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Abstract: This paper presents the first study on high-dimensional regression coefficient tests with high-
frequency financial data. These tests allow the number of regressors to be larger than the number of observations 
within each estimation block and can grow to infinity in asymptotics. In this paper, the sum-type test and max-
type test have been proposed, where the former is suitable for the dense alternative (many small betas) and the 
latter is suitable for the sparse alternative (a very small number of large betas). By showing the asymptotic 
independence between the sum-type test and max-type test, the paper proposes a third test – Fisher’s 
combination test, which is robust to both dense and sparse alternatives. The paper derives the limiting null 
distributions of the three proposed tests and analyzes the asymptotic behavior of their powers. Monte Carlo 
simulations demonstrate the validity of the theoretical results developed in this paper. Empirical study shows 
the impact of high frequency (HF) factors when being added to a Fama–French-style factor model. We found 
that the HF effects are time varying. The proposed tests can help identify those time periods when the HF factors 
carry (significant) incremental information for the test asset. Our tests could shed light on market timing in a 
trading strategy. 
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1. Introduction 

High frequency regression (or, realized regression) has been receiving increasing attention in recent years. 
Enabled by the continuous-time modeling approach, the nonparametric framework of high frequency regression 
allows for time-varying features for the covariance structure of the dependent variable process and the 
independent variable processes, and permits the time-varying regression coefficients (or, betas). The analysis of 
high frequency regression has wide applications in finance, for example, (i) it can be helpful in characterizing 
the error of the hedging strategy in financial trading (e.g., see Mykland and Zhang (2006)); (ii) it can be applied 
to asset pricing based on the time-varying (or, conditional) factor models (e.g., see Aït-Sahalia et al. (2020)); 
(iii) it is also helpful in risk management and portfolio allocation through the accurate estimation of large 
covariance and precision matrices (e.g., see Fan et al. (2016) and Chen et al. (2024)). The statistical 
methodologies developed for high frequency regression mainly focus on the following areas: (i) the estimation 
of regression coefficients (betas), including the realized beta estimator with single regressor (e.g., see Barndorff-
Nielsen and Shephard (2004) and Andersen et al. (2005)), the integrated beta estimator with multiple regressors 
(e.g., see Mykland and Zhang (2009), Aït-Sahalia et al. (2020) and Chen et al. (2024)); (ii) the estimation of 
idiosyncratic volatilities, e.g., see Mykland and Zhang (2006) 
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and Aït-Sahalia et al. (2020); (iii) the estimation of large covariance and precision matrices, e.g., see Fan et al. (2016) and Chen
et al. (2024); and (iv) the testing problem about the time-variation in the beta processes, e.g., see Reißet al. (2015) and Kong and
Liu (2018).

All aforementioned theories are developed based on the assumption that the number of regressors is finite in the asymptotic
setting. However, in the era of big data and machine learning, the number of regressors becomes larger and larger (for example,
there are more than 200 high frequency factors available currently). In this high dimensional setting, the covariance matrix estimator
of the regressors is very likely to be not invertible. Thus, it is necessary to develop the statistical inference methods for the regression
coefficient processes with high dimensionality. A frequently encountered challenge in high dimension regression is the detection
of relevant variables. Recently, Kim and Shin (2022) proposed a Thresholding dEbaised Dantzig (ETD) estimator for the high
dimensional high frequency factor models, which can simultaneously select and estimate the regression coefficient process. Shin
and Kim (2023) proposed the robust estimation procedure to explain the heavy-tailed observations. Hypothesis testing is another
effective method for identifying relevant variables. As far as we know, this paper is the first one to conduct the high dimensional
regression coefficient tests with high frequency data.

The theoretical contribution of this paper is three-fold. First, the existing high dimensional hypothesis tests under the low
frequency setting are mainly designed for the independent and identically distributed observations or the stationary observations.
The typical problem in the low frequency setting is to test the high dimensional mean vector, and the existing methodologies
can be classified into three types: (i) max-type test, see e.g., Cai et al. (2014); (ii) sum-type test, see e.g., Bai and Saranadasa
(1996), Srivastava and Du (2008), Srivastava (2009) , Chen and Qin (2010) and Srivastava et al. (2013); (iii) combination test,
see, e.g., Fan et al. (2015), Xu et al. (2016), He et al. (2021), Feng et al. (2022) and Chen and Feng (2022). In contrast, the
ontinuous time modeling framework enables us to relax these assumptions, for example, to assume that the covariance matrix of
he independent variable processes and the variance of the residual process are time-varying. Second, under the low frequency
etting, the high dimensional beta test mainly addresses a much simpler and known problem where the beta vector is deterministic
nd constant, see, e.g., Liu et al. (2020). In contrast, the regression coefficients in our paper are time-varying and stochastic. Third,
he traditional statistical techniques and methodologies under the low frequency setting cannot be directly applied to the inference
elated to continuous time models, i.e., U-statistics, likelihood method, etc. Therefore, novel methodologies are developed in this
aper to conduct the high dimensional beta tests in the high frequency setting.

Under the framework of high frequency regression, we propose tests for the high dimensional regression coefficient that account
or the time-varying feature in both the regression coefficient processes and the covariance structure of the regressors. In this
etting, the high dimensionality implies that the number of regressors can exceed the number of observations in each estimation
lock and can also diverge to infinity asymptotically. In this paper, we have developed the sum-type test and max-type test for
igh dimensional regression coefficient processes. Furthermore, the asymptotic independence between the sum-type test and the
ax-type test is established, leading to the Fisher’s combination test. In the theoretical development, we derive the asymptotic
istributions of these three test statistics under the null hypothesis, and analyze the asymptotic behavior of their powers. Monte
arlo simulations demonstrate the validity of the theoretical results of the three tests. We also perform an empirical study based
n the intraday prices of the components of S&P 100 Index and the prices of a few Exchange-Traded Funds (ETF) from Jan 2007
o Dec 2017. We construct three scenarios of the realized regressions, which serve as the dense alternative, the sparse alternative,
nd the null hypothesis, respectively. The result shows that (i) our Fisher’s combination test is robust with respect to both dense
nd sparse alternatives; (ii) all of the three proposed tests are non-significant under the null hypothesis. In another application, we
nvestigate the role of high frequency (HF) factors when being added to a traditional Fama–French (FF) factor model. We found that
rom a long horizon (say, 11 years in our data), HF factors add highly significant contribution to explaining the test assets (various
TFs). When viewed from a monthly level, the HF factors becomes much weaker, especially in a Fama–French-style 6-factor model.
e also found that impact of HF factors are time-varying. During certain time periods, HF factors could carry some incremental

nformation when included in the Fama–French 3 factor model. For example, in the first quarter of 2012, our tests detected many
ow-impact HF factors influencing the returns of the health care ETF XLV.

The theoretical results in the current paper touch upon both high frequency and high dimensional data analysis. Our work
elates to high frequency principal component analysis (PCA) and high frequency regression, which can be applied into the
stimation of high dimensional covariance and precision matrices, e.g., see Aït-Sahalia and Xiu (2017), Pelger (2019, 2020), Kong
2017), Bollerslev et al. (2019) , Dai et al. (2019), Chen et al. (2020) and Kong et al. (2021) for high frequency PCA; and Fan et al.

(2016), Dai et al. (2019) and Chen et al. (2024) for high frequency regression. Another relevant literature is the test for constant
factor loading matrix, where the number of dependent variables can grow to infinity, e.g., see Kong and Liu (2018).

This paper is organized as follows. Section 2 provides the basic settings about the model. Section 3 sets up the null hypothesis
and the alternative hypothesis, and proposes the three types of the high dimensional regression coefficient tests, including the
sum-type test, max-type test and Fisher’s combination test. Section 4 shows the Monte Carlo evidence of the proposed theoretical
methodology. Section 5 provides the empirical study based on the proposed tests. Section 6 concludes this paper. All mathematical
proofs of the theoretical results in this paper are collected in the online supplementary material.

We introduce several notations as follows. 𝜆min (𝐀) and 𝜆max (𝐀) denote the smallest and the largest eigenvalues of the matrix 𝐀,
respectively. For a 𝑝× 𝑞 matrix 𝐀, define ‖𝐀‖max = max1≤𝑗≤𝑝,1≤𝑘≤𝑞

|

|

|

𝐀(𝑗,𝑘)|
|

|

. For random vectors 𝐗 and 𝐘, 𝑆̄1 (𝐗) denotes the first order
Stein discrepancy as defined in Definition 1.3 of Fathi (2021), and 𝑊2 (𝐗,𝐘) denotes the Wasserstein distance between 𝐗 and 𝐘 as
defined in Section 3 of Ledoux et al. (2015). For a random variable 𝑋, ‖𝑋‖2 =

[

𝐸
(

𝑋2)]1∕2. For a 𝑙×1 vector 𝐚 =
(

𝑎1, 𝑎2,… , 𝑎𝑙
)⊺, ‖𝐚‖

denotes the Euclidean norm of 𝐚, i.e., ‖𝐚‖ =
(

∑𝑙
𝑘=1 𝑎

2
𝑘

)1∕2
. 𝑁𝑑 (𝜇,𝛴) denotes the 𝑑-dimensional normal random vector with mean
2

vector 𝜇 and covariance matrix 𝛴 and I𝑑 is the 𝑑 × 𝑑 identity matrix.



D. Chen et al.
2. Models

We assume that the (𝑝 + 1)-dimensional process 𝛯𝑡 =
(

𝑋(1)
𝑡 , 𝑋(2)

𝑡 ,… , 𝑋(𝑝)
𝑡 , 𝑌𝑡

)⊺
is a continuous Itô -semimartingale as follows:

𝑑𝛯𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡,

where 𝜇𝑡 is a (𝑝 + 1) × 1 vector process and 𝜎𝑡 is a symmetric and invertible (𝑝 + 1) × (𝑝 + 1) matrix process, and 𝜇𝑡 and 𝜎𝑡 are Itô
processes, 𝑊𝑡 is a (𝑝 + 1)-dimensional standard Brownian motion. Here we introduce a notation 𝑋𝑡 as 𝑋𝑡 =

(

𝑋(1)
𝑡 , 𝑋(2)

𝑡 ,… , 𝑋(𝑝)
𝑡

)⊺
.

The spot covariance process of 𝛯𝑡 at time 𝑡 can be expressed as follows:

𝑐𝑡 =
(

𝜎𝜎⊺
)

𝑡 , (2.1)

which belongs to the set of positive-semidefinite matrices for any 0 ≤ 𝑡 ≤  .
Note that the spot covariance process can be further partitioned as follows:

𝑐𝑡 =

(

𝑐𝑋,𝑋𝑡 𝑐𝑌 ,𝑋𝑡

𝑐𝑋,𝑌𝑡 𝑐𝑌 ,𝑌𝑡

)

,

where the 𝑝 × 𝑝 spot covariance matrix process of 𝑋𝑡 is denoted by 𝑐𝑋,𝑋𝑡 , and 𝑐𝑌 ,𝑋𝑡 =
(

𝑐𝑋,𝑌𝑡

)⊺
.

Assume that the processes 𝑌𝑡, 𝑋
(1)
𝑡 ,… , 𝑋(𝑝)

𝑡 are observed on an equidistant grid:
{

𝑡𝑛,𝑗
}

0≤𝑗≤𝑛 with 𝑡𝑛,𝑗 = 𝑗𝛥𝑡𝑛 and 𝛥𝑡𝑛 =  ∕𝑛. We
define 𝛥𝑋𝑡𝑛,𝑗+1 = 𝑋𝑡𝑛,𝑗+1 −𝑋𝑡𝑛,𝑗 . Similarly, we can define 𝛥𝑌𝑡𝑛,𝑗+1 , 𝛥𝑍𝑡𝑛,𝑗+1 and 𝛥𝑡𝑛,𝑗+1.

We also introduce a coarser grid
{

𝜏𝑛,𝑖
}

0≤𝑖≤𝐾𝑛
where 𝜏𝑛,𝑖 = 𝑖𝑀𝑛𝛥𝑡𝑛 and𝑀𝑛 is a positive integer such that𝑀𝑛 = 𝑛∕𝐾𝑛. In asymptotics,

we assume 𝑀𝑛 = 𝑂 (1) and 𝐾𝑛 = 𝑂 (𝑛) as 𝑛→ ∞.

3. High-dimensional regression coefficient tests

Suppose that the processes are related by

𝑑𝑌𝑡 =
𝑝
∑

𝑘=1
𝛽(𝑘)𝑡 𝑑𝑋(𝑘)

𝑡 + 𝑑𝑍𝑡 with
⟨

𝑋(𝑘), 𝑍
⟩

𝑡 = 0 for all 0 ≤ 𝑡 ≤  and 1 ≤ 𝑘 ≤ 𝑝. (3.1)

The symbol ⟨⋅, ⋅⟩𝑡 denotes the quadratic covariation of two Itô processes. Here we provide an assumption for the residual process
𝑍𝑡.

Assumption 1. Suppose the stochastic process 𝑌𝑡 follows the continuous-time multiple regression model as expressed by (3.1), in
which the factor loading processes 𝛽(𝑘)𝑡 , 1 ≤ 𝑘 ≤ 𝑝 are Itô processes. Assume the residual process 𝑍𝑡 satisfying

𝑑𝑍𝑡 = 𝜇𝑍𝑡 𝑑𝑡 + 𝜎
𝑍
𝑡 𝑑𝑊

𝑍
𝑡 ,

and assume the drift process 𝜇𝑍𝑡 and the volatility process 𝜎𝑍𝑡 are also Itô processes. □

Based on above assumption, it is easy to see that ⟨𝑍,𝑍⟩𝑡 = ∫ 𝑡0
(

𝜎𝑍𝑠
)2 𝑑𝑠, and ⟨𝑍,𝑍⟩

′
𝑡 =

(

𝜎𝑍𝑡
)2.

Remark 1 (Discussion About Possible Latent Factors). In the setting of regression, we only consider the factors that are observable.
However, there might be latent factors that are not included into the regression equation. We discuss the latent factors in the
following two cases. (i) If the latent factor 𝐹𝑡 is orthogonal to the independent variables 𝑋𝑡, i.e., ⟨𝐹 ,𝑋⟩

′
𝑡 ≡ 0 for 0 ≤ 𝑡 ≤  , this

latent factor can be absorbed into the residual process 𝑍𝑡. (ii) If the latent factor 𝐹𝑡 is correlated with the independent variables 𝑋𝑡,
i.e., ⟨𝐹 ,𝑋⟩

′
𝑡 ≠ 0, 𝑋𝑡 can be driven by a set of common latent factors and these common latent factors can be pervasive (Fan et al.,

2013). This case has wide applications in the financial market, for example, 𝑋𝑡 is the asset returns of a large number of individual
stocks, which are actually driven by a small number of common factors, see, e.g., Fama and French (2017) for the low frequency
version and Aït-Sahalia et al. (2020) for the high frequency version. The proposed tests in this paper can also cover this case, as
explained in Remark 3. □

To develop our theory, we partition the vector 𝑋𝑡 of 𝑝 independent variables into two subsets: group 𝑎 and group 𝑏. Group 𝑎
contains the first 𝑞 variables, while group 𝑏 contains the remaining 𝑝−𝑞 variables. Thus, we can introduce the subsequent notations:
𝑋𝑡 = (𝑋⊺

𝑎,𝑡, 𝑋
⊺
𝑏,𝑡)

⊺ where 𝑋𝑎,𝑡 =
(

𝑋(1)
𝑡 ,… , 𝑋(𝑞)

𝑡

)⊺
and 𝑋𝑏,𝑡 =

(

𝑋(𝑞+1)
𝑡 ,… , 𝑋(𝑝)

𝑡

)⊺
. Here, following the definition of 𝛥𝑋𝑡𝑛,𝑗+1 , we define

𝛥𝑋𝑎,𝑡𝑛,𝑗+1 = 𝑋𝑎,𝑡𝑛,𝑗+1 −𝑋𝑎,𝑡𝑛,𝑗 and 𝛥𝑋𝑏,𝑡𝑛,𝑗+1 = 𝑋𝑏,𝑡𝑛,𝑗+1 −𝑋𝑏,𝑡𝑛,𝑗 . Further, we could also introduce a notation for the vector of regression

coefficients: 𝜷𝑡 = (𝜷⊺
𝑎,𝑡, 𝜷

⊺
𝑏,𝑡)

⊺ where 𝜷𝑎,𝑡 =
(

𝛽(1)𝑡 ,… , 𝛽(𝑞)𝑡
)⊺

is a 𝑞 × 1 column vector process denoting the regression coefficients of

group 𝑎 variables, and 𝜷𝑏,𝑡 =
(

𝛽(𝑞+1)𝑡 ,… , 𝛽(𝑝)𝑡
)⊺

is a (𝑝 − 𝑞) × 1 column vector process denoting the regression coefficients of group 𝑏

variables. For group 𝑎, we assume the number of variables 𝑞 to be fixed in asymptotics and we assume that the group 𝑎 variables
are always included in the realized regression, i.e., 𝜷𝑎,𝑡 ≠ 0 for some 0 ≤ 𝑡 ≤  . For group 𝑏, we assume the number of variables
𝑝 − 𝑞 to be diverging and we are interested in testing whether 𝜷𝑏,𝑡 ≡ 0. In the high-dimensional scenario, we assume that 𝑞 < 𝑀𝑛
3

and 𝑝 is much larger than 𝑀𝑛.
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Here the 𝛽(𝑘)𝑡 is the factor loading with respect to the covariate process 𝑋(𝑘)
𝑡 . If 𝛽(𝑘)𝑡 = 0, there is no relationship between the

ependent process 𝑌𝑡 and the covariate process 𝑋(𝑘)
𝑡 . In order to test whether those covariates in 𝑋𝑏,𝑡 are related with 𝑌𝑡, we consider

he following global testing problem:

𝐻0 ∶ 𝜷𝑏,𝑡 ≡ 𝟎 for all 𝑡 ∈
[

0, 
]

vs. 𝐻1 ∶ ∃𝑡 ∈
[

0, 
]

such that 𝜷𝑏,𝑡 ≠ 𝟎. (3.2)

f we do not reject the null hypothesis, we can significantly reduce the number of covariate process in model (3.1), thereby improving
he accuracy of statistical inference.

Define

𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛥𝑌𝑡𝑛,(𝑖−1)𝑀𝑛+1

𝛥𝑌𝑡𝑛,(𝑖−1)𝑀𝑛+2

⋮

𝛥𝑌𝑡𝑛,𝑖𝑀𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑀𝑛×1

, 𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛥𝑋⊺
𝑡𝑛,(𝑖−1)𝑀𝑛+1

𝛥𝑋⊺
𝑡𝑛,(𝑖−1)𝑀𝑛+2

⋮

𝛥𝑋⊺
𝑡𝑛,𝑖𝑀𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠𝑀𝑛×𝑝

and 𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛥𝑍𝑡𝑛,(𝑖−1)𝑀𝑛+1

𝛥𝑍𝑡𝑛,(𝑖−1)𝑀𝑛+2

⋮

𝛥𝑍𝑡𝑛,𝑖𝑀𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑀𝑛×1

.

(3.3)

n the low-dimensional setting, say 𝑀𝑛 > 𝑝, the least square estimator for the spot beta (see Mykland and Zhang (2009)
nd Aït-Sahalia et al. (2020)),

𝜷̂𝜏𝑛,𝑖−1 =
(

⊺
𝑖 𝑖

)−1 ⊺
𝑖 𝑖.

However, the estimator 𝜷̂𝜏𝑛,𝑖−1 and related central limit theorem cannot work when 𝑀𝑛 < 𝑝 because ⊺
𝑖 𝑖 is not invertible.

In this paper, we will develop the high dimensional regression coefficient test where 𝑝 can be much larger than 𝑀𝑛, and 𝑝 can
also grow to infinity in asymptotics. We further define:

𝑎,𝑖 =
(

𝛥𝑋𝑎,𝑡𝑛,(𝑖−1)𝑀𝑛+1
, 𝛥𝑋𝑎,𝑡𝑛,(𝑖−1)𝑀𝑛+2

,… , 𝛥𝑋𝑎,𝑡𝑛,𝑖𝑀𝑛

)⊺
(3.4)

and

(𝑗),𝑖 =
(

𝛥𝑋(𝑗)
𝑡𝑛,(𝑖−1)𝑀𝑛+1

, 𝛥𝑋(𝑗)
𝑡𝑛,(𝑖−1)𝑀𝑛+2

,… , 𝛥𝑋(𝑗)
𝑡𝑛,𝑖𝑀𝑛

)⊺
(3.5)

where 𝑎,𝑖 is a 𝑀𝑛 × 𝑞 matrix and (𝑗),𝑖 is a 𝑀𝑛 × 1 vector.
Thus, we construct a test statistic as follows:

𝑉𝑗,𝑖 = 𝛥𝑡−1𝑛 ⊺
𝑖 ̃(𝑗),𝑖

(

̃⊺
(𝑗),𝑖̃(𝑗),𝑖

)−1
̃⊺
(𝑗),𝑖𝑖 for 𝑞 + 1 ≤ 𝑗 ≤ 𝑝,

where

𝑎,𝑖 = 𝑎,𝑖
(

⊺
𝑎,𝑖𝑎,𝑖

)−1
⊺
𝑎,𝑖 and ̃(𝑗),𝑖 =

(

I𝑀𝑛
−𝑎,𝑖

)

(𝑗),𝑖.

To aggregate the test statistics 𝑉𝑗,𝑖 across blocks, we define:

𝑉𝑗 =
1
𝐾𝑛

𝐾𝑛
∑

𝑖=1
𝑉𝑗,𝑖 for 𝑞 + 1 ≤ 𝑗 ≤ 𝑝.

emark 2 (Main Idea Concerning Test Statistic Construction). Based on the definition ̃(𝑗),𝑖 =
(

I𝑀𝑛
−𝑎,𝑖

)

(𝑗),𝑖 and the fact ⊺
𝑎,𝑖̃(𝑗),𝑖 =

, ̃(𝑗),𝑖 is the component of (𝑗),𝑖 which is orthogonal to the group 𝑎 variables 𝑎,𝑖, from a geometric perspective. As illustrated in
he definition of 𝑉𝑗,𝑖, it is the sum of squared fitted values (SSFV) of the following regression problem: 𝑖 = ̃(𝑗),𝑖𝛽(𝑗),𝑖 + ̃(𝑗),𝑖. When
(𝑗)
𝑡 ≡ 0, this SSFV is the variance of the residual part 𝑖. Therefore, when 𝛽(𝑗)𝑡 ≡ 0 for all 𝑡, substracting the residual variance
= 1

 ⟨𝑍,𝑍⟩ , 𝑉𝑗 − 𝑣 is just the statistical noise, which admits CLT. □

Before stating the first theorem, we define the following quantity:

𝝑𝑖 ≜ 𝐾−1∕2
𝑛

(

𝜗𝑖,𝑞+1,… , 𝜗𝑖,𝑝
)⊺ ,

where

𝜗𝑖,𝑗 ≜ 𝛥𝑡−1𝑛
(

(0)
𝑖

)⊺
̃(𝑗),𝑖

(

̃⊺
(𝑗),𝑖̃(𝑗),𝑖

)−1
̃⊺
(𝑗),𝑖

(0)
𝑖 − ⟨𝑍,𝑍⟩

′
𝜏𝑛,𝑖−1

,

(0)
𝑖 ≜

(

𝜎𝑍𝜏𝑛,𝑖−1𝛥𝑊
𝑍
𝑡𝑛,(𝑖−1)𝑀𝑛+1

, 𝜎𝑍𝜏𝑛,𝑖−1𝛥𝑊
𝑍
𝑡𝑛,(𝑖−1)𝑀𝑛+2

,… , 𝜎𝑍𝜏𝑛,𝑖−1𝛥𝑊
𝑍
𝑡𝑛,𝑖𝑀𝑛

)⊺
. (3.6)

Theorem 1. Denote 𝐕 = 𝐾1∕2
𝑛 (𝑉𝑞+1 − 𝑣,… , 𝑉𝑝 − 𝑣)⊺ and 𝑣 = 1

 ⟨𝑍,𝑍⟩ . Define a matrix 𝛴 , where the (𝑗, 𝑘)-th element of 𝛴 can be
xpressed as:

𝛴(𝑗,𝑘)
 = 2

 ∫


(

𝜔(𝑗,𝑘)
𝑡

)2

(𝑗,𝑗) (𝑘,𝑘)

(

⟨𝑍,𝑍⟩

′
𝑡
)2 𝑑𝑡 for 𝑞 + 1 ≤ 𝑗, 𝑘 ≤ 𝑝,
4
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with 𝜔(𝑗,𝑘)
𝑡 = 𝑐(𝑗,𝑘)𝑡 −

[

𝑐𝑎,(𝑗)𝑡

]⊺
(

𝑐𝑎,𝑎𝑡
)−1 𝑐𝑎,(𝑘)𝑡 , 𝑐𝑎,(𝑗)𝑡 =

(

𝑐(𝑗,1)𝑡 , 𝑐(𝑗,2)𝑡 ,… , 𝑐(𝑗,𝑞)𝑡

)⊺
and 𝑐𝑎,𝑎𝑡 =

{

𝑐(𝑟,𝑠)𝑡

}

1≤𝑟,𝑠≤𝑞
. Under the null hypothesis 𝐻0 in (3.2)

nd assuming that 𝑞 < 𝑀𝑛, 𝑝 can be much larger than 𝑀𝑛, and (𝑝 − 𝑞)2 ∕𝐾𝑛 = 𝑜 (1) ,𝑀𝑛 = 𝑂 (1) holds for all 𝑝 > 𝑀𝑛. Suppose that
up0≤𝑡≤ ‖

‖

𝑐𝑡‖‖max < ∞ and there exists some constant 𝐶0 > 0 such that ‖‖
‖

𝑐(𝑗,𝑘)𝑡 − 𝑐(𝑗,𝑘)𝑠
‖

‖

‖2
≤ 𝐶0 |𝑡 − 𝑠|

1∕2 uniformly for all 1 ≤ 𝑗, 𝑘 ≤ 𝑝 and
≤ 𝑠 < 𝑡 ≤  . Suppose that 𝛴 is measurable with respect to 𝑡 for all 𝑡, there exist a constant 𝑐𝛴 > 0 such that 𝜆min(𝛴 ) > 𝑐𝛴 . Under
ssumption 1, for arbitrary 𝐮 = (𝑢𝑞+1,… , 𝑢𝑝)⊺ ∈ R𝑝−𝑞 satisfying ‖𝐮‖ = 1, suppose that for some constant 𝛿 > 0,

(

𝐮⊺𝛴 𝐮
)− 2+𝛿

2

𝐾𝑛
∑

𝑖=1
𝐸
[

(

𝐮⊺𝝑𝑖
)2+𝛿

|𝜏𝑛,𝑖−1
]

= 𝑜𝑝 (1) , (3.7)

hen
(

𝐮⊺𝛴 𝐮
)−1∕2 (𝐮⊺𝐕) converges stably to a standard normal distribution as 𝑛→ ∞.

roof. The proof of this theorem is collected in Appendix A of the online supplementary material. □

Note that the stable convergence in law is stronger than the convergence in law in usual sense, see, e.g., Jacod and Protter (2011,
p.47) and Mykland and Zhang (2012, pp. 150) for detailed definition and more discussions. The assumption (𝑝 − 𝑞)2 ∕𝐾𝑛 = 𝑜 (1)

means that the dimension of the factor processes should be a smaller order of 𝑛1∕2. When the dimension of 𝑋 gets larger, there
would be a non-negligible bias term in our test statistics due to the difference between the discretized method and the continuous
process. How to estimate this bias term or construct another efficient test procedure under ultra-high dimension high frequency
factor model deserves some further studies.

To estimate the quantity 𝑣 = 1
 ⟨𝑍,𝑍⟩ , we propose the following estimator:

𝑣̂ = 1
𝐾𝑛

𝐾𝑛
∑

𝑖=1
𝑣̂𝑖 with 𝑣̂𝑖 =

⊺
𝑖

(

I𝑀𝑛
−𝑎,𝑖

)

𝑖

𝛥𝑡𝑛
(

𝑀𝑛 − 𝑞
) . (3.8)

Define the following quantity:

𝝑̂𝑖 ≜ 𝐾−1∕2
𝑛

(

𝜗̂𝑖,𝑞+1,… , 𝜗̂𝑖,𝑝
)⊺ ,

here

𝜗̂𝑖,𝑗 ≜ 𝛥𝑡−1𝑛
(

(0)
𝑖

)⊺
[

̃(𝑗),𝑖

(

̃⊺
(𝑗),𝑖̃(𝑗),𝑖

)−1
̃⊺
(𝑗),𝑖 −

I𝑀𝑛
−𝑎,𝑖

𝑀𝑛 − 𝑞

]

(0)
𝑖 ,

nd (0)
𝑖 is defined in (3.6).

By replacing the limit 𝑣 with 𝑣̂ in Theorem 1 , we obtain the following proposition.

roposition 1. Denote 𝐕̂ = 𝐾1∕2
𝑛 (𝑉𝑞+1 − 𝑣̂,… , 𝑉𝑝 − 𝑣̂)⊺. Define a matrix 𝛹 , where the (𝑗, 𝑘)-th element of 𝛹 can be expressed as

𝛹 (𝑗,𝑘)
 = 𝛴(𝑗,𝑘)

 − 1
𝑀𝑛−𝑞

𝛴(𝑞+1,𝑞+1)
 for 𝑞+1 ≤ 𝑗, 𝑘 ≤ 𝑝. Under the null hypothesis 𝐻0 in (3.2) and assuming the same conditions as Theorem 1,

also assuming that 𝜆min(𝛴 ) >
1

𝑀𝑛−𝑞
𝛴(𝑞+1,𝑞+1)
 , then for arbitrary 𝐮 = (𝑢𝑞+1,… , 𝑢𝑝)⊺ ∈ R𝑝−𝑞 satisfying ‖𝐮‖ = 1, suppose that for some

constant 𝛿 > 0,

(

𝐮⊺𝛹 𝐮
)− 2+𝛿

2

𝐾𝑛
∑

𝑖=1
𝐸
[

(

𝐮⊺𝝑̂𝑖
)2+𝛿

|𝜏𝑛,𝑖−1

]

= 𝑜𝑝 (1) , (3.9)

e have:
(

𝐮⊺𝛹 𝐮
)−1∕2

(

𝐮⊺𝐕̂
)

converges stably to a standard normal distribution as 𝑛→ ∞.

roof. The proof of this proposition is collected in Appendix B of the online supplementary material. □

emark 3. Note that the Lyapunov-type conditions in (3.7) and (3.9) allow the largest eigenvalues of 𝛴 and 𝛹 , i.e., 𝜆max
(

𝛴
)

and 𝜆max
(

𝛹
)

, diverge as 𝑝 − 𝑞 goes to infinity. The application of our methodologies in finance can be greatly benefited by this
theoretical assumption. For example, in financial market, the asset prices are usually expressed by a factor model, which allowing for the
co-movements among the asset prices. Then, the covariance matrix can have a low-rank plus sparse structure, see, i.e., Aït-Sahalia and Xiu
(2017), Fan et al. (2016), Fan and Kim (2018), Kim et al. (2018) and Kong (2018). Therefore, it is necessary to allow 𝜆max

(

𝛴
)

and
𝜆max

(

𝛹
)

diverge.

Remark 4. The main idea to approximate the quantities defined on continuous time is similar to the approach of Riemann
sum in approximating some integral. For example, we have divided the sampling period [0,  ] into 𝐾𝑛 shrinking time intervals,
i.e., [𝜏𝑛,𝑖−1, 𝜏𝑛,𝑖) for 𝑖 = 1, 2,… , 𝐾𝑛. On each shrinking interval [𝜏𝑛,𝑖−1, 𝜏𝑛,𝑖), we can assume the volatility process and co-volatility
process to be a constant (e.g., take the value at time 𝜏𝑛,𝑖−1), and thus, we can construct the test statistics locally, e.g., 𝑉𝑗,𝑖 and 𝑣̂𝑖.
To obtain the continuous time version, we can simply aggregate the local test statistics, which is analogous to the construction
of Riemann sum, i.e., 𝑉𝑗 = 1

𝐾𝑛

∑𝐾𝑛
𝑖=1 𝑉𝑗,𝑖 and 𝑣̂ = 1

𝐾𝑛

∑𝐾𝑛
𝑖=1 𝑣̂𝑖. Since  is fixed and the block size 𝛥𝜏𝑛 = 𝜏𝑛,𝑖 − 𝜏𝑛,𝑖−1 is shrinking in

asymptotics, we know that the discretization error of the aggregated values, i.e., 𝑉 and 𝑣̂, will be negligible as 𝑛→ ∞.
5
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Based on the idea of observed AVAR proposed in Mykland and Zhang (2017), we provide the nonparametric estimator for the
asymptotic covariance matrix 𝛹 as follows:

𝛹̂ = 1
2𝐾𝑛

𝐾𝑛−1
∑

𝑖=1

(

𝐷𝑖+1 −𝐷𝑖
) (

𝐷𝑖+1 −𝐷𝑖
)⊺ , (3.10)

where 𝐷𝑖 = (𝑉𝑞+1,𝑖 − 𝑣̂𝑖,… , 𝑉𝑝,𝑖 − 𝑣̂𝑖)⊺.
The properties of 𝛹̂ are stated in the following proposition.

Proposition 2. Under the same condition of Proposition 1, we have:

1. For arbitrary 𝐮 = (𝑢𝑞+1,… , 𝑢𝑝)⊺ ∈ R𝑝−𝑞 satisfying ‖𝐮‖ = 1, we have 𝐮⊺𝛹̂ 𝐮 = 𝐮⊺𝛹 𝐮+𝑜𝑝 (1) which implies the consistency of 𝛹̂ ;
2. 𝛹̂ is positive definite with probability approaching 1.

Proof. The proof of this proposition is collected in Appendix C of the online supplementary material. □

3.1. Sum-type test

Based on the results in Proposition 1, we propose the sum-type test statistic for the hypothesis in (3.2) as follows:

𝑇SUM ≜
𝐾1∕2
𝑛

(

∑𝑝
𝑗=𝑞+1 𝑉𝑗 − (𝑝 − 𝑞) 𝑣̂

)

√

𝟏⊺(𝑝−𝑞)𝛹̂ 𝟏(𝑝−𝑞)
(3.11)

here 𝟏(𝑝−𝑞) = (1, 1,… , 1)⊺ is a (𝑝 − 𝑞) × 1 column vector with all elements as one.
The asymptotic null distribution of 𝑇SUM is obtained in the following proposition.

roposition 3. Under the null hypothesis 𝐻0 in (3.2) and assuming the same conditions in Proposition 1, as 𝑛→ ∞ and 𝑝 − 𝑞 → ∞, we
ave:

𝑇SUM


⟶ 𝑁 (0, 1) stably in law.

roof. The proof of this proposition is collected in Appendix D of the online supplementary material. □

Before stating the results about the power of the sum-type test statistic 𝑇SUM, we first define several related quantities. Define
he correlation matrix 𝝆𝑉 =

{

𝜌(𝑗,𝑘)𝑉

}

𝑞+1≤𝑗,𝑘≤𝑝
as

𝝆𝑉 = Diag
(

𝛹
)−1∕2 𝛹 Diag

(

𝛹
)−1∕2 , (3.12)

here Diag(𝑊 ) denotes the diagonal matrix of 𝑊 , and 𝛹 is defined in Proposition 1. Define

𝜓̂2 = 1
𝑝 − 𝑞

𝑝
∑

𝑗=𝑞+1
𝛹̂ (𝑗,𝑗)
 , (3.13)

nd for 𝑞 + 1 ≤ 𝑗, 𝑘 ≤ 𝑝, define

𝝆̂(𝑗,𝑘)
𝑉 = 𝛹̂ (𝑗,𝑘)

 ∕𝜓̂2. (3.14)

ased on the similar arguments in the proof of Proposition 2, we know that sup𝑞+1≤𝑗≤𝑝
|

|

|

𝜓̂2 − 𝛹 (𝑗,𝑗)


|

|

|

= 𝑂𝑝
(

𝐾−1∕2
𝑛

)

, and consequently,
for arbitrary 𝐮 = (𝑢𝑞+1,… , 𝑢𝑝)⊺ ∈ R𝑝−𝑞 satisfying ‖𝐮‖ = 1, we have 𝐮⊺𝝆̂𝑉 𝐮 = 𝐮⊺𝝆𝑉 𝐮+𝑜𝑝 (1).

Define

𝜙𝑗 ≜
𝐾1∕2
𝑛

(

𝑉𝑗 − 𝑣̂
)

𝜓̂
and 𝜙̂ ≜

(

𝜙𝑞+1, 𝜙𝑞+2,… , 𝜙𝑝
)

. (3.15)

Then under the null hypothesis 𝐻0 and the same conditions as Proposition 1, we have: for arbitrary 𝐮 = (𝑢𝑞+1,… , 𝑢𝑝)⊺ ∈ R𝑝−𝑞

atisfying ‖𝐮‖ = 1, as 𝑛→ ∞,
(

𝐮⊺𝝆𝑉 𝐮
)−1∕2 (𝐮⊺𝜙̂

)

converges stably to a standard normal distribution. (3.16)

here 𝝆𝑉 is defined in formula (3.12).
We consider the following alternative hypothesis:

𝐻1 ∶ 𝛽
(𝑘)
𝑡 ≠ 0, 𝑘 ∈ , || = 𝑚 ≥ 1, 𝑞 + 1 ≤ 𝑘 ≤ 𝑝. (3.17)
6
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Proposition 4. Under the alternative hypothesis 𝐻1 as stated in (3.17) and assuming the same conditions in Proposition 1, as 𝑛 → ∞,
we have:

𝜙𝑗 = 𝐾1∕2
𝑛

𝑀𝑛
𝜓̂ ∫



0
𝜷⊺
,𝑡

,𝑎,(𝑗),𝑖
𝑡 𝜷,𝑡𝑑𝑡 + 𝑂𝑝 (1) , (3.18)

where
{

𝑗1,… , 𝑗𝑚
}

= , 𝜷,𝑡 =
(

𝛽(𝑗1)𝑡 ,… , 𝛽(𝑗𝑚)𝑡

)⊺
,

,𝑎,(𝑗),𝑖
𝑡 =

(

𝜔(𝑗,𝑗)
𝑡

)−1
𝜁,𝑎,(𝑗)
𝑡

(

𝜁,𝑎,(𝑗)
𝑡

)⊺
− 1
𝑀𝑛 − 𝑞

[

𝑐,
𝑡 −

(

𝑐,𝑎
𝑡

)

(

𝑐𝑎,𝑎𝑡
)−1

(

𝑐,𝑎
𝑡

)⊺]

with 𝜔(𝑗,𝑗)
𝑡 , 𝑐𝑎,(𝑗)𝑡 and 𝑐𝑎,𝑎𝑡 being defined in Theorem 1, and

𝑐,
𝑡 =

(

𝑐(𝑗𝑟 ,𝑗𝑠)𝑡

)

1≤𝑟,𝑠≤𝑚
, 𝑐,(𝑗)
𝑡 =

(

𝑐(𝑗,𝑗1)𝑡 , 𝑐(𝑗,𝑗2)𝑡 ,… , 𝑐(𝑗,𝑗𝑚)𝑡

)⊺
,

𝑐,𝑎
𝑡 =

(

𝑐(𝑗𝑟 ,𝑠)𝑡

)

1≤𝑟≤𝑚,1≤𝑠≤𝑞
, 𝜁,𝑎,(𝑗)
𝑡 = 𝑐,(𝑗)

𝑡 − 𝑐,𝑎
𝑡

(

𝑐𝑎,𝑎𝑡
)−1 𝑐𝑎,(𝑗)𝑡 .

Proof. The proof of this proposition is collected in Appendix E of the online supplementary material. □

Remark 5 (Discussion on Signal Strength). Before stating the results about signal strength, we first define some useful
quantities. For the group of variables with non-zero beta, we define 𝑋,𝑡 =

(

𝑋(𝑗1)
𝑡 ,… , 𝑋(𝑗𝑚)

𝑡

)⊺
, and ,𝑖 =

(

𝛥𝑋,𝑡𝑛,(𝑖−1)𝑀𝑛+1
, 𝛥𝑋,𝑡𝑛,(𝑖−1)𝑀𝑛+2

,… , 𝛥𝑋,𝑡𝑛,𝑖𝑀𝑛

)⊺
. We define the set of variables with non-zero regression coefficients as group 

variables. Then based on the proof of Proposition 4, we know that under 𝐻1, the dominating term in 𝑉𝑗,𝑖 − 𝑣̂𝑖 will be:

𝜷⊺
,𝜏𝑛,𝑖−1

⊺
,𝑖̃(𝑗),𝑖

(

̃⊺
(𝑗),𝑖̃(𝑗),𝑖

)−1
̃⊺
(𝑗),𝑖,𝑖𝜷,𝜏𝑛,𝑖−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄(𝑗),𝑖

− 1
𝑀𝑛 − 𝑞

𝜷⊺
,𝜏𝑛,𝑖−1

⊺
,𝑖

(

I𝑀𝑛
−𝑎,𝑖

)

,𝑖𝜷,𝜏𝑛,𝑖−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑄,𝑖

,

here by further defining the component of group  variables which is orthogonal to the group 𝑎 variables:

̃,𝑖 =
(

I𝑀𝑛
−𝑎,𝑖

)

,𝑖,

e have:

𝑄(𝑗),𝑖 =
‖

‖

‖

̃(𝑗),𝑖
‖

‖

‖

−2
‖

‖

‖

̃⊺
(𝑗),𝑖̃,𝑖𝜷,𝜏𝑛,𝑖−1

‖

‖

‖

2
≤ ‖

‖

̃,𝑖
‖

‖

2 ‖
‖

‖

𝜷,𝜏𝑛,𝑖−1
‖

‖

‖

2
,

𝑄,𝑖 =
‖

‖

‖

̃,𝑖𝜷,𝜏𝑛,𝑖−1
‖

‖

‖

2
≤ ‖

‖

̃,𝑖
‖

‖

2 ‖
‖

‖

𝜷,𝜏𝑛,𝑖−1
‖

‖

‖

2
,

here ‖⋅‖ denotes the Euclidean norm (resp. spectral norm) for vector (resp. matrix).
Therefore, based on the two inequalities above, it is easy to see that the two main sources which affecting the signal strength of

𝑗,𝑖 − 𝑣̂𝑖 are ‖

‖

‖

𝜷,𝜏𝑛,𝑖−1
‖

‖

‖

and ‖

‖

̃,𝑖
‖

‖

. The detailed discussion about their impact is as follows. First, higher ‖

‖

‖

𝜷,𝜏𝑛,𝑖−1
‖

‖

‖

yields stronger
ignal in 𝑉𝑗,𝑖 − 𝑣̂𝑖; lower ‖

‖

‖

𝜷,𝜏𝑛,𝑖−1
‖

‖

‖

yields weaker signal in 𝑉𝑗,𝑖 − 𝑣̂𝑖. Consequently, we know that  −1 ∫ 
0

‖

‖

𝜷,𝑡
‖

‖

𝑑𝑡 has positive
relationship with the signal strength in 𝑉𝑗 − 𝑣̂. Second, higher ‖

‖

̃,𝑖
‖

‖

yields stronger signal in 𝑉𝑗,𝑖 − 𝑣̂𝑖; lower ‖

‖

̃,𝑖
‖

‖

yields weaker
signal in 𝑉𝑗,𝑖 − 𝑣̂𝑖.

We could further explain the influencer of ‖
‖

̃,𝑖
‖

‖

from a geometric perspective. Note that ̃,𝑖 is the components of the group
 variables which is orthogonal to the group 𝑎 variables. Then it is natural that if the original directions of the group  variables
are closer to the directions of group 𝑎 variables, the magnitude of the orthogonal components ̃,𝑖 will be smaller, which leads
to smaller ‖

‖

̃,𝑖
‖

‖

. From a statistical perspective, it means that if the group 𝑎 variables have higher correlation with the group 
variables, ‖

‖

̃,𝑖
‖

‖

becomes smaller. In the extreme case, if the group  variables is a linear combination of the group 𝑎 variables,
then ‖

‖

̃,𝑖
‖

‖

= 0, and in this case, the power of the proposed tests will be low. Therefore, throughout this paper, when we are
discussing the theoretical results about the behavior of our tests under the alternative hypothesis, we assume that the absolute
value of the correlation between group  variables and group 𝑎 variables are bounded away from 1 in asymptotics. □

Remark 6. When || = 1, and 𝛽(𝑗)𝑡 ≠ 0, then we have:

,𝑎,(𝑗),𝑖
𝑡 =

(

1 − 1
𝑀𝑛 − 𝑞

)

𝜔(𝑗,𝑗)
𝑡 ,

,𝑎,(𝑘),𝑖
𝑡 =

(

𝜔(𝑘,𝑘)
𝑡

)−1 [
𝜔(𝑗,𝑘)
𝑡

]2
− 1
𝑀𝑛 − 𝑞

𝜔(𝑗,𝑗)
𝑡 , for 𝑘 ≠ 𝑗

nd therefore, we have:

∫



0
𝜷⊺
,𝑡

,𝑎,(𝑗),𝑖
𝑡 𝜷,𝑡𝑑𝑡 =

(

1 − 1
𝑀𝑛 − 𝑞

)

∫



0
𝜔(𝑗,𝑗)
𝑡

[

𝛽(𝑗)𝑡
]2
𝑑𝑡, (3.19)

nd for 𝑘 ≠ 𝑗,

𝜷⊺ ,𝑎,(𝑘),𝑖𝜷,𝑡𝑑𝑡 =

 (

𝜔(𝑘,𝑘)
)−1 [

𝜔(𝑗,𝑘)
]2 [

𝛽(𝑗)
]2
𝑑𝑡 − 1 

𝜔(𝑗,𝑗)
[

𝛽(𝑗)
]2
𝑑𝑡.
7
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where 𝜔(𝑗,𝑘)
𝑡 is defined in Theorem 1. For || > 1, by assuming that

sup
0≤𝑡≤

‖

‖

‖

,𝑎,(𝑗),𝑖
𝑡

‖

‖

‖max
= 𝑂𝑝 (1) , (3.20)

then we have:

∫



0
𝜷⊺
,𝑡

,𝑎,(𝑗),𝑖
𝑡 𝜷,𝑡𝑑𝑡 = 𝑂𝑝

(

||

2) . (3.21)

On the other hand, by detailed but tedious derivation, we have:

𝜓̂2 ≍ ||

4 for 𝑞 + 1 ≤ 𝑗 ≤ 𝑝 and || ≥ 1. (3.22)

Finally, based on (3.18), (3.21), and (3.22) , suppose (i) the absolute value of the correlation between group  variables and group
𝑎 variables are bounded away from 1 in asymptotics; (ii) there exists some constant 𝑐 > 0, such that  −1 ∫ 

0
‖

‖

𝜷,𝑡
‖

‖

𝑑𝑡 > 𝑐, then
we know that

𝜙𝑗 ≍ 𝐾1∕2
𝑛 for 𝑞 + 1 ≤ 𝑗 ≤ 𝑝 and || ≥ 1. □

Proposition 5 (Power of Sum-Type Test). Suppose (i) the absolute value of the correlation between group  variables and group 𝑎
variables are bounded away from 1 in asymptotics; (ii) there exists some constant 𝑐 > 0, such that  −1 ∫ 

0
‖

‖

𝜷,𝑡
‖

‖

𝑑𝑡 > 𝑐, then we
have 𝑇SUM ≍ 𝐾1∕2

𝑛 which means that 𝑇SUM will explode under 𝐻1. Thus, the type-II error of the sum-type test is asymptotically negligible.

Proof. The proof of this proposition is based on the discussions in Remarks 5 and 6. □

3.2. Max-type test

We propose the max-type test statistic as follows:

𝑇MAX ≜ 𝐾𝑛 max
𝑞+1≤𝑗≤𝑝

(

𝑉𝑗 − 𝑣̂
)2

𝜓̂2
, (3.23)

here 𝜓̂2 is defined in (3.13).
Before stating the limiting null distribution of the max-type test statistic, we introduce a necessary assumption for the correlation

atrix 𝝆𝑉 as follows.

ssumption 2. For some 𝜚 ∈ (0, 1), assume |

|

|

𝜌(𝑗,𝑘)𝑉
|

|

|

≤ 𝜚 for all 𝑞 + 1 ≤ 𝑗 < 𝑘 ≤ 𝑝. Suppose
{

𝛿𝑝−𝑞 ∶ 𝑝 − 𝑞 ≥ 1
}

and
{

𝜍𝑝−𝑞 ∶ 𝑝 − 𝑞 ≥ 1
}

re positive constants with 𝛿𝑝−𝑞 = 𝑜 (1∕ log (𝑝 − 𝑞)) and 𝜍 = 𝜍𝑝−𝑞 → 0 as 𝑝 − 𝑞 → ∞. For 𝑞 + 1 ≤ 𝑗 ≤ 𝑝, define 𝐵𝑝,𝑞,𝑗 =
𝑞 + 1 ≤ 𝑘 ≤ 𝑝 ∶ |

|

|

𝜌(𝑗,𝑘)𝑉
|

|

|

> 𝛿𝑝−𝑞
}

and 𝐶𝑝,𝑞 =
{

𝑞 + 1 ≤ 𝑗 ≤ 𝑝 ∶ |

|

|

𝐵𝑝,𝑞,𝑗
|

|

|

> (𝑝 − 𝑞)𝜍
}

. We assume that ||
|

𝐶𝑝,𝑞
|

|

|

∕ (𝑝 − 𝑞) → 0 as 𝑝 − 𝑞 → ∞.

Assumption 2 means that, for each variable, there should not be too many variables which are strongly correlated with it. For
example, if 𝜌𝑉 is a banded correlation matrix, i.e. 𝜌(𝑗,𝑘)𝑉 = 0 if |𝑗 − 𝑘| > 𝐿 with fixed 𝐿 > 0, then |𝐶𝑝−𝑞| = 0 and Assumption 2 holds.
The asymptotic null distribution of the max-type test statistic can be expressed as follows.

Proposition 6. Suppose Assumption 2. Assume the same conditions in Proposition 1. Then, under the null hypothesis 𝐻0 in (3.2), for any
𝑦 ∈ R, as 𝑛→ ∞ and 𝑝 − 𝑞 → ∞, we have:

|

|

|

𝑃 (𝑇MAX − 2 log (𝑝 − 𝑞) + log log (𝑝 − 𝑞) ≤ 𝑦) − exp
{

−𝜋−1∕2 exp (−𝑦∕2)
}

|

|

|

= 𝑜 (1) .

Proof. The proof of this proposition is collected in Appendix F of the online supplementary material. □

Proposition 7 (Power of MAX-Type Test). Suppose the same conditions in Proposition 5, under the alternative hypothesis 𝐻1 as stated in
(3.17), we have 𝑇MAX ≍ 𝐾𝑛. Therefore, because log (𝑝 − 𝑞) ∕𝐾𝑛 = 𝑜

(

(𝑝 − 𝑞)2 ∕𝐾𝑛
)

, under the assumption (𝑝 − 𝑞)2 ∕𝐾𝑛 = 𝑜 (1), we know that
MAX will explode and in this case the type-II error of the max-type test is asymptotically negligible.

.3. Asymptotic independence and Fisher’s combination test

Intuitively speaking, the sum-type test procedure sums the signals of each variable and then performs better under the dense
lternatives, i.e., there are many small non-zero signals. If there are only a few large signals (sparse alternative), the signals would
e dominated by the variance of sum-type test statistics. Therefore, the sum-type test procedure does not perform well under sparse
lternative scenarios. In contrast, the max-type test procedure only considers the maximum of the signals. Therefore, if there are very
ew large signals, the max-type test procedure would catch the largest signal and perform better. However, for the dense alternative
cenario, the maximum of many small signals would also be very small. Therefore, the max-type test procedure cannot have any
ower under this case.
8
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In the existing statistical literature on high dimensional mean vector test with low frequency data, the sum-type test can only
work well with the dense alternative while the max-type test can only work well with the sparse alternative. To achieve good
performance under both sparse and dense alternatives, statisticians usually combine the sum-type test and max-type test based on
their asymptotic independence. In this section, we first show the asymptotic independence between our sum-type test and max-type
test and then derive the Fisher’s combination test.

Before stating the asymptotic independence between sum-type test and max-type test, we first impose several assumptions for
he correlation matrix 𝝆𝑉 .

ssumption 3. Suppose 𝜆min
(

𝝆𝑉
)

> 𝑐𝜌 for some constant 𝑐𝜌 > 0. Suppose that there exists 𝐶𝑅 > 0, so that max𝑞+1≤𝑗≤𝑝
∑𝑝
𝑘=𝑞+1

|

|

|

𝜌(𝑗,𝑘)𝑉
|

|

|

≤
𝑅 as 𝑝 − 𝑞 → ∞.

emark 7. Note that Assumption 3 is stronger than Assumption 2, which can be shown as follows. Take 𝛿𝑝−𝑞 = 1∕ (log (𝑝 − 𝑞))2.
Recall 𝐵𝑝,𝑞,𝑗 =

{

𝑞 + 1 ≤ 𝑘 ≤ 𝑝 ∶ |

|

|

𝜌(𝑗,𝑘)𝑉
|

|

|

> 𝛿𝑝−𝑞
}

defined in Assumption 2. By Assumption 3, we know that

|

|

|

𝐵𝑝,𝑞,𝑗
|

|

|

⋅
1

(log (𝑝 − 𝑞))2
≤

𝑝
∑

𝑘=𝑞+1

|

|

|

𝜌(𝑗,𝑘)𝑉
|

|

|

≤ 𝐶𝑅

for each 𝑞 + 1 ≤ 𝑗 ≤ 𝑝. This shows that max𝑞+1≤𝑗≤𝑝
|

|

|

𝐵𝑝,𝑞,𝑗
|

|

|

≤ 𝐶𝑅 (log (𝑝 − 𝑞))2. Take 𝜍 = 𝜍𝑝−𝑞 =
(

loglog(𝑝−𝑞) 𝐶𝑅 + 3
)

log
log (𝑝 − 𝑞) ∕ log (𝑝 − 𝑞) for 𝑝 − 𝑞 ≥ 𝑒𝑒. Then 𝜍𝑝−𝑞 → 0 and 𝐶𝑅 (log (𝑝 − 𝑞))2 < (𝑝 − 𝑞)𝜍 . As a result, 𝐶𝑝,𝑞 =
{

𝑞 + 1 ≤ 𝑗 ≤ 𝑝 ∶ |

|

|

𝐵𝑝,𝑞,𝑗
|

|

|

> (𝑝 − 𝑞)𝜍
}

= ∅. So the sparsity assumption of the correlation matrix 𝜌𝑉 in Assumption 3 is more restrictive

than Assumption 2, which requires the sum of the absolute values of correlation between each variable with the other variables are
smaller than a positive constant. Specially, we can also show that the banded correlation matrix with a fixed band length 𝐿 also
satisfies Assumption 3.

The asymptotic independence between sum-type test and max-type test can be stated as follows.

Theorem 2. Suppose Assumption 3. Assume the same conditions in Proposition 1. Then, under the null hypothesis 𝐻0 in (3.2), for any
𝑥, 𝑦 ∈ R, we have:

𝑃
(

𝑇SUM ≤ 𝑥, 𝑇MAX − 2 log (𝑝 − 𝑞) + log log (𝑝 − 𝑞) ≤ 𝑦
)

→ 𝛷 (𝑥)𝐹 (𝑦) ,

where 𝛷 (𝑥) denotes the cumulative distribution function of standard normal distribution and 𝐹 (𝑦) = exp
{

−𝜋−1∕2 exp (−𝑦∕2)
}

.

Proof. The proof of this theorem is collected in Appendix G of the online supplementary material. □

To combine the proposed sum-type and max-type tests, we propose the Fisher’s combination test, based on the asymptotic
independence between 𝑇SUM and 𝑇MAX. Specifically, let

𝑝SUM ≜ 1 −𝛷
(

𝑇SUM
)

and

𝑝MAX ≜ 1 − 𝐹
(

𝑇MAX − 2 log (𝑝 − 𝑞) + log log (𝑝 − 𝑞)
)

denote the 𝑝-values with respect to the test statistics 𝑇SUM and 𝑇MAX, respectively. Based on 𝑝SUM and 𝑝 MAX, the proposed Fisher’s
combination test rejects 𝐻0 at the significance level 𝛼, if

𝑇FC ≜ −2 log 𝑝SUM − 2 log 𝑝MAX (3.24)

is larger than the 1 − 𝛼 quantile of the chi-squared distribution with 4 degrees of freedom.
Based on Theorem 2, we have the following result for 𝑇FC.

Proposition 8. Assume the same conditions as in Theorem 2, then we have 𝑇FC


⟶ 𝜒2
4 as 𝑛→ ∞ and 𝑝 − 𝑞 → ∞.

Proof. The validity of this proposition can be easily verified based on the results in Littell and Folks (1971, 1973). □

Proposition 9 (Power of Fisher’s Combination Test). Under the assumption (𝑝 − 𝑞)2 ∕𝐾𝑛 = 𝑜 (1) and the same conditions in Propositions 5
and 7, we know that both 𝑇SUM and 𝑇 MAX will explode as 𝑛 → ∞ and 𝑝 − 𝑞 → ∞ and consequently, we have 𝑝SUM → 0 and 𝑝MAX → 0
in asymptotics. In this case, it is easy to see that 𝑇FC explodes and thus the type-II error of the Fisher’s combination test is asymptotically
9

negligible.
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3.4. Discussion about jump, market microstructure noise and irregular/asynchronous observation time

In practice, high frequency financial data are often contaminated by the jumps, market microstructure noise and irregu-
ar/asynchronous observation time, which may introduce additional problems in the statistical inference. Therefore, when applying

the proposed tests to the real-world high frequency data, the testing procedure should be carefully designed to obtain the correct
result. In this subsection, we mainly discuss the techniques that can be applied to eliminate the harmful impact of jumps,
microstructure noise and irregular/asynchronous observation time.

3.4.1. Jump
Jumps are widely observed in the intraday asset returns. The independent variable process 𝑋𝑡 =

(

𝑋(1)
𝑡 , 𝑋(2)

𝑡 ,… , 𝑋(𝑝)
𝑡

)⊺
and the

residual process 𝑍𝑡 can also incorporate jump processes by following the Assumptions 1, 2, and 3 in Aït-Sahalia et al. (2020), i.e.,

𝑑𝑋𝑡 = 𝜇𝑋𝑡 𝑑𝑡 + 𝜎
𝑋
𝑡 𝑑𝑊𝑡 + 𝑑𝐽𝑋𝑡 ,

𝑑𝑍𝑡 = 𝜇𝑍𝑡 𝑑𝑡 + 𝜎
𝑍
𝑡 𝑑𝑊

𝑍
𝑡 + 𝑑𝐽𝑍𝑡 ,

and the triplet
(

𝑌𝑡, 𝑋𝑡, 𝑍𝑡
)

has the relationship as described in (3.1).
By applying the truncation technique to the observed log returns, our theories that were established for the continuous path still

work. More specifically, by replacing 𝑖, 𝑎,𝑖, and (𝑗),𝑖 (as defined in (3.3), (3.4) and (3.5)) with

𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛥𝑌𝑡𝑛,(𝑖−1)𝑀𝑛+1
𝟏{

|

|

|

|

𝛥𝑌𝑡𝑛,(𝑖−1)𝑀𝑛+1
|

|

|

|

≤𝑢𝑛
}

𝛥𝑌𝑡𝑛,(𝑖−1)𝑀𝑛+2
𝟏{

|

|

|

|

𝛥𝑌𝑡𝑛,(𝑖−1)𝑀𝑛+2
|

|

|

|

≤𝑢𝑛
}

⋮
𝛥𝑌𝑡𝑛,𝑖𝑀𝑛

𝟏{
|

|

|

|

𝛥𝑌𝑡𝑛,𝑖𝑀𝑛

|

|

|

|

≤𝑢𝑛
}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠𝑀𝑛×1

,𝑎,𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛥𝑋⊤
𝑎,𝑡𝑛,(𝑖−1)𝑀𝑛+1

1{
‖

‖

‖

‖

𝛥𝑋𝑎,𝑡𝑛,(𝑖−1)𝑀𝑛+1
‖

‖

‖

‖

≤𝑢𝑛
}

𝛥𝑋⊤
𝑎,𝑡𝑛,(𝑖−1)𝑀𝑛+2

1{
‖

‖

‖

‖

𝛥𝑋𝑎,𝑡𝑛,(𝑖−1)𝑀𝑛+2
‖

‖

‖

‖

≤𝑢𝑛
}

⋮
𝛥𝑋⊤

𝑎,𝑡𝑛,𝑖𝑀𝑛
1{

‖

‖

‖

‖

𝛥𝑋𝑎,𝑡𝑛,𝑖𝑀𝑛

‖

‖

‖

‖

≤𝑢𝑛
}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠𝑀𝑛×𝑞

,

and

(𝑗),𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛥𝑋(𝑗)
𝑡𝑛,(𝑖−1)𝑀𝑛+1

𝟏{
|

|

|

|

𝛥𝑋(𝑗)
𝑡𝑛,(𝑖−1)𝑀𝑛+1

|

|

|

|

≤𝑢𝑛
}

𝛥𝑋(𝑗)
𝑡𝑛,(𝑖−1)𝑀𝑛+2

𝟏{
|

|

|

|

𝛥𝑋(𝑗)
𝑡𝑛,(𝑖−1)𝑀𝑛+2

|

|

|

|

≤𝑢𝑛
}

⋮
𝛥𝑋(𝑗)

𝑡𝑛,𝑖𝑀𝑛
𝟏{

|

|

|

|

𝛥𝑋(𝑗)
𝑡𝑛,𝑖𝑀𝑛

|

|

|

|

≤𝑢𝑛
}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑀𝑛×1

,

respectively, where 𝑢𝑛 ≍ 𝛥𝑡𝜛𝑛 with 𝜛 ∈ (0, 1∕2), the main results in Theorems 1–2 and Propositions 1–8 still hold.

3.4.2. Market microstructure noise
Market microstructure noise is widespread in the high frequency financial data. As the sampling frequency increases, the harmful

impact of market microstructure noise becomes more devastating, see, e.g., Zhang et al. (2005) and Chen et al. (2020, 2024). Existing
techniques that are designed to eliminate the impact of noise include: (i) sparse sampling scheme, see, e.g., Zhang et al. (2005,
Section 2.3), Aït-Sahalia and Xiu (2017, 2019) and Aït-Sahalia et al. (2020); (ii) pre-averaging approach as proposed in Jacod et al.
(2009); (iii) two scales construction or multiple scales construction, see, e.g., Zhang et al. (2005), Zhang (2006), and Mykland et al.
(2019). In practice, we recommend that the readers use the sparse sampling scheme when implementing the proposed tests. For
example, when using the sampling interval 𝛥𝑡𝑛 no less than 10 min, the microstructure effects become negligible in the analysis.

3.4.3. Irregular/asynchronous observation time
The observation times in high frequency financial data are spaced irregularly and asynchronously, which can introduce additional

challenges in the multivariate data analysis, see, e.g., Zhang (2011) and Mykland et al. (2019). Existing techniques to solve
this problem include: (i) previous tick technique proposed by Zhang (2011) ; (ii) refresh times proposed by Barndorff-Nielsen
et al. (2011); (iii) generalized synchronization method proposed by Aït-Sahalia et al. (2010); (iv) pre-averaging technique, see,
e.g., Mykland et al. (2019). When implementing the proposed tests in practice, readers can employ the sparse sampling scheme plus
one of the first three techniques mentioned above (i.e., (i)-(iii)), so that the impact of irregular and asynchronous observation times
is mitigated.

4. Monte Carlo evidence

Following the multiple regression model defined in (3.1), we further define:

𝑑𝑋(𝑘)
𝑡 = 𝜇𝑘𝑑𝑡 + 𝜎

(𝑘)
𝑡 𝑑 (𝑘)

𝑡 and 𝑑𝑍𝑡 = 𝜈𝑡𝑑𝑡,
10

where 𝑘 = 1, 2,… , 𝑝. Throughout this section, we set 𝑞 = 3.
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In this simulations, the first factor of 𝑋(1)
𝑡 is set as the market factor. Thus, its factor loading 𝛽(1)𝑡 is positive. Therefore, we

simulate the factor loading in the following scheme:

𝑑𝛽(𝑘)𝑡 =

⎧

⎪

⎨

⎪

⎩

𝜅̃1
(

𝜃1 − 𝛽
(𝑘)
𝑡

)

𝑑𝑡 + 𝜉1
√

𝛽(𝑘)𝑡 𝑑̃(𝑘)
𝑡 if 𝑘 = 1,

𝜅̃𝑘
(

𝜃𝑘 − 𝛽
(𝑘)
𝑡

)

𝑑𝑡 + 𝜉𝑘𝑑̃
(𝑘)
𝑡 if 𝑘 ≥ 2.

(4.1)

Let us introduce a 𝑝-dimensional standard Brownian motion ̃𝑡, where the correlation between 𝑑 (𝑘)
𝑡 and 𝑑̃ (𝑘)

𝑡 is 𝜌𝑘. The
orrelation matrix of 𝑑̃𝑡 is defined as 𝜌𝝈 . The volatility processes of 𝐗 and 𝑍 are simulated as follows:

𝑑
(

𝜎(𝑘)𝑡
)2

= 𝜅𝑘

(

𝜃𝑘 −
(

𝜎(𝑘)𝑡
)2

)

𝑑𝑡 + 𝜂𝑘𝜎
(𝑘)
𝑡 𝑑̃ (𝑘)

𝑡 and 𝑑𝜈2𝑡 = 𝜅𝜈
(

𝜃𝜈 − 𝜈2𝑡
)

𝑑𝑡 + 𝜂𝜈𝜈𝑡𝑑̄𝑡.

In the simulation, the setting of all parameters are as follows: 𝜇 =
(

𝜇1,… , 𝜇𝑝
)

with 𝜇𝑖 ∼ 𝑈 (0.01, 0.08), 𝜅̃ =
(

1, 𝜅̃2,… , 𝜅̃𝑝
)

with
̃𝑖 ∼ 𝑈 (2, 8) for 2 ≤ 𝑖 ≤ 𝑝, 𝜉 =

(

0.5, 𝜉2,… , 𝜉𝑝
)

with 𝜉𝑖 ∼ 𝑈 (0.2, 0.9) for 2 ≤ 𝑖 ≤ 𝑝, 𝜃1 ∼ 𝑈 [0.25, 1.75], 𝜃𝑖 ∼ 𝑈 (−0.1, 0.1) for
≤ 𝑖 ≤ 𝑝, 𝜅 =

(

𝜅1,… , 𝜅𝑝
)

with 𝜅𝑖 ∼ 𝑈 (2, 8), 𝜃 =
(

𝜃1,… , 𝜃𝑝
)

with 𝜃𝑖 ∼ 𝑈 (0.01, 0.09), 𝜂 =
(

𝜂1,… , 𝜂𝑝
)

with 𝜂𝑖 =
√

𝜅𝑖𝜃𝑖𝑢𝑖 and
𝑢𝑖 ∼ 𝑈 (0.1, 0.9), 𝜌 =

(

𝜌1,… , 𝜌𝑝
)

with 𝜌𝑖 ∼ 𝑈 (−0.8,−0.1), 𝜌𝝈 = Diag(𝛱)−1∕2𝛱Diag(𝛱)−1∕2 with 𝛱 = 𝝃⊺𝝃, 𝝃 =
{

𝜉𝑖,𝑗
}

1≤𝑖,𝑗≤𝑝 where
𝑖,𝑗 = 𝜉𝑗,𝑖 ∼ 𝑈 (0.01, 0.79) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑝, and 𝜉𝑖,𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑝. and 𝜅𝜈 = 4, 𝜃𝜈 = 0.06 and 𝜂𝜈 = 0.3. The parameter setting in
he simulation exercise follows the similar setting as the simulation sections of Fan et al. (2016), Aït-Sahalia and Xiu (2019) and

Aït-Sahalia et al. (2020). More specifically, the range of the corresponding parameter is similar to that of the previous literature.
Moreover, the selected ranges for the parameters in this simulation exercise are close to the real data characteristics in the financial
market, see, e.g., Aït-Sahalia and Kimmel (2007).

The time horizon in the simulation experiment is set as:  = 1 month which consists 21 trading days. We assume that a trading
day consists of 6.5 h for open trading. The empirical sizes and powers presented in the following subsections are calculated based
on 1000 sample paths.

4.1. Empirical size

To show the empirical sizes of the three proposed tests, we set 𝛽(𝑘)𝑡 ≡ 0 for 4 ≤ 𝑘 ≤ 𝑝.
Table 4.1 shows the empirical sizes of the three proposed tests under the settings of different 𝛥𝑡𝑛 and 𝑝. It is easy to see that all

of the three test statistics can control the sizes very well with different 𝛥𝑡𝑛 and 𝑝. This is true even if the number of regressors 𝑝 is
very large, e.g., comparable to 𝐾1∕2

𝑛 .
Fig. 4.1 shows the histograms of the three proposed tests with 𝛥𝑡𝑛 = 5 sec and 2.5 min, 𝑝 = 60 and 100, where the red solid

lines denote the benchmarks of the limiting null distributions and the blue dashed lines denote the critical values of the related test
statistics. All of the histograms are very close to the benchmarks, demonstrating the validity of our theoretical results under the null
hypothesis.

4.2. Power

We show the power of the three proposed tests. We first introduce a positive integer 𝑟 such that 𝑟 > 𝑞 and 𝛽(𝑘)𝑡 ≡ 0 for 𝑟+1 ≤ 𝑘 ≤ 𝑝.
For non-zeros betas, i.e., 𝛽(𝑘)𝑡 for 𝑘 ≤ 𝑟, we generate the beta processes based on the equations in formula (4.1), where the market
beta process 𝛽(1)𝑡 is set to be positive.

Fig. 4.2 shows the power curves of the three proposed tests under different settings of 𝛥𝑡𝑛, 𝑟 and 𝑝.
From Fig. 4.2-(a) to -(d), it is easy to see that when 𝑟 is low (i.e., 𝑟 ≤ 150), the max-type test has higher power than the sum-type

test; when 𝑟 is high (i.e., 250 ≤ 𝑟 ≤ 400), the sum-type test has higher power. Overall, the power of the Fisher’s combination test
is always higher than that of the sum-type test and max-type test. This is not surprising because the max-type test can work well
under the sparse alternative while the sum-type test can work well under the dense alternative, see, e.g., Cai et al. (2014), Bai and
Saranadasa (1996), Srivastava and Du (2008), Srivastava (2009), Srivastava et al. (2013), and Chen and Qin (2010). Moreover, as
the combination of the sum-type test and max-type test, the Fisher’s combination test is robust to both sparse alternative and dense
alternative. Fig. 4.2 -(e) and (f) mimick a large model, where the number of none-zero 𝛽(𝑘) is much smaller than 𝑝, i.e. 𝑟 ≪ 𝑝. We
can see that the Fisher’s combination test and max-type test outperform the sum-type test. This superior performances become more
pronounced with the sparsity (as 𝑝 increases in (e)). Overall, all of these six plots show the robustness of the Fisher’s combination
test, which is consistent with the existing literature, see, e.g., Fan et al. (2015), Xu et al. (2016), and He et al. (2021).

5. Empirical study

In this section, we use our proposed tests to analyze real data in the financial market. We present two examples of real data
analysis. In the first example, we further examine the validity of our proposed tests by constructing three high frequency regressions,
which corresponding to the dense alternative, sparse alternative and null hypothesis, respectively. In the second example, we
demonstrate a possible application of our proposed tests through high frequency factor models.
11
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Table 4.1
Empirical sizes of the three proposed tests.

𝑇SUM

𝛥𝑡𝑛 = 2.5 min 𝛥𝑡𝑛 = 5 min 𝛥𝑡𝑛 = 15 min 𝛥𝑡𝑛 = 30 min

𝑝 = 20 0.046 0.050 0.046 0.045
𝑝 = 40 0.049 0.052 0.056 0.049
𝑝 = 60 0.046 0.045 0.058 0.058
𝑝 = 80 0.036 0.040 0.056 0.049
𝑝 = 100 0.043 0.053 0.049 0.056
𝑝 = 200 0.041 0.055 0.057 0.053
𝑝 = 300 0.042 0.046 0.050 0.045
𝑝 = 400 0.044 0.043 0.060 0.048
𝑝 = 500 0.051 0.047 0.050 0.046

𝑇MAX

𝛥𝑡𝑛 = 2.5 min 𝛥𝑡𝑛 = 5 min 𝛥𝑡𝑛 = 15 min 𝛥𝑡𝑛 = 30 min

𝑝 = 20 0.044 0.040 0.052 0.047
𝑝 = 40 0.054 0.039 0.043 0.050
𝑝 = 60 0.059 0.056 0.049 0.048
𝑝 = 80 0.059 0.049 0.045 0.042
𝑝 = 100 0.067 0.062 0.047 0.053
𝑝 = 200 0.060 0.062 0.053 0.046
𝑝 = 300 0.055 0.059 0.044 0.049
𝑝 = 400 0.049 0.057 0.053 0.054
𝑝 = 500 0.060 0.056 0.044 0.059

𝑇FC

𝛥𝑡𝑛 = 2.5 min 𝛥𝑡𝑛 = 5 min 𝛥𝑡𝑛 = 15 min 𝛥𝑡𝑛 = 30 min

𝑝 = 20 0.055 0.051 0.042 0.052
𝑝 = 40 0.058 0.042 0.043 0.044
𝑝 = 60 0.064 0.070 0.048 0.050
𝑝 = 80 0.059 0.052 0.045 0.053
𝑝 = 100 0.068 0.064 0.045 0.047
𝑝 = 200 0.064 0.054 0.051 0.048
𝑝 = 300 0.058 0.052 0.041 0.046
𝑝 = 400 0.051 0.053 0.053 0.049
𝑝 = 500 0.055 0.061 0.041 0.056

Notes. This table reports the empirical sizes of the three proposed tests, including 𝑇SUM, 𝑇MAX and 𝑇FC which are
defined in (3.11), (3.23) and (3.24), respectively.

.1. Example of high frequency regression

To verify the performance of our proposed tests, we conduct the empirical study with the intraday stock prices over the period
etween Jan 2007 and Dec 2017 (in total 2769 trading days).

For the independent variable processes, we mainly employ the dataset of the 80 most actively traded stocks among the
omponents of S&P 100 Index (𝑋SP100-1

𝑡 , 𝑋SP100-2
𝑡 ,… , 𝑋SP100-80

𝑡 ), of which the intraday stock prices are downloaded from the Trade
nd Quote (TAQ) database of the New York Stock Exchange (NYSE). We have classified these 80 constituents of S&P 100 Index into
ifferent sectors based on the Global Industrial Classification Standard (GICS). There are only 3 stocks classified into the Sector of
tilities and there are 5 stocks which do not belong to any sectors. Without loss of generality, we set 𝑋SP100-1

𝑡 , 𝑋SP100-2
𝑡 , 𝑋SP100-3

𝑡 ,
SP100-4
𝑡 and 𝑋SP100-5

𝑡 as the 5 stocks which do not belong to any sectors and set 𝑋SP100-6
𝑡 , 𝑋 SP100-7

𝑡 and 𝑋SP100-8
𝑡 as the 3 stocks

elonging to the Sector of Utilities.
The candidates of the dependent variable process 𝑌𝑡 include the iShares S&P 100 ETF (OEF) and the Sector SDPR ETF on Utilities

XLU), of which the intraday stock prices are downloaded from the TAQ database of NYSE.
In this empirical study, we employ the 15-min subsamples for both 𝑋𝑡 and 𝑌𝑡, which implies that 𝛥𝑡𝑛 = 15 min. The test window

s on a monthly basis, i.e.,  = 1 month, which consists 21 trading days. For each trading day, the intraday stock prices are collected
etween 9:35 a.m. EST and 3:55 p.m. EST.

We explore three different testing scenarios, i.e., S1, S2 and S3, which correspond to dense alternative, sparse alternative, and
ull hypothesis, respectively. In this way, the performance of our methodologies can be comprehensively examined. The detailed
pecifications of S1, S2 and S3 are described as follows.

(S1) Dense alternative: 𝑌𝑡 is OEF; group 𝑎 variables are the stocks which do not belong to any sectors, i.e.,

𝑋𝑎,𝑡 =
(

𝑋SP100-1
𝑡 , 𝑋SP100-2

𝑡 , 𝑋 SP100-3
𝑡 , 𝑋SP100-4

𝑡 , 𝑋SP100-5
𝑡

)⊺ ;

group 𝑏 variables are the rest of the 80 selected components of S&P 100 Index, i.e.,

𝑋 =
(

𝑋SP100-6, 𝑋SP100-7,… , 𝑋SP100-80)⊺ .
12
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Fig. 4.1. Limiting null distributions of the three proposed tests. Note: This figure shows the limiting null distributions of the three proposed tests, including
𝑇SUM, 𝑇MAX and 𝑇FC which are defined in (3.11), (3.23) and (3.24), respectively. The red solid curves denote the benchmark of the limiting null distribution.
The blue dashed lines denote the critical values of the tests.

In this scenario, 𝑞 = 5 and 𝑝 = 75. Given the construction of OEF, one can expect most of the regression coefficients associated
with 𝑋𝑏,𝑡 are significantly differently from zero. Hence, this is a ‘‘Dense’’ alternative.

(S2) Sparse alternative: 𝑌𝑡 is XLU; group 𝑎 variables are the stocks which do not belong to any sectors, i.e.,

𝑋𝑎,𝑡 =
(

𝑋SP100-1
𝑡 , 𝑋SP100-2

𝑡 , 𝑋 SP100-3
𝑡 , 𝑋SP100-4

𝑡 , 𝑋SP100-5
𝑡

)⊺ ;

group 𝑏 variables are the rest of the 80 selected components of S&P 100 Index, i.e.,

𝑋 =
(

𝑋SP100-6, 𝑋SP100-7,… , 𝑋SP100-80)⊺ .
13
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Fig. 4.2. Empirical power of the three proposed tests. Note: This figure shows the empirical power of the three proposed tests, including 𝑇SUM, 𝑇MAX and 𝑇FC
which are defined in (3.11), (3.23) and (3.24), respectively. In the figure, the red circle and ‘‘SUM’’ denote the sum-type test 𝑇SUM, the blue square and ‘‘MAX’’
denote the max-type test 𝑇MAX, the green triangle and ‘‘FC’’ denote the Fisher’s combination test 𝑇FC.

In this scenario, 𝑞 = 5 and 𝑝 = 75. Under the construction of XLU ETF, the three regression coefficients associated with the
utility stocks (𝑋SP100-6

𝑡 , 𝑋SP100-7
𝑡 , and 𝑋SP100-8

𝑡 ) should be none-zero while the remaining majority 𝛽(𝑘) with group 𝑏 covariates
are close to zero. Thus this case is called ‘‘Sparse’’ alternative.

(S3) Null hypothesis where all 𝛽(𝑘)’s associated with the group b variables are zero: 𝑌𝑡 is XLU; group 𝑎 variables are the stocks
which do not belong to any sectors plus the 3 stocks belonging to the Sector of Utility, i.e.,

𝑋 =
(

𝑋SP100-1, 𝑋SP100-2, 𝑋 SP100-3, 𝑋SP100-4, 𝑋SP100-5, 𝑋SP100-6, 𝑋SP100-7, 𝑋SP100-8)⊺ ;
14
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Fig. 5.1. 𝑝-values of the three proposed tests with real data (Alternative hypothesis). Note: This figure shows the time series of the 𝑝-values of the three proposed
tests (i.e., sum-type test, max-type test and Fisher’s combination test) under Scenario S1 and Scenario S2, respectively.

group 𝑏 variables are the rest of the 80 selected components of S&P 100 Index, i.e.,

𝑋𝑏,𝑡 =
(

𝑋SP100-9
𝑡 , 𝑋SP100-10

𝑡 ,… , 𝑋SP100-80
𝑡

)⊺ .

In this scenario, 𝑞 = 8 and 𝑝 = 72. When 𝑌 is an utility-sector ETF, one expects the regression coefficients associated with
non-utility stocks are all close to zero. This scenario resembles the null hypothesis of all 𝛽(𝑘)’s associated with the group 𝑏
variables are zero.

The time series of the 𝑝-values of the three proposed tests are shown in Figs. 5.1-(a), -(b), and 5.2 for Scenarios S1, S2 and S3,
espectively.

At the significance level of 0.01, Fig. 5.1-(a) shows that when most of the regression coefficients in group b covariates are none-
ero (aka, dense), the sum-type test and the Fisher’s combination test correctly rejected the null hypothesis whereas the max-type
est failed. Fig. 5.1-(b) shows that the sum-type test failed to detect the small number of none-zero regression coefficients, whereas
he max-type test and the Fisher’s combination test perform well. This is expected, as the sum-type test is not suitable for sparse
lternatives. Both Fig. 5.1(a)–(b) show that, our Fisher’s combination test is robust to both sparse and dense alternatives in the real
ata analysis.
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Fig. 5.2. 𝑝-values of The three proposed tests with real data (Null hypothesis). Note: This figure shows the time series of the 𝑝-values of the three proposed
ests (i.e., sum-type test, max-type test and Fisher’s combination test) under Scenario S3, which corresponds to the null hypothesis.

Fig. 5.2 further illustrates that all three proposed tests did not have sufficient evidence to reject the null hypothesis. In other
ords, all three tests correctly ‘‘detected’’ group 𝑏 regression coefficients being almost all close to zero. This finding aligns with our
rediction, as we intentionally set S3 as the null hypothesis to showcase the effectiveness of the proposed tests.

.2. Example of high frequency factor model

There are a large number of high frequency factors proposed in the field of financial econometrics, see, e.g., Aït-Sahalia et al.
2020) and Aleti (2022). A natural question then arises: can these newly generated factors contain more information about the test
ssets? In other words, is it possible that the traditional factors (as in Fama–French three-factor model, Fama–French five-factor
odel, etc.) can achieve the same performance as the combination of the 200+ new factors? Is the incremental impact of high

requency (HF) factors time-varying? If so, can we detect the time periods during which the HF factors add more signal to the
raditional Fama–French factor model?

Following our discussion in Remark 5 about signal strength, we consider the following model designs:

1. Response variable 𝑌𝑡 is the test asset;
2. Group 𝑎 variable 𝑋𝑎,𝑡 is the set of factors in traditional factor model (FF3, FF5, FF5+1);
3. Group 𝑏 variable 𝑋𝑏,𝑡 is the newly generated high-frequency (HF) factors of which the number is large.

We test the impact of 𝑋𝑏,𝑡 (HF factors) on the test asset 𝑌𝑡 given that 𝑋𝑎,𝑡 (traditional Fama–French-type factors) are already in
the model. A small 𝑝-value (below the significance level 𝛼 = 0.05) indicates that the group 𝑏 variables may contribute additional
variations in the test asset compared to the traditional factor model. Conversely, a larger 𝑝-value of this test (i.e. 𝑝 > 0.05) suggests
that the traditional factor model is as effective as the newly generated factors in explaining the test asset’s variations.

In this study, we choose the following ETFs as the test assets: (i) iShares S&P 100 ETF (OEF), which tracks the performance
of the 100 large-cap stocks, (ii) Vanguard Size/Style ETFs, including Small-Cap Value ETF (VBR), Small-Cap Growth ETF (VBK),
Large-Cap Value ETF (VTV), Large-Cap Growth ETF (VUG); (iii) Sector SDPR ETFs, including Materials (XLB), Energy (XLE),
Financial (XLF), Industrials (XLI), Information Technology (XLK), Consumer Staples (XLP), Utilities (XLU), Health Care (XLV) and
Consumer Discretionary (XLY). The intraday asset prices of these ETFs are downloaded from the TAQ database of NYSE. For the
group 𝑎 variables, we consider three cases based on the Fama–French 5 + 1 factors (𝑋MKT

𝑡 , 𝑋SMB
𝑡 , 𝑋HML

𝑡 , 𝑋RMW
𝑡 , 𝑋CMA

𝑡 , 𝑋UMD
𝑡 ), of

which the intraday returns are constructed and shared by the author of Aleti (2022): (i) FF3: 𝑋FF3
𝑎,𝑡 = (𝑋MKT

𝑡 , 𝑋SMB
𝑡 , 𝑋HML

𝑡 ); (ii)
FF5: 𝑋FF5

𝑎,𝑡 = (𝑋MKT
𝑡 , 𝑋SMB

𝑡 , 𝑋HML
𝑡 , 𝑋RMW

𝑡 , 𝑋CMA
𝑡 ); (iii) FF5+1: 𝑋FF5+1

𝑎,𝑡 = (𝑋MKT
𝑡 , 𝑋SMB

𝑡 , 𝑋HML
𝑡 , 𝑋RMW

𝑡 , 𝑋CMA
𝑡 , 𝑋UMD

𝑡 ). For the group 𝑏
variables, we choose the 272 high frequency factors, which are also constructed and shared by the author of Aleti (2022). Similar
to the first example, 𝛥𝑡𝑛 = 15 min.

We first examine the 𝑝-values over the course of 11 years from 2007 to 2017. Setting  = 11 years, Table 5.1 shows that
the HF factors add significant information (𝛼 = 0.05) when explaining the variation of any test asset in our consideration. This is
demonstrated from the extremely small p-values in the Fisher’s combination test, regardless of the 𝑋𝑎,𝑡 variables being the Fame-
French 3 factors (FF3), Fama–French 5 factors (FF5), or the FF 5 factors plus the momentum factor (FF5+1). The Sum-type and
Max-type tests also agree on almost all cases, with the exception of the small-cap value fund ETF (VBR) as the response variable.
When pinning down to VBR though, one finds that the SUM-type test and the MAX-type test differ when 𝑋𝑎,𝑡 =FF5+1 factors, with
the former test rejecting the null hypothesis (𝐻0 ∶ 𝛽𝑏,𝑡 = 0) whereas the latter not rejecting. This suggests that after accounting for
the impact of the FF5+1 factors on VBR, the 272 HF factors resemble the dense alternative, i.e. many small-impact factors.
16



D. Chen et al.
Fig. 5.3. Time series of 𝑝-values when HF factors are added to the traditional Fama–French factor models. Notes. The black solid line denotes 0.01; the black
dotted line above the black solid line denotes 0.05; the black dashed line underneath the black solid line denotes 0.

On the monthly level ( = 1 month), Fig. 5.3 shows the time varying nature in p-values. For the health care fund (XLV), after
all FF 5 factors plus momentum factor are incorporated into the model, none of the 272 HF factors add significant signal for the
variation in XLV returns. However, with only FF 3 factors in the model, many low-impact HF factors plus a few high-impact factors
all provide incremental influence to XLV in mid-year 2009 (p-values < 0.05 in both MAX- and SUM-type test); in other months, say,
the first quarter of 2012, the estimated p-values are less than 0.05 in the SUM-type test but greater than 0.05 in the MAX-type test,
revealing the presence of many low-impact HF factors (while lacking high-impact HF factors) influencing XLV.

For the S&P100 tracking fund OEF and the small value fund (VBR) in Fig. 5.3, almost all the p-values are greater than 0.05,
suggesting that the original Fama–French 3 factors are sufficient to explain the variation in OEF and VBR on a monthly basis, with
17
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Table 5.1
𝑝-values when HF factors are added to the traditional Fama–French factor models.

Test asset SUM-type test MAX-type test Fisher’s combination test

𝑋FF3
𝑎,𝑡 𝑋FF5

𝑎,𝑡 𝑋FF5+1
𝑎,𝑡 𝑋FF3

𝑎,𝑡 𝑋FF5
𝑎,𝑡 𝑋FF5+1

𝑎,𝑡 𝑋FF3
𝑎,𝑡 𝑋FF5

𝑎,𝑡 𝑋FF5+1
𝑎,𝑡

OEF 2.6 × 10−14 3.3 × 10−12 6.7 × 10−10 3.3 × 10−16 4.9 × 10−11 1.1 × 10−8 < 10−16 <10−16 3.3 × 10−16

VBR 0.011 0.022 0.036 0.003 0.048 0.076 3.8 × 10−4 0.008 0.019
VBK 0.004 0.020 0.016 2.3 × 10−5 1.9 × 10−4 0.001 1.7 × 10−6 5.3 × 10−5 1.9 × 10−4

VTV 1.8 × 10−11 3.0 × 10−10 2.4 × 10−9 7.6 × 10−11 5.2 × 10−10 1.6 × 10−7 <10−16 <10−16 1.4 × 10−14

VUG <10−16 <10−16 3.3 × 10−16 <10−16 <10−16 <10−16 <10−16 < 10−16 <10−16

XLB <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16

XLE <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16

XLF <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16

XLI <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16

XLK <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16

XLP <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16

XLU <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16

XLV <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16

XLY <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16 <10−16

Notes. This table reports the 𝑝-values of the proposed tests for 𝑋𝑏,𝑡 under different combinations of test assets and traditional factor models over the full time
period of  = 11 years (from Jan 2007 to Dec 2017).

the 272 HF factors adding little contribution. The only exception is around the May 2010 (flash crash), during which the Fisher’s
combination test detected some signal from the HF factors. We notice that in all three panels with 𝑋𝑎 = FF5+1, the monthly
(insignificant) 𝑝-value series under SUM test and Fisher’s combination test are close to each other. In other words, with all Fama–
French 5 factors and momentum factor included in the model, HF factors are more like many tiny and insignificant signals on a
monthly level.

We should mention that the statistically insignificance on a monthly scale (as in Fig. 5.3) does not contradict the highly significant
nfluence of HF factors over the span of 11 years (as in Table 5.1). Under 𝐻0, the monthly p-values should be uniformly distributed

over (0,1). The fact that our monthly p-values in Fig. 5.3 hover around 0.1–0.2 is indicative that the 𝑝-value is highly significant
when being inspected over the course of 11 years. In other words, if we conduct a Fisher’s combination test on the 132 (11 years
𝑥 12 months/year) monthly p-values, we would see similar results as in Table 5.1.

We also caution that our results are about the statistical significance of the HF factors, not their economics significance. For
example, even if the HF factors are statistically insignificant in the presence of FF5+1 factors, HF factors may still add economic
profit in a trading strategy. The practical value of our proposed tests is to provide a statistical guidance to separating high-impact,
low-impact, and no-impact factors/signals. It also help identify when HF factors ‘‘move’’ in and out of the factor models.

6. Conclusion

In this paper, we developed three tests for the regression coefficient processes in the high dimensional and high frequency
regression, including the sum-type test, max-type test, and the Fisher’s combination test. The limiting null distributions of these
three proposed tests are derived and the asymptotic behavior of their powers are also analyzed. The max-type test can work well
with the sparse alternative, where there are few non-zero elements in the high-dimensional beta processes. In contrast, the sum-type
test can work well with the dense alternative. As the combination of the sum-type test and max-type test, Fisher’s combination test
is robust to both sparse and dense alternatives. When applied to high dimensional high frequency setting, these three tests help us
identify additional HF signals for test assets. The tests also permit separation of high-signal versus (many) low-signal factors, and
provide guidance to locate when the high-frequency factors ‘‘move’’ in and out of the usual factor models.
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