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A Robust Optimization Approach to Mechanism Design∗

Jiangtao Li† Kexin Wang‡
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Abstract

We study the design of mechanisms when the mechanism designer faces local

uncertainty about agents’ beliefs. Specifically, we consider a designer who does

not know the exact beliefs of the agents but is confident that her estimate is

within ε of the beliefs held by the agents (where ε reflects the degree of local

uncertainty). Adopting the robust optimization approach, we design mechanisms

that incentivize agents to truthfully report their payoff-relevant information

regardless of their actual beliefs. For any fixed ε, we identify necessary and

sufficient conditions under which requiring this sense of robustness is without loss

of revenue for the designer. By analyzing the limiting case in which ε approaches

0, we provide two rationales for the widely studied Bayesian mechanism design

framework.
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‡School of Economics, Singapore Management University, kexinwang.2020@phdecons.smu.edu.sg

1



1 Introduction

Many classical analyses of mechanism design problems adopt the Bayesian approach,
typically assuming that agents’ belief about other agents are common knowledge
among the agents and the designer. Under this assumption and using the solution
concept of Bayesian Nash equilibrium, the optimal Bayesian mechanism design problem
can be solved by maximizing the designer’s expected payoff subject to the Bayesian
incentive constraints—each agent finds it optimal to truthfully report her payoff-relevant
information in expectation. This assumption, while standard in Bayesian mechanism
design models, is nevertheless very strong. Consequently, the theoretical conclusions
can sometimes be fragile; mechanisms optimized to perform well when this assumption
is exactly true may still fail miserably in the much more frequent cases when this
assumption is untrue. The so-called Wilson doctrine suggests that practical mechanisms
should be designed without assuming detailed knowledge of the underlying economic
environment. Relaxing these assumptions has been the focus on the recent literature
on robust mechanism design.

In response to Wilson’s critique, another common approach uses the stronger
solution concept of dominant strategy Nash equilibrium. This approach does not
rely on any information about the agents’ beliefs, and the optimal dominant strategy
mechanism design problem can be solved by maximizing the designer’s expected payoff
subject to the dominant strategy incentive constraints—each agent has a dominant
strategy to truthfully report her payoff-relevant information. While such an approach
minimizes the impact of any assumption about agents’ beliefs, for many mechanism
design problems, the class of dominant strategy mechanisms is quite small and only
includes mechanisms that are rather unattractive for the designer. This comes as no
surprise, since the designer is not allowed to utilize any information about the agents’
beliefs in designing mechanisms.

In many realistic settings, the designer may have some (imprecise) understanding
of agents’ beliefs. Although the designer does not know the agents’ exact beliefs, she
could nevertheless form an estimate of the agents’ beliefs, perhaps based on historical
data from similar interactions in the past. The designer is aware that her estimate of
agents’ beliefs could be wrong, but believes that her estimate is close to the true beliefs
of the agents. This paper studies a robust optimization approach to mechanism design
for such settings.
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We consider a general social choice environment with quasi-linear preferences
and independent private values. The designer has a benchmark model represented by
a distribution µ of the agents’ payoff-relevant information and a benchmark belief µi
for each agent i. The designer faces local uncertainty about the agents’ beliefs—while
the designer does not know the agents’ exact beliefs, she is confident that the agents’
beliefs are ε-close to those derived from the benchmark prior µ (where ε reflects the
degree of local uncertainty in the estimate). In other words, rather than being fixated
on a specific belief µi for each agent i, the designer in our model entertains a range of
possible beliefs that are ε-close to µi. In contrast to the standard Bayesian approach
which only requires each agent to truthfully report her payoff-relevant information in
expectation with respect to a single belief, the designer seeks to design a mechanism in
which each agent has an incentive to truthfully report her payoff-relevant information
in expectation regardless of the actual belief held by each agent, as long as the belief is
ε-close to that derived from the benchmark prior.

The robust optimization approach has several appealing features. In comparison
to the Bayesian approach, it is robust to slight misspecification about agents’ beliefs. In
comparison to the dominant strategy mechanism design approach, it utilizes information
about the agents’ beliefs and thus could potentially achieve a higher expected revenue
for the designer. To fix ideas and also to illustrate some of the motivations of our
analysis, consider the following example.

Example 1. Consider the problem of designing a trading platform for two traders,
A and B, with the goal of maximizing intermediation profit. Each trader can buy or
(short) sell one unit of the asset and has private information about her valuation for the
good.1 The platform cannot hold inventory (ex post market-clearing is imposed). The
set of possible types for trader A is ΘA = {0, 2

3}, and the set of possible types for trader
B is ΘB = {1

3 , 1}. Each agent may be either the buyer or the seller, depending on the
realization of the privately observed information and the choice of the mechanism: the
agent’s role as the buyer or the seller is endogenously determined by his report and
cannot be identified prior to trade. The platform has the following estimate of the
distribution µ of the traders’ types:

1For related models, see Cramton, Gibbons, and Klemperer (1987), Lu and Robert (2001), Chen
and Li (2018), Loertscher and Marx (2020), and Li and Dworczak (2024).
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The standard Bayesian approach. Assuming that the joint distribution of
the traders’ valuation is common knowledge among the traders and the platform,
the designer chooses the optimal Bayesian incentive compatible mechanism, which
generates an expected revenue of SB = 0.361. However, a mechanism that satisfies
Bayesian incentive compatibility with respect to the benchmark prior µ is not robust
to misspecification of agents’ beliefs. When the agents’ actual beliefs are not consistent
with the benchmark prior µ, truth-telling might not constitute a Bayesian Nash
equilibrium in the mechanism.

The dominant strategy mechanism design approach. To eliminate the
reliance on the assumption about agents’ belief, the platform might use a dominant
strategy mechanism. The optimal dominant strategy mechanism generates an expected
revenue of SD = 0.306. While the optimal dominant strategy mechanism does not reply
on any assumptions about agents’ beliefs, the designer has to incur loss in expected
revenue, that is, SD < SB.

The robust optimization approach. Let µi(·) denote the benchmark belief
of agent i derived from the benchmark prior µ. The designer is aware that her estimate
of the agents’ beliefs (as derived from the benchmark prior) could be different from
the actual beliefs of the agents, but is confident that her estimate is close to the true
beliefs. For each agent i, let

U ε
i :=

{
νi ∈ ∆Θ−i : max

θ−i∈Θ−i

∣∣∣νi(θ−i)− µi(θ−i)∣∣∣ ≤ ε
}

denote the collection of beliefs that are perceived to be plausible to the designer. As
long as ε ≤ 1

6 , then the optimal robust incentive compatible mechanism achieve the
expected revenue of SR(ε) = 0.361. Thus, requiring robustness to local uncertainty
about agents’ beliefs (for a range of ε values) is without loss of revenue for the designer.

For any fixed ε, we identify necessary and sufficient conditions under which
requiring this sense of robustness is without loss of revenue for the designer. This
result builds on the recent literature on the network approach to mechanism design and
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specifically the dual interpretation of a revenue maximization problem as a network
flow problem; see for example Rochet (1987), Heydenreich, Müller, Uetz, and Vohra
(2009), and Vohra (2011). Given a decision rule q and a possible belief νi of agent i,
we define a network G(q, νi) where the set of nodes is the set of types for agent i plus
a dummy type (which corresponds to opting out of the mechanism), and the length
of a directed edge between two types is defined based on the corresponding incentive
constraint. The revenue maximization problem has a dual interpretation of a network
flow problem, where the optimization problem reduces to determining the shortest-path
tree (the union of shortest paths from the dummy type to all nodes) for each agent.
We say that a decision rule q satisfies the uniform shortest-path tree property with
respect the uncertainty set if for each agent i, there is the same shortest-path tree
for all networks G(q, νi) where νi is a possible belief of agent i. Theorem 1 shows
that requiring robustness to local uncertainty about agents’ beliefs is without loss of
revenue for the designer if and only if there exists an optimal decision rule q∗ of the
Bayesian mechanism design problem such that q∗ satisfies the uniform shortest-path
tree property with respect to the uncertainty set.

The uniform shortest-path tree property with respect to an uncertainty set is
of interest because a number of resource allocation problems satisfy this condition.
First, we consider environments in which the optimal decision rule of the Bayesian
mechanism design problem satisfies the uniform shortest-path tree property with respect
to the uncertainty set (for any ε). The leading example is the class of one-dimensional
environments. In these environments, it follows from Theorem 1 that SB = SR(ε) = SD

for any ε.2 Second, we consider environments in which the optimal decision rule of the
Bayesian mechanism problem satisfies the uniform shortest-path tree property with
respect to an uncertainty set for smaller degrees of local uncertainty even if it is not
the case for larger degrees of local uncertainty. In these environments, by Theorem 1,
we have SB = SR(ε) > SD for a range of ε values. We illustrate this feature using the
bilateral trade problem with ex ante unidentified traders.

More importantly, we examine the robust optimization approach in the context
where the degree of local uncertainty converges to zero. This analysis is particularly
significant as it allows us to provide a rationale for the Bayesian mechanism design

2SB (resp. SD) denotes the highest expected revenue from the optimal Bayesian mechanism (resp.
the optimal dominant strategy mechanism). SR(ε) denotes the highest expected revenue from the
optimal robust incentive compatible mechanism with respect to the uncertainty set.
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framework. The motivation behind this is as follows: Although the Bayesian approach
relies on strong common knowledge assumptions, it remains prevalent in the mechanism
design literature. A common informal justification for this approach is that, while the
designer recognizes the Bayesian model as merely an approximation, its use is validated
by a wealth of historical transaction data. Within the robust optimization framework,
the degree of local uncertainty decreases as the number of historical transactions
increases, ultimately approaching zero when such data is abundant.

We provide two foundations for the Bayesian approach. Theorem 2 shows that,
under a condition on the uniqueness of the shortest path, there exists a threshold ε̄ > 0
such that the uniform shortest-path tree property with respect to the uncertainty set
is satisfied for any ε ≤ ε̄. It follows from Theorem 1 that SB = SR(ε) for any ε ≤ ε̄.
Theorem 3 shows that, under a mild Slater condition, the revenue loss due to robustness
is vanishingly small as ε approaches 0. We interpret these results as foundations of the
Bayesian mechanism design framework.

The rest of this introduction discusses related literature. Section 2 presents the
notations, concepts, and the model. Section 3 characterizes decision rules that are
robustly implementable with respect to an uncertainty set. Section 4 studies robustness
to local uncertainty for a fixed ε. Section 5 studies robustness to local uncertainty in
the limiting case in which ε approaches zero, offering justifications for the Bayesian
mechanism design framework. Section 6 concludes the paper.

1.1 Related literature

First and foremost, this paper contributes to the robust optimization literature where
real-world optimization problems are often modeled as uncertain optimization problems;
see for example Ben-Tal and Nemirovski (2002), Beyer and Sendhoff (2007), and
Bertsimas, Gupta, and Kallus (2018). We contribute to this literature by systematically
analyzing this robust optimization approach to mechanism design.

Our paper studies the design of mechanisms when the designer has non-Bayesian
uncertainty about agents’ beliefs, thereby contributing to the growing literature on
robust mechanism design. A large body of papers in this literature focus on settings
in which the designer has no information whatsoever regarding agents’ beliefs; see for
example Bergemann and Morris (2005), Chung and Ely (2007), Chen and Li (2018),
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and Yamashita and Zhu (2022).3 In contrast to these papers, our paper considers
local uncertainty about agents’ beliefs, where each agent’s true belief is within ε of
those derived from the designer’s benchmark prior. This leads to distinct set of results
from those in the literature. For instance, Chung and Ely (2007) and Chen and Li
(2018) show that the designer should use a dominant strategy mechanism, whereas our
analysis supports the use of robust incentive compatible mechanisms.

More recently, there is increasing interest in designing mechanisms when the
designer has partial knowledge of agents’ beliefs. Ollár and Penta (2017) and Ollár
and Penta (2023) work with general belief restrictions (such as moments conditions
on the distribution and identical but unknown distributions) and study how belief
restrictions can be used to design transfer schemes to achieve full implementation of
certain decision rules. The most closely related paper to ours is Lopomo, Rigotti, and
Shannon (2020). Like us, they work with a generalization of the standard Bayesian
mechanism design problem in which each agent is associated with a set of beliefs rather
than a unique belief. In the environment with one-dimensional types, they demonstrate
that under certain conditions, such as the fully overlapping beliefs condition, and with
the additional assumption that gross utilities increase with types, robust incentive
compatibility implies an ex post envelope condition. This means that for any ex post
incentive compatible decision rule, differences in ex post utilities across types are pinned
down by the allocation rule. Therefore, they argue that robustness to arbitrarily small
amounts of misspecification generates a discontinuity in the set of feasible mechanisms
and uniquely selects simple, ex post incentive compatible mechanisms.

Our paper differs from Lopomo, Rigotti, and Shannon (2020) in several key aspects.
First, we consider a specific form of uncertainty set that corresponds to local uncertainty
about agents’ beliefs. This type of uncertainty set is commonly used in the robust
optimization literature, and the focus on this type of uncertainty allows us to derive
more precise comparisons when comparing different classes of mechanisms. Second,
while Lopomo, Rigotti, and Shannon (2020) examines the payment schemes necessary
to implement an ex post incentive compatible decision rule given an uncertainty set, our
focus is on revenue maximization problems. In one-dimensional environments, while
their findings suggest that the payment schemes to implement any ex post incentive

3Also see Du (2018) and Brooks and Du (2021) that study the design of mechanisms when the
designer does not know the information structure. In these papers, the designer also has minimal
information about agents’ beliefs, but the beliefs would have to be consistent with some information
structure.
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compatible decision rule are rather restrictive, our emphasis on revenue maximization
enables us to demonstrate that requiring robustness to local uncertainty is actually
without loss of revenue for the designer. Third, although our uncertainty set is a special
case of theirs, we consider general social choice environments under multi-dimensional,
independent and private types. In particular, multi-dimensional environments are not
covered in their analysis. We show that in multi-dimensional environments, although
the set of possible beliefs for each agent satisfies the fully overlapping condition, the set
of feasible mechanisms that are robust incentive compatible can be much richer than the
set of ex post incentive compatible mechanisms. Overall, while their findings suggest
that the payment schemes to implement any ex post incentive compatible decision
rule are restrictive within the environments they consider, our analysis underscores the
advantages of the robust optimization approach in terms of the designer’s revenue in
a wide variety of environments. These two distinct perspectives are complementary
and together offer a more comprehensive understanding of the robust optimization
approach to mechanism design.

Another closely related paper is Cui, Chen, and Shen (2009). Like our work, their
paper examines an auctioneer dealing with local uncertainty about agents’ beliefs and
explores robust incentive compatibility with respect to an uncertainty set. However,
there are three key differences between the two studies. First, while their focus is on
auctions, we work with a general social choice environment. Second, whereas they
directly address decision rules that are robustly implementable with respect to the
uncertainty set, we provide conditions under which decision rules can be robustly
implemented. Third, a key part of our analysis is the examination of the limiting case
where the degree of local uncertainty approaches zero, which we use to offer justifications
for the Bayesian mechanism design framework. This aspect is not considered in their
analysis.

Pham and Yamashita (2024) also address the issue of revenue maximization when
the designer lacks full certainty about agents’ beliefs. However, the key distinction lies
in the modeling approach: while they focus on local uncertainty concerning the prior,
our model centers on local uncertainty about the agents’ interim beliefs. This difference
in modeling leads to dramatically different results. Specifically, they observe that even
with minimal local uncertainty in the prior, there is effectively no constraint on the
agents’ interim beliefs, leading them to advocate for dominant strategy mechanisms.
The stark contrast between Pham and Yamashita (2024) and our paper highlights the
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crucial impact of the modeling choice.

Our paper also contributes to the strand of the mechanism design literature
that shows the equivalence of different classes of mechanisms. Notably, Manelli
and Vincent (2010) and Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013)
establish the equivalence of Bayesian and dominant strategy mechanisms in social
choice environments with linear utilities and independent, one-dimensional, private
types. Their findings suggest that, among other things, the highest expected revenue
from Bayesian mechanisms can be achieved via a dominant strategy mechanism. Our
paper provides necessary and sufficient conditions under which the highest expected
revenue from Bayesian mechanisms can be achieved via a robust incentive compatible
mechanism (with respect to an uncertainty set).

There are several other papers that study local robustness in mechanism
design settings, including Bergemann and Schlag (2011), Jehiel, Meyer-ter Vehn,
and Moldovanu (2012), Carroll and Meng (2016), Madarász and Prat (2017), and
Carroll (2017), among others.

2 Preliminaries

2.1 The benchmark model

There is a finite set I = {1, 2, . . . , I} of risk-neutral agents and a finite set K =
{1, 2, . . . , K} of alternatives. Each agent i has a type θi ∈ RK that represents her
gross utility under the K alternatives; θi(k) denotes agent i’s gross utility under the
alternative k.4 The set of possible types of agent i is a finite set Θi ⊂ RK . The set
of possible type profiles is Θ = ∏

i∈I Θi with representative element θ. We write θ−i
for a type profile of agents other than agent i, i.e., θ−i ∈ Θ−i = ∏

j 6=i Θj. If Y is a
measurable space, then ∆Y is the set of all probability measures on Y . If Y is a metric
space, then we treat it as a measurable space with its Borel σ-algebra.

The designer has an estimate of the distribution µ ∈ ∆Θ of agents’ types. We
4We may represent agents’ types in different ways. For instance, when studying the single-unit

auction or the bilateral trade with ex ante unidentified traders, it is more convenient to represent
agent i’s type by vi ∈ R, denoting agent i’s value of the object.
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refer to µ as the benchmark prior. For simplicity, assume that µ has full support. Let

µi(θi) =
∑

θ−i∈Θ−i
µ(θi, θ−i)

denote the marginal probability of θi and

µi(θ−i|θi) = µ(θi, θ−i)
µi(θi)

the conditional probability of θ−i given θi (derived from the benchmark prior µ). We
assume that types are independent under the distribution µ, that is, µ(θ) = ∏

i∈I µi(θi)
for any θ ∈ Θ. Since types are independent under the distribution µ, for notational
simplicity, we write µi(θ−i) = µi(θ−i|θi) for all θi.5

2.2 Local uncertainty about agents’ beliefs

The Bayesian approach assumes that agents’ beliefs are derived from the benchmark
prior and these beliefs are further assumed to be common knowledge among the agents
and the designer. In contrast, the designer in our model has local uncertainty about
agents’ beliefs. The designer is aware that her estimate of the agents’ beliefs (as derived
from the benchmark prior) could be different from the actual beliefs of the agents, but
is confident that her estimate is close to the true beliefs of the agents. We model a
notion of uncertainty set that captures such local uncertainty about agents’ beliefs.

For each agent i, let

U ε
i :=

{
νi ∈ ∆Θ−i : max

θ−i∈Θ−i

∣∣∣νi(θ−i)− µi(θ−i)∣∣∣ ≤ ε
}

denote the collection of all probability distributions on Θ−i that are ε-close to that
derived from the benchmark prior. We interpret U ε

i as the set of beliefs that are
perceived to be plausible by the designer; the designer is confident that the agents’
true beliefs are contained in the uncertainty set, but does not know or is unwilling to
impose further assumptions about the true beliefs of the agents.

The parameter ε reflects the range of possible misspecification of the benchmark
5For correlated types, Lopomo, Rigotti, and Shannon (2022) study a robust version of the classic

surplus extraction problem and show that the designer can achieve virtual extraction whenever agents’
beliefs satisfy a natural set-valued analogue of the convex independence conditions in Cremer and
McLean (1988).
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model, or equivalently, the degree of local uncertainty about agents’ beliefs. Clearly,
the larger the value of ε, the more ambiguity the designer has about agents’ beliefs.
When ε = 0, the uncertainty set of each agent i is just a singleton set—the conditional
probability distribution derived from the benchmark prior. This corresponds to the
case of no uncertainty, or the classical Bayesian environment. For ε sufficiently large,
the uncertainty set of each agent i coincides with the set of all probability distributions
over Θ−i. This corresponds to the case of global uncertainty where the designer has no
information whatsoever regarding agents’ beliefs.

We write U ε = {U ε
i }i∈I to denote the local uncertainty in the design environment.

We implicitly assumed that the degree of local uncertainty is the same for all agents.
This is for ease of exposition only; the model and the results can be readily extended to
the case in which the degree of local uncertainty varies across agents. We do not need
to assume that each agent’s true belief about the other agents’ types is independent of
her own type. But as we shall see shortly, for the solution concept of robust incentive
compatibility, which requires that the Bayesian incentive constraint be satisfied for
every plausible belief of each type, it is without loss of generality to assume that each
agent’ true belief is independent of her own type.

Lemma 1 below presents a topological property of the uncertainty set U ε
i , which

will be used in later analysis.

Lemma 1. There is a finite set Ei of extreme points of U ε
i , and U ε

i = Conv.Hull (Ei).

Proof. It is easy to see that U ε
i is a nonempty, convex, and compact set in R|Θ−i|.

Furthermore, by definition, U ε
i is the bounded intersection of finitely many closed

half-spaces in R|Θ−i|. Thus, U ε
i is a convex polytope with a finite set of vertices, which

is also the set of its extreme points. It follows from Minkowski’s theorem (see Hiriart-
Urruty and Lemaréchal (2004, Theorem 2.3.4)) that U ε

i is the convex hull of its extreme
points.

2.3 Mechanisms and solution concepts

A mechanism consists of a set Mi of messages for each agent i, a decision rule q :∏
i∈I Mi → ∆K, and a transfer rule t : ∏

i∈I Mi → RI . The revelation principle
holds for the solution concepts we consider in this paper (including robust incentive
compatibility with respect to an uncertainty set), and we restrict attention to direct

11



mechanisms where Mi = Θi for each agent i.6 The agents are asked to simultaneously
report their types to the designer. Based on the reported type profile, the decision rule
q specifies the outcome in ∆K with qk representing the probability that alternative k
is chosen and the transfer rule ti specifies how much agent i pays to the designer.

The mechanism design problem is to fix a solution concept and search for the
mechanism that maximizes the designer’s payoff (in some outcome consistent with the
solution concept). A standard solution concept is that of a Bayesian Nash equilibrium—
It requires that truth-telling constitute a Bayesian Nash equilibrium with respect to
the benchmark prior.

Definition 1. A direct mechanism (q, t) is Bayesian incentive compatible with respect
to the benchmark prior µ if for each agent i and each type θi ∈ Θi,

∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − ti(θi, θ−i)

)
µi(θ−i) ≥

∑
θ−i∈Θ−i

(
q(θ′i, θ−i) · θi − ti(θ′i, θ−i)

)
µi(θ−i)

for any alternative type θ′i ∈ Θi, and

∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − ti(θi, θ−i)

)
µi(θ−i) ≥ 0.

A mechanism Γ that satisfies Bayesian incentive compatibility with respect to
the benchmark prior µ is not robust to misspecification of agents’ beliefs. When the
agents’ actual beliefs are not consistent with the benchmark prior µ, truth-telling
might not constitute a Bayesian Nash equilibrium in the mechanism Γ. To minimize
the role of the assumption about agents’ beliefs, a common approach is to adopt the
stronger solution concept of dominant strategy incentive compatibility—It requires
that truth-telling constitute a dominant strategy equilibrium.

Definition 2. A direct mechanism (q, t) is dominant strategy incentive compatible if
for each agent i, each type θi ∈ Θi, and θ−i ∈ Θ−i,

q(θi, θ−i) · θi − ti(θi, θ−i) ≥ q(θ′i, θ−i) · θi − ti(θ′i, θ−i)

6Lopomo, Rigotti, and Shannon (2020) prove a version of the revelation principle in the case
in which there exists uncertainty about agents’ beliefs—If a social choice function can be robustly
implemented by some mechanism, then it can also be robustly truthfully implemented in a direct
mechanism.
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for any alternative type θ′i ∈ Θi, and

q(θi, θ−i) · θi − ti(θi, θ−i) ≥ 0.

Evidently, the notion of dominant strategy incentive compatibility does not rely
on any assumptions about agents’ beliefs and is thus robust to any uncertainty about
agents’ beliefs. It applies to the situation where the designer does not have any reliable
information about agents’ beliefs. However, the notion of dominant strategy incentive
compatibility is rather demanding; for many mechanism design problems, the class of
dominant strategy mechanisms is quite small, and only includes mechanisms that are
rather unattractive for the designer.

In many realistic settings, the designer may possess some partial information
about agents’ beliefs even if she cannot pin down the exact beliefs held by the agents.
Particularly, in the case in which the designer faces only local uncertainty about agents’
beliefs, she searches over mechanisms that are Bayesian incentive compatible with
respect to the uncertainty set and thus are robust to local misspecification of agents’
beliefs. The notion of robust incentive compatibility with respect to the uncertainty
set guarantees that truth-telling constitutes a Bayesian Nash equilibrium that is robust
to local uncertainty about agents’ beliefs.

Definition 3. A direct mechanism (q, t) is robust incentive compatible with respect to
the uncertainty set U ε if, for each agent i, each type θi ∈ Θi, and each belief νi ∈ U ε

i ,

∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − ti(θi, θ−i)

)
νi(θ−i) ≥

∑
θ−i∈Θ−i

(
q(θ′i, θ−i) · θi − ti(θ′i, θ−i)

)
νi(θ−i)

for any alternative type θ′i ∈ Θi, and

∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − ti(θi, θ−i)

)
νi(θ−i) ≥ 0.

It follows from Lemma 1 that a direct mechanism is robust incentive compatible
with respect to the uncertainty set if and only if the Bayesian incentive constraints hold
for every extreme point of the uncertainty set. This observation leads to the following
equivalent definition for the notion of robust incentive compatibility.

Definition 4. A direct mechanism (q, t) is robust incentive compatible with respect to
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the uncertainty set U ε if, for each agent i, each type θi ∈ Θi, and each belief νi ∈ Ei,

∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − ti(θi, θ−i)

)
νi(θ−i) ≥

∑
θ−i∈Θ−i

(
q(θ′i, θ−i) · θi − ti(θ′i, θ−i)

)
νi(θ−i)

for any alternative type θ′i ∈ Θi, and

∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − ti(θi, θ−i)

)
νi(θ−i) ≥ 0.

For simplicity of exposition, we add a dummy type θ0 for each agent i ∈ I that
corresponds to not participating in the mechanism; let q(θ0, θ−i) · θi = ti(θ0, θ−i) = 0
for all θi ∈ Θi and θ−i ∈ Θ−i.

2.4 The designer’s robust optimization problem

Given the local uncertainty about agents’ beliefs, the designer chooses a robust incentive
compatible mechanism that maximizes her expected revenue. The robust incentive
compatible mechanism design problem can be formulated as the following robust
optimization problem:

max
q(·), t(·)

∑
θ∈Θ

∑
i∈I

µ(θ) ti(θ) (RIC)

subject to ∀i ∈ I, ∀θi ∈ Θi, ∀νi ∈ Ei, ∀θ′i ∈ {Θi \ {θi}} ∪ {θ0},∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − ti(θi, θ−i)

)
νi(θ−i)

≥
∑

θ−i∈Θ−i

(
q(θ′i, θ−i) · θi − ti(θ′i, θ−i)

)
νi(θ−i), (1)

∀θ ∈ Θ, ∀k ∈ K, qk(θ) ≥ 0, (2)

∀θ ∈ Θ,
∑
k∈K

qk(θ) = 1. (3)

The constraint (1) requires that the mechanism be robust incentive compatible with
respect to the uncertainty set. The constraints (2) and (3) are standard feasibility
constraints. Let SR(ε) denote the value of the objective function of the robust
optimization problem (RIC) at an optimum.

When ε = 0, the uncertainty set of each agent i is just a singleton set—
the conditional probability distribution derived from the benchmark prior. The
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maximization problem (RIC) reduces to the following standard Bayesian mechanism
design problem:

max
q(·), t(·)

∑
θ∈Θ

∑
i∈I

µ(θ) ti(θ) (BIC)

subject to ∀i ∈ I, ∀θi ∈ Θi, ∀θ′i ∈ {Θi \ {θi}} ∪ {θ0},∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − ti(θi, θ−i)

)
µi(θ−i)

≥
∑

θ−i∈Θ−i

(
q(θ′i, θ−i) · θi − ti(θ′i, θ−i)

)
µi(θ−i),

∀θ ∈ Θ, ∀k ∈ K, qk(θ) ≥ 0,

∀θ ∈ Θ,
∑
k∈K

qk(θ) = 1.

For sufficiently large ε, the uncertainty set of each agent coincides with the set of all
probability distributions over the other agents’ types, and the maximization problem
(RIC) reduces to the following standard dominant strategy mechanism design problem:

max
q(·), t(·)

∑
θ∈Θ

∑
i∈I

µ(θ) ti(θ) (DIC)

subject to ∀i ∈ I, ∀θi ∈ Θi, ∀θ′i ∈ {Θi \ {θi}} ∪ {θ0}, ∀θ−i ∈ Θ−i,

q(θi, θ−i) · θi − ti(θi, θ−i) ≥ q(θ′i, θ−i) · θi − ti(θ′i, θ−i),

∀θ ∈ Θ, ∀k ∈ K, qk(θ) ≥ 0,

∀θ ∈ Θ,
∑
k∈K

qk(θ) = 1.

We write SB (resp. SD) for the value of the objective function of the maximization
problem (BIC) (resp. (DIC)) at an optimum.

Clearly, as the degree of local uncertainty increases, the uncertainty set becomes
larger and the corresponding set of incentive constraints becomes more restrictive.
Formally, if a mechanism (q, t) is robust incentive compatible with respect to U ε, then
it is also robust incentive compatible with respect to U ε′ for any ε′ < ε. It follows that
SR(ε) (viewed as a function of ε) is weakly decreasing in ε. We record this observation
as the following proposition.
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Proposition 1. SR(ε) is weakly decreasing in ε. In particular,

SD ≤ SR(ε) ≤ SB

for any ε.

3 Implementation

In this section, we characterize decision rules that are robustly implementable with
respect to an uncertainty set.

Definition 5. A decision rule q is robustly implementable with respect to an uncertainty
set if there exists a transfer scheme t such that the mechanism (q, t) is robust incentive
compatible with respect to the given uncertainty set.

3.1 Bayesian implementation

To characterize robust implementation with respect to an uncertainty set, it is instructive
to first revisit the implementability of a decision rule in the standard Bayesian framework.
Consider some ν = (ν1, ν2, . . . , νI), where νi ∈ Ei for each agent i ∈ I.

Definition 6. A decision rule q is implementable with respect to ν if there exists a
transfer scheme t such that the mechanism (q, t) is Bayesian incentive compatible with
respect to ν.

The following lemma characterizes the implementability of a decision rule q with
respect to ν.

Lemma 1. (Rochet (1987)) A decision rule q is implementable with respect to ν if
and only if q is interim cyclically monotone with respect to ν, that is, for each agent
i ∈ I and each sequence of types (θ1

i , θ
2
i , . . . , θ

n
i ) ∈ Θn

i with θni = θ1
i , we have

n−1∑
t=1

( ∑
θ−i∈Θ−i

(
q(θti , θ−i) · θt+1

i

)
νi(θ−i)−

∑
θ−i∈Θ−i

(
q(θti , θ−i) · θti

)
νi(θ−i)

)
≤ 0.

In what follows, we pin down a particular class of transfer schemes that implement
the decision rule q with respect to v. Given a decision rule q that is implementable
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with respect to ν, consider the following optimization problem:

max
ti(·)

∑
θi∈Θi

µi(θi)
∑

θ−i∈Θ−i
ti(θi, θ−i) νi(θ−i) (Primal-νi)

subject to ∀θi ∈ Θi, ∀θ′i ∈ {Θi \ {θi}} ∪ {θ0},∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − ti(θi, θ−i)

)
νi(θ−i)

≥
∑

θ−i∈Θ−i

(
q(θ′i, θ−i) · θi − ti(θ′i, θ−i)

)
νi(θ−i).

We derive its dual minimization problem as follows:

min
λνi (·)

∑
θi∈Θi

∑
θ′i∈{Θi\{θi}}∪{θ0}

λνi(θi, θ′i)wνi(θi, θ′i) (Dual-νi)

subject to ∀θi ∈ Θi,∑
θ′i∈{Θi\{θi}}∪{θ0}

λνi(θi, θ′i)−
∑

θ′i∈Θi\{θi}
λνi(θ′i, θi) = µi(θi),

∀θi ∈ Θi, ∀θ′i ∈ {Θi \ {θi}} ∪ {θ0},

λνi(θi, θ′i) ≥ 0,

where
wνi(θi, θ′i) =

∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − q(θ′i, θ−i) · θi

)
νi(θ−i)

and λνi(θi, θ′i) is the multiplier on the incentive constraint in the optimization problem
(Primal-νi).

The dual problem (Dual-νi) is a network flow problem on the following network
G(q, νi) where

(1) the set of nodes is Θi ∪ {θ0} (the node corresponding to the dummy type θ0 is
the source),

(2) for any θi ∈ Θi and θ′i ∈ {Θi \ {θi}}∪ {θ0}, θ′i → θi is a directed edge with length

∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − q(θ′i, θ−i) · θi

)
νi(θ−i),

(3) a path from the dummy type θ0 to type θti is a sequence P = (θ0, θ
1
i , θ

2
i , . . . , θ

t
i)
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of nodes where θki ∈ Θi for all k.

Definition 7. Fix a decision rule q that is implementable with respect to ν. A shortest-
path tree in the network G(q, νi) is the union of shortest paths from the source to all
nodes.

The optimization problem (Primal-νi) is equivalent to determining the shortest-
path tree in this network. At an optimum, edges on the shortest-path tree correspond
to the binding constraints in (Primal-νi).7 Let d(q, νi, θi) denote the length of the
shortest path from the dummy type θ0 to type θi in the network G(q, νi). Standard
arguments imply the following relationship between the length of the shortest path
from the source to this node and the solution to the maximization problem (Primal-νi):

d(q, νi, θi) =
∑

θ−i∈Θ−i
ti(θi, θ−i) νi(θ−i). (4)

Clearly, any payment scheme t that satisfies (4) implements q with respect to ν. There
are typically multiple payment schemes that fulfill this requirement, since (4) is a
constraint on the interim expected payment rather than the ex post payment.

3.2 Robust implementation

Next, we return to the problem of robust implementation with respect to an uncertainty
set. Clearly, if a decision rule is robustly implementable with respect to the uncertainty
set, then the decision rule must be implementable with respect to any ν where νi ∈ Ei
for each agent i. Say that q is interim cyclically monotone with respect to an uncertainty
U ε if q is interim cyclically monotone with respect to any v where vi ∈ Ei for each agent
i. The analysis in the previous subsection immediately implies a necessary condition
for robust implementability, that is, if a decision rule q is robustly implementable with
respect to an uncertainty set, then q is interim cyclically monotone with respect to the
uncertainty set.

In what follows, we introduce some stronger conditions to ensure that a decision
rule is robustly implementable with respect to some uncertainty set, building on the

7Readers unfamiliar with network flows may consult Ahuja, Magnanti, and Orlin (1993) and Vohra
(2011). Vohra (2011, pp. 110-112) explicitly provides the network interpretation of the expected
revenue maximization problems that we adopt in the current paper, and Vohra (2011, Chapter 6)
applies this technique to study a variety of revenue maximization problems.
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notion of the shortest-path tree and the particular class of transfer schemes in Section
3.1.

Suppose that q is implementable with respect to any ν where νi ∈ Ei for each
agent i. For each ν, we focus on payment schemes that solve the corresponding
maximization problem (Primal-νi). This leads to a natural sufficient condition for a
decision rule to be robustly implementable with respect to the uncertainty set. If there
exists a payment scheme t such that (4) holds for any ν where νi ∈ Ei for each agent i,
then the payment scheme t robustly implements q with respect to the uncertainty set.
The following formalizes this observation using a rank condition. Let V (θi) ∈ RL×|Θ−i|

denote the matrix where each row vector vli corresponds to an extreme point of the
uncertainty set U ε

i . Let β(θi) ∈ RL denote the column vector that represents the length
of the shortest path from the dummy type to type θi for each network G(q, νi). That is,

V (θi) :=


ν1
i

...
νLi

 and β(θi) :=


d(q, ν1

i , θi)
...

d(q, νLi , θi)

 .

Evidently, there exists a transfer scheme t such that (q, t) is robust incentive compatible
with respect to the uncertainty set when the following condition holds:

rank V (θi) = rank (V (θi), β(θi)), ∀i ∈ I, ∀θi ∈ Θi. (5)

Proposition 2. If

(1) q is interim cyclically monotone with respect to U ε, and

(2) for each agent i and each type θi, rank (V (θi), β(θi)) = rank V (θi),

then q is robustly implementable with respect to the uncertainty set U ε.

Remark 1. The rank condition in Proposition 2 is vacuous in the case of Bayesian
incentive compatibility and dominant strategy incentive compatibility, tying our results
to the classical results that characterize implementable decision rules under these
alternative solution concepts. First consider Bayesian incentive compatibility with
respect to µ. In this case, U ε

i = {µi} for each agent i, L = 1, and rank V (θi) =
rank (V (θi), β(θi)) = 1 for each agent i and each type θi ∈ Θi. Next consider dominant
strategy incentive compatibility. In this case, U ε

i = ∆Θ−i for each agent i, V (θi) is the
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identity matrix and rank V (θi) = rank (V (θi), β(θi)) = |Θ−i| for each agent i and each
type θi ∈ Θi.

Corollary 1 below presents a class of environments in which the rank condition is
satisfied.

Definition 8. A decision rule q satisfies the uniform shortest-path tree property with
respect to U ε if for each agent i ∈ I, there is the same shortest-path tree for all networks
G(q, νi) where νi ∈ Ei.

Corollary 1. If q satisfies the uniform shortest-path tree property with respect to U ε,
then q is robustly implementable with respect to the uncertainty set U ε.

Proof. It suffices to show that the rank condition in Proposition 2 is satisfied. For each
agent i and each type θi ∈ Θi, we write (θ0, θ

1
i , θ

2
i , . . . , θ

t
i , θi) for the (uniform) shortest

path in all networks G(q, νi) where νi ∈ Ei. Then for any νi ∈ Ei,

d(q, νi, θi) =
∑

θ−i∈Θ−i

(
q(θ1

i , θ−i) · θ1
i

)
νi(θ−i)

+
∑

θ−i∈Θ−i

(
(q(θ2

i , θ−i)− q(θ1
i , θ−i)) · θ2

i

)
νi(θ−i)

+ . . .

+
∑

θ−i∈Θ−i

(
(q(θti , θ−i)− q(θt−1

i , θ−i)) · θti
)
νi(θ−i)

+
∑

θ−i∈Θ−i

(
(q(θi, θ−i)− q(θti , θ−i)) · θi

)
νi(θ−i).

Clearly, the rank condition in Proposition 2 is satisfied.

As an illustration, consider the classical environment of single-unit auction. Each
agent i ∈ I hasM possible valuations for the good. For notational simplicity, we assume
that the set of possible valuations is the same for each agent: Θi = {θ1, θ2, . . . , θM},
where θm − θm−1 = γ for each m = 2, 3, . . . ,M for some γ > 0. A direct mechanism
is denoted by (q, t), where qi ∈ [0, 1] denotes the probability that agent i obtains the
good, and ti denotes the payment to the seller.

We write
Qνi(θm) =

∑
θ−i∈Θ−i

qi(θm, θ−i) νi(θ−i)
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for the interim probability that agent i obtains the good (with respect to νi). We say
that q is interim increasing with respect to U ε if for each agent i ∈ I and each belief
νi ∈ Ei, Qνi(θm) is increasing in m. For any q that is interim increasing with respect
to U ε, q is interim cyclically monotone with respect to U ε, and the shortest-path tree
in each network G(q, νi) is well-defined. The condition in Corollary 1 is satisfied in this
environment—For any agent i ∈ I, the types are completely ordered via a single path.
We omit the proof of the following lemma.

Lemma 2. Fix any q that is interim increasing with respect to U ε. The shortest path
from the dummy type θ0 to any type θm in each network G(q, νi) is (θ0, θ

1, θ2, . . . , θm).

We have the following necessary and sufficient condition for a decision rule q to
be robustly implementable with respect to the uncertainty set.

Corollary 2. In the single-unit auction environment, a decision rule q is robustly
implementable with respect to the uncertainty set U ε if and only if q is interim increasing
with respect to the uncertainty set U ε.

4 Robustness to local uncertainty for fixed ε

In this section, we focus on the designer’s robust optimization problem (RIC) for
any fixed ε. We identify necessary and sufficient conditions under which requiring
robustness to local uncertainty about agents’ beliefs is without loss of revenue for the
designer.

4.1 Robustness to local uncertainty without loss of revenue

Our analysis is based on the uniform shortest-path tree property with respect to an
uncertainty set. Fix a decision rule q that satisfies the uniform shortest-path tree
property with respect to an uncertainty set U ε. Since for each agent i, the shortest-path
tree is uniform across all networks G(q, νi) where vi ∈ Ei, for ease of notation, we drop
the dependence of the shortest-path tree on νi. We represent the uniform shortest-path
tree of agent i by a partial order �i on i’s types and its transitive closure �+

i ; we write
θi �i θti �i · · · �i θ2

i �i θ1
i �i θ0 if the uniform shortest path from the dummy type θ0

to type θi is (θ0, θ
1
i , θ

2
i , . . . , θ

t
i , θi). We write θ′i �+

i θi if θ′i �+
i θi or θ′i = θi. If θi �i θ′i,

we sometimes denote θ′i by θ−i .
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We first present a sufficient condition under which the local uncertainty about
agents’ beliefs will not decrease the expected revenue for the designer.

Proposition 3. If there exists some optimal decision rule q∗ from (BIC) such that q∗

satisfies the uniform shortest-path tree property with respect to the uncertainty set U ε,
then requiring robustness to local uncertainty about agents’ beliefs is without loss of
revenue for the designer, that is,

SR(ε) = SB.

Proof. We fix the decision rule q∗ and work with the payment scheme. Step 1 considers
the robust optimization problem. We work with the maximization problem (RIC-P)
and derive its dual (RIC-D). Denote by VRIC−P (resp. VRIC−D) the value of the
objective function of the program (RIC-P) (resp. (RIC-D)) at an optimum. Step 2
considers the optimal Bayesian mechanism design problem (BIC-P), and derives its
dual (BIC-D). Denote by VBIC−P (resp. VBIC−D) the value of the objective function
of the program (BIC-P) (resp. (BIC-D)) at an optimum. Step 3 proceeds to show
that VRIC−D ≥ VBIC−D. It follows from the duality theorem in linear programming
that VRIC−P = VRIC−D ≥ VBIC−D ≥ VBIC−P ≥ VRIC−P , which then implies VRIC−P =
VBIC−P . Thus, requiring robustness to local uncertainty about agents’ beliefs is without
loss of revenue.8

Step 1. Since q∗ satisfies the uniform shortest-path tree property with respect
to the uncertainty set U ε, by Corollary 1, q∗ is robustly implementable with respect
to the uncertainty set U ε. Given q∗, we solve for the optimal transfer scheme t that
maximizes the designer’s expected revenue subject to the robust incentive constraints.
It is without loss of generality to solve this problem by solving ti for each agent i
separately. That is,

max
t(·)

∑
θi∈Θi

µi(θi)
∑

θ−i∈Θ−i
ti(θi, θ−i)µi(θ−i)

subject to ∀θi ∈ Θi, ∀νi ∈ Ei, ∀θ′i ∈ Θi ∪ {θ0},∑
θ−i∈Θ−i

(
q∗(θi, θ−i) · θi − ti(θi, θ−i)

)
νi(θ−i)

≥
∑

θ−i∈Θ−i

(
q∗(θ′i, θ−i) · θi − ti(θ′i, θ−i)

)
νi(θ−i).

8One can also show this result directly, without using the duality approach.

22



By Lemma 1, µi can be expressed as a convex combination of the extreme points
of U ε. This further implies that the objective function in the above maximization
problem for each agent i can be expressed as a convex combination of the objective
functions in the subproblems (Primal-νi) for all νi ∈ Ei. Since for each subproblem
(Primal-νi) (corresponding to each νi ∈ Ei), it suffices to only consider constraints
that correspond to edges on the uniform shortest-path tree, we conclude that in the
above maximization problem for each agent i, it suffices to only consider constraints
that correspond to edges on the uniform shortest-path tree. Thus, the maximization
problem for each agent i reduces to the following:

max
ti(·)

∑
θi∈Θi

µi(θi)
∑

θ−i∈Θ−i
ti(θi, θ−i)µi(θ−i) (RIC-P)

subject to ∀θi ∈ Θi, ∀νi ∈ Ei,∑
θ−i∈Θ−i

(
ti(θi, θ−i)− ti(θ−i , θ−i)

)
νi(θ−i) ≤ wνi(θi, θ−i ),

where
wνi(θi, θ−i ) =

∑
θ−i∈Θ−i

(
q∗(θi, θ−i) · θi − q∗(θ−i , θ−i) · θi

)
νi(θ−i).

It follows from standard arguments that VRIC−P is finite.

We derive its dual minimization problem (RIC-D) as follows:

min
λRIC(·)

∑
θi∈Θi

∑
νi∈Ei

λRIC(θi, νi)wνi(θi, θ−i ) (RIC-D)

subject to ∀θi ∈ Θi, ∀θ−i ∈ Θ−i,∑
νi∈Ei

λRIC(θi, νi) νi(θ−i)−
∑

θ′i: θ
′
i�iθi

∑
νi∈Ei

λRIC(θ′i, νi) νi(θ−i) = µ(θ), (6)

∀θi ∈ Θi, ∀νi ∈ Ei, λRIC(θi, νi) ≥ 0,

where λRIC(θi, νi) is the multiplier on the corresponding incentive constraint in (RIC-P).

Step 2. Next, we consider the Bayesian mechanism design problem and solve ti
for each agent i separately. Since q∗ satisfies the uniform shortest-path tree property
with respect to U ε, the Bayesian revenue maximization problem with respect to the
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benchmark prior reduces to the following:

max
ti(·)

∑
θi∈Θi

µi(θi)
∑

θ−i∈Θ−i
ti(θi, θ−i)µi(θ−i) (BIC-P)

subject to ∀θi ∈ Θi,∑
θ−i∈Θ−i

(
ti(θi, θ−i)− ti(θ−i , θ−i)

)
µi(θ−i) ≤ wµi(θi, θ−i ).

where
wµi(θi, θ−i ) =

∑
θ−i∈Θ−i

(
q∗(θi, θ−i) · θi − q∗(θ−i , θ−i) · θi

)
µi(θ−i).

We derive its dual minimization problem (BIC-D) as follows:

min
λBIC(·)

∑
θi∈Θi

λBIC(θi)wµi(θi, θ−i ) (BIC-D)

subject to ∀θi ∈ Θi,

λBIC(θi)−
∑

θ′i: θ
′
i�iθi

λBIC(θ′i) = µi(θi),

∀θi ∈ Θi, λ
BIC(θi) ≥ 0,

where λBIC(θi) is the multiplier on the corresponding incentive constraint in the
maximization problem (BIC-P).

Step 3. We proceed to show that VRIC−D ≥ VBIC−D. By inspecting the
constraints and the objective functions in the two minimization problems (RIC-D)
and (BIC-D), we know that for any feasible dual variables λRIC(·) with corresponding
value of the objective function in the minimization problem (RIC-D), the following
feasible dual variables λBIC(·) achieves the same value for the objective function of the
minimization problem (BIC-D):9

λBIC(θi) =
∑
νi∈Ei λ

RIC(θi, νi) νi(θ−i)
µi(θ−i)

.

9The RHS is constant in v−i for any feasible dual variables λRIC(·). By induction, we can derive
the following from (6):∑

νi∈Ei
λRIC(θi, νi) νi(θ−i)
µi(θ−i)

=
∑

θ′
i
: θ′

i
�+

i
θi

µi(θ′i), ∀θi ∈ Θi, ∀θ−i ∈ Θ−i.
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Thus, we can conclude that VRIC−D ≥ VBIC−D.

It follows from the duality theorem in linear programming that VRIC−P =
VRIC−D ≥ VBIC−D ≥ VBIC−P ≥ VRIC−P , which further implies VRIC−P = VBIC−P .
Since q∗ is the optimal decision rule of the Bayesian mechanism design problem (BIC),
we conclude that SR(ε) = SB.

Next, we show that the sufficient condition in Proposition 3 is also necessary to
guarantee no revenue loss for requiring robustness to local uncertainty about agents’
beliefs. For any decision rule q that is implementable with respect to the benchmark
prior, let VBIC−q be the highest expected revenue by maximizing over transfer schemes
subject to the corresponding (BIC) constraints. For any decision rule q that is robustly
implementable with respect to the uncertainty set, let VRIC−q be the highest expected
revenue by maximizing over transfer schemes subject to the corresponding (RIC)
constraints.

Proposition 4. If SR(ε) = SB, then there exists some optimal decision rule q∗ from
(BIC) such that q∗ satisfies the uniform shortest-path tree property with respect to the
uncertainty set U ε.

Proof. We first show that if SR(ε) = SB, then there exists some optimal decision rule
q∗ from (BIC) such that q∗ is robustly implementable with respect to the uncertainty
set. Suppose to the contrary, there does not exist such a decision rule. In other words, if
q is robustly implementable, then q is not optimal for (BIC). In particular, the optimal
decision rule q̃ from (RIC) is not optimal for (BIC). It follows that

SR(ε) = VRIC−q̃ ≤ VBIC−q̃ < SB,

which contradicts that SR(ε) = SB.

Let Q be the collection of all decision rules that are optimal for (BIC) and are
also robustly implementable with respect to the uncertainty set. It follows from the
above that Q is nonempty. In what follows, we show that there exists q∗ ∈ Q that
satisfies the uniform shortest-tree property with respect to U ε.

Suppose to the contrary, for any q ∈ Q, there exists some agent j ∈ I and some
belief ν̃j ∈ Ej such that the shortest-path tree in the network G(q, ν̃j) differs from that
in the network G(q, µj). Then there exists some type θ̃j ∈ Θj such that the shortest
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path from the dummy type θ0 to θ̃j in the network G(q, ν̃j) differs from that in the
network G(q, µj).

Given the decision rule q, let tB(·) be the optimal transfer with respect to the
corresponding (BIC) constraints. Because q is an optimal decision rule for (BIC), SB

can be achieved by maximizing over the payment schemes given q. We have

SB =
∑
i∈I

∑
θi∈Θi

µi(θi)
( ∑
θ−i∈Θ−i

tBi (θi, θ−i)µi(θ−i)
)

=
∑
i∈I

∑
θi∈Θi

µi(θi) d(q, µi, θi).

On the other hand, given this decision rule q, let tR(·) be the optimal transfer with
respect to the corresponding (RIC) constraints. Therefore,

VRIC−q =
∑
i∈I

∑
θi∈Θi

µi(θi)
( ∑
θ−i∈Θ−i

tRi (θi, θ−i)µi(θ−i)
)

=
∑
i∈I

∑
θi∈Θi

µi(θi)
∑
νi∈Ei

α(νi)
( ∑
θ−i∈Θ−i

tRi (θi, θ−i) νi(θ−i)
)

≤
∑
i∈I

∑
θi∈Θi

µi(θi)
∑
νi∈Ei

α(νi) d(q, νi, θi),

where the second line follows from Lemma 1—there exist weights α(·) ∈ [0, 1] such that∑
νi∈Ei α(νi) = 1 and µi(θ−i) = ∑

νi∈Ei α(νi) νi(θ−i) for all θ−i ∈ Θ−i. Furthermore,
since µ is in the interior of the uncertainty set, we can choose the weights such that
α(ν̃j) > 0. We have the last line as an inequality since tRi (·) may not be optimal for
the subproblems (Primal-νi) with respect to each νi.

For each agent i ∈ I, we let SP (q, νi, θi) denote the shortest path from the
dummy type θ0 to type θi in the network G(q, νi). For each agent i ∈ I, each belief
νi ∈ Ei, and each type θi ∈ Θi, by the definition of the shortest path in the network
G(q, νi), we have

d(q, νi, θi) ≤
∑

(θ′i,θ
′′
i )∈SP (q,µi,θi)

wνi(θ′′i , θ′i)

Furthermore, since SP (q, ν̃j, θ̃j) 6= SP (q, µj, θ̃j), we have

d(q, ν̃j, θ̃j) <
∑

(θ′j ,θ
′′
j )∈SP (q,µj ,θ̃j)

wν̃j(θ′′j , θ′j).
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Therefore, we have

VRIC−q ≤
∑
i∈I

∑
θi∈Θi

µi(θi)
∑
νi∈Ei

α(νi) d(q, νi, θi)

<
∑
i∈I

∑
θi∈Θi

µi(θi)
∑
νi∈Ei

α(νi)
∑

(θ′i,θ
′′
i )∈SP (q,µi,θi)

wνi(θ′′i , θ′i)

=
∑
i∈I

∑
θi∈Θi

µi(θi)
∑

(θ′i,θ
′′
i )∈SP (q,µi,θi)

wµi(θ′′i , θ′i)

=
∑
i∈I

∑
θi∈Θi

µi(θi) d(q, µi, θi)

= SB,

where the third line follows from the definition of wνi(·) and µi(θ−i) = ∑
νi∈Ei α(νi) νi(θ−i)

for all θ−i ∈ Θ−i.

From the above, we conclude that for any q ∈ Q, we have VRIC−q < SB. Clearly,
for a decision rule q̃ that is robustly implementable with respect to the uncertainty set
U ε but is not optimal for (BIC), we also have

VRIC−q̃ ≤ VBIC−q̃ < SB.

Thus, it must be that SR(ε) < SB. We arrive at a contradiction.

Theorem 1. SR(ε) = SB if and only if there exists some optimal decision rule q∗ from
(BIC) such that q∗ satisfies the uniform shortest-path tree property with respect to the
uncertainty set U ε.

Theorem 1 follows from Proposition 3 and Proposition 4.

4.2 Applications

Environments in which SB = SR(ε) = SD for any ε. The uniform shortest-path
tree property with respect to an uncertainty set is of interest because a number of
resource allocation problems satisfy this condition. Particularly, the uniform shortest-
path tree property with respect to an uncertainty set (for any ε) is satisfied in
environments with one-dimensional types. This fits many classical applications of
mechanism design, including single-unit auction (e.g., Myerson (1981)), public good
(e.g., Mailath and Postlewaite (1990)), and standard bilateral trade (e.g., Myerson
and Satterthwaite (1983)). This property also holds in multi-unit auctions with
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homogeneous or heterogeneous goods, combinatorial auctions and the like, as long
as the agents’ private values are one-dimensional. In this case, the types are linearly
ordered via a single path. The uniform shortest-path tree property with respect to an
uncertainty set (for any ε) can also be satisfied in some multi-dimensional environments
such as the multi-unit auction with capacity-constrained bidders (see Malakhov and
Vohra (2009)). In this case, the types are located on different paths and are only
partially ordered. In all these environments, by Theorem 1, we have SB = SR(ε) = SD

for any ε.

Environments in which SB = SR(ε) > SD for a range of ε values. In some
environments, the uniform shortest-path tree property with respect to an uncertainty
set can be satisfied for smaller degrees of local uncertainty even if it does not hold
for larger degrees of local uncertainty. Thus, by Theorem 1, while SD < SB, we have
SR(ε) = SB for a range of ε values. This highlights the appealing features of the
robust optimization approach—While the designer would get a strictly less expected
revenue from the optimal dominant strategy mechanism, she could employ the robust
optimization approach which guards against misspecification of agents’ beliefs without
any loss of revenue for the designer. In what follows, we revisit Example 1 and illustrate
this using the bilateral trade model with ex ante unidentified traders.

Consider the problem of designing a trading platform for two traders, A and B,
with the goal of maximizing intermediation profit. Each trader can buy or (short) sell
one unit of the asset and has private information about her valuation for the good. The
platform cannot hold inventory (ex post market-clearing is imposed). The platform
has the following estimate of the distribution µ of the traders’ types:

θ1
B = 1

3 θ2
B = 1

θ1
A = 0 1

12
1
24

θ2
A = 2

3
7
12

7
24

Based on the true distribution of the agents’ types and the uncertainty set of the agents’
possible beliefs, the platform chooses trading mechanisms (q, tA, tB) to maximize the
expected profit. For each reported type profile (θA, θB), q(θA, θB) ∈ [−1, 1] is the
number of units agent A buys from agent B, ti(θA, θB) ∈ R is the payment from agent
i to the platform. Agent A’s utility from purchasing q units of the good and paying
a transfer tA is qθA − tA, and agent B’s utility from selling q units of the good and
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paying a transfer tB is −qθB − tB.10

Proposition 5. For the bilateral trade environment with ex ante unidentified traders,
(1) SB > SD, and (2) SR(ε) = SB if and only if ε ≤ 1

6 .

The following is the unique optimal decision rule of the Bayesian mechanism
design problem (BIC)—Trader A buys 1 unit from trader B if the type profile is (2

3 ,
1
3),

and sells 1 unit to trader B otherwise. Since q∗ is also implementable in dominant
strategies, q∗ is robustly implementable with respect to the uncertainty set U ε for any
ε.

Let G(q∗, θ1
B) (resp. G(q∗, θ2

B)) denote the network corresponding to the decision
rule q∗ and the degenerate belief that trader B’s value is θ1

B (resp. θ2
B). For trader

A, the shortest path from the dummy type θ0 to type θ1
A is (θ0, θ

1
A) in the network

G(q∗, θ1
B), and is (θ0, θ

2
A, θ

1
A) in the network G(q∗, θ2

B).11 It follows from Theorem 1
that SB > SD. It is straightforward to show that q∗ satisfies the uniform shortest-path
tree property with respect to the uncertainty set U ε if and only if 0 ≤ ε ≤ 1

6 . It follows
from Theorem 1 that SR(ε) = SB if and only if 0 ≤ ε ≤ 1

6 . The detailed calculation is
contained in the Appendix A.

5 Robustness to local uncertainty for ε→ 0

Despite the reliance on strong common knowledge assumptions, the Bayesian approach
is widely adopted in the mechanism design literature. A common (albeit informal)
defense of the Bayesian approach often goes as follows: While the designer understands
that the Bayesian model is an approximation at best, the validity of the Bayesian
approach could be justified by numerous historical transactions. In this section, we
employ the robust optimization approach to formalize this rationale. In the robust
optimization framework, the degree of local uncertainty ε diminishes as the number of
historical transactions increases, and a multitude of historical transactions corresponds
to the scenario where ε tends towards zero. In what follows, we compare the Bayesian

10Perhaps surprisingly, this is not a one-dimensional environment; see Börgers (2015, Section 5.6).
This is because (1) if a trader is selling, then a higher value is the “higher type” and (2) if a trader is
buying, then a lower value is the “higher type”.

11In the network G(q∗, θ1
B), the length of the path (θ0, θ

1
A) is 0 and the length of the path (θ0, θ

2
A, θ

1
A)

is 2
3 . In the network G(q∗, θ2

B), the length of the path (θ0, θ
1
A) is 0 and the length of the path (θ0, θ

2
A, θ

1
A)

is − 2
3 .
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approach and the robust optimization approach in the limit case in which ε converges
to zero.

5.1 SB = SR(ε) for sufficiently small ε

To rationalize the Bayesian approach, we might hope that, for any environment, as
long as the degree of local uncertainty is sufficiently small, requiring robustness to
local uncertainty of agents’ beliefs is without loss of revenue. Formally, we investigate
whether there exists a threshold ε̄ > 0 such that SB = SR(ε) as long as ε ≤ ε̄. By
Theorem 1, it suffices to check whether there exists an optimal decision rule of the
Bayesian mechanism design problem (BIC) that satisfies the uniform shortest-path tree
property with respect to the uncertainty set U ε̄.

The following example demonstrates that such a threshold does not always exist.

Example 2. We consider the setting of bilateral trade with ex ante unidentified traders
(the same setting as in Section 4.2). The platform has the following estimate of the
distribution µ of the traders’ types:

θ1
B = 1

3 θ2
B = 1

θ1
A = 0 1

4
1
4

θ2
A = 2

3
1
4

1
4

We first consider the Bayesian mechanism design problem (BIC). It is straight-
forward to calculate that the following is the optimal decision rule:

q∗(θ1
A, θ

1
B) = −1, q∗(θ1

A, θ
2
B) = −1,

q∗(θ2
A, θ

1
B) = 1, q∗(θ2

A, θ
2
B) = −1.

We focus on trader A, and consider the shortest-path tree in the network G(q∗, νA)
for some belief νA. The length of the path (θ0, θ

1
A) is

(
θ1
A q
∗(θ1

A, θ
1
B)
)
νA(θ1

B) +
(
θ1
A q
∗(θ1

A, θ
2
B)
)
νA(θ2

B) = 0,

and the length of the path (θ0, θ
2
A, θ

1
A) is

(
θ2
A q
∗(θ2

A, θ
1
B)
)
νA(θ1

B) +
(
θ2
A q
∗(θ2

A, θ
2
B)
)
νA(θ2

B)
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+
(
θ1
A q
∗(θ1

A, θ
1
B)− θ1

A q
∗(θ2

A, θ
1
B)
)
νA(θ1

B) +
(
θ1
A q
∗(θ1

A, θ
2
B)− θ1

A q
∗(θ2

A, θ
2
B)
)
νA(θ2

B)

=2
3νA(θ1

B)− 2
3(1− νA(θ1

B)).

Thus, (1) if νA(θ1
B) < µA(θ1

B) = 1
2 , the shortest path from θ0 to θ1

A is (θ0, θ
2
A, θ

1
A), and

(2) if νA(θ1
B) > µA(θ1

B) = 1
2 , the shortest path from θ0 to θ1

A is (θ0, θ
1
A). It follows that

for any ε > 0, q∗ does not satisfy the uniform shortest-path tree property with respect
to the uncertainty set U ε. By Theorem 1, SB > SR(ε), ∀ε > 0.

Example 2 presents an environment in which there would be loss of revenue for
the designer as long as the designer has some local uncertainty about agents’ beliefs,
regardless of how minimal the local uncertainty may be. Upon careful examination,
we see that in the network G(q∗, µA), there are multiple shortest paths from θ0 to θ1

A

with the same length of 0. Thus, when we consider nearly beliefs, for any ε > 0, the
shortest-tree property with respect to the uncertainty set U ε is not satisfied for the
decision rule q∗.

Fix a decision rule q that is implementable with respect to µ. We say that the
shortest path from the dummy type θ0 to type θi in the network G(q, µi) is unique if
there is a unique shortest path SP (q, µi, θi), that is,

d(q, µi, θi) =
∑

(θ′i,θ
′′
i )∈SP (q,µi,θi)

wµi(θ′′i , θ′i) <
∑

(θ′i,θ
′′
i )∈P (q,µi,θi)

wµi(θ′′i , θ′i)

for any path P (q, µi, θi) 6= SP (q, µi, θi).

Theorem 2. If there exists some optimal decision rule q∗ from (BIC) such that for
each agent i and each type θi, the shortest path from the dummy type θ0 to type θi in
the network G(q∗, µi) is unique, then there exists ε̄ > 0 such that SB = SR(ε) for any
ε ≤ ε̄.

Proof. Fix such a decision rule q∗. For each agent i and each type θi, we have

d(q∗, µi, θi) =
∑

(θ′i,θ
′′
i )∈SP (q∗,µi,θi)

wµi(θ′′i , θ′i)

=
∑

(θ′i,θ
′′
i )∈SP (q∗,µi,θi)

( ∑
θ−i∈Θ−i

(
q∗(θ′′i , θ−i) · θ′′i − q∗(θ′i, θ−i) · θ′′i

)
µi(θ−i)

)

<
∑

(θ′i,θ
′′
i )∈P

( ∑
θ−i∈Θ−i

(
q∗(θ′′i , θ−i) · θ′′i − q∗(θ′i, θ−i) · θ′′i

)
µi(θ−i)

)
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=
∑

(θ′i,θ
′′
i )∈P

wµi(θ′′i , θ′i).

for any path P from the dummy type θ0 to θi other than SP (q∗, µi, θi). Since the third
line holds as an inequality, for any νi sufficiently close to µi, SP (q∗, µi, θi) remains the
shortest path from the dummy type θ0 to θi in the network G(q∗, νi), since

∑
(θ′i,θ

′′
i )∈SP (q∗,µi,θi)

wνi(θ′′i , θ′i) <
∑

(θ′i,θ
′′
i )∈P

wνi(θ′′i , θ′i)

for any path P from the dummy type θ0 to θi other than SP (q∗, µi, θi). Therefore,
there exists ε̄ > 0 such that q∗ satisfies the uniform shortest-path tree property with
respect to the uncertainty set U ε as long as ε ≤ ε̄. By Theorem 1, SB = SR(ε) for any
ε ≤ ε̄.

5.2 limε→0 S
R(ε) = SB

In this section, we establish another foundation for the Bayesian approach. Here, the
requirement is weaker than that in Section 5.1. Rather than requiring a threshold ε̄ > 0
such that SB = SR(ε) for any ε ≤ ε̄, we require that the revenue loss due to robustness
be vanishingly small as ε approaches 0. In what follows, we show that this holds very
generally, as long as a mild slater condition is satisfied.

LetM the collection of all mechanisms that are Bayesian incentive compatible
with respect to µ. We assume that the Bayesian mechanism design problem satisfies
the following Slater condition.12

Assumption 1. There exists a mechanism (q, t) such that for each agent i ∈ I, each
type θi ∈ Θi, and each θ′i ∈ {Θi \ {θi}} ∪ {θ0},

∑
θ−i∈Θ−i

(
q(θi, θ−i) · θi − ti(θi, θ−i)

)
µi(θ−i) >

∑
θ−i∈Θ−i

(
q(θ′i, θ−i) · θi − ti(θ′i, θ−i)

)
µi(θ−i).

Theorem 3. Under Assumption 1, SR(ε) is continuous at the point ε = 0, that is,

lim
ε→0

SR(ε) = SB.

12This is a mild assumption. For instance, in the canonical one-dimensional mechanism design
setting, Escude and Sinander (2020) show that (weak) strategy-proofness can be made strict by an
arbitrarily small modification.
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Proof. Theorem 3 follows from continuity arguments. Let (q∗, t∗) be an optimal
Bayesian mechanism with respect to µ. Under Assumption 1, M has non-empty
interior. SinceM is convex and closed, for any η > 0, there exists (q∗∗, t∗∗) ∈ intM
that is sufficiently close to (q∗, t∗) and hence achieves an expected revenue larger than
SB− η. Since (q∗∗, t∗∗) ∈ intM, there exists ε̄ > 0 such that as long as ε ≤ ε̄, (q∗∗, t∗∗)
is robust incentive compatible with respect to the uncertainty set U ε. It follows that

lim
ε→0

SR(ε) ≥ SB − η.

Since η is arbitrary, we have
lim
ε→0

SR(ε) = SB.

6 Conclusion

This paper presents a systematic analysis of the robust optimization approach
to mechanism design within a general social choice environment with quasi-linear
preferences and private values. This approach is particularly suited for designing
mechanisms when the designer faces local uncertainty about agents’ beliefs, which is a
common occurrence. We argue that this approach offers two key advantages: compared
to the Bayesian approach, it safeguards against potential misspecification of agents’
beliefs, and compared to the dominant strategy approach, it typically yields higher
expected revenue. By modeling the limit case in which ε tends towards zero, we use
the robust optimization approach to rationalize the Bayesian approach.

A Proof of Proposition 5

In what follows, we show that q∗ satisfies the uniform shortest-path tree property with
respect to the uncertainty set U ε if and only if 0 ≤ ε ≤ 1

6 .

For trader A, the belief derived from the benchmark prior µ is µA(θ1
B) = 2

3 and
µA(θ2

B) = 1
3 . For any ε ≤

1
3 , the uncertainty set U ε

A has two extreme points:

νA(θ1
B) = 2

3 + ε, νA(θ2
B) = 1

3 − ε,
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ν ′A(θ1
B) = 2

3 − ε, ν ′A(θ2
B) = 1

3 + ε.

For the network G(q, νA):

The length of the path (θ0, θ
1
A) is 0 and the length of the path (θ0, θ

2
A, θ

1
A) is

2
3(2

3 + ε)− 2
3(1

3 − ε) > 0.

Thus, the shortest path from θ0 to θ1
A is (θ0, θ

1
A). The length of the path (θ0, θ

2
A) is

2
3(2

3 + ε)− 2
3(1

3 − ε)

and the length of the path (θ0, θ
1
A, θ

2
A) is

4
3(2

3 + ε).

Thus, the shortest path from θ0 to θ2
A is (θ0, θ

2
A).

For the network G(q, ν ′A):

The length of the path (θ0, θ
2
A) is

2
3(2

3 − ε)−
2
3(1

3 + ε)

and the length of the path (θ0, θ
1
A, θ

2
A) is

4
3(2

3 − ε).

Thus, the shortest path from θ0 to θ2
A is (θ0, θ

2
A). The length of the path (θ0, θ

1
A) is 0

and the length of the path (θ0, θ
2
A, θ

1
A) is

2
3(2

3 − ε)−
2
3(1

3 + ε).

Thus, the shortest path from θ0 to θ1
A is (θ0, θ

1
A) if and only if ε ≤ 1

6 .

Comparing the two networks G(q, νA) and G(q, ν ′A), we conclude that there is the
same shortest-path tree with respect to the uncertainty set U ε for trader A if and only
if ε ≤ 1

6 . Similar calculations for trader B show that there is the same shortest-path
tree with respect to the uncertainty set U ε for trader B if ε ≤ 1

6 . Proposition 5 follows
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from the above calculations and Theorem 1.

References
Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993): Network Flows: Theory,
Algorithms and Applications. Prentice Hall, New Jersey.

Ben-Tal, A., and A. Nemirovski (2002): “Robust Optimization - Methodology
and Applications,” Mathematical Programming, 92(3), 453–480.

Bergemann, D., and S. Morris (2005): “Robust Mechanism Design,” Econometrica,
73(6), 1771–1813.

Bergemann, D., and K. Schlag (2011): “Robust Monopoly Pricing,” Journal of
Economic Theory, 146, 2527–2543.

Bertsimas, D., V. Gupta, and N. Kallus (2018): “Data-Driven Robust
Optimization,” Mathematical programming, 167, 235–292.

Beyer, H.-G., and B. Sendhoff (2007): “Robust Optimization - A Comprehensive
Survey,” Computer methods in applied mechanics and engineering, 196(33), 3190–
3218.

Börgers, T. (2015): An Introduction to the Theory of Mechanism Design. Oxford
University Press.

Brooks, B., and S. Du (2021): “Optimal Auction Design with Common Values: An
Informationally-Robust Approach,” Econometrica, 89(3), 1313–1360.

Carroll, G. (2017): “Robustness and Separation in Multidimensional Screening,”
Econometrica, 85(2), 453–488.

Carroll, G., and D. Meng (2016): “Locally Robust Contracts for Moral Hazard,”
Journal of Mathematical Economics, 62, 36–51.

Chen, Y.-C., and J. Li (2018): “Revisiting the Foundations of Dominant-Strategy
Mechanisms,” Journal of Economic Theory, 178, 294–317.

Chung, K.-S., and J. C. Ely (2007): “Foundations of Dominant-Strategy
Mechanisms,” Review of Economic Studies, 74(2), 447–476.

Cramton, P., R. Gibbons, and P. Klemperer (1987): “Dissolving a Partnership
Efficiently,” Econometrica, 55(3), 615–632.

Cremer, J., and R. P. McLean (1988): “Full Extraction of the Surplus in Bayesian
and Dominant Strategy Auctions,” Econometrica, 56(6), 1247–1257.

Cui, T., Y.-J. Chen, and Z.-J. M. Shen (2009): “Optimal Auction Design:
Uncertainty, Robustness, and Revenue Maximization,” working paper.

Du, S. (2018): “Robust Mechanisms under Common Valuation,” Econometrica, 86(5),
1569–1588.

Escude, M., and L. Sinander (2020): “Strictly Strategy-proof Auctions,”
Mathematical Social Sciences, 107, 13–16.

35



Gershkov, A., J. Goeree, A. Kushnir, B. Moldovanu, and X. Shi (2013): “On
the Equivalence of Bayesian and Dominant Strategy Implementation,” Econometrica,
81(1), 197–220.

Heydenreich, B., R. Müller, M. Uetz, and R. Vohra (2009): “Characterization
of Revenue Equivalence,” Econometrica, 77(1), 307–316.

Hiriart-Urruty, J.-B., and C. Lemaréchal (2004): Fundamentals of Convex
Analysis. Springer Science & Business Media.

Jehiel, P., M. Meyer-ter Vehn, and B. Moldovanu (2012): “Locally Robust
Implementation and its Limits,” Journal of Economic Theory, 147, 2439–2452.

Li, J., and P. Dworczak (2024): “Are Simple Mechanisms Optimal when Agents
are Unsophisticated?,” working paper.

Loertscher, S., and L. M. Marx (2020): “A Dominant-Strategy Asset Market
Mechanism,” Games and Economic Behavior, 120, 1–15.

Lopomo, G., L. Rigotti, and C. Shannon (2020): “Uncertainty in Mechanism
Design,” working paper.

(2022): “Uncertainty and Robustness of Surplus Extraction,” Journal of
Economic Theory, 199, 105088.

Lu, H., and J. Robert (2001): “Optimal Trading Mechanisms with Ex Ante
Unidentified Traders,” Journal of Economic Theory, 97(1), 50–80.

Madarász, K., and A. Prat (2017): “Sellers with Misspecified Models,” Review of
Economic Studies, 84, 790–815.

Mailath, G., and A. Postlewaite (1990): “Asymmetric Information Bargaining
Problems with Many Agents,” Review of Economic Studies, 57(3), 351–367.

Malakhov, A., and R. V. Vohra (2009): “An Optimal Auction for Capacity
Constrained Bidders: A Network Perspective,” Economic Theory, 39(1), 113–128.

Manelli, A. M., and D. R. Vincent (2010): “Bayesian and Dominant-Strategy
Implementation in the Independent Private-Values Model,” Econometrica, 78(6),
1905–1938.

Myerson, R. (1981): “Optimal Auction Design,” Mathematics of Operations Research,
6(1), 58–73.

Myerson, R., and M. Satterthwaite (1983): “Efficient Mechanisms for Bilateral
Trading,” Journal of Economic Theory, 29(2), 265–281.

Ollár, M., and A. Penta (2017): “Full Implementation and Belief Restrictions,”
American Economic Review, 107(8), 2243–2277.

(2023): “A Network Solution to Robust Implementation: The Case of Identical
but Unknown Distributions,” Review of Economic Studies, 90(5), 2517–2554.

Pham, H., and T. Yamashita (2024): “Auction Design with Heterogeneous Priors,”
Games and Economic Behavior, 145, 413–425.

36



Rochet, J.-C. (1987): “A Necessary and Sufficient Condition for Rationalizability in
a Quasi-linear Context,” Journal of Mathematical Economics, 16(2), 191–200.

Vohra, R. (2011): Mechanism Design: A Linear Programming Approach. Cambridge
University Press.

Yamashita, T., and S. Zhu (2022): “On the Foundations of Ex Post Incentive-
Compatible Mechanisms,” American Economic Journal: Microeconomics, 14(4),
494–514.

37


	A robust optimization approach to mechanism design
	Citation

	Introduction
	Related literature

	Preliminaries
	The benchmark model
	Local uncertainty about agents' beliefs
	Mechanisms and solution concepts
	The designer's robust optimization problem

	Implementation
	Bayesian implementation
	Robust implementation

	Robustness to local uncertainty for fixed 
	Robustness to local uncertainty without loss of revenue
	Applications

	Robustness to local uncertainty for 0
	SB = SR() for sufficiently small 
	lim0  SR() = SB

	Conclusion
	Proof of Proposition 5

