
chosen alternatives. To illustrate this axiom, consider a menu ({x, y, z}, ∅) where
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only x is chosen. As both y and z are unselected, their consideration must lead
to the consideration of a superior alternative in this menu, which has to be x. If
the removal of y results in a change in the set of chosen alternatives such that
z becomes chosen, then x must be associated with z through y, and x must be
directly associated with y. In this scenario, the deletion of z does not alter the
association relation between x and y, and thus does not affect the set of chosen
alternatives. In summary, Axiom A3 establishes the existence of an unselected
alternative (if not all alternatives are chosen) whose removal does not impact the
association relation among the remaining alternatives, thereby preserving the set
of chosen alternatives.

For any x ∈ X and A ∈ M, we say that x is associatively independent of A,
denoted by x ⊢ A, if x /∈ A and for all y ∈ A, ρ(y|A, ∅) = ρ(y|Ax, ∅). Note that
according to this definition, for all x ∈ X, we have x ⊢ ∅.

Axiom A4—Weak I-Independence: For all x ∈ X and A, B ∈M, if x ⊢ A

and x ⊢ B, then x ⊢ A ∪B.

Axiom A4 posits that if x is associatively independent of both A and B, then it
is also associatively independent of their union. Notably, this axiom can be implied
by the I-Independence axiom of MM14. According to the I-Independence axiom,
if x does not affect the frequency of selecting alternative y in a particular menu,
then it should not impact the frequency of choosing y in every menu.

For any two alternatives x and y, we say that x weakly dominates y, denoted
by x ⊵ y, if there is a menu A such that y ∈ A and cρ(A, ∅) = {x}.

Axiom A5—Dominance Asymmetry: For all x, y, z ∈ X and A, B ∈M
such that x ̸= z, x ⊵ y, y ∈ cρ(A, ∅) and z ∈ cρ(B, ∅), we have

ρ(z|A, ∅) ̸= ρ(z|A \ y, ∅)⇒ ρ(x|B, ∅) = ρ(x|B \ z, ∅).

To understand Axiom A5, observe that deleting y from menu (A, ∅) changes
the choice frequency of z. It then follows that either y is worse than z, in which
case the consideration of y prompts the consideration of z and boosts the choice of
z, or y is better than z, in which case the presence of y hinders the choice of z.
Since y is chosen in (A, ∅), the former case cannot be true. Thus, y must be better
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than z, and the alternative x that weakly dominates y is even better. Therefore,
deleting z from any menu in which z is chosen will not affect the choice frequency
of x since the consideration of z cannot prompt the consideration of x in that
menu.

Theorem A1. Axioms A1-A5 are sufficient and necessary for a random choice
rule ρ to be an ABC on EF .

Proof of Theorem A1. (Necessity) Consider an ABC ρ on EF that is represented
by (π,N ,≻). Axiom A1 holds trivially. For Axiom A2, consider A, B ∈M with
B ⊆ A. If for some x ∈ B, x /∈ cρ(B, ∅), then we have x ̸= max(N+

B (x);≻). Since
N+

B (x) ⊆ N+
A (x), we have x ̸= max(N+

A (x);≻). Thus, x /∈ cρ(A, ∅).

For Axiom A3, consider A ∈ M such that cρ(A, ∅) ̸= A. Let cρ(A, ∅) =
{x1, ..., xn} such that for all k ∈ {1, ..., n − 1}, xk ≻ xk+1. Consider a partition
{Bk}n

k=1 of A such that for every k, Bk = {y ∈ A : N+
A (y) ∩ {x1, ..., xk} = {xk}}.

Note that each Bk contains xk, and for all y ∈ Bk \xk, we have y /∈ cρ(A, ∅), xk ≻ y

and xk ∈ N+
Bk

(y). Consider some k such that Bk \ xk ≠ ∅. It is easy to show that
there is an alternative y ∈ Bk \ xk such that for all z ∈ Bk \ y, xk ∈ N+

Bk\y
(z).

Deleting y from menu (A, ∅) will not affect the choices.

For Axiom A4, note that x ⊢ A if and only if for all y ∈ cρ(A, ∅), y ≻ x, and
for all z ∈ A, (x, z) /∈ N . It follows that x ⊢ A and x ⊢ B imply x ⊢ AB.

For Axiom A5, it suffices to show that for two distinct alternatives x and y, if
x ∈ cρ(A, ∅) and ρ(y|A, ∅) ̸= ρ(y|A \ x, ∅), then x ≻ y. Let cρ(A, ∅) = {x1, ..., xn}
such that for all k ∈ {1, ..., n − 1}, xk ≻ xk+1. Consider the partition {Bk}n

k=1

constructed in the proof for Axiom A3. We have x = xk for some k. If y /∈ cρ(A, ∅),
then ρ(y|A, ∅) ̸= ρ(y|A \ x, ∅) implies y ∈ Bk, and thus x ≻ y. If y ∈ cρ(A, ∅), then
ρ(y|A, ∅) ̸= ρ(y|A \ x, ∅) implies y = xt for some t > k, and thus x ≻ y.

(Sufficiency) Through out the proof of sufficiency, we assume that Axioms A1-A5
hold. For the attention probability function π, let πx = ρ(x|{x}, ∅) for every
x ∈ X. For the preference ordering ≻, let x ≻ y if x ̸= y, x ∈ cρ({x, y}, ∅) and
ρ(y|{x, y}, ∅) ̸= ρ(y|{y}, ∅). For the associative network N , let (x, y) ∈ N if and
only if either (i) x = y, or (ii) x ≠ y and there exists A ∈M such that x ⊢ A and
x /∈ cρ(A ∪ {x, y}, ∅). We proceed with a sequence of lemmas.
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Lemma A1. For all x ∈ X and A ∈M, if x ⊢ A, then x ∈ cρ(Ax, ∅).

Proof of Lemma A1. Since x ⊢ A, we have ∑
y∈A ρ(y|A, ∅) = ∑

y∈A ρ(y|Ax, ∅).
Since Φρ(Ax, ∅) < Φρ(A, ∅), we have ρ(x|Ax, ∅) ̸= 0, i.e., x ∈ cρ(Ax, ∅).

Lemma A2. The binary relation ≻ is a preference ordering and satisfies that for
all x, y ∈ X and A ∈M, if x ≻ y and y ∈ cρ(A, ∅), then ρ(x|A, ∅) = ρ(x|A \ y, ∅).

Proof of Lemma A2. The claim that x ≻ y and y ∈ cρ(A, ∅) imply ρ(x|A, ∅) =
ρ(x|A \ y, ∅) follows from the definition of ≻ and Axiom A5. Showing that ≻ is
well-defined for each distinct pair of alternatives and asymmetric is trivial. To see
that ≻ is transitive, suppose to the contrary that there are three mutually distinct
alternatives x, y and z such that x ≻ y, y ≻ z, and z ≻ x. By symmetry, we can
focus on three representative cases, where in case 1, cρ({x, y, z}, ∅) = {x, y, z}, in
case 2, cρ({x, y, z}, ∅) = {x, y}, and in case 3, cρ({x, y, z}, ∅) = {x}. We want to
show that all the three cases lead to contradiction.

For case 1, we have 1− π̊{x,y,z} = 1−Φ({x, y, z}, ∅) = ∑
w∈{x,y,z} ρ(w|{x, y, z}, ∅)

= ρ(x|{x, z}, ∅) + ρ(y|{x, y}, ∅) + ρ(z|{y, z}, ∅) = 1−Φ({x, z}, ∅)− ρ(z|{x, z}, ∅) +
1−Φ({x, y}, ∅)−ρ(x|{x, y}, ∅)+1−Φ({y, z}, ∅)−ρ(y|{y, z}, ∅) = 3−Φ({x, z}, ∅)−
ρ(z|{z}, ∅)−Φ({x, y}, ∅)−ρ(x|{x}, ∅)−Φ({y, z}, ∅)−ρ(y|{y}, ∅) = πx + πy + πz−
π{x,y} − π{y,z} − π{x,z} < 1− π̊{x,y,z}, which is a contradiction.

For case 2, since cρ({x, y, z}, ∅) = {x, y} and z ≻ x, we have cρ({y, z}, ∅) = {y}.
It follows that y ⊵ z, and thus by Axiom A5 and x ≻ y, we have for all A ∈ M
with x ∈ cρ(A, ∅), ρ(y|A, ∅) = ρ(y|A \ x, ∅). By Axiom A2, x ∈ cρ({x, y}, ∅), and
thus ρ(y|{x, y}, ∅) = ρ(y|{y}, ∅), which contradicts to the fact that x ≻ y.

For case 3, since cρ({x, y, z}, ∅) = {x}, we have x ⊵ z. By z ≻ x, we have
z ∈ cρ({x, z}, ∅) and ρ(x|{x, z}, ∅) ̸= ρ(x|{x}, ∅). By Axiom A5, this contradicts
to x ⊵ z.

Lemma A3. For all x ∈ X and A ∈ M with x ∈ A, if x /∈ cρ(A, ∅), then there
exists y ∈ N+

A (x) ∩ cρ(A, ∅) such that y ≻ x.

Proof of Lemma A3. We prove by induction on |A|. First, if |A| = 2, then A =
{x, y} and x /∈ cρ({x, y}, ∅). Then by the construction of N and ≻, we have
(x, y) ∈ N and y ≻ x. Therefore, the lemma holds when |A| = 2.
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Assume that the lemma holds whenever |A| ≤ n, where n ≥ 2. Consider the
case where |A| = n + 1. Since x /∈ cρ(A, ∅), by Axiom A3, there exists y ∈ A such
that cρ(A, ∅) = cρ(A \ y, ∅). If y ̸= x, then x /∈ cρ(A \ y, ∅), and we are done by our
induction hypothesis. Hence, consider the case where x is the only alternative in
A such that cρ(A, ∅) = cρ(A \ x, ∅). By a similar argument, we can additionally
assume that for all z ∈ cρ(A, ∅), we have x ∈ cρ(A \ z, ∅). Thus, by Lemma A2, we
have for all z ∈ cρ(A, ∅), z ≻ x.

To proceed, consider (A \ x, ∅). We first show that if cρ(A \ x, ∅) = A \ x, then
|A \ x| = 1, and we are done. To see this, suppose to the contrary that |A \ x| ≥ 2,
and let y and z be two distinct alternatives in A \ x. By Axiom A2 and the
assumptions we impose on the case we consider, we have x ∈ cρ(A \ y, ∅) = A \ y

and x ∈ cρ(A \ z, ∅) = A \ z. Since for all x̂ ∈ A \ x, we have x̂ ≻ x, by Lemma
A2, we have x ⊢ A \ {x, y} and x ⊢ A \ {x, z}. It follows from Axiom A4 that
x ⊢ A \ x, which by Lemma A1 is a contradiction since x /∈ cρ(A, ∅).

By the above argument, we can additionally assume that cρ(A\x, ∅) ̸= A\x. By
Axiom A3, there exists z ∈ A\x such that cρ(A\{x, z}, ∅) = cρ(A\x, ∅) = cρ(A, ∅).
By Axiom A2, we have cρ(A \ z) = {x}∪ cρ(A). Since x ∈ cρ(A \ z, ∅) = {x}∪ cρ(A)
and for all w ∈ cρ(A), w ≻ x, by Lemma A2, we have x ⊢ A \ {x, z}. Since
x /∈ cρ(A, ∅), we have (x, z) ∈ N . Since z /∈ cρ(A \ x, ∅), by the induction
hypothesis, there exists y ∈ cρ(A \ x, ∅) such that y ≻ z and y ∈ N+

A\x(z). Thus, we
have y ∈ N+

A (x). Since y ∈ cρ(A \ x, ∅), we have y ∈ cρ(A, ∅), and thus y ≻ x.

Lemma A4. For all x ∈ X and A ∈M, if x ∈ cρ(A, ∅), then x = max(N+
A (x);≻).

Proof of Lemma A4. We show that in menu (A, ∅), if there is an alternative that
is associated with x and ≻-better than x, then x is not chosen. By Axiom A2, it
suffices to show that for any sequence of alternatives (xk)n

k=1, where n ≥ 2, if for
all k ∈ {1, ..., n− 1}, xn ≻ xk and (xk, xk+1) ∈ N , then x1 /∈ cρ({x1, ..., xn}, ∅). We
show this by induction on n. First, let n = 2. We have x1Nx2 and x2 ≻ x1. Suppose
to the contrary that x1 ∈ cρ({x1, x2}, ∅), then by Lemma A2 and the construction
of ≻, we have cρ({x1, x2}, ∅) = {x1, x2} and ρ(x2|{x1, x2}, ∅) = ρ(x2|{x2}, ∅), i.e.,
x1 ⊢ {x2}. However, since x1Nx2, by the construction of N , we can find A ∈M
such that x1 ⊢ A and x1 /∈ cρ(A ∪ {x1, x2}, ∅). By Axiom A4, we have x1 ⊢ Ax2,
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and by Lemma A1, we have x1 ∈ cρ(A∪{x1, x2}, ∅), which is a contradiction. Thus,
we must have x1 /∈ cρ({x1, x2}, ∅).

Next, suppose that the induction hypothesis holds for all n ≤ m (m ≥ 2).
Consider the case where n = m + 1. Since for all k ∈ {1, ..., n − 1}, xn ≻ xk,
we have cρ({x2, ..., xn}, ∅) = {xn} by our induction hypothesis. Suppose to the
contrary that x1 ∈ cρ({x1, ..., xn}, ∅), by Axiom A2, we have cρ({x1, ..., xn}, ∅) =
{x1, xn}. By Lemma A2, we have ρ(xn|{x1, ..., xn}, ∅) = ρ(xn|{x2, ..., xn}, ∅). Thus
x1 ⊢ {x2, ..., xn}. Since x1Nx2, we can find A ∈ M such that x1 ⊢ A and
x1 /∈ cρ(A ∪ {x1, x2}, ∅). By Axiom A4, we have x1 ⊢ A ∪ {x2, ..., xn}, and
by Lemma A1, we have x1 ∈ cρ(A ∪ {x1, ..., xn}, ∅). It follows from Axiom A2
that x1 ∈ cρ(A ∪ {x1, x2}, ∅), which is a contradiction. Therefore, we have x1 /∈
cρ({x1, ..., xn}, ∅).

With Lemmas A3 and A4, we have for all A ∈ M and x ∈ A, x ∈ cρ(A, ∅)
if and only if x = max(N+

A (x);≻). Let cρ(A, ∅) = {x1, ..., xn} such that for all
k ∈ {1, ..., n − 1}, xk ≻ xk+1. We can have a partition {Bk}n

k=1 of A such that
for every k, Bk = {y ∈ A : N+

A (y) ∩ {x1, ..., xk} = {xk}}. Note that for each k,
xk ∈ Bk, and for all y ∈ Bk \ xk, y /∈ cρ(A, ∅), xk ≻ y and xk ∈ N+

Bk
(y). To show

that ρ can be represented by (π,N ,≻) as an ABC on EF , it suffices to show that
for all k ∈ {1, ..., n},

k∑
t=1

ρ(xt|A, ∅) = 1− π̊Ck
, (20)

where Ck = ∪k
t=1Bk. Note that equation (20) holds when k = n. Consider some

k < n. Let Dk = A \ Ck. It follows that N+
A (Dk) ∩ Ck = ∅. Thus, for all D ⊆ Dk,

cρ(Ck ∪ D, ∅) ∩ D ≠ ∅. Therefore, we can enumerate Dk = {y1, ..., ym} such
that for all t ∈ {1, ..., m}, yt ∈ cρ(Ck ∪ {y1, ..., yt}, ∅). Note that for all D ⊆ Dk,
{x1, ..., xk} = cρ(Ck∪D, ∅)∩Ck. It follows from Lemma A2 that for all t ∈ {1, ..., k}
and s ∈ {1, ..., m}, ρ(xt|Ck, ∅) = ρ(xt|Ck ∪ {y1, ..., ys}, ∅) = ρ(xt|A, ∅). Therefore,

k∑
t=1

ρ(xt|A, ∅) =
k∑

t=1
ρ(xt|Ck, ∅) = 1− Φ(Ck, ∅) = 1− π̊Ck

.

The sufficiency is thus shown.

6



OA-2. General Models of Initial Attention

In this section, we study two relaxations of our assumption regarding how the DM’s
initial attention set is formed. First, we consider more general initial attention
distributions by relaxing the assumption of independent attention. Second, we
maintain the assumption of independent attention but allow the DM’s attention
probability for an alternative to depend on its availability.

General attention distributions. Consider a general attention distribution
function σ : M×M → [0, 1] such that for all A ∈ M, ∑B⊆A σ(B, A) = 1, and
σ(B, A) > 0 if and only if B ⊆ A. To interpret, σ(B, A) is the probability that the
DM’s initial consideration set is B when A is the set of all observable alternatives.
With σ, if the DM’s associative network and preference ordering are given by N
and ≻ respectively, then for all menu (A, B) and x ∈ A, we have

ρ(x|A, B) =
∑

C⊆AB: x=max(N +
AB(C)∩A; ≻)

σ(C, AB).

In what follows, we demonstrate that both N and ≻ can be uniquely identified.
To see this, consider two distinct alternatives x and y. The identification of N is
exactly the same as that in our baseline model. If xN y, then

Φρ({y}, {x}) = σ(∅, {x, y}) = Φρ({x, y}, ∅),

and if not xN y, then

Φρ({y}, {x}) = σ(∅, {x, y}) + σ({x}, {x, y}) > Φρ({x, y}, ∅).

Therefore, xN y if and only if Φρ({y}, {x}) = Φρ({x, y}, ∅). For the identification
of the preference ordering, note that if x ≻ y, then we have

ρ(x|{x, y}, ∅) = ρ(x|{x}, {y}), and

ρ(y|{x, y}, ∅) ≤ σ({y}, {x, y})

< σ({y}, {x, y}) + σ({x, y}, {x, y}) ≤ ρ(y|{y}, {x}).

Therefore, x ≻ y if and only if ρ(x|{x, y}, ∅) = ρ(x|{x}, {y}).

While the general attention distribution may be hard to identify, certain
parametric assumptions on σ can lead to a unique identification. For instance,
consider the attention distribution σ introduced by Brady and Rehbeck (2016):
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There is a function ζ :M→ (0, 1) such that for all B ⊆ A, σ(B, A) = ζ(B)∑
C⊆A

ζ(C) .
Brady and Rehbeck (2016) show that such an attention distribution generalizes
the independent attention distribution in MM14. In fact, for all A ⊆ X, ζ(A)

ζ(∅) can
be pinned down inductively via Φ(A, ∅).26 Therefore, ζ is unique up to rescaling.

Availability-dependent attention. Our baseline model assumes that the
attention probability of an observable alternative is the same regardless of its
availability. However, this assumption may not hold in certain contexts. For
example, in some online shopping platforms, products that are sold out are explicitly
labeled as “out of stock” on the display page. It is plausible that such labeling
may result in excessive or less attention from the consumer. Therefore, a natural
extension of our baseline model is to incorporate the availability of alternatives as
a factor that influences the attention probability assigned to them.

Formally, let πf : X → (0, 1) be the attention probability function for available
alternatives, and πn : X → (0, 1) be the attention probability function for
unavailable but observable alternatives.27 Let N be the associative network and ≻
be the DM’s preference ordering. For each menu (A, B) and x ∈ A, we have

ρ(x|A, B) =
∑

C⊆AB: x=max(N +
AB(C)∩A; ≻)

πf
C∩Aπn

C∩Bπ̊f
A\C π̊n

B\C .

We argue that all relevant parameters of the model above can be uniquely
identified. First, the preference ordering ≻ can be identified similarly as Case 1 in
Section 7.1, and the associative network N can be identified similarly as in our
baseline model. Second, the attention probability for each alternative x when it
is available is given by πf

x = ρ(x|{x}, ∅). Finally, the attention probabilities for
unavailable but observable alternatives can be identified through the extent to
which they boost the choice frequencies of other alternatives. To see this, consider
alternative x and assume that there exists a distinct alternative y such that xN y.
We have ρ(y|{y}, {x}) = 1− (1− πn

x)(1− πf
y ), which implies

πn
x = 1− 1− ρ(y|{y}, {x})

1− πf
y

.

26Specifically, suppose that for all C ⊊ A, the ratio ζ(C)
ζ(∅) is already pinned down. Then we

have ζ(A)
ζ(∅) =

∑
B⊆A:B ̸=∅

ζ(B)
ζ(∅) −

∑
C⊊A:C ̸=∅

ζ(C)
ζ(∅) = 1−Φ(A,∅)

Φ(A,∅) −
∑

C⊊A:C ̸=∅
ζ(C)

ζ(∅) .

27The definitions of πf
A, πn

A, π̊f
A and π̊n

A are similar to those of πA and π̊A in Section 3.

8



We note that πn cannot be fully identified: For a given alternative x, if every other
alternative is not associated with it, then we are unable to identify πn

x . Nevertheless,
in this case, since the consideration of x does not prompt the consideration of any
other alternative, the value of πn

x is irrelevant.

References for Online Appendix
Brady, R. L. and J. Rehbeck (2016): “Menu-Dependent Stochastic Feasibility,”

Econometrica, 84, 1203–1223.

9


	Associative networks in decision making
	Citation

	Introduction
	Related Literature

	Preliminaries
	Association Based Consideration
	Axioms and Representation Theorem
	Reformulation
	Characterization

	Association Based Consideration with Termination
	Application
	Extensions
	Limited Data
	Random Association Based Consideration

	Appendix

