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HIV estimation using data from the demographic and health surveys (DHS) is
limited by the presence of non-response and test refusals. Conventional adjust-
ments such as imputation require the data to be missing at random. Methods
that use instrumental variables allow the possibility that prevalence is different
between the respondents and non-respondents, but their performance depends
critically on the validity of the instrument. Using Manski’s partial identifica-
tion approach, we form instrumental variable bounds for HIV prevalence from a
pool of candidate instruments. Our method does not require all candidate instru
ments to be valid. We use a simulation study to evaluate and compare our
method against its competitors. We illustrate the proposed method using DHS
data from Zambia, Malawi and Kenya. Our simulations show that imputation
leads to seriously biased results even under mild violations of non-random miss-
ingness. Using worst case identification bounds that do not make assumptions
about the non-response mechanism is robust but not informative. By taking
the union of instrumental variable bounds balances informativeness of the
bounds and robustness to inclusion of some invalid instruments. Non-response
and refusals are ubiquitous in population based HIV data such as those col-
lected under the DHS. Partial identification bounds provide a robust solution
to HIV prevalence estimation without strong assumptions. Union bounds are
significantly more informative than the worst case bounds without sacrificing
credibility.

K E Y W O R D S

demographic and health surveys, HIV, instrumental variable, non-response, partial identification

1 INTRODUCTION
In sub-Saharan Africa, home to around 23 million people living with HIV,1 accurate measurement of the trends of impor-
tant diseases such as HIV is essential for governments to design policies and aid programs. In the past two decades,
national population-based surveys from the demographic and health survey (DHS) system have become an important
source for such measurement.2,3 A major challenge in using these data is the potential bias from missing data created by
non-response. There is much evidence that the non-respondents may have patterns of outcome and/or behaviour that are
very different from those of the rest of the population.4,5

One reason why non-response has garnered significant attention from researchers is the complexity of the problem.6
Non-response is not a result of a single source or a well-defined situation, as it is widely recognized. Instead, the causes and
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2 ADEGBOYE et al.

processes that lead to non-response are diverse and often depend on multiple factors, including the surveyed population,
the outcome’s nature, and the survey’s design and implementation. The most challenging aspect of this problem is that
information about non-respondents is typically limited, making it challenging for surveyors to determine the reason
behind a non-response.6 In the context of HIV survey, non-response arises primarily from two sources–non-contacts and
refusals. The processes leading to these two types of non-responses are believed to be distinct. But for ease of discussion,
we use these terms interchangeably. We return to distinguish them in the empirical study.

A primary concern when reporting HIV prevalence estimates using DHS data is potential bias resulting from
non-response. Some relevant earlier works on non-response bias in HIV estimation using data from the DHS system
include Garcia-Calleja et al3 and Marmarange et al,7 who carried out multi-country surveys of response rates and evalu-
ated non-response bias. Marston et al4 examined non-response bias in a nine-country study. They assumed non-response
is non-informative and estimated the prevalence among the non-respondents by multiple imputation. Similarly, Mishra
et al5 used logistic regression to predict the HIV prevalence among the non-respondents under a non-informative
non-response assumption in a 12-country study. Reniers and Eaton8 and Floyd et al9 corrected refusal bias in popula-
tion surveys by using auxiliary longitudinal data. Their method relies on the assumption that the refusal behaviour in
different populations is comparable. Reniers et al,8 Bärnighausen et al,10 Hogan et al11 adjusted non-response bias by
a Heckman-type selection model,12 which allows non-response to be informative but requires the existence of a valid
instrumental variable that satisfies the exclusion criteria of explaining non-response but not the outcome. Arpino et al13

constructed bounds based on the partial identification approach of Menski.14,15 Under this approach, the unknown quan-
tity of interest can only be identified to within a set of bounds, whose width depends on the knowledge, or lack thereof,
about the missing data. In this sense, the bounds are “worst case” bounds since no assumptions are made regarding the
missingness process. Worst case bounds are often considered overly conservative in practice. Arpino et al13 used restric-
tions implied by the dynamics of HIV (i.e, an infected person remains infected over time while an uninfected person
cannot be infected earlier) and instrumental variables to narrow the width of the identification region.

Methods that use instrumental variables (IVs) allow the possibility that HIV prevalence is different between the
respondents and those who refuse testing. However, valid instruments about the non-response mechanism are notori-
ously difficult to find. Furthermore, whether an instrument is valid is not a testable hypothesis. This paper aims to solve
this conundrum. We espouse the view that, due to missing data, a study with missing data can never achieve as much as it
would have had there been no missing data. This view departs from the conventional wisdom that, with sufficient assump-
tions and modelling, that a study with missing data can be restored to the state as if there were no missing data save the
fewer observations. Under the conventional perspective, unknown quantities of interest can be estimated using point esti-
mates, or “point identified”, with an adjustment to the reduced information, and then inferential tools such as confidence
intervals and hypothesis tests can be carried out as usual. In our view, the uncertainty created by the missing data and
our inability to pinpoint the exact causes of missingness must be embedded into the formulation of the analysis strategy.

Theoretically, we can take multiple candidate instruments if we do not know whether an instrument is valid. Indeed, in
observational epidemiological studies that are subject to confounding or reverse causation bias, the use of genetic variants
as proxies for environmentally modifiable exposures may lead to a hundred or more candidate instruments.16 However,
we do not know which instruments are valid among the instruments under consideration. We propose a two-stage modi-
fication of Manski’s partial identification approach to solve this problem. Assume s ≥ a, where a is the minimum number
of valid instruments out of the L candidate instruments under consideration. For each candidate, we can use Manski’s
approach to form bounds. Then, even though we do not know the validity of individual instruments, the union of bounds
using any set of L − a + 1 individual candidates is guaranteed to identify the quantity of interest correctly. Following
Manski,17 Chernozhukov et al,18 Windmeijer et al19 that the intersection of bounds is non-empty for any set of valid
instruments to eliminate the candidates whose bounds fail to overlap with the bounds of the majority of the candidates, we
then take the intersection of the union bounds from all possible sets of L − a + 1 instruments to form a new set of bounds.
This step substantially narrows the bounds in some cases without sacrificing robustness. We carry out a simulation
experiment to evaluate the proposed method. We then illustrate our method using data from the Zambia Demographic
Health Surveys.

2 METHOD

We assume an outcome variable Y is measurable and bounded for each individual in the population of interest. Suppose
we are interested in the population mean of Y , E(Y ). In general, we may also be interested in E(Y |X) for some covariates
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ADEGBOYE et al. 3

X , but for brevity, we focus our discussion in the next two sections on estimating E(Y ) since the treatment for the case
with covariates is similar. Suppose a random sample of n is drawn from the population, and in this sample, Y is observed
only in a subset of the sample. Let D be a binary variable such that D = 1 if Y is observed and 0 otherwise. Using the law
of iterated expectations, we can write

E(Y ) = E(Y |D = 1)P(D = 1) + E(Y |D = 0)P(D = 0). (1)

The sampling process identifies E(Y |D = 1), P(D = 1) and P(D = 0) = 1 − P(D = 1) but there is no information on
E(Y |D = 0) unless we make strong assumptions about the joint distribution of Y and D. Let K0,K1 be, respectively,
the lower and upper bounds of Y . Furthermore, write 𝜇 ≡ E(Y ), 𝜇d⋅ ≡ E(Y |D = d). The worst case partial identification
bounds14 for 𝜇 are

(LB,UB) = (𝜇1⋅P(D = 1) + K0P(D = 0), 𝜇1⋅P(D = 1) + K1P(D = 0)). (2)

2.1 Bounds using instruments

The worst case bounds (2) are guaranteed to identify E(Y ) by construction. However, they are often criticised for being
too wide to be informative. The worst case bounds can be improved if additional assumptions are made. Let V be an
instrumental variable (IV) with discrete values v ∈  , such that,

P(D = d|V = v1) ≠ P(D = d|V = v2), (3)

and

P(Y ) = P(Y |V = v1) = P(Y |V = v2), (4)

for d = 0, 1, all values v1, v2 ∈  and v1 ≠ v2. Write 𝜇⋅v ≡ E(Y |V = v) and 𝜇dv ≡ E(Y |D = d,V = v). Since (4) implies
E(Y |V = v) = E(Y ) = 𝜇, it follows that Reference 17, ∀v ∈  ,

𝜇1vP(D = 1|V = v) + K0P(D = 0|V = v) ≤ 𝜇⋅v ≤ 𝜇1vP(D = 1|V = v) + K1P(D = 0|V = v).

The inequalities imply

𝜇 ∈ ∩
v∈
[𝜇1vP(D = 1|V = v) + K0P(D = 0|V = v), 𝜇1vP(D = 1|V = v) + K1P(D = 0|V = v)]

⇒ LBV ≡ sup
v∈

{𝜇1vP(D = 1|V = v) + K0P(D = 0|V = v)} ≤ 𝜇
(5)

≤ inf
v∈
{𝜇1vP(D = 1|V = v) + K1P(D = 0|V = v)} ≡ UBV , (6)

where (LBV ,UBV ) gives a set of IV lower and upper bounds for 𝜇.
In practice, more than one instrument is usually used in a particular study, see, for example, Lawlor et al16 and Krei-

der.20 Suppose there are L candidate instruments, and all we can assume is at least one of the L candidates is valid. Then,
if some turn out to be invalid, (6) may fail to identify E(Y ) for these instruments. To address this, suppose we create the
following “union” bounds:

(LBUN
,UBUN) = ∪

l,l=1,… ,L
(LBVl ,UBVl) = ( inf

v∈l
LBVl , sup

v∈l

UBVl). (7)

It is trivial to see that (LBUN
,UBUN) identifies E(Y ) as long as at least one of the candidate instruments is valid. However,

a simple examination of (LBUN
,UBUN) reveals that as L increases, so will the width of (LBUN

,UBUN). The wider a set of
bounds, the less informative it is in identifying E(Y ). Hence, it would be of interest to eliminate among the L instruments,
those that do not contribute to the identification of E(Y ). To continue, we assume that the true number of valid instru-
ments, s is known to satisfy s ≥ a ≥ 1 for some known a. Under this assumption, each subset of (L − a + 1) instruments
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4 ADEGBOYE et al.

must contain at least one valid instrument. Hence, the union bounds formed by each subset is guaranteed to identify
E(Y ). For any two sets of bounds that both include E(Y ), their intersection must be non-empty, and also correctly identify
E(Y ). We therefore propose to find the intersection of all union bounds formed with any (L − a + 1) instruments among
the L instruments, because it will also identify E(Y ) but be no longer than any of these union bounds.

Applying the bounds empirically incurs uncertainty, and this uncertainty can be incorporated in the form of con-
fidence intervals. Suppose the theoretical lower and upper IV bounds for 𝜇, denoted as (LB,UB), can be empirically
estimated as (̂LB, ̂UB). Constructing a confidence interval involves considering an approximate b0 × 100 percent interval
for (̂LB − z(1−b0)∕2̂SELB, ̂UB + z(1−b0)∕2̂SEUB), where z(1−b0)∕2 is the upper (1 − b0)∕2 × 100 percentile of the standard normal
distribution, SE represents standard error and ̂SE its sample analogue. However, to address the width issue for𝜇,21 alterna-
tive bounds are suggested, (̂LB − Cn̂SELB, ̂UB + Cn̂SEUB), where Cn is determined through a specific equation involving the
standard normal cumulative distribution function. The challenging analytical determination of standard errors leads to
the utilization of bootstrapping, as proposed by Horowitz and Manski22 in this study. Bootstrap samples are obtained, and
from these, the empirical standard errors ̂SELB and ̂SEUB are derived to construct robust confidence intervals. Justifications
and further details about the proposed bounds and confidence intervals are given in the supplementary materials.

3 SIMULATION STUDIES

3.1 Simulation study 1

We use a set of simulation studies to evaluate our proposed bounds (7). We assume the response Y is binary. We fix the
values of s and L at 3 and 5, respectively. The instruments are all binary with a prevalence of 0.5 and mutually independent
of each other.

We generate Y using a logistic model

logitP(Y = 1) = b0 + b11V1 + · · · + b1LVL, (8)

where the coefficients b1 = (b11, … , b1L)T give the association between the instruments and Y . A non-zero value of b1j
induces an association and therefore renders the instrument invalid. We use two different combinations for b1: b1 =

(

s
⏞⏞⏞

0, … , 0,

(L−s)
⏞⏞⏞

1, … , 1)T ; and b1 = (

s
⏞⏞⏞

0, … , 0,

(L−s)
⏞⏞⏞

4, … , 4)T . For both situations, we assume without loss of generality the first s
instruments are valid while the remaining L − s are invalid. In the former, (4) is weakly violated by the invalid instruments
while the violation of (4) is strong for the latter.

The non-response indicator D is generated using another logistic model

logitP(D = 1) = c0 + c11V1 + · · · + c1LVL + cY Y . (9)

The coefficients c1 = (c11, … , c1L)T give the association between each instrument and D. We consider two situations, (a)
Strong instruments: c1 = (5, … , 5) and (b) Strong + weak instruments: s coefficients are randomly given a value of 5
and the remaining L − s are given a value of 0.5. The coefficient cY is used to model the association of D to the outcome
Y , and hence selection bias. When cY = 0, then there is no selection bias when conditioned on the observed covariates.
We consider two choices of cY = −0.1||c1|| and −0.3||c1||, where the symbol || ⋅ || stands for the sum of the coefficients
c11, … , c1L. We use negative association to reflect that, in practice, we expect those who are HIV positive to be less likely
to have an HIV test. These two values for cY correspond to mild to moderate selection bias. We use c0 to calibrate the
average non-response rate, 1 − E(D = 1), to be 0.1 and 0.3 over the simulations.

Since Y is binary, the bounds for Y are (K0,K1) = (0, 1). Throughout the simulation study, a sample size of n = 1000
observations is used. We use 1,000 simulation runs for each combination of parameters. Confidence intervals are approx-
imated using the method described in the supplementary materials. These confidence intervals require estimates of the
standard errors of the bounds, which can be carried out using bootstrapping.

A standard approach to adjust HIV prevalence estimates for survey non-response is by imputation.23 Using impu-
tation, the missing outcomes are imputed using predicted prevalence based on observed information such as demo-
graphic, socio-economic and behavioural variables from those who were tested. We compare this method to the partial
identification method. For the imputation method, we use all the observed variables in the simulation study, that is, the
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ADEGBOYE et al. 5

instruments. For partial identification, we used the worst case bounds that do not make any assumptions, and also the
method proposed in this article.

Table 1 gives the simulation results. Each combination of parameters corresponds to four rows of results. The first
row shows the proportion of times, out of 1,000 simulations, the approximate 95% confidence intervals include E(Y ). The
second row gives the lower confidence limits, averaged over 1,000 simulations. The third row gives the upper confidence
limits, averaged over 1,000 simulations. The fourth row gives the average width of the confidence intervals.

T A B L E 1 Partial identification of E(Y ) with L = 5 instruments and s = 3 valid instruments with E(Y ) fixed at 0.15.
Instrument
strength

Non-response
rate

Selection
bias Imputation

Worst case
bounds

IV
bounds

Strong 0.1 Mild Coverage 0.985 1 0.972

Lower CI 0.119 0.114 0.123

Upper CI 0.162 0.262 0.218

Width 0.043 0.148 0.095

Strong + Weak 0.1 Mild Coverage 1 1 0.868

Lower CI 0.125 0.121 0.127

Upper CI 0.169 0.266 0.248

Width 0.044 0.145 0.121

Strong 0.3 Mild Coverage 0.075 1 1

Lower CI 0.095 0.084 0.108

Upper CI 0.137 0.434 0.323

Width 0.042 0.35 0.216

Strong + Weak 0.3 Mild Coverage 0.078 1 1

Lower CI 0.088 0.072 0.098

Upper CI 0.134 0.42 0.287

Width 0.045 0.349 0.189

Strong 0.1 Moderate Coverage 0.003 1 1

Lower CI 0.091 0.088 0.11

Upper CI 0.129 0.234 0.201

Width 0.039 0.146 0.092

Strong + Weak 0.1 Moderate Coverage 0.118 1 1

Lower CI 0.102 0.098 0.116

Upper CI 0.142 0.239 0.207

Width 0.04 0.141 0.091

Strong 0.3 Moderate Coverage 0 1 1

Lower CI 0.05 0.046 0.07

Upper CI 0.081 0.388 0.287

Width 0.031 0.342 0.218

Strong + Weak 0.3 Moderate Coverage 0 1 1

Lower CI 0.065 0.058 0.083

Upper CI 0.1 0.399 0.313

Width 0.035 0.341 0.23

Note: Results are stratified by average non-response rate 1 − E(D) = 0.1 or 0.3; instruments either all strong or a mixture of strong + weak; the last L − s
instruments either weakly or strongly violate (4); and mild or moderate selection bias.
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6 ADEGBOYE et al.

When non-response probability is 0.1 and selection bias is mild, 95% confidence intervals using all three methods have
high probabilities of capturing E(Y ). Using imputation naturally leads to much narrower confidence intervals. Between
the partial identification bounds, the IV bounds proposed in this paper produce a much narrower confidence interval but
at the expense of not capturing E(Y ) in finite samples.

In all other situations, using imputation leads to grossly biased confidence intervals that fail to capture E(Y ) in almost
all simulation runs. Recall that E(Y ) is calibrated to be at 0.15 in all simulations, so the imputation confidence intervals
underestimate the true prevalence. The advantage of the IV bounds confidence intervals over the worst case confidence
intervals mirrors those when non-response probability is 0.1 and selection bias is mild. Additional simulations have been
carried out. The results are given in the supplementary materials. The conclusion from the additional simulations is
similar to those presented here.

In practice, selecting the value of s may be challenging. To address this, we also carried out a sensitivity analysis that
presents bounds for different values of s as a sensitivity parameter. The results show the following general conclusions.
First, as long as the assumed number of valid instruments a is no less than s ≥ 1, the proposed method produces bounds
and associated CIs that capture the unknown HIV rate. Second, when the assumption s ≥ a ≥ 1 is violated but the invalid
instruments are only weakly invalid, the performance of the proposed method is still satisfactory. When s ≥ a ≥ 1 is
violated and the invalid instruments are strongly invalid, the proposed method does not perform well. Third, a smaller
value of a is more robust to the violation of the assumption s ≥ a ≥ 1. Fourth, a larger value of a gives narrower bounds,
but as pointed out above, the reduction comes at a price when the assumed number of valid instruments a exceeds the
actual number s, in which case the shorter bounds fail to capture the unknown HIV rate. Hence, a balance needs to be
struck between the two goals. Obviously, in practice, we must have certain confidence in the validity of the candidate
instruments before they should be included in consideration for creating the bounds. To conserve space, the full results
are given in the supplementary materials.

3.2 Simulation study 2

In this section, we report details of a second set of simulations that allows comparison between the proposed method and
methods from Marra et al24 and Jiang and Ding.25 The simulations follow the approach of Clark and Houle26 by using
data with a structure similar to a real DHS survey. We use the 2007 Zambia DHS men sub-sample as the basis of our
simulation setup.

The relevant individuals in the survey are men eligible for individual surveys. In the 2007 Zambia DHS, eligible indi-
viduals were first approached for the individual surveys. Those who were contactable and present at the individual surveys
were then asked to participate in HIV testing. The eligible individuals can be classified into one of three groups: (a) those
who were absent for the individual surveys and not tested, (b) those who participated in the individual surveys but refused
to be tested, and (c) those who participated in the individual surveys, agreed to be tested and with valid test results.
For those in groups (a) and (b), their HIV test results are absent. For our simulation setup, HIV results are generated
through a three-stage process: (1) contact for individual surveys, (2) consent to HIV test, and (3) test results among the
tested.

Details of the simulations are given in Section S.4 of the supplementary materials. Here, we briefly describe the simu-
lation setup. We fix a sample size of n = 7,000. Then, we simulate observations with a composition of age, rural residence
and geographical region similar to that of the original survey. Following Marra et al,24 we randomly generate an inter-
viewer IV with 30 interviewers. We additionally generate three binary IVs: V2 V3, V4 each with a prevalence of 0.5 in the
samples.

To simulate data, we mimic the three-stage process described earlier by using three equations: a contact equation,
a selection (consent) equation and an outcome equation. GPS coordinates of each of the 319 clusters are obtained and
used to simulate spatial correlations in HIV rates. Parameter values used in these equations are obtained by fitting similar
equations to the actual Zambia 2007 DHS data and calibrated to create simulated contact rate, refusal rate and HIV
prevalence similar to those in the Zambia 2007 DHS (10%, 25% and 20%, respectively).

In the simulations, we consider two different situations of IV strength (Weak) and (Strong). Among the four IVs,
we fix V4 as a valid IV. We consider four different cases in terms of the number of invalid instruments: (1) three (V2,
V3, and Interviewer IV) are invalid are invalid, (2) two (V2 and V3) are invalid, (3) one (V2) is invalid, and (4) none is
invalid. We generate random N(0,1) values to represent interviewers’ differential persuasiveness in eliciting acceptance to
HIV test.
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ADEGBOYE et al. 7

For the method of Marra et al,24 we use only interviewer as the IV. We try a selection of representative copulas: Normal,
Frank, Clayton rotated 90◦, and Clayton rotated 270◦ and then choose the best among them based on AIC. The effect of
region is modelled using a Markov random field smoother (see Marra et al24).

The method proposed here always uses all L = 4 IVs and assumes at least s = 2 of them are valid. Under case (1), the
assumption is violated. Therefore, the four cases allow us to test the sensitivity of the method to the choice s. For the
Jiang and Ding25 method, all observations with C = 0 (non-contact) are assumed to have the same prevalence as those
tested.

We consider eight scenarios defined by the combination of the interviewer’s IV strength (weak/strong) and the number
of invalid IVs (cases (1)–(4)). For each scenario, we use 1,000 simulations to compare the following methods: (1) standard
imputation; (2) the selection method of Marra et al24 assuming a Normal copula; (3) the selection using the best of the four
copulas; (4) the worst case bounds; (5) the bounds from Jiang and Ding25 and (6) the bounds proposed in this paper. Table 2
shows the summary statistics of each set of simulations. The first column shows the average true HIV prevalence; the
second column shows the “observed” after removing the non-contacts and refusals; the third column shows the consent
rates among those contacted; the fourth column shows the F-statistic for interviewer effect; and the last column shows the
contact rates. Table 3 gives the average 95% lower and upper confidence intervals using each of the six methods. Table 4
shows the widths of the 95% confidence intervals using the six methods.

Comparing the results from Table 3 to the true prevalence rates in Table 2, it is obvious that imputation grossly under-
estimates the true rates. The Marra selection method, whether using a Normal copula (the correct one under the setup of
the simulation study) or the best, adjusts the observed prevalence upwards. When interviewer IV is invalid (case (1)), the
Marra confidence intervals give overestimates of the true prevalence as expected. For the remaining scenarios, the aver-
age Marra lower confidence limits are near the true rates. So, the method still tends to adjust more than required. This
is not surprising since, in the setup of the simulations, the selection is based on the effectiveness of each interviewer (see

T A B L E 2 Summary statistics of eight scenarios considered in simulation study 2.

Interviewer effects # invalid IVs True HIV prevalence Observed HIV prevalence Consent rate Contact rate

Weak 3 0.16 0.11 0.75 0.91

Strong 3 0.17 0.13 0.82 0.91

Weak 2 0.19 0.13 0.75 0.91

Strong 2 0.19 0.15 0.81 0.91

Weak 1 0.18 0.12 0.75 0.91

Strong 1 0.18 0.14 0.82 0.91

Weak 0 0.18 0.12 0.75 0.91

Strong 0 0.18 0.14 0.82 0.91

T A B L E 3 Average 95% lower (LCI) and upper (UCI) confidence intervals in eight scenarios considered in simulation study 2.

Interviewer # Invalid Imputation
Marra Normal
Copula Marra Best

Worst case
bounds JD bounds

Union
bounds

Effects IVs LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI

Weak 3 0.10 0.12 0.19 0.30 0.19 0.30 0.08 0.34 0.08 0.35 0.09 0.32

Strong 3 0.12 0.14 0.18 0.25 0.18 0.25 0.10 0.30 0.11 0.31 0.12 0.27

Weak 2 0.12 0.13 0.18 0.30 0.18 0.29 0.09 0.36 0.10 0.36 0.11 0.34

Strong 2 0.14 0.15 0.19 0.26 0.19 0.25 0.11 0.32 0.12 0.33 0.14 0.29

Weak 1 0.11 0.13 0.17 0.29 0.17 0.29 0.08 0.35 0.09 0.36 0.09 0.33

Strong 1 0.13 0.15 0.18 0.25 0.18 0.25 0.11 0.31 0.12 0.32 0.12 0.27

Weak 0 0.11 0.13 0.18 0.30 0.18 0.29 0.09 0.35 0.09 0.36 0.09 0.33

Strong 0 0.13 0.15 0.19 0.26 0.19 0.25 0.11 0.31 0.12 0.32 0.12 0.27
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8 ADEGBOYE et al.

T A B L E 4 Width of 95% confidence intervals in eight scenarios considered in simulation study 2.
Interviewer
eff.

# Invalid
IVs Imputation

Marra normal
copula

Marra
best

Worst case
bounds

JD
bounds

Union
bounds

Weak 3 0.01 0.11 0.10 0.27 0.27 0.23

Strong 3 0.01 0.07 0.07 0.20 0.20 0.15

Weak 2 0.01 0.12 0.12 0.27 0.27 0.23

Strong 2 0.02 0.07 0.07 0.20 0.20 0.15

Weak 1 0.01 0.12 0.12 0.27 0.27 0.23

Strong 1 0.02 0.07 0.07 0.20 0.20 0.15

Weak 0 0.01 0.12 0.12 0.27 0.27 0.23

Strong 0 0.02 0.07 0.07 0.20 0.20 0.15

the selection Equation (S.12) in supplementary materials where interviewer is represented by effectiveness). However,
in practice, since this effectiveness is unobserved, the interviewer ID is just a surrogate of the interviewer’s (unobserved)
effectiveness.

All the partial identification methods produce confidence intervals that adjust upwards the observed prevalence. The
bounds methods are designed to capture true prevalence. However, their lower confidence limits are all quite small,
which is an artefact of assuming all non-tested as HIV negative in creating the lower bounds. In the simulations, there
is little difference between JD and the worst case bounds. As expected, the widths of the bounds confidence intervals
are in the following orders: worst case ≥ JD ≥ union (Table 4). Comparatively, the Marra confidence intervals are much
shorter.

This simulation study highlights that there is no single perfect method for bias correction when there are
non-responses: the Marra method using interviewer IV is subject to the inability to observe the innate effectiveness of
each interviewer; the partial identification methods are less sensitive to this issue but tend to produce results that are too
conservative (lower confidence limits that are even much lower than the observed prevalence).

4 EMPIRICAL APPLICATION

The primary data source for this study is from three DHS. We first use the 2007 Zambia DHS to illustrate the method. We
then apply the methods to two other DHSs (Malawi and Kenya).

4.1 HIV prevalence in Zambia

The 2007 Zambia DHS is the fourth survey in the Zambia DHS series and provides population-level health estimates,
including data useful in monitoring and evaluating population, health, and nutrition programs.

A total of 7,969 households were selected for the 2007 Zambia DHS, of which 7,326 were occupied. The shortfall was
largely due to households that were away for an extended period of time and structures that were found to be vacant
at the time of the interview. Of the occupied households, a total of 7,146 were successfully interviewed. The interviews
collected basic demographic information (e.g., age, sex), socio-economic status (e.g., educational attainment) as well as
basic household characteristics (e.g., household possessions and dwelling characteristics).

In the interviewed households, 7,406 females were eligible for interview and HIV testing, while the number of eligible
males was 7,146. The individual interviews collected information such as work and background characteristics, marriage
and sexual activities, and awareness and attitudes towards HIV. In the women’s interviews, additional questions about
reproductive history, child health, and nutrition were asked.

Of the women and men eligible for individual interviews, 1,695 (22.9%) of the women and 1,983 (27.7%) of the men
refused or did not complete an HIV test. The primary reason for non-response among eligible men was the failure to
find individuals at home despite repeated visits to the household, followed by refusal to be interviewed. The substantially
lower response rate for men reflects the more frequent and longer absence of men from the households.
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ADEGBOYE et al. 9

The interviews in the 2007 Zambia DHS were carried out by 12 teams made up of 12 supervisors, 12 editors, 36
female interviewers, and 36 male interviewers. Each team consisted of one supervisor, one female field editor, one lab-
oratory technician, three female interviewers, and three male interviewers. The interviews and questionnaires were
translated from English into one of seven major local language groups: Nyanja, Bemba, Kaonde, Lunda, Lozi, Tonga, and
Luvale.

The observed prevalence of HIV positive among the cases, with results stratified by age, are given in Table 5. Even
though in this study, the proportions of non-response is modest, we shall see that using instruments still improves
inferences in some cases.

The final list of instrumental variables we use are: iv.lan (whether the language used in the questionnaire or interview
is the same as the respondent’s language, yes vs. no), iv.firstday (whether the interview was conducted on the first day
of the interviews, yes vs. no), iv.interviewer (number of interviews the interviewer has performed, <50, 50–100, 100–200,
>200), iv.mon (whether the interview was carried out during a month of harvest or planting, yes vs. no), iv.doa (whether
the respondent knows someone who has died of AIDS, yes vs. no).

It is well known that the validity of an instrument (4) is an untestable hypothesis. Nevertheless, we can determine
whether an instrument is strong by evaluating (3). Table 6 shows chi-square tests between non-response and the candidate
instrumental variables we consider; all tests are highly significant.

We assume a = 3, that is, at least three out of the five candidates are valid. In any survey, such as the 2007 Zambia
DHS, non-response and the potential for an associated bias are always concerns. The standard procedure is an imputation
analysis of those who are not tested to adjust for potential biases.27 The individuals in the survey can be classified into
one of three groups: (a) those who participated in the household and individual surveys and were tested (b) those who
participated in the household and individual surveys but were not tested, and (c) those who only participated in the
household surveys. For those in groups (b) and (c), their HIV test results are absent.

For individuals in groups (b) and (c), their probability of HIV is predicted based on multivariate models using data
from those who were tested. A logistic regression model is used to calculate HIV probability separately for groups (b)
and (c). For group (b), the variables used in the model include the following household survey variables: age, education,
wealth quintile, residence, and geographic region, as well as the following variables from the individual survey: marital
union, current work status, media exposure, religion, sexually transmitted infections (STIs) or STI symptoms in past 12
months, cigarette smoking/tobacco use, age at first sex, number of sex partners in past 12 months, higher-risk sex in past
12 months, condom use at last sex in past 12 months, and willingness to care for a family member with AIDS, informed
by previous studies.28,29 Prediction for group (c) uses only the household variables. The models are used to impute HIV
statuses for individuals in groups (b) and (c) and the results are combined with those in group (a) to form adjusted HIV
prevalence estimates for the population.

For all estimates, the data are weighted by survey weights. For individuals in group (a), HIV weights were used, for
individuals in group (b), the individual survey weights were used and for those in group (c), household survey weights
were used.

We compare adjustments using standard imputation with those using partial identification bounds. For partial iden-
tification bounds, we report results based on the worst case bounds as well as the instrumental variable bounds. For

T A B L E 5 Observed proportions of HIV positive among the tested in 2007 Zambia DHS.

Women Men

Age HIV prevalence N HIV prevalence N

All 0.161 5,713 0.123 5,163

15–19 0.058 1,256 0.035 1,109

20–24 0.119 1,119 0.053 830

25–29 0.198 1,102 0.115 772

30–34 0.258 841 0.174 746

35–39 0.250 588 0.223 594

40–44 0.182 434 0.240 390

45–49 0.122 373 0.183 318
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10 ADEGBOYE et al.

T A B L E 6 Relationship between HIV testing and some possible instrument variables.

D 0 1

Variable N Percent N Percent Test

(a) Women

iv.lan 1,695 5,713 𝜒

2 = 24.706∗∗∗

… 0 727 42.9% 2,845 49.8%

… 1 968 57.1% 2,868 50.2%

iv.firstday 1,695 5,713 𝜒

2 = 22.774∗∗∗

… 0 1,094 64.5% 3,315 58%

… 1 601 35.5% 2,398 42%

iv.interviewer 1,433 5,713 𝜒

2 = 28.929∗∗∗

… 0 74 5.2% 256 4.5%

… 1 190 13.3% 807 14.1%

… 2 695 48.5% 2,369 41.5%

… 3 474 33.1% 2,281 39.9%

iv.mon 1,695 5,713 𝜒

2 = 82.634∗∗∗

… 0 311 18.3% 1,688 29.5%

… 1 1,384 81.7% 4,025 70.5%

iv.doa 1,695 5,713 𝜒

2 = 14.097∗∗∗

… 0 688 40.6% 2,616 45.8%

… 1 1,007 59.4% 3,097 54.2%

(b) Men

iv.lan 1,983 5,163 𝜒

2 = 160.186∗∗∗

… 0 739 37.3% 2,789 54%

… 1 1,244 62.7% 2,374 46%

iv.firstday 1,983 5,163 𝜒

2 = 4.267∗∗

… 0 1,251 63.1% 3,118 60.4%

… 1 732 36.9% 2,045 39.6%

iv.interviewer 1339 5,161 𝜒

2 = 13.453∗∗∗

… 0 167 12.5% 583 11.3%

… 1 62 4.6% 373 7.2%

… 2 493 36.8% 1,791 34.7%

… 3 617 46.1% 2,414 46.8%

iv.mon 1,983 5,163 𝜒

2 = 200.984∗∗∗

… 0 293 14.8% 1,621 31.4%

… 1 1,690 85.2% 3,542 68.6%

iv.doa 1,983 5,163 𝜒

2 = 60.931∗∗∗

… 0 650 32.8% 2,216 42.9%

… 1 1,333 67.2% 2,947 57.1%

Note: Statistical significance markers: *p < 0.1; **p < 0.05; ***p < 0.01.
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ADEGBOYE et al. 11

T A B L E 7 The 95% confidence intervals for HIV prevalence estimates in 2007 Zambia DHS.

Unadjusted Marra
Worst
case JD IV Unadjusted Marra

Worst
case JD IV

(a) Women (b) Men

All LCI 0.153 0.159 0.118 0.121 0.123 0.116 0.186 0.084 0.089 0.086

UCI 0.169 0.179 0.361 0.343 0.339 0.13 0.268 0.374 0.328 0.322

Width 0.016 0.02 0.243 0.222 0.216 0.014 0.082 0.29 0.239 0.236

Age 15–19 LCI 0.038 0.058 0.029 0.029 0.023 0.019 0.049 0.014 0.015 0.013

UCI 0.078 0.189 0.305 0.282 0.274 0.05 0.187 0.319 0.271 0.279

Width 0.04 0.131 0.276 0.253 0.251 0.031 0.138 0.305 0.256 0.266

20–24 LCI 0.099 0.058 0.073 0.076 0.076 0.035 0.049 0.025 0.026 0.024

UCI 0.139 0.189 0.36 0.336 0.331 0.072 0.187 0.351 0.302 0.315

Width 0.04 0.131 0.287 0.26 0.255 0.037 0.138 0.326 0.276 0.291

25–29 LCI 0.181 0.058 0.142 0.144 0.147 0.096 0.049 0.067 0.073 0.083

UCI 0.216 0.189 0.392 0.378 0.383 0.134 0.187 0.409 0.353 0.361

Width 0.035 0.131 0.25 0.234 0.236 0.038 0.138 0.342 0.28 0.278

30–34 LCI 0.237 0.058 0.187 0.191 0.202 0.155 0.049 0.111 0.12 0.124

UCI 0.279 0.189 0.44 0.429 0.401 0.192 0.187 0.426 0.382 0.384

Width 0.042 0.131 0.253 0.238 0.199 0.037 0.138 0.315 0.262 0.26

35–39 LCI 0.223 0.058 0.174 0.179 0.178 0.201 0.049 0.147 0.158 0.16

UCI 0.278 0.189 0.443 0.425 0.408 0.244 0.187 0.46 0.417 0.376

Width 0.055 0.131 0.269 0.246 0.23 0.043 0.138 0.313 0.259 0.216

40–44 LCI 0.151 0.058 0.12 0.121 0.131 0.215 0.049 0.166 0.173 0.173

UCI 0.212 0.189 0.391 0.377 0.342 0.264 0.187 0.452 0.421 0.414

Width 0.061 0.131 0.271 0.256 0.211 0.049 0.138 0.286 0.248 0.241

45–49 LCI 0.09 0.058 0.072 0.073 0.073 0.153 0.049 0.115 0.122 0.129

UCI 0.155 0.189 0.333 0.322 0.315 0.212 0.187 0.424 0.386 0.377

Width 0.065 0.131 0.261 0.249 0.242 0.059 0.138 0.309 0.264 0.248

brevity, we only report the 95% confidence intervals (CIs) in Table 7a,b. We also include confidence intervals based
on the observed, unadjusted prevalence among the tested individuals. The results are stratified by gender and by
age groups.

We hereafter focus the discussion on men’s results, the women’s results exhibit similar patterns. The imputation
method uses models based on data from the tested, and hence implicitly, it assumes that, conditioned on the covariates
used in the models, a non-tested individual has the same propensity of HIV as a tested individual. This fact is borne out
in the 95% CIs using imputation. All of them include the corresponding observed prevalence among the tested in Table 5,
and they are all very similar to the corresponding CIs based on the unadjusted prevalence estimates. Due to the additional
observations used, each imputation CI is never wider than its unadjusted counterpart. Both have relatively short widths
due to the large sample sizes in this study.

The worst case method presents the widest CIs, indicating a conservative approach. Methods such as Marra, JD, and
IV provide moderate CI widths, pointing to a balance between raw data and adjusted estimates. IV typically shows a
slightly tighter range than JD. Demographic variables influence the variability in HIV prevalence estimates, with age and
socioeconomic status being particularly pronounced. For men aged 45–49, the worst case CI width is 0.314, substantially
wider than the unadjusted width of 0.06, highlighting increased uncertainty in older populations. The socioeconomic
dimension is reflected in the wealth quintile analysis, where the highest quintiles exhibit larger CI widths in the worst
case method, such as 0.349 for the top quintile.
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12 ADEGBOYE et al.

4.2 HIV prevalence in Malawi and Kenya

The approaches described above were applied also to the 2004 Malawi DHS (MDHS) and the 2003 Kenya DHS (KDHS).
These surveys have a design comparable to Zambia DHS. Malawi and Kenya have lower HIV prevalence (based on unad-
justed results). We use the same set of instruments as Zambia, except that the definitions of iv.interviewer and iv.mon
are slightly different because of the differences in the number of interviews conducted by interviewers and differences
in the agricultural seasons. The results for Malawi and Kenya are broadly comparable to those for Zambia presented in
Section 4.1. The imputation method gives very similar results to the unadjusted results. The partial identification bounds
always give confidence intervals that are much wider. Between the two partial identification methods, the worse case is
always less precise than the method proposed in this paper. The improved precision of the proposed method comes from
a big reduction of the upper confidence interval, ranging from about 10% to 30%.

For both men and women, the width of the confidence intervals varies across different methods. The worst case
method consistently shows the widest CIs. The Marra, JD, and IV methods produce moderate CI widths, with the IV
method slightly more conservative than JD. The Marra method generally produces wider intervals compared to the unad-
justed method, indicating increased uncertainty when considering correlated data. The worst case method often has the
widest intervals, while the JD and IV methods generally yield narrower intervals compared to the worst case and Marra
methods, reflecting their potential for more concise estimates. The widths vary considerably across demographic and
behavioural subgroups.

Further details about the data, implementation and results are provided in supplementary materials S.6 and S.7.

5 DISCUSSION

Existing studies on refusal bias in the estimation of HIV prevalence typically either provide some evidence of the exis-
tence of the bias or try to correct for the bias by making some (often strong) behavioural assumptions about the subjects.
In this paper, we have instead derived plausible lower and upper bounds for HIV prevalence under mild and intuitive
assumptions. This approach is potentially useful because it is often difficult to validate or falsify an underlying assumption.
Furthermore, it shows that a carefully designed and implemented localised study may also be helpful for understanding
the magnitude of non-response bias.

The partial identification approach using instruments has been widely used in the fields of Social Sciences and Eco-
nomics, though rare in Epidemiology and Public Health. As with other methods that exploit instruments, the key to the
success of this approach is the validity of the instruments used to create the bounds. However, it is well known that the
exclusion restriction assumption is a non-testable hypothesis. This paper offers a novel and simple solution to this chal-
lenge by taking multiple candidate instruments. If at least one instrument in the pool of candidates is valid, the proposed
approach creates bounds that, in large samples, partially identify the true prevalence. The approach offered in this paper
is especially useful for practitioners because normally, there are multiple variables, for example, interviewing process,
interviewer characteristics, and so forth, that are candidates to be considered as instruments, and yet there is no way to
determine which one(s) is(are) valid. Using a large pool increases the chance of finding at least one that is valid but, at
the same time, induces the possibility of including invalid ones. The proposed method solves this conundrum. We exam-
ine HIV prevalence between genders and across different age groups. In evaluating the proposed imputation method
for instrumental variables, the study employed factors like language, interview timing, interviewer experience, month of
interview, and awareness of AIDS-related deaths. The results demonstrated that the imputation method yielded similar
outcomes to unadjusted results across various scenarios. Furthermore, we compare various bounds based on a variety
of methods, including Marra et al,24 Manski’s21 worst case bounds, and Jiang and Ding.25 Previous studies have sug-
gested that variables related to the data collection process may be used as instruments because they affect the response
probability but are unlikely to have a direct effect on the outcome.11,30 For example, an experienced interviewer or an
interviewer of a similar age as the interviewee may have a better chance of eliciting a positive response. Furthermore,
whether the language of the interview or questionnaire is the same language as the interviewee may affect the response
rate. It has also been argued that the timing of the first interview attempt coincides with the economic cycle and affects
the probability of finding interviewees at home. Individuals selected to be interviewed on the first day of the interviews
within a cluster of households will also have more chances to be contacted even if they are not at home, giving rise to
a higher response probability. Finally, we also consider a variable based on the individual’s attitude to HIV. The current
literature finds that more negative attitudes are associated with refusal of an HIV test or never having had an HIV test in
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ADEGBOYE et al. 13

sub-Saharan Africa.31,32 Our method is similar to that proposed in Kang et al33 for estimating causal effects when some
instruments are possibly invalid. Kang et al33 also considers a union method, but their context and process differ from the
present paper. In their paper, the goal is to obtain a confidence interval of some causal effect. They also assume a pool of
N instruments with no more than s∗ valid (in our notations). For each set of s∗ − 1 instruments, they form a confidence
interval of the causal effect. They then take the union of confidence intervals over all

(
N

s∗−1

)

sets of instruments. On the
contrary, our method first creates the partial identification bound using each instrument, then finds the union of bounds
from every set of N − s∗ + 1 instruments. In Kang et al,33 the interval is narrowed by pretesting and eliminating possibly
invalid instruments. In our paper, no tests are used. Instead, we take the intersection of the

(
N

N−s∗+1

)

union bounds.
Using partial identification, the corresponding CIs are much wider than those using imputation. The much wider CIs

using partial identification reflect the uncertainties we have about the actual HIV status of the non-tested individuals. The
lower limits of the partial identification CIs are also, in general, quite a bit smaller than the corresponding imputation
lower limit. The reason is that a lower partial identification bound is derived by assuming all non-tested individuals are
HIV negative (for a given value of instrument for the IV bound), whereas imputation assumes the non-tested are the same
as the tested, given the covariates. Similarly, the upper limits of the partial identification CIs are much higher than those
given by imputation since the upper partial identification bounds result from assuming all non-tested are HIV positive
(for a given value of instrument for the IV bound).

The most significant difference between the partial identification CIs and the imputation CIs lies in those situations
where the observed prevalence among the tested is low. For example, in the male aged 15–19 group. The upper limit of
the imputation CI is 0.045, against the upper limits of 0.32 and 0.278, respectively, for the worst case and instrumental
variable partial identification CIs. The reason for the very low upper limit for the imputation CI is that it assumes those
non-tested also have similarly low prevalence as the tested individuals. In contrast, the partial identification approach
allows for the possibility that even if a moderate proportion of the non-tested are actually HIV positive, the prevalence
would change significantly upwards.

Between the two partial identification methods, the worst case scenario makes no assumptions and the resulting CIs
are wider than those derived using the instrumental approach proposed in this paper. Since the width of a CI gives its
precision, the method proposed here is always more precise than the worst case CIs. In some cases, such as males aged
35–39, the gain in precision approaches 30%.

Three other observations are worth noting. First, as expected, all CIs using the proposed method have a larger lower
confidence limit than the corresponding worst case CIs. A second observation is the narrowing in widths in the CIs in the
proposed method mainly comes from a much smaller upper limit than the corresponding worst case CIs. This advantage
is brought about when the population is stratified by different levels of a valid instrument. if the proportion of tested
individuals is higher at a particular level, the more precise information from such a group can be used to infer the HIV
prevalence of the entire population. Finally, it is also notable that the gains in the length of a confidence interval from
the IV bound—or the difference in the length of confidence intervals between the worst case and IV bounds—are much
higher for men than for women in all three countries. This gender difference may be due to males being more sensitive
to the interviewer’s characteristics than females in agreeing to conduct HIV tests. While this result is not necessarily
applicable to other contexts, it does show the relevance of the respondent and interviewer characteristics and potential
gains from adopting our approach.

There are two cautionary notes to be made about the proposed method. First, it is advisable not to include too many
instruments, particularly highly dubious ones. The goal of our method is to create identification bounds prevalence that
is robust to invalid instruments. However, if we add mostly invalid instruments, L will increase without a corresponding
increase in a. This will result in an increase in the number of instruments, L − a + 1, leading to wide confidence bound in
the proposed method. Therefore, a balance must be struck between how many and what instruments should be included
as candidates. Obviously, we should include as many as needed so we have comfort that some among the pool of can-
didates would be valid. Our simulations and empirical examples suggest that just a few candidate instruments would
suffice. Second, the proposed method is not immune to the problem of weak instrumental variables. A weak instrumen-
tal variable is one that is not informative about the non-response process.34 Instrumental variable bounds based on weak
instruments may be very wide and not much different from the worst case bounds. Therefore, we must also be judicious
about the choice of instruments.* Fortunately, the strength of an instrument is a testable hypothesis. We demonstrated
how this could be done in the empirical study.

In conclusion, the proposed approach is useful for providing HIV prevalence estimates in population-based surveys,
where non-response is a ubiquitous phenomenon and little is known about its causes.
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ENDNOTE
∗A related point is how we define IVs. In many empirical settings, one could choose to have two binary instruments v1 and v2 or the combination
of the two v = 2v1 + v2, which contain the same information as v1 and v2 combined. We would recommend to use v only when the validity
of v1 and v2 is (likely to be) the same. When they are valid, v would be more useful than having v1 and v2 separately, as the former would
give more variations in P(D|V). If both of them are invalid, we reduce the proportion of invalid instruments. However, treating v1 and v2 as
separate instruments would be more desirable if one is valid.
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