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Abstract

HIV estimation using data from the Demographic and Health Surveys (DHS) is lim-
ited by the presence of non-response and test refusals. Conventional adjustments such
as imputation require the data to be missing at random. Methods that use instrumental
variables allow the possibility that prevalence is different between the respondents and
non-respondents, but their performance depends critically on the validity of the instru-
ment. Using Manski’s partial identification approach, we form instrumental variable
bounds for HIV prevalence from a pool of candidate instruments. Our method does not
require all candidate instruments to be valid. We use a simulation study to evaluate and
compare our method against its competitors. We illustrate the proposed method using
DHS data from Zambia, Malawi and Kenya. Our simulations show that imputation leads
to seriously biased results even under mild violations of non-random missingness. Using
worst case identification bounds that do not make assumptions about the non-response
mechanism is robust but not informative. By taking the union of instrumental variable
bounds balances informativeness of the bounds and robustness to inclusion of some in-
valid instruments. Non-response and refusals are ubiquitous in population based HIV
data such as those collected under the DHS. Partial identification bounds provide a ro-
bust solution to HIV prevalence estimation without strong assumptions. Union bounds
are significantly more informative than the worst case bounds without sacrificing credi-
bility.

Key messages

� Partial identification bounds are useful for HIV estimation when data are subject to non-
response bias

� Instrumental variables can narrow the width of the bounds, but the validity of an instru-
ment variable is an untestable hypothesis

� This paper proposes pooling candidate instruments and creating union bounds from the
pool

� Our approach significantly reduces the width of the worst case bounds without sacrificing
robustness
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1 Introduction

In sub-Saharan Africa, home to around 23 million people living with HIV [1], accurate mea-
surement of the trends of important diseases such as HIV is essential for governments to design
policies and aid programs. In the past two decades, national population-based surveys from
the Demographic and Health Survey (DHS) system have become an important source for such
measurement [2, 3]. A major challenge in using these data is the potential bias from missing
data created by non-response. There is much evidence that the non-respondents may have
patterns of outcome and/or behaviour that are very different from those of the rest of the
population [4, 5].

One reason why non-response has garnered significant attention from researchers is the
complexity of the problem [6]. Non-response is not a result of a single source or a well-defined
situation, as it is widely recognized. Instead, the causes and processes that lead to non-
response are diverse and often depend on multiple factors, including the surveyed population,
the outcome’s nature, and the survey’s design and implementation. The most challenging
aspect of this problem is that information about non-respondents is typically limited, making
it challenging for surveyors to determine the reason behind a non-response [6] In the context
of HIV survey, non-response arises primarily from two sources– non-contacts and refusals.
The processes leading to these two types of non-responses are believed to be distinct. But for
ease of discussion, we use these terms interchangeably. We return to distinguish them in the
empirical study.

A primary concern when reporting HIV prevalence estimates using DHS data is potential
bias resulting from non-response. Some relevant earlier works on non-response bias in HIV
estimation using data from the DHS system include Garcia-Calleja et al. [3] and Larmarange
et al. [7], who carried out multi-country surveys of response rates and evaluated non-response
bias. Marston et al. [4] examined non-response bias in a nine-country study. They assumed
non-response is non-informative and estimated the prevalence among the non-respondents by
multiple imputation. Similarly, Mishra et al. [5] used a logistic regression to predict the HIV
prevalence among the non-respondents under a non-informative non-response assumption in
a twelve-country study. Reniers and Eaton [8] and Floyd et al. [9] corrected refusal bias
in population surveys by using auxiliary longitudinal data. Their method relies on the as-
sumption that the refusal behaviour in different populations are comparable. Reniers et al.
[10], Bärnighausen et al. [11], Hogan et al. [12] adjusted non-response bias by a Heckman-type
selection model [13], which allows non-response to be informative but requires the existence
of a valid instrumental variable that satisfies the exclusion criteria of explaining non-response
but not the outcome. Arpino et al. [14] constructed bounds based on the partial identification
approach of Manski [15, 16]. Under this approach, the unknown quantity of interest can only
be identified to within a set of bounds, whose width depends on the knowledge, or lack thereof,
about the missing data. In this sense, the bounds are “worst case” bounds since no assump-
tions are made regarding the missingness process. Worst case bounds are often considered
overly conservative in practice. Arpino et al. [14] used restrictions implied by the dynamics of
HIV (ie., an infected person remains infected over time while an uninfected person cannot be
infected earlier) and instrumental variables to narrow the width of the identification region.

Methods that use instrumental variables (IVs) allow the possibility that HIV prevalence is
different between the respondents and those who refuse testing. However, valid instruments
about the non-response mechanism are notoriously difficult to find. Furthermore, whether an
instrument is valid is not a testable hypothesis. This paper aims to solve this conundrum. We
espouse the view that, due to missing data, a study with missing data can never achieve as
much as it would have had there been no missing data. This view departs from the conventional
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wisdom that, with sufficient assumptions and modelling, that a study with missing data can
be restored to the state as if there were no missing data save the fewer observations. Under
the conventional perspective, unknown quantities of interest can be estimated using point
estimates, or “point identified”, with an adjustment to the reduced information, and then
inferential tools such as confidence intervals and hypothesis tests can be carried out as usual.
In our view, the uncertainty created by the missing data and our inability to pinpoint the
exact causes of missingness must be embedded into the formulation of the analysis strategy.

Theoretically, we can take multiple candidate instruments if we do not know whether
an instrument is valid. Indeed, in observational epidemiological studies that are subject to
confounding or reverse causation bias, the use of genetic variants as proxies for environmentally
modifiable exposures may lead to a hundred or more candidate instruments [17]. However,
we do not know which instruments are valid among the instruments under consideration.
We propose a two-stage modification of Manski’s partial identification approach to solve this
problem. Assume s ≥ a, where a is the minimum number of valid instruments out of the L
candidate instruments under consideration. For each candidate, we can use Manski’s approach
to form bounds. Then, even though we do not know the validity of individual instruments,
the union of bounds using any set of L−a+1 individual candidates is guaranteed to correctly
identify the quantity of interest. Following [18, 19, 20] that the intersection of bounds is
non-empty for any set of valid instruments to eliminate the candidates whose bounds fail to
overlap with the bounds of the majority of the candidates, we then take the intersection of
the union bounds from all possible sets of L− a+1 instruments to form a new set of bounds.
This step substantially narrows the bounds in some cases without sacrificing robustness. We
carry out a simulation experiment to evaluate the proposed method. We then illustrate our
method using data from the Zambia Demographic Health Surveys.

2 Method

We assume an outcome variable Y is measurable and bounded for each individual in the
population of interest. Suppose we are interested in the population mean of Y , E(Y ). In
general, we may also be interested in E(Y |X) for some covariates X, but for brevity, we focus
our discussion in the next two sections on estimating E(Y ) since the treatment for the case
with covariates is similar. Suppose a random sample of n is drawn from the population, and
in this sample, Y is observed only in a subset of the sample. Let D be a binary variable such
that D = 1 if Y is observed and 0 otherwise. Using the law of iterated expectations, we can
write

E(Y ) = E(Y |D = 1)P(D = 1) + E(Y |D = 0)P(D = 0). (1)

The sampling process identifies E(Y |D = 1), P(D = 1) and P(D = 0) = 1 − P(D = 1)
but there is no information on E(Y |D = 0) unless we make strong assumptions about the
joint distribution of Y and D. Let K0, K1 be, respectively, the lower and upper bounds of
Y . Furthermore, write µ ≡ E(Y ), µd· ≡ E(Y |D = d). The worst case partial identification
bounds [15] for µ are

(LB,UB) = (µ1·P(D = 1) +K0P(D = 0), µ1·P(D = 1) +K1P(D = 0)). (2)

2.1 Bounds using instruments

The worst case bounds (2) are guaranteed to identify E(Y ) by construction. However, they are
often criticised for being too wide to be informative. The worst case bounds can be improved
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if additional assumptions are made. Let V be an instrumental variable (IV) with discrete
values v ∈ V , such that,

P(D = d|V = v1) ̸= P(D = d|V = v2), (3)

and
P(Y ) = P(Y |V = v1) = P(Y |V = v2), (4)

for d = 0, 1, all values v1, v2 ∈ V and v1 ̸= v2. Write µ·v ≡ E(Y |V = v) and µdv ≡ E(Y |D =
d, V = v). Since (4) implies E(Y |V = v) = E(Y ) = µ, it follows that [18], ∀v ∈ V ,

µ1vP(D = 1|V = v) +K0P(D = 0|V = v) ≤ µ·v ≤ µ1vP(D = 1|V = v) +K1P(D = 0|V = v).

The inequalities imply

µ ∈ ∩
v∈V

[µ1vP(D = 1|V = v) +K0P(D = 0|V = v), µ1vP(D = 1|V = v) +K1P(D = 0|V = v)]

⇒ LBV ≡ sup
v∈V

{µ1vP(D = 1|V = v) +K0P(D = 0|V = v)} ≤ µ (5)

≤ inf
v∈V

{µ1vP(D = 1|V = v) +K1P(D = 0|V = v)} ≡ UBV , (6)

where (LBV ,UBV ) gives a set of IV lower and upper bounds for µ.
In practice, more than one instrument is usually used in a particular study [see, e.g., 17, 21].

Suppose there are L candidate instruments, and all we can assume is at least one of the L
candidates is valid. Then, if some turn out to be invalid, (6) may fail to identify E(Y ) for
these instruments. To address this, suppose we create the following “union” bounds:

(LBUN,UBUN) = ∪
Vl,l=1,··· ,L

(LBVl
,UBVl

) = ( inf
v∈Vl

LBVl
, sup
v∈Vl

UBVl
). (7)

It is trivial to see that (LBUN,UBUN) identifies E(Y ) as long as at least one of the candidate
instruments is valid. However, a simple examination of (LBUN,UBUN) reveals that as L
increases, so will the width of (LBUN,UBUN). The wider a set of bounds, the less informative
it is in identifying E(Y ). Hence it would be of interest to eliminate among the L instruments,
those that do not contribute to the identification of E(Y ). To continue, we assume that
the true number of valid instruments, s is known to satisfy s ≥ a ≥ 1 for some known a.
Under this assumption, each subset of (L− a+1) instruments must contain at least one valid
instrument. Hence, the union bounds formed by each subset is guaranteed to identify E(Y ).
For any two sets of bounds that both include E(Y ), their intersection must be non-empty,
and also correctly identify E(Y ). We therefore propose to find the intersection of all union
bounds formed with any (L − a + 1) instruments among the L instruments, because it will
also identify E(Y ) but be no longer than any of these union bounds.

Applying the bounds empirically incurs uncertainty, and this uncertainty can be incor-
porated in the form of confidence intervals. Suppose the theoretical lower and upper IV
bounds for µ, denoted as (LB,UB), can be empirically estimated as (L̂B, ÛB). Construct-
ing a confidence interval involves considering an approximate b0 × 100 percent interval for
(L̂B − z(1−b0)/2ŜELB, ÛB + z(1−b0)/2ŜEUB), where z(1−b0)/2 is the upper (1 − b0)/2 × 100 per-

centile of the standard normal distribution, SE represents standard error and ŜE its sample
analogue. However, to address the width issue for µ [22], alternative bounds are suggested,

(L̂B−CnŜELB, ÛB +CnŜEUB), where Cn is determined through a specific equation involving
the standard normal cumulative distribution function. The challenging analytical determi-
nation of standard errors leads to the utilization of bootstrapping, as proposed by Horowitz
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and Manski [23] in this study. Bootstrap samples are obtained, and from these, the empirical

standard errors ŜELB and ŜEUB are derived to construct robust confidence intervals. Justifi-
cations and further details about the proposed bounds and confidence intervals are given in
the Supplementary materials.

3 Simulation study

3.1 Simulation study 1

We use a simulation study to evaluate our proposed bounds (7). We assume the response Y is
binary. We fix the values of s and L at 3 and 5, respectively. The instruments are all binary
with a prevalence of 0.5 and mutually independent of each other.

We generate Y using a logistic model

logitP(Y = 1) = b0 + b11V1 + · · ·+ b1LVL, (8)

where the coefficients b1 = (b11, · · · , b1L)T give the association between the instruments and Y .
A non-zero value of b1j induces an association and therefore renders the instrument invalid. We

use two different combinations for b1: b1 = (

s︷ ︸︸ ︷
0, · · · , 0,

(L−s)︷ ︸︸ ︷
1, · · · , 1)T ; and b1 = (

s︷ ︸︸ ︷
0, · · · , 0,

(L−s)︷ ︸︸ ︷
4, · · · , 4)T .

For both situations, we assume without loss of generality the first s instruments are valid while
the remaining L−s are invalid. In the former, (4) is weakly violated by the invalid instruments
while the violation of (4) is strong for the latter.

The non-response indicator D is generated using another logistic model

logitP(D = 1) = c0 + c11V1 + · · ·+ c1LVL + cY Y. (9)

The coefficients c1 = (c11, · · · , c1L)T give the association between each instrument and D.
We consider two situations, (a) Strong instruments: c1 = (5, · · · , 5) and (b) Strong + weak
instruments: s coefficients are randomly given a value of 5 and the remaining L− s are given
a value of 0.5. The coefficient cY is used to model the association of D to the outcome Y ,
and hence selection bias. When cY = 0, then there is no selection bias when conditioned on
the observed covariates. We consider two choices of cY = −0.1||c1|| and −0.3||c1||, where the
symbol || · || stands for the sum of the coefficients c11, ..., c1L. We use negative association to
reflect that in practice, we expect those who are HIV positive are less likely to have an HIV
test. These two values for cY correspond to mild to moderate selection bias. We use c0 to
calibrate the average non-response rate, 1−E(D = 1), to be 0.1 and 0.3 over the simulations.

Since Y is binary, the bounds for Y are (K0, K1) = (0, 1). Throughout the simulation
study, a sample size of n = 1000 observations is used. We use 1000 simulation runs for each
combination of parameters. Confidence intervals are approximated using the method described
in the Supplementary materials. These confidence intervals require estimates of the standard
errors of the bounds, which can be carried out using bootstrapping.

A standard approach to adjust HIV prevalence estimates for survey non-response is by im-
putation [24]. Using imputation, the missing outcomes are imputed using predicted prevalence
based on observed information such as demographic, socio-economic and behavioural variables
from those who were tested. We compare this method to the partial identification method.
For the imputation method, we use all the observed variables in the simulation study, i.e., the
instruments. For partial identification, we used the worst case bounds that do not make any
assumptions, and also the method proposed in this article.
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Table 1 gives the simulation results. Each combination of parameters corresponds to four
rows of results. The first row shows the proportion of times, out of 1000 simulations, the
approximate 95 percent confidence intervals include E(Y ). The second row gives the lower
confidence limits, averaged over 1000 simulations. The third row gives the upper confidence
limits, averaged over 1000 simulations. The fourth row gives the average width of the confi-
dence intervals.

When non-response probability is 0.1 and selection bias is mild, 95% confidence intervals
using all three methods have high probabilities of capturing E(Y ). Using imputation naturally
leads to much narrower confidence intervals. Between the partial identification bounds, the
IV bounds proposed in this paper produce a much narrower confidence interval but at the
expense of not capturing E(Y ) in finite samples.

In all other situations, using imputation leads to grossly biased confidence intervals that
fail to capture E(Y ) in almost all simulation runs. Recall that E(Y ) is calibrated to be at 0.15
in all simulations so the imputation confidence intervals underestimate the true prevalence.
The advantage of the IV bounds confidence intervals over the worst case confidence intervals
mirrors those when non-response probability is 0.1 and selection bias is mild. Additional
simulations have been carried out. The results are given in the Supplementary materials. The
conclusion from the additional simulations is similar to those presented here.

In practice, selecting the value of s may be challenging. To address this, we also carried out
a sensitivity analysis that presents bounds for different values of s as a sensitivity parameter.
The results show the following general conclusions. First, as long as the assumed number of
valid instruments a is no less than s ≥ 1, the proposed method produces bounds and associated
CIs that capture the unknown HIV rate. Second, when the assumption s ≥ a ≥ 1 is violated
but the invalid instruments are only weakly invalid, the performance of the proposed method is
still satisfactory. When s ≥ a ≥ 1 is violated and the invalid instruments are strongly invalid,
the proposed method does not perform well. Third, a smaller value of a is more robust to
the violation of the assumption s ≥ a ≥ 1. Fourth, a larger value of a gives narrower bounds
but as pointed out above the reduction comes at a price when the assumed number of valid
instruments a exceeds the actual number s, in which case the shorter bounds fail to capture
the unknown HIV rate. Hence, a balance needs to be struck between the two goals. Obviously,
in practice, we must have certain confidence in the validity of the candidate instruments before
they should be included into consideration for creating the bounds. To conserve space, the
full results are given in the Supplementary Materials.

3.2 Simulation study 2

In this section, we report details of a second set of simulations that allows comparison between
the proposed method and methods from Marra et al. [25] and Jiang and Ding [26]. The
simulations follow the approach of Clark and Houle [27] by using data with a structure similar
to a real DHS survey. We use the 2007 Zambia DHS men sub-sample as the basis of our
simulation setup.

The relevant individuals in the survey are men eligible for individual surveys. In the 2007
Zambia DHS, eligible individuals were first approached for the individual surveys. Those who
were contactable and present at the individual surveys were then asked to participate in HIV
testing. The eligible individuals can be classified into one of three groups: (a) those who were
absent for the individual surveys and not tested, (b) those who participated in the individual
surveys but refused to be tested, and (c) those who participated in the individual surveys,
agreed to be tested and with a valid test results. For those in groups (a) and (b), their HIV
test results are absent. For our simulation setup, HIV results are generated through a three-
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stage process: (1) contact for individual surveys, (2) consent to HIV test, and (3) test results
among the tested.

Details of the simulations are given in Section S.4 of the Supplementary Materials. Here,
we briefly describe the simulation setup. We fix a sample size of n = 7000. Then, we simulate
observations with a composition of age, rural residence and geographical region similar to that
of the original survey. Following Marra et al. [25], we randomly generate an interviewer IV
with 30 interviewers. We additionally generate 3 binary IVs: V2 V3, V4 each with a prevalence
of 0.5 in the samples.

To simulate data, we mimic the three-stage process described earlier by using three equa-
tions: a contact equation, a selection (consent) equation and an outcome equation. GPS
coordinates of each of the 319 clusters are obtained and used to simulate spatial correlations
in HIV rates. Parameter values used in these equations are obtained by fitting similar equa-
tions to the actual Zambia 2007 DHS data and calibrated to create simulated contact rate,
refusal rate and HIV prevalence similar to those in the Zambia 2007 DHS (10%, 25% and 20%,
respectively).

In the simulations, we consider two different situations of IV strength (Weak) and (Strong).
Among the four IVs, we fix V4 as a valid IV. We consider four different cases in terms of the
number of invalid instruments: (1) three (V2, V3, and Interviewer IV) are invalid are invalid, (2)
two (V2 and V3) are invalid, (3) one (V2) is invalid, and (4) none is invalid. We generate random
N(0,1) values to represent interviewers’ differential persuasiveness in eliciting acceptance to
HIV test.

For the method of Marra et al. [25], we use only interviewer as the IV. We try a selection of
representative copulas: Normal, Frank, Clayton rotated 90 degrees, and Clayton rotated 270
degrees and then choose the best among them based on AIC. The effect of region is modelled
using a Markov random field smoother (see Marra et al. [25]).

The method proposed here always uses all L = 4 IVs and assumes at least s = 2 of them
are valid. Under case (1), the assumption is violated. Therefore, the four cases allow us to
test the sensitivity of the method to the choice s. For the Jiang and Ding [26] method, all
observations with C = 0 (non-contact) are assumed to have the same prevalence as those
tested.

We consider 8 scenarios defined by the combination of the interviewer IV strength (weak/strong)
and the number of invalid IVs (cases (1)–(4)). For each scenario, we use 1000 simulations to
compare the following methods: (1) standard imputation; (2) the selection method of Marra
et al. [25] assuming a Normal copula; (3) the selection using the best of the four copulas; (4)
the worst case bounds; (5) the bounds from Jiang and Ding [26] and (6) the bounds proposed
in this paper. Table 2 shows the summary statistics of each set of simulations. The first
column shows the average true HIV prevalence; the second column shows the “observed” after
removing the non-contacts and refusals; the third column shows the consent rates among those
contacted; the fourth column shows the F-statistic for interviewer effect; and the last column
shows the contact rates. Table 3 gives the average 95% lower and upper confidence intervals
using each of the 6 methods. Table 4 shows the widths of the 95% confidence intervals using
the 6 methods.

Comparing the results from Table 3 to the true prevalence rates in Table 2, it is obvious
that imputation grossly underestimates the true rates. The Marra selection method, whether
using Normal copula (the correct one under the setup of the simulation study) or the best,
adjusts the observed prevalence upwards. When the interviewer IV is invalid (case (1)),
the Marra confidence intervals give over-estimates of the true prevalence as expected. For
the remaining scenarios, the average Marra lower confidence limits are near the true rates.
So, the method still tends to adjust more than required. This is not surprising since in
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the setup of the simulations, selection is based on the effectiveness of each interviewer (see
the selection equation S.12 in Supplementary Materials where interviewer is represented by
effectiveness). However, in practice, since this effectiveness is unobserved, the interviewer ID
is just a surrogate of the interviewer’s (unobserved) effectiveness.

All the partial identification methods produce confidence intervals that adjust upwards the
observed prevalence. The bounds methods are designed to capture true prevalence. However,
their lower confidence limits are all quite small, which is an artefact of assuming all non-tested
as HIV negative in creating the lower bounds. In the simulations, there is little difference
between JD and the worst case bounds. As expected the widths of the bounds confidence
intervals are in the following orders: worst case ≥ JD ≥ union (Table 4). Comparatively, the
Marra confidence intervals are much shorter.

This simulation study highlights that there is no single perfect method for bias correction
when there are non-responses: the Marra method using interviewer IV is subject to the inabil-
ity to observe the innate effectiveness of each interviewer; the partial identification methods
are less sensitive to this issue, but tend to produce results that are too conservative (lower
confidence limits that are even much lower than the observed prevalence).

4 Empirical application

The primary data source for this study is from three DHS. We first use the 2007 Zambia DHS
to illustrate the method. We then apply the methods to two other DHSs (Malawi and Kenya).

4.1 HIV prevalence in Zambia

The 2007 Zambia DHS is the fourth survey in the Zambia DHS series and provides population-
level health estimates, including data useful in monitoring and evaluating population, health,
and nutrition programs.

A total of 7,969 households were selected for the 2007 Zambia DHS, of which 7,326 were
occupied. The shortfall was largely due to households that were away for an extended period
of time and structures that were found to be vacant at the time of the interview. Of the
occupied households, a total of 7146 were successfully interviewed. The interviews collected
basic demographic information (e.g., age, sex), socio-economic status (e.g., educational at-
tainment) as well as basic household characteristics (e.g., household possessions and dwelling
characteristics).

In the interviewed households, 7406 females were eligible for interview and HIV testing,
while the number of eligible males was 7146. The individual interviews collected information
such as work and background characteristics, marriage and sexual activities, and awareness
and attitudes towards HIV. In the women’s interviews, additional questions about reproductive
history, child health, and nutrition were asked.

Of the women and men eligible for individual interviews, 1695 (22.9%) of the women and
1983 (27.7%) of the men refused or did not complete an HIV test. The primary reason for
non-response among eligible men was the failure to find individuals at home despite repeated
visits to the household, followed by refusal to be interviewed. The substantially lower response
rate for men reflects the more frequent and longer absence of men from the households.

The interviews in the 2007 Zambia DHS were carried out by 12 teams made up of 12
supervisors, 12 editors, 36 female interviewers, and 36 male interviewers. Each team consisted
of one supervisor, one female field editor, one laboratory technician, three female interviewers,
and three male interviewers. The interviews and questionnaires were translated from English
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into one of seven major local language groups: Nyanja, Bemba, Kaonde, Lunda, Lozi, Tonga,
and Luvale.

The observed prevalence of HIV positive among the cases, with results stratified by age,
are given in Table 5. Even though in this study, the proportions of non-response is modest,
we shall see that using instruments still improves inferences in some cases.

The final list of instrumental variables we use are: iv.lan (whether the language used
in the questionnaire or interview is the same as the respondent’s language, yes vs. no),
iv.firstday (whether the interview was conducted on the first day of the interviews, yes vs.
no), iv.interviewer (number of interviews the interviewer has performed, < 50, 50 − 100,
100− 200, > 200), iv.mon (whether the interview was carried out during a month of harvest
or planting, yes vs. no), iv.doa (whether the respondent knows someone who has died of AIDS,
yes vs. no).

It is well known that the validity of an instrument (4) is an untestable hypothesis. Never-
theless, we can determine whether an instrument is strong by evaluating (3). Table 6 shows
chi-square tests between non-response and the candidate instrumental variables we consider;
all tests are highly significant.

We assume a = 3, that is, at least three out of the five candidates are valid. In any
survey, such as the 2007 Zambia DHS, non-response and the potential for an associated bias
are always concerns. The standard procedure is an imputation analysis on those who are not
tested to adjust for potential biases [28]. The individuals in the survey can be classified into
one of three groups: (a) those who participated in the household and individual surveys and
were tested (b) those who participated in the household and individual surveys but were not
tested, and (c) those who only participated in the household surveys. For those in groups (b)
and (c), their HIV test results are absent.

For individuals in groups (b) and (c), their probability of HIV is predicted based on multi-
variate models using data from those who were tested. A logistic regression model is used to
calculate HIV probability separately for groups (b) and (c). For group (b), the variables used
in the model include the following household survey variables: age, education, wealth quintile,
residence, and geographic region, as well as the following variables from the individual survey:
marital union, current work status, media exposure, religion, sexually transmitted infections
(STIs) or STI symptoms in past 12 months, cigarette smoking/tobacco use, age at first sex,
number of sex partners in past 12 months, higher-risk sex in past 12 months, condom use at
last sex in past 12 months, and willingness to care for a family member with AIDS. Prediction
for group (c) uses only the household variables. The models are used to impute HIV statuses
for individuals in groups (b) and (c) and the results are combined with those in group (a) to
form adjusted HIV prevalence estimates for the population.

For all estimates, the data are weighted by survey weights. For individuals in group (a),
HIV weights were used, for individuals in group (b), the individual survey weights were used
and for those in group (c), household survey weights were used.

We compare adjustments using standard imputation with those using partial identification
bounds. For partial identification bounds, we report results based on the worst case bounds
as well as the instrumental variable bounds. For brevity, we only report the 95% confidence
intervals (CIs) in Table 7a-b. We also include confidence intervals based on the observed,
unadjusted prevalence among the tested individuals. The results are stratified by gender and
by age groups.

We hereafter focus the discussion on men’s results, the women’s results exhibit similar
patterns. The imputation method uses models based on data from the tested, and hence
implicitly, it assumes that conditioned on the covariates used in the models, a non-tested
individual has the same propensity of HIV as a tested individual. This fact is borne out in the
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95% CIs using imputation. All of them include the corresponding observed prevalence among
the tested in Table 5, and they are all very similar to the corresponding CIs based on the
unadjusted prevalence estimates. Due to the additional observations used, each imputation
CI is never wider than its unadjusted counterpart. Both have relatively short widths due to
the large sample sizes in this study.

4.2 HIV prevalence in Malawi and Kenya

The approaches described above were applied also to the 2004 Malawi DHS (MDHS) and the
2003 Kenya DHS (KDHS). These surveys have a design comparable to MDHS and KDHS have
2007 Zambia DHS for our purpose. Malawi and Kenya have lower HIV prevalence (based on
unadjusted results). We use the same set of instruments as Zambia, except that the definitions
of iv.interviewer and iv.mon are slightly different because of the differences in the number of
interviews conducted by interviewers and differences in the agricultural seasons.

The results for Malawi and Kenya are broadly comparable to those for Zambia presented in
Section 4.1. The imputation method gives very similar results to the unadjusted results. The
partial identification bounds always give confidence intervals that are much wider. Between
the two partial identification methods, the worse case is always less precise than the method
proposed in this paper. The improved precision of the proposed method comes from a big
reduction of the upper confidence interval, ranging from about 10% to 30%. Further details
about the data, implementation and results are provided in Supplementary materials S.6
and S.7,

5 Discussion

Existing studies on refusal bias in the estimation of HIV prevalence typically either provide
some evidence of the existence of the bias or try to correct for the bias by making some (often
strong) behavioural assumptions about the subjects. In this paper, we have instead derived
plausible lower and upper bounds for HIV prevalence under mild and intuitive assumptions.
This approach is potentially useful because it is often difficult to validate or falsify an under-
lying assumption. Furthermore, it shows that a carefully designed and implemented localised
study may also be helpful for understanding the magnitude of non-response bias.

Partial identification approach using instruments has been widely used in the fields of
Social Sciences and Economics, though rare in Epidemiology and Public Health. As with
other methods that exploit instruments, the key to the success of this approach is the validity
of the instruments used to create the bounds. However, it is well known that the exclusion
restriction assumption is a non-testable hypothesis. This paper offers a novel and simple
solution to this challenge by taking multiple candidate instruments. If at least one instrument
in the pool of candidates is valid, the proposed approach creates bounds that, in large samples,
partially identify the true prevalence. The approach offered in this paper is especially useful
for practitioners because normally, there are multiple variables, e.g., interviewing process,
interviewer characteristics, etc., that are candidates to be considered as instruments, and yet
there is no way to determine which one(s) is(are) valid. Using a large pool increases the chance
of finding at least one that is valid but at the same time, induces the possibility of including
invalid ones. The proposed method solves this conundrum.

We examine HIV prevalence between genders and across different age groups. In evaluat-
ing the proposed imputation method for instrumental variables, the study employed factors
like language, interview timing, interviewer experience, month of interview, and awareness of
AIDS-related deaths. The results demonstrated that the imputation method yielded similar
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outcomes to unadjusted results across various scenarios. Furthermore, we compare various
bounds based on a variety of methods, including Marra et al. [25], Manski’s[22] worst case
bounds, and Jiang and Ding [26]. Previous studies have suggested that variables related
to the data collection process may be used as instruments because they affect the response
probability but are unlikely to have a direct effect on the outcome [12, 29]. For example, an
experienced interviewer or an interviewer of a similar age as the interviewee may have a better
chance of eliciting a positive response. Furthermore, whether the language of the interview
or questionnaire is the same language as the interviewee may affect the response rate. It has
also been argued that the timing of the first interview attempt coincides with the economic
cycle and affects the probability of finding the interviewees at home. Individuals selected to
be interviewed on the first day of the interviews within a cluster of households will also have
more chances to be contacted even if they are not at home, giving rise to a higher response
probability. Finally, we also consider a variable based on the individual’s attitude to HIV. The
current literature finds that more negative attitudes are associated with refusal of an HIV test
or never having had an HIV test in sub-Saharan Africa [30, 31].

Our proposed method is similar to that proposed in Kang et al. [32] for estimating causal
effects when some instruments are possibly invalid. Kang et al. [32] also considers a union
method, but their context and process differ from the present paper. In their paper, the
goal is to obtain a confidence interval of some causal effect. They also assume a pool of N
instruments with no more than s∗ valid (in our notations). For each set of s∗− 1 instruments,
they form a confidence interval of the causal effect. They then take the union of confidence
intervals over all

(
N

s∗−1

)
sets of instruments. On the contrary, our method first creates the

partial identification bound using each instrument, then finds the union of bounds from every
set of N − s∗ + 1 instruments. In Kang et al. [32], the interval is narrowed by pretesting and
eliminating possibly invalid instruments. In our paper, no tests are used. Instead, we take the
intersection of the

(
N

N−s∗+1

)
union bounds.

Using partial identification, the corresponding CIs are much wider than those using im-
putation. The much wider CIs using partial identification reflect the uncertainties we have
about the actual HIV status of the non-tested individuals. The lower limits of the partial
identification CIs are also, in general, quite a bit smaller than the corresponding imputation
lower limit. The reason is that a lower partial identification bound is derived by assuming all
non-tested individuals are HIV negative (for a given value of instrument for the IV bound),
whereas imputation assumes the non-tested are the same as the tested, given the covariates.
Similarly, the upper limits of the partial identification CIs are much higher than those given by
imputation since the upper partial identification bounds result from assuming all non-tested
are HIV positive (for a given value of instrument for the IV bound).

The most significant difference between the partial identification CIs and the imputation
CIs lies in those situations where the observed prevalence among the tested is low. For ex-
ample, in the male aged 15-19 group. The upper limit of the imputation CI is 0.045, against
the upper limits of 0.32 and 0.278, respectively, for the worst case and instrumental variable
partial identification CIs. The reason for the very low upper limit for the imputation CI is
that it assumes those non-tested also have similarly low prevalence as the tested individu-
als. In contrast, the partial identification approach allows for the possibility that even if a
moderate proportion of the non-tested are actually HIV positive, the prevalence would change
significantly upwards.

Between the two partial identification methods, the worst case scenario makes no assump-
tions and the resulting CIs are wider than those derived using the instrumental approach
proposed in this paper. Since the width of a CI gives its precision, the method proposed here
is always more precise than the worst case CIs. In some cases, such as males aged 35-39, the
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gain in precision approaches 30%.
Three other observations are worth noting. First, as expected, all CIs using the proposed

method have a larger lower confidence limit than the corresponding worst case CIs. A second
observation is the narrowing in widths in the CIs in the proposed method mainly comes
from a much smaller upper limit than the corresponding worst case CIs. This advantage is
brought about when the population is stratified by different levels of a valid instrument. if the
proportion of tested individuals is higher at a particular level, the more precise information
from such a group can be used to infer the HIV prevalence of the entire population. Finally,
it is also notable that the gains in the length of a confidence interval from the IV bound—or
the difference in the length of confidence intervals between the worst case and IV bounds—are
much higher for men than for women in all three countries. This gender difference may be
due to males being more sensitive to the interviewer’s characteristics than females in agreeing
to conduct HIV tests. While this result is not necessarily applicable to other contexts, it does
show the relevance of the respondent and interviewer characteristics and potential gains from
adopting our approach.

There are two cautionary notes to be made about the proposed method. First, it is ad-
visable not to include too many instruments, particularly highly dubious ones. The goal of
the proposed method is to create bounds that identify the prevalence robust to invalid instru-
ments. However, if we add mostly invalid instruments, L will increase without a corresponding
increase in a. This will result in an increase in the number of instruments, L− a+ 1, leading
to a wide confidence bound in the proposed method. Therefore, a balance must be struck
between how many and what instruments should be included as candidates. Obviously, we
should include as many as needed so we have comfort that some among the pool of candidates
would be valid. Our simulations and empirical examples suggest that just a few candidate in-
struments would suffice. Second, the proposed method is not immune to the problem of weak
instrumental variables. A weak instrumental variable is one that is not informative about the
non-response process. Instrumental variable bounds based on weak instruments may be very
wide and not much different from the worst case bounds. Therefore, we must also be judicious
about the choice of instruments.1 Fortunately, the strength of an instrument is a testable
hypothesis. We demonstrated how this can be done in the empirical study (Table 6).

In conclusion, the proposed approach is useful for providing HIV prevalence estimates in
population-based surveys, where non-response is a ubiquitous phenomenon and little is known
about its causes.
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Table 1: Partial identification of E(Y ) with L = 5 instruments and s = 3 valid instruments
with E(Y ) fixed at 0.15. Results are stratified by average non-response rate 1 − E(D) = 0.1
or 0.3; instruments either all strong or a mixture of strong + weak; the last L− s instruments
either weakly or strongly violate (4); and mild or moderate selection bias.

Instrument Non-response Selection Imputation Worst case IV
Strength rate bias bounds bounds
Strong 0.1 Mild Coverage 0.985 1 0.972

Lower CI 0.119 0.114 0.123
Upper CI 0.162 0.262 0.218
Width 0.043 0.148 0.095

Strong + Weak 0.1 Mild Coverage 1 1 0.868
Lower CI 0.125 0.121 0.127
Upper CI 0.169 0.266 0.248
Width 0.044 0.145 0.121

Strong 0.3 Mild Coverage 0.075 1 1
Lower CI 0.095 0.084 0.108
Upper CI 0.137 0.434 0.323
Width 0.042 0.35 0.216

Strong + Weak 0.3 Mild Coverage 0.078 1 1
Lower CI 0.088 0.072 0.098
Upper CI 0.134 0.42 0.287
Width 0.045 0.349 0.189

Strong 0.1 Moderate Coverage 0.003 1 1
Lower CI 0.091 0.088 0.11
Upper CI 0.129 0.234 0.201
Width 0.039 0.146 0.092

Strong + Weak 0.1 Moderate Coverage 0.118 1 1
Lower CI 0.102 0.098 0.116
Upper CI 0.142 0.239 0.207
Width 0.04 0.141 0.091

Strong 0.3 Moderate Coverage 0 1 1
Lower CI 0.05 0.046 0.07
Upper CI 0.081 0.388 0.287
Width 0.031 0.342 0.218

Strong + Weak 0.3 Moderate Coverage 0 1 1
Lower CI 0.065 0.058 0.083
Upper CI 0.1 0.399 0.313
Width 0.035 0.341 0.23
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Table 2: Summary statistics of 8 scenarios considered in simulation study 2

Interviewer Effects # invalid IVs True HIV Prevalence Observed HIV Prevalence Consent rate Contact rate
Weak 3 0.16 0.11 0.75 0.91
Strong 3 0.17 0.13 0.82 0.91
Weak 2 0.19 0.13 0.75 0.91
Strong 2 0.19 0.15 0.81 0.91
Weak 1 0.18 0.12 0.75 0.91
Strong 1 0.18 0.14 0.82 0.91
Weak 0 0.18 0.12 0.75 0.91
Strong 0 0.18 0.14 0.82 0.91
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Table 3: Average 95% lower (LCI) and upper (UCI) confidence intervals in 8 scenarios considered in simulation study 2

Interviewer # Invalid Imputation Marra Normal
Copula

Marra Best Worst case
bounds

JD bounds Union
bounds

Effects IVs LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI LCI UCI
Weak 3 0.10 0.12 0.19 0.30 0.19 0.30 0.08 0.34 0.08 0.35 0.09 0.32
Strong 3 0.12 0.14 0.18 0.25 0.18 0.25 0.10 0.30 0.11 0.31 0.12 0.27
Weak 2 0.12 0.13 0.18 0.30 0.18 0.29 0.09 0.36 0.10 0.36 0.11 0.34
Strong 2 0.14 0.15 0.19 0.26 0.19 0.25 0.11 0.32 0.12 0.33 0.14 0.29
Weak 1 0.11 0.13 0.17 0.29 0.17 0.29 0.08 0.35 0.09 0.36 0.09 0.33
Strong 1 0.13 0.15 0.18 0.25 0.18 0.25 0.11 0.31 0.12 0.32 0.12 0.27
Weak 0 0.11 0.13 0.18 0.30 0.18 0.29 0.09 0.35 0.09 0.36 0.09 0.33
Strong 0 0.13 0.15 0.19 0.26 0.19 0.25 0.11 0.31 0.12 0.32 0.12 0.27
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Table 4: Width of 95% confidence intervals in 8 scenarios considered in simulation study 2

Interviewer Eff. # Invalid IVs Imputation Marra Normal Copula Marra Best Worst case bounds JD bounds Union bounds
Weak 3 0.01 0.11 0.10 0.27 0.27 0.23
Strong 3 0.01 0.07 0.07 0.20 0.20 0.15
Weak 2 0.01 0.12 0.12 0.27 0.27 0.23
Strong 2 0.02 0.07 0.07 0.20 0.20 0.15
Weak 1 0.01 0.12 0.12 0.27 0.27 0.23
Strong 1 0.02 0.07 0.07 0.20 0.20 0.15
Weak 0 0.01 0.12 0.12 0.27 0.27 0.23
Strong 0 0.02 0.07 0.07 0.20 0.20 0.15
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Table 5: Observed proportions of HIV positive among the tested in 2007 Zambia DHS

Women Men
Age HIV prevalence N HIV prevalence N
All 0.161 5713 0.123 5163

15-19 0.058 1256 0.035 1109
20-24 0.119 1119 0.053 830
25-29 0.198 1102 0.115 772
30-34 0.258 841 0.174 746
35-39 0.250 588 0.223 594
40-44 0.182 434 0.240 390
45-49 0.122 373 0.183 318
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Table 6: Relationship between HIV testing and some possible instrument variables

(a): Women

D 0 1

Variable N Percent N Percent Test

iv.lan 1695 5713 χ2 = 24.706∗∗∗

... 0 727 42.9% 2845 49.8%

... 1 968 57.1% 2868 50.2%

iv.firstday 1695 5713 χ2 = 22.774∗∗∗

... 0 1094 64.5% 3315 58%

... 1 601 35.5% 2398 42%

iv.interviewer 1433 5713 χ2 = 28.929∗∗∗

... 0 74 5.2% 256 4.5%

... 1 190 13.3% 807 14.1%

... 2 695 48.5% 2369 41.5%

... 3 474 33.1% 2281 39.9%

iv.mon 1695 5713 χ2 = 82.634∗∗∗

... 0 311 18.3% 1688 29.5%

... 1 1384 81.7% 4025 70.5%

iv.doa 1695 5713 χ2 = 14.097∗∗∗

... 0 688 40.6% 2616 45.8%

... 1 1007 59.4% 3097 54.2%

Statistical significance markers: * p<0.1; ** p<0.05; *** p<0.01
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(b): Men

D 0 1

Variable N Percent N Percent Test

iv.lan 1983 5163 χ2 = 160.186∗∗∗

... 0 739 37.3% 2789 54%

... 1 1244 62.7% 2374 46%

iv.firstday 1983 5163 χ2 = 4.267∗∗

... 0 1251 63.1% 3118 60.4%

... 1 732 36.9% 2045 39.6%

iv.interviewer 1339 5161 χ2 = 13.453∗∗∗

... 0 167 12.5% 583 11.3%

... 1 62 4.6% 373 7.2%

... 2 493 36.8% 1791 34.7%

... 3 617 46.1% 2414 46.8%

iv.mon 1983 5163 χ2 = 200.984∗∗∗

... 0 293 14.8% 1621 31.4%

... 1 1690 85.2% 3542 68.6%

iv.doa 1983 5163 χ2 = 60.931∗∗∗

... 0 650 32.8% 2216 42.9%

... 1 1333 67.2% 2947 57.1%

Statistical significance markers: * p<0.1; ** p<0.05; *** p<0.01
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Table 7: 95% confidence intervals for HIV prevalence estimates in 2007 Zambia DHS

(a) Women

Unadjusted Marra Worst case JD IV
All LCI 0.153 0.159 0.118 0.121 0.123

UCI 0.169 0.179 0.361 0.343 0.339
Width 0.016 0.02 0.243 0.222 0.216

Age 15-19 LCI 0.038 0.058 0.029 0.029 0.023
UCI 0.078 0.189 0.305 0.282 0.274
Width 0.04 0.131 0.276 0.253 0.251

20-24 LCI 0.099 0.058 0.073 0.076 0.076
UCI 0.139 0.189 0.36 0.336 0.331
Width 0.04 0.131 0.287 0.26 0.255

25-29 LCI 0.181 0.058 0.142 0.144 0.147
UCI 0.216 0.189 0.392 0.378 0.383
Width 0.035 0.131 0.25 0.234 0.236

30-34 LCI 0.237 0.058 0.187 0.191 0.202
UCI 0.279 0.189 0.44 0.429 0.401
Width 0.042 0.131 0.253 0.238 0.199

35-39 LCI 0.223 0.058 0.174 0.179 0.178
UCI 0.278 0.189 0.443 0.425 0.408
Width 0.055 0.131 0.269 0.246 0.23

40-44 LCI 0.151 0.058 0.12 0.121 0.131
UCI 0.212 0.189 0.391 0.377 0.342
Width 0.061 0.131 0.271 0.256 0.211

45-49 LCI 0.09 0.058 0.072 0.073 0.073
UCI 0.155 0.189 0.333 0.322 0.315
Width 0.065 0.131 0.261 0.249 0.242

(b) Men

Unadjusted Marra Worst case JD IV
0.116 0.186 0.084 0.089 0.086
0.13 0.268 0.374 0.328 0.322
0.014 0.082 0.29 0.239 0.236
0.019 0.049 0.014 0.015 0.013
0.05 0.187 0.319 0.271 0.279
0.031 0.138 0.305 0.256 0.266
0.035 0.049 0.025 0.026 0.024
0.072 0.187 0.351 0.302 0.315
0.037 0.138 0.326 0.276 0.291
0.096 0.049 0.067 0.073 0.083
0.134 0.187 0.409 0.353 0.361
0.038 0.138 0.342 0.28 0.278
0.155 0.049 0.111 0.12 0.124
0.192 0.187 0.426 0.382 0.384
0.037 0.138 0.315 0.262 0.26
0.201 0.049 0.147 0.158 0.16
0.244 0.187 0.46 0.417 0.376
0.043 0.138 0.313 0.259 0.216
0.215 0.049 0.166 0.173 0.173
0.264 0.187 0.452 0.421 0.414
0.049 0.138 0.286 0.248 0.241
0.153 0.049 0.115 0.122 0.129
0.212 0.187 0.424 0.386 0.377
0.059 0.138 0.309 0.264 0.248
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Supplementary material to

HIV estimation using population-based surveys with

non-response: a partial identification approach

In this supplement, we provide results for additional materials and clarifications.

S.1 Bounds using instruments

We assume for each individual in the population of interest, an outcome variable Y is mea-
surable. Suppose we are interested in the population mean of Y , E(Y ). In general, we may
also be interested in E(Y |X) for some covariates X, but for brevity, we focus our discussion
in the next two sections on estimating E(Y ) since the treatment for the case with covariates
is similar. Suppose a random sample of n is drawn from the population, and in this sample,
Y is observed only in a subset of the sample. Let D be a binary variable such that D = 1 if
Y is observed and 0 otherwise. Using the law of iterated expectations, we can write

E(Y ) = E(Y |D = 1)P(D = 1) + E(Y |D = 0)P(D = 0). (S.1)

The sampling process identifies E(Y |D = 1), P(D = 1) and P(D = 0) = 1 − P(D = 1)
but there is no information on E(Y |D = 0) unless we make strong assumptions about the
joint distribution of Y and D. Let K0, K1 be, respectively, the lower and upper bounds of
Y . Furthermore, write µ ≡ E(Y ), µd· ≡ E(Y |D = d). The worst case partial identification
bounds [15] for µ are

(LB,UB) = (µ1·P(D = 1) +K0P(D = 0), µ1·P(D = 1) +K1P(D = 0)). (S.2)

The worst case bounds (S.2) are guaranteed to identify E(Y ) by construction. However, they
are often criticised for being too wide to be informative. The worst case bounds can be
improved if additional assumptions are made. Let V be an instrumental variable with discrete
values v ∈ V , such that,

P(D = d|V = v1) ̸= P(D = d|V = v2), (S.3)

and
P(Y ) = P(Y |V = v1) = P(Y |V = v2), (S.4)

for d = 0, 1, all values v1, v2 ∈ V and v1 ̸= v2. Write µ·v ≡ E(Y |V = v) and µdv ≡ E(Y |D =
d, V = v). Since (S.4) implies E(Y |V = v) = E(Y ) = µ, it follows that [18], ∀v ∈ V ,

µ1vP(D = 1|V = v) +K0P(D = 0|V = v) ≤ µ·v ≤ µ1vP(D = 1|V = v) +K1P(D = 0|V = v).

The inequalities imply

µ ∈ ∩
v∈V

[µ1vP(D = 1|V = v) +K0P(D = 0|V = v), µ1vP(D = 1|V = v) +K1P(D = 0|V = v)]

⇒ LBV ≡ sup
v∈V

{µ1vP(D = 1|V = v) +K0P(D = 0|V = v)} ≤ µ (S.5)

≤ inf
v∈V

{µ1vP(D = 1|V = v) +K1P(D = 0|V = v)} ≡ UBV , (S.6)

where (LBV ,UBV ) gives a set of IV lower and upper bounds for µ. It is straightforward to see
that the IV bounds are guaranteed to lie within the worst case bounds, hence if V is observed
for all individuals in the sample, a set of tighter bounds than those given by the worst case
bounds can be achieved. Notice that in order for the IV bounds to work, assumptions (S.3) and
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(S.4) must both be satisfied. Assumption (S.4) is a necessary condition; violation of (S.4) gives
an invalid instrument, which may lead to bounds that fail to identify the quantity of interest.
Violation of assumption (S.3) gives a weak instrument [33]. While using a weak instrument
does not lead to invalid inferences, the bounds (S.6) become uninformative. To see this last
point, suppose (S.4) is satisfied but (S.3) is not, such that P(D = d|V = v) = P(D = d) for
all v ∈ V ; then the left hand of the inequality (S.6) becomes

sup
v∈V

{µ1v}P(D = 1) +K0P(D = 0) = sup
v∈V

{µ1·}P(D = 1) +K0P(D = 0)

= µ1·P(D = 1) +K0P(D = 0),

which is identical to the lower worst case bound (S.2). Similarly, the right hand side of (S.6)
becomes the upper worst case bound. The observed data on D, however, allow us to verify
whether an instrument is weak via (S.3).

In practice, more than one instrument is usually used in a particular study [see, e.g.,
17, 21]. Suppose l candidate instruments are considered for reducing the width of the worst
case bounds. Define {V1, · · · , Vt} for any arbitrary set of t ≥ 1 instruments. Suppose there
are t = L > 1 instruments such that Vl, l = 1, · · · , L all satisfy (S.3) and (S.4). Write for Vl,
the bounds (LBVl

,UBVl
). Then µ must also lie in the “intersection” of the bounds [19]:

(LBIN,UBIN) = ∩
Vl,l=1,··· ,L

(LBVl
,UBVl

) = (sup
v∈Vl

LBVl
, inf
v∈Vl

UBVl
). (S.7)

Even though the IV and intersection bounds provide refinements on the worst case bounds,
these refinements are achieved at the expense of having to identify instrumental variables that
satisfy assumptions (S.3) together with (S.4). It is well known that valid and informative
instruments are difficult to find. More importantly, assumption (S.4) is not verifiable, and
hence, in practice, these bounds are anchored on our beliefs that the assumptions are satisfied.
If even one of the L instruments is invalid, the bounds would fail to identify E(Y ). This
problem, where some of the instruments may be invalid, is well-known in the casual inference
literature. Our remedy is to create union bounds:

(LBUN,UBUN) = ∪
Vl,l=1,··· ,L

(LBVl
,UBVl

) = ( inf
v∈Vl

LBVl
, sup
v∈Vl

UBVl
). (S.8)

It is trivial to see that (LBUN,UBUN) identifies E(Y ) as long as at least one of the candidate
instruments is valid. To reduce the width of the union bounds, we make the assumption that
the true number of valid instruments, s is known to satisfy s > a ≥ 1 for some known a.
Under this assumption, each subset of (L− a+1) instruments must contain at least one valid
instrument. Hence, the union bound formed by each subset is guaranteed to identify E(Y ).
For any two sets of bounds that both include E(Y ), their intersection must be non-empty
and also correctly identify E(Y ). We, therefore, propose to find the intersection of all union
bounds formed with any (L−a+1) instruments among the L instruments because it will also
identify E(Y ) but be no longer than any of these union bounds.

S.2 Confidence intervals

Applying the bounds empirically incurs uncertainty and this uncertainty can be incorporated
in the form of confidence intervals. Let (LB,UB) denote a set of generic theoretical lower and

upper IV bounds for µ. Let (L̂B, ÛB) be any empirical estimate of (LB,UB). A confidence
interval should have a high asymptotic probability of containing both (LB,UB) or µ. Here,
we focus on finding an approximate b0 × 100 percent for µ. An approximate b0 × 100 percent
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confidence interval for (LB,UB) is simply of the form (L̂B−z(1−b0)/2ŜELB, ÛB+z(1−b0)/2ŜEUB),
where z(1−b0)/2 is the upper (1− b0)/2×100 percentile of the standard normal distribution, SE

represents standard error and ŜE its sample analogue. As pointed out by Imbens and Manski
[22], this interval would be too wide for µ. In fact, since (LB,UB) is a set of bounds and if

we are interested in µ, then it will be nearer to one of L̂B or ÛB but not both simultaneously.
Hence, they suggested the following bounds2 :

(L̂B− CnŜELB, ÛB + CnŜEUB)

such that Cn is determined by

Φ

(
Cn +

ÛB− L̂B

max(ŜELB, ŜEUB)

)
− Φ(−Cn) = b0,

where Φ is the standard normal CDF. For example, if b0 is 0.95 such that we are interested
in approximate 95% confidence intervals, then the value of Cn approaches 1.64 when ÛB− L̂B
is large, and it approaches 1.96 when ÛB− L̂B is near zero. Since ŜELB, ŜEUB are extremely
difficult to find analytically in all practical cases, following Horowitz and Manski [23], we
resort to bootstrapping. We sample with replacement from the data, and we denote a generic
bootstrap sample (d∗i , v

∗
1,i, · · · , v∗L,i, y∗i · d∗i ), where i = 1, · · · , n is the index for individuals.

Using each bootstrap sample, we find (L̂B
∗
, ÛB

∗
) and from B bootstrap samples, we obtain

ŜELB and ŜEUB.

S.3 Simulations 1

In this section, we describe additional simulation results. We use a similar setup of the
simulation study in the main paper. We assume the response Y is binary. We fix the values
of s and L at 3 and 5, respectively. We only consider binary 0-1 instruments; The valid
instruments are generated by a multivariate binary distribution, MVB(µs,Σs×s) with µs =
0.5×1s and Σs×s = (σjj′), j, j

′ = 1, · · · , s, where σjj = 1 and for ρ1 = σjj′ , j ̸= j′, we consider
two choices of ρ1: 0 and 0.3. The first choice corresponds to the situation when all valid
instruments are mutually independent, while the second choice assumes a correlation of 0.3
between each pair of instruments. We do not believe a high correlation between instruments
to be a realistic situation since if two instruments are highly correlated, there is no reason
to use both. The invalid instruments are generated independently of the valid instruments
using a MVB(µL−s,Σ(L−s)×(L−s)), with µL−s = 0.5 × 1L−s and Σ(L−s)×(L−s) = (σjj′), j, j

′ =
1, · · · , (L− s). We also use the same two choices of 0 and 0.3 for ρ2 = σjj′ , j ̸= j′ between any
two invalid instruments.

We generate Y using a logistic model

logitP(Y = 1) = b0 + b11V1 + · · ·+ b1LVL, (S.9)

where the coefficients b1 = (b11, · · · , b1L)T give the association between the instruments and Y .
A non-zero value of b1j induces an association and therefore renders the instrument invalid. We

use two different combinations for b1: b1 = (

s︷ ︸︸ ︷
0, · · · , 0,

(L−s)︷ ︸︸ ︷
1, · · · , 1)T ; and b1 = (

s︷ ︸︸ ︷
0, · · · , 0,

(L−s)︷ ︸︸ ︷
4, · · · , 4)T .

For both situations, we assume without loss of generality, the first s instruments are valid while

2Our expressions differ from those in equations (6) and (7) of Imbens and Manski [22] by a factor of
√
n

because they use the notation of σ̂·/
√
n to denote standard error.
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the remaining L−s are invalid. In the former, (4) is weakly violated by the invalid instruments,
while the violation of (4) is strong for the latter.

The non-response indicator D is generated using another logistic model

logitP(D = 1) = c0 + c11V1 + · · ·+ c1LVL + cY Y. (S.10)

The coefficients c1 = (c11, · · · , c1L)T give the association between each instrument and D.
We consider two situations: (a) Strong instruments: c1 = (5, · · · , 5) and (b) Strong + weak
instruments: s coefficients are randomly given a value of 5, and the remaining L− s are given
a value of 0.5. The coefficient cY is used to model the association of D to the outcome Y .
When cY = 0, then there is no selection bias when conditioned on the observed covariates.
We consider two choices of cY = −0.1||c1|| and −0.3||c1||, where the symbol || · || stands for
the sum of the coefficients c11, ..., c1L. We use negative association to reflect that, in practice,
we expect those who are HIV positive to be less likely to have an HIV test. These two values
for cY correspond to weak to moderate associations between Y and D. We use c0 to calibrate
the average non-response rate, 1− E(D = 1), to be 0.1, 0.3, and 0.5 over the simulations.

Since Y is binary, the bounds for Y are (K0, K1) = (0, 1). Throughout the study, we use
a sample size of n = 1000 observations for each simulation run. We use 1000 simulation runs
for each combination of parameters and 100 bootstraps to estimate the standard errors of the
partial identification bounds.

Tables 1(a)-(c) give the simulation results for E(D) = 0.1 − 0.3, respectively, when Y
is weakly negatively associated with D. The corresponding results when Y is moderately
associated with D are given in Tables 1(d)-(f).

We consider three different methods for estimating E(Y ): Imputation, partial identification
bounds without any assumptions (worst case bounds) and partial identification bounds using
instrument variables. For the imputation method, we use all the observed variables in the
simulation study, i.e., the instruments. For partial identification, we used the worst case
bounds that do not make any assumptions, and also the method proposed in this article.

Each combination of parameters corresponds to four rows of results. The first row shows the
proportion of times, out of 1000 simulations, the approximate 95% confidence intervals include
E(Y ). The second row gives the lower confidence limits, averaged over 1000 simulations. The
third row gives the upper confidence limits, averaged over 1000 simulations. The fourth row
gives the average width of the confidence intervals. The results are given in Tables S.1 (a)-(f).
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Table S.1: Partial identification of E(Y ) with L = 5 instruments and s = 3 valid instruments;
E(Y ) fixed at 0.15; ρ = ρ1 = ρ2 gives correlation between pairs of valid (invalid) instruments;
instruments either all strong or a mixture of strong + weak; the last L− s instruments either
weakly or strongly violate (4).

(a): Average non-response rate 1− E(D) = 0.1; Y weakly associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0.985 1 0.972
Lower CI 0.119 0.114 0.123
Upper CI 0.162 0.262 0.218
Width 0.043 0.148 0.095

0 Strong Strong Coverage 1 1 1
Lower CI 0.125 0.124 0.126
Upper CI 0.175 0.28 0.224
Width 0.049 0.156 0.098

0 Strong + Weak Weak Coverage 1 1 0.868
Lower CI 0.125 0.121 0.127
Upper CI 0.169 0.266 0.248
Width 0.044 0.145 0.121

0 Strong + Weak Strong Coverage 1 1 0.999
Lower CI 0.124 0.122 0.123
Upper CI 0.169 0.27 0.265
Width 0.045 0.148 0.142

0.3 Strong Weak Coverage 0.988 1 0.893
Lower CI 0.115 0.111 0.114
Upper CI 0.168 0.269 0.226
Width 0.053 0.157 0.111

0.3 Strong Strong Coverage 1 1 0.998
Lower CI 0.081 0.081 0.08
Upper CI 0.22 0.356 0.25
Width 0.139 0.275 0.17

0.3 Strong + Weak Weak Coverage 1 1 0.886
Lower CI 0.122 0.119 0.124
Upper CI 0.168 0.267 0.244
Width 0.046 0.149 0.12

0.3 Strong + Weak Strong Coverage 1 1 1
Lower CI 0.124 0.124 0.125
Upper CI 0.173 0.281 0.252
Width 0.05 0.157 0.127
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(b): Average non-response rate 1− E(D) = 0.3; Y weakly associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0.075 1 1
Lower CI 0.095 0.084 0.108
Upper CI 0.137 0.434 0.323
Width 0.042 0.35 0.216

0 Strong Strong Coverage 0.959 1 0.991
Lower CI 0.114 0.105 0.123
Upper CI 0.157 0.46 0.341
Width 0.043 0.355 0.218

0 Strong + Weak Weak Coverage 0.078 1 1
Lower CI 0.088 0.072 0.098
Upper CI 0.134 0.42 0.287
Width 0.045 0.349 0.189

0 Strong + Weak Strong Coverage 1 1 0.982
Lower CI 0.128 0.126 0.134
Upper CI 0.172 0.478 0.447
Width 0.044 0.353 0.312

0.3 Strong Weak Coverage 0.166 1 0.999
Lower CI 0.098 0.087 0.117
Upper CI 0.142 0.438 0.275
Width 0.044 0.351 0.158

0.3 Strong Strong Coverage 0.825 1 0.974
Lower CI 0.113 0.105 0.128
Upper CI 0.156 0.449 0.275
Width 0.043 0.345 0.147

0.3 Strong + Weak Weak Coverage 0.437 1 1
Lower CI 0.098 0.078 0.114
Upper CI 0.149 0.424 0.223
Width 0.051 0.346 0.11

0.3 Strong + Weak Strong Coverage 0.71 1 0.997
Lower CI 0.101 0.078 0.114
Upper CI 0.153 0.424 0.222
Width 0.052 0.346 0.107
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(c): Average non-response rate 1− E(D) = 0.5; Y weakly associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0.072 1 1
Lower CI 0.077 0.061 0.085
Upper CI 0.127 0.607 0.472
Width 0.049 0.546 0.387

0 Strong Strong Coverage 0.624 1 1
Lower CI 0.105 0.086 0.111
Upper CI 0.151 0.633 0.498
Width 0.046 0.547 0.386

0 Strong + Weak Weak Coverage 0.314 1 1
Lower CI 0.083 0.061 0.086
Upper CI 0.142 0.606 0.454
Width 0.059 0.545 0.368

0 Strong + Weak Strong Coverage 0.723 1 1
Lower CI 0.106 0.079 0.111
Upper CI 0.157 0.624 0.514
Width 0.051 0.545 0.403

0.3 Strong Weak Coverage 0.137 1 1
Lower CI 0.081 0.064 0.098
Upper CI 0.133 0.607 0.409
Width 0.052 0.543 0.311

0.3 Strong Strong Coverage 0.459 1 1
Lower CI 0.1 0.079 0.116
Upper CI 0.149 0.629 0.429
Width 0.049 0.55 0.313

0.3 Strong + Weak Weak Coverage 0.368 1 1
Lower CI 0.082 0.061 0.096
Upper CI 0.144 0.609 0.49
Width 0.062 0.548 0.394

0.3 Strong + Weak Strong Coverage 0.669 1 0.999
Lower CI 0.098 0.072 0.112
Upper CI 0.154 0.618 0.502
Width 0.056 0.546 0.39
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(d): Average non-response rate 1− E(D) = 0.1; Y moderately associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0.003 1 1
Lower CI 0.091 0.088 0.11
Upper CI 0.129 0.234 0.201
Width 0.039 0.146 0.092

0 Strong Strong Coverage 0.88 1 1
Lower CI 0.114 0.108 0.113
Upper CI 0.156 0.254 0.21
Width 0.042 0.146 0.097

0 Strong + Weak Weak Coverage 0.118 1 1
Lower CI 0.102 0.098 0.116
Upper CI 0.142 0.239 0.207
Width 0.04 0.141 0.091

0 Strong + Weak Strong Coverage 0.403 1 1
Lower CI 0.108 0.095 0.105
Upper CI 0.151 0.237 0.194
Width 0.043 0.143 0.089

0.3 Strong Weak Coverage 0.161 1 0.993
Lower CI 0.102 0.099 0.115
Upper CI 0.142 0.244 0.194
Width 0.04 0.146 0.079

0.3 Strong Strong Coverage 0.974 1 0.999
Lower CI 0.098 0.094 0.098
Upper CI 0.179 0.29 0.213
Width 0.081 0.195 0.115

0.3 Strong + Weak Weak Coverage 0.662 1 0.982
Lower CI 0.11 0.108 0.112
Upper CI 0.151 0.255 0.231
Width 0.041 0.147 0.119

0.3 Strong + Weak Strong Coverage 0.929 1 1
Lower CI 0.109 0.104 0.108
Upper CI 0.161 0.266 0.224
Width 0.052 0.162 0.116
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(e): Average non-response rate 1− E(D) = 0.3; Y moderately associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.05 0.046 0.07
Upper CI 0.081 0.388 0.287
Width 0.031 0.342 0.218

0 Strong Strong Coverage 0 1 1
Lower CI 0.079 0.069 0.098
Upper CI 0.117 0.413 0.302
Width 0.038 0.344 0.204

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.065 0.058 0.083
Upper CI 0.1 0.399 0.313
Width 0.035 0.341 0.23

0 Strong + Weak Strong Coverage 0.006 1 1
Lower CI 0.088 0.074 0.106
Upper CI 0.129 0.423 0.326
Width 0.041 0.349 0.22

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.067 0.062 0.097
Upper CI 0.102 0.404 0.252
Width 0.035 0.342 0.155

0.3 Strong Strong Coverage 0 1 0.999
Lower CI 0.085 0.077 0.115
Upper CI 0.123 0.424 0.257
Width 0.038 0.347 0.143

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.063 0.057 0.091
Upper CI 0.099 0.407 0.212
Width 0.036 0.35 0.122

0.3 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.069 0.059 0.099
Upper CI 0.108 0.404 0.21
Width 0.039 0.345 0.111
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(f): Average non-response rate 1− E(D) = 0.5; Y moderately associated with D

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.029 0.026 0.044
Upper CI 0.054 0.57 0.44
Width 0.025 0.544 0.396

0 Strong Strong Coverage 0 1 1
Lower CI 0.054 0.045 0.072
Upper CI 0.087 0.588 0.455
Width 0.033 0.543 0.383

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.041 0.037 0.061
Upper CI 0.071 0.582 0.448
Width 0.03 0.545 0.386

0 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.052 0.04 0.069
Upper CI 0.089 0.584 0.481
Width 0.038 0.543 0.412

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.04 0.037 0.065
Upper CI 0.069 0.575 0.382
Width 0.029 0.539 0.316

0.3 Strong Strong Coverage 0 1 1
Lower CI 0.056 0.05 0.088
Upper CI 0.09 0.595 0.394
Width 0.034 0.545 0.306

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.037 0.034 0.06
Upper CI 0.067 0.583 0.464
Width 0.029 0.548 0.404

0.3 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.054 0.046 0.085
Upper CI 0.09 0.587 0.472
Width 0.036 0.541 0.387
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S.3.1 Simulations 1 Sensitivity analysis

In practice, selecting the value of s may be challenging. To address this, we carried out a
sensitivity analysis that presents bounds for different values of s as a sensitivity parameter.
The analysis uses the same setup as S.3 except we allow s to range from 0, i.e., no valid
instruments among L candidate instruments, to L, i.e., all candidate instruments are valid.
For the value of a, the number of instruments that we believed is valid, we considered two
values, 3 and 1. For example, if a = 3 whereas in fact s < 3, then our assumption of s ≥ a ≥ 1
does not hold. For brevity, we only show results for the case where the non-response rate is
1 − E(D) = 0.3 and Y and D are moderately correlated. The results for the other cases can
be obtained upon request from the corresponding author.

We first present results for a = 3 in Table S.2(a)-(f), corresponding to s = 0 to 5. For these
simulations, we know (a)-(c) correspond to situations where our assumption of s ≥ a ≥ 1 is
violated. Hence we don’t expect the method proposed in this paper to work well. However,
when we observe the results in (a)-(c), we notice that even though the proposed method
doesn’t work well in cases where the valid instrument assumption (4) is strongly violated,
when (4) is only weakly violated, its performance still holds up. The remaining tables (d)-(f)
correspond to cases where our assumption of s ≥ a ≥ 1 is valid, the method works well as
expected.

Next, we turn to the results when a = 1 (Table S.3(a)-(f)). In this case, s ≥ a ≥ 1 is
violated only when s = 0 (Table S.3(a)). As expected, the results for the proposed method is
not satisfactory here. In the remaining tables (b)-(f), the assumption s ≥ a ≥ 1 is satisfied;
we can observe that the proposed method properly includes the unknown HIV rate.

Comparing Tables S.2 and S.3, we notice that for each value of s and each scenario, the
corresponding the CI assuming a = 3 (Table S.2) is narrower than that for a = 1 (Table S.3).
This is to be expected since assuming a = 3, we are taking the intersection of a larger subset of
instruments each time, and that reduces the width. However, the reduction comes at a price
if the assumed number of valid instruments a exceeds the actual number s when the shorter
bounds fail to capture the unknown HIV rate. Hence, we need to strike a balance. Obviously,
in practice, we must have certain confidence in the validity of the candidate instruments before
they should be included into consideration for creating the bounds.

34



Table S.2: Sensitivity analysis of partial identification methods. The number of instruments
L fixed at 5 and the number of valid instruments s ranging from 0 to 5 and the number of
instruments assumed to be valid a = 3; E(Y ) fixed at 0.15; ρ = ρ1 = ρ2 gives correlation
between pairs of valid (invalid) instruments; instruments either all strong or a mixture of
strong + weak; the last L − s instruments either weakly or strongly violate (4). Average
non-response rate 1− E(D) = 0.3; Y moderately associated with D

(a): Number of valid instruments s = 0

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.068 0.066 0.108
Upper CI 0.103 0.417 0.342
Width 0.035 0.351 0.234

0 Strong Strong Coverage 0.998 1 0
Lower CI 0.117 0.115 0.196
Upper CI 0.16 0.465 0.424
Width 0.043 0.35 0.228

0 Strong + Weak Weak Coverage 0.6 1 1
Lower CI 0.104 0.08 0.114
Upper CI 0.15 0.431 0.422
Width 0.046 0.35 0.308

0 Strong + Weak Strong Coverage 1 1 0.392
Lower CI 0.126 0.096 0.161
Upper CI 0.172 0.446 0.411
Width 0.047 0.35 0.251

0.3 Strong Weak Coverage 0.95 1 0
Lower CI 0.114 0.113 0.202
Upper CI 0.157 0.462 0.34
Width 0.043 0.349 0.138

0.3 Strong Strong Coverage 1 1 0
Lower CI 0.128 0.128 0.255
Upper CI 0.172 0.481 0.392
Width 0.044 0.353 0.138

0.3 Strong + Weak Weak Coverage 0.934 1 0.154
Lower CI 0.11 0.091 0.158
Upper CI 0.155 0.441 0.43
Width 0.045 0.35 0.272

0.3 Strong + Weak Strong Coverage 1 1 0
Lower CI 0.125 0.103 0.205
Upper CI 0.17 0.453 0.43
Width 0.045 0.349 0.225
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(b): Number of valid instruments s = 1

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.065 0.061 0.1
Upper CI 0.099 0.409 0.336
Width 0.035 0.348 0.236

0 Strong Strong Coverage 0.006 1 0.162
Lower CI 0.096 0.092 0.162
Upper CI 0.137 0.443 0.41
Width 0.041 0.351 0.248

0 Strong + Weak Weak Coverage 0.02 1 1
Lower CI 0.092 0.085 0.116
Upper CI 0.134 0.436 0.415
Width 0.042 0.351 0.299

0 Strong + Weak Strong Coverage 0.888 1 0.002
Lower CI 0.109 0.103 0.172
Upper CI 0.152 0.447 0.39
Width 0.043 0.344 0.218

0.3 Strong Weak Coverage 0.178 1 0
Lower CI 0.105 0.103 0.184
Upper CI 0.147 0.442 0.332
Width 0.041 0.339 0.148

0.3 Strong Strong Coverage 1 1 0
Lower CI 0.128 0.128 0.255
Upper CI 0.173 0.471 0.394
Width 0.044 0.343 0.139

0.3 Strong + Weak Weak Coverage 0.432 1 0.016
Lower CI 0.104 0.1 0.168
Upper CI 0.146 0.45 0.419
Width 0.042 0.35 0.251

0.3 Strong + Weak Strong Coverage 1 1 0
Lower CI 0.126 0.123 0.245
Upper CI 0.17 0.474 0.454
Width 0.044 0.351 0.209
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(c): Number of valid instruments s = 2

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.057 0.053 0.086
Upper CI 0.09 0.398 0.322
Width 0.033 0.345 0.237

0 Strong Strong Coverage 0.013 1 0.359
Lower CI 0.094 0.081 0.152
Upper CI 0.134 0.428 0.406
Width 0.041 0.347 0.254

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.071 0.064 0.09
Upper CI 0.11 0.411 0.374
Width 0.039 0.348 0.284

0 Strong + Weak Strong Coverage 0.204 1 0.798
Lower CI 0.101 0.079 0.141
Upper CI 0.144 0.433 0.336
Width 0.043 0.354 0.195

0.3 Strong Weak Coverage 0 1 0.972
Lower CI 0.079 0.074 0.131
Upper CI 0.117 0.427 0.326
Width 0.038 0.352 0.196

0.3 Strong Strong Coverage 0.746 1 0
Lower CI 0.109 0.099 0.194
Upper CI 0.152 0.442 0.396
Width 0.043 0.343 0.202

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.079 0.071 0.115
Upper CI 0.118 0.419 0.357
Width 0.039 0.348 0.242

0.3 Strong + Weak Strong Coverage 1 1 0
Lower CI 0.126 0.126 0.248
Upper CI 0.17 0.481 0.462
Width 0.044 0.355 0.214
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(d): Number of valid instruments s = 3

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.049 0.045 0.068
Upper CI 0.08 0.39 0.287
Width 0.031 0.344 0.219

0 Strong Strong Coverage 0 1 1
Lower CI 0.078 0.068 0.096
Upper CI 0.118 0.411 0.301
Width 0.039 0.343 0.204

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.062 0.056 0.08
Upper CI 0.098 0.409 0.318
Width 0.036 0.353 0.238

0 Strong + Weak Strong Coverage 0.004 1 1
Lower CI 0.09 0.076 0.108
Upper CI 0.132 0.42 0.319
Width 0.042 0.344 0.212

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.067 0.063 0.097
Upper CI 0.103 0.403 0.251
Width 0.036 0.34 0.154

0.3 Strong Strong Coverage 0 1 1
Lower CI 0.081 0.073 0.11
Upper CI 0.12 0.424 0.256
Width 0.039 0.35 0.146

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.068 0.062 0.098
Upper CI 0.105 0.408 0.315
Width 0.037 0.346 0.217

0.3 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.082 0.073 0.113
Upper CI 0.122 0.421 0.327
Width 0.04 0.348 0.214
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(e): Number of valid instruments s = 4

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.04 0.037 0.056
Upper CI 0.07 0.384 0.275
Width 0.029 0.347 0.219

0 Strong Strong Coverage 0 1 1
Lower CI 0.052 0.047 0.068
Upper CI 0.085 0.389 0.277
Width 0.033 0.342 0.208

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.053 0.049 0.071
Upper CI 0.086 0.39 0.278
Width 0.033 0.341 0.207

0 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.068 0.062 0.088
Upper CI 0.104 0.404 0.288
Width 0.036 0.342 0.2

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.062 0.057 0.09
Upper CI 0.098 0.404 0.225
Width 0.035 0.347 0.135

0.3 Strong Strong Coverage 0 1 1
Lower CI 0.074 0.067 0.104
Upper CI 0.112 0.42 0.235
Width 0.038 0.353 0.132

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.06 0.055 0.088
Upper CI 0.095 0.405 0.237
Width 0.035 0.349 0.149

0.3 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.07 0.064 0.099
Upper CI 0.108 0.413 0.239
Width 0.037 0.349 0.141
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(f): Number of valid instruments s = 5

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.034 0.031 0.046
Upper CI 0.061 0.37 0.259
Width 0.027 0.339 0.213

0 Strong Strong Coverage 0 1 1
Lower CI 0.033 0.031 0.045
Upper CI 0.06 0.372 0.261
Width 0.027 0.342 0.216

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.036 0.033 0.048
Upper CI 0.063 0.365 0.255
Width 0.028 0.332 0.207

0 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.034 0.031 0.046
Upper CI 0.061 0.37 0.259
Width 0.027 0.339 0.213

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.063 0.057 0.09
Upper CI 0.099 0.399 0.216
Width 0.036 0.342 0.126

0.3 Strong Strong Coverage 0 1 1
Lower CI 0.062 0.057 0.09
Upper CI 0.098 0.404 0.218
Width 0.036 0.347 0.128

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.062 0.057 0.09
Upper CI 0.098 0.397 0.215
Width 0.036 0.34 0.125

0.3 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.062 0.056 0.089
Upper CI 0.098 0.405 0.219
Width 0.036 0.349 0.129
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Table S.3: Sensitivity analysis of partial identification methods. The number of instruments
L fixed at 5 and the number of valid instruments s ranging from 0 to 5 and the number of
instruments assumed to be valid a = 1; E(Y ) fixed at 0.15; ρ = ρ1 = ρ2 gives correlation
between pairs of valid (invalid) instruments; instruments either all strong or a mixture of
strong + weak; the last L − s instruments either weakly or strongly violate (4). Average
non-response rate 1− E(D) = 0.3; Y moderately associated with D

(a): Number of valid instruments s = 0

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.069 0.067 0.1
Upper CI 0.105 0.418 0.365
Width 0.036 0.351 0.265

0 Strong Strong Coverage 0.993 1 0.001
Lower CI 0.117 0.114 0.183
Upper CI 0.16 0.466 0.444
Width 0.043 0.352 0.261

0 Strong + Weak Weak Coverage 0.65 1 1
Lower CI 0.103 0.08 0.103
Upper CI 0.15 0.429 0.427
Width 0.046 0.349 0.324

0 Strong + Weak Strong Coverage 1 1 0.725
Lower CI 0.123 0.094 0.147
Upper CI 0.169 0.442 0.426
Width 0.046 0.348 0.279

0.3 Strong Weak Coverage 0.945 1 0
Lower CI 0.113 0.112 0.191
Upper CI 0.155 0.462 0.354
Width 0.042 0.351 0.164

0.3 Strong Strong Coverage 1 1 0
Lower CI 0.132 0.132 0.252
Upper CI 0.176 0.481 0.413
Width 0.045 0.349 0.161

0.3 Strong + Weak Weak Coverage 0.929 1 0.376
Lower CI 0.113 0.093 0.154
Upper CI 0.159 0.445 0.442
Width 0.046 0.352 0.288

0.3 Strong + Weak Strong Coverage 1 1 0.001
Lower CI 0.127 0.105 0.201
Upper CI 0.172 0.455 0.443
Width 0.045 0.35 0.242
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(b): Number of valid instruments s = 1

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.063 0.06 0.079
Upper CI 0.098 0.409 0.357
Width 0.034 0.349 0.278

0 Strong Strong Coverage 0.001 1 1
Lower CI 0.093 0.09 0.112
Upper CI 0.133 0.443 0.427
Width 0.04 0.354 0.315

0 Strong + Weak Weak Coverage 0.02 1 1
Lower CI 0.092 0.085 0.088
Upper CI 0.133 0.431 0.425
Width 0.042 0.346 0.337

0 Strong + Weak Strong Coverage 0.07 1 1
Lower CI 0.096 0.07 0.111
Upper CI 0.14 0.416 0.383
Width 0.044 0.346 0.272

0.3 Strong Weak Coverage 0.098 1 1
Lower CI 0.101 0.099 0.106
Upper CI 0.142 0.449 0.36
Width 0.041 0.351 0.254

0.3 Strong Strong Coverage 1 1 0.998
Lower CI 0.127 0.126 0.129
Upper CI 0.171 0.474 0.41
Width 0.044 0.348 0.281

0.3 Strong + Weak Weak Coverage 0.404 1 1
Lower CI 0.107 0.103 0.105
Upper CI 0.15 0.45 0.439
Width 0.043 0.347 0.334

0.3 Strong + Weak Strong Coverage 1 1 0.998
Lower CI 0.124 0.121 0.123
Upper CI 0.168 0.472 0.466
Width 0.044 0.351 0.343
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(c): Number of valid instruments s = 2

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.055 0.051 0.066
Upper CI 0.087 0.401 0.349
Width 0.033 0.35 0.283

0 Strong Strong Coverage 0.009 1 1
Lower CI 0.095 0.083 0.099
Upper CI 0.137 0.433 0.428
Width 0.041 0.35 0.328

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.07 0.063 0.065
Upper CI 0.108 0.413 0.404
Width 0.038 0.35 0.339

0 Strong + Weak Strong Coverage 0.683 1 1
Lower CI 0.113 0.11 0.112
Upper CI 0.155 0.457 0.451
Width 0.042 0.347 0.339

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.082 0.078 0.094
Upper CI 0.12 0.419 0.344
Width 0.038 0.342 0.25

0.3 Strong Strong Coverage 0.66 1 1
Lower CI 0.109 0.098 0.115
Upper CI 0.152 0.446 0.419
Width 0.043 0.347 0.304

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.08 0.072 0.081
Upper CI 0.119 0.417 0.413
Width 0.04 0.344 0.332

0.3 Strong + Weak Strong Coverage 0.129 1 1
Lower CI 0.098 0.084 0.093
Upper CI 0.142 0.439 0.401
Width 0.043 0.355 0.308
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(d): Number of valid instruments s = 3

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.04 0.037 0.048
Upper CI 0.07 0.384 0.328
Width 0.029 0.347 0.28

0 Strong Strong Coverage 0 1 1
Lower CI 0.051 0.046 0.059
Upper CI 0.084 0.394 0.388
Width 0.033 0.348 0.33

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.052 0.048 0.05
Upper CI 0.084 0.394 0.385
Width 0.032 0.345 0.335

0 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.067 0.061 0.063
Upper CI 0.103 0.409 0.402
Width 0.036 0.348 0.338

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.062 0.057 0.082
Upper CI 0.098 0.404 0.374
Width 0.035 0.347 0.292

0.3 Strong Strong Coverage 0 1 1
Lower CI 0.072 0.066 0.092
Upper CI 0.11 0.414 0.401
Width 0.038 0.348 0.309

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.062 0.056 0.077
Upper CI 0.098 0.4 0.375
Width 0.036 0.344 0.299

0.3 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.072 0.066 0.084
Upper CI 0.11 0.418 0.412
Width 0.038 0.352 0.328
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(e): Number of valid instruments s = 4

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.04 0.037 0.048
Upper CI 0.07 0.384 0.328
Width 0.029 0.347 0.28

0 Strong Strong Coverage 0 1 1
Lower CI 0.051 0.046 0.059
Upper CI 0.084 0.394 0.388
Width 0.033 0.348 0.33

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.052 0.048 0.05
Upper CI 0.084 0.394 0.385
Width 0.032 0.345 0.335

0 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.067 0.061 0.063
Upper CI 0.103 0.409 0.402
Width 0.036 0.348 0.338

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.062 0.057 0.082
Upper CI 0.098 0.404 0.374
Width 0.035 0.347 0.292

0.3 Strong Strong Coverage 0 1 1
Lower CI 0.072 0.066 0.092
Upper CI 0.11 0.414 0.401
Width 0.038 0.348 0.309

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.062 0.056 0.077
Upper CI 0.098 0.4 0.375
Width 0.036 0.344 0.299

0.3 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.072 0.066 0.084
Upper CI 0.11 0.418 0.412
Width 0.038 0.352 0.328
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(f): Number of valid instruments s = 5

ρ Instrument Violation Imputation Worst case IV
Strength of (4) bounds bounds

0 Strong Weak Coverage 0 1 1
Lower CI 0.034 0.031 0.04
Upper CI 0.061 0.37 0.28
Width 0.028 0.339 0.24

0 Strong Strong Coverage 0 1 1
Lower CI 0.033 0.031 0.039
Upper CI 0.06 0.372 0.282
Width 0.027 0.342 0.243

0 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.034 0.032 0.041
Upper CI 0.062 0.367 0.279
Width 0.028 0.335 0.238

0 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.034 0.031 0.04
Upper CI 0.061 0.371 0.282
Width 0.027 0.341 0.242

0.3 Strong Weak Coverage 0 1 1
Lower CI 0.062 0.057 0.082
Upper CI 0.098 0.398 0.232
Width 0.036 0.34 0.15

0.3 Strong Strong Coverage 0 1 1
Lower CI 0.061 0.056 0.081
Upper CI 0.097 0.404 0.234
Width 0.036 0.347 0.153

0.3 Strong + Weak Weak Coverage 0 1 1
Lower CI 0.063 0.057 0.082
Upper CI 0.099 0.403 0.235
Width 0.036 0.346 0.152

0.3 Strong + Weak Strong Coverage 0 1 1
Lower CI 0.062 0.056 0.082
Upper CI 0.098 0.412 0.239
Width 0.036 0.355 0.158
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S.4 Explanation of the set up of Simulations 2

In this section, we report details of a second set of simulations that allows comparison between
the proposed method and methods from Marra et al. [25] and Jiang and Ding [26]. The
simulations follow the approach of Clark and Houle [27] by using data with a structure similar
to a real DHS survey. We use the 2007 Zambia DHS men sub-sample as the basis of our
simulation setup.

The relevant individuals in the survey are those men who were eligible for individual sur-
veys. In the 2007 Zambia DHS, individuals were first approached for the individual surveys.
Those who were contactable and present at the individual surveys were then asked to partic-
ipate in HIV testing. Therefore, eligible individuals can be classified into one of three groups:
(a) those who were absent for the individual surveys and not tested, (b) those who partic-
ipated in the individual surveys but refused to be tested, (c) those who participated in the
individual surveys, agreed to be tested and with valid test results. For those in groups (a) and
(b), their HIV test results are absent. For the simulation setup, HIV results are generated
through a three-stage process: (1) contact for individual surveys, (2) consent to HIV test,
and (3) test results among the tested. In the simulations, we mimic this three-stage process.
First, we fix a sample size of n = 7000. Then, we simulate observations with a composition of
age, residence (rural vs. urban) and region (Central, Copperbelt, Eastern, Luapula, Lusaka,
Northern, Northwestern, Southern, and Western) similar to that of the original survey. To
match residence-region composition, we first identify the 319 survey clusters from the survey.
We then sample with replacements from these clusters to reach n = 7000. We then generate
random age identifiers for each of these 7000 observations to match the distribution in the
survey.

We also need to create the instrumental variables (IVs) for the methods that require IVs.
Following Marra et al. [25], we randomly generate an interviewer IV with 30 interviewers. We
additionally generate three binary IVs: V2 V3, V4, each with a prevalence of 0.5 in the samples.

To create the three sub-samples (a)-(c), we make use of three different models. First, we
create a contact equation using

c = a0 + a11residence + a12age + a13region + uc, (S.11)

where uc is a standard normal random variable. We define a binary contact variable C = 1 if
c > 0 and C = 0 otherwise. The values of the parameters a11, a12, a13 are obtained from fitting
a similar model to the actual 2007 Zambia DHS data, and a0 is set such that the simulated
sample has non-contact rate of about 10%.

We use a set of two equations: A selection equation and an outcome equation, on the
subset of observations with C = 1. The selection equation is defined as

d = b0 + b11residence + b12age + b13region + b14interviewer + b2V2 + b3V3 + b4V4 + ud, (S.12)

and the outcome equation is defined as

y = c0+c11residence+c12age+c13region+c14interviewer+c2V2+c3V3+c4V4+uy+ur, (S.13)

where (ud, uy) are generated using aMVN(0,Σ) distribution. The quantity ur is used to model
spatial correlations in HIV rates. We obtain GPS coordinates of each of the 319 clusters and
then use generate ur using an exponential variogram with a sill of 1, range of 1 based on these
coordinates. Since the coordinates are in degrees, one unit is equivalent to about 111 km and
so our model assumes there is no correlation in HIV rates between two locations beyond 111
km apart in longitude or latitude. The parameters b11, · · · , b14 and c11, · · · , c14 are obtained
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by fitting a Heckman selection model to the DHS men data using these equations (omitting
V2, V3, V4 since these are hypothetical and not observed in the DHS data). The coefficients
b2 − b4 and c2 − c4 are adjusted in the simulations to reflect the effects and validity of V2,
V3, and V4. The parameters b0 and c0 are set to create a refusal rate of about 25% and HIV
prevalence of about 20% in the simulated data.

The values b14, b2, b3 and b4 represent IV strength. In the simulations, we let b14 = b2 = b3 =
b4 and we use two different values 0.25 (Weak) and 0.5 (Strong). Throughout the simulations
we fix V4 as a valid IV (ie., c4 = 0). We give c2, c3 or c14 a value of 0.25 to render the
corresponding IV invalid. We consider four different cases in terms of the number of invalid
instruments:: (1) three (V2, V3, and Interviewer IV) are invalid (c2 = c3 = c14 = 0.25), (2)
two (V2 and V3) are invalid (c2 = c3 = 0.25; c14 = 0), (3) one (V2) is invalid (c2 = 0.25; c3 =
c14 = 0), and (4) none is invalid (c2 = c3 = c14 = 0). In (S.12), the Interviewer IV represents
the interviewers’ differential persuasiveness in eliciting acceptance to HIV test. We generate
random N(0, 1) to represent their effectiveness. In (S.13), we generate a separate set of N(0, 1)
for each of these interviewers and when c14 ̸= 0, they represent different degrees of IV violation.

For the method of Marra et al. [25], we use only interviewer as the IV. The procedure is
implemented via three equations, a selection equation with age, rural, region as predictors, an
outcome equation with the same variables as predictors and a third equation that models the
copula between selection and outcome (see Heckman [13]) using region only as predictor. In
the simulations, we try a selection of representative copulas: Normal, Frank, Clayton rotated
90 degrees and Clayton rotated 270 degrees and then choose the best among them based on
AIC. The effect of region is modelled using a Markov random field smoother (see Marra et al.
[25]).

The method proposed here always uses all L = 4 IVs and assumes at least a = 2 of them
are valid. Under scenario (1), the assumption is violated. Therefore, the four cases of values
allow us to test the sensitivity of the method to the choice s.

For the Jiang and Ding [26] method, all observations with C = 0 (non-contact) are assumed
to have the same prevalence as those tested.

Results of the simulations are given in Tables 2, 3, and 4 in the main text.

S.5 HIV prevalence using 2007 Zambia DHS

We use the 2007 Zambia DHS data to study non-response adjustment using partial iden-
tification bounds. We compare the results to conventional non-response adjustment using
imputation. For partial identification, we consider worst case bounds without making any
assumptions and also instrumental variable bounds. For the instrumental variable bounds, we
use six candidate instrumental variables: iv.lan ( whether the language used in the question-
naire or interview is the same as the respondent’s language, yes vs. no), iv.firstday (whether
the interview was conducted on the first day of the interviews, yes vs. no), iv.interviewer
(number of interviews the interviewer has performed, < 50, 50 − 100, 100 − 200, > 200),
iv.mon (whether the interview was carried out during a month of harvest or planting, yes vs.
no), iv.doa (whether the respondent has known someone who has died of AIDS yes vs. no).

The standard non-response adjustment is an imputation analysis on those who are not
tested to adjust for potential biases [28]. The individuals in the survey can be classified into
one of three groups: (a) those who participated in the household and individual surveys and
were tested (b) those who participated in the household and individual surveys but were not
tested, and (c) those who only participated in the household surveys. For those in groups (b)
and (c), their HIV test results are absent.
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For individuals in groups (b) and (c), their probability of HIV is predicted based on mul-
tivariate models using data from those who were tested. A logistic regression model is used to
calculate HIV robability separately for groups (b) and (c). For group (b), the variables used
in the model include the following household survey variables: age, education, wealth quin-
tile, residence, and geographic region, as well as the following variables from the individual
survey: marital union, current work status, media exposure, eligion, STI or STI symptoms
in past 12 months, cigarette smoking/tobacco use, age at first sex, number of sex partners in
past 12 months, higher-risk sex in past 12 months, condom use at last sex in past 12 months,
and willingness to care for a family member with AIDS. Prediction for group (c) uses only the
household variables. The models are used to impute HIV statuses for individuals in groups (b)
and (c), and the results are combined with those in group (a) to form adjusted HIV prevalence
estimates for the population.

We require instruments for the partial identification bounds method proposed in this paper.
We consider five candidate instruments: iv.lan ( whether the language used in the question-
naire or interview is the same as the respondent’s language, yes vs. no), iv.firstday (whether
the interview was conducted on the first day of the interviews, yes vs. no), iv.interviewer
(number of interviews the interviewer has performed, < 50, 50 − 100, 100 − 200, > 200),
iv.mon (whether the interview was carried out during a month of harvest or planting, yes vs.
no), iv.doa (whether the respondent has known someone who has died of AIDS yes vs. no).
We assume a = 3, that is, at least 3 out of the five candidates are valid.

For all estimates, the data are weighted by survey weights. For individuals in group (a),
HIV weights were used, for individuals in group (b), the individual survey weights were used;
and for those in group (c), household survey weights were used. We examine HIV prevalence
between genders and across different demographic, socio-economic and behavioural groups
(Table S.4). Overall prevalence for women (16.1%) is higher than men (12.3%). In addition,
this difference is consistent across all strata groups we examined. There are also significant
differences among groups within a strata. For example, women at the lowest wealth quintile
has a prevalence of only 8.8% compared to those in the highest two quintiles with over 20%
prevalence.

Our results (Table S.5) show that across all scenarios, the imputation method gives very
similar results to the unadjusted results. The partial identification bounds always give confi-
dence intervals that are much wider. Between the two partial identification methods, the worst
case is always less precise than the method proposed in this paper. The improved precision
of the proposed method comes from a big reduction of the upper confidence interval. The
improvement ranges from about 10% to 30%.
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Table S.4: Observed proportions of HIV positive among the tested in 2007 Zambia DHS

Women Men
HIV prevalence Number HIV prevalence Number

All 0.161 5713 0.123 5163
Age 15-19 0.058 1256 0.035 1109

20-24 0.119 1119 0.053 830
25-29 0.198 1102 0.115 772
30-34 0.258 841 0.174 746
35-39 0.25 588 0.223 594
40-44 0.182 434 0.24 390
45-49 0.122 373 0.183 318

Religion Catholic 0.142 1086 0.116 1080
Protestant 0.167 4525 0.125 3921

Location Large city 0.247 450 0.205 439
Small city 0.261 424 0.159 339
Town 0.202 1662 0.126 1410

Countryside 0.11 3177 0.095 2975
Wealth quintile 1st 0.088 903 0.07 938

2nd 0.096 987 0.098 771
3rd 0.133 1122 0.104 1044
4th 0.229 1387 0.18 1271
5th 0.216 1314 0.138 1139

Education ≤ 6 0.123 2516 0.085 1647
> 6 0.191 3197 0.14 3516

Married No 0.183 2269 0.083 2260
Yes 0.147 3444 0.155 2901

Partners last
12m

0 0.153 1440 0.066 1223

1 0.161 4188 0.127 3113
1+ 0.316 82 0.199 815

High risk sex
last 12m

No 0.151 4903 0.118 3683

Yes 0.231 807 0.136 1468
Condom use last
sex

No 0.15 5141 0.111 4260

Yes 0.268 569 0.179 898
STD last 12m No 0.153 5428 0.113 4878

Yes 0.339 264 0.306 269
Age first sex Never 0.037 726 0.035 674

≤ 15 0.173 1905 0.13 1652
> 15 0.183 3080 0.141 2834

Sex last 12m No 0.153 1440 0.066 1223
Yes 0.164 4270 0.141 3928

Ever tested for
HIV

No 0.132 3339 0.108 3945

Yes 0.206 2349 0.173 1216
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Table S.5: 95% confidence intervals for HIV prevalence estimates in 2007 Zambia DHS

Women

Unadjusted Marra Worst case JD IV
All LCI 0.152 0.159 0.117 0.12 0.123

UCI 0.169 0.179 0.362 0.343 0.337
Width 0.017 0.02 0.245 0.223 0.214

Age 15-19 LCI 0.038 0.058 0.029 0.029 0.024
UCI 0.078 0.079 0.305 0.281 0.276

Width 0.04 0.021 0.276 0.252 0.252
20-24 LCI 0.099 0.117 0.073 0.075 0.077

UCI 0.139 0.144 0.357 0.335 0.328
Width 0.04 0.027 0.284 0.26 0.251

25-29 LCI 0.179 0.189 0.14 0.143 0.145
UCI 0.218 0.226 0.396 0.382 0.389

Width 0.039 0.037 0.256 0.239 0.244
30-34 LCI 0.237 0.237 0.186 0.19 0.202

UCI 0.279 0.277 0.438 0.427 0.398
Width 0.042 0.04 0.252 0.237 0.196

35-39 LCI 0.226 0.213 0.176 0.181 0.181
UCI 0.275 0.261 0.442 0.425 0.406

Width 0.049 0.048 0.266 0.244 0.225
40-44 LCI 0.155 0.188 0.122 0.124 0.135

UCI 0.208 0.243 0.388 0.373 0.336
Width 0.053 0.055 0.266 0.249 0.201

45-49 LCI 0.095 0.122 0.075 0.077 0.077
UCI 0.15 0.183 0.335 0.323 0.317

Width 0.055 0.061 0.26 0.246 0.24

Men

Unadjusted Marra Worst case JD IV
0.115 0.186 0.083 0.089 0.086
0.131 0.268 0.375 0.329 0.323
0.016 0.082 0.292 0.24 0.237
0.019 0.049 0.014 0.015 0.013
0.051 0.117 0.321 0.273 0.285
0.032 0.068 0.307 0.258 0.272
0.036 0.108 0.026 0.027 0.025
0.07 0.185 0.352 0.303 0.313
0.034 0.077 0.326 0.276 0.288
0.095 0.187 0.065 0.071 0.083
0.135 0.269 0.404 0.349 0.356
0.04 0.082 0.339 0.278 0.273
0.153 0.284 0.11 0.118 0.123
0.194 0.362 0.426 0.383 0.394
0.041 0.078 0.316 0.265 0.271
0.198 0.317 0.144 0.155 0.155
0.247 0.404 0.459 0.416 0.386
0.049 0.087 0.315 0.261 0.231
0.213 0.318 0.164 0.172 0.172
0.266 0.402 0.454 0.424 0.414
0.053 0.084 0.29 0.252 0.242
0.152 0.26 0.114 0.122 0.129
0.212 0.355 0.428 0.389 0.386
0.06 0.095 0.314 0.267 0.257
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Table S.5: Continued

Women

Unadjusted Marra Worst case JD IV
Religion Catholic LCI 0.121 0.14 0.097 0.097 0.106

UCI 0.164 0.177 0.34 0.332 0.312
Width 0.043 0.037 0.243 0.235 0.206

Protestant LCI 0.159 0.16 0.127 0.128 0.137
UCI 0.175 0.179 0.342 0.336 0.327

Width 0.016 0.019 0.215 0.208 0.19
Residence Large city LCI 0.22 0.199 0.168 0.173 0.176

UCI 0.243 0.229 0.425 0.406 0.4
Width 0.023 0.03 0.257 0.233 0.224

Small city LCI 0.099 0.124 0.077 0.078 0.081
UCI 0.121 0.141 0.32 0.304 0.304

Width 0.022 0.017 0.243 0.226 0.223
Wealth quintile 1st LCI 0.066 0.111 0.051 0.052 0.056

UCI 0.111 0.136 0.316 0.294 0.306
Width 0.045 0.025 0.265 0.242 0.25

2nd LCI 0.077 0.116 0.059 0.06 0.056
UCI 0.115 0.136 0.328 0.314 0.3

Width 0.038 0.02 0.269 0.254 0.244
3rd LCI 0.111 0.126 0.086 0.088 0.086

UCI 0.155 0.146 0.353 0.336 0.32
Width 0.044 0.02 0.267 0.248 0.234

4th LCI 0.211 0.181 0.163 0.168 0.174
UCI 0.248 0.21 0.422 0.407 0.385

Width 0.037 0.029 0.259 0.239 0.211
5th LCI 0.198 0.207 0.152 0.156 0.16

UCI 0.235 0.244 0.417 0.398 0.395
Width 0.037 0.037 0.265 0.242 0.235

Men

Unadjusted Marra Worst case JD IV
0.098 0.166 0.08 0.08 0.083
0.134 0.258 0.311 0.303 0.289
0.036 0.092 0.231 0.223 0.206
0.116 0.198 0.092 0.093 0.098
0.134 0.265 0.313 0.306 0.3
0.018 0.067 0.221 0.213 0.202
0.147 0.219 0.1 0.109 0.106
0.171 0.303 0.443 0.39 0.372
0.024 0.084 0.343 0.281 0.266
0.086 0.163 0.065 0.069 0.073
0.105 0.231 0.325 0.287 0.293
0.019 0.068 0.26 0.218 0.22
0.054 0.166 0.043 0.044 0.04
0.086 0.234 0.284 0.257 0.258
0.032 0.068 0.241 0.213 0.218
0.079 0.16 0.059 0.063 0.075
0.118 0.236 0.361 0.315 0.338
0.039 0.076 0.302 0.252 0.263
0.087 0.171 0.065 0.068 0.065
0.121 0.238 0.361 0.321 0.321
0.034 0.067 0.296 0.253 0.256
0.165 0.213 0.115 0.127 0.114
0.194 0.28 0.441 0.389 0.381
0.029 0.067 0.326 0.262 0.267
0.122 0.217 0.083 0.09 0.095
0.154 0.309 0.432 0.38 0.355
0.032 0.092 0.349 0.29 0.26
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Table S.5: Continued

Women

Unadjusted Marra Worst case JD IV
Education ≤ 6 LCI 0.112 0.114 0.084 0.087 0.085

UCI 0.135 0.139 0.35 0.333 0.319
Width 0.023 0.025 0.266 0.246 0.234

> 6 LCI 0.179 0.186 0.14 0.145 0.146
UCI 0.203 0.217 0.379 0.361 0.352

Width 0.024 0.031 0.239 0.216 0.206
Married No LCI 0.17 0.176 0.136 0.137 0.141

UCI 0.197 0.203 0.358 0.351 0.344
Width 0.027 0.027 0.222 0.214 0.203

Yes LCI 0.136 0.142 0.108 0.109 0.118
UCI 0.158 0.167 0.331 0.324 0.302

Width 0.022 0.025 0.223 0.215 0.184
Partners last 12m 0 LCI 0.137 0.136 0.109 0.11 0.114

UCI 0.169 0.173 0.348 0.34 0.34
Width 0.032 0.037 0.239 0.23 0.226

1 LCI 0.15 0.159 0.121 0.122 0.128
UCI 0.171 0.183 0.338 0.332 0.311

Width 0.021 0.024 0.217 0.21 0.183
1+ LCI 0.253 0.206 0.231 0.229 0.264

UCI 0.379 0.398 0.489 0.488 0.537
Width 0.126 0.192 0.258 0.259 0.273

High risk sex last 12m No LCI 0.142 0.146 0.114 0.115 0.119
UCI 0.159 0.166 0.331 0.325 0.314

Width 0.017 0.02 0.217 0.21 0.195
Yes LCI 0.206 0.216 0.168 0.17 0.168

UCI 0.255 0.277 0.404 0.395 0.379
Width 0.049 0.061 0.236 0.225 0.211

Men

Unadjusted Marra Worst case JD IV
0.071 0.142 0.052 0.054 0.055
0.098 0.206 0.345 0.31 0.306
0.027 0.064 0.293 0.256 0.251
0.13 0.206 0.094 0.101 0.096
0.15 0.286 0.393 0.343 0.336
0.02 0.08 0.299 0.242 0.24
0.07 0.13 0.056 0.056 0.059
0.096 0.209 0.293 0.282 0.278
0.026 0.079 0.237 0.226 0.219
0.144 0.241 0.116 0.117 0.121
0.166 0.312 0.338 0.333 0.322
0.022 0.071 0.222 0.216 0.201
0.048 0.105 0.038 0.038 0.037
0.085 0.187 0.303 0.294 0.282
0.037 0.082 0.265 0.256 0.245
0.117 0.197 0.094 0.095 0.099
0.136 0.277 0.319 0.313 0.299
0.019 0.08 0.225 0.218 0.2
0.176 0.254 0.152 0.153 0.162
0.222 0.332 0.349 0.342 0.333
0.046 0.078 0.197 0.189 0.171
0.108 0.194 0.085 0.086 0.087
0.127 0.26 0.32 0.315 0.309
0.019 0.066 0.235 0.229 0.222
0.12 0.188 0.101 0.102 0.104
0.152 0.26 0.304 0.293 0.282
0.032 0.072 0.203 0.191 0.178
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Table S.5: Continued

Women

Unadjusted Marra Worst case JD IV
Condom use last sex No LCI 0.141 0.144 0.113 0.114 0.117

UCI 0.16 0.165 0.333 0.326 0.314
Width 0.019 0.021 0.22 0.212 0.197

Yes LCI 0.242 0.256 0.2 0.201 0.201
UCI 0.294 0.329 0.426 0.42 0.393

Width 0.052 0.073 0.226 0.219 0.192
STD last 12m No LCI 0.145 0.15 0.116 0.117 0.122

UCI 0.161 0.172 0.333 0.327 0.314
Width 0.016 0.022 0.217 0.21 0.192

Yes LCI 0.3 0.29 0.257 0.26 0.283
UCI 0.378 0.404 0.476 0.47 0.424

Width 0.078 0.114 0.219 0.21 0.141
Age first sex Never LCI 0.013 0.064 0.011 0.012 0.011

UCI 0.06 0.099 0.273 0.267 0.268
Width 0.047 0.035 0.262 0.255 0.257

≤ 15 LCI 0.159 0.149 0.131 0.132 0.137
UCI 0.187 0.169 0.339 0.334 0.32

Width 0.028 0.02 0.208 0.202 0.183
> 15 LCI 0.172 0.182 0.136 0.138 0.144

UCI 0.194 0.208 0.363 0.356 0.342
Width 0.022 0.026 0.227 0.218 0.198

Sex last 12m No LCI 0.137 0.139 0.109 0.11 0.114
UCI 0.169 0.177 0.348 0.34 0.34

Width 0.032 0.038 0.239 0.23 0.226
Yes LCI 0.155 0.162 0.124 0.125 0.132

UCI 0.173 0.182 0.339 0.332 0.312
Width 0.018 0.02 0.215 0.207 0.18

Ever tested for HIV No LCI 0.12 0.126 0.096 0.097 0.099
UCI 0.144 0.147 0.323 0.318 0.301

Width 0.024 0.021 0.227 0.221 0.202
Yes LCI 0.192 0.201 0.155 0.157 0.167

UCI 0.22 0.234 0.374 0.367 0.359
Width 0.028 0.033 0.219 0.21 0.192

Men

Unadjusted Marra Worst case JD IV
0.102 0.184 0.081 0.082 0.088
0.121 0.25 0.307 0.3 0.291
0.019 0.066 0.226 0.218 0.203
0.162 0.245 0.133 0.134 0.138
0.197 0.33 0.36 0.353 0.336
0.035 0.085 0.227 0.219 0.198
0.105 0.183 0.084 0.084 0.09
0.121 0.248 0.308 0.301 0.291
0.016 0.065 0.224 0.217 0.201
0.274 0.322 0.236 0.237 0.241
0.339 0.445 0.452 0.442 0.448
0.065 0.123 0.216 0.205 0.207
0.015 0.064 0.012 0.012 0.009
0.055 0.157 0.308 0.295 0.297
0.04 0.093 0.296 0.283 0.288
0.117 0.187 0.097 0.097 0.096
0.144 0.268 0.303 0.297 0.298
0.027 0.081 0.206 0.2 0.202
0.131 0.217 0.105 0.105 0.113
0.152 0.298 0.332 0.327 0.312
0.021 0.081 0.227 0.222 0.199
0.048 0.107 0.038 0.038 0.037
0.085 0.187 0.303 0.294 0.282
0.037 0.08 0.265 0.256 0.245
0.132 0.217 0.108 0.108 0.114
0.15 0.286 0.321 0.314 0.3
0.018 0.069 0.213 0.206 0.186
0.098 0.166 0.079 0.079 0.082
0.118 0.236 0.305 0.298 0.288
0.02 0.07 0.226 0.219 0.206
0.157 0.259 0.128 0.128 0.135
0.19 0.341 0.353 0.347 0.348
0.033 0.082 0.225 0.219 0.213
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S.6 HIV prevalence using 2004 Malawi DHS

The 2004 Malawi DHS (MDHS) was a national population-based survey carried out in two
stages. In the first stage, 522 enumeration areas spread over 28 country districts were selected.
Oversampling was done in some districts to provide more accurate district-level estimates. In
the second stage, households were selected using systematic sampling. All women aged 15-49
in a selected household were eligible for interview.

In all the interviewed households, 12229 women (1733 urban and 10496 rural) were identi-
fied, and complete interviews were conducted with 11,698 women (95.7%). Every one in three
households was selected for HIV testing. Within these households, 3797 men and 4071 women
were eligible for HIV testing. Among the men, 2429 consented to testing, 759 refused, and
the remaining 609 were un-contactable (mainly due to the moving). Testing was successfully
conducted on 2404 men, resulting in a testing response rate of 63%. Failure to obtain test
results was due to one of the following reasons: refusal, not being at home for the testing and
unusable test results. For the purpose of the Jiang and Ding method, we used 3797 - 2404 -
759 = 634 as missing at random. Among the women, 2896 consented to testing, 916 refused
(including those from parents). Testing was successfully conducted on 2864 women. For the
purpose of the Jiang and Ding method, we used 4071 - 2864 - 916 = 291 as missing at random.

For the method proposed in this paper, we use the same list of instrumental variables: iv.lan
(whether the language used in the questionnaire or interview is the same as the respondent’s
language, yes vs. no), iv.firstday (whether the interview was conducted on the first day of the
interviews, yes vs. no), iv.interviewer (number of interviews the interviewer has performed,
< 20, 20− 50, > 50 for women and < 50, > 50 for men), iv.mon (whether the interview was
carried out during a month of harvest or planting, yes vs. no, in Malawi, the main harvesting
season is April-July and planting is in October), iv.doa (whether the respondent knows some-
one who has died of AIDS, yes vs. no).

Our results (Table S.8) show that across all scenarios, the imputation method gives very
similar results to the unadjusted results. The partial identification bounds always give confi-
dence intervals that are much wider. Between the two partial identification methods, the worst
case is always less precise than the method proposed in this paper. The improved precision
of the proposed method comes from a big reduction of the upper confidence interval. The
improvement ranges from about 10% to 30%.
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Table S.6: Observed proportions of HIV positive among the tested in 2004 Malawi DHS

Women Men
HIV prevalence Number HIV prevalence Number

All 0.133 2864 0.102 2404
Age 15-19 0.037 550 0.004 457

20-24 0.13 691 0.034 424
25-29 0.163 535 0.099 463
30-34 0.163 392 0.204 354
35-39 0.186 267 0.16 226
40-44 0.189 244 0.199 225
45-49 0.121 185 0.101 125
50+ – – 0.095 130

Religion Catholic 0.138 633 0.102 531
Presbyterian 0.097 495 0.089 440
Anglican 0.177 55 0.052 45

Adventist/baptist 0.121 174 0.166 149
Other christian 0.138 1047 0.102 883

Muslim 0.17 437 0.115 305
None/Other 0.029 21 0.021 50

Residence Urban 0.18 373 0.164 352
Rural 0.125 2491 0.089 2052

Wealth quintile 1st 0.109 499 0.043 300
2nd 0.103 578 0.047 494
3rd 0.127 645 0.119 581
4th 0.146 631 0.12 573
5th 0.18 511 0.15 456

Education ≤ 6 0.125 1942 0.075 1283
> 6 0.15 922 0.133 1121

Married No 0.155 767 0.031 815
Yes 0.125 2097 0.139 1589

Partners last 12m 0 0.124 578 0.047 462
1 0.133 2265 0.111 1695
1+ 0.437 21 0.148 244

High risk sex last
12m

No 0.127 2676 0.105 1929

Yes 0.218 188 0.087 472
Condom use last
sex

No 0.129 2747 0.104 2129

Yes 0.225 116 0.087 272
STD last 12m No 0.121 2629 0.097 2272

Yes 0.256 217 0.21 119
Age first sex Never 0.025 255 0.018 242

≤ 15 0.165 1027 0.088 649
> 15 0.132 1578 0.122 1511

Sex last 12m No 0.124 578 0.047 462
Yes 0.136 2286 0.115 1939

Ever tested for HIV No 0.129 2453 0.098 2004
Yes 0.16 403 0.121 400
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Table S.7: Relationship between HIV testing and some possible instrument variables

(a): Women

D 0 1

Variable N Percent N Percent Test

iv.lan 998 2855 X2= 7.419∗∗∗

... 0 401 40.2% 1291 45.2%

... 1 597 59.8% 1564 54.8%

iv.firstday 1207 2864 X2= 0

... 0 747 61.9% 1775 62%

... 1 460 38.1% 1089 38%

iv.interviewer † 1001 2864 X2= 12.79∗∗∗

... 0 81 8.1% 190 6.6%

... 1 538 53.7% 1399 48.8%

... 2 382 38.2% 1275 44.5%

iv.mon 1001 2864 X2= 0.611

... 0 533 53.2% 1482 51.7%

... 1 468 46.8% 1382 48.3%

iv.doa 1001 2863 X2= 19.956∗∗∗

... 0 423 42.3% 982 34.3%

... 1 578 57.7% 1881 65.7%

Statistical significance markers: * p<0.1; ** p<0.05; *** p<0.01
†0: ≤ 20; 1: 20− 50; 2: > 50
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(b): Men

D 0 1

Variable N Percent N Percent Test

iv.lan 849 2398 X2= 9.146∗∗∗

... 0 300 35.3% 991 41.3%

... 1 549 64.7% 1407 58.7%

iv.firstday 1393 2404 X2= 0.089

... 0 875 62.8% 1497 62.3%

... 1 518 37.2% 907 37.7%

iv.interviewer† 856 2404 X2= 0.288

... 0 63 7.4% 162 6.7%

... 1 793 92.6% 2242 93.3%

iv.mon 857 2404 X2= 3.453∗

... 0 458 53.4% 1194 49.7%

... 1 399 46.6% 1210 50.3%

iv.doa 857 2404 X2= 38.756∗∗∗

... 0 338 39.4% 671 27.9%

... 1 519 60.6% 1733 72.1%

Statistical significance markers: * p<0.1; ** p<0.05; *** p<0.01
†0: ≤ 50; 1: > 50
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Table S.8: 95% confidence intervals for HIV prevalence estimates in 2004 Malawi DHS

Women

Unadjusted Marra Worst case JD IV
All LCI 0.122 0.166 0.086 0.093 0.091

UCI 0.144 0.295 0.402 0.355 0.365
Width 0.022 0.129 0.316 0.262 0.274

Age 15-19 LCI 0.015 0.061 0.009 0.01 0.009
UCI 0.06 0.162 0.398 0.327 0.328

Width 0.045 0.101 0.389 0.317 0.319
20-24 LCI 0.113 0.162 0.078 0.082 0.083

UCI 0.147 0.306 0.413 0.378 0.376
Width 0.034 0.144 0.335 0.296 0.293

25-29 LCI 0.141 0.22 0.1 0.109 0.111
UCI 0.185 0.358 0.43 0.384 0.387

Width 0.044 0.138 0.33 0.275 0.276
30-34 LCI 0.132 0.218 0.098 0.105 0.103

UCI 0.195 0.338 0.423 0.382 0.388
Width 0.063 0.12 0.325 0.277 0.285

35-39 LCI 0.15 0.244 0.101 0.109 0.112
UCI 0.222 0.353 0.486 0.446 0.435

Width 0.072 0.109 0.385 0.337 0.323
40-44 LCI 0.149 0.192 0.119 0.128 0.121

UCI 0.229 0.317 0.418 0.378 0.368
Width 0.08 0.125 0.299 0.25 0.247

45-49 LCI 0.076 0.158 0.059 0.063 0.07
UCI 0.166 0.302 0.387 0.348 0.347

Width 0.09 0.144 0.328 0.285 0.277

Men

Unadjusted Marra Worst case JD IV
0.091 0.092 0.058 0.068 0.068
0.113 0.113 0.444 0.345 0.345
0.022 0.021 0.386 0.277 0.277
-0.019 0.006 -0.012 -0.014 -0.014
0.027 0.021 0.433 0.328 0.314
0.046 0.015 0.445 0.342 0.328
0.007 0.036 0.004 0.004 0.009
0.061 0.062 0.432 0.318 0.288
0.054 0.026 0.428 0.314 0.279
0.071 0.084 0.046 0.054 0.058
0.128 0.12 0.445 0.353 0.354
0.057 0.036 0.399 0.299 0.296
0.175 0.148 0.113 0.132 0.149
0.234 0.199 0.526 0.434 0.422
0.059 0.051 0.413 0.302 0.273
0.126 0.152 0.088 0.102 0.097
0.195 0.216 0.48 0.384 0.399
0.069 0.064 0.392 0.282 0.302
0.162 0.146 0.113 0.13 0.13
0.236 0.211 0.501 0.42 0.426
0.074 0.065 0.388 0.29 0.296
0.05 0.124 0.033 0.037 0.035
0.152 0.176 0.501 0.421 0.426
0.102 0.052 0.468 0.384 0.391
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Table S.8: Continued

Women

Unadjusted Marra Worst case JD IV
Religion Catholic LCI 0.112 0.177 0.088 0.09 0.092

UCI 0.164 0.286 0.355 0.341 0.351
Width 0.052 0.109 0.267 0.251 0.259

Presbyterian LCI 0.074 0.141 0.054 0.054 0.052
UCI 0.12 0.27 0.368 0.36 0.361

Width 0.046 0.129 0.314 0.306 0.309
Anglican LCI 0.085 0.203 0.057 0.054 0.047

UCI 0.268 0.445 0.521 0.517 0.509
Width 0.183 0.242 0.464 0.463 0.462

Adventist/baptist LCI 0.074 0.126 0.06 0.06 0.057
UCI 0.168 0.297 0.377 0.369 0.343

Width 0.094 0.171 0.317 0.309 0.286
Other christian LCI 0.12 0.179 0.089 0.09 0.093

UCI 0.156 0.296 0.381 0.368 0.379
Width 0.036 0.117 0.292 0.278 0.286

Muslim LCI 0.142 0.208 0.102 0.105 0.117
UCI 0.198 0.384 0.438 0.412 0.426

Width 0.056 0.176 0.336 0.307 0.309
None/Other LCI -0.138 0.044 -0.1 -0.108 -0.089

UCI 0.195 0.474 0.576 0.56 0.596
Width 0.333 0.43 0.676 0.668 0.685

Residence Large city LCI 0.152 0.196 0.098 0.107 0.102
UCI 0.208 0.297 0.496 0.448 0.452

Width 0.056 0.101 0.398 0.341 0.35
Small city LCI 0.112 0.181 0.08 0.086 0.085

UCI 0.137 0.288 0.391 0.344 0.358
Width 0.025 0.107 0.311 0.258 0.273

Men

Unadjusted Marra Worst case JD IV
0.075 0.078 0.062 0.06 0.078
0.128 0.131 0.333 0.32 0.315
0.053 0.053 0.271 0.26 0.237
0.062 0.068 0.049 0.047 0.046
0.117 0.116 0.356 0.355 0.32
0.055 0.048 0.307 0.308 0.274
-0.073 0.025 -0.027 -0.049 -0.033
0.177 0.168 0.469 0.489 0.472
0.25 0.143 0.496 0.538 0.505
0.127 0.098 0.109 0.106 0.118
0.204 0.196 0.391 0.392 0.343
0.077 0.098 0.282 0.286 0.225
0.082 0.088 0.063 0.061 0.068
0.122 0.125 0.358 0.356 0.351
0.04 0.037 0.295 0.295 0.283
0.081 0.076 0.055 0.052 0.065
0.15 0.146 0.442 0.436 0.42
0.069 0.07 0.387 0.384 0.355
-0.057 0.005 -0.029 -0.043 -0.041
0.099 0.132 0.509 0.525 0.504
0.156 0.127 0.538 0.568 0.545
0.137 0.102 0.074 0.095 0.103
0.191 0.127 0.565 0.447 0.443
0.054 0.025 0.491 0.352 0.34
0.077 0.087 0.05 0.058 0.059
0.1 0.113 0.422 0.331 0.334

0.023 0.026 0.372 0.273 0.275
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Table S.8: Continued

Women

Unadjusted Marra Worst case JD IV
Wealth quintile 1st LCI 0.083 0.188 0.057 0.061 0.06

UCI 0.134 0.291 0.408 0.362 0.368
Width 0.051 0.103 0.351 0.301 0.308

2nd LCI 0.078 0.159 0.054 0.058 0.056
UCI 0.127 0.298 0.388 0.342 0.362

Width 0.049 0.139 0.334 0.284 0.306
3rd LCI 0.102 0.158 0.073 0.08 0.089

UCI 0.152 0.285 0.394 0.346 0.361
Width 0.05 0.127 0.321 0.266 0.272

4th LCI 0.124 0.173 0.089 0.096 0.102
UCI 0.168 0.273 0.409 0.367 0.365

Width 0.044 0.1 0.32 0.271 0.263
5th LCI 0.158 0.202 0.104 0.113 0.112

UCI 0.203 0.302 0.481 0.436 0.44
Width 0.045 0.1 0.377 0.323 0.328

Education ≤ 6 LCI 0.113 0.164 0.079 0.085 0.082
UCI 0.137 0.281 0.405 0.358 0.366

Width 0.024 0.117 0.326 0.273 0.284
> 6 LCI 0.133 0.205 0.095 0.103 0.1

UCI 0.167 0.319 0.411 0.363 0.376
Width 0.034 0.114 0.316 0.26 0.276

Married No LCI 0.136 0.196 0.099 0.101 0.103
UCI 0.175 0.329 0.412 0.395 0.412

Width 0.039 0.133 0.313 0.294 0.309
Yes LCI 0.114 0.164 0.086 0.087 0.085

UCI 0.137 0.268 0.359 0.346 0.353
Width 0.023 0.104 0.273 0.259 0.268

Men

Unadjusted Marra Worst case JD IV
0.015 0.069 0.008 0.01 0.015
0.072 0.089 0.469 0.36 0.356
0.057 0.02 0.461 0.35 0.341
0.023 0.077 0.016 0.017 0.024
0.071 0.1 0.414 0.319 0.317
0.048 0.023 0.398 0.302 0.293
0.099 0.093 0.067 0.077 0.081
0.139 0.12 0.432 0.34 0.315
0.04 0.027 0.365 0.263 0.234
0.098 0.096 0.067 0.077 0.079
0.143 0.119 0.436 0.34 0.351
0.045 0.023 0.369 0.263 0.272
0.124 0.097 0.068 0.082 0.087
0.176 0.129 0.547 0.449 0.437
0.052 0.032 0.479 0.367 0.35
0.06 0.07 0.036 0.042 0.045
0.091 0.095 0.448 0.349 0.352
0.031 0.025 0.412 0.307 0.307
0.116 0.11 0.076 0.089 0.089
0.15 0.139 0.452 0.353 0.346
0.034 0.029 0.376 0.264 0.257
0.01 0.02 0.009 0.007 0.016
0.052 0.044 0.336 0.331 0.312
0.042 0.024 0.327 0.324 0.296
0.126 0.127 0.097 0.096 0.097
0.152 0.157 0.369 0.364 0.362
0.026 0.03 0.272 0.268 0.265
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Table S.8: Continued

Women

Unadjusted Marra Worst case JD IV
Partners last 12m 0 LCI 0.102 0.164 0.074 0.074 0.075

UCI 0.145 0.282 0.389 0.376 0.371
Width 0.043 0.118 0.315 0.302 0.296

1 LCI 0.122 0.189 0.091 0.094 0.091
UCI 0.144 0.284 0.368 0.353 0.358

Width 0.022 0.095 0.277 0.259 0.267
1+ LCI 0.231 0.294 0.152 0.138 0.217

UCI 0.642 0.677 0.773 0.78 0.733
Width 0.411 0.383 0.621 0.642 0.516

High risk sex last 12m No LCI 0.117 0.17 0.086 0.088 0.087
UCI 0.138 0.295 0.367 0.352 0.361

Width 0.021 0.125 0.281 0.264 0.274
Yes LCI 0.175 0.251 0.133 0.135 0.137

UCI 0.26 0.39 0.459 0.447 0.447
Width 0.085 0.139 0.326 0.312 0.31

Condom use last sex No LCI 0.119 0.179 0.088 0.09 0.088
UCI 0.14 0.308 0.369 0.354 0.368

Width 0.021 0.129 0.281 0.264 0.28
Yes LCI 0.17 0.227 0.148 0.147 0.162

UCI 0.279 0.381 0.429 0.425 0.415
Width 0.109 0.154 0.281 0.278 0.253

STD last 12m No LCI 0.109 0.166 0.082 0.082 0.082
UCI 0.133 0.278 0.362 0.349 0.358

Width 0.024 0.112 0.28 0.267 0.276
Yes LCI 0.217 0.26 0.17 0.176 0.19

UCI 0.296 0.441 0.479 0.455 0.453
Width 0.079 0.181 0.309 0.279 0.263

Men

Unadjusted Marra Worst case JD IV
0.024 0.027 0.017 0.016 0.019
0.069 0.06 0.369 0.363 0.336
0.045 0.033 0.352 0.347 0.317
0.1 0.1 0.076 0.075 0.08

0.122 0.13 0.357 0.35 0.342
0.022 0.03 0.281 0.275 0.262
0.109 0.109 0.092 0.09 0.099
0.187 0.189 0.386 0.375 0.372
0.078 0.08 0.294 0.285 0.273
0.093 0.096 0.07 0.069 0.069
0.118 0.12 0.356 0.351 0.347
0.025 0.024 0.286 0.282 0.278
0.061 0.062 0.047 0.046 0.055
0.113 0.106 0.36 0.355 0.347
0.052 0.044 0.313 0.309 0.292
0.092 0.089 0.069 0.069 0.072
0.117 0.113 0.354 0.35 0.347
0.025 0.024 0.285 0.281 0.275
0.047 0.072 0.038 0.035 0.034
0.128 0.141 0.377 0.372 0.38
0.081 0.069 0.339 0.337 0.346
0.086 0.086 0.064 0.064 0.068
0.108 0.11 0.348 0.345 0.343
0.022 0.024 0.284 0.281 0.275
0.156 0.133 0.132 0.125 0.16
0.263 0.257 0.447 0.447 0.435
0.107 0.124 0.315 0.322 0.275
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Table S.8: Continued

Women

Unadjusted Marra Worst case JD IV
Age first sex Never LCI -0.014 0.064 -0.01 -0.012 -0.013

UCI 0.064 0.182 0.373 0.363 0.359
Width 0.078 0.118 0.383 0.375 0.372

≤ 15 LCI 0.146 0.186 0.114 0.116 0.116
UCI 0.183 0.296 0.374 0.363 0.363

Width 0.037 0.11 0.26 0.247 0.247
> 15 LCI 0.117 0.196 0.086 0.088 0.088

UCI 0.147 0.326 0.382 0.367 0.375
Width 0.03 0.13 0.296 0.279 0.287

Sex last 12m No LCI 0.102 0.152 0.074 0.074 0.075
UCI 0.145 0.293 0.389 0.376 0.371

Width 0.043 0.141 0.315 0.302 0.296
Yes LCI 0.124 0.194 0.093 0.094 0.093

UCI 0.147 0.304 0.367 0.353 0.358
Width 0.023 0.11 0.274 0.259 0.265

Ever tested for HIV No LCI 0.117 0.172 0.087 0.089 0.087
UCI 0.14 0.293 0.369 0.354 0.363

Width 0.023 0.121 0.282 0.265 0.276
Yes LCI 0.133 0.205 0.098 0.1 0.102

UCI 0.187 0.329 0.412 0.397 0.404
Width 0.054 0.124 0.314 0.297 0.302

Men

Unadjusted Marra Worst case JD IV
-0.022 0.007 -0.013 -0.017 -0.021
0.059 0.027 0.395 0.391 0.369
0.081 0.02 0.408 0.408 0.39
0.065 0.085 0.053 0.05 0.068
0.11 0.108 0.335 0.33 0.327
0.045 0.023 0.282 0.28 0.259
0.109 0.106 0.083 0.081 0.086
0.134 0.134 0.363 0.36 0.354
0.025 0.028 0.28 0.279 0.268
0.024 0.028 0.017 0.016 0.019
0.069 0.062 0.369 0.363 0.336
0.045 0.034 0.352 0.347 0.317
0.104 0.105 0.078 0.078 0.083
0.127 0.131 0.352 0.348 0.342
0.023 0.026 0.274 0.27 0.259
0.086 0.084 0.064 0.063 0.068
0.11 0.112 0.356 0.353 0.347
0.024 0.028 0.292 0.29 0.279
0.094 0.106 0.076 0.073 0.082
0.149 0.171 0.356 0.355 0.35
0.055 0.065 0.28 0.282 0.268
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S.7 HIV prevalence using 2003 Kenya DHS

In the 2003 Kenya DHS (KDHS), all men were selected for individual questionnaires, and all
women in the same household were approached for an HIV test. In total, there were 4183
eligible men and 4303 eligible women. HIV test was successfully conducted on 2941 of the
eligible men. In the remaining eligible men, 545 refused testing, 512 were not contactable, and
185 were not for other reasons. For eligible women, these numbers are 3283, 620, 257, and
141, respectively. For the Jiang and Ding method, we used 512+ 185 = 697 and 257+141 =
398 as missing at random for the men and women.

The observed HIV prevalence was 8.7% among women (n = 3283) and 4.7% among men
(n = 2941) (Table S.9). The age-specific analysis revealed variations in HIV prevalence, with
higher rates observed among older age groups. For instance, the 50+ age group had an HIV
prevalence of 5.8% among men. Additionally, urban areas showed higher HIV prevalence
(12.3%) compared to rural areas (7.5%). The relationship between HIV testing and several
potential instrumental variables is presented in Table refAtable7.2. We found significant as-
sociations between HIV testing and all instrument variables except iv.interviewer for women
and iv.doa for men.

For the method proposed in this paper, we use the same list of instrumental variables: iv.lan
(whether the language used in the questionnaire or interview is the same as the respondent’s
language, yes vs. no), iv.firstday (whether the interview was conducted on the first day of the
interviews, yes vs. no), iv.interviewer (number of interviews the interviewer has performed,
< 50, 50−100, > 100 for women and < 50, > 50 for men), iv.mon (whether the interview was
carried out during a month of harvest or planting, yes vs. no, in Kenya, 90% of the farmers
grow maize, and the main harvesting season is March-April and October-December), iv.doa
(whether the respondent knows someone who has died of AIDS, yes vs. no).

For both men and women, the width of the confidence intervals varies across different methods.
The Marra method generally produces wider intervals compared to the Unadjusted method,
indicating increased uncertainty when considering correlated data. The Worst case method
often has the widest intervals, while JD and IV methods generally yield narrower intervals
compared to the Worst case and Marra methods, reflecting their potential for more precise
estimates. The widths vary considerably across demographic and behavioural subgroups.

Our results (Table S.11) show that the imputation method gives very similar results to the
unadjusted results across all scenarios. The partial identification bounds always give confi-
dence intervals that are much wider. Between the two partial identification methods, the worst
case is always less precise than the method proposed in this paper. The improved precision
of the proposed method comes from a big reduction in the upper confidence interval. The
improvement ranges from about 10% to 30%.
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Table S.9: Observed proportions of HIV positive among the tested in 2004 Kenya DHS

Women Men
HIV prevalence Number HIV prevalence Number

All 0.087 3283 0.047 2941
Age 15-19 0.032 735 0.004 697

20-24 0.089 681 0.019 550
25-29 0.126 545 0.088 416
30-34 0.115 478 0.054 358
35-39 0.118 350 0.098 298
40-44 0.097 296 0.087 257
45-49 0.043 198 0.047 173
50+ – 0 0.058 192

Religion Catholic 0.089 776 0.047 749
Protestant 0.092 2074 0.047 1686
Muslim 0.027 357 0.029 301

None/Other 0.111 54 0.053 174
Residence Urban 0.123 985 0.078 856

Rural 0.075 2298 0.037 2085
Wealth quintile 1st 0.038 561 0.039 479

2nd 0.086 588 0.04 502
3rd 0.072 602 0.025 523
4th 0.097 640 0.045 614
5th 0.122 892 0.074 823

Education ≤ 6 0.074 1260 0.039 962
> 6 0.094 2023 0.051 1979

Married No 0.098 1287 0.024 1410
Yes 0.08 1984 0.069 1507

Partners last 12m 0 0.058 953 0.014 801
1 0.096 2259 0.053 1794
1+ 0.21 55 0.086 321

High risk sex last
12m

No 0.075 2875 0.045 2153

Yes 0.172 392 0.05 763
Condom use last
sex

No 0.084 3141 0.047 2571

Yes 0.153 124 0.04 344
STD last 12m No 0.084 3140 0.044 2819

Yes 0.19 118 0.146 77
Age first sex Never 0.016 539 0.009 457

≤ 15 0.122 956 0.051 1085
> 15 0.088 1771 0.054 1365

Sex last 12m No 0.058 953 0.014 801
Yes 0.099 2314 0.058 2115

Ever tested for HIV No 0.081 2785 0.042 2456
Yes 0.122 485 0.071 461
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Table S.10: Relationship between HIV testing and some possible instrument variables

(a): Women

D 0 1

Variable N Percent N Percent Test

iv.lan 772 3270 X2= 3.614∗

... 0 394 51% 1542 47.2%

... 1 378 49% 1728 52.8%

iv.firstday 1090 3333 X2= 7.45∗∗∗

... 0 600 55% 1674 50.2%

... 1 490 45% 1659 49.8%

iv.interviewer 772 3271 X2= 0.693

... 0 136 17.6% 575 17.6%

... 1 577 74.7% 2416 73.9%

... 2 59 7.6% 280 8.6%

iv.mon 772 3271 X2= 31.212∗∗∗

... 0 610 79% 2845 87%

... 1 162 21% 426 13%

iv.doa 767 3270 X2= 8.051∗∗∗

... 0 237 30.9% 843 25.8%

... 1 530 69.1% 2427 74.2%

Statistical significance markers: * p<0.1; ** p<0.05; *** p<0.01
†0: ≤ 50; 1: 50− 100; 2: > 100
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(b): Men

D 0 1

Variable N Percent N Percent Test

iv.lan 661 2915 X2= 12.931∗∗∗

... 0 340 51.4% 1272 43.6%

... 1 321 48.6% 1643 56.4%

iv.firstday 1352 3025 X2= 12.093∗∗∗

... 0 744 55% 1491 49.3%

... 1 608 45% 1534 50.7%

iv.interviewer 661 2917 X2= 0.041

... 0 25 3.8% 118 4%

... 1 636 96.2% 2799 96%

iv.mon 661 2917 X2= 28.131∗∗∗

... 0 525 79.4% 2551 87.5%

... 1 136 20.6% 366 12.5%

iv.doa 659 2917 X2= 0.578

... 0 177 26.9% 739 25.3%

... 1 482 73.1% 2178 74.7%

Statistical significance markers: * p<0.1; ** p<0.05; *** p<0.01
†0: ≤ 50; 1: > 50
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Table S.11: 95% confidence intervals for HIV prevalence estimates in 2004 Kenya DHS

Women

Unadjusted Marra Worst case JD IV
All LCI 0.081 0.104 0.061 0.068 0.067

UCI 0.098 0.181 0.323 0.243 0.267
Width 0.017 0.077 0.262 0.175 0.2

Age 15-19 LCI 0.02 0.033 0.016 0.017 0.02
UCI 0.05 0.1 0.299 0.205 0.239

Width 0.03 0.067 0.283 0.188 0.219
20-24 LCI 0.073 0.099 0.057 0.063 0.061

UCI 0.104 0.194 0.322 0.243 0.274
Width 0.031 0.095 0.265 0.18 0.213

25-29 LCI 0.112 0.128 0.085 0.096 0.094
UCI 0.149 0.23 0.368 0.277 0.306

Width 0.037 0.102 0.283 0.181 0.212
30-34 LCI 0.094 0.13 0.072 0.079 0.083

UCI 0.141 0.246 0.367 0.283 0.314
Width 0.047 0.116 0.295 0.204 0.231

35-39 LCI 0.094 0.121 0.074 0.08 0.085
UCI 0.143 0.251 0.358 0.287 0.307

Width 0.049 0.13 0.284 0.207 0.222
40-44 LCI 0.076 0.097 0.058 0.061 0.067

UCI 0.126 0.198 0.377 0.307 0.321
Width 0.05 0.101 0.319 0.246 0.254

45-49 LCI 0.029 0.053 0.022 0.022 0.024
UCI 0.069 0.175 0.34 0.281 0.287

Width 0.04 0.122 0.318 0.259 0.263

Men

Unadjusted Marra Worst case JD IV
0.042 0.042 0.029 0.036 0.033
0.054 0.087 0.352 0.207 0.229
0.012 0.045 0.323 0.171 0.196
-0.01 0.006 -0.007 -0.008 -0.008
0.017 0.026 0.265 0.138 0.171
0.027 0.02 0.272 0.146 0.179
0.007 0.016 0.005 0.005 0.008
0.03 0.057 0.37 0.222 0.242
0.023 0.041 0.365 0.217 0.234
0.072 0.051 0.046 0.059 0.058
0.102 0.14 0.444 0.271 0.281
0.03 0.089 0.398 0.212 0.223
0.042 0.06 0.029 0.036 0.044
0.072 0.147 0.388 0.222 0.242
0.03 0.087 0.359 0.186 0.198
0.084 0.062 0.056 0.069 0.062
0.121 0.153 0.441 0.291 0.341
0.037 0.091 0.385 0.222 0.279
0.066 0.058 0.047 0.056 0.056
0.105 0.172 0.395 0.262 0.268
0.039 0.114 0.348 0.206 0.212
0.023 0.033 0.015 0.017 0.018
0.077 0.106 0.415 0.274 0.29
0.054 0.073 0.4 0.257 0.272
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Table S.11: Continued

Women

Unadjusted Marra Worst case JD IV
Religion Catholic LCI 0.072 0.092 0.061 0.063 0.062

UCI 0.106 0.202 0.277 0.231 0.27
Width 0.034 0.11 0.216 0.168 0.208

Protestent LCI 0.081 0.096 0.067 0.07 0.064
UCI 0.102 0.18 0.274 0.227 0.266

Width 0.021 0.084 0.207 0.157 0.202
Muslim LCI 0.014 0.058 0.013 0.01 0.014

UCI 0.063 0.299 0.314 0.288 0.29
Width 0.049 0.241 0.301 0.278 0.276

None/Other LCI 0.078 0.049 0.052 0.052 0.057
UCI 0.144 0.239 0.41 0.401 0.4

Width 0.066 0.19 0.358 0.349 0.343
Residence Large city LCI 0.113 0.11 0.072 0.086 0.082

UCI 0.138 0.253 0.449 0.34 0.389
Width 0.025 0.143 0.377 0.254 0.307

Small city LCI 0.067 0.092 0.055 0.059 0.058
UCI 0.088 0.16 0.265 0.206 0.221

Width 0.021 0.068 0.21 0.147 0.163
Wealth quintile 1st LCI 0.023 0.084 0.025 0.024 0.022

UCI 0.065 0.143 0.199 0.149 0.168
Width 0.042 0.059 0.174 0.125 0.146

2nd LCI 0.067 0.093 0.061 0.061 0.065
UCI 0.104 0.147 0.241 0.199 0.2

Width 0.037 0.054 0.18 0.138 0.135
3rd LCI 0.056 0.076 0.047 0.051 0.054

UCI 0.091 0.158 0.279 0.209 0.235
Width 0.035 0.082 0.232 0.158 0.181

4th LCI 0.08 0.092 0.062 0.069 0.072
UCI 0.112 0.177 0.333 0.26 0.283

Width 0.032 0.085 0.271 0.191 0.211
5th LCI 0.112 0.12 0.068 0.083 0.078

UCI 0.137 0.257 0.467 0.358 0.396
Width 0.025 0.137 0.399 0.275 0.318

Men

Unadjusted Marra Worst case JD IV
0.035 0.034 0.03 0.03 0.036
0.06 0.093 0.243 0.19 0.217
0.025 0.059 0.213 0.16 0.181
0.038 0.04 0.032 0.034 0.036
0.057 0.093 0.235 0.177 0.226
0.019 0.053 0.203 0.143 0.19
0.013 0.024 0.011 0.008 0.011
0.068 0.173 0.359 0.305 0.34
0.055 0.149 0.348 0.297 0.329
0.025 0.022 0.023 0.02 0.025
0.081 0.123 0.294 0.255 0.285
0.056 0.101 0.271 0.235 0.26
0.066 0.039 0.037 0.051 0.047
0.087 0.156 0.481 0.289 0.334
0.021 0.117 0.444 0.238 0.287
0.031 0.035 0.024 0.026 0.027
0.046 0.072 0.29 0.175 0.178
0.015 0.037 0.266 0.149 0.151
0.026 0.041 0.022 0.023 0.028
0.056 0.084 0.28 0.186 0.18
0.03 0.043 0.258 0.163 0.152
0.027 0.037 0.022 0.025 0.035
0.055 0.075 0.267 0.152 0.171
0.028 0.038 0.245 0.127 0.136
0.014 0.027 0.011 0.012 0.014
0.038 0.065 0.309 0.184 0.189
0.024 0.038 0.298 0.172 0.175
0.032 0.028 0.024 0.028 0.036
0.061 0.066 0.34 0.214 0.244
0.029 0.038 0.316 0.186 0.208
0.062 0.047 0.035 0.047 0.047
0.082 0.131 0.478 0.287 0.328
0.02 0.084 0.443 0.24 0.281
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Table S.11: Continued

Women

Unadjusted Marra Worst case JD IV
Education ≤ 6 LCI 0.065 0.101 0.051 0.056 0.068

UCI 0.092 0.175 0.302 0.234 0.248
Width 0.027 0.074 0.251 0.178 0.18

> 6 LCI 0.086 0.101 0.064 0.072 0.07
UCI 0.105 0.19 0.342 0.253 0.288

Width 0.019 0.089 0.278 0.181 0.218
Married No LCI 0.086 0.102 0.068 0.073 0.073

UCI 0.111 0.192 0.301 0.247 0.295
Width 0.025 0.09 0.233 0.174 0.222

Yes LCI 0.072 0.078 0.059 0.062 0.061
UCI 0.092 0.168 0.26 0.226 0.25

Width 0.02 0.09 0.201 0.164 0.189
Partners last 12m 0 LCI 0.044 0.058 0.035 0.037 0.038

UCI 0.072 0.14 0.286 0.226 0.286
Width 0.028 0.082 0.251 0.189 0.248

1 LCI 0.09 0.113 0.075 0.078 0.074
UCI 0.106 0.208 0.27 0.231 0.256

Width 0.016 0.095 0.195 0.153 0.182
1+ LCI 0.172 0.148 0.149 0.154 0.148

UCI 0.248 0.376 0.369 0.345 0.428
Width 0.076 0.228 0.22 0.191 0.28

High risk sex last 12m No LCI 0.068 0.09 0.055 0.058 0.056
UCI 0.085 0.157 0.264 0.221 0.256

Width 0.017 0.067 0.209 0.163 0.2
Yes LCI 0.146 0.167 0.125 0.131 0.13

UCI 0.198 0.308 0.355 0.307 0.355
Width 0.052 0.141 0.23 0.176 0.225

Men

Unadjusted Marra Worst case JD IV
0.029 0.037 0.021 0.025 0.033
0.052 0.088 0.324 0.19 0.203
0.023 0.051 0.303 0.165 0.17
0.044 0.036 0.03 0.037 0.04
0.059 0.086 0.368 0.219 0.252
0.015 0.05 0.338 0.182 0.212
0.013 0.021 0.012 0.012 0.014
0.034 0.057 0.22 0.156 0.209
0.021 0.036 0.208 0.144 0.195
0.06 0.053 0.05 0.051 0.052
0.081 0.122 0.266 0.22 0.247
0.021 0.069 0.216 0.169 0.195
0 0.012 0.002 0.001 0

0.03 0.056 0.234 0.164 0.223
0.03 0.044 0.232 0.163 0.223
0.045 0.044 0.038 0.039 0.045
0.064 0.096 0.241 0.192 0.226
0.019 0.052 0.203 0.153 0.181
0.067 0.051 0.056 0.056 0.054
0.105 0.169 0.3 0.249 0.272
0.038 0.118 0.244 0.193 0.218
0.038 0.036 0.032 0.033 0.033
0.054 0.095 0.244 0.19 0.241
0.016 0.059 0.212 0.157 0.208
0.038 0.036 0.033 0.034 0.036
0.062 0.09 0.232 0.178 0.206
0.024 0.054 0.199 0.144 0.17
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Table S.11: Continued

Women

Unadjusted Marra Worst case JD IV
Condom use last sex No LCI 0.077 0.1 0.064 0.067 0.066

UCI 0.094 0.172 0.269 0.227 0.265
Width 0.017 0.072 0.205 0.16 0.199

Yes LCI 0.121 0.134 0.101 0.106 0.099
UCI 0.185 0.302 0.372 0.305 0.354

Width 0.064 0.168 0.271 0.199 0.255
STD last 12m No LCI 0.077 0.1 0.063 0.066 0.065

UCI 0.093 0.181 0.273 0.228 0.265
Width 0.016 0.081 0.21 0.162 0.2

Yes LCI 0.154 0.166 0.142 0.147 0.139
UCI 0.226 0.318 0.331 0.293 0.343

Width 0.072 0.152 0.189 0.146 0.204
Age first sex Never LCI -0.005 0.038 -0.003 -0.004 -0.002

UCI 0.036 0.105 0.264 0.196 0.262
Width 0.041 0.067 0.267 0.2 0.264

≤ 15 LCI 0.112 0.13 0.095 0.098 0.098
UCI 0.137 0.208 0.283 0.251 0.272

Width 0.025 0.078 0.188 0.153 0.174
> 15 LCI 0.077 0.105 0.063 0.066 0.064

UCI 0.102 0.194 0.283 0.239 0.274
Width 0.025 0.089 0.22 0.173 0.21

Sex last 12m No LCI 0.044 0.063 0.035 0.037 0.038
UCI 0.072 0.142 0.286 0.226 0.286

Width 0.028 0.079 0.251 0.189 0.248
Yes LCI 0.091 0.117 0.075 0.079 0.076

UCI 0.111 0.199 0.272 0.235 0.259
Width 0.02 0.082 0.197 0.156 0.183

Ever tested for HIV No LCI 0.075 0.092 0.062 0.064 0.064
UCI 0.091 0.18 0.263 0.222 0.258

Width 0.016 0.088 0.201 0.158 0.194
Yes LCI 0.103 0.124 0.081 0.087 0.08

UCI 0.141 0.259 0.342 0.281 0.314
Width 0.038 0.135 0.261 0.194 0.234

Men

Unadjusted Marra Worst case JD IV
0.041 0.038 0.034 0.036 0.035
0.055 0.09 0.236 0.183 0.232
0.014 0.052 0.202 0.147 0.197
0.022 0.03 0.02 0.019 0.022
0.057 0.092 0.263 0.21 0.244
0.035 0.062 0.243 0.191 0.222
0.037 0.035 0.031 0.033 0.031
0.052 0.086 0.239 0.183 0.231
0.015 0.051 0.208 0.15 0.2
0.1 0.112 0.098 0.091 0.098

0.193 0.307 0.31 0.298 0.319
0.093 0.195 0.212 0.207 0.221
-0.006 0.006 -0.003 -0.006 -0.004
0.026 0.036 0.238 0.165 0.226
0.032 0.03 0.241 0.171 0.23
0.039 0.038 0.034 0.035 0.037
0.063 0.09 0.228 0.181 0.214
0.024 0.052 0.194 0.146 0.177
0.045 0.046 0.037 0.039 0.042
0.066 0.115 0.266 0.208 0.266
0.021 0.069 0.229 0.169 0.224
0 0.015 0.002 0.001 0

0.03 0.065 0.234 0.164 0.223
0.03 0.05 0.232 0.163 0.223
0.052 0.044 0.043 0.045 0.044
0.067 0.108 0.245 0.197 0.229
0.015 0.064 0.202 0.152 0.185
0.035 0.035 0.029 0.03 0.033
0.051 0.083 0.23 0.179 0.218
0.016 0.048 0.201 0.149 0.185
0.056 0.045 0.045 0.049 0.052
0.087 0.139 0.299 0.221 0.289
0.031 0.094 0.254 0.172 0.237
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