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Abstract

In this paper, M-estimation and inference methods are developed for spatial dynamic panel data models with
correlated random effects, based on short panels. The unobserved individual-specific effects are assumed to be
correlated with the observed time-varying regressors linearly or in a linearizable way, giving the so-called
correlated random effects model, which allows the estimation of effects of time-invariant regressors. The
unbiased estimating functions are obtained by adjusting the conditional quasi-scores given the initial
observations, leading to M-estimators that are consistent, asymptotically normal, and free from the initial
conditions except the process starting time. By decomposing the estimating functions into sums of terms
uncorrelated given idiosyncratic errors, a hybrid method is developed for consistently estimating the variance—
covariance matrix of the M-estimators, which again depends only on the process starting time. Monte Carlo
results demonstrate that the proposed methods perform well in finite sample. An empirical application on the
political competition in China is presented.
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INTRODUCTION

Consider the spatial dynamic panel data (SDPD) model where the spatial effects appear in the model in the forms of
spatial lag (SL), space-time lag (STL), and spatial error (SE):
Yo = pyea + Wi +aaWoy o+ X B+ 2y + el +ug, (1.1}
uy = P-.3W3u[ + v, [ = 1. 2...., T,
where yr = (V. Y. - .-, Yur) and vy = (v, V2. .- -, va ) are n x 1 vectors of response values and idiosyncratic errors

at time t, and {v; ) are independent and identically distributed (iid) across i and t with mean zero and variance o?; the
scalar parameter p characterizes the dynamic effect, &, the SL effect, »; the STL effect, and 45 the SE effect; [X;] are



n X p matrices containing values of p time-varying exogenous variables, Z is an n x g matrix containing the values of ¢
time-invariant exogenous variables that may include the intercept, dummy variables (e.g., individuals’ gender and race),
etc.; B and y are the usual regression coefficients; W;, r = 1, 2, 3, are the given n x n spatial weight matrices; and u is
an n x 1 vector of unobserved individual-specific effects, & = {a,}!_, is a T x 1 vector of unobserved time-specific effects,
and 1, is an n x 1 vector of ones.

According to the way (u, o) relate to {X;}, the model is classified as: (i) fixed effects (FE) model if (u, ) are correlated
with X; arbitrarily; (ii) random effects (RE) model if (1, «) are uncorrelated with X;; and (iii) correlated random effects (CRE)
if (u, ) are correlated with X; linearly or in a linearizable way (see Footnote 1). M.-]. Lee (2002) called FE the related effects,
and RE the unrelated effects. So, naturally the CRE can be called the linearly related effects. The term CRE is a tribute to
Mundlak (1978), and Chamberlain (1982, 1984). In this work, we adopt the more popular terms: FE, RE and CRE, so that
the SDPD models specified in (1.1) can be: FE-SDPD model, RE-SDPD model, or CRE-SDPD model.

Extensive discussions have appeared in the panel model literature, see, e.g. Cameron and Trivedi (2005), Wooldridge
(2010), Baltagi (2013), and Hsiao (2014). The FE model has weaknesses (Cameron and Trivedi, 2005, p. 715-716): (i) it does
not allow the estimation of the effects of time-invariant regressors, e.g., gender, race; (ii) while coefficients of time-varying
regressors are estimable, these estimates may be very imprecise if most of the variation in a regressor is cross sectional
rather than over time; (iii) prediction of the conditional mean is impossible, instead only changes in conditional mean
caused by the changes in time-varying regressors can be predicted; and (iv) even coefficients of time-varying regressors
may be difficult or theoretically impossible to identify in nonlinear models. The RE model overcomes these difficulties,
but causal interpretation may then be unwarranted (Cameron and Trivedi, 2005, p. 715-716). The CRE model makes a
compromise between the two: overcomes the weaknesses of the FE model and at the same time captures the linear or
linearizable correlation between the ‘effects’ and the time-varying regressors.

The literature on spatial dynamic panels is fast expanding in recent years. However, most of the research on spatial
dynamic panel data models focused on the long panels (with large n and large T), see, e.g., Yang et al. (2006), Mutl (2006),
Yu et al. (2008), Yu and Lee (2010), Lee and Yu (20104, 2012, 2014); Bai and Li (2015), Shi and Lee (2017), with relatively
fewer works on the short panels, e.g., Elhorst (2010), Su and Yang (2015), Qu et al. (2016), Kuersteiner and Prucha (2018),
and Yang (2018). Most of the works on short panels are on the FE-SDPD model, except Su and Yang (2015) who considered
both FE- and RE-SDPD models but with only the SE effect built in the model. The general RE-SDPD model of the form
(1.1) has not been formally considered, and the more general CRE-SDPD model specification has not even appeared in the
literature. See Anselin et al. (2008), and Lee and Yu (2010b, 2015) for nice surveys on spatial panel data models. In this
paper, we give a full treatment on the estimation and inference for the CRE-SDPD model, which includes the RE-SDPD
model as a special case. We focus on the large-n and small-T setting, i.e., the short panels.

The CRE assumption renders a linear model for i based on the observed X;. We adopt the approach of Mundlak (1978)
and specify that u is linearly related to {X;} as,

w=Xr+e, (1.2)

where X = T%r] ZLO X: and ¢ is an n-vector of iid(0, 082) errors, independent of v; for all t. This can be extended to
i = Xomg + Xq71 + - - - + Xr7r + €, as in Chamberlain (1982, 1984), a spatial Durbin form as in Debarsy (2012), or any
linearizable relationship.’

Clearly, the advantages of the CRE-SDPD model over the FE-SDPD model are (i) it captures the typical correlation
between w and X; and at the same time allows the effects of time-invariant variables Z, such as gender and race, be
estimated, (ii) it may be more robust against possible existence of measurement errors and random coefficients, (iii) it
makes the prediction of conditional mean possible as it works with levels rather than on differences series as in FE-
approach, and (iv) it avoids the incidental parameters problem caused by the individual fixed effects, and hence may
increase the estimation efficiency greatly.> Therefore, it is highly desirable to carry out a formal study on the CRE-SDPD
model to provide a set of easy-to-use estimation and inference methods for applied researchers.

However, the CRE induces another set of errors &, associated with the model for the individual-specific effects pu,
besides the original set of idiosyncratic errors {v;}, which further complicates the initial conditions in the model estimation
and posts a much greater challenge in the estimation of the variance-covariance (VC) matrix of parameter estimates,
compared with the FE-approach. The key problem is that in short panels, the error components in the disturbance cannot
be separately estimated, rendering the outer-product-of-martingale-difference (OPMD) method of Yang (2018) for the FE-
SDPD model unapplicable. The full quasi maximum likelihood (QML) approach of Su and Yang (2015) is also unapplicable
as the usual way of modeling the initial observations based on a linear model may not be valid in the existence of spatial
lag terms, as discussed in Yang (2018).

This paper contributes to the literature of dynamic short panel data models with spatial dependence by (i) providing
an M-estimation method for the CRE-SDPD model, and (ii) introducing a new method for estimating the VC matrix of the

1 The intercept of Model (1.2) is absorbed into that of Model (1.1) for parameter identifiability (see Section 2.1 for details). By ‘linearizable’ we
mean any CRE relationship that can be written as or approximated by a model linear in a finite number of parameters. To keep our exposition
simple enough, we work with (1.2). For issue on parameter identification, see, e.g., Anselin et al. (2008, p.647), Elhorst (2012), and Lee and Yu
(2016).

2 The FE-approach treats p as unknown parameters, directly estimated or removed by some transformation. Hence, one period of the data is
‘lost” which may consist of one third or one quarter of the ‘usable’ data if T = 3 or 4, making a significant difference in estimation efficiency.



M-estimators, of which both are free from the initial conditions except the process starting time (—m). Our M-estimation
strategy provides a complement to Yang (2018) for FE-SDPD model. It starts by adjusting the conditional quasi score
function given the initial observations, to give a set of unbiased estimation functions or moment conditions that are free
from the specification of the distribution of the y, (the initial conditions) apart from the process starting time (—m). The
vector of estimating functions is then written as a sum with the n summands being martingale differences with respect to
individual-specific errors given idiosyncratic errors, so that a hybrid method that combines analytical derivations and the
feasible sample analogues is proposed for estimating the VC matrix of the M-estimators. The resulting VC matrix estimator
is also free from the initial conditions except the process starting time. The consistency and asymptotic normality of
the M-estimators are established, and the consistency of the VC matrix estimator is also proved. Extensive Monte Carlo
results show that, in finite samples, (i) proposed M-estimators perform very well, much superior to the conditional QML
estimators (QMLE), (ii) proposed VC matrix estimator also performs well, and (iii) in case of the simple RE-SDPD model
with only SE effect, the proposed M-estimator performs equally well as the full QMLE of Su and Yang (2015), but is
numerically much more efficient. Without time-specific effects and if T goes large with n as in Yu et al. (2008), the
proposed M-estimation method remains valid, and in this case, the usual method for estimating the VC matrix applies.

The CRE-SDPD model given in (1.1) is fairly general, embedding several important submodels obtained by dropping
one or two spatial effects, none of which has been formally treated in the literature except Su and Yang (2015).> The
proposed estimation and inference methods can easily be simplified to suit each special model of interest for a particular
applied problem. Very interestingly, in a simple static panel data model, i.e., setting p, A1, A, and A3 in Model (1.1) to
zero, one can show that the CRE-estimators of 8 under Mundlak’s and Chamberlain’s specifications reduce to the usual
FE-estimator (Cameron and Trivedi, 2005, Sec. 21.4.4, Krishnakumar, 2006; Hsiao, 2014, Sec. 3.4.2.1). However, we show
that such an equivalence fails to hold once we move away from these formulations (e.g., a subset of X; is correlated with
w), add dynamic terms, add spatial terms, etc.* These reinforce the need of a new set of estimation and inference methods
for the general CRE-SDPD model.

The rest of the paper goes as follows. Section 2 introduces the M-estimator for the CRE-SDPD model and presents its
asymptotic properties. Section 3 introduces the new method of estimating the VC matrix of the M-estimator. Section 4
presents Monte Carlo results. Section 5 presents an empirical application. Section 6 concludes the paper and offers some
further discussions. All the technical proofs are relegated to the appendices.

2. Estimation of SDPD model with CRE
2.1. Conditional QML estimation of CRE-SDPD model

Let B, = B.(A;) = I, — A,W,,r = 1, 3, and B, = By(p, A;) = pl, + A;W,. The CRE-SDPD model specified by (1.1)-(1.2)
has reduced form, fort =1,...,T:

Ve =By 'Boyi1 + By '(Xef+Zy + X + o 1,) + By 'e + By "By vy (2.1)

LetY = (y/l’ . ,y;—)/, Y,] = (y:), . ,y/Ti])/,X = (X{, ey X'l/')/' D= (IT,1®1;1, O(T,])O;I)/, and X = (1nT, D, X, 1T®Z, 1T®X),
where ® denotes the Kronecker product, 1, denotes a k x 1 vector of ones, Oy a k x 1 vector of zeros, and I a k x k identity
matrix. Further, lete = 11 ® e, v=(v},...,v;), W, =l ® W;, and B, = Iy ® B;, r = 1, 2, 3. The reduced form (2.1) can
be written compactly in matrix form:

Y =B;'B,Y_; + B, 'XB + B, 'e + B, 'B; 'v. (22)

where g = (&', 8/, ', 'Y with dim(8) =2p+q+ T, and & = (a7, 01 — o1, ..., 011 — o).
lete=¢+ B;lv be the composite error vector. As {&;} are iid(0, 082), {vi} are iid(0, avz), and ¢ and v are independent,
the variance-covariance (VC) matrix of e is:

Var(e) = o(Jr ® In) + 0;/(B3B3)" = 07 [¢(Jr ® In) + (B3B3) '] = 0,22, (23)
where ¢ = 02/02. Let & = (A1, A2, A3), 0 = (B, p, A1, A2) and ¥ = (B, 02, ¢, p, A'). Assume X is exogenously given.
The quasi Gaussian loglikelihood, treating ¢ and v as normally distributed and y, as exogenously generated (conditioning
on yg), is

T 1
Lsppp (V) = —n? log(2mo;) — 5 108182(¢. 23| + log [B(A1)] — (0)27(, A3)e(6), (2.4)

—e
202
where e(0) = B;Y — B,Y_; — XB, and |-| denotes the determinant of a square matrix.

Maximizing £sppp(y) gives the conditional QML estimator (QMLE) . of . However, yo is not exogenous unless
m = 0 (data collection starts when process starts) and & and/or v may not be normal. Thus, £sppp(¥/) may not be a

3 They considered an SDPD model with RE and spatial error (i.e., setting A, and A, to zero in Model (1.1), and setting = to zero in Model (1.2)),
and a full QMLE by modeling the initial observations.

4 We thank a referee for pointing out this simple connection and for raising the issue on its possible existence in general. See Supplementary
Appendix at http://www.mysmu.edu/faculty/zlyang/ for details.
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true loglikelihood function and maximizing it may not give a consistent estimate of v, in particular when m > 0 so
that yo is endogenously generated. When T is also large, consistency may be achieved as ignoring the endogeneity in
Yo is asymptotically negligible. However, it may still suffer from the asymptotic bias problem. To solve these problems,
we adopt the fundamental idea of Yang (2018) to ‘correct’ the quasi score functions to give a set of unbiased estimating
functions or moment conditions.

2.2. M-Estimation of CRE-SDPD model

The quasi-score function, Ssppp(¥) = %ESDPD(V/), has the form:

X Q27 e(0),
Lee()2e(6) — 2L,
Tze (0)27'(Jr @ )27 "e(6) — 5 t[27'(Jr @ )],
Ssopp(¥) = e(0)271Y .y, (2.5)

€'(0)27'W1Y — tr(B; 'Wy),
(0)27W,Y_y,
€(0)27162;,,27e(0) — u(27142;,).

1
)
Ty

1
2¢
Ty

Py
s
L

L

2

where .('ZA3 = (B;B3)"!(B;W5 + W;,B5)(B;B;)"", and tr(-) is the trace of a square matrix.

Let 1o be the true value of 1. A parametric quantity evaluated at the true parameters is denoted by adding a subscript
‘o), e.g., Bio, £29. The usual expectation and variance operators E(-) and Var(-) correspond to the true parameters. We
derive E[Ssppp(¥0)], and show that the (p, A1, A;)-components of E[Ssppp(1/o)] are generally not zero, and that the same
components of plim,,_, o, nTSSDpD(wo) are not zero. Thus, the conditional QMLE 1//‘c cannot be consistent.

Assumption A. Assume (i) the processes started m(> 0) periods before the start of data collection (Oth period), and then
evolve according to Models (1.1) and (1.2), (ii) y_, and z; are exogenous, and (iii) the individual specific effects u are
related to X; linearly or in a linearizable way with additive errors ¢ independent of v;, t = —m+1,...,T.

It is easy to show that the (,3,03, ¢, A3)-components of E[Ssppp(1/o)] are all zero. The derivations of the other
components are complicated by the additional time-invariant error component ¢ (induced by the CRE-formulation), which
generates cumulative impact on y;, t = 0,1, ..., T. Recursive substitutions on (2.1) lead to the following important
lemma.

Lemma 2.1. Suppose Assumption A holds. Assume further that the errors {vy} in Model (1.1) are iid(0, %20) across i and t, the
errors {&;} in Model (1.2) are iid(O0, ‘7520)' and {v;:} and {e;} are independent. If both B;Ol and B;O] exist, then we have form > 1,
E(Y_1€") = 07(¢oC_10 + D_10), (2.6)
E(Ye') = 07y(¢Co + Do), (2.7)

where € = C(p, A1, Az, m), C_q = C_4(p, A1, A2, m), D = D(p, A1, A2, A3), and D_1 = D_1(p, A1, A2, A3) are nT x nT
matrices, defined as follows: C = [1; ® (C}, C}, ..., C})I and €y = [17 ® (C), C}, ..., C}_,)I, where C, = (3125~ BB}
and B = B, 'By;

Dy 0 0 O 0 0 0 O

D4 Do 0 O Dy 0 ... 0 0

p_|D: Di 00 and D_,=| D1 Do ...0 0

DT—l DT—2 cee D1 DO DT_2 DT_3 e Do 0

where D; = B'B;'(B,B3)™"
The results of Lemma 2.1 lead immediately to

E(e'$2y'Y_1) = tr{(¢oC_10 + D_10)82, '], (2.8)
E(e'$25 'W1Y) = tr[(¢oCo + Do)$2; 'Wil, (2.9)
E(e'$2y 'W,oY_1) = tr{(¢oC_10 + D_10)82, 'W5], (2.10)

showing that the (p, A1, A2)-components of E[Ssppp(0)] are generally not zero, and more importantly, the (p, A1, A2)-
components of plimn_)oo%SstD(wo) are not zero. Therefore, the conditional QMLE . cannot be consistent in general.



It is very interesting to note that these quantities are free from the specification of the distribution of the initial
observations yq, except the process starting time (—m) embedded in the matrices C and C_4. Thus, these results provide
a simple way to adjust the conditional quasi-scores, Ssppp(¥p), SO as to give a set of unbiased estimating functions or
moment conditions free from the initial conditions except m.> Unlike in the FE-approach of Yang (2018), where ¢ is
differenced away, we need to account for its presence which is not trivial.

The adjusted quasi-score (AQS) functions are:

1x’sz e(6),
% (0)27"e(0) — 3.
% )27 ® [)27e(0) — 1tr[27'(Jr @ 1)1,

(0
Step(¥) = €'(0)27'Y_1 — tr[(¢pC 1 + D_1)271], (2.11)
€'(6)27 "W, Y — tr[(¢C + D)2~ W],
e(6

)R27TW,Y_; — tr[(¢C_q + D_1)2 7 'W;],

L
2
oy
1
2
oy

1
2
oy

1

5 3e/(0)9*‘m39* e(0) — tr(27142;,).

It is easy to show that E[SSDPD(I/I())] = 0, and that plimnﬁw%Sg"pr(wo) = 0. Solving the estimating equations
Séppp(¥) = 0 gives M-estimator 1//»4, which is shown to be consistent and asymptotically normal under some regularity
conditions in Theorems 2.1 and 2.2.

The equation solving process can be simplified by first solving the equations for 8 and o2 given § = (¢, p, A') to
obtain the constrained M-estimators of 8 and o as

B(8) = (X' 27'X)"'X' 27 (BY — B,Y_;), (2.12)
62(8) = lé/(a):z”é(a), (2.13)
nT

where &(§) = B1Y — BY_; — Xﬁ( 8). Substituting them back into the last five components of the AQS functions gives
the concentrated AQS functions Sgfy,(8) (see (B.1), Appendlx B). Solvmg SSDPD((S) = 0, we obtain the unconstrained
M-estimator 8M of 8, and the unconstrained M-estimators ﬁM = ,8( v) and a = 62(6y) of B and o2, Thus, Yy =

(ﬂMv v,M» 8

Remark 2.1. From the way that the AQS function is defined in (2.11), we see that the M-estimator lsz for the CRE-
SDPD model specified by (1.1) and (1.2) is free from the specification of the distribution of y,, except the value m that is
unknown.

However, this does not pose a serious problem as (i) in practice one is often able to ‘tell’ roughly the value of m from
the data, and (ii) @M is quite robust against the changes in the value of m. See Elhorst (2010) and Su and Yang (2015) for
similar remarks.®

2.3. Asymptotic properties of M-Estimator

To proceed with a formal study on the asymptotic properties of the proposed M-estimator, some generic notations are
helpful: blkdiagy(- - -) forms a block-diagonal matrix based on the given matrices, ymin(-) and ymax(-) denote the smallest
and largest eigenvalues of a real symmetric matrix, and || - || denotes the Frobenius norm of a matrix.

Assumption B. The innovations v; are iid for all i and t with E(vi) = 0, Var(vy) = %20- and E|vg|*t < oo for some
€0 > 0. The innovations ¢; are iid for all i with E(g;) = 0, Var(e;) = 0820, and E|g;|*T%0 < oo for some ¢y > 0.

Assumption C. The parameter space A of § is compact, and the true parameter vector & lies in its interior.

Assumption D. The elements of (y_;,Z,X¢), t = —m+1,...,0,...,T, are uniformly bounded, and the lim,_, » %X’X
exists and is nonsingular.

5 The full QMLE:s of the regular dynamic panel data model of Hsiao et al. (2002) and the SE-SDPD model of Su and Yang (2015), where the initial
observations are modeled, also depend on m.

6 Under simpler models with full QML estimation, Hsiao et al. (2002) recommended to estimate m together with the other common parameters;
Su and Yang (2015) pointed out that m may not be separately identified unless the ‘lag’ parameter p # 0. In our general model, m may be identifiable
unless the ‘lag’ parameters (p, A1, A2) in B are all zero. We choose this practical approach to avoid additional numerical complications.



Assumption E. (i) For r = 1, 2, 3, the elements w, ; of W, are at most of order h;!, uniformly in all i and j, and w; ;; = 0
for all i; (ii) hp/n — 0 asn — oo; (iii) {(W,,r = 1,2, 3} and {B,, ! r = 1, 3} are uniformly bounded in both row and
column sums; (iv) For r = 1, 3, {B;"!} are uniformly bounded in either row or column sums, uniformly in A, in a compact
parameter space A;, and 0 < ¢, < infy,c4, Ymin(B;Br) < Sup;, c4, Ymax(B/Br) < ¢ < o0.

Assumption F. (i) ZZO BB exists and is uniformly bounded in both row and column sums, and (ii) Zfzoo B! is invertible
for (11, A7) in a neighborhood of (119, A20).

Assumption B is standard in spatial panel data models with error components (see, e.g., Su and Yang, 2015).
Assumption C is needed in establishing the consistency of dy. Assumptions D and E(iv) guarantee the existence and
nonsingularity of lim,_, o %X’.Q‘lx, so that once § is identified, the identifications of 8 and avz follow. Assumption E
parallels Assumption E of Yang (2018) and relates to Lee (2004). Allowing h, to grow with n but at a slower rate is useful
as it corresponds a spatial layout where the degree of spatial dependence increases with n. See Lee (2004) and Yang (2015)
for related discussions. Due to the cumulative impact of &, from the past, we need Assumption F(i) to ensure that the
initial observations yo have a proper stochastic behavior when m = oo, e.g., hn Lyo@yo—E(yo®@yo)] = 0p(1) for @ uniformly
bounded in either row or column sums with elements of uniform order h;’ ] . Clearly, it is satisfied when ||By|| < 1, giving
> B‘ (I, — Bo)~ . A similar assumption is made in Yu et al. (2008). Assumptlon F(ii) is needed for feasible VC matrix
est1mat10n R _

To establish the consistency of dy, define Sgp () = E[Sgypp(¥)], the population counter part of the AQS function.
Given §, the populatlon AQS equations Siypp() = 0 are partially solved at B(8) = (X'27'X)"!X'27'(BEY — B,EY_;) and
65(8) = n(T T E[e(5) 27 'e(8)], where &(8) = (9)|B:B(5)= B:Y —B,Y_; — XB(5). Substituting 8(5) and 63(6) back into the
last five components of S;‘DPD(l/f) leads to the population counter part of the concentrated AQS functions, which is denoted
by §§BPD(8) (see (B.2), Appendix B). It is easy to see that the M-estimator Sy of 8 is a zero of S&tep(8), and &g is a zero of

5155p(8). Thus, by Theorem 5.9 of van der Vaart (1998), & will be consistent for 8 if supse 4 - || Sz5pp(8) — SiSen(8) | —= 0,
and the following identification condition holds.

Assumption G. infs. g(s5,5))=¢ ||§§BPD(8)|| > 0 for every ¢ > 0, where d(§, 8y) is a measure of distance between 8y and §.

Theorem 2.1. Suppose Assumptions A-G hold. Assume further that (i) ymax[Var(Y)] and ymaX[Var(Y 1)] are bounded, and
(ii) infsen ymin[Var(BiY —ByY_1)] = ¢, > 0. We have, as n — oo, Su —2> 8o. It follows that Yy — .

To establish asymptotic normality of the proposed M-estimator wM, the following representations of Y and Y_; in terms
of yo = 11 ® yo and e are very useful.

Y=Qyo+n+Se and Y =Q_1yo+n_;+S_qe, (2.14)

where Q = blkdiag(Bo, B2, ..., B}), Q-1 = blkdiag(ly, B),...,B) '), S = RBy, S.1 = R_iBy), n = SXB,,
n_y = S_1XBo,

Iy 0 0 ... 0 0 0 0 ... 0
By I 0 ... 0 I 0 0 ... 0
]R = . . . .. : and ]R71 = : . . . :
Bgl 85283*3 U 35235335*“ ... 0
By the representations given in (2.14) the AQS vector at v is written as
ITge,
/ nT
e'dpe — 202
e dye — (2, ' (Jr ® In)],
s;DPD(WO) = e/lp]oyo + Héoe + e,q)y,oe — tr[(¢oc_10 + D_lo)Qal], (215)

€' W0 + ITjpe + € Pyge — tr{(¢oCo + Do)2, 'Wi1,

€' Wsoyo + ITje + € dspe — trf(poC_1o + D_10)$2, 'W>],

e Pgoe — 1tr(52; ' 250).

where IT; = LQ7'X, IT, = 1:2 0y I3 = 19 "W, and 1, = 19 Wo_p; @1 = 55527, &= 527 (h®
)R, @ ’ Le7s, by = Lo WS, ®s = LTS, ind o5 = 2" 19;;:2*1; v, = %Q”Q,l,
W, = 152 1W1Q and ¥; = 19 1w2@ 1.

Ase=e + BV, Y and Y,1 are further represented as

Y=Qyo+n+Se+Bv and Y_1=Q_1yo+n_;+S_1e+B_yv, (2.16)



where B = SB;(]] and B_; = S_1B;01. Thus, S&pp(1o) are further expressed in terms of v, ¢ and y,. Using backward
substitution on Eq. (2.1), we have, for m > 1:

m—1 m—1 m—1
Yo=B"y_w+ Y BBXB+ ) BB+ ) 5BB vy
k=0 k=0 k=0
= m + Kné + Vi, (2.17)
where 0, = B"y_m + Zsz_ol B"Bl’lx_kﬂ, being the mean of yy given Y_,, and X_;, k =0, 1, ..., m and thus exogenous;
K=Y 10 BB Vi = 3 iy B*B7 B3 'v_y; and X_ collects all the regressors’ values at the (—k)th period. Obviously,
Vin is independent of ¢ and v¢, t = 1, 2, ..., T. Therefore, the components of S, (o) are linear combinations of terms

linear-quadratic in v, linear-quadratic in &, and bilinear in ¢ and v, in € and V,,,, and in v and V. These lead to a simple way
for establishing the asymptotic normality of the AQS vector S, (o), and thus the asymptotic normality of the proposed
M-estimator.

Theorem 2.2. Under assumptions of Theorem 2.1, we have, as n — oo,

VT (4 — %) —> NI, lim E5500 (Vo) Then(Yo) Zipen(Yo)].

where X3 .0(Y¥o) = E[a",Sg‘DpD(lpo)] and [ghep(Vo) = Var[SSDpD(wo)] both assumed to exist and X, (o) to be
positive definite, for sufﬁaently large n.

3. Robust VC matrix estimation of M-Estimators

The expected negatlve Hessian matrix ESDPD(w) can be consistently estimated by its observed counter part fg‘DpD =
-7 d;/’ S&oep(¥)I v The detailed expression of 57 Sgn() is given in Appendix B. Unfortunately, none of the existing
methods can be used to estimate I g;pp(¥0). The tra 1t10nal plug-in method requires the unconditional distribution of y, or
a valid model for yo when T is fixed, of which neither is plausible as the unconditional distribution involves unobservables
and a valid model seems very difficult (if not impossible) to formulate, in particular when the model contains spatial
lag terms (Yang, 2018). To overcome these difficulties in estimating the VC matrix for the FE-SDPD model, Yang (2018)
proposed an outer-product-of-martingale-difference (OPMD) method, where the AQS function of the FE-SDPD model is
decomposed into a sum of vector martingale difference (MD) sequences so that the average of the outer products of the
MDs gives a consistent estimate of the VC matrix of that AQS function. However, this OPMD method does not apply to
our CRE-SDPD model due to the existence of two error components ¢ and v;.

A new method of feasible and consistent VC matrix estimation is needed. We see that the representations given in

(2.15) are crucial in obtaining such an estimate. From (2.15) we see that the AQS function contains three types of elements:

M'e, ede, and e'V¥y,

where IT, @, and ¥ are nonstochastic matrices depending on o with IT being nT x dim(g8) or nT x 1, and ¢ and ¥
being nT x nT. The closed form expressions for the variances of IT’e and e¢’®e can be derived but the plug-in method
cannot be applied as their analytical expressions involve the 3rd and 4th moments of both &; and v;, which cannot be
consistently estimated simultaneously with a fixed T. Furthermore, the closed-form expressions for the variance of ' ¥y,
and its covariances with IT’e and e¢'®e depend on the past values of the regressors and the process starting positions,
which are unobserved. Thus, the plug-in method based on the full analytical expression of Iy, does not work either in
this case.

As neither the traditional plug-in method nor the OPMD method works for estimating Igp,, an alternative method
must be developed. To fix the idea, we again, as in Yang (2018), endeavor to decompose S&pp (o) into a sum Zf 1 8i such
that {g;} possess some ‘desirable propertles and a feasible estimator for Igypp can thus be developed. Difficulty lies in the
fact that the composite error, e; = 8+B v, consists of two components v; and &, which cannot be ‘consistently’ estimated
simultaneously due to the fixed T nature. Thus, although {g;} can be written as MD sequences separately in terms of ¢
and v, it cannot be estimated this way as only the estimates e, are available. However, if the decomposition Z?:l g is
such that g; and g;, j # i, are uncorrelated with respect to ¢ for given {v;}, then a hybrid method, i.e., combining sample
analogue and the analytical expressions, can be developed for estimating I'gy,p. Note that based on Sgpp (o) = > 1 &

Toep = E[SSDPDwo)s;spD Vo)l = ZEglg, + —Z 2 (&:)). (3.1)

i=1 j=1,j#i

The single-sum term Zl 1 E(gig;) may be estimated by its sample analogue Zf:] g8/, where g; is the plug-in estimate of
g; by plugging l/fM and &; in g;. For the double-sum term, we derive ‘semi-analytical’ expressions in terms of g, ufo) and



uvo (the 3rd and 4th moments of the idiosyncratic error vy ), and the initial values yo, so that a mixture of the plug-in and
sample analogue methods can be applied. We choose g; in such a way that thls method is free from the specifications of
the distributions of the initial observations, and that it involves only Nvo and va of which estimates are readily available.
The latter is achieved by transforming yo so that the transformed yy has an error structure similar to e;:

Vo =K,'vo=¢e+K, "nm + K, 'V = e+, + V5, (3.2)

see (2.17). Clearly, making ¢ ‘stand out’ in the above expression as in e is to take a full advantage of the MD structure
in & so that, in the double-sum part of (3.1), the 3rd and 4th moments of ¢; do not appear and some complicated terms
disappear. This is important as the 3rd and 4th moments of &; cannot be consistently estimated together with these of
vie. The invertibility of K,;, m > 1, is ensured by Assumption F(ii).

To proceed, for a square matrix A, let A%, A' and A? be, respectively, its upper-triangular, lower-triangular, and diagonal
matrix such that A = A" 4+ A' + A% Denote by I1;, & and ¥, the submatrices of I7, ® and ¥ partitioned according
tot,s = 2,...,T. Denote the partial sum of time-indexed quantities using the ‘,’ notation: e.g., ¥;, = 25:1 Y,
V= ZL] Wi, Uyy = ZL] Zstl Wy, and similarly for @, I1; and other time-indexed quantities.

First, to estimate the variance of e’ ¥y, letting ¥,; = W;;Kn, we have:

T T T
e€Uyo = Y ) €Wy = Z AR
t=1 s=1
T
= Ze;lllffy’g + Ze L+ vty
=1

T
= Zet TYS Zeégt
= Z (Z eir W [+.V0, Z elt$1t>

i=1 t=1

where {&;} = & = (lI/;i + ¥ )yp and ¥, is the ith diagonal element of ¥/ ,i =1,
Noting that e, = ¢ + B;lv[ and yj = & + n;, + V5, we have, E(e] Wi Vo) = o lI/“ i+ = dy ir, and E(e};&;) = 0. These
lead to €Wy, — E(€'¥yo) = Y i, 8w i, where
T
8wi= Z[(eir‘l’izwya —dy ic) + eikic]. (33)

t=1

i.e., @Yyyo — E(e’Wyyp) is decomposed into a sum of n ‘gradients’.
Similarly for the terms quadratic in e, we have

T T T T
eve =Y eduec =) Y €(Ph+ L+ D e

t]sl tls]

= ZZe¢ eﬁZZef es+ZZ€ e

t]sl t=1 s=1 tlsl

= ZZe d>tses+ZZe; es+ZZet®”/

tlsl tlsl t=1 s=1

- Y4 Yoo+ Yo Yol

tl s=1

= Ze;ef + Ze;@,
= Z(Z elte,[ + Z elt(plt)y

i=1

where ef = "I, @de; with elements €%, and ¢ = Y 1_,(®L + @¥)es with elements .



Letting aj ., b} and ¢/, be the ith row of (®} + ®¥), B;' and (&} + ®¥)B; ", respectively, we have e}, = &1 +
S ®jisbjvs and @ = a,..e+ S, ¢l vs. It follows that
T
E(eie}) = E[(6i + bjue)(Picvei + Y Pissh{vs)] = 02 ®ii v + 0@t ae(bibi) = dio it

s=1
T

E(einic) = E[(&i + bjue)a) & + Y ¢ vs)] = op(bicie) = dao -
s=1
These lead to €' ®pe — E(e'Poe) = Y i, 8o i, Where
T

2o =) _[(ewe; — digit) + (eicpic — dro ic)]- (3.4)
t=1

Finally, for the terms linear in e, E(/7’e) = 0, and, letting [T/, be the ith row of IT;,

n T n
= Z(Z Iiey) = Zgl'l,i- (3.5)
i=1 =1 i=1
The decompositions of the three types of quantities into sums with ‘gradients’ given by (3.3)-(3.5) lead to a ‘possible’ way
for a consistent estimate of the VC matrix of the AQS function.

For each ¥,,r = 1, 2, 3, defined in (2.15), define gy, ; according to (3.3); for each @,,r = 1, ..., 6, defined in (2.15),
define g4, ; according to (3.4); and each IT,,r = 1, 2, 3, 4, defined in (2.15), define gp, ; according to (3.5). Define,

&my.i»
8.5
&a,.i»
8 =\ &my.i T 8as.i + 8wy.is (3.6)
8r3.i t 8o, + uylis
8ryi + 8os.i + &uws.is
8ag.i-
Then, the AQS vector at the true parameter value is Sipp(¥o) = Y ., and its variance is given by (3.1), ie

var [Siep(¥0)] = Y E(gig) + D1, > i1 E(gig), where the single sum can be estimated by its sample counter
part Y i , &g with g being obtained by replacing ¥ and e in g; by their estimates Y and &, and the double sum is
estimated using its semi-analytical form shown in the following lemma.

To simplify the representation and to facilitate the calculations, let x; and =, be the column(s) of IT = (114, I1>, I15,
), forr,v = 1,2,..., ks, where k,, = dim(B) + 3, and g,, and g,, be the corresponding gradients vectors defined
according to (3.5).

Lemma 3.1. For the gradient pairs (gx, i, &x, j) T,V = 1,..., ke, (80,.i»80,j),7,v = 1,...,6; and (gu, i, 8w, j) T,V =
1, 2, 3, corresponding to (x,, ,), (D, @,), and (¥,, ¥,)), respectively, we have under Assumptions A-B, forj #i(=1,...,n)
and m > 1,

T
E(gr,.i 8r,.j) = 0oo(bib) Y e, (3.7)
t=1
T T
E(80,.i80,5) = 0uo Y Y _[(bci 6 )(bics o) + (Db €l 15)]
t=1 s=1
T
+ 01;200320 Z[avﬁ,f+(bj/‘c:<i,+t) + afij,t‘*(btcw +t) + (b b )( Ay, H—av; H—)]
t=1
T
MUO - 3Gv0 Z b ®Cr1 tt b QCUJ tt)] (3'8)
t=1

T
E(8ur.i 80, ) = 0oo(Wrij. it ) + Z Dby E(ES £ - (3.9)



T
E(80,.i8n,.1) = 1y Y (bi © € )by, (3.10)
t=1
T

E(8uy.i 8n ) = 0o Y oy (E(& (]by), (3.11)
t=1
T

E(80,.i80,j) = 0405 Z[(b;bj)(a;i,[+w:j,[) + wyjie(bics 1) + Pii e woji e (biby)]

t=1
T
+ oWy 1 44 )+ 115y Y (bi © € Y BECES ), (3.12)
t=1
where &7 = wy v, wyi,, a5 and ¢ are the 1th row of W', ., & = (@ , s+ Pry + tbﬁ i) and @F B3 !, respectively;
and ayj 4 and wy 4 are the (i, j)th element of (@ t+ + @, ) and (¥, ’++ + lI/r*Lr) respectively.

From (3.6), it is clear that E(gig)), i # ], can be obtamed from the results of Lemma 3.1. Note that the (I7, @) terms

of E(glgj) are analytical functions of vy, /Lvo and “uo' and hence can be estimated by plugging-in consistent estimators
of these parameters. However, the ¥-related terms are also functions of E(yo) and E(yoyo) that appear in E(§;,) and

E(g;;,tgjj,t) besides these parameters. Consistent estimators [i}; () and M(‘” of /,L ) and ,u ) are readily available as seen
below, but the estimation of E(yo) and E(yoyy) is not trivial. Their expressmns 1nvolve unobservables and thus cannot be
used. In this paper, we propose to estimate the terms involving E(§;; ) and E(Sﬂ & v +) by their sample analogues and the
other analytlcal terms by plugglng -in method, i.e., removing E in the expressions and then replacing (in all terms) v,
l‘vo and [LUO by WM. M(3 and i 4)_ The resulting estimator E(g,g’) of E(g,g’) is thus mixtures of plug-in method and sample
analogue method. The resultmg estimator of the variance of the estlmatmg functions, I'gypp, is given as follows,

Tsppp = ZQ,@: + — Z Z g1 (3.13)

i=1 j=1,j#i
Its consistency is proved in the following theorem.

Theorem 3.1. Under the assumptions of Theorem 2.1, we have, as n — oo,

n

~ 1 R
Tgpep — Tgppp(Y0) = T Z[gigr/' - E(gig1 Z Z r (gig;) — E(gig; ] 0,
i=1 1=1 j=1,j#i
1,5 1,4 _ - p
and hence, E;DP]D(wM)FSﬁ)PngDP})(wM) - E;DP]D(wO)FSﬁ)PD(WO)E;DPlD(wO) — 0.
Fmally, we present a pair of simple and consistent estimators of the 3rd and 4th moments of vy, ,uB) and u . Let

e¢=131_,eand ¥ =13 /_ v.Then, we have v, — o = Bs(e, — &). Letting v} = v, — ¥, we have E(v;’) = %Mg)-
An estimator of ,u( ) is naturally

W= T2 3T+2 nT 223

t=1 i=1
To estimate u , we take first difference of e; to get rid of the error component related to the CRE term. After first
differencing, we have Avy = B3Ae,, t =2,...,T,and
E(Av}) = El(vie — viu—1)*] = E(v ,t)+E( t1) + 6E(iv?, ) = 2uY + 6oy,

Therefore an estimator of u() can be: 4{) = 5. 31 | Avj — 36, for any t = 2,..., T. Obviously, one should combine
these to give a pooled estimator:

~ (4 ~4
Y = s D3 a0 - 360
t=2 i=1
A computational note. The calculation of the double summation term in (3.13), i.e., Z, , Z =1 (glg’ ), is greatly

facilitated by writing (3.7)-(3.12) in matrix forms for all i, j, using the Kronecker product ® operator and the Hadamard
product operator ©:

T
Ay, m,) = 07B3 © (Z nrtn;t), (3.14)

t=1



T
AW, 0,) = olo(0 O W, )+ 0% Y By OEE £, (3.15)

t=1

T T
((pr’ - 01?0 Z Z[ ¢r tsB3) © B3(pu st) +B30 (¢r tsB3(pv ts)]
t=1 s=1
T
+ 0202 Y [0, O (D] (Bs) + @F, O (Bs®) )+ B3 O (9], D,,)]

t=1

T
+ (1l = 3010) > [B5 © (@7 (B H][B5 " © (@ B5 1] . (3.16)
. t=1
AWy, m,) =05 Bs © [ Y EE ), ], (3.17)
. t=1
APy, 1) = 1) Z[B O (P B;")]By 'diag(m,), (3.18)

=1
T

APy, ¥,) = 540(‘pro,++ ow )+ 0005 Z[B3 O (7, W)+ (#°B3) © Wu*/t+]
=1

T
+ iy Y [Bs' © (@7 B5)]By diag[E(E] )], (3.19)
t=1

where B; = (B;B3)"!, @], = &}, + &¢ (o and 7, = =0l +ov,,.
Then, it is easy to see that 2,21 Z]:],j;/:l (gw, 8uwj) equals the sum of the off-diagonal elements of A(w, w), for

oW = W, ..., Tk, Y1, ¥, Y3, and Py, ..., Pg, which lead immediately to Y , Z]'?:Lj#i E(gig/) and its estimate
Z?:l Z}?:],j;ﬁ,‘ E(gigj{)‘

A final discussion is given to the case where m = 0, i.e., yo is exogenous. In this case, it is obvious that the conditional
QML method is valid for parameter estimation. But for the VC matrix estimation, the traditional plug-in method still
cannot be applied under fixed T scenario, due to the coexistence of 3rd and 4th moments of the two error components.
In contrast, our new method applies and all we need is to re-derive the ¥ -related results of Lemma 3.1 under exogenous
Yo, which take the following simple forms:

T

E(guyi unj) = 09 Y _(b[BE(ES &5,). Tov=1,2.3, (3:20)
t=1
T

E(guri Gng) = 00 D 0 (&S Jbby), 1=1,2,3, v=1,... ky, (321)
t=1
T

E(go,i80,j) = 1y ¥ (i Ol )bEES,), r=1.....6, v=1,23, (3.22)
t=1

where & = w{yo, and wy is the ith row of (¥, + wY).
4. Monte Carlo study

Extensive Monte Carlo experiments are run to investigate the finite sample performance of the proposed M-estimator
of the CRE-SDPD model, and the finite sample performance of the proposed estimate of the VC matrix of the M-estimator.
As in the special case of a RE-SDPD model with only spatial errors the full QMLE is available from Su and Yang (2015), a
comparison is made between the full QMLE and the proposed M-estimator. We use the following three data generating
processes (DGPs):

DGP1: y: = pyr—1 + Wiy + 2oWoyr 1 + XeB+Zy + 1+ o 1y + 1,
DGP2: y; = pyt—1 + Wiy + AoWoyr 1 + XeB+Zy + & + o1y + 1,
DGP3: y: = aly + pye—1 + XeB+Zy + e +ug,

where u; = A3Wsu; + v, for all three DGPs, and u, € and v; represent, respectively, the CRE, RE, and idiosyncratic error.
Mundlak’s specification, © = X7 + ¢, is adopted.



The elements of X; are generated in a similar fashion as in Hsiao et al. (2002),” and the elements of Z are random
draws from Bernoulli (0.5). The elements of ¢ are random draws from N(0, 1). The spatial Weight matrices are generated
according to the following schemes: Rook contiguity, Queen contiguity, or group interaction.® The error v, distribution can
be (i) normal, (ii) normal mixture (10%N(0, 4), 90%N(0, 1)), or (iii) chi-squared w1th degree of freedom of 3. In both (ii) and
(iii), the generated errors are standardized to have mean zero and variance au. We choose B =y = = 03 =ar =1,
and generate o, t = 1,..., T — 1, from N(1, 1). We use a set of values for p ranging from —0.9 to 0.9, a set of values for
(A1, A2, A3) in the similar range, T = 3 or 6, and N = 50, 100, 200, 400. Each set of Monte Carlo results, corresponding to
a combination of the values of (n, T, m, p, A’s), is based on 2000 samples.

Monte Carlo (empirical) means and standard deviations (sds) are reported for the CQML estimator (CQMLE), the
M-estimator, and the full QMLE (DGP3) Empirical averages of the robust standard errors (rses) based on the VC
matrix estimate ESDPD(wM)FS’BpDESDPD(wM) are also reported for the M-estimator, which should be compared with the
corresponding empirical sds. A subset of results are reported in Tables 1-5. Monte Carlo results that are involved in the
discussions but unreported due to space constraint can be found in the Supplement Appendix to this paper, available
from http://[www.mysmu.edu/faculty/zlyang/.

Tables 1-3 present the results based on DGP1, the CRE-SDPD model with all three types of spatial effects. The results
show an excellent performance of the proposed M-estimators of the model parameters, and the rses. The M-estimator
of the dynamic parameter is nearly unbiased, whereas the CQMLE can be quite biased and as n increases it does not
show a sign of convergence. The M-estimators of the spatial parameters A; and A, also show an excellent finite sample
performance. Both CQMLE and M-estimator of the spatial parameter A3 show some bias. This is perhaps due to the intrinsic
nature of the QML-type estimation of spatial error effects. Increasing T improves its performance as shown in Table 2.
The rses are on average very close to the corresponding Monte Carlo sds in general, showing the robustness and good
finite sample performance of the proposed VC matrix estimate. The non-robust ses based on FS*DP}) only or X (V)
only are also simulated and the results (unreported for conserving space) show that when errors are normal, all three
methods give averaged standard errors close to the corresponding Monte Carlo sds; but when the errors are not normal
thze non-robust ses can be quite different from the corresponding Monte Carlo sds in particular in the standard errors of
oZ and ¢.

! Tables 4-5 present the results based on DGP2, the RE-SDPD with all three types of spatial effects. Similar observations
hold: the proposed estimation strategy performs excellently and clearly outperforms the conditional QMLEs. The results
also show that the proposed estimate of the standard errors of M-estimator also performs very well.

Table 6 presents the results based on DGP3, the RE-SDPD with only spatial error effect. For this model, the full QMLE
(FQMLE) is available from Su and Yang (2015). As the main focus of this set of Monte Carlo experiments is to compare
M-estimator with FQMLE, the rses of the M-estimator are not reported. The results show that both M-estimator and
FQMLE of the dynamic parameter are nearly unbiased whereas the CQMLE is quite different from the true value and does
not show a sign of convergence. Three estimators of spatial parameter A3 all show some bias, but the M-estimator has
the smallest bias among the three. Comparing the empirical sds, we see that the M-estimator is slightly less efficient than
the FQMLE, as expected. Computationally, however, the M-estimator is much more efficient.

Under all three DGPs, the Monte Carlo experiments are also run using a ‘wrong’ value of m and the results show that
the M-estimator is quite robust against the choice of m value; more W specifications are considered, and the results show
a quite robust performance of our estimation and inference methods; and more cases for T = 6 are considered and the
general observations from the results are that with a larger value of T the performance of the estimators of A3 significantly
improved, and the CQMLE perform significantly better but is still clearly dominated by the M-estimator. All Monte Carlo
results, upon which these conclusions are drawn, can be found in the Supplementary Appendix.

5. Empirical application: Political competition in China

In this section, we apply the estimation and inference methods for the CRE-SDPD model proposed in this paper
to investigate strategic interactions in political competitions across Chinese cities. The tournament competition among
Chinese local government leaders has been well documented. The competitions have been found over primary policy
issues such as economic growth and fiscal budget, as well as over second-dimensional policy issues such as coal mine
safety (Li and Zhou, 2005; Yao and Zhang, 2015; Yu et al,, 2016; Shi and Xi, 2018). The provincial superiors can evaluate
and promote local leaders based on their performance, and local leaders compete with each other for positions at higher
levels.

We analyze the annual total investments (in RMB) of 338 prefecture-level cities (of which 80 are autonomous) in the 27
provincial level administrative regions (in short, provinces) in mainland China, from 2010 to 2013. The list of cities can be
found in the Supplementary Appendix. The time-lagged dependent variable y;_; measures policy stability. The spatial
lag term Wy, captures the competition among cities, reflecting how investment decisions of the neighboring cities affect

7 The detail is: Xt = pat8t1n+8, (1=¢1L)s = er+¢aec—1, & ~ N(O, 0121”)' Hx = e+ﬁ ZfT:,m &, and e ~ N(O, Uzzln)- Let 6y = (g, ¢1., ¢2. 01, 02).
8 The Rook and Queen schemes are standard. For group interaction, we first generate k = n* groups of sizes n, ~ U(.5n,1.5n), g = 1,..., k,

where 0 < o < 1 and n = n/k, and then adjust ng so that 2221 ng = n. The reported results correspond to o = 0.5. See Yang (2015) for details in
generating these spatial layouts.


http://www.mysmu.edu/faculty/zlyang/

Table 1
Empirical Mean(sd) [se] of CQMLE and M-Estimator, DGP1 (CRE), T = 3, m = 10 W; = W5: Queen Contiguity; W,: Group Interaction.

Normal Error Normal Mixture Chi-Square
2 CQMLE M-Est CQMLE M-Est CQMLE M-Est
n=>50
1 999 (.053) 1.003 (.052) [.050] .998 (.054) 1.001 (.053) [.050] 999 (.053) 1.003 (.052) [.050]
1 915 (.319) 996 (.339) [.322] 925 (.311) 1.007 (.331) [.320] 911 (.313) .992 (.332) [.320]
1 856 (.163) 995 (.153) [.136] .854 (.166) 991 (.156) [.137] .850 (.167) 987 (.157) [.136]
1 995 (.163) .940 (.147) [.135] 1.008 (.261) 952 (.242) [.205] 1.004 (.235) .949 (.216) [.188]
1 761 (.374) 992 (.432) [.374] 775 (.424) 1.003 (.485) [.397] 774 (422) 1.001 (.486) [.390]
3 353 (.055) .300 (.050) [.043] .355 (.055) .302 (.050) [.043] .354 (.055) .302 (.051) [.043]
2 189 (.052) .193 (.053) [.049] .186 (.050) .190 (.051) [.049] .188 (.053) .193 (.054) [.049]
2 193 (.039) .197 (.040) [.037] .191 (.039) .196 (.040) [.037] .191 (.039) .195 (.039) [.036]
2 101 (.182) .096 (.184) [.169] .098 (.183) .093 (.188) [.165] .106 (.174) .099 (.177) [.165]
n =100
1 1.001 (.036) 1.000 (.035) [.035] 1.000 (.036) .999 (.036) [.035] 1.001 (.036) 1.000 (.036) [.035]
1 919 (.224) 997 (.237) [.230] 916 (.217) 993 (.229) [.231] 921 (.220) .999 (.232) [.230]
1 843 (.117) .994 (.106) [.099] .849 (.119) 1.000 (.109) [.100] .847 (.118) .997 (.107) [.100]
1 1.035 (.117) .979 (.105) [.100] 1.039 (.188) .983 (.170) [.155] 1.034 (.171) .978 (.156) [.143]
1 755 (.254) 981 (.295) [.259] 770 (.284) 996 (.322) [.284] .766 (.278) 991 (.315) [.280]
3 355 (.037) .301 (.033) [.030] .353 (.037) .300 (.033) [.030] .354 (.037) .300 (.033) [.030]
2 185 (.025) .198 (.026) [.025] .185 (.026) .198 (.027) [.025] .185 (.026) .197 (.027) [.025]
2 191 (.028) .198 (.029) [.028] 191 (.027) .198 (.028) [.028] .189 (.028) .196 (.029) [.028]
2 165 (.118) 152 (.121) [.116] .165 (.118) 151 (.120) [.114] 162 (.117) .150 (.120) [.114]
n =200
1 999 (.025) 1.001 (.025) [.025] 999 (.026) 1.000 (.026) [.025] 1.000 (.025) 1.001 (.025) [.025]
1 925 (.160) 997 (.171) [.167] .929 (.156) 1.001 (.167) [.167] .927 (.160) 998 (.172) [.167]
1 829 (.086) .996 (.078) [.072] .833 (.086) .998 (.077) [.073] .833 (.087) .999 (.078) [.072]
1 1.050 (.085) .987 (.075) [.072] 1.046 (.129) 984 (.116) [.113] 1.052 (.122) .989 (.109) [.105]
1 .738 (.179) .992 (.208) [.190] .753 (.196) 1.004 (.227) [.207] 744 (.184) .996 (.210) [.203]
3 361 (.028) .301 (.024) [.022] .360 (.028) .300 (.024) [.023] .359 (.028) .300 (.024) [.023]
2 186 (.022) .198 (.023) [.023] .187 (.022) .198 (.023) [.023] .186 (.023) .198 (.023) [.023]
2 185 (.023) 197 (.023) [.022] 185 (.022) 197 (.023) [.022] 185 (.022) .198 (.023) [.022]
2 186 (.083) .176 (.085) [.084] .185 (.084) .175 (.086) [.083] .187 (.085) .178 (.087) [.083]
n =400
1 1.000 (.019) 1.000 (.019) [.019] 1.000 (.019) 1.000 (.019) [.019] 1.001 (.019) 1.001 (.018) [.019]
1 923 (.110) 1.002 (.118) [.117] 917 (.112) 995 (.119) [.117] 920 (.113) 999 (.120) [.117]
1 842 (.061) 1.000 (.054) [.051] .839 (.061) .998 (.055) [.052] .839 (.061) .998 (.055) [.052]
1 1.053 (.060) .995 (.054) [.051] 1.054 (.094) .995 (.085) [.082] 1.054 (.088) .995 (.080) [.075]
1 756 (.122) .995 (.140) [.133] 761 (.143) 1.001 (.163) [.148] 759 (.141) .999 (.160) [.144]
3 356 (.019) .300 (.017) [.015] .357 (.019) .300 (.017) [.016] .357 (.019) .301 (.017) [.016]
2 184 (.014) .200 (.015) [.014] .184 (.014) .200 (.014) [.014] 183 (.014) .199 (.014) [.014]
2 189 (.021) 199 (.021) [.021] .189 (.020) .198 (.021) [.021] .189 (.021) .199 (.021) [.021]
2 203 (.059) .187 (.060) [.059] .205 (.059) .189 (.061) [.059] .203 (.059) .187 (.061) [.059]

Note: ¥ = (B8, y, m, af, ¢, p, A1, A2, A3). The results corresponding to & are suppressed to save space, and are reported in Supplement Appendix;
X; values are generated with 0, = (g, ¢1, ¢2, 01, 02) = (.01, .5,.5,2, 1).

the own investment level of a city. The competition may also be dynamic in the sense that the own investment decision
of a city can depend on the investment level of its neighbors in the past, reflected by the space-time lag term Wy,_;. The
unobserved shocks that affect the investment level are likely to be correlated across neighboring cities, reflected by the
spatial error term Wu,. Time specific effects «; capture macroeconomic conditions general to all cities in each year. The
time-varying regressors X; contain a set of city level variables: population, GDP, fiscal revenue, fiscal expenditure, and
fiscal account balance in the previous year. To capture the effect of provincial economic environment, we also include a
set of province level variables: fiscal revenue, fiscal expenditure, and public capital investment that is the government
funded investment in fixed assets. The time-invariant regressors contain a constant and a dummy variable that indicates
if a city is an autonomous city. As the basic spatial units in this study are cities, the model for CRE is constructed using
city level time-varying variables: GDP, fiscal revenue, fiscal expenditure and fiscal account balance, with Population being
excluded as it does not vary much over time (2010-2013). We considered two types of spatial weight matrices: W,y that
treats cities as neighbors if they are in the same province, and Wy, that treats cities as neighbors if they share a common
border but may not be in the same province. Both weight matrices are row-normalized with zero on the diagonals. Table 7
below summarizes the main empirical findings.

The point estimate of the spatial lag parameter A; is 0.249 and significant at 1% level when W, is used, suggesting
a positive and strong spatial interaction in total investment among cities in the same province. When Wy, is used, A1 is
estimated to be 0.041 and is insignificant. This result is consistent with the theory of tournament competition between
local leaders. Dynamic competition does not seem affect the investment level as A, are small and insignificant in both



Table 2
Empirical Mean (sd) [se] of CQMLE and M-Estimator, DGP1 (CRE), T =6, m = 10 W; = W5: Queen Contiguity; W,: Group Interaction.

Normal Error Normal Mixture Chi-Square
v CQMLE M-Est CQMLE M-Est CQMLE M-Est
n=>50
1 998 (.028) 1.001 (.028) [.028] .998 (.029) 1.001 (.029) [.027] .997 (.029) 1.000 (.029) [.027]
1 1991 (.306) 1.002 (.309) [.295] .987 (.300) 1998 (.303) [.293] .996 (.300) 1.007 (.303) [.292]
1 .975 (.087) .997 (.086) [.082] .979 (.087) 1.000 (.087) [.082] .976 (.089) .997 (.089) [.082]
1 1965 (.088) 961 (.088) [.085] 971 (.160) 967 (.158) [.144] 971 (.145) 967 (.144) [.133]
1 927 (.270) .960 (.277) [.256] 939 (.441) 973 (.468) [.364] 927 (.395) .959 (.407) [.337]
3 .309 (.025) .300 (.024) [.023] .308 (.025) .299 (.025) [.023] .309 (.025) .300 (.025) [.023]
2 195 (.040) .195 (.040) [.036] 196 (.039) .196 (.039) [.035] .194 (.039) 195 (.039) [.036]
2 .200 (.031) .198 (.031) [.028] .199 (.030) .197 (.030) [.028] .200 (.031) .198 (.031) [.028]
2 .120 (.115) .119 (.116) [.109] 120 (.113) 119 (.113) [.107] 124 (.113) 123 (.113) [.107]
n = 100
1 997 (.021) 1.001 (.020) [.020] 1996 (.021) 1.000 (.021) [.020] .996 (.021) 1.000 (.021) [.020]
1 985 (.222) .998 (.225) [.213] 989 (.219) 1.002 (.222) [.212] 982 (.217) 995 (.220) [.213]
1 .980 (.062) 1.000 (.062) [.061] 981 (.062) 1.001 (.062) [.060] .982 (.064) 1.001 (.064) [.061]
1 .986 (.064) .981 (.064) [.062] 989 (.114) 984 (.113) [.108] .990 (.102) .985 (.102) [.099]
1 .945 (.187) 977 (.192) [.186] 949 (.312) 981 (.321) [.279] .955 (.286) .988 (.295) [.263]
3 .308 (.017) 299 (.017) [.016] .308 (.017) .300 (.016) [.016] .308 (.018) 299 (.017) [.017]
2 .197 (.026) .198 (.026) [.025] .197 (.025) .197 (.025) [.024] .197 (.026) .198 (.026) [.024]
2 .200 (.026) .199 (.026) [.026] .200 (.027) .199 (.027) [.026] .200 (.028) .198 (.028) [.026]
2 .164 (.081) .163 (.081) [.077] .164 (.080) .163 (.080) [.076] .161 (.080) .160 (.080) [.076]
n = 200
1 997 (.014) 1.000 (.014) [.014] 997 (.014) 1.000 (.014) [.014] 996 (.014) 1.000 (.014) [.014]
1 990 (.154) 1.002 (.155) [.152] 990 (.153) 1.001 (.155) [.152] .989 (.152) 1.001 (.154) [.151]
1 982 (.045) 1.001 (.045) [.043] .980 (.045) 1999 (.045) [.043] 981 (.044) 1.000 (.044) [.043]
1 997 (.045) .993 (.044) [.045] 995 (.079) 991 (.078) [.078] 999 (.073) 995 (.072) [.072]
1 959 (.136) .990 (.140) [.133] 961 (.219) 991 (.225) [.209] 952 (.193) 982 (.198) [.189]
3 .307 (.012) .300 (.012) [.011] .308 (.012) 300 (.012) [.011] .308 (.012) .300 (.012) [.011]
2 .199 (.019) .199 (.019) [.019] .199 (.019) .200 (.019) [.019] .199 (.019) .199 (.019) [.019]
2 .199 (.020) .199 (.020) [.020] .200 (.020) .200 (.020) [.020] .199 (.020) .199 (.020) [.020]
2 .181 (.055) .180 (.055) [.055] .180 (.056) .179 (.056) [.055] .181 (.055) .180 (.055) [.055]
n = 400
1 .996 (.010) 1.000 (.010) [.010] .997 (.010) 1.001 (.010) [.010] .996 (.010) 1.000 (.010) [.010]
1 .984 (.106) .995 (.108) [.108] 987 (.110) 997 (.111) [.108] 991 (.107) 1.001 (.109) [.108]
1 981 (.029) 1.000 (.029) [.030] .982 (.030) 1.001 (.029) [.030] .981 (.030) 1.001 (.030) [.030]
1 1.000 (.031) .996 (.031) [.032] 1.001 (.057) 1997 (.057) [.056] 1.001 (.053) 1997 (.052) [.051]
1 .964 (.093) .994 (.095) [.095] 966 (.153) 996 (.157) [.152] .964 (.138) 994 (.142) [.139]
3 .308 (.008) .300 (.008) [.008] .307 (.009) .299 (.008) [.008] .308 (.008) .300 (.008) [.008]
2 .199 (.012) .200 (.012) [.012] .198 (.012) 200 (.012) [.012] .198 (.012) .200 (.012) [.012]
2 .199 (.016) .199 (.016) [.016] .200 (.016) .200 (.016) [.016] .200 (.016) .199 (.016) [.016]
2 .192 (.038) .191 (.038) [.038] .192 (.037) .191 (.038) [.038] .192 (.039) .192 (.039) [.038]
Note: v = (B8, y, 7,0 l, ,#, p, A1, A2, A3). The results corresponding to & are suppressed to save space, and are reported in Supplement Appendix;

X, values are generated with 6y = (g, ¢1, ¢2, 01, 02) = (.01, .5,.5,2, 1).

specifications. The spatial error parameter A3 is estimated to be 0.249 with standard error 0.115 under Wp,oy, and 0.287
with standard error 0.899 under W,e,. These provide strong evidence that unobserved shocks are highly correlated among
administrative neighbors while less likely to be correlated among geographic neighbors, suggesting that shocks are mainly
political and confined within administrative boundaries.

Based on Wi, the coefficient of the time lag investment is estimated to be 0.211 and is significant at 1% level,
indicating a positive dependence of investment on its previous level. As expected, the total investment depends positively
on population and GDP. Fiscal expenditure have positive and significant impacts on the investment as it contributes to
creating investment opportunities and providing pro-business services. Based on our results, budget constraints of the
city-level government do not affect the investment level as both parameters of fiscal revenue and fiscal account balance
in the previous year are insignificant. On the provincial level, we find negative effects of provincial fiscal revenue and
public capital investment, and a positive effect of fiscal expenditure. Moreover, being an autonomous city has a large
negative impact on the total investment level. We find that the ‘individual-specific’ effects are correlated (negatively)
with GDP but not with the other time varying regressors. Robustness checks and alternative analyses can be found in
Supplementary Appdix.” Issues remaining include a better way to define the spatial weight matrices, a better way

9 To see the possible existence of other social/natural effects at regional levels (in addition to the included province level variables and the
Autonomous city dummy), we have done robustness checks by adding various regional dummies and the results remain largely unchanged.



Table 3
Empirical Mean (sd) [se] of CQMLE and M-Estimator, DGP1 (CRE), T = 3, m = 10 W; = W5: Group Interaction; W,: Queen Contiguity.

Normal Error Normal Mixture Chi-Square
2 CQMLE M-Est CQMLE M-Est CQMLE M-Est
n=>50
1 994 (.048) 1.000 (.048) [.046] .998 (.049) 1.003 (.048) [.046] 995 (.051) 1.001 (.050) [.046]
1 906 (.330) 991 (.345) [.327] 911 (.329) .994 (.343) [.326] .899 (.331) .983 (.346) [.326]
1 883 (.141) 996 (.135) [.123] .884 (.147) 995 (.141) [.121] .881 (.143) .993 (.136) [.121]
1 .990 (.158) .946 (.146) [.136] 996 (.256) .953 (.240) [.205] 997 (.230) 953 (.214) [.189]
1 .784 (.351) .965 (.400) [.357] .811 (.416) .990 (.465) [.384] 799 (.411) .980 (.462) [.377]
3 344 (.046) .302 (.043) [.038] .343 (.048) .301 (.045) [.038] .344 (.047) .303 (.044) [.038]
2 187 (.026) 197 (.027) [.024] 187 (.027) 197 (.027) [.024] 187 (.027) .196 (.028) [.024]
2 186 (.037) .196 (.037) [.035] .188 (.037) .198 (.037) [.035] .187 (.038) .197 (.038) [.035]
2 127 (.152) 123 (.152) [.132] 122 (.157) 117 (.159) [.129] 126 (.151) 121 (.152) [.129]
n =100
1 997 (.034) 1.001 (.034) [.033] .997 (.033) 1.001 (.033) [.033] .997 (.035) 1.001 (.035) [.033]
1 908 (.225) 997 (.237) [.234] 906 (.232) 995 (.243) [.234] .908 (.228) .997 (.238) [.235]
1 868 (.106) 997 (.099) [.092] .869 (.107) .998 (.098) [.092] .869 (.108) .998 (.099) [.092]
1 1.023 (.114) .974 (.104) [.099] 1.030 (.184) .980 (.169) [.154] 1.024 (.169) .974 (.156) [.143]
1 .786 (.257) .992 (.298) [.260] 789 (.282) .992 (.318) [.280] 798 (.277) 1.005 (.313) [.280]
3 348 (.035) .300 (.032) [.029] .348 (.034) .301 (.031) [.029] .348 (.036) .300 (.032) [.029]
2 187 (.025) .197 (.026) [.024] .186 (.024) .196 (.025) [.024] .187 (.024) .197 (.025) [.024]
2 191 (.030) .197 (.031) [.029] .191 (.030) .197 (.031) [.029] .193 (.031) .199 (.031) [.029]
2 148 (.117) .145 (.118) [.109] 154 (.117) 151 (.118) [.108] .157 (.116) 154 (.117) [.107]
n =200
1 997 (.025) .999 (.025) [.025] 998 (.026) 1.001 (.026) [.025] .998 (.025) 1.000 (.025) [.025]
1 940 (.167) 996 (.177) [.165] .949 (.157) 1.006 (.165) [.166] 941 (.165) .998 (.174) [.165]
1 876 (.074) 1.001 (.068) [.066] .877 (.074) 1.001 (.069) [.067] .873 (.076) .998 (.071) [.067]
1 1.034 (.083) .987 (.075) [.071] 1.028 (.125) 982 (.116) [.112] 1.034 (.118) .987 (.108) [.104]
1 .800 (.178) 996 (.201) [.184] .815 (.197) 1.011 (.220) [.204] .801 (.185) .998 (.207) [.198]
3 345 (.023) .300 (.021) [.020] .344 (.023) .299 (.021) [.020] .345 (.024) .300 (.021) [.020]
2 189 (.028) .195 (.029) [.028] 191 (.029) .196 (.030) [.028] .190 (.028) .196 (.030) [.028]
2 192 (.020) .199 (.021) [.020] 192 (.021) .199 (.021) [.020] 192 (.021) .199 (.021) [.020]
2 165 (.095) .163 (.097) [.094] .162 (.100) .160 (.102) [.094] .165 (.095) .162 (.097) [.094]
n =400
1 .996 (.019) 1.000 (.019) [.018] .997 (.018) 1.001 (.018) [.018] .996 (.019) 1.000 (.019) [.018]
1 916 (.108) 996 (.116) [.117] .924 (.110) 1.004 (.116) [.117] 917 (.109) 997 (1117) [.117]
1 .838 (.059) .999 (.053) [.051] .838 (.059) .999 (.053) [.051] .840 (.062) 1.000 (.056) [.051]
1 1.055 (.059) 995 (.053) [.051] 1.053 (.092) .992 (.083) [.082] 1.054 (.087) .993 (.078) [.075]
1 751 (.121) 996 (.141) [.134] 757 (.138) 1.003 (.158) [.148] 754 (.135) 1.000 (.155) [.145]
3 358 (.019) .300 (.016) [.016] .358 (.019) .300 (.016) [.016] .358 (.020) .300 (.017) [.016]
2 184 (.021) 197 (.022) [.021] 184 (.021) 197 (.022) [.021] 184 (.021) .197 (.022) [.021]
2 187 (.013) 199 (.014) [.014] .187 (.013) .199 (.014) [.014] .187 (.013) .200 (.014) [.014]
2 .182 (.079) .174 (.080) [.077] .181 (.079) .173 (.081) [.076] .184 (.080) .176 (.082) [.076]

Note: v = (8, y, «, (rv , ¢, p, k1, A2, A3). The results corresponding to & are suppressed to save space, and are reported in Supplement Appendix;
X; values are generated with 0, = (g, ¢1, ¢2, 01, 02) = (.01, .5,.5,2, 1).

to capture regional effects, etc. While we strive for a rigorous empirical analysis, the main purpose of this study is to
illustrate the proposed set of inference methods for the SDPD-CRE model. A comprehensive study on this topic is beyond
the scope of the current research.

6. Conclusion and discussion

This paper introduces an M-estimation method for the spatial dynamic panel data (SDPD) model with correlated
random effects (CRE), based on the short panel setup. The estimation strategy is based on the adjusted quasi score
functions following the fundamental idea of Yang (2018). For statistical inferences, a hybrid method that combines
analytical derivations and the feasible sample analogues is proposed for estimating the robust standard errors of the
M-estimators. The asymptotic properties of these estimators are studied in detail and Monte Carlo simulation shows that
both the M-estimators and the robust standard errors perform very well in finite samples. Clearly, the proposed estimation
and inference methods for the CRE-SDPD model provide a useful complement to Yang (2018) for the FE-SDPD model, for
their various advantages as discussed in the introduction, in particular, for allowing estimation of effects of time-invariant
regressors and prediction in levels.

We end the paper by offering a discussion on possible extensions of our work. In this paper, we have focused on
the Mundlak’s (1978) CRE specification to ease exposition. The method is differentiated from the FE-approach in the



Table 4
Empirical Mean (sd) [se] of CQMLE and M-Estimator, DGP2 (RE), T =3, m = 10 W; = W3: Queen Contiguity; W,: Group Interaction.

Normal Error Normal Mixture Chi-Square
v CQMLE M-Est CQMLE M-Est CQMLE M-Est
n=>50
1 979 (.047) 1.001 (.045) [.042] 978 (.047) 1.000 (.045) [.042] 977 (.047) 999 (.046) [.042]
1 936 (.321) 1.000 (.335) [.325] 947 (.315) 1.011 (.330) [.323] 930 (.314) 993 (.329) [.322]
1 971 (.153) 937 (.144) [.134] .983 (.248) .949 (.236) [.203] .980 (.223) 947 (.213) [.187]
1 .861 (.373) 1.024 (.424) [.371] .875 (.419) 1.037 (.474) [.398] .873 (.416) 1.032 (.469) [.392]
3 .333 (.042) .297 (.040) [.035] .334 (.041) .298 (.039) [.036] .334 (.041) .298 (.040) [.035]
2 .203 (.076) .189 (.075) [.067] .199 (.072) .184 (.072) [.067] .203 (.076) .188 (.075) [.068]
2 .204 (.061) .194 (.059) [.055] .202 (.061) 193 (.059) [.055] .202 (.061) 192 (.058) [.055]
2 .082 (.194) .095 (.192) [.175] .082 (.191) .095 (.191) [.171] .088 (.183) .100 (.182) [.170]
n =100
1 979 (.032) .999 (.031) [.030] 979 (.032) .999 (.031) [.030] 979 (.032) 999 (.031) [.029]
1 .956 (.226) .998 (.234) [.229] 967 (.221) 1.009 (.229) [.230] .958 (.229) 999 (.237) [.229]
1 1.002 (.107) .974 (.103) [.098] 1.013 (.175) .984 (.168) [.155] 1.006 (.161) 978 (.154) [.143]
1 .869 (.244) .996 (.276) [.252] 877 (.279) 1.006 (.310) [.278] .874 (.267) 1.001 (.298) [.272]
3 .329 (.026) .300 (.025) [.023] .329 (.026) .299 (.026) [.024] .329 (.026) .299 (.025) [.024]
2 .186 (.044) .195 (.044) [.042] .186 (.044) 195 (.045) [.042] .186 (.045) .195 (.046) [.042]
2 .204 (.046) .196 (.045) [.044] .204 (.046) 195 (.045) [.044] .200 (.047) 191 (.046) [.044]
2 .163 (.126) .154 (.128) [.120] 161 (.125) 151 (.126) [.119] .160 (.126) 151 (.128) [.119]
n =200
1 977 (.023) .999 (.022) [.022] .978 (.024) 1.000 (.023) [.022] .978 (.023) 1.000 (.022) [.022]
1 .938 (.162) 1.002 (.169) [.168] .941 (.166) 1.005 (.172) [.168] 936 (.162) 1.000 (.169) [.168]
1 1.021 (.076) 991 (.073) [.071] 1.014 (.121) .984 (.116) [.113] 1.019 (.113) .989 (.108) [.105]
1 .861 (.169) .996 (.191) [.180] .879 (.195) 1.015 (.217) [.202] .867 (.185) 1.002 (.206) [.195]
3 .331 (.019) .300 (.018) [.017] .331 (.019) .300 (.019) [.017] .331 (.019) .300 (.019) [.017]
2 .195 (.036) .194 (.037) [.035] .199 (.036) .198 (.036) [.035] .198 (.035) .196 (.035) [.035]
2 197 (.037) .196 (.037) [.035] .198 (.037) .197 (.036) [.035] .198 (.036) .197 (.036) [.035]
2 .178 (.089) .180 (.089) [.088] .173 (.089) .174 (.089) [.087] 177 (.088) .178 (.088) [.087]
n = 400
1 .979 (.017) 1.000 (.016) [.016] 979 (.017) 1.001 (.016) [.016] 979 (.017) 1.000 (.016) [.016]
1 953 (.112) 997 (.116) [.117] 955 (.113) 998 (.117) [.117] 957 (.114) 1.001 (.118) [.117]
1 1.023 (.052) .992 (.050) [.051] 1.025 (.090) 995 (.086) [.082] 1.023 (.080) 993 (.076) [.075]
1 .867 (.116) 1.003 (.132) [.128] .868 (.136) 1.004 (.152) [.142] .870 (.131) 1.006 (.146) [.139]
3 .332 (.013) .300 (.013) [.012] .331 (.013) .299 (.013) [.012] .332 (.013) .300 (.013) [.012]
2 .190 (.023) .199 (.023) [.023] .189 (.023) .198 (.024) [.023] .189 (.023) .198 (.023) [.023]
2 .203 (.033) .199 (.032) [.031] .200 (.033) .196 (.032) [.031] .201 (.033) 197 (.032) [.031]
2 .199 (.062) .188 (.063) [.061] .196 (.062) .185 (.063) [.061] .198 (.062) .187 (.063) [.061]

Note: ¥ = (8, v, Gu , @, p, k1, A2, A3). The results corresponding to ¢ are suppressed to save space, and are reported in Supplement Appendix;
X; values are generated with 6, = (g, ¢1, ¢2, 01, 02) = (.01,.5,.5,2, 1).

introduction and Supplementary Appendix. The results can be adapted to cover any CRE form that is linearizable in
the sense that it can be written as or approximated by a linear model based on the observed time-varying regressors.
The most general CRE form may be u© = g(Xo, X1, ..., Xr) + & with an unknown g(-) and an additive error ¢, giving a
SDPD model with nonlinear CRE. Standard semiparametric methods may be used to handle this unknown function and
the model estimation may proceed in a similar way as that in this paper. This is an interesting model specification, but a
detailed study is clearly beyond the scope of this paper, which will be carried out in a future research.

We have focused on the case where the idiosyncratic errors {v;} are iid. While time dependence is already built in the
model as a dynamic lag of the response, it may be important to allow time dependence in {v;} as well in case of excessive
time dependence of the process. We show that our results can be extended by allowing v; to follow an MA(1) process:

Ve = Ve + TVe-1,

where {v;} are iid(0, 2). It is easy to see that E(vtv ) = (14+1%)0 1y, and that E(vev]_;) = E(ve—1v)) = 102, t = 2,..., T,
so that E(w') = 02X ® I, where ¥ = (1+ )l + tAand Ais T x T with its (i, j)th element being 1 ifi = j 4+ 1, and 0
otherwise. Then, letting ¢ = 03 /o2, the VC matrix of the composite errors, e = & + B;lv, takes a similar form:

Var(e) = o [¢(r ® )+ ¥ ® (ByB3) '] = 0 Q2.

With the new parameter 7, the vector of model parameters becomes v = (', 02, ¢, 7, p, A'). The results of Lemma 2.1
are extended, with C and C_; being kept the same, but D and D_; taking new and slightly more complicated expressions.
The desired AQS functions are then obtained, leading to the M-estimator of { (see Supplementary Appendix for details).
Theorems 2.1 and 2.2 can be extended as the AQS functions can be written as linear combinations of terms linear,



Table 5
Empirical Mean (sd) [se] of CQMLE and M-Estimator, DGP2 (RE), T = 3, m = 10 W; = Wj3: Group Interaction; W,: Queen Contiguity.

Normal Error Normal Mixture Chi-Square
2 CQMLE M-Est CQMLE M-Est CQMLE M-Est
n=>50
1 .978 (.046) 1.000 (.045) [.042] .976 (.047) .998 (.046) [.041] 977 (.046) .999 (.045) [.042]
1 .954 (.328) 1.019 (.341) [.324] .938 (.338) 1.001 (.351) [.323] .945 (.326) 1.009 (.339) [.325]
1 971 (.150) 939 (.143) [.134] 982 (.247) .950 (.237) [.204] 977 (.223) .945 (.213) [.187]
1 .869 (.373) 1.022 (.426) [.371] .877 (.420) 1.029 (.470) [.399] .888 (.417) 1.043 (.473) [.397]
3 .332 (.040) .298 (.039) [.035] .333 (.041) .300 (.040) [.035] .331 (.040) .297 (.039) [.035]
2 .186 (.051) .187 (.051) [.047] .187 (.053) .187 (.053) [.047] .187 (.053) .188 (.053) [.047]
2 .209 (.075) .196 (.070) [.067] .205 (.076) .192 (.071) [.067] .207 (.073) .194 (.069) [.068]
2 .130 (.156) 127 (.158) [.134] 133 (.154) .130 (.155) [.130] 131 (.153) .130 (.154) [.129]
n =100
1 .980 (.032) .999 (.031) [.030] 981 (.032) 1.000 (.031) [.030] 981 (.033) 1.000 (.032) [.030]
1 .988 (.223) 1.004 (.231) [.228] .996 (.226) 1.012 (.234) [.228] 982 (.232) .997 (.240) [.228]
1 1.003 (.108) 977 (.104) [.099] 1.004 (.172) 978 (.165) [.154] 1.002 (.156) 976 (.150) [.142]
1 .875 (.246) 994 (.275) [.251] .892 (.266) 1.012 (.293) [.278] .890 (.267) 1.009 (.293) [.273]
3 .327 (.025) .300 (.025) [.023] .327 (.025) .300 (.025) [.023] .327 (.025) .299 (.024) [.023]
2 .193 (.041) 191 (.041) [.039] .191 (.040) .189 (.041) [.039] .193 (.040) .191 (.041) [.039]
2 192 (.047) 194 (.045) [.044] .193 (.046) .194 (.045) [.044] .196 (.046) .197 (.045) [.043]
2 .145 (.120) 147 (1121) [.111] .148 (.120) .150 (.120) [.110] 153 (.117) 155 (.117) [.107]
n =200
1 977 (.022) 1.000 (.021) [.021] 977 (.023) 1.000 (.022) [.022] .978 (.023) 1.000 (.022) [.021]
1 933 (.161) 1.001 (.168) [.168] .930 (.162) .998 (.169) [.168] .931 (.166) 998 (.173) [.167]
1 1.018 (.077) .988 (.074) [.071] 1.014 (.122) 984 (.117) [.113] 1.019 (.114) .989 (.109) [.104]
1 867 (.171) 1.001 (.194) [.180] .877 (.193) 1.011 (.216) [.201] .865 (.187) 997 (.209) [.194]
3 332 (.018) .300 (.018) [.017] .331 (.019) .300 (.018) [.017] .331 (.019) .300 (.019) [.017]
2 186 (.031) .195 (.031) [.030] .187 (.030) .196 (.030) [.030] .186 (.031) .195 (.031) [.029]
2 204 (.033) .198 (.033) [.032] .203 (.033) .198 (.033) [.032] .202 (.033) .197 (.032) [.032]
2 167 (.101) .161 (.103) [.095] .171 (.096) .165 (.097) [.094] .165 (.097) .159 (.099) [.094]
n =400
1 977 (.017) 1.000 (.016) [.016] 977 (.017) 1.000 (.016) [.016] 977 (.017) 1.000 (.016) [.016]
1 958 (.113) 1.001 (.117) [.116] .956 (.109) 998 (.114) [.116] 958 (.112) 1.000 (.117) [.116]
1 1.026 (.056) 995 (.053) [.051] 1.025 (.087) .994 (.083) [.081] 1.025 (.081) .994 (.078) [.075]
1 .861 (.118) 999 (.134) [.127] .867 (.135) 1.005 (.151) [.142] .862 (.133) 1.001 (.148) [.139]
3 .332 (.013) .300 (.013) [.012] .332 (.013) .299 (.013) [.012] .332 (.013) .300 (.013) [.012]
2 197 (.032) .196 (.033) [.032] 196 (.033) .195 (.034) [.032] .196 (.033) .195 (.033) [.032]
2 .198 (.023) 199 (.023) [.023] .198 (.023) .199 (.023) [.023] .198 (.024) .199 (.024) [.023]
2 172 (.082) .174 (.083) [.078] .176 (.081) 177 (.081) [.078] .170 (.081) 172 (.082) [.078]

Note: ¥ = (B, v, of, ¢, p, A1, A2, A3). The results corresponding to ¢ are suppressed to save space, and are reported in Supplement Appendix;
X, values are generated with 6y = (g, ¢1, ¢2, 01, 02) = (.01, .5,.5,2, 1).

quadratic, and bilinear in v, v_4, ¢, and V;;,. Lemma 3.1 and Theorem 3.1 can be extended as well by re-defining the
g; functions and re-deriving the results in Lemma 3.1. While fundamental ideas are the same, these extensions require
additional complicated algebra and proofs, and need to be handled by a separate research.

So far, the time heterogeneity appears in the model in the form of time-specific effects {c.}. It may be of interest
to allow more extensive forms of time-heterogeneity such as time-varying regression coefficients, time-varying spatial
coefficients, time-varying spatial weight matrices, etc. From the theoretical developments, we see that our results may be
extended to allow for time-varying regression coefficients, but may not be for the other types of time-heterogeneity. Fi-
nally, the cross-sectional heteroskedasticity (space-varying error variances) in the CRE-SDPD model is another interesting
extension to consider. It requires an entirely different way to adjust the conditional quasi scores so that the AQS functions
obtained are not only (asymptotically) unbiased but also robust against unknown cross-sectional heteroskedasticity. These
models and methods would be much more challenging than the already quite challenging works presented in this paper,
and will be the topics of our future research. B

Finally, it should be pointed out that moving the Zy term in (1.1) to (1.2), i.e., letting u = X7 4+ Zy + &, gives
an equivalent model specification, and all results carry over, including the equivalence between FE and CRE estimators
of the coefficients of time-varying regressors under a simple static panel data model as discussed in the introduction
(see also Krishnakumar, 2006). In this case, u is explained as having two components: observable and unobservable (see
Hausman and Taylor, 1981, p.1378). However, common perception on w is that it represents unobservable individual-
specific effects such as ability or managerial skill, and hence the original specification in (1.1) and (1.2) would be more
sensible. Furthermore, the time-invariant variables Z are assumed to be strictly exogenous. This is reasonable but not
entirely necessary, because some variables in Z may be linearly correlated with © through X; and this type of endogeneity



Table 6

Empirical Mean (sd) of CQMLE, M-Estimator, and FQMLE, DGP3 (RE), T = 3, m = 10;

W3: Queen Contiguity.

Normal Error Normal Mixture Chi-Square
n Yy CQMLE M-Est FQMLE CQMLE M-Est FQMLE CQMLE M-Est FQMLE
50 1 971 (.045) 998 (.044) 999 (.044) .974 (.046) 1.001 (.045) 1.002 (.044) 973 (.045) 1.000 (.043) 1.001 (.043)
1 .888 (.317)  1.000 (.338) 991 (.337) .889 (.335)  1.001 (.359) 993 (.357) .879 (.316) 1990 (.338) 982 (.338)
1 1.006 (.076) .984 (.073) .983 (.071)  1.003 (.124) .982 (.120) 980 (.117)  1.006 (.117) 985 (.113) 983 (.111)
1 785 (.325) 992 (.400) .994 (.366) .839 (.400) 1.052 (.474) 1.058 (.446) .815 (.391)  1.020 (.458) 1.033 (.435)
5 539 (.032) .500 (.032) 499 (.031) .538 (.032) 499 (.032) 498 (.030) .540 (.032) 501 (.032) 499 (.031)
3 .265 (.142) 269 (.142) .235 (.139) .266 (.151) 271 (.151) .236 (.146) .262 (.146) 267 (.147) 233 (.141)
100 1 .975 (.032) 999 (.031)  1.000 (.031) .974 (.032) 999 (.032) 999 (.031) .975 (.032) 1999 (.032)  1.000 (.031)
1 918 (.224) 996 (.237)  1.000 (.236) 924 (.227)  1.002 (.240)  1.005 (.239) 922 (.228)  1.000 (.241)  1.005 (.240)
1 1.010 (.052) 993 (.051) .993 (.050)  1.009 (.086) 992 (.084) 993 (.083) 1.011 (.080) 994 (.078) .994 (.075)
1 .830 (.229) 992 (.274) 996 (.247) .849 (.259) 1.012 (.302) 1.014 (.277) .841 (.252)  1.004 (.295) 1.010 (.273)
5 531 (.020) .500 (.021) 499 (.020) .531 (.020) .500 (.020) 499 (.019) .531 (.020) .500 (.020) 1499 (.020)
3 .283 (.106) .285 (.107) .289 (.098) .283 (.104) .285 (.104) .290 (.096) .281 (.106) .284 (.106) .288 (.096)
200 1 .968 (.023) 999 (.023)  1.000 (.022) 969 (.023)  1.000 (.023) 1.001 (.022) 969 (.023)  1.000 (.023) 1.001 (.023)
1 954 (.157) .998 (.166) .996 (.166) 950 (.157) 993 (.166) 991 (.166) 951 (.158) 994 (.167) 992 (.167)
1 1.014 (.037) .996 (.036) 995 (.035) 1.012 (.061) .994 (.060) 993 (.059) 1.012 (.056) .994 (.054) 993 (.053)
1 .821 (.156) 990 (.189) 993 (.176) .837 (.181)  1.007 (.213)  1.009 (.204) .833 (.175)  1.004 (.208)  1.007 (.193)
5 533 (.014) .500 (.014) .500 (.014) .533 (.014) .500 (.014) 499 (.014) .533 (.014) .500 (.014) .500 (.014)
3 .286 (.073) .289 (.074) .266 (.072) .292 (.075) .295 (.076) 271 (.074) .288 (.073) 291 (.074) .268 (.071)
400 1 972 (.015) 1.000 (.015) 1.002 (.016) 973 (.016)  1.000 (.015) 1.002 (.016) 973 (.015) 1.000 (.015) 1.002 (.016)
1 933 (.112)  1.000 (.120) 1.010 (.120) 935 (.110)  1.002 (.117) 1.013 (.118) 932 (.114) 998 (.121)  1.008 (.122)
1 1.018 (.027) 998 (.026) 1.029 (.027) 1.016 (.043) 997 (.042) 1.027 (.036) 1.017 (.041) 997 (.040) 1.028 (.035)
1 813 (.113) 996 (.137) 955 (.211) .823 (.127)  1.007 (.151) 971 (.212) .819 (.126)  1.001 (.150) 961 (.213)
5 535 (.010) .500 (.010) 498 (.012) .535 (.011) .500 (.011) 497 (.012) 535 (.011) .500 (.011) 1498 (.012)
3 .293 (.051) 297 (.051) .285 (.053) 291 (.053) .295 (.053) .283 (.053) .293 (.052) .296 (.053) .284 (.053)

Note: ¥ = (B,y,02, ¢, p, A3). The results corresponding to & are suppressed to save space, and are reported in Supplement Appendix; X; values
are generated with 0y = (g, ¢1, ¢2, 01,02) = (.01, .5, .5, 2, 1).

Table 7
Spatial and dynamic interaction/competition in investments among Chinese cities.
Wprov Wgeo

Population 0.263"* [0.119] 0.424"* [0.206]
GDP 0.489"* [0.058] 0.412" [0.174]
Fiscal revenue 0.575 [0.487] 3.454* [1.370]
Fiscal expenditure 0.635"** [0.247] 0.906 [1.241]
Fiscal account balance —-0.337 [0.293] 0.297 [1.177]
Provincial fiscal revenue —0.162"* [0.041] —0.239"" [0.121]
Provincial fiscal expenditure 0.074"* [0.025] 0.194"* [0.093]
Public capital investment —0.058" [0.036] —0.140 [0.119]
Autonomous city —97.861*** [37.057] —187.332* [103.53]
2011 —25.562 [28.248] —344.618 [638.06]
2012 —9.296 [15.918] —149.003 [288.44]
Dynamic parameter
Time lag (p) 0.211" [0.061] —0.803 [2.556]
Spatial parameters
SL (A1) 0.249"* [0.068] 0.041 [0.712]
STL (Az) —0.042 [0.070] 0.043 [0.218]
SE (X3) 0.293"* [0.115] 0.287 [0.899]
Correlated random effects
Average GDP —0.165" [0.108] 0.325 [1.164]
Average fiscal revenue —0.206 [0.777] —1.785 [5.237]
Average fiscal expenditure —0.583 [1.092] —1.750 [2.430]
Average fiscal account balance —0.059 [0.424] —0.346 [1.783]

Note: Population is measured in 104, and other variables excluding dummies are measured in 108.

*Significance at 10% level.
**Significance at 5% level.
***Significance at 1% level.

may be captured by Mundlak’s or Chamberlain’s specification. If not, a more general CRE specification in line with the
above discussion may help. See Hausman and Taylor (1981) for a general discussion on the endogeneity in Z. A full
treatment of the issue of endogeneity in the components of Z under the current SDPD-CRE setting would be an interesting

topic of future research.



*Appendix’A."Some basic’Lemmas”

Lemma A.1 (Kelejian and Prucha, 1999; Lee, 2002). Let {A,} and {B,} be two sequences of n x n matrices that are uniformly
bounded in both row and column sums. Let C, be a sequence of conformable matrices whose elements are uniformly O(h;1).
Then

(i) the sequence {A;B,} are uniformly bounded in both row and column sums,
(ii) the elements of A, are uniformly bounded and tr(A,) = O(n), and
(iii) the elements of A,C, and C,A, are uniformly O(h;").

Lemma A.2 (Lee, 2004, p.1918). For W; and By defined in Model (1.1), if ||W;]| and ||B;0] || are uniformly bounded, where || - ||
is a matrix norm, then ||B1’1 || is uniformly bounded in a neighborhood of 1.

Lemma A.3 (Lee, 2004, p.1918). Let X, be an n x p matrix. If the elements X,, are uniformly bounded and lim,_, o, %X;Xn exists
and is nonsingular, then P, = Xn(X,/,Xn)’]X,; and M, = I, — P, are uniformly bounded in both row and column sums.

Lemma A4 (Lemma A4, Yang, 2018). Let {A,} be a sequence of n x n matrices that are uniformly bounded in either row
or column sums. Suppose that the elements anj of An are O(h;!) uniformly in all i and j. Let v, be a random n-vector of iid
elements with mean zero, variance o? and finite 4th moment, and b,, a constant n-vector of elements of uniform order O(h,, 1/2)
Then

(i) E(vpAnvn) = O( L), (ii) vVar(vjAyv,) = O(-),
(iii) Var(vjAnvn + byva) = () (iv) VjAnvn = Op( &),
(V) VpAnvn — E(upAnvn) = Op((£)2), (vi) vjAnby = Op((12)2),

and (vii), the results (iii) and (vi) remain valid if by, is a random n-vector independent of v, such that {E(bﬁi)} are of uniform
order O(h;!).

Lemma A.5 (Lemma A.5, Yang, 2018). Let {&,} be a sequence of n x n matrices with row and column sums uniformly bounded,
and elements of uniform order O(h;'). Let v, = (v1, ..., vy) be a random vector of iid elements with mean zero, variance
avz, and finite (4 4+ 2¢¢)th moment for some €g > 0. Let b, = {by;} be an n x 1 random vector, independent of vy, such that
(i) {E(b%)} are of uniform order O(h; "), (ii) supiE|bn|**® < oo, (iii)%" S [@nii(bni — Ebni)] = 0p(1) where {¢n i} are the
diagonal elements of &,, and (iv)“;” Z?zl[b E(b2 )] = 0,(1). Define the bilinear-quadratic form:

Qn = bvn + v, @pvy — 02 tr(Dy),

l+2/eo/n —

and let ann be the variance of Q. If limy_, .oh, 0 and {%”JQZH} are bounded away from zero, then Q,/oq, LN N(0, 1).

Lemma A.6. Under Assumption F, for an n x n matrix @ uniformly bounded in either row or column sums, with elements of
uniform order h; !, and an n x 1 vector ¢ with elements of uniform order hn_l/z, we have:

(i) By dyo = 0,(1); (ii) " [yo — E(yo)I'p = 0,(1); (iii) " [yy®yo — E(yy@yo)l = 0p(1).

Appendix B. Proofs for Section 2

Proof of Lemma 2.1. By (2.1), backward substitution leads to, for t = —m+1,..., T,
E(y:e') = By'BE(y,— 18’) +B’1E(es’)+B’1B3’1E(v[e/)
t+m—1

= B'E(yp&’) ZB)B E(ee’) = ( Z Bi)B;lafo.

i=0
Therefore, E(Y_1&') = asOC_l and E(Ye') = asoc.
Fort,s =1,...,T, we have E(y,v]) = By 'B2E(ye—1v}) + By 'B; 'E(vev;) = 0%, B, 'B;'; E(y,v)) =0 whent <s; and
E(ev;) = By 'BE(ye—1v}) + By 'B; 'E(uiv) = B2E(yeov)) = - -
= B'E(ysv}) = B'E(B; 'B; 'vsv]) = BB 'B; o2

when t > s. Therefore, E(Y_1v’)(B3’1)/ = avzoD_l and E(YV')(B; ly = aszD. Combining these results, we obtain the results
of Lemma 2.1. W

Proof of Theorem 2.1. The proof of this theorem uses similar ideas as in the proof of Theorem 3.1 of Yang (2018). Rather
than working with differences series, levels are used and account need to be taken of additional randomness from ¢. Under



Assumption G, by Theorem 5.9 of van der Vaart (1998) the consistency of SM follows if supse 4 % ||§§,§PD(8)—§§‘]§PD(8)|| 20

as n — oo, where S§f,(8) is the concentrated AQS function of § defined below (2.13), and Sgfp(8) is its population
counterpart defined above Theorem 2.1, given below

2(8)3( )27 Ur ® )27 1(8) — 3t~ (r @ In)],
€(8)82 Yoy —tr[(¢Coy + D_1)27 '],

Seen(8) = 1 5238 (83627 TW1Y — trl(¢C + D)2~ 'W4 ], (B.1)
3(5) €(8)27"W,LY_y — tr[(¢C_y +D_1)27 W5,
7375, 2 (0027162, 2718(8) — (271 82,).

27 €@ Ur @ )27 1e(8)] — 5270 @ ),

_Z(B)E[e( 1R271Y_4] — tr[(¢C_q + D_1)271],

Ssipp(8) = .2(5)E[e( )27 W1 Y] — tr{(¢€ + D)2 "W, (B.2)
E[€'(8)2 "W, Y_q] — tr[(¢C_1 + D_1)27'W,],

’2(6)

270, ELE(0)27142;, 27 1&(8)] — 3tr(2721,),

whgre 62(8) is defined in (2.13), and 62(8) is defined above Theorem 2.1. With (B.1) and (B.2), the proof of consistency
of 8y boils down to the proofs of the following:

(a) inf5€A62(8) is bounded away from zero,

62(8) — G2(8)] = op(1),

(€) supgep— nT &8) 1(/T ® 1,)2718(8) — E[¢'(8)27'(Jr ® 1)2~"e(8)]| = 0p(1),
(d) supsca - |€(8)27'Y_1 — E[€/(8)27Y_1]| = 0,(1),

(€) supsc 4 - &(8)27'W1Y — E[€/(8)27 "W, Y]] = 0p(1),

() supsca = [€(8)27'WaY_1 — E[€/(8)27'W,Y_1]| = 0,(1),

(8) Supsca o |[&(8)827162,,2718(8) — E[€/(8)2 7" 62,27 18(8)]] = 0p(1).

Let 27 be a square-root matrix of £2. Define e*(§) = 2~ 2e( ), €%(8) = 2~ se €(3), and B! = Q’%Br,r = 1,2. Let
1

Y° =Y—E(Y)and Y°, = Y_;—E(Y_1). Define the projection matrices: M = InT—.Q‘?X(X/.QqX)”X/Q‘% and P = [,;—M.
We have:
€ (8) = M(B'Y — B3Y_;) + P(B'Y° — BiY°,), (B.3)
&(8) = M(BYY — B3Y_).

Proof of (a). Recall that 63(8) = %E[é*’(&)é*(&)] by (B.3) and the orthogonality between M and P, we can write

1
52(8) = —trlVar(B{Y — B3Y_,)] + T(B*EY BLEY_,)M(BIEY — BiEY_,).

v
As M is positive semi-definite (p.s.d), the second term is non-negative uniformly in § € A. By Assumptions C, and
E (iv), infsep Ymax(£2) < SUPgep Ymax(2) < ¢ + é Therefore the first term is Ltr[2~'Var(B;Y — ByY_1)] >
L Vi (2)tr[Var(B;Y — B;Y_1)] > ¢ > 0, uniformly in § € A. It follows that infycaG2(8) > ¢ > 0.1

Proof of (b). By (B.3) and (B.4), we can decompose &3(8) - 63(8) into four terms

65(8) — 62(8) = (Q1 — EQ1) + (Q2 — EQz) + 2(Qs — EQ3) + EQa. (B.5)
where Q; = LY'BYMB}Y, Q; = LY’ BYMB;Y_;, Q3 = — 2Y'BYMB;Y_, and Q4 = — - (B;Y° —B5Y° YP(BY° —B3Y°,).
The results follows if Q; — EQ; RS 0, j=1,2, 3, and EQ4—0, uniformly in § € A. By (2.14) and letting M* = Q’%MQ’%,
we have

9

1 /
= —n'B,M*Bn,
Q ;_1 Q¢ + T n By 1m

10 Note: (i) eigenvalues of a projection matrix are either 0 or 1; (ii) eigenvalues of a positive definite matrix are strictly positive; (iii) for
symmetric matrix A and positive semidefinite (p.s.d.) matrix B, ymin(A)tr(B) < tr(AB) < ymax(A)tr(B); (iv) for symmetric matrices A and B,
Ymax(A + B) < ¥Ymax(A) + ¥Ymax(B); and (v) for p.s.d. matrices A and B, Ymax(AB) < ¥max(A)Ymax(B). See, e.g., Bernstein (2009).
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=1
14

— B/M*B ,
Q= ZQ3z+ T" 211

=1

where Q, takes one of the forms: -y, ®1(8)yo, =V P2(8WV, =& P3(8)e, LY ¥1(8V, -y Wa(8)e, - Ws(8)V, -y, IT1(8),
%v’]‘[z(é), and %6‘/173(8). The matrices @,(§) and ¥,(§), and vectors I1.(§), r = 1, 2, 3, depend on § through B¢, B, and
M*, and involve Q, Q_1, S, S_1, B, B_1, n and n_;, which are all matrix or vector functions of true parameters.

By Lemma A.1, Assumption E and the expressions in (2.15) and (2.16), the nT x nT matrices R, R_1, S, S_;, B and B_
are uniformly bounded in both row and column sums, and the elements of the nT x 1 vectors 5 and »_; are uniformly
bounded. By Assumption E(iii) and (v), Assumption D, Lemma A.1 and Lemma A.3, By, B, and M* are uniformly bounded
in either row or column sums. By Lemma A.6, it can be easily shown that %[yg@(é)yg — E(y,@1(8)yo)] = op(1), and
L[V IT1(8) — E(y)IT1(8)] = 0,(1). The point wise convergence of the quadratic terms --v'®,(8)v and --&'®3(8)e, and the
bilinear term %y&%((S)v, can be established by Assumption B and Lemma A.4. The result %{yalllz(S)s — Elyy¥2(8)el} =
op(1) is proved by decomposing y, into three terms using (2. 17) and then applying Lemma A.4 under Assumptions B and F.
The point wise convergence of the linear terms - v 'IT,(8) and —s 'IT5(8) are proved by Chebyshev’s inequality. Therefore,
for k=1, 2,3, and all £,

Qi ¢(8) — EQx.e(8) 2,0, foreachs e A.

Now, all the Qy ¢(8) terms are linear or quadratic in p, A1 and A,, and it is easy to show that supsc o |%Qu(8)| = 0,(1),
for w = p, A1, A,. Note that only matrix M* involves A3 and ¢. For w = ¢, A3, some algebra leads to the following simple
expression iM* = —M*2,M*, where .(2)\3 = W = I ®(B;Bs)"'(ByW5+W}Bs)(B;B3)~! and Q4= 8 52 =Jr Q. Thus,
by applymg Lemmas A.1, A.4 and A.6, repeatedly, it is easy to show that, for k = 1, 2, 3, and all ¢, supaeA |a;\ Qx.¢(8)] =
Op(1). It follows that Qi ¢(6) are stochastically equicontinuous. The pointwise convergence and stochastic equ1contmu1ty
therefore lead to,

Q.(8) — EQu¢(8) = 0, uniformly in 8 € A,

by Theorem 2.1 of Newey (1991).
It l/eft to show EQ4(8) = %E[(BTY" — B5Y°,YP(BiY° — B3Y°;)] — O, uniformly in § € A. By Assumption D,
)/min(’%) > C,. By Assumption E,

. 1
sup Vmin(-Q) > lnf ymin(Q) > lnf ymax(BBB3) = sup ymax(B3B3) > =
seA sed PELVE! A3eds C3

Hence, supsca Vmin(%) > SUPyeo ﬁg{ > ¢ > 0. Therefore, we have by the assumptions in Theorem 2.1 and
Assumption D,
EQs = Lt[27'X(X'27'X)"'X'27Var(B,Y — B,Y_1)]

— 1
< @)y (B2 ), LulX'X] = 0(n™Y),

Hence, 62(8) — 6 2(5) —2, 0, uniformly in 8 € A, completing the proof of (b).

Proofs of (c)-(g). Using the expressions (B.3) and (B.4) and the representation (2.16), all the quantities inside |-| in
(c)—(g) can all be expressed in the forms similar to (B.5). Thus, the proofs of (¢)—(g) follow the proof of (b). See the
Supplementary Appendix for more details on the proof of Theorem 2.1. =

Proof of Theorem 2.2. We have by the mean value theorem (henceforth MVT),

1 o
)]\/E(WM — o),

0 nT aw’S;DPD

) = —=Sspep(¥0) + [

= \/%SSDPDU/A/SDPD ﬁ
where ¢ lies elementwise between vy and . The result of the theorem follows if
@) \lﬁsgnpp(wo) = N[O, lim,_ o0 FSEPD(WO)],
(b) [aw’SSDPD(‘/_’) - %SQ‘DPD(%)] BN 0, and
© 7 [axp/SSDPD(WO) (BLWSQDPD(WO))] 2o



Proof of (a). By e = & + By/'v and letting [T5, = By'[To,r = 1,...,4, ¥ = By'Wo,r = 1,2,3, and
@) = Byy' @By, r = 1,...,6, and @3, = Bj,' @9 and &% = By ProBy, ., r = 1,..., 6, dropping subscript “0” to
simplify notations, the AQS functions given by (2.15) can be further expressed as follows,

IT'e + I},

ED1e+VOIV+2VPIEe — 12,

&' Dre +VIOV+ 2V DIe — g,

Ssopp(V0) =\ &'Wnyo + VYo + [Tye + M5V + & D3e + VOV 4 2V D5e — (B.6)
e'Wyo + VYo + Iie + T3V + €/ Pye + VOV + 2V Doe — uy,,

e'Wsyo + VWY + ITje + IV + € Pse + VOV + 2V Pe — ;.

&' Dse + VIOV 2VDLe — iy,

where 1,2 = ST, py = 5trl24Ur @ I, i, = trl(@oC10 + D-10)25 '], iz, = trl(@oCo + Do)y 'Wil, 15, =
v0

tr[(¢oC—10 + D_10)25 'Wal, and p;, = tr(£25 ' $2550)-

Partition the vectors or matrices /7, and 17 according to t = 1, ..., T, and denote the partitioned vectors or matrices,
respectively, by {IT} and {I1}; partition the matrices &, @7, @7, ¥, and ¥, according to t,s = 1, ..., T, and denote
the partitioned matrices, respectively, by {@ys}, (@}, { P} {Wrs), and {@1 ). As € = 1t @ € and yy = 11 ® yo, denoting

T T T T
Hr+ = Zt:l Iy, (p1?t+ = Zs:l ¢rots’ ¢r++ = Zs:l Zs:l Pris, We have
Me =1 e, €bPe=cd e, €Wyy=cWiryo, VUV =V, Yo, VIe=VP e

where ¥°, = ¥2(1r ® I) and &2, = &2(11 ® I;). Now, by (3.2), the terms bilinear in & and yo, and the terms bilinear in
v and yg can be expressed as

E,lpr++y0 = E/q/r++1<m8 + E/Wr++1<m(7];:1 + V:,,), and ‘/lllr:_y() = \/'I/r:_KmS + V,lp’:_Km(n;kn + Vr:).

Therefore, the AQS vector at the true parameters consists of terms linear-quadratic in v, linear-quadratic in &, and
bilinear in ¢ and v. Thus, for every non-zero dim(y) x 1 vector of constants c, ¢’Sgpp (o) can be expressed as

C'Stopp(V0) = VAV + V¢ + &'Be 4 &'¢p +vDe — 'y,

for suitably defined non-stochastic matrices A, B and D, and (random) vectors ¢ and ¢, where jy, = {Ofﬁm(ﬂ), M2y s Mo
Maqs Moy, Mag). Both £ and ¢ are measurable functions of Vi,, and hence are independent of & and v. Putting ¢’S&., (o)
in a more compact form: VAV + V'@ — c’uy, where V= (v, ¢’), A ={A,D; 0, B}, @ = (¢', ), and 0 denotes a matrix

of zeros, the asymptotic normality of ﬁc’sg‘DpD(wo) follows from Lemma A.5. Finally, the Cramér-Wold devise leads to

the joint asymptotic normality of ﬁs;DPD(wo).

Proof of (b). The Hessian matrix, Hiypp(¥) = ﬁs;DpD(w), has the distinct elements:

Hjy = —aigx/g—lx, H;(TL% = —#x’sﬂe(e), Hj, = (:—VZX’.Q(;e(Q), Hj, = —aigx’g—ly,l,

H;,, = —éxrrlwly, H,, = —éxxﬂwzy,1 H(’:Uzag = —o—lse’(Q)Q’]e(Q)—i- 20—2 H,, = U—%X/Q;e(e),

HY = a€(O0)2,e(0), HY, =—e(0)27 'Y 1, HYy =—€(0)27WaYo1,  HY = —cel(0)R7WyY,

HY = 5oa€(0)2e(0). Hy, = Le(0)2, Y0, Hj, = Le(0)2, Wiy, i = €012, WYy,
bo = —5a7€(0)52; €(0) — 3trl82, (r ® In)]. Hpy = —527€/(0)82,;,€(0) — 311182 Ur @ In)l,

Hy, = —éYLlﬂ”Yq —trl(¢p€_1, + D1 ,)27"], H:, = —éwwl/.rrly,1 —tr{(pC_1, +D 1,027,

Hi, = =5V W27V — trl(¢C_13, +D_11,)27"], Hf ,, = — BV W WY — tr{(¢Cs, + Dy, )2 Wa],

Hy,, = 5e(0)2, Y1 — trl(D-1,, 27 ") + (#C1 + D)2 ], Hy,, = _aigy/wl'g—ly_l — trl(¢C, +D,)2'W],

pA3 T

Hj ,, = —éY’W{Q”WlY —trl(¢Ci, +D5,)27'W4], Hf = ée’(e)fz;my — tr{[Ds; 27" + (¢C + D)$2;. W1},



Hi, = =5V W2V — (€, + Doy, )27 Wal,

Hi, = = 5 Y W27 WY — trf(@C s, + Doy, )27 Wal,
H,;, = —éYL1W2’Q_1W2Y1 - tf[(¢tf1,xz + 1')71’)‘2).9‘1W2],
H,, = a—ge/(e)iz;ngyq — tr{[D_1;, 27" + (¢C1 + D1)82;, W5},
Hi,, = —ﬁe/(@):’?@e(@) — St($2;, 2, + 27142,),

Hy,, = ée/(@)@;} Y, Hp, = ée/(@)fzg WiY, Hj,, = ie/(@)fz; W,Y_q,

aC_4
v
from the expressions of C, C_;, D, and D_; given in Lemma 2.1; and further,

. SO . . D . . .
where C, = g—g D, = g—z, Co10 = D_i, = (aTl for w = p, A1, A2, A3, and these expressions can easily be obtained

@iy = 7 = (ByBs) " (ByWs + W;Bs )(B,Bs)

@, = 52 = 2(92,(B;W; + W,B5)(B;B5) " — (ByBs) (W, W5)(B;B3) ],

@, ==, @)= % =-20712,0;, -2 2,07,
Q; =M= reme, 2, = % =227 0r )Ry ® ;)21
@0y = P =207, 27 r @ )2,

It is easy to show that --Hip(¥o) = Op(1) by Lemma A.1 and the model assumptions. Thus, —-Hipp(¥%) = 0p(1)
because ¥ — o = 0,(1), which is implied by L5 Y. As o2 BN ok, 6,7 =0, +0p(1),r =2,4,6. As o] appears

in Hipp () multiplicatively,
ﬁHgDPD(I}) = ﬁH;DPD(Bv i @, 0. ) + 0p(1).
The proof of (b) is thus equivalent to the proof of
2 Ry p
n(T]—n[HgDPD(ﬂ’ o2, ¢, p, A) — Hippp(0)] — 0.

Writing e(6) = e — (A1 — A10)W1Y — (p — po)Y—1 — (A2 — A20)W2Y_1 — X(B — B,), and by the representations for Y and
Y_; given in (2.14), we see that all the random elements of Hg (1) can be written as linear combinations of terms:

quadratic in e : (w — wo)¥(w — wp ) e’ AG(¢, 13)Be,
quadratic in yy : (@ — @oY(w — wo)yYyAG(, A3)BYo,
linear in e : (w — woYe'AG(¢, A3)BZ,

linear inyy : (w — @oVy,AG(¢, A3)BZ,

bylinear in e andy, : (w — wo)(w — wo) e’ AG(¢, A3)Byo,
forj,k =0,1, w,w = p, A1, A2, Wwhere A and B denote generically nT x nT non-stochastic matrices, and Z generically
n'T X d non—stqchastic vector or matrices, all from (2.14) and free from parameters; and G(¢, A3) can be £271, .(2;3 9;3
24,825, and 2, .. o
Take a typical quadratic term of e, @ AG(¢, A3)Be, for example. Letting (¢*, 13) be between (¢, A3) and (¢, A39), we

have by MVT,

l[e’AG(ig, $)Be — € AG(As30, do)Be] = 9 =% e'AGy-Be + Me/mmﬂae,

nT nT nT 3

where C¢ and CM are the partial derivatives of G(¢, A3) evaluated at (¢*, A3). Noting that G is a linear combination of the
matrices 271, By ! and W3, and their products, its partial derivatives evaluated at (¢, A3) are linear combinations of £271,
B;l and W3, and their products as well, and hence are uniformly bounded in both row and column sums for (¢, A3) in a
neighborhood of (¢, A30). By Lemma A.4(i) and the consistency of Y, --[€’AG($, 13)Be — €' AG(¢o, A30)Be] 2 0. The
convergence of all other terms can be shown similarly by using Lemma A.4, Assumption F, and the consistency of .

It is left to show that all the ‘trace’ terms in - [Hzep(B, 07, @, B, &) — Hipep(10)] are o,(1). Consider, for example,
its pp-element. Denote E_; = E_¢(¢, p,A) = ¢C_1 + D_; and let E_4 ,(¢, p, A) be its partial derivative w.r.t. p. For



(¢*, p*, 1*) be between (¢, p, A) and (¢, po, Ao), we have by MVT,
A (tr[E1 (¢, 5, 1)2 71 (. A3)] — tr[E1 (o, 00, 20)2 (g0, A30)])
= Sl 27 (¢, A3) + Eor e 211 + S UlEY, 27167, 43))
+EZeE 07", ) + R uE 2 (¢*J§)l
+Mtr[ﬁk§ 27" 1) +E, pQ”(A’;)],

where Er r = ¢, p, A, A2, A3, are the partial derivatives of E_; 1,p evaluated at (¢*, p*, A*). Consider WL.O.G. T = 2.
Recall the cfeflmtlons of C and D, we have,
B, '(ByBs)™', By '(ByBs)”!
D J A1 Ao, A3) = 1 3 1 3 ,
(0 21. 52, 43) ( BB;'(B,Bs)~", BB;'(B,B3)"!
e BB, (XL, BB
Clo, A, 22) = ( 1 iy i1 ] -
(X BBy (0 BB,
This shows that the elements of E_; and E_; , are linear combinations of the matrlces Wi, B1 , Bz and B3, and their
products. Therefore, Er has elements being linear combinations of Wy, W5, W3, B1 , B>, and B3 , and their products,
and hence are umformly bounded in both row and column sums for (p, A) in a nelghborhood of (po, Ao) by Lemmas A.1
and A.2. Therefore, each trace term in the equation above divided by nT, such as —tr[qb* 1(¢*, A3) +E_4 p*[2¢* ], is
0,(1). This completes the proof (b).
Proof of (c). By the representations given in (2.16), the elements of Hessian matrix can be written as linear

combinations of quadratic and linear terms of v and &, quadratic and linear terms of yy, bilinear terms of v and yy, &
and yo, v and &. Thus, the results follow by repeatedly applying Lemmas A.1, A4, and A.6. W

Appendix C. Proofs for Section 3

Proof of Lemma 3.1. The result (3.7) is obvious. To show (3.8), we need the result:
E[(@'ve )(b've)(cve Xd've)] = (1) — 307 )@ © bY(c © d) + ob[(@b)(c'd) + (a'c)(b'd) + (d'd)(bc)l.

where ©® denotes the Hadamard product, and a, b, c, and d are n x 1 vectors. Write
T T

go,i = Z(eitef,;f — dig,ie) + Z(eit‘pri,[ —drg,it) = Qr1,i +Qr2i, T=1,2,...,6.

t=1 t=1

T T
As el = Driiyei+ D Pritsbjvs and @i = ay; &+ ) ;¢ U5, We have

T T T
E(Qr1.1Qu1 )= Y Covlenely. exely )+ Y Y Covierel. esel)

t=1 t=1 s=1,s#t
T T T
=0l Z Z[¢rii,ts¢u]j,st(b,/-bj)2 + cprii,ts(pujj,ts(b;bj)z] + (M(;:)) —3070) Z Prii it Pojj,ie(bi © by) (b © by),
t=1 s=1 t=1
T
E(Q1iQa) =0 > Y [Priiis(bicuj.se)biby) + Privs(bicyi s bib)] + 07005 Y (Priics + Pric o) @ry.c+ )(biby)
t=1 s=1 ; t=1
+ (1l = 304) Y Prii(bi © bi) (by © Cjae),
=1
T T ' T
E(QiQuy) =00 Y Y [@ujias(birise XBiby) + Pujas(bjcres b1 + 02028 > (P + Puj0 )14 J(biby)
t=1 s=1 t=1

T
+ (10 = 3070) D Pujcelby © b (b © e,
T T =
E(QiQuy) = ZZ (bcuj.st Jbjcriis) + (Biby)(Cry 5Cujis)]

+ok02 Z[(l i e )(bicuj o) + (10 )(BiCri c) + (@ ¢4 Qujey Y biby)]

+(I'L'U0 _3%0 Z[ 1(bi © i) (b © Cyjge)-



Summarlzmg and simplifying by letting c; . be the ith row of (@] ,, + @}, + ®¢ s)B3 !, we obtain the result for E(ge,igs,;),

e, (3.8) in Lemma 3.1.
To show (3.9), write gy,; = Z[T:](e,-[llfrjfi,t+y3,- — dyit) + Y1_ €& = Qi+ Q. Using e; = & + bjy,, and
Y5 = € +ny, + V5, we obtain

ri,ts

M-

E(Qr1,iQu ) = COV(E&‘I/;LHJ’ON e Wi t+y0] + Z Z Cov(e; ¥; f+y01’ i, S+y01)

t=1 s(#t)

-

Il
M-I

E [(gi + b;vt)w:i_pr.)’gi(ej + b](vt)w;;j,prygj] - dlI/ritdlI/Vjt

t

+ Z Z (&1 + v )W 1 Yoiles + vy o, V] — dusiedus
t=1 s(#t)
T
Z i, t+ vjj r+)E(Y(),.Vo])

t=1

1

where the double summation part vanishes, because for i # jand t # s, e; ¥ .,y and eJSlI/v’;] s+Yoj are conditionally
independent given V,, as they are, respectively, measurable-(¢;, v¢, Vi,) and measurable-(¢;, v, V). Similarly, using &, =

wy; Yo, we show that

E(Q1,iQu2)) = (7 b/ Z i, t+ yO[SU][)

t=1

T

E(Q2.iQu1j) = o2(bib) Y W o E(Viknic).
[?l

E(Qr2.iQu2)) = o2(bibj) Y E(Ericuic) + 0260 Twri 4 1wy 1),
t=1

where 1; denotes an n x 1 vector of element 1 at the ith position and zero elsewhere. Summarizing and simplifying, we
have the result for E(gy,i gv,;) given in (3.9).

To show (3.11), write g7,; = ZL] H;jyteﬁ =Py, v=1,2,..., ky. Using this and gy,; = Qr1; + Qr2i, 7 = 1, 2, 3, given
above, we obtain
T T
E(Qr1.iPy) = 0% Y (bib)IT); W E(Vg:) and E(Qua,iPyj) = o > (biby)IT}; E(&ric),

t=1 t=1

leading to E(gq’rlgﬂvj 90 Zt 1 vj t i, [)(b/b )-

Result (3.10) and (3.12) are derived in a similar way in which we separate each ge,; and gy,; into two terms,
and calculate the covariances of each pair of the terms and then sum them up. Details on these can be found in the
Supplementary Appendix. ®

Proof of Theorem 3.1. First, the result ):gDPD(@M) — X&en(¥o) L 0is implied by the result (b) in the proof of
Theorem 2.2. The result fS’BPD — I'ghpp(¥o) —25 0 follows from

@ L Y0 [&& - Eeg)] — O,

(b) nT P Zj l];ézlj\(gigj) - E(gigj{)] 2 0.

To show (a): the result follows if (i)-- > (&8 — gig]) -2, 0, and (i) Yo, [&ig] — E(gig)] —25 0. The proof of (i)
is straightforward by MVT. We focus on the proof of (ii).

The components of S&pp(1o) are mixtures of terms of the forms: /7'e = 2?21 gmi, €Wy — E(e'Wyy) = 2?21 gyi, and
e de — E(e'dPe) = lel Zoi. It suffices to show that

Z[gk:gn — E(gug)] = op(1),  for gu, & = &ni, &wi, Loi- (C.1)



First, we show = 21 1[gm (gfﬂ)] 0. Assuming, W.L.O.G, IT; are scalars, write

T
gmi= Y Iluey = Y M+ bjv) = Mive; + bivi, (€2)
t=1 t=1
where 17,+ =YL 1 Myandv; = Y_, ,tvt We have - Z? 1[gm E(g%,)] = U1+Uy+Us, where Uy = o= Y1 | T2 (¢7
02), Uy = 230 (MMie)(bjvi) and Us = = S0 [(bivi)? — 02(3°1_, IT2)(bb:)]. Now, it is straightforward to show that

Ur = op( ), forr =1,2,3, by applying Lemmas A.1 and A.4, and Chebyshev’s 1nequality.

Second, we show L 3" [g2. — E(g2,)] —> 0. Using (3.4), we can write

T
Zoi = kile] — 02) + eizii + eilr/e) + (i — ) + ) _(@ie)biue), (C3)

t=1
where k; are scalar constants that are uniformly bounded; z;; = ZL] piv; with p/, being the ith row of some
non-stochastic matrix uniformly bounded in row and column sums; u; = ) ,_; > . v{Aisvs with mean p,, =

ovz Z[T:1 tr(Ai ) where A; s = ®jis(bib;) + (b cl «s); b are defined as before, and r/ and ¢}, represent ith row of some
non-stochastic strictly lower triangular matrices which are uniformly bounded in both row and column sums. Noticing
that the five terms in (C.3) are uncorrelated, it follows that

n

1

nT
i=1

where Uy = L 31 k2{(e2 — 02> — El(e7 — 031}, Uz = 2 30 ki(e? — 02))ei(rfe),
n n n T
U3= %Z[e?(r{e)z—a‘;‘o ZTUZ-], U4=anZe,-(rs Zq't bv[
i=1 j=1 i=1 t=1
n n
o= Y cltom o= & Yo - e
T
=2 Zkl el —0%) Y (gpe)bv), Us = Z Z[ezl,z gjee)(bjuo)],
t=1 t=1

=Z Zez rle)ui — ), U = = Z ki(e] — 02)(ui — thuy),

i= 1

15
[25: — E(€3)] = > _ U, (C4)
r=1

Un = 2[5 21, (Zpltplt Uoggo] Uiz = 7 28211(111 Hu;)s

i=1

1
Un = — Z{[Z(q;e)w;vrnz - aioafo(Z i J(bbi)},

i=1 t=1 t=1

n T
Una = % ) (i — ) Y (@e)bjve). Uss = 5 Z{ — g )? — EI(t; — 1, 1}
i=1 t=1

To show each of the fifteen terms above is 0,(1), we write it as the sum of a martingale differences (MD) array and
thus the weak law of large numbers (WLLN) for an MD array, e.g., Theorem 19.7 of Davidson (1994, p.299), can be applied
to prove its convergence in probability to zero. As the full proof is tedious, we present details for a few typical terms: U,
Uy, Uyo and Uss. More details are put in the Supplementary Appendix.

Write U, = = 0L ki(e! — ud)rle) + & YL, ,,ugo)(r g) — Zo2 YL kisi(rje) = 2 Zf S Vi Let FE be
the increasing o- fleld generated by (81, ..., &) As ( g)is }‘,fl 1 measurable we have forr = 1, 3, E(Vini| F, n, 1) =0,
and thus {Vy,;, 7, ;} forms an MD array. As k; are unlformly bounded, it is easy to see {Vi,;} and {V3,;} are umformly
integrable. With constant coefficients % the other two conditions of WLLN for MD array of Davidson are satisfied. So
o> Vi = 0p(1), 7 = 1, 3, by Davidson’s WLLN for MD arrays. Finally, - 1" | Vani = Y[, apié;, for some constants
ayi. Therefore, Uy —> 0.

Write Uy = = > &(rfe) S (d,e)bv) = YOI, Vi Let Gy be the increasing o-field generated by (v, &1, .. ., &).
We have E(Vpi|Gni—1) = 0, and thus {Vy;, G,;} form an MD array. By Assumption B and Lemma A.1 we have E(Vnzl-) =
S bibo o2 {(ily — 30)ri © 1) (G © Gie) + oS l(riTi)(d)dic) + 21 P1} < K < oo. Therefore, {Vy} is uniformly



integrable. The other two conditions of the WLLN for MD arrays of Davidson are satisfied with constant coefficients ;—T
So we have Uy 0.

Write Ujg = 2 Y1 1k, el —o2ui— 23 k(e =02y = = Zf LS Vini. As k; and py, are uniformly bounded,
we immediately have Z, 1 Voni 20 by Kolmogorov s law of large numbers (LLN). For Vi, ;, first we notice that u;
depends only on v, and thus is independent of ¢; for all i. So, {V1p i, Gn.;} form an MD array. We have

T

E(uiz) = 0';10 Z Z[tr(/\i,tt )tr(Ai,ss) + tr(Ai,tsA;.ts) + tr(Ai,tsAi,st)] + Mvo - 301)0 Z Z am Jit

t=1 sst =1 j=1

where a;j; denotes the (j, j) element of A; ;. As Ajs = Djis(bib;) + (b; C: t)» we have tr(A; ) = cx/sb;, which is the
(i, 1) element of dbt’g(B’ B,)7'. So tr(Ais) = O(h,') by Lemma A] and Assumption D. Similarly we have Z - mﬂ <
tr(A;, ISA, ) = O(hy') and tr(A; sA; St) = O(h;"). Therefore, the condition, E(|Vini| ™) < K, < oo for some € > 0, is
satisfied. With constant coefficients - the other two conditions of WLLN for MD array of Davidson are satisfied. So we
have 2 = > Vln,,- 2, 0 and thus, Uw 2s0.

Write Uys = — Z” Ju? —Eu)]— == > p, (Ui — ;). The convergence of the second term follows from Lemma A.4.

. 4
Now, write u? Z[ ’ ZS 1V Al tsvs = > ,_; Hr ni, where

Hyp = Z Z Z Z v Az tsvsvaz keve; Hizpi = Z Z v Az tsUs Uy Az tsUs;

sk LAt#s#k t st
Hypi = E E U[Ai,[[vtvsAi,SSUS; Hypni = E vtAi,ttUtUtAi,ttUt~
t o s#Et t

Write Hini = Y, vy9ie, Where g = Zt# ZS# ZkﬂAgykévkv{Af,mvs. We have E(vjgi) = 0 as v, and g are
independent. For each ¢, we can write 5 "I, vj@ie = 2V, Y[, @i, which is a bilinear form. Therefore, by Assumptions B
and D, it is easy to verify the conditions of Lemma A.5. As T is fixed, we have # Z?:r Hi i = 0p(1).

Rewrite Hyni = Y., ), Uirllis. For each t and s, write L3 luieuss — EQuie E(uig)] = & Zf:1[un — E(u; )]E(ui) +
A it — Euio)luie = o Yoy Ving + 7r 2oieq Vani Let vf = [ Al tr(Aio)lve and & = [Y1L (Al + A )]ve. The
Vin,i is decomposed into:

n n
;—Tva,i = ,J—TZ[(U;A;{nvt — o2tr(Ai)) + vi(AL, + AV v |E(us)
n

= ”0 /ZAI w1 ( ,ss) "OZU i,00 JET(Ai s + [Z( 1tt+Azwtt)]

i=1

2
_ o 0,/ /
= Bl — E(upof )l + o5 nT vg = Z(vﬁvjt E(vje vy HTZ Vje&je-

j=1

Clearly, the first term is the average of n independent terms. The second term can be seen to be the average of the MD array
{vjc&;c} with respect to the increasing o -field, F, m, generated by {v”, oot =1,..., T} The & is f;] ,-measurable
and the conditions of WLLN of Davidson are easily verified. Hence, - o Z?:r Vini = 0p(1). Similarly but more tediously,
we show that L 3™ | Vs, = 0,(1). Therefore, - > | (Ho ni — EHzni) = 0p(1).

The result = Z; 1[H3 ni — E(H3,ni)] ", 0 can be shown in a similar way.

As Hypi = Z (v v+ v[&t) where vi =AY, v and .?,—‘,t = (A, i« T Al )ue, we have, for each t, = LS (vl + v ) =

1,tt

DA CAT L Zl (V&) + % Zl e DD il Vrn it By Assumptlons B and E, and Lemma A.1, it

. n

is easy to show that - 21:1[V1M — E(Vm.,t)] = n] F1(vjt wa; + - ZJ 1 Zk# 2v2, — o)k = 0p(1). Similarly,
n n

% Zi=1[v3n,it - E(V3n,it)] = Op(l)- Decompose % Z,‘=1[V2Tl,lt — E(Van,ie)] as:

n

n o2 I n
an ZE,”) +— Z[(Z Ei) — Zé&lt, UT? D i[> v ki)

j=1 =1 =1 j=1 [ i=1

The first and third terms can be shown to be 0,(1) by WLLN for MD arrays as & jis F, ] ;-measurable. Let a . be the j th
row of Al , +A!",, then we have & ; = aj jvr. The second term becomes = jzl[vt i1 4@ o — 0y tr(zl 1 05! J)]
0p(1) by Lemmas A.1, A.2 and A.4. Therefore, n]7 Z?:r Hj ni = 0,(1). Combining these results, we have Uis = 0,(1). Other

terms can be proved similarly, and therefore, -1 3" | [g2. — E(g3,)] = 0p(1).



Third, we show Zl 1[g,1,1 (gg,i)] -2, 0. Write, using y; = 0, + &+ V,r and (3.3),

.
gui = eihi + Wi (] — o) + silw], &) + 2o + Y _(buelw)e), (C5)

t=1

where h; = a}V;; + Zfﬂ CipV, Zoi = Zfﬂ sV, and d;, s;, and ¢}, are ith row of some non-stochastic matrices that are
uniformly bounded in both row and column sums. Recall wy, is the ith row of (¥ 1y ') and note that the ith element

of wj, is 0. We have,
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Z[gw,— (g1 =Y Ur. where (C6)

r=1

n n
Ur =5 ) [s7h} — 0B, Up = £ 3 w2{(e? — o2 — El(e? — 02)1),
n lnl
Us = & 2[81‘2( wi, &) — ol Zwu] U= L Z[Zzzi — E(Z3)],
UG =T Z u+ Ihi7 U7 =T ZS z+€
0 Zeh > it
1
= T
Uio = nT Z u+ 1(w1{+8), U = Z n+ Z b Ur)
. r t=1
nT Z u+ ZZh U]3 = % Zé‘,‘(w,{JrS Z b vt
i=1 t=1
Uiy = % Z&‘i(w;+8)221, Uis = — ZZZI Z b Ut )
i= t=1

n T

1

s E [( E (bveXwie)) —Ufoafo(bébf)g (wiewie)].
i=1 t=1

t=1

Ug = % Z &ihizai, Ug

=
N
| |

By Assumptions A and B, V; is independent of ¢ and v, and 7}, is exogenous. With Assumption F, the terms in
(C.6) are similar to those in (C.4), and therefore their convergence is proved similarly. Using (C.2), (C.3) and (C.5), the
convergence of the cross product terms - " | [gri8oi — E(grigsi)] = 0p(1), +F Y. [€0igwi — E(gwigwi)] = 0p(1), and
an Z?zl[gmgq,,- — E(g.,p,-gg,f)] = 0y(1) can also be shown similarly. Detailed expressions for the cross product terms can
be found in the Supplementary Appendix. These complete the prove of convergence in the single summation part of
Theorem 3.1.

To show (b): the result - 31 Y | . [E(g:g)) — E(gig))] — 0 follows if

ZZ glgj )—>O and (ii) ZZ[TU g,g]]—>0

11]1]#1 1111]#1

where 7j; is from E(gigjf) by removing E(-) in E(§7,) ). As each element of 7j; is a linear combination of the

terms in (3.7)-(3.12), only the consistency of them matters.

and E(§7 &)

vj,t

Proof of (i): (1). By Lemma 3.1 we have, E(gz, g, ) = %0 Zt (bbb, 7, e As T is fixed, and as Uvzo enters linearly

and 62 is consistent, it suffices to prove

r,it

ZZ[ (b/b)aic it — (bjbj)miemc] —> 0, foreacht=1,...,T,
i=1 j#i

which is done by applying Holder’s inequality, Lemmas A.1 and A.2, and Assumption E.



(2). By the expression of E(g4,i 8¢,;) given in (3.8) in Lemma 3.1, dropping r and v,

Q= 122[@“, )i ) — (i )bick )] — 0,

i= 1 J#i

0f = 13 B - Glb)elhol > o
i= l J#i

Qgt = %ZZ[%: e+ ] 1+t aﬁqt+( 'j 1+t)] — 0,
i= 1 J#i

Q= %ZZ[GU e+(bj J+t aU’er(bl/'CJTH)] s 0,
i= 1 J#i

@ = Y YN B — (@ O]
Inl J#i

Q= 1 2- D I 0 &) (B0 Gi) = (b © ) (b 0 )l > 0.
i=1 j£i

(3). E(8ur.i80, ) = 0 (wrij - wyji 4 ) + 0% Y ¢ (bibyE(E £ ). We need to show:

n
r__ 1 § :§ : ~ ~ p
Q7 =1 (w,-j,+wj,-,+ — w,-j,+wj,-y+) — 0, and
i= 1 J#i

ZZ[ (biby)(Erd0) — (biby)(E & = .
i=1 j#i

(4). E(goigrj) = ,ufo) S (b ® ¢ )bjmj, from Lemma 3.1, and thus we need to show:
ZZ[B #je — (b © ¢V bjm ] — 0.
(5). E(gwigmj) = avzo ZL] i (&) ¢ )(b}b;) from Lemma 3.1, and thus we need to show:

1 & A 2 . * /
Qio = - > > (& b)) — (e biby)] = 0
i=1 j#i

(6). Finally by Lemma 3.1, E(g¢igy;) = (7 Uuo Zt 1 [(bibX( n e+ Whj, vie) T Wi +(b] i, ol +Ugo(w]l +ij,++ +Mvo Zt 1
Cri ) DiE(E); ), and thus we need to show:

Qlt1:1zz xt+ _]t (bb)(a1t+ ]t)]—p)oy
i= 1 J#I
Q=1 ZZ[wJ, + 1 Clee) wji,+(b1 Gyl =0,
i=1 j#i
n
Q3 = 1 i 8y.44) — (Wi 405,44 )] —> O,
i:l [
Q=1 ZZ[ (bi © &Y Bi(&) — (bi © ¢V bi(&7 )] —> 0.
i=1 j#i

Following (3.2) and Assumption F, we can see that all the terms in (3)-(6) are similar to the terms in (i) and (ii), and
therefore their convergence in probability to zero is proved similarly to that of the terms in (i) and (ii).



Proof of (ii): First we note that (ii) is not needed for the terms not involving yg. For the terms which involve yj, we
need to prove:

R = % Z Z(b,{bj)[‘éift%fr — E(&7.&7)] 20,

i=1 j#i
n
Ry =23 " ml&, — B = 0,
i=1 j#i
n
RE =13 "1(hi © ¢ Y BjlIE, — E(§)] —> 0.
i=1 j#i

Recall that &, = wjy; where w;’ is the ith row of ¥;*. The convergence of R}, and R} immediately follow by Lemmas A.1

and A.6. To show Rﬁ BN 0, note that ¥ = ¥;Ky,;, and yj = K, lyo, so we can write, &= a;yo, where aj, is the ith row
of W;. Then we have, Y i, >~ (bib)&r &, = yol X iy (aib}) XL i(bjai)1yo = YoAryo, where A, = W/BW: — ¥/diag(B)¥,
and B = (B;B3)*]. Clearly, A; is bounded in both row and column sums by Assumption E(iii) and Lemma A.1(i). Therefore,

Rl = %[ygAtyo —E(yAiyo)] = 0p(1), by Lemma A.6. These complete the proof of the convergence of the double summation
part in Theorem 3.1, and therefore complete the proof of Theorem 3.1. ®

Additional details on the proof of Theorem 3.1, in particular, the proof of (b), can be found in the Supplementary
Appendix available at http://www.mysmu.edu/faculty/zlyang/.
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