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Abstract 

In this paper, M-estimation and inference methods are developed for spatial dynamic panel data models with 

correlated random effects, based on short panels. The unobserved individual-specific effects are assumed to be 

correlated with the observed time-varying regressors linearly or in a linearizable way, giving the so-called 

correlated random effects model, which allows the estimation of effects of time-invariant regressors. The 

unbiased estimating functions are obtained by adjusting the conditional quasi-scores given the initial 

observations, leading to M-estimators that are consistent, asymptotically normal, and free from the initial 

conditions except the process starting time. By decomposing the estimating functions into sums of terms 

uncorrelated given idiosyncratic errors, a hybrid method is developed for consistently estimating the variance–

covariance matrix of the M-estimators, which again depends only on the process starting time. Monte Carlo 

results demonstrate that the proposed methods perform well in finite sample. An empirical application on the 

political competition in China is presented. 
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n × p matrices containing values of p time-varying exogenous variables, Z is an n × q matrix containing the values of q
time-invariant exogenous variables that may include the intercept, dummy variables (e.g., individuals’ gender and race),
etc.; β and γ are the usual regression coefficients; Wr , r = 1, 2, 3, are the given n × n spatial weight matrices; and µ is
an n×1 vector of unobserved individual-specific effects, α = {αt}

T
t=1 is a T ×1 vector of unobserved time-specific effects,

and 1n is an n × 1 vector of ones.
According to the way (µ, α) relate to {Xt}, the model is classified as: (i) fixed effects (FE) model if (µ, α) are correlated

with Xt arbitrarily; (ii) random effects (RE) model if (µ, α) are uncorrelated with Xt ; and (iii) correlated random effects (CRE)
if (µ, α) are correlated with Xt linearly or in a linearizable way (see Footnote 1). M.-J. Lee (2002) called FE the related effects,
and RE the unrelated effects. So, naturally the CRE can be called the linearly related effects. The term CRE is a tribute to
Mundlak (1978), and Chamberlain (1982, 1984). In this work, we adopt the more popular terms: FE, RE and CRE, so that
the SDPD models specified in (1.1) can be: FE-SDPD model, RE-SDPD model, or CRE-SDPD model.

Extensive discussions have appeared in the panel model literature, see, e.g. Cameron and Trivedi (2005), Wooldridge
(2010), Baltagi (2013), and Hsiao (2014). The FE model has weaknesses (Cameron and Trivedi, 2005, p. 715–716): (i) it does
not allow the estimation of the effects of time-invariant regressors, e.g., gender, race; (ii) while coefficients of time-varying
regressors are estimable, these estimates may be very imprecise if most of the variation in a regressor is cross sectional
rather than over time; (iii) prediction of the conditional mean is impossible, instead only changes in conditional mean
caused by the changes in time-varying regressors can be predicted; and (iv) even coefficients of time-varying regressors
may be difficult or theoretically impossible to identify in nonlinear models. The RE model overcomes these difficulties,
but causal interpretation may then be unwarranted (Cameron and Trivedi, 2005, p. 715–716). The CRE model makes a
compromise between the two: overcomes the weaknesses of the FE model and at the same time captures the linear or
linearizable correlation between the ‘effects’ and the time-varying regressors.

The literature on spatial dynamic panels is fast expanding in recent years. However, most of the research on spatial
dynamic panel data models focused on the long panels (with large n and large T ), see, e.g., Yang et al. (2006), Mutl (2006),
Yu et al. (2008), Yu and Lee (2010), Lee and Yu (2010a, 2012, 2014); Bai and Li (2015), Shi and Lee (2017), with relatively
fewer works on the short panels, e.g., Elhorst (2010), Su and Yang (2015), Qu et al. (2016), Kuersteiner and Prucha (2018),
and Yang (2018). Most of the works on short panels are on the FE-SDPD model, except Su and Yang (2015) who considered
both FE- and RE-SDPD models but with only the SE effect built in the model. The general RE-SDPD model of the form
(1.1) has not been formally considered, and the more general CRE-SDPD model specification has not even appeared in the
literature. See Anselin et al. (2008), and Lee and Yu (2010b, 2015) for nice surveys on spatial panel data models. In this
paper, we give a full treatment on the estimation and inference for the CRE-SDPD model, which includes the RE-SDPD
model as a special case. We focus on the large-n and small-T setting, i.e., the short panels.

The CRE assumption renders a linear model for µ based on the observed Xt . We adopt the approach of Mundlak (1978)
and specify that µ is linearly related to {Xt} as,

µ = X̄π + ε, (1.2)

where X̄ =
1

T+1

∑T
t=0 Xt and ε is an n-vector of iid(0, σ 2

ε ) errors, independent of vt for all t . This can be extended to
µ = X0π0 + X1π1 + · · · + XTπT + ε, as in Chamberlain (1982, 1984), a spatial Durbin form as in Debarsy (2012), or any
linearizable relationship.1

Clearly, the advantages of the CRE-SDPD model over the FE-SDPD model are (i) it captures the typical correlation
between µ and Xt and at the same time allows the effects of time-invariant variables Z , such as gender and race, be
estimated, (ii) it may be more robust against possible existence of measurement errors and random coefficients, (iii) it
makes the prediction of conditional mean possible as it works with levels rather than on differences series as in FE-
approach, and (iv) it avoids the incidental parameters problem caused by the individual fixed effects, and hence may
increase the estimation efficiency greatly.2 Therefore, it is highly desirable to carry out a formal study on the CRE-SDPD
model to provide a set of easy-to-use estimation and inference methods for applied researchers.

However, the CRE induces another set of errors ε, associated with the model for the individual-specific effects µ,
besides the original set of idiosyncratic errors {vt}, which further complicates the initial conditions in the model estimation
and posts a much greater challenge in the estimation of the variance–covariance (VC) matrix of parameter estimates,
compared with the FE-approach. The key problem is that in short panels, the error components in the disturbance cannot
be separately estimated, rendering the outer-product-of-martingale-difference (OPMD) method of Yang (2018) for the FE-
SDPD model unapplicable. The full quasi maximum likelihood (QML) approach of Su and Yang (2015) is also unapplicable
as the usual way of modeling the initial observations based on a linear model may not be valid in the existence of spatial
lag terms, as discussed in Yang (2018).

This paper contributes to the literature of dynamic short panel data models with spatial dependence by (i) providing
an M-estimation method for the CRE-SDPD model, and (ii) introducing a new method for estimating the VC matrix of the

1 The intercept of Model (1.2) is absorbed into that of Model (1.1) for parameter identifiability (see Section 2.1 for details). By ‘linearizable’ we
mean any CRE relationship that can be written as or approximated by a model linear in a finite number of parameters. To keep our exposition
simple enough, we work with (1.2). For issue on parameter identification, see, e.g., Anselin et al. (2008, p.647), Elhorst (2012), and Lee and Yu
(2016).
2 The FE-approach treats µ as unknown parameters, directly estimated or removed by some transformation. Hence, one period of the data is

‘lost’ which may consist of one third or one quarter of the ‘usable’ data if T = 3 or 4, making a significant difference in estimation efficiency.
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M-estimators, of which both are free from the initial conditions except the process starting time (−m). OurM-estimation
strategy provides a complement to Yang (2018) for FE-SDPD model. It starts by adjusting the conditional quasi score
function given the initial observations, to give a set of unbiased estimation functions or moment conditions that are free
from the specification of the distribution of the y0 (the initial conditions) apart from the process starting time (−m). The
vector of estimating functions is then written as a sum with the n summands being martingale differences with respect to
individual-specific errors given idiosyncratic errors, so that a hybrid method that combines analytical derivations and the
feasible sample analogues is proposed for estimating the VC matrix of the M-estimators. The resulting VC matrix estimator
is also free from the initial conditions except the process starting time. The consistency and asymptotic normality of
the M-estimators are established, and the consistency of the VC matrix estimator is also proved. Extensive Monte Carlo
results show that, in finite samples, (i) proposed M-estimators perform very well, much superior to the conditional QML
estimators (QMLE), (ii) proposed VC matrix estimator also performs well, and (iii) in case of the simple RE-SDPD model
with only SE effect, the proposed M-estimator performs equally well as the full QMLE of Su and Yang (2015), but is
numerically much more efficient. Without time-specific effects and if T goes large with n as in Yu et al. (2008), the
proposed M-estimation method remains valid, and in this case, the usual method for estimating the VC matrix applies.

The CRE-SDPD model given in (1.1) is fairly general, embedding several important submodels obtained by dropping
one or two spatial effects, none of which has been formally treated in the literature except Su and Yang (2015).3 The
proposed estimation and inference methods can easily be simplified to suit each special model of interest for a particular
applied problem. Very interestingly, in a simple static panel data model, i.e., setting ρ, λ1, λ2 and λ3 in Model (1.1) to
zero, one can show that the CRE-estimators of β under Mundlak’s and Chamberlain’s specifications reduce to the usual
FE-estimator (Cameron and Trivedi, 2005, Sec. 21.4.4, Krishnakumar, 2006; Hsiao, 2014, Sec. 3.4.2.1). However, we show
that such an equivalence fails to hold once we move away from these formulations (e.g., a subset of Xt is correlated with
µ), add dynamic terms, add spatial terms, etc.4 These reinforce the need of a new set of estimation and inference methods
for the general CRE-SDPD model.

The rest of the paper goes as follows. Section 2 introduces the M-estimator for the CRE-SDPD model and presents its
asymptotic properties. Section 3 introduces the new method of estimating the VC matrix of the M-estimator. Section 4
presents Monte Carlo results. Section 5 presents an empirical application. Section 6 concludes the paper and offers some
further discussions. All the technical proofs are relegated to the appendices.

2. Estimation of SDPD model with CRE

2.1. Conditional QML estimation of CRE-SDPD model

Let Br ≡ Br (λr ) = In − λrWr , r = 1, 3, and B2 ≡ B2(ρ, λ2) = ρIn + λ2W2. The CRE-SDPD model specified by (1.1)–(1.2)
has reduced form, for t = 1, . . . , T :

yt = B−1
1 B2yt−1 + B−1

1 (Xtβ + Zγ + X̄π + αt1n) + B−1
1 ε + B−1

1 B−1
3 vt . (2.1)

Let Y = (y′

1, . . . , y
′

T )
′, Y−1 = (y′

0, . . . , y
′

T−1)
′, X = (X ′

1, . . . , X
′

T )
′, D = (IT−1⊗1′

n, 0(T−1)0′
n)

′, and X = (1nT ,D, X, 1T⊗Z, 1T⊗X̄),
where ⊗ denotes the Kronecker product, 1k denotes a k×1 vector of ones, 0k a k×1 vector of zeros, and Ik a k×k identity
matrix. Further, let ε = 1T ⊗ ε, v = (v′

1, . . . , v
′

T )
′, Wr = IT ⊗Wr , and Br = IT ⊗ Br , r = 1, 2, 3. The reduced form (2.1) can

be written compactly in matrix form:

Y = B−1
1 B2Y−1 + B−1

1 Xβ + B−1
1 ε + B−1

1 B−1
3 v. (2.2)

where β = (α̌′, β ′, γ ′, π ′)′ with dim(β) = 2p + q + T , and α̌ = (αT , α1 − αT , . . . , αT−1 − αT )′.
Let e = ε + B−1

3 v be the composite error vector. As {εi} are iid(0, σ 2
ε ), {vit} are iid(0, σ 2

v ), and ε and v are independent,
the variance–covariance (VC) matrix of e is:

Var(e) = σ 2
ε (JT ⊗ In) + σ 2

v (B
′

3B3)−1
= σ 2

v [φ(JT ⊗ In) + (B′

3B3)−1
] ≡ σ 2

vΩ, (2.3)

where φ = σ 2
ε /σ

2
v . Let λ = (λ1, λ2, λ3)′, θ = (β′, ρ, λ1, λ2) and ψ = (β′, σ 2

v , φ, ρ, λ
′)′. Assume X is exogenously given.

The quasi Gaussian loglikelihood, treating ε and v as normally distributed and y0 as exogenously generated (conditioning
on y0), is

ℓSDPD(ψ) = −
nT
2

log(2πσ 2
v ) −

1
2
log |Ω(φ, λ3)| + log |B1(λ1)| −

1
2σ 2

v

e′(θ )Ω−1(φ, λ3)e(θ ), (2.4)

where e(θ ) = B1Y − B2Y−1 − Xβ, and |·| denotes the determinant of a square matrix.
Maximizing ℓSDPD(ψ) gives the conditional QML estimator (QMLE) ψ̂c of ψ . However, y0 is not exogenous unless

m = 0 (data collection starts when process starts) and ε and/or v may not be normal. Thus, ℓSDPD(ψ) may not be a

3 They considered an SDPD model with RE and spatial error (i.e., setting λ1 and λ2 to zero in Model (1.1), and setting π to zero in Model (1.2)),
and a full QMLE by modeling the initial observations.
4 We thank a referee for pointing out this simple connection and for raising the issue on its possible existence in general. See Supplementary

Appendix at http://www.mysmu.edu/faculty/zlyang/ for details.

http://www.mysmu.edu/faculty/zlyang/
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true loglikelihood function and maximizing it may not give a consistent estimate of ψ , in particular when m > 0 so
that y0 is endogenously generated. When T is also large, consistency may be achieved as ignoring the endogeneity in
y0 is asymptotically negligible. However, it may still suffer from the asymptotic bias problem. To solve these problems,
we adopt the fundamental idea of Yang (2018) to ‘correct’ the quasi score functions to give a set of unbiased estimating
functions or moment conditions.

2.2. M-Estimation of CRE-SDPD model

The quasi-score function, SSDPD(ψ) =
∂
∂ψ
ℓSDPD(ψ), has the form:

SSDPD(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2
v
X′Ω−1e(θ ),

1
2σ4
v
e′(θ )Ω−1e(θ ) −

nT
2σ2
v
,

1
2σ2
v
e′(θ )Ω−1(JT ⊗ In)Ω−1e(θ ) −

1
2 tr[Ω

−1(JT ⊗ In)],
1
σ2
v
e′(θ )Ω−1Y−1,

1
σ2
v
e′(θ )Ω−1W1Y − tr(B−1

1 W1),
1
σ2
v
e′(θ )Ω−1W2Y−1,

1
2σ2
v
e′(θ )Ω−1Ω̇λ3Ω

−1e(θ ) −
1
2 tr(Ω

−1Ω̇λ3 ),

(2.5)

where Ω̇λ3 = (B′

3B3)−1(B′

3W3 + W′

3B3)(B′

3B3)−1, and tr(·) is the trace of a square matrix.
Let ψ0 be the true value of ψ . A parametric quantity evaluated at the true parameters is denoted by adding a subscript

‘0’, e.g., B10, Ω0. The usual expectation and variance operators E(·) and Var(·) correspond to the true parameters. We
derive E[SSDPD(ψ0)], and show that the (ρ, λ1, λ2)-components of E[SSDPD(ψ0)] are generally not zero, and that the same
components of plimn→∞

1
nT SSDPD(ψ0) are not zero. Thus, the conditional QMLE ψ̂c cannot be consistent.

Assumption A. Assume (i) the processes started m(≥ 0) periods before the start of data collection (0th period), and then
evolve according to Models (1.1) and (1.2), (ii) y−m and zi are exogenous, and (iii) the individual specific effects µ are
related to Xt linearly or in a linearizable way with additive errors ε independent of vt , t = −m + 1, . . . , T .

It is easy to show that the (β, σ 2
v , φ, λ3)-components of E[SSDPD(ψ0)] are all zero. The derivations of the other

components are complicated by the additional time-invariant error component ε (induced by the CRE-formulation), which
generates cumulative impact on yt , t = 0, 1, . . . , T . Recursive substitutions on (2.1) lead to the following important
lemma.

Lemma 2.1. Suppose Assumption A holds. Assume further that the errors {vit} in Model (1.1) are iid(0, σ 2
v0) across i and t, the

errors {εi} in Model (1.2) are iid(0, σ 2
ε0), and {vit} and {εi} are independent. If both B−1

10 and B−1
30 exist, then we have for m ≥ 1,

E(Y−1e′) = σ 2
v0(φ0C−10 + D−10), (2.6)

E(Ye′) = σ 2
v0(φ0C0 + D0), (2.7)

where C ≡ C(ρ, λ1, λ2,m), C−1 ≡ C−1(ρ, λ1, λ2,m), D ≡ D(ρ, λ1, λ2, λ3), and D−1 ≡ D−1(ρ, λ1, λ2, λ3) are nT × nT
matrices, defined as follows: C = [1T ⊗ (C ′

1, C
′

2, . . . , C
′

T )]
′ and C−1 = [1T ⊗ (C ′

0, C
′

1, . . . , C
′

T−1)]
′, where Ct = (

∑t+m−1
i=0 Bi)B−1

1
and B = B−1

1 B2;

D =

⎛⎜⎜⎜⎝
D0 0 . . . 0 0
D1 D0 . . . 0 0
D2 D1 . . . 0 0
...

...
. . .

...
...

DT−1 DT−2 . . . D1 D0

⎞⎟⎟⎟⎠ and D−1 =

⎛⎜⎜⎜⎝
0 0 . . . 0 0
D0 0 . . . 0 0
D1 D0 . . . 0 0
...

...
. . .

...
...

DT−2 DT−3 . . . D0 0

⎞⎟⎟⎟⎠ ,

where Dt = BtB−1
1 (B′

3B3)−1.

The results of Lemma 2.1 lead immediately to

E(e′Ω−1
0 Y−1) = tr[(φ0C−10 + D−10)Ω−1

0 ], (2.8)

E(e′Ω−1
0 W1Y ) = tr[(φ0C0 + D0)Ω−1

0 W1], (2.9)

E(e′Ω−1
0 W2Y−1) = tr[(φ0C−10 + D−10)Ω−1

0 W2], (2.10)

showing that the (ρ, λ1, λ2)-components of E[SSDPD(ψ0)] are generally not zero, and more importantly, the (ρ, λ1, λ2)-
components of plimn→∞

1
nT SSDPD(ψ0) are not zero. Therefore, the conditional QMLE ψ̂c cannot be consistent in general.
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It is very interesting to note that these quantities are free from the specification of the distribution of the initial
observations y0, except the process starting time (−m) embedded in the matrices C and C−1. Thus, these results provide
a simple way to adjust the conditional quasi-scores, SSDPD(ψ0), so as to give a set of unbiased estimating functions or
moment conditions free from the initial conditions except m.5 Unlike in the FE-approach of Yang (2018), where ε is
differenced away, we need to account for its presence which is not trivial.

The adjusted quasi-score (AQS) functions are:

S∗

SDPD(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2
v
X′Ω−1e(θ ),

1
2σ4
v
e′(θ )Ω−1e(θ ) −

nT
2σ2
v
,

1
2σ2
v
e′(θ )Ω−1(JT ⊗ In)Ω−1e(θ ) −

1
2 tr[Ω

−1(JT ⊗ In)],
1
σ2
v
e′(θ )Ω−1Y−1 − tr[(φC−1 + D−1)Ω−1

],

1
σ2
v
e′(θ )Ω−1W1Y − tr[(φC + D)Ω−1W1],

1
σ2
v
e′(θ )Ω−1W2Y−1 − tr[(φC−1 + D−1)Ω−1W2],

1
2σ2
v
e′(θ )Ω−1Ω̇λ3Ω

−1e(θ ) −
1
2 tr(Ω

−1Ω̇λ3 ).

(2.11)

It is easy to show that E[S∗
SDPD(ψ0)] = 0, and that plimn→∞

1
nT S

∗
SDPD(ψ0) = 0. Solving the estimating equations

S∗
SDPD(ψ) = 0 gives M-estimator ψ̂M, which is shown to be consistent and asymptotically normal under some regularity
conditions in Theorems 2.1 and 2.2.

The equation solving process can be simplified by first solving the equations for β and σ 2
v given δ = (φ, ρ, λ′)′ to

obtain the constrained M-estimators of β and σ 2
v as

β̂(δ) = (X′Ω−1X)−1X′Ω−1(B1Y − B2Y−1), (2.12)

σ̂ 2
v (δ) =

1
nT

ê′(δ)Ω−1ê(δ), (2.13)

where ê(δ) = B1Y − B2Y−1 − Xβ̂(δ). Substituting them back into the last five components of the AQS functions gives
the concentrated AQS functions S∗c

SDPD(δ) (see (B.1), Appendix B). Solving S∗c
SDPD(δ) = 0, we obtain the unconstrained

M-estimator δ̂M of δ, and the unconstrained M-estimators β̂M ≡ β̂(δ̂M) and σ̂ 2
v,M ≡ σ̂ 2

v (δ̂M) of β and σ 2
v . Thus, ψ̂M =

(β̂
′

M, σ̂
2
v,M, δ̂

′
M)

′.

Remark 2.1. From the way that the AQS function is defined in (2.11), we see that the M-estimator ψ̂M for the CRE-
SDPD model specified by (1.1) and (1.2) is free from the specification of the distribution of y0, except the value m that is
unknown.

However, this does not pose a serious problem as (i) in practice one is often able to ‘tell’ roughly the value of m from
the data, and (ii) ψ̂M is quite robust against the changes in the value of m. See Elhorst (2010) and Su and Yang (2015) for
similar remarks.6

2.3. Asymptotic properties of M-Estimator

To proceed with a formal study on the asymptotic properties of the proposed M-estimator, some generic notations are
helpful: blkdiag(· · ·) forms a block-diagonal matrix based on the given matrices, γmin(·) and γmax(·) denote the smallest
and largest eigenvalues of a real symmetric matrix, and ∥ · ∥ denotes the Frobenius norm of a matrix.

Assumption B. The innovations vit are iid for all i and t with E(vit ) = 0, Var(vit ) = σ 2
v0, and E|vit |4+ϵ0 < ∞ for some

ϵ0 > 0. The innovations εi are iid for all i with E(εi) = 0, Var(εi) = σ 2
ε0, and E|εi|4+ϵ0 < ∞ for some ϵ0 > 0.

Assumption C. The parameter space ∆ of δ is compact, and the true parameter vector δ0 lies in its interior.

Assumption D. The elements of (y−m, Z, Xt ), t = −m + 1, . . . , 0, . . . , T , are uniformly bounded, and the limn→∞
1
nT X

′X
exists and is nonsingular.

5 The full QMLEs of the regular dynamic panel data model of Hsiao et al. (2002) and the SE-SDPD model of Su and Yang (2015), where the initial
observations are modeled, also depend on m.
6 Under simpler models with full QML estimation, Hsiao et al. (2002) recommended to estimate m together with the other common parameters;

Su and Yang (2015) pointed out that m may not be separately identified unless the ‘lag’ parameter ρ ̸= 0. In our general model, m may be identifiable
unless the ‘lag’ parameters (ρ, λ1, λ2) in B are all zero. We choose this practical approach to avoid additional numerical complications.
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Assumption E. (i) For r = 1, 2, 3, the elements wr,ij of Wr are at most of order h−1
n , uniformly in all i and j, and wr,ii = 0

for all i; (ii) hn/n → 0 as n → ∞; (iii) {Wr , r = 1, 2, 3} and {B−1
r0 , r = 1, 3} are uniformly bounded in both row and

column sums; (iv) For r = 1, 3, {B−1
r } are uniformly bounded in either row or column sums, uniformly in λr in a compact

parameter space Λr , and 0 < cr ≤ infλr∈Λr γmin(B′
rBr ) ≤ supλr∈Λr γmax(B′

rBr ) ≤ c̄r < ∞.

Assumption F. (i)
∑

∞

i=0 B
i
0 exists and is uniformly bounded in both row and column sums, and (ii)

∑
∞

i=0 B
i is invertible

for (λ1, λ2) in a neighborhood of (λ10, λ20).

Assumption B is standard in spatial panel data models with error components (see, e.g., Su and Yang, 2015).
Assumption C is needed in establishing the consistency of δ̂M. Assumptions D and E(iv) guarantee the existence and
nonsingularity of limn→∞

1
nT X

′Ω−1X, so that once δ is identified, the identifications of β and σ 2
v follow. Assumption E

parallels Assumption E of Yang (2018) and relates to Lee (2004). Allowing hn to grow with n but at a slower rate is useful
as it corresponds a spatial layout where the degree of spatial dependence increases with n. See Lee (2004) and Yang (2015)
for related discussions. Due to the cumulative impact of εn from the past, we need Assumption F(i) to ensure that the
initial observations y0 have a proper stochastic behavior when m = ∞, e.g., hn

n [y′

0Φy0−E(y′

0Φy0)] = op(1) for Φ uniformly
bounded in either row or column sums with elements of uniform order h−1

n . Clearly, it is satisfied when ∥B0∥ < 1, giving∑
∞

i=0 B
i
0 = (In −B0)−1. A similar assumption is made in Yu et al. (2008). Assumption F(ii) is needed for feasible VC matrix

estimation.
To establish the consistency of δ̂M, define S̄∗

SDPD(ψ) = E[S∗
SDPD(ψ)], the population counter part of the AQS function.

Given δ, the population AQS equations S̄∗
SDPD(ψ) = 0 are partially solved at β̄(δ) = (X′Ω−1X)−1X′Ω−1(B1EY −B2EY−1) and

σ̄ 2
v (δ) =

1
n(T−1)E[ē(δ)

′Ω−1ē(δ)], where ē(δ) = e(θ )|β=β̄(δ)= B1Y − B2Y−1 −Xβ̄(δ). Substituting β̄(δ) and σ̄ 2
v (δ) back into the

last five components of S̄∗
SDPD(ψ) leads to the population counter part of the concentrated AQS functions, which is denoted

by S̄∗c
SDPD(δ) (see (B.2), Appendix B). It is easy to see that the M-estimator δ̂M of δ0 is a zero of S∗c

SDPD(δ), and δ0 is a zero of
S̄∗c
SDPD(δ). Thus, by Theorem 5.9 of van der Vaart (1998), δ̂M will be consistent for δ0 if supδ∈∆

1
nT

S∗c
SDPD(δ)− S̄∗c

SDPD(δ)
 p

−→ 0,
and the following identification condition holds.

Assumption G. infδ: d(δ,δ0)≥ε
S̄∗c

SDPD(δ)
 > 0 for every ε > 0, where d(δ, δ0) is a measure of distance between δ0 and δ.

Theorem 2.1. Suppose Assumptions A–G hold. Assume further that (i) γmax[Var(Y )] and γmax[Var(Y−1)] are bounded, and
(ii) infδ∈∆ γmin

[
Var(B1Y − B2Y−1)

]
≥ cy > 0. We have, as n → ∞, δ̂M

p
−→ δ0. It follows that ψ̂M

p
−→ ψ0.

To establish asymptotic normality of the proposed M-estimator ψ̂M, the following representations of Y and Y−1 in terms
of y0 = 1T ⊗ y0 and e are very useful.

Y = Qy0 + η + Se and Y−1 = Q−1y0 + η−1 + S−1e, (2.14)

where Q = blkdiag(B0,B2
0, . . . ,B

T
0 ), Q−1 = blkdiag(In,B1

0, . . . ,B
T−1
0 ), S = RB−1

10 , S−1 = R−1B−1
10 , η = SXβ0,

η−1 = S−1Xβ0,

R =

⎛⎜⎜⎝
In 0 0 . . . 0
B0 In 0 . . . 0
...

...
...

. . .
...

BT−1
0 BT−2

0 BT−3
0 . . . In

⎞⎟⎟⎠ and R−1 =

⎛⎜⎜⎝
0 0 0 . . . 0
In 0 0 . . . 0
...

...
...

. . .
...

BT−2
0 BT−3

0 BT−4
0 . . . 0

⎞⎟⎟⎠ .

By the representations given in (2.14) the AQS vector at ψ0 is written as

S∗

SDPD(ψ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π ′

10e,
e′Φ10e −

nT
2σ2
v0
,

e′Φ20e −
1
2 tr[Ω

−1
0 (JT ⊗ In)],

e′Ψ10y0 +Π ′

20e + e′Φ30e − tr[(φ0C−10 + D−10)Ω−1
0 ],

e′Ψ20y0 +Π ′

30e + e′Φ40e − tr[(φ0C0 + D0)Ω−1
0 W1],

e′Ψ30y0 +Π ′

40e + e′Φ50e − tr[(φ0C−10 + D−10)Ω−1
0 W2],

e′Φ60e −
1
2 tr(Ω

−1
0 Ω̇λ30),

(2.15)

whereΠ1 =
1
σ2
v
Ω−1X, Π2 =

1
σ2
v
Ω−1η−1, Π3 =

1
σ2
v
Ω−1W1η, andΠ4 =

1
σ2
v
Ω−1W2η−1;Φ1 =

1
2σ4
v
Ω−1, Φ2 =

1
2σ2
v
Ω−1(JT ⊗

In)Ω−1, Φ3 =
1
σ2
v
Ω−1S−1, Φ4 =

1
σ2
v
Ω−1W1S, Φ5 =

1
σ2
v
Ω−1W2S−1, and Φ6 =

1
2σ2
v
Ω−1Ω̇λ3Ω

−1; Ψ1 =
1
σ2
v
Ω−1Q−1,

Ψ2 =
1
σ2
v
Ω−1W1Q, and Ψ3 =

1
σ2
v
Ω−1W2Q−1.

As e = ε + B−1
30 v, Y and Y−1 are further represented as

Y = Qy0 + η + Sε + Bv and Y−1 = Q−1y0 + η−1 + S−1ε + B−1v, (2.16)
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where B = SB−1
30 and B−1 = S−1B−1

30 . Thus, S
∗
SDPD(ψ0) are further expressed in terms of v, ε and y0. Using backward

substitution on Eq. (2.1), we have, for m ≥ 1:

y0 = Bmy−m +

m−1∑
k=0

BkB−1
1 X−kβ +

m−1∑
k=0

BkB−1
1 ε +

m−1∑
k=0

BkB−1
1 B−1

3 v−k

≡ ηm + Kmε + Vm, (2.17)

where ηm = Bmy−m +
∑m−1

k=0 BkB−1
1 X−kβ, being the mean of y0 given Y−m and X−k, k = 0, 1, . . . ,m and thus exogenous;

Km =
∑m−1

k=0 BkB−1
1 ; Vm =

∑m−1
k=0 BkB−1

1 B−1
3 v−k; and X−k collects all the regressors’ values at the (−k)th period. Obviously,

Vm is independent of ε and vt , t = 1, 2, . . . , T . Therefore, the components of S∗
SDPD(ψ0) are linear combinations of terms

linear-quadratic in v, linear-quadratic in ε, and bilinear in ε and v, in ε and Vm, and in v and Vm. These lead to a simple way
for establishing the asymptotic normality of the AQS vector S∗

SDPD(ψ0), and thus the asymptotic normality of the proposed
M-estimator.

Theorem 2.2. Under assumptions of Theorem 2.1, we have, as n → ∞,
√
nT

(
ψ̂M − ψ0

) D
−→ N

[
0, lim

n→∞
Σ∗−1

SDPD(ψ0)Γ ∗

SDPD(ψ0)Σ∗−1
SDPD(ψ0)

]
,

where Σ∗
SDPD(ψ0) = −

1
nT E[

∂
∂ψ ′ S∗

SDPD(ψ0)] and Γ ∗
SDPD(ψ0) =

1
nT Var[S

∗
SDPD(ψ0)], both assumed to exist and Σ∗

SDPD(ψ0) to be
positive definite, for sufficiently large n.

3. Robust VC matrix estimation of M-Estimators

The expected negative Hessian matrix Σ∗
SDPD(ψ) can be consistently estimated by its observed counter part Σ̂∗

SDPD =

−
1
nT

∂
∂ψ ′ S∗

SDPD(ψ)|ψ=ψ̂M
. The detailed expression of ∂

∂ψ ′ S∗
SDPD(ψ) is given in Appendix B. Unfortunately, none of the existing

methods can be used to estimate Γ ∗
SDPD(ψ0). The traditional plug-in method requires the unconditional distribution of y0 or

a valid model for y0 when T is fixed, of which neither is plausible as the unconditional distribution involves unobservables
and a valid model seems very difficult (if not impossible) to formulate, in particular when the model contains spatial
lag terms (Yang, 2018). To overcome these difficulties in estimating the VC matrix for the FE-SDPD model, Yang (2018)
proposed an outer-product-of-martingale-difference (OPMD) method, where the AQS function of the FE-SDPD model is
decomposed into a sum of vector martingale difference (MD) sequences so that the average of the outer products of the
MDs gives a consistent estimate of the VC matrix of that AQS function. However, this OPMD method does not apply to
our CRE-SDPD model due to the existence of two error components ε and vt .

A new method of feasible and consistent VC matrix estimation is needed. We see that the representations given in
(2.15) are crucial in obtaining such an estimate. From (2.15) we see that the AQS function contains three types of elements:

Π ′e, e′Φe, and e′Ψ y0,

where Π,Φ , and Ψ are nonstochastic matrices depending on ψ0 with Π being nT × dim(β) or nT × 1, and Φ and Ψ
being nT × nT . The closed form expressions for the variances of Π ′e and e′Φe can be derived but the plug-in method
cannot be applied as their analytical expressions involve the 3rd and 4th moments of both εi and vit , which cannot be
consistently estimated simultaneously with a fixed T . Furthermore, the closed-form expressions for the variance of e′Ψ y0
and its covariances with Π ′e and e′Φe depend on the past values of the regressors and the process starting positions,
which are unobserved. Thus, the plug-in method based on the full analytical expression of Γ ∗

SDPD does not work either in
this case.

As neither the traditional plug-in method nor the OPMD method works for estimating Γ ∗
SDPD, an alternative method

must be developed. To fix the idea, we again, as in Yang (2018), endeavor to decompose S∗
SDPD(ψ0) into a sum

∑n
i=1 gi such

that {gi} possess some ‘desirable properties’ and a feasible estimator for Γ ∗
SDPD can thus be developed. Difficulty lies in the

fact that the composite error, et = ε+B−1
3 vt , consists of two components vt and ε, which cannot be ‘consistently’ estimated

simultaneously due to the fixed T nature. Thus, although {gi} can be written as MD sequences separately in terms of ε
and vt , it cannot be estimated this way as only the estimates êt are available. However, if the decomposition

∑n
i=1 gi is

such that gi and gj, j ̸= i, are uncorrelated with respect to ε for given {vt}, then a hybrid method, i.e., combining sample
analogue and the analytical expressions, can be developed for estimating Γ ∗

SDPD. Note that based on S∗
SDPD(ψ0) =

∑n
i=1 gi,

Γ ∗

SDPD =
1
nT

E[S∗

SDPD(ψ0)S∗′

SDPD(ψ0)] =
1
nT

n∑
i=1

E(gig′

i) +
1
nT

n∑
i=1

n∑
j=1,j̸=i

E(gig′

j). (3.1)

The single-sum term
∑n

i=1 E(gig′

i) may be estimated by its sample analogue
∑n

i=1 ĝiĝ′

i , where ĝi is the plug-in estimate of
gi by plugging ψ̂M and êit in gi. For the double-sum term, we derive ‘semi-analytical’ expressions in terms of ψ0, µ

(3)
v0 and



µ
(4)

`

v0 (the 3rd and 4th moments of the idiosyncratic error vit ), and the initial values y0, so that a mixture of the plug-in and
sample analogue methods can be applied. We choose ĝi in such a way that this method is free from the specifications of
the distributions of the initial observations, and that it involves only µ(3)

v0 and µ(4)
v0 , of which estimates are readily available.

The latter is achieved by transforming y0 so that the transformed y0 has an error structure similar to et :

y∗

0 = K−1
m y0 = ε + K−1

m ηm + K−1
m Vm ≡ ε + η∗

m + V ∗

m, (3.2)

see (2.17). Clearly, making ε ‘stand out’ in the above expression as in e is to take a full advantage of the MD structure
in ε so that, in the double-sum part of (3.1), the 3rd and 4th moments of εi do not appear and some complicated terms
disappear. This is important as the 3rd and 4th moments of εi cannot be consistently estimated together with these of
vit . The invertibility of Km, m ≥ 1, is ensured by Assumption F(ii).

To proceed, for a square matrix A, let Au, Al and Ad be, respectively, its upper-triangular, lower-triangular, and diagonal
matrix such that A = Au

+ Al
+ Ad. Denote by Πt ,Φts and Ψts the submatrices of Π,Φ and Ψ partitioned according

to t, s = 2, . . . , T . Denote the partial sum of time-indexed quantities using the ‘+’ notation: e.g., Ψt+ =
∑T

s=1 Ψts,
Ψ+s =

∑T
t=1 Ψts, Ψ++ =

∑T
t=1

∑T
s=1 Ψts, and similarly for Φts, Πt and other time-indexed quantities.

First, to estimate the variance of e′Ψ y0, letting Ψ ∗
ts = ΨtsKm, we have:

e′Ψ y0 =

T∑
t=1

T∑
s=1

e′

tΨtsy0 =

T∑
t=1

e′

tΨ
∗

t+y
∗

0

=

T∑
t=1

e′

tΨ
∗d
t+y∗

0 +

T∑
t=1

e′

t (Ψ
∗l
t+ + Ψ ∗u

t+ )y∗

0

=

T∑
t=1

e′

tΨ
∗d
t+y∗

0 +

T∑
t=1

e′

tξt

=

n∑
i=1

( T∑
t=1

eitΨ ∗

ii,t+y
∗

0i +

T∑
t=1

eitξit
)
,

where {ξit} = ξt = (Ψ ∗l
t+ + Ψ ∗u

t+ )y∗

0 and Ψ ∗

ii,t+ is the ith diagonal element of Ψ ∗
t+, i = 1, . . . , n.

Noting that et = ε + B−1
3 vt and y∗

0 = ε + η∗
m + V ∗

m, we have, E(e′

itΨ
∗

ii,t+y
∗

0i) = σ 2
ε0Ψ

∗

ii,t+ ≡ dΨ ,it , and E(e′

itξit ) = 0. These
lead to e′Ψ0y0 − E(e′Ψ0y0) =

∑n
i=1 gΨ ,i, where

gΨ ,i =

T∑
t=1

[
(eitΨ ∗

ii,t+y
∗

0i − dΨ ,it ) + eitξit
]
, (3.3)

i.e., e′Ψ0y0 − E(e′Ψ0y0) is decomposed into a sum of n ‘gradients’.
Similarly for the terms quadratic in e, we have

e′Φe =

T∑
t=1

T∑
s=1

e′

tΦtses =

T∑
t=1

T∑
s=1

e′

t (Φ
d
ts +Φu

ts +Φ l
ts)es

=

T∑
t=1

T∑
s=1

e′

tΦ
d
tses +

T∑
t=1

T∑
s=1

e′

tΦ
l
tses +

T∑
t=1

T∑
s=1

e′

sΦ
u′
ts et

=

T∑
t=1

T∑
s=1

e′

tΦ
d
tses +

T∑
t=1

T∑
s=1

e′

tΦ
l
tses +

T∑
t=1

T∑
s=1

e′

tΦ
u′
st es

=

T∑
t=1

e′

t

T∑
s=1

Φd
tses +

T∑
t=1

e′

t

T∑
s=1

(Φ l
ts +Φu′

st )es

=

T∑
t=1

e′

te
∗

t +

T∑
t=1

e′

tϕt ,

=

n∑
i=1

( T∑
t=1

eite∗

it +

T∑
t=1

eitϕit
)
,

where e∗
t =

∑T
s=1Φ

d
tses with elements e∗

it , and ϕt =
∑T

s=1(Φ
l
ts +Φu′

st )es with elements ϕit .



Letting a′

i,ts, b
′

i and c ′

i,ts be the ith row of (Φ l
ts + Φu′

st ), B
−1
3 and (Φ l

ts + Φu′
st )B

−1
3 , respectively, we have e∗

it = Φii,t+εi +∑T
s=1Φii,tsb′

ivs and ϕit = a′

i,t+ε +
∑T

s=1 c
′

i,tsvs. It follows that

E(eite∗

it ) = E
[
(εi + b′

ivt )(Φii,t+εi +

T∑
s=1

Φii,tsb′

ivs)
]

= σ 2
ε0Φii,t+ + σ 2

v0Φii,tt (b′

ibi) ≡ d1Φ,it ,

E(eitϕit ) = E
[
(εi + b′

ivt )(a
′

i,t+ε +

T∑
s=1

c ′

i,tsvs)
]

= σ 2
v0(b

′

ici,tt ) ≡ d2Φ,it .

These lead to e′Φ0e − E(e′Φ0e) =
∑n

i=1 gΦ,i, where

gΦ,i =

T∑
t=1

[
(eite∗

it − d1Φ,it ) + (eitϕit − d2Φ,it )
]
. (3.4)

Finally, for the terms linear in e, E(Π ′e) = 0, and, letting Π ′

it be the ith row of Πt ,

Π ′e =

n∑
i=1

(
T∑

t=1

Πiteit ) ≡

n∑
i=1

gΠ,i. (3.5)

The decompositions of the three types of quantities into sums with ‘gradients’ given by (3.3)–(3.5) lead to a ‘possible’ way
for a consistent estimate of the VC matrix of the AQS function.

For each Ψr , r = 1, 2, 3, defined in (2.15), define gΨr ,i according to (3.3); for each Φr , r = 1, . . . , 6, defined in (2.15),
define gΦr ,i according to (3.4); and each Πr , r = 1, 2, 3, 4, defined in (2.15), define gΠr ,i according to (3.5). Define,

gi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gΠ1,i,

gΦ1,i,

gΦ2,i,

gΠ2,i + gΦ3,i + gΨ1,i,

gΠ3,i + gΦ4,i + gΨ2,i,

gΠ4,i + gΦ5,i + gΨ3,i,

gΦ6,i.

(3.6)

Then, the AQS vector at the true parameter value is S∗
SDPD(ψ0) =

∑n
i=1 gi and its variance is given by (3.1), i.e.,

Var
[
S∗
SDPD(ψ0)

]
=

∑n
i=1 E(gig′

i) +
∑n

i=1
∑n

j=1,j̸=i E(gig′

j), where the single sum can be estimated by its sample counter
part

∑n
i=1 ĝiĝ′

i with ĝi being obtained by replacing ψ0 and e in gi by their estimates ψ̂M and ê, and the double sum is
estimated using its semi-analytical form shown in the following lemma.

To simplify the representation and to facilitate the calculations, let πr and πν be the column(s) of Π = (Π1,Π2,Π3,

Π4), for r, ν = 1, 2, . . . , kϖ , where kϖ = dim(β) + 3, and gπr and gπν be the corresponding gradients vectors defined
according to (3.5).

Lemma 3.1. For the gradient pairs (gπr ,i, gπν ,j), r, ν = 1, . . . , kϖ ; (gΦr ,i, gΦν ,j), r, ν = 1, . . . , 6; and (gΨr ,i, gΨν ,j), r, ν =

1, 2, 3, corresponding to (πr ,πν), (Φr ,Φν), and (Ψr ,Ψν), respectively, we have under Assumptions A–B, for j ̸= i (= 1, . . . , n)
and m ≥ 1,

E(gπr ,i gπν ,j) = σ 2
v0(b

′

ibj)
T∑

t=1

πri,tπνj,t , (3.7)

E(gΦr ,i gΦν ,j) = σ 4
v0

T∑
t=1

T∑
s=1

[
(b′

jc
∗

ri,ts)(b
′

ic
∗

νj,st ) + (b′

ibj)(c
∗′

ri,tsc
∗

νj,ts)
]

+ σ 2
v0σ

2
ε0

T∑
t=1

[
aνji,t+(b′

jc
∗

ri,+t ) + arij,t+(b′

ic
∗

νj,+t ) + (b′

ibj)(a
∗′

ri,t+a
∗

νj,t+)
]

+ (µ(4)
v0 − 3σ 4

v0)
T∑

t=1

[
(bi ⊙ c∗

ri,tt )
′(bj ⊙ c∗

νj,tt )
]
, (3.8)

E(gΨr ,i gΨν ,j) = σ 4
ε0(wrij,+wνji,+) + σ 2

v0

T∑
t=1

(b′

ibj)E(ξ
∗

ri,tξ
∗

νj,t ), (3.9)



E(gΦr ,i gπν ,j) = µ
(3)
v0

T∑
t=1

(bi ⊙ c∗

ri,tt )
′bjπνj,t ,

`

(3.10)

E(gΨr ,i gπν ,j) = σ 2
v0

T∑
t=1

π′

νj,tE(ξ
∗

ri,t )(b
′

ibj), (3.11)

E(gΦr ,i gΨν ,j) = σ 2
ε0σ

2
v0

T∑
t=1

[
(b′

ibj)(a
′

ri,t+w
∗

νj,t ) + wνji,t (b′

jc
∗

ri,+t ) +Φii,t+wνji,t (b′

ibj)
]

+ σ 4
ε0(wνji,+arij,++) + µ

(3)
v0

T∑
t=1

(bi ⊙ c∗

ri,tt )
′bjE(ξ ∗

νj,t ), (3.12)

where ξ ∗

ri,t = w∗′

ri,ty
∗

0; w
∗′

ri,t , a
∗′

ri,ts and c∗′

ri,ts are the ith row of Ψ ∗
r,t+, Φ

∗
r,ts = (Φ l

r,ts + Φu ′
r,st + Φd

r,ts), and Φ
∗
r,tsB

−1
3 , respectively;

and arij,t+ and wrij,+ are the (i, j)th element of (Φ l
r,t+ +Φu′

r,+t ) and (Ψ ∗l
r,++

+ Ψ ∗u
r,++

), respectively.

From (3.6), it is clear that E(gig′

j), i ̸= j, can be obtained from the results of Lemma 3.1. Note that the (Π,Φ) terms
of E(gig′

j) are analytical functions of ψ0, µ
(3)
v0 and µ(4)

v0 , and hence can be estimated by plugging-in consistent estimators
of these parameters. However, the Ψ -related terms are also functions of E(y0) and E(y0y′

0) that appear in E(ξ ∗

ri,t ) and
E(ξ ∗

ri,tξ
∗

νj,t ), besides these parameters. Consistent estimators µ̂(3)
v and µ̂(4)

v of µ(3)
v0 and µ(4)

v0 are readily available as seen
below, but the estimation of E(y0) and E(y0y′

0) is not trivial. Their expressions involve unobservables and thus cannot be
used. In this paper, we propose to estimate the terms involving E(ξ ∗

ri,t ) and E(ξ ∗

ri,tξ
∗

νj,t ) by their sample analogues and the
other analytical terms by plugging-in method, i.e., removing E in the expressions and then replacing (in all terms) ψ0,
µ

(3)
v0 and µ(4)

v0 by ψ̂M, µ̂(3)
v and µ̂(4)

v . The resulting estimator Ê(gig′

j) of E(gig′

j) is thus mixtures of plug-in method and sample
analogue method. The resulting estimator of the variance of the estimating functions, Γ ∗

SDPD, is given as follows,

Γ̂ ∗

SDPD =
1
nT

n∑
i=1

ĝiĝ′

i +
1
nT

n∑
i=1

n∑
j=1,j̸=i

Ê(gig′

j). (3.13)

Its consistency is proved in the following theorem.

Theorem 3.1. Under the assumptions of Theorem 2.1, we have, as n → ∞,

Γ̂ ∗

SDPD − Γ ∗

SDPD(ψ0) =
1
nT

n∑
i=1

[
ĝiĝ′

i − E(gig′

i)
]
+

1
nT

n∑
1=1

n∑
j=1,j̸=i

[̂
E(gig′

j) − E(gig′

j)
] p

−→ 0,

and hence, Σ∗−1
SDPD(ψ̂M)Γ̂ ∗

SDPDΣ
∗−1
SDPD(ψ̂M) −Σ∗−1

SDPD(ψ0)Γ ∗
SDPD(ψ0)Σ∗−1

SDPD(ψ0)
p

−→ 0.

Finally, we present a pair of simple and consistent estimators of the 3rd and 4th moments of vit , µ
(3)
v0 and µ(4)

v0 . Let
ē =

1
T

∑T
t=1 et and v̄ =

1
T

∑T
t=1 vt . Then, we have vt − v̄ = B3(et − ē). Letting v∗

t = vt − v̄, we have E(v∗3
it ) =

T2−3T+2
T2

µ(3)
v0
.

An estimator of µ(3)
v0 is naturally

µ̂(3)
v =

T 2

T 2 − 3T + 2
1
nT

T∑
t=1

n∑
i=1

v̂∗3
it .

To estimate µ(4)
v0
, we take first difference of eit to get rid of the error component related to the CRE term. After first

differencing, we have ∆vt = B3∆et , t = 2, . . . , T , and

E(∆v4it ) = E[(vit − vi,t−1)4] = E(v4it ) + E(v4i,t−1) + 6E(v2itv
2
i,t−1) = 2µ(4)

v0
+ 6σ 4

v0.

Therefore an estimator of µ(4)
v0

can be: µ̂(4)
v0

=
1
2n

∑n
i=1∆v̂

4
it − 3σ̂ 4

v0, for any t = 2, . . . , T . Obviously, one should combine
these to give a pooled estimator:

µ̂(4)
v0

=
1

2n(T − 1)

T∑
t=2

n∑
i=1

∆v̂4it − 3σ̂ 4
v0.

A computational note. The calculation of the double summation term in (3.13), i.e.,
∑n

i=1
∑n

j=1,j̸=i Ê(gig′

j), is greatly
facilitated by writing (3.7)–(3.12) in matrix forms for all i, j, using the Kronecker product ⊗ operator, and the Hadamard
product operator ⊙:

Λ(πr ,πν) = σ 2
v0B3 ⊙

( T∑
t=1

πrtπ
′

νt

)
, (3.14)



Λ(Ψr ,Ψν) = σ 4
ε0(Ψ

∗

r,++
⊙ Ψ ∗′

ν,++
) + σ 2

v0

T

`

∑
t=1

B3 ⊙ E(ξ ∗

r,tξ
∗′

ν,t ), (3.15)

Λ(Φr ,Φν) = σ 4
v0

T∑
t=1

T∑
s=1

[
(Φ∗

r,tsB3) ⊙ (B3Φ
∗′

ν,st ) + B3 ⊙ (Φ∗

r,tsB3Φ
∗′

ν,ts)
]

+ σ 2
v0σ

2
ε0

T∑
t=1

[
Φ◦′

ν,t ⊙ (Φ∗

r,+tB3) +Φ◦

r,t ⊙ (B3Φ
∗′

ν,+t ) + B3 ⊙ (Φ∗

r,t+Φ
∗′

ν,t+)
]

+ (µ(4)
v0 − 3σ 4

v0)
T∑

t=1

[
B−1
3 ⊙ (Φ∗

r,ttB
−1
3 )

][
B−1
3 ⊙ (Φ∗

ν,ttB
−1
3 )

]′
, (3.16)

Λ(Ψr ,πν) = σ 2
v0B3 ⊙

[ T∑
t=1

E(ξ ∗

r,t )π
′

νt

]
, (3.17)

Λ(Φr ,πν) = µ
(3)
v0

T∑
t=1

[
B−1
3 ⊙ (Φ∗

r,ttB
−1
3 )

]
B′−1
3 diag(πνt ), (3.18)

Λ(Φr ,Ψν) = σ 4
ε0(Φ

◦

r,++
⊙ Ψ ∗′

ν,++
) + σ 2

v0σ
2
ε0

T∑
t=1

[
B3 ⊙ (Φ◦

r,tΨ
∗′

ν,t+) + (Φ♯B3) ⊙ Ψ ∗′

ν,t+

]
+ µ

(3)
v0

T∑
t=1

[
B−1
3 ⊙ (Φ∗

r,ttB
−1
3 )

]
B′−1
3 diag

[
E(ξ ∗

ν,t )
]
, (3.19)

where B3 = (B′

3B3)−1, Φ♯
r,t = Φ∗

r,+t +Φd
r,t+, and Φ

◦
r,t = Φ l

r,t+ +Φu′
r,+t .

Then, it is easy to see that
∑n

i=1
∑n

j=1,j̸=i E(gωi gwj) equals the sum of the off-diagonal elements of Λ(ω,w), for
ω,w = π1, . . . ,πkϖ , Ψ1, Ψ2, Ψ3, and Φ1, . . . ,Φ6, which lead immediately to

∑n
i=1

∑n
j=1,j̸=i E(gig′

j) and its estimate∑n
i=1

∑n
j=1,j̸=i Ê(gig′

j).
A final discussion is given to the case where m = 0, i.e., y0 is exogenous. In this case, it is obvious that the conditional

QML method is valid for parameter estimation. But for the VC matrix estimation, the traditional plug-in method still
cannot be applied under fixed T scenario, due to the coexistence of 3rd and 4th moments of the two error components.
In contrast, our new method applies and all we need is to re-derive the Ψ -related results of Lemma 3.1 under exogenous
y0, which take the following simple forms:

E(gΨr i gΨν j) = σ 2
v0

T∑
t=1

(b′

ibj)E(ξ
◦

ri,tξ
◦

νj,t ), r, ν = 1, 2, 3, (3.20)

E(gΨr i gπν j) = σ 2
v0

T∑
t=1

π′

νj,tE(ξ
◦

ri,t )(b
′

ibj), r = 1, 2, 3, ν = 1, . . . , kϖ , (3.21)

E(gΦr i gΨν j) = µ
(3)
v0

T∑
t=1

(bi ⊙ c∗

ri,tt )
′bjE(ξ ◦

νj,t ), r = 1, . . . , 6, ν = 1, 2, 3, (3.22)

where ξ ◦

it = w◦′

it y0, and w
◦′

it is the ith row of (Ψ l
t+ + Ψ u

t+).

4. Monte Carlo study

Extensive Monte Carlo experiments are run to investigate the finite sample performance of the proposed M-estimator
of the CRE-SDPD model, and the finite sample performance of the proposed estimate of the VC matrix of the M-estimator.
As in the special case of a RE-SDPD model with only spatial errors the full QMLE is available from Su and Yang (2015), a
comparison is made between the full QMLE and the proposed M-estimator. We use the following three data generating
processes (DGPs):

DGP1: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + Xtβ + Zγ + µ+ αt1n + ut ,

DGP2: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + Xtβ + Zγ + ε + αt1n + ut ,

DGP3: yt = α1n + ρyt−1 + Xtβ + Zγ + ε + ut ,

where ut = λ3W3ut + vt for all three DGPs, and µ, ε and vt represent, respectively, the CRE, RE, and idiosyncratic error.
Mundlak’s specification, µ = X̄π + ε, is adopted.
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The elements of Xt are generated in a similar fashion as in Hsiao et al. (2002),7 and the elements of Z are random
draws from Bernoulli (0.5). The elements of ε are random draws from N(0, 1). The spatial weight matrices are generated
according to the following schemes: Rook contiguity, Queen contiguity, or group interaction.8 The error vt distribution can
be (i) normal, (ii) normal mixture (10%N(0, 4), 90%N(0, 1)), or (iii) chi-squared with degree of freedom of 3. In both (ii) and
(iii), the generated errors are standardized to have mean zero and variance σ 2

v . We choose β = γ = π = σ 2
v = αT = 1,

and generate αt , t = 1, . . . , T − 1, from N(1, 1). We use a set of values for ρ ranging from −0.9 to 0.9, a set of values for
(λ1, λ2, λ3) in the similar range, T = 3 or 6, and N = 50, 100, 200, 400. Each set of Monte Carlo results, corresponding to
a combination of the values of (n, T ,m, ρ, λ′s), is based on 2000 samples.

Monte Carlo (empirical) means and standard deviations (sds) are reported for the CQML estimator (CQMLE), the
M-estimator, and the full QMLE (DGP3). Empirical averages of the robust standard errors (rses) based on the VC
matrix estimate Σ∗−1

SDPD(ψ̂M)Γ̂ ∗
SDPDΣ

∗−1
SDPD(ψ̂M) are also reported for the M-estimator, which should be compared with the

corresponding empirical sds. A subset of results are reported in Tables 1–5. Monte Carlo results that are involved in the
discussions but unreported due to space constraint can be found in the Supplement Appendix to this paper, available
from http://www.mysmu.edu/faculty/zlyang/.

Tables 1–3 present the results based on DGP1, the CRE-SDPD model with all three types of spatial effects. The results
show an excellent performance of the proposed M-estimators of the model parameters, and the rses. The M-estimator
of the dynamic parameter is nearly unbiased, whereas the CQMLE can be quite biased and as n increases it does not
show a sign of convergence. The M-estimators of the spatial parameters λ1 and λ2 also show an excellent finite sample
performance. Both CQMLE andM-estimator of the spatial parameter λ3 show some bias. This is perhaps due to the intrinsic
nature of the QML-type estimation of spatial error effects. Increasing T improves its performance as shown in Table 2.
The rses are on average very close to the corresponding Monte Carlo sds in general, showing the robustness and good
finite sample performance of the proposed VC matrix estimate. The non-robust ses based on Γ̂ ∗−1

SDPD only or Σ∗−1
SDPD(ψ̂M)

only are also simulated and the results (unreported for conserving space) show that when errors are normal, all three
methods give averaged standard errors close to the corresponding Monte Carlo sds; but when the errors are not normal
the non-robust ses can be quite different from the corresponding Monte Carlo sds in particular in the standard errors of
σ 2
v and φ.
Tables 4–5 present the results based on DGP2, the RE-SDPD with all three types of spatial effects. Similar observations

hold: the proposed estimation strategy performs excellently and clearly outperforms the conditional QMLEs. The results
also show that the proposed estimate of the standard errors of M-estimator also performs very well.

Table 6 presents the results based on DGP3, the RE-SDPD with only spatial error effect. For this model, the full QMLE
(FQMLE) is available from Su and Yang (2015). As the main focus of this set of Monte Carlo experiments is to compare
M-estimator with FQMLE, the rses of the M-estimator are not reported. The results show that both M-estimator and
FQMLE of the dynamic parameter are nearly unbiased whereas the CQMLE is quite different from the true value and does
not show a sign of convergence. Three estimators of spatial parameter λ3 all show some bias, but the M-estimator has
the smallest bias among the three. Comparing the empirical sds, we see that the M-estimator is slightly less efficient than
the FQMLE, as expected. Computationally, however, the M-estimator is much more efficient.

Under all three DGPs, the Monte Carlo experiments are also run using a ‘wrong’ value of m and the results show that
the M-estimator is quite robust against the choice of m value; more W specifications are considered, and the results show
a quite robust performance of our estimation and inference methods; and more cases for T = 6 are considered and the
general observations from the results are that with a larger value of T the performance of the estimators of λ3 significantly
improved, and the CQMLE perform significantly better but is still clearly dominated by the M-estimator. All Monte Carlo
results, upon which these conclusions are drawn, can be found in the Supplementary Appendix.

5. Empirical application: Political competition in China

In this section, we apply the estimation and inference methods for the CRE-SDPD model proposed in this paper
to investigate strategic interactions in political competitions across Chinese cities. The tournament competition among
Chinese local government leaders has been well documented. The competitions have been found over primary policy
issues such as economic growth and fiscal budget, as well as over second-dimensional policy issues such as coal mine
safety (Li and Zhou, 2005; Yao and Zhang, 2015; Yu et al., 2016; Shi and Xi, 2018). The provincial superiors can evaluate
and promote local leaders based on their performance, and local leaders compete with each other for positions at higher
levels.

We analyze the annual total investments (in RMB) of 338 prefecture-level cities (of which 80 are autonomous) in the 27
provincial level administrative regions (in short, provinces) in mainland China, from 2010 to 2013. The list of cities can be
found in the Supplementary Appendix. The time-lagged dependent variable yt−1 measures policy stability. The spatial
lag term Wyt captures the competition among cities, reflecting how investment decisions of the neighboring cities affect

7 The detail is: Xt = µx+gt1n+ζt , (1−φ1L)ζt = εt+φ2εt−1 , εt ∼ N(0, σ 2
1 In), µx = e+ 1

T+m+1

∑T
t=−m εt , and e ∼ N(0, σ 2

2 In). Let θx = (g, φ1, φ2, σ1, σ2).
8 The Rook and Queen schemes are standard. For group interaction, we first generate k = nα groups of sizes ng ∼ U(.5n̄, 1.5n̄), g = 1, . . . , k,

where 0 < α < 1 and n̄ = n/k, and then adjust ng so that
∑k

g=1 ng = n. The reported results correspond to α = 0.5. See Yang (2015) for details in
generating these spatial layouts.

http://www.mysmu.edu/faculty/zlyang/
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Table 1
Empirical Mean(sd) [se] of CQMLE and M-Estimator, DGP1 (CRE), T = 3, m = 10 W1 = W3: Queen Contiguity; W2: Group Interaction.

Normal Error Normal Mixture Chi-Square

ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

n = 50

1 .999 (.053) 1.003 (.052) [.050] .998 (.054) 1.001 (.053) [.050] .999 (.053) 1.003 (.052) [.050]
1 .915 (.319) .996 (.339) [.322] .925 (.311) 1.007 (.331) [.320] .911 (.313) .992 (.332) [.320]
1 .856 (.163) .995 (.153) [.136] .854 (.166) .991 (.156) [.137] .850 (.167) .987 (.157) [.136]
1 .995 (.163) .940 (.147) [.135] 1.008 (.261) .952 (.242) [.205] 1.004 (.235) .949 (.216) [.188]
1 .761 (.374) .992 (.432) [.374] .775 (.424) 1.003 (.485) [.397] .774 (.422) 1.001 (.486) [.390]
.3 .353 (.055) .300 (.050) [.043] .355 (.055) .302 (.050) [.043] .354 (.055) .302 (.051) [.043]
.2 .189 (.052) .193 (.053) [.049] .186 (.050) .190 (.051) [.049] .188 (.053) .193 (.054) [.049]
.2 .193 (.039) .197 (.040) [.037] .191 (.039) .196 (.040) [.037] .191 (.039) .195 (.039) [.036]
.2 .101 (.182) .096 (.184) [.169] .098 (.183) .093 (.188) [.165] .106 (.174) .099 (.177) [.165]

n = 100

1 1.001 (.036) 1.000 (.035) [.035] 1.000 (.036) .999 (.036) [.035] 1.001 (.036) 1.000 (.036) [.035]
1 .919 (.224) .997 (.237) [.230] .916 (.217) .993 (.229) [.231] .921 (.220) .999 (.232) [.230]
1 .843 (.117) .994 (.106) [.099] .849 (.119) 1.000 (.109) [.100] .847 (.118) .997 (.107) [.100]
1 1.035 (.117) .979 (.105) [.100] 1.039 (.188) .983 (.170) [.155] 1.034 (.171) .978 (.156) [.143]
1 .755 (.254) .981 (.295) [.259] .770 (.284) .996 (.322) [.284] .766 (.278) .991 (.315) [.280]
.3 .355 (.037) .301 (.033) [.030] .353 (.037) .300 (.033) [.030] .354 (.037) .300 (.033) [.030]
.2 .185 (.025) .198 (.026) [.025] .185 (.026) .198 (.027) [.025] .185 (.026) .197 (.027) [.025]
.2 .191 (.028) .198 (.029) [.028] .191 (.027) .198 (.028) [.028] .189 (.028) .196 (.029) [.028]
.2 .165 (.118) .152 (.121) [.116] .165 (.118) .151 (.120) [.114] .162 (.117) .150 (.120) [.114]

n = 200

1 .999 (.025) 1.001 (.025) [.025] .999 (.026) 1.000 (.026) [.025] 1.000 (.025) 1.001 (.025) [.025]
1 .925 (.160) .997 (.171) [.167] .929 (.156) 1.001 (.167) [.167] .927 (.160) .998 (.172) [.167]
1 .829 (.086) .996 (.078) [.072] .833 (.086) .998 (.077) [.073] .833 (.087) .999 (.078) [.072]
1 1.050 (.085) .987 (.075) [.072] 1.046 (.129) .984 (.116) [.113] 1.052 (.122) .989 (.109) [.105]
1 .738 (.179) .992 (.208) [.190] .753 (.196) 1.004 (.227) [.207] .744 (.184) .996 (.210) [.203]
.3 .361 (.028) .301 (.024) [.022] .360 (.028) .300 (.024) [.023] .359 (.028) .300 (.024) [.023]
.2 .186 (.022) .198 (.023) [.023] .187 (.022) .198 (.023) [.023] .186 (.023) .198 (.023) [.023]
.2 .185 (.023) .197 (.023) [.022] .185 (.022) .197 (.023) [.022] .185 (.022) .198 (.023) [.022]
.2 .186 (.083) .176 (.085) [.084] .185 (.084) .175 (.086) [.083] .187 (.085) .178 (.087) [.083]

n = 400

1 1.000 (.019) 1.000 (.019) [.019] 1.000 (.019) 1.000 (.019) [.019] 1.001 (.019) 1.001 (.018) [.019]
1 .923 (.110) 1.002 (.118) [.117] .917 (.112) .995 (.119) [.117] .920 (.113) .999 (.120) [.117]
1 .842 (.061) 1.000 (.054) [.051] .839 (.061) .998 (.055) [.052] .839 (.061) .998 (.055) [.052]
1 1.053 (.060) .995 (.054) [.051] 1.054 (.094) .995 (.085) [.082] 1.054 (.088) .995 (.080) [.075]
1 .756 (.122) .995 (.140) [.133] .761 (.143) 1.001 (.163) [.148] .759 (.141) .999 (.160) [.144]
.3 .356 (.019) .300 (.017) [.015] .357 (.019) .300 (.017) [.016] .357 (.019) .301 (.017) [.016]
.2 .184 (.014) .200 (.015) [.014] .184 (.014) .200 (.014) [.014] .183 (.014) .199 (.014) [.014]
.2 .189 (.021) .199 (.021) [.021] .189 (.020) .198 (.021) [.021] .189 (.021) .199 (.021) [.021]
.2 .203 (.059) .187 (.060) [.059] .205 (.059) .189 (.061) [.059] .203 (.059) .187 (.061) [.059]

Note: ψ = (β, γ , π, σ 2
v , φ, ρ, λ1, λ2, λ3)

′ . The results corresponding to α̌ are suppressed to save space, and are reported in Supplement Appendix;
Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).

the own investment level of a city. The competition may also be dynamic in the sense that the own investment decision
of a city can depend on the investment level of its neighbors in the past, reflected by the space–time lag term Wyt−1. The
unobserved shocks that affect the investment level are likely to be correlated across neighboring cities, reflected by the
spatial error term Wut . Time specific effects αt capture macroeconomic conditions general to all cities in each year. The
time-varying regressors Xt contain a set of city level variables: population, GDP, fiscal revenue, fiscal expenditure, and
fiscal account balance in the previous year. To capture the effect of provincial economic environment, we also include a
set of province level variables: fiscal revenue, fiscal expenditure, and public capital investment that is the government
funded investment in fixed assets. The time-invariant regressors contain a constant and a dummy variable that indicates
if a city is an autonomous city. As the basic spatial units in this study are cities, the model for CRE is constructed using
city level time-varying variables: GDP, fiscal revenue, fiscal expenditure and fiscal account balance, with Population being
excluded as it does not vary much over time (2010–2013). We considered two types of spatial weight matrices: Wprov that
treats cities as neighbors if they are in the same province, and Wgeo that treats cities as neighbors if they share a common
border but may not be in the same province. Both weight matrices are row-normalized with zero on the diagonals. Table 7
below summarizes the main empirical findings.

The point estimate of the spatial lag parameter λ1 is 0.249 and significant at 1% level when Wprov is used, suggesting
a positive and strong spatial interaction in total investment among cities in the same province. When Wgeo is used, λ1 is
estimated to be 0.041 and is insignificant. This result is consistent with the theory of tournament competition between
local leaders. Dynamic competition does not seem affect the investment level as λ2 are small and insignificant in both



Table 2
Empirical Mean (sd) [se] of CQMLE and M-Estimator, DGP1 (CRE), T = 6, m = 10 W1 = W3: Queen Contiguity; W2: Group Interaction.
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Normal Error Normal Mixture Chi-Square

ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

n = 50

1 .998 (.028) 1.001 (.028) [.028] .998 (.029) 1.001 (.029) [.027] .997 (.029) 1.000 (.029) [.027]
1 .991 (.306) 1.002 (.309) [.295] .987 (.300) .998 (.303) [.293] .996 (.300) 1.007 (.303) [.292]
1 .975 (.087) .997 (.086) [.082] .979 (.087) 1.000 (.087) [.082] .976 (.089) .997 (.089) [.082]
1 .965 (.088) .961 (.088) [.085] .971 (.160) .967 (.158) [.144] .971 (.145) .967 (.144) [.133]
1 .927 (.270) .960 (.277) [.256] .939 (.441) .973 (.468) [.364] .927 (.395) .959 (.407) [.337]
.3 .309 (.025) .300 (.024) [.023] .308 (.025) .299 (.025) [.023] .309 (.025) .300 (.025) [.023]
.2 .195 (.040) .195 (.040) [.036] .196 (.039) .196 (.039) [.035] .194 (.039) .195 (.039) [.036]
.2 .200 (.031) .198 (.031) [.028] .199 (.030) .197 (.030) [.028] .200 (.031) .198 (.031) [.028]
.2 .120 (.115) .119 (.116) [.109] .120 (.113) .119 (.113) [.107] .124 (.113) .123 (.113) [.107]

n = 100

1 .997 (.021) 1.001 (.020) [.020] .996 (.021) 1.000 (.021) [.020] .996 (.021) 1.000 (.021) [.020]
1 .985 (.222) .998 (.225) [.213] .989 (.219) 1.002 (.222) [.212] .982 (.217) .995 (.220) [.213]
1 .980 (.062) 1.000 (.062) [.061] .981 (.062) 1.001 (.062) [.060] .982 (.064) 1.001 (.064) [.061]
1 .986 (.064) .981 (.064) [.062] .989 (.114) .984 (.113) [.108] .990 (.102) .985 (.102) [.099]
1 .945 (.187) .977 (.192) [.186] .949 (.312) .981 (.321) [.279] .955 (.286) .988 (.295) [.263]
.3 .308 (.017) .299 (.017) [.016] .308 (.017) .300 (.016) [.016] .308 (.018) .299 (.017) [.017]
.2 .197 (.026) .198 (.026) [.025] .197 (.025) .197 (.025) [.024] .197 (.026) .198 (.026) [.024]
.2 .200 (.026) .199 (.026) [.026] .200 (.027) .199 (.027) [.026] .200 (.028) .198 (.028) [.026]
.2 .164 (.081) .163 (.081) [.077] .164 (.080) .163 (.080) [.076] .161 (.080) .160 (.080) [.076]

n = 200

1 .997 (.014) 1.000 (.014) [.014] .997 (.014) 1.000 (.014) [.014] .996 (.014) 1.000 (.014) [.014]
1 .990 (.154) 1.002 (.155) [.152] .990 (.153) 1.001 (.155) [.152] .989 (.152) 1.001 (.154) [.151]
1 .982 (.045) 1.001 (.045) [.043] .980 (.045) .999 (.045) [.043] .981 (.044) 1.000 (.044) [.043]
1 .997 (.045) .993 (.044) [.045] .995 (.079) .991 (.078) [.078] .999 (.073) .995 (.072) [.072]
1 .959 (.136) .990 (.140) [.133] .961 (.219) .991 (.225) [.209] .952 (.193) .982 (.198) [.189]
.3 .307 (.012) .300 (.012) [.011] .308 (.012) .300 (.012) [.011] .308 (.012) .300 (.012) [.011]
.2 .199 (.019) .199 (.019) [.019] .199 (.019) .200 (.019) [.019] .199 (.019) .199 (.019) [.019]
.2 .199 (.020) .199 (.020) [.020] .200 (.020) .200 (.020) [.020] .199 (.020) .199 (.020) [.020]
.2 .181 (.055) .180 (.055) [.055] .180 (.056) .179 (.056) [.055] .181 (.055) .180 (.055) [.055]

n = 400

1 .996 (.010) 1.000 (.010) [.010] .997 (.010) 1.001 (.010) [.010] .996 (.010) 1.000 (.010) [.010]
1 .984 (.106) .995 (.108) [.108] .987 (.110) .997 (.111) [.108] .991 (.107) 1.001 (.109) [.108]
1 .981 (.029) 1.000 (.029) [.030] .982 (.030) 1.001 (.029) [.030] .981 (.030) 1.001 (.030) [.030]
1 1.000 (.031) .996 (.031) [.032] 1.001 (.057) .997 (.057) [.056] 1.001 (.053) .997 (.052) [.051]
1 .964 (.093) .994 (.095) [.095] .966 (.153) .996 (.157) [.152] .964 (.138) .994 (.142) [.139]
.3 .308 (.008) .300 (.008) [.008] .307 (.009) .299 (.008) [.008] .308 (.008) .300 (.008) [.008]
.2 .199 (.012) .200 (.012) [.012] .198 (.012) .200 (.012) [.012] .198 (.012) .200 (.012) [.012]
.2 .199 (.016) .199 (.016) [.016] .200 (.016) .200 (.016) [.016] .200 (.016) .199 (.016) [.016]
.2 .192 (.038) .191 (.038) [.038] .192 (.037) .191 (.038) [.038] .192 (.039) .192 (.039) [.038]

Note: ψ = (β, γ , π, σ 2
v , φ, ρ, λ1, λ2, λ3)

′ . The results corresponding to α̌ are suppressed to save space, and are reported in Supplement Appendix;
Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).

specifications. The spatial error parameter λ3 is estimated to be 0.249 with standard error 0.115 under Wprov, and 0.287
with standard error 0.899 under Wgeo. These provide strong evidence that unobserved shocks are highly correlated among
administrative neighbors while less likely to be correlated among geographic neighbors, suggesting that shocks are mainly
political and confined within administrative boundaries.

Based on Wprov, the coefficient of the time lag investment is estimated to be 0.211 and is significant at 1% level,
indicating a positive dependence of investment on its previous level. As expected, the total investment depends positively
on population and GDP. Fiscal expenditure have positive and significant impacts on the investment as it contributes to
creating investment opportunities and providing pro-business services. Based on our results, budget constraints of the
city-level government do not affect the investment level as both parameters of fiscal revenue and fiscal account balance
in the previous year are insignificant. On the provincial level, we find negative effects of provincial fiscal revenue and
public capital investment, and a positive effect of fiscal expenditure. Moreover, being an autonomous city has a large
negative impact on the total investment level. We find that the ‘individual-specific’ effects are correlated (negatively)
with GDP but not with the other time varying regressors. Robustness checks and alternative analyses can be found in
Supplementary Appdix.9 Issues remaining include a better way to define the spatial weight matrices, a better way

9 To see the possible existence of other social/natural effects at regional levels (in addition to the included province level variables and the
Autonomous city dummy), we have done robustness checks by adding various regional dummies and the results remain largely unchanged.
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Table 3
Empirical Mean (sd) [se] of CQMLE and M-Estimator, DGP1 (CRE), T = 3, m = 10 W1 = W3: Group Interaction; W2: Queen Contiguity.

Normal Error Normal Mixture Chi-Square

ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

n = 50

1 .994 (.048) 1.000 (.048) [.046] .998 (.049) 1.003 (.048) [.046] .995 (.051) 1.001 (.050) [.046]
1 .906 (.330) .991 (.345) [.327] .911 (.329) .994 (.343) [.326] .899 (.331) .983 (.346) [.326]
1 .883 (.141) .996 (.135) [.123] .884 (.147) .995 (.141) [.121] .881 (.143) .993 (.136) [.121]
1 .990 (.158) .946 (.146) [.136] .996 (.256) .953 (.240) [.205] .997 (.230) .953 (.214) [.189]
1 .784 (.351) .965 (.400) [.357] .811 (.416) .990 (.465) [.384] .799 (.411) .980 (.462) [.377]
.3 .344 (.046) .302 (.043) [.038] .343 (.048) .301 (.045) [.038] .344 (.047) .303 (.044) [.038]
.2 .187 (.026) .197 (.027) [.024] .187 (.027) .197 (.027) [.024] .187 (.027) .196 (.028) [.024]
.2 .186 (.037) .196 (.037) [.035] .188 (.037) .198 (.037) [.035] .187 (.038) .197 (.038) [.035]
.2 .127 (.152) .123 (.152) [.132] .122 (.157) .117 (.159) [.129] .126 (.151) .121 (.152) [.129]

n = 100

1 .997 (.034) 1.001 (.034) [.033] .997 (.033) 1.001 (.033) [.033] .997 (.035) 1.001 (.035) [.033]
1 .908 (.225) .997 (.237) [.234] .906 (.232) .995 (.243) [.234] .908 (.228) .997 (.238) [.235]
1 .868 (.106) .997 (.099) [.092] .869 (.107) .998 (.098) [.092] .869 (.108) .998 (.099) [.092]
1 1.023 (.114) .974 (.104) [.099] 1.030 (.184) .980 (.169) [.154] 1.024 (.169) .974 (.156) [.143]
1 .786 (.257) .992 (.298) [.260] .789 (.282) .992 (.318) [.280] .798 (.277) 1.005 (.313) [.280]
.3 .348 (.035) .300 (.032) [.029] .348 (.034) .301 (.031) [.029] .348 (.036) .300 (.032) [.029]
.2 .187 (.025) .197 (.026) [.024] .186 (.024) .196 (.025) [.024] .187 (.024) .197 (.025) [.024]
.2 .191 (.030) .197 (.031) [.029] .191 (.030) .197 (.031) [.029] .193 (.031) .199 (.031) [.029]
.2 .148 (.117) .145 (.118) [.109] .154 (.117) .151 (.118) [.108] .157 (.116) .154 (.117) [.107]

n = 200

1 .997 (.025) .999 (.025) [.025] .998 (.026) 1.001 (.026) [.025] .998 (.025) 1.000 (.025) [.025]
1 .940 (.167) .996 (.177) [.165] .949 (.157) 1.006 (.165) [.166] .941 (.165) .998 (.174) [.165]
1 .876 (.074) 1.001 (.068) [.066] .877 (.074) 1.001 (.069) [.067] .873 (.076) .998 (.071) [.067]
1 1.034 (.083) .987 (.075) [.071] 1.028 (.125) .982 (.116) [.112] 1.034 (.118) .987 (.108) [.104]
1 .800 (.178) .996 (.201) [.184] .815 (.197) 1.011 (.220) [.204] .801 (.185) .998 (.207) [.198]
.3 .345 (.023) .300 (.021) [.020] .344 (.023) .299 (.021) [.020] .345 (.024) .300 (.021) [.020]
.2 .189 (.028) .195 (.029) [.028] .191 (.029) .196 (.030) [.028] .190 (.028) .196 (.030) [.028]
.2 .192 (.020) .199 (.021) [.020] .192 (.021) .199 (.021) [.020] .192 (.021) .199 (.021) [.020]
.2 .165 (.095) .163 (.097) [.094] .162 (.100) .160 (.102) [.094] .165 (.095) .162 (.097) [.094]

n = 400

1 .996 (.019) 1.000 (.019) [.018] .997 (.018) 1.001 (.018) [.018] .996 (.019) 1.000 (.019) [.018]
1 .916 (.108) .996 (.116) [.117] .924 (.110) 1.004 (.116) [.117] .917 (.109) .997 (.117) [.117]
1 .838 (.059) .999 (.053) [.051] .838 (.059) .999 (.053) [.051] .840 (.062) 1.000 (.056) [.051]
1 1.055 (.059) .995 (.053) [.051] 1.053 (.092) .992 (.083) [.082] 1.054 (.087) .993 (.078) [.075]
1 .751 (.121) .996 (.141) [.134] .757 (.138) 1.003 (.158) [.148] .754 (.135) 1.000 (.155) [.145]
.3 .358 (.019) .300 (.016) [.016] .358 (.019) .300 (.016) [.016] .358 (.020) .300 (.017) [.016]
.2 .184 (.021) .197 (.022) [.021] .184 (.021) .197 (.022) [.021] .184 (.021) .197 (.022) [.021]
.2 .187 (.013) .199 (.014) [.014] .187 (.013) .199 (.014) [.014] .187 (.013) .200 (.014) [.014]
.2 .182 (.079) .174 (.080) [.077] .181 (.079) .173 (.081) [.076] .184 (.080) .176 (.082) [.076]

Note: ψ = (β, γ , π, σ 2
v , φ, ρ, λ1, λ2, λ3)

′ . The results corresponding to α̌ are suppressed to save space, and are reported in Supplement Appendix;
Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).

to capture regional effects, etc. While we strive for a rigorous empirical analysis, the main purpose of this study is to
illustrate the proposed set of inference methods for the SDPD-CRE model. A comprehensive study on this topic is beyond
the scope of the current research.

6. Conclusion and discussion

This paper introduces an M-estimation method for the spatial dynamic panel data (SDPD) model with correlated
random effects (CRE), based on the short panel setup. The estimation strategy is based on the adjusted quasi score
functions following the fundamental idea of Yang (2018). For statistical inferences, a hybrid method that combines
analytical derivations and the feasible sample analogues is proposed for estimating the robust standard errors of the
M-estimators. The asymptotic properties of these estimators are studied in detail and Monte Carlo simulation shows that
both theM-estimators and the robust standard errors perform very well in finite samples. Clearly, the proposed estimation
and inference methods for the CRE-SDPD model provide a useful complement to Yang (2018) for the FE-SDPD model, for
their various advantages as discussed in the introduction, in particular, for allowing estimation of effects of time-invariant
regressors and prediction in levels.

We end the paper by offering a discussion on possible extensions of our work. In this paper, we have focused on
the Mundlak’s (1978) CRE specification to ease exposition. The method is differentiated from the FE-approach in the



Table 4
Empirical Mean (sd) [se] of CQMLE and M-Estimator, DGP2 (RE), T = 3, m = 10 W1 = W3: Queen Contiguity; W2: Group Interaction.

Normal Error Normal Mixture Chi-Square

ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

n = 50

1 .979 (.047) 1.001 (.045) [.042] .978 (.047) 1.000 (.045) [.042] .977 (.047) .999 (.046) [.042]
1 .936 (.321) 1.000 (.335) [.325] .947 (.315) 1.011 (.330) [.323] .930 (.314) .993 (.329) [.322]
1 .971 (.153) .937 (.144) [.134] .983 (.248) .949 (.236) [.203] .980 (.223) .947 (.213) [.187]
1 .861 (.373) 1.024 (.424) [.371] .875 (.419) 1.037 (.474) [.398] .873 (.416) 1.032 (.469) [.392]
.3 .333 (.042) .297 (.040) [.035] .334 (.041) .298 (.039) [.036] .334 (.041) .298 (.040) [.035]
.2 .203 (.076) .189 (.075) [.067] .199 (.072) .184 (.072) [.067] .203 (.076) .188 (.075) [.068]
.2 .204 (.061) .194 (.059) [.055] .202 (.061) .193 (.059) [.055] .202 (.061) .192 (.058) [.055]
.2 .082 (.194) .095 (.192) [.175] .082 (.191) .095 (.191) [.171] .088 (.183) .100 (.182) [.170]

n = 100

1 .979 (.032) .999 (.031) [.030] .979 (.032) .999 (.031) [.030] .979 (.032) .999 (.031) [.029]
1 .956 (.226) .998 (.234) [.229] .967 (.221) 1.009 (.229) [.230] .958 (.229) .999 (.237) [.229]
1 1.002 (.107) .974 (.103) [.098] 1.013 (.175) .984 (.168) [.155] 1.006 (.161) .978 (.154) [.143]
1 .869 (.244) .996 (.276) [.252] .877 (.279) 1.006 (.310) [.278] .874 (.267) 1.001 (.298) [.272]
.3 .329 (.026) .300 (.025) [.023] .329 (.026) .299 (.026) [.024] .329 (.026) .299 (.025) [.024]
.2 .186 (.044) .195 (.044) [.042] .186 (.044) .195 (.045) [.042] .186 (.045) .195 (.046) [.042]
.2 .204 (.046) .196 (.045) [.044] .204 (.046) .195 (.045) [.044] .200 (.047) .191 (.046) [.044]
.2 .163 (.126) .154 (.128) [.120] .161 (.125) .151 (.126) [.119] .160 (.126) .151 (.128) [.119]

n = 200

1 .977 (.023) .999 (.022) [.022] .978 (.024) 1.000 (.023) [.022] .978 (.023) 1.000 (.022) [.022]
1 .938 (.162) 1.002 (.169) [.168] .941 (.166) 1.005 (.172) [.168] .936 (.162) 1.000 (.169) [.168]
1 1.021 (.076) .991 (.073) [.071] 1.014 (.121) .984 (.116) [.113] 1.019 (.113) .989 (.108) [.105]
1 .861 (.169) .996 (.191) [.180] .879 (.195) 1.015 (.217) [.202] .867 (.185) 1.002 (.206) [.195]
.3 .331 (.019) .300 (.018) [.017] .331 (.019) .300 (.019) [.017] .331 (.019) .300 (.019) [.017]
.2 .195 (.036) .194 (.037) [.035] .199 (.036) .198 (.036) [.035] .198 (.035) .196 (.035) [.035]
.2 .197 (.037) .196 (.037) [.035] .198 (.037) .197 (.036) [.035] .198 (.036) .197 (.036) [.035]
.2 .178 (.089) .180 (.089) [.088] .173 (.089) .174 (.089) [.087] .177 (.088) .178 (.088) [.087]

n = 400

1 .979 (.017) 1.000 (.016) [.016] .979 (.017) 1.001 (.016) [.016] .979 (.017) 1.000 (.016) [.016]
1 .953 (.112) .997 (.116) [.117] .955 (.113) .998 (.117) [.117] .957 (.114) 1.001 (.118) [.117]
1 1.023 (.052) .992 (.050) [.051] 1.025 (.090) .995 (.086) [.082] 1.023 (.080) .993 (.076) [.075]
1 .867 (.116) 1.003 (.132) [.128] .868 (.136) 1.004 (.152) [.142] .870 (.131) 1.006 (.146) [.139]
.3 .332 (.013) .300 (.013) [.012] .331 (.013) .299 (.013) [.012] .332 (.013) .300 (.013) [.012]
.2 .190 (.023) .199 (.023) [.023] .189 (.023) .198 (.024) [.023] .189 (.023) .198 (.023) [.023]
.2 .203 (.033) .199 (.032) [.031] .200 (.033) .196 (.032) [.031] .201 (.033) .197 (.032) [.031]
.2 .199 (.062) .188 (.063) [.061] .196 (.062) .185 (.063) [.061] .198 (.062) .187 (.063) [.061]

Note: ψ = (β, γ , σ 2
v , φ, ρ, λ1, λ2, λ3)

′ . The results corresponding to α̌ are suppressed to save space, and are reported in Supplement Appendix;
Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).

introduction and Supplementary Appendix. The results can be adapted to cover any CRE form that is linearizable in
the sense that it can be written as or approximated by a linear model based on the observed time-varying regressors.
The most general CRE form may be µ = g(X0, X1, . . . , XT ) + ε with an unknown g(·) and an additive error ε, giving a
SDPD model with nonlinear CRE. Standard semiparametric methods may be used to handle this unknown function and
the model estimation may proceed in a similar way as that in this paper. This is an interesting model specification, but a
detailed study is clearly beyond the scope of this paper, which will be carried out in a future research.

We have focused on the case where the idiosyncratic errors {vit} are iid. While time dependence is already built in the
model as a dynamic lag of the response, it may be important to allow time dependence in {vt} as well in case of excessive
time dependence of the process. We show that our results can be extended by allowing vt to follow an MA(1) process:

vt = νt + τνt−1,

where {νit} are iid(0, σ 2
ν ). It is easy to see that E(vtv′

t ) = (1+τ 2)σ 2
ν In, and that E(vtv′

t−1) = E(vt−1v
′
t ) = τσ 2

ν In, t = 2, . . . , T ,
so that E(vv′) = σ 2

νΣ ⊗ In, where Σ = (1 + τ 2)IT + τA and A is T × T with its (i, j)th element being 1 if i = j ± 1, and 0
otherwise. Then, letting φ = σ 2

ε /σ
2
ν , the VC matrix of the composite errors, e = ε + B−1

3 v, takes a similar form:

Var(e) = σ 2
ν [φ(JT ⊗ In) +Σ ⊗ (B′

3B3)−1
] ≡ σ 2

νΩ.

With the new parameter τ , the vector of model parameters becomes ψ = (β′, σ 2
ν , φ, τ , ρ, λ

′)′. The results of Lemma 2.1
are extended, with C and C−1 being kept the same, but D and D−1 taking new and slightly more complicated expressions.
The desired AQS functions are then obtained, leading to theM-estimator of ψ (see Supplementary Appendix for details).
Theorems 2.1 and 2.2 can be extended as the AQS functions can be written as linear combinations of terms linear,
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Table 5
Empirical Mean (sd) [se] of CQMLE and M-Estimator, DGP2 (RE), T = 3, m = 10 W1 = W3: Group Interaction; W2: Queen Contiguity.

Normal Error Normal Mixture Chi-Square

ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

n = 50

1 .978 (.046) 1.000 (.045) [.042] .976 (.047) .998 (.046) [.041] .977 (.046) .999 (.045) [.042]
1 .954 (.328) 1.019 (.341) [.324] .938 (.338) 1.001 (.351) [.323] .945 (.326) 1.009 (.339) [.325]
1 .971 (.150) .939 (.143) [.134] .982 (.247) .950 (.237) [.204] .977 (.223) .945 (.213) [.187]
1 .869 (.373) 1.022 (.426) [.371] .877 (.420) 1.029 (.470) [.399] .888 (.417) 1.043 (.473) [.397]
.3 .332 (.040) .298 (.039) [.035] .333 (.041) .300 (.040) [.035] .331 (.040) .297 (.039) [.035]
.2 .186 (.051) .187 (.051) [.047] .187 (.053) .187 (.053) [.047] .187 (.053) .188 (.053) [.047]
.2 .209 (.075) .196 (.070) [.067] .205 (.076) .192 (.071) [.067] .207 (.073) .194 (.069) [.068]
.2 .130 (.156) .127 (.158) [.134] .133 (.154) .130 (.155) [.130] .131 (.153) .130 (.154) [.129]

n = 100

1 .980 (.032) .999 (.031) [.030] .981 (.032) 1.000 (.031) [.030] .981 (.033) 1.000 (.032) [.030]
1 .988 (.223) 1.004 (.231) [.228] .996 (.226) 1.012 (.234) [.228] .982 (.232) .997 (.240) [.228]
1 1.003 (.108) .977 (.104) [.099] 1.004 (.172) .978 (.165) [.154] 1.002 (.156) .976 (.150) [.142]
1 .875 (.246) .994 (.275) [.251] .892 (.266) 1.012 (.293) [.278] .890 (.267) 1.009 (.293) [.273]
.3 .327 (.025) .300 (.025) [.023] .327 (.025) .300 (.025) [.023] .327 (.025) .299 (.024) [.023]
.2 .193 (.041) .191 (.041) [.039] .191 (.040) .189 (.041) [.039] .193 (.040) .191 (.041) [.039]
.2 .192 (.047) .194 (.045) [.044] .193 (.046) .194 (.045) [.044] .196 (.046) .197 (.045) [.043]
.2 .145 (.120) .147 (.121) [.111] .148 (.120) .150 (.120) [.110] .153 (.117) .155 (.117) [.107]

n = 200

1 .977 (.022) 1.000 (.021) [.021] .977 (.023) 1.000 (.022) [.022] .978 (.023) 1.000 (.022) [.021]
1 .933 (.161) 1.001 (.168) [.168] .930 (.162) .998 (.169) [.168] .931 (.166) .998 (.173) [.167]
1 1.018 (.077) .988 (.074) [.071] 1.014 (.122) .984 (.117) [.113] 1.019 (.114) .989 (.109) [.104]
1 .867 (.171) 1.001 (.194) [.180] .877 (.193) 1.011 (.216) [.201] .865 (.187) .997 (.209) [.194]
.3 .332 (.018) .300 (.018) [.017] .331 (.019) .300 (.018) [.017] .331 (.019) .300 (.019) [.017]
.2 .186 (.031) .195 (.031) [.030] .187 (.030) .196 (.030) [.030] .186 (.031) .195 (.031) [.029]
.2 .204 (.033) .198 (.033) [.032] .203 (.033) .198 (.033) [.032] .202 (.033) .197 (.032) [.032]
.2 .167 (.101) .161 (.103) [.095] .171 (.096) .165 (.097) [.094] .165 (.097) .159 (.099) [.094]

n = 400

1 .977 (.017) 1.000 (.016) [.016] .977 (.017) 1.000 (.016) [.016] .977 (.017) 1.000 (.016) [.016]
1 .958 (.113) 1.001 (.117) [.116] .956 (.109) .998 (.114) [.116] .958 (.112) 1.000 (.117) [.116]
1 1.026 (.056) .995 (.053) [.051] 1.025 (.087) .994 (.083) [.081] 1.025 (.081) .994 (.078) [.075]
1 .861 (.118) .999 (.134) [.127] .867 (.135) 1.005 (.151) [.142] .862 (.133) 1.001 (.148) [.139]
.3 .332 (.013) .300 (.013) [.012] .332 (.013) .299 (.013) [.012] .332 (.013) .300 (.013) [.012]
.2 .197 (.032) .196 (.033) [.032] .196 (.033) .195 (.034) [.032] .196 (.033) .195 (.033) [.032]
.2 .198 (.023) .199 (.023) [.023] .198 (.023) .199 (.023) [.023] .198 (.024) .199 (.024) [.023]
.2 .172 (.082) .174 (.083) [.078] .176 (.081) .177 (.081) [.078] .170 (.081) .172 (.082) [.078]

Note: ψ = (β, γ , σ 2
v , φ, ρ, λ1, λ2, λ3)

′ . The results corresponding to α̌ are suppressed to save space, and are reported in Supplement Appendix;
Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).

quadratic, and bilinear in ν, ν−1, ε, and Vm. Lemma 3.1 and Theorem 3.1 can be extended as well by re-defining the
gi functions and re-deriving the results in Lemma 3.1. While fundamental ideas are the same, these extensions require
additional complicated algebra and proofs, and need to be handled by a separate research.

So far, the time heterogeneity appears in the model in the form of time-specific effects {αt}. It may be of interest
to allow more extensive forms of time-heterogeneity such as time-varying regression coefficients, time-varying spatial
coefficients, time-varying spatial weight matrices, etc. From the theoretical developments, we see that our results may be
extended to allow for time-varying regression coefficients, but may not be for the other types of time-heterogeneity. Fi-
nally, the cross-sectional heteroskedasticity (space-varying error variances) in the CRE-SDPD model is another interesting
extension to consider. It requires an entirely different way to adjust the conditional quasi scores so that the AQS functions
obtained are not only (asymptotically) unbiased but also robust against unknown cross-sectional heteroskedasticity. These
models and methods would be much more challenging than the already quite challenging works presented in this paper,
and will be the topics of our future research.

Finally, it should be pointed out that moving the Zγ term in (1.1) to (1.2), i.e., letting µ = X̄π + Zγ + ε, gives
an equivalent model specification, and all results carry over, including the equivalence between FE and CRE estimators
of the coefficients of time-varying regressors under a simple static panel data model as discussed in the introduction
(see also Krishnakumar, 2006). In this case, µ is explained as having two components: observable and unobservable (see
Hausman and Taylor, 1981, p.1378). However, common perception on µ is that it represents unobservable individual-
specific effects such as ability or managerial skill, and hence the original specification in (1.1) and (1.2) would be more
sensible. Furthermore, the time-invariant variables Z are assumed to be strictly exogenous. This is reasonable but not
entirely necessary, because some variables in Z may be linearly correlated with µ through Xt and this type of endogeneity



Table 6
Empirical Mean (sd) of CQMLE, M-Estimator, and FQMLE, DGP3 (RE), T = 3, m = 10; W3: Queen Contiguity.

`

Normal Error Normal Mixture Chi-Square

n ψ CQMLE M-Est FQMLE CQMLE M-Est FQMLE CQMLE M-Est FQMLE

50 1 .971 (.045) .998 (.044) .999 (.044) .974 (.046) 1.001 (.045) 1.002 (.044) .973 (.045) 1.000 (.043) 1.001 (.043)
1 .888 (.317) 1.000 (.338) .991 (.337) .889 (.335) 1.001 (.359) .993 (.357) .879 (.316) .990 (.338) .982 (.338)
1 1.006 (.076) .984 (.073) .983 (.071) 1.003 (.124) .982 (.120) .980 (.117) 1.006 (.117) .985 (.113) .983 (.111)
1 .785 (.325) .992 (.400) .994 (.366) .839 (.400) 1.052 (.474) 1.058 (.446) .815 (.391) 1.020 (.458) 1.033 (.435)
.5 .539 (.032) .500 (.032) .499 (.031) .538 (.032) .499 (.032) .498 (.030) .540 (.032) .501 (.032) .499 (.031)
.3 .265 (.142) .269 (.142) .235 (.139) .266 (.151) .271 (.151) .236 (.146) .262 (.146) .267 (.147) .233 (.141)

100 1 .975 (.032) .999 (.031) 1.000 (.031) .974 (.032) .999 (.032) .999 (.031) .975 (.032) .999 (.032) 1.000 (.031)
1 .918 (.224) .996 (.237) 1.000 (.236) .924 (.227) 1.002 (.240) 1.005 (.239) .922 (.228) 1.000 (.241) 1.005 (.240)
1 1.010 (.052) .993 (.051) .993 (.050) 1.009 (.086) .992 (.084) .993 (.083) 1.011 (.080) .994 (.078) .994 (.075)
1 .830 (.229) .992 (.274) .996 (.247) .849 (.259) 1.012 (.302) 1.014 (.277) .841 (.252) 1.004 (.295) 1.010 (.273)
.5 .531 (.020) .500 (.021) .499 (.020) .531 (.020) .500 (.020) .499 (.019) .531 (.020) .500 (.020) .499 (.020)
.3 .283 (.106) .285 (.107) .289 (.098) .283 (.104) .285 (.104) .290 (.096) .281 (.106) .284 (.106) .288 (.096)

200 1 .968 (.023) .999 (.023) 1.000 (.022) .969 (.023) 1.000 (.023) 1.001 (.022) .969 (.023) 1.000 (.023) 1.001 (.023)
1 .954 (.157) .998 (.166) .996 (.166) .950 (.157) .993 (.166) .991 (.166) .951 (.158) .994 (.167) .992 (.167)
1 1.014 (.037) .996 (.036) .995 (.035) 1.012 (.061) .994 (.060) .993 (.059) 1.012 (.056) .994 (.054) .993 (.053)
1 .821 (.156) .990 (.189) .993 (.176) .837 (.181) 1.007 (.213) 1.009 (.204) .833 (.175) 1.004 (.208) 1.007 (.193)
.5 .533 (.014) .500 (.014) .500 (.014) .533 (.014) .500 (.014) .499 (.014) .533 (.014) .500 (.014) .500 (.014)
.3 .286 (.073) .289 (.074) .266 (.072) .292 (.075) .295 (.076) .271 (.074) .288 (.073) .291 (.074) .268 (.071)

400 1 .972 (.015) 1.000 (.015) 1.002 (.016) .973 (.016) 1.000 (.015) 1.002 (.016) .973 (.015) 1.000 (.015) 1.002 (.016)
1 .933 (.112) 1.000 (.120) 1.010 (.120) .935 (.110) 1.002 (.117) 1.013 (.118) .932 (.114) .998 (.121) 1.008 (.122)
1 1.018 (.027) .998 (.026) 1.029 (.027) 1.016 (.043) .997 (.042) 1.027 (.036) 1.017 (.041) .997 (.040) 1.028 (.035)
1 .813 (.113) .996 (.137) .955 (.211) .823 (.127) 1.007 (.151) .971 (.212) .819 (.126) 1.001 (.150) .961 (.213)
.5 .535 (.010) .500 (.010) .498 (.012) .535 (.011) .500 (.011) .497 (.012) .535 (.011) .500 (.011) .498 (.012)
.3 .293 (.051) .297 (.051) .285 (.053) .291 (.053) .295 (.053) .283 (.053) .293 (.052) .296 (.053) .284 (.053)

Note: ψ = (β, γ , σ 2
v , φ, ρ, λ3)

′ . The results corresponding to α̌ are suppressed to save space, and are reported in Supplement Appendix; Xt values
are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1).

Table 7
Spatial and dynamic interaction/competition in investments among Chinese cities.

Wprov Wgeo

Population 0.263*** [0.119] 0.424*** [0.206]
GDP 0.489*** [0.058] 0.412*** [0.174]
Fiscal revenue 0.575 [0.487] 3.454* [1.370]
Fiscal expenditure 0.635*** [0.247] 0.906 [1.241]
Fiscal account balance −0.337 [0.293] 0.297 [1.177]
Provincial fiscal revenue −0.162*** [0.041] −0.239*** [0.121]
Provincial fiscal expenditure 0.074*** [0.025] 0.194*** [0.093]
Public capital investment −0.058* [0.036] −0.140 [0.119]
Autonomous city −97.861*** [37.057] −187.332** [103.53]
2011 −25.562 [28.248] −344.618 [638.06]
2012 −9.296 [15.918] −149.003 [288.44]

Dynamic parameter
Time lag (ρ) 0.211*** [0.061] −0.803 [2.556]

Spatial parameters
SL (λ1) 0.249*** [0.068] 0.041 [0.712]
STL (λ2) −0.042 [0.070] 0.043 [0.218]
SE (λ3) 0.293*** [0.115] 0.287 [0.899]

Correlated random effects
Average GDP −0.165* [0.108] 0.325 [1.164]
Average fiscal revenue −0.206 [0.777] −1.785 [5.237]
Average fiscal expenditure −0.583 [1.092] −1.750 [2.430]
Average fiscal account balance −0.059 [0.424] −0.346 [1.783]

Note: Population is measured in 104 , and other variables excluding dummies are measured in 108 .
*Significance at 10% level.
**Significance at 5% level.
***Significance at 1% level.

may be captured by Mundlak’s or Chamberlain’s specification. If not, a more general CRE specification in line with the
above discussion may help. See Hausman and Taylor (1981) for a general discussion on the endogeneity in Z . A full
treatment of the issue of endogeneity in the components of Z under the current SDPD-CRE setting would be an interesting
topic of future research.



`Appendix`A.`Some`basic`Lemmas`

Lemma A.1 (Kelejian and Prucha, 1999; Lee, 2002). Let {An} and {Bn} be two sequences of n × n matrices that are uniformly
bounded in both row and column sums. Let Cn be a sequence of conformable matrices whose elements are uniformly O(h−1

n ).
Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,
(ii) the elements of An are uniformly bounded and tr(An) = O(n), and
(iii) the elements of AnCn and CnAn are uniformly O(h−1

n ).

Lemma A.2 (Lee, 2004, p.1918). For W1 and B1 defined in Model (1.1), if ∥W1∥ and ∥B−1
10 ∥ are uniformly bounded, where ∥ · ∥

is a matrix norm, then ∥B−1
1 ∥ is uniformly bounded in a neighborhood of λ10.

Lemma A.3 (Lee, 2004, p.1918). Let Xn be an n×p matrix. If the elements Xn are uniformly bounded and limn→∞
1
nX

′
nXn exists

and is nonsingular, then Pn = Xn(X ′
nXn)−1X ′

n and Mn = In − Pn are uniformly bounded in both row and column sums.

Lemma A.4 (Lemma A.4, Yang, 2018). Let {An} be a sequence of n × n matrices that are uniformly bounded in either row
or column sums. Suppose that the elements an,ij of An are O(h−1

n ) uniformly in all i and j. Let vn be a random n-vector of iid
elements with mean zero, variance σ 2 and finite 4th moment, and bn a constant n-vector of elements of uniform order O(h−1/2

n ).
Then

(i) E(v′
nAnvn) = O( n

hn
), (ii) vVar(v′

nAnvn) = O( n
hn
),

(iii) Var(v′
nAnvn + b′

nvn) = O( n
hn
), (iv) v′

nAnvn = Op( n
hn
),

(v) v′
nAnvn − E(v′

nAnvn) = Op(( n
hn
)
1
2 ), (vi) v′

nAnbn = Op(( n
hn
)
1
2 ),

and (vii), the results (iii) and (vi) remain valid if bn is a random n-vector independent of vn such that {E(b2ni)} are of uniform
order O(h−1

n ).

Lemma A.5 (Lemma A.5, Yang, 2018). Let {Φn} be a sequence of n×n matrices with row and column sums uniformly bounded,
and elements of uniform order O(h−1

n ). Let vn = (v1, . . . , vn)′ be a random vector of iid elements with mean zero, variance
σ 2
v , and finite (4 + 2ϵ0)th moment for some ϵ0 > 0. Let bn = {bni} be an n × 1 random vector, independent of vn, such that

(i) {E(b2ni)} are of uniform order O(h−1
n ), (ii) supiE|bni|2+ϵ0 < ∞, (iii) hnn

∑n
i=1[φn,ii(bni − Ebni)] = op(1) where {φn,ii} are the

diagonal elements of Φn, and (iv) hnn
∑n

i=1[b
2
ni − E(b2ni)] = op(1). Define the bilinear–quadratic form:

Qn = b′

nvn + v′

nΦnvn − σ 2
v tr(Φn),

and let σ 2
Qn

be the variance of Qn. If limn→∞h1+2/ϵ0
n /n = 0 and {

hn
n σ

2
Qn

} are bounded away from zero, then Qn/σQn
d

−→ N(0, 1).

Lemma A.6. Under Assumption F, for an n × n matrix Φ uniformly bounded in either row or column sums, with elements of
uniform order h−1

n , and an n × 1 vector φ with elements of uniform order h−1/2
n , we have:

(i) hn
n y′

0Φy0 = Op(1); (ii) hn
n [y0 − E(y0)]′φ = op(1); (iii) hn

n [y′

0Φy0 − E(y′

0Φy0)] = op(1).

Appendix B. Proofs for Section 2

Proof of Lemma 2.1. By (2.1), backward substitution leads to, for t = −m + 1, . . . , T ,

E(ytε′) = B−1
1 B2E(yt−1ε

′) + B−1
1 E(εε′) + B−1

1 B−1
3 E(vtε′)

= BtE(y0ε′) + (
t−1∑
i=0

Bi)B−1
1 E(εε′) = (

t+m−1∑
i=0

Bi)B−1
1 σ 2

ε0.

Therefore, E(Y−1ε
′) = σ 2

ε0C−1 and E(Yε′) = σ 2
ε0C.

For t, s = 1, . . . , T , we have E(ytv′
t ) = B−1

1 B2E(yt−1v
′
t ) + B−1

1 B−1
3 E(vtv′

t ) = σ 2
v0B

−1
1 B−1

3 ; E(ytv′
s) = 0 when t < s; and

E(ytv′
s) = B−1

1 B2E(yt−1v
′
s) + B−1

1 B−1
3 E(vtv′

s) = B2E(yt−2v
′
s) = · · ·

= Bt−sE(ysv′
s) = Bt−sE(B−1

1 B−1
3 vsv

′
s) = Bt−sB−1

1 B−1
3 σ 2

v0,

when t > s. Therefore, E(Y−1v′)(B−1
3 )′ = σ 2

v0D−1 and E(Yv′)(B−1
3 )′ = σ 2

v0D. Combining these results, we obtain the results
of Lemma 2.1. ■

Proof of Theorem 2.1. The proof of this theorem uses similar ideas as in the proof of Theorem 3.1 of Yang (2018). Rather
than working with differences series, levels are used and account need to be taken of additional randomness from ε. Under



Assumption G, by Theorem 5.9 of van der Vaart (1998) the consistency of δ̂M follows if supδ∈∆
1

`

nT ∥S∗c
SDPD(δ)−S̄∗c

SDPD(δ)∥
p

−→ 0
as n → ∞, where S∗c

SDPD(δ) is the concentrated AQS function of δ defined below (2.13), and S̄∗c
SDPD(δ) is its population

counterpart defined above Theorem 2.1, given below

S∗c
SDPD(δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2σ̂2
v (δ)

ê′(δ)Ω−1(JT ⊗ In)Ω−1ê(δ) −
1
2 tr[Ω

−1(JT ⊗ In)],
1

σ̂2
v (δ)

ê′(δ)Ω−1Y−1 − tr[(φC−1 + D−1)Ω−1
],

1
σ̂2
v (δ)

ê′(δ)Ω−1W1Y − tr[(φC + D)Ω−1W1],

1
σ̂2
v (δ)

ê′(δ)Ω−1W2Y−1 − tr[(φC−1 + D−1)Ω−1W2],

1
2σ̂2
v (δ)

ê′(δ)Ω−1Ω̇λ3Ω
−1ê(δ) −

1
2 tr(Ω

−1Ω̇λ3 ),

(B.1)

S̄∗c
SDPD(δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2σ̄2
v (δ)

E[ē′(δ)Ω−1(JT ⊗ In)Ω−1ē(δ)] −
1
2 tr[Ω

−1(JT ⊗ In)],
1

σ̄2
v (δ)

E[ē′(δ)Ω−1Y−1] − tr[(φC−1 + D−1)Ω−1
],

1
σ̄2
v (δ)

E[ē′(δ)Ω−1W1Y ] − tr[(φC + D)Ω−1W1],

1
σ̄2
v (δ)

E[ē′(δ)Ω−1W2Y−1] − tr[(φC−1 + D−1)Ω−1W2],

1
2σ̄2
v (δ)

E[ē′(δ)Ω−1Ω̇λ3Ω
−1ē(δ)] −

1
2 tr(Ω

−1Ω̇λ3 ),

(B.2)

where σ̂ 2
v (δ) is defined in (2.13), and σ̄ 2

v (δ) is defined above Theorem 2.1. With (B.1) and (B.2), the proof of consistency
of δ̂M boils down to the proofs of the following:

(a) infδ∈∆σ̄ 2
v (δ) is bounded away from zero,

(b) supδ∈∆
⏐⏐σ̂ 2
v (δ) − σ̄ 2

v (δ)
⏐⏐ = op(1),

(c) supδ∈∆ 1
nT

⏐⏐ê′(δ)Ω−1(JT ⊗ In)Ω−1ê(δ) − E[ē′(δ)Ω−1(JT ⊗ In)Ω−1ē(δ)]
⏐⏐ = op(1),

(d) supδ∈∆ 1
nT

⏐⏐ê′(δ)Ω−1Y−1 − E[ē′(δ)Ω−1Y−1]
⏐⏐ = op(1),

(e) supδ∈∆ 1
nT

⏐⏐ê′(δ)Ω−1W1Y − E[ē′(δ)Ω−1W1Y ]
⏐⏐ = op(1),

(f) supδ∈∆ 1
nT

⏐⏐ê′(δ)Ω−1W2Y−1 − E[ē′(δ)Ω−1W2Y−1]
⏐⏐ = op(1),

(g) supδ∈∆ 1
nT

⏐⏐ê′(δ)Ω−1Ω̇λ3Ω
−1ê(δ) − E[ē′(δ)Ω−1Ω̇λ3Ω

−1ê(δ)]
⏐⏐ = op(1).

Let Ω
1
2 be a square-root matrix of Ω . Define ē∗(δ) = Ω−

1
2 ē(δ), ê∗(δ) = Ω−

1
2 ê(δ), and B∗

r = Ω−
1
2 Br , r = 1, 2. Let

Y ◦
= Y−E(Y ) and Y ◦

−1 = Y−1−E(Y−1). Define the projection matrices:M = InT−Ω−
1
2 X(X′Ω−1X)−1X′Ω−

1
2 and P = InT−M.

We have:

ē∗(δ) = M(B∗

1Y − B∗

2Y−1) + P(B∗

1Y
◦
− B∗

2Y
◦

−1), (B.3)

ê∗(δ) = M(B∗

1Y − B∗

2Y−1). (B.4)

Proof of (a). Recall that σ̄ 2
v (δ) =

1
nT E[ē

∗′(δ)ē∗(δ)], by (B.3) and the orthogonality between M and P, we can write

σ̄ 2
v (δ) =

1
nT

tr[Var(B∗

1Y − B∗

2Y−1)] +
1
nT

(B∗

1EY − B∗

2EY−1)′M(B∗

1EY − B∗

2EY−1).

As M is positive semi-definite (p.s.d), the second term is non-negative uniformly in δ ∈ ∆. By Assumptions C, and
E (iv), infδ∈∆ γmax(Ω) ≤ supδ∈∆ γmax(Ω) ≤ φ +

1
c3
. Therefore the first term is 1

nT tr[Ω
−1Var(B1Y − B2Y−1)] ≥

1
nT γ

−1
max(Ω)tr[Var(B1Y − B2Y−1)] ≥ c > 0, uniformly in δ ∈ ∆. It follows that infδ∈∆σ̄ 2

v (δ) > c > 0.10

Proof of (b). By (B.3) and (B.4), we can decompose σ̂ 2
v (δ) − σ̄ 2

v (δ) into four terms

σ̂ 2
v (δ) − σ̄ 2

v (δ) = (Q1 − EQ1) + (Q2 − EQ2) + 2(Q3 − EQ3) + EQ4. (B.5)

where Q1 =
1
nT Y

′B∗′

1 MB∗

1Y , Q2 =
1
nT Y

′

−1B
∗′

2 MB∗

2Y−1, Q3 = −
2
nT Y

′B∗′

1 MB∗

2Y−1, and Q4 = −
1
nT (B

∗

1Y
◦
−B∗

2Y
◦

−1)
′P(B∗

1Y
◦
−B∗

2Y
◦

−1).
The results follows if Qj − EQj

p
→ 0, j = 1, 2, 3, and EQ4→0, uniformly in δ ∈ ∆. By (2.14) and letting M∗

= Ω−
1
2 MΩ−

1
2 ,

we have

Q1 =

9∑
ℓ=1

Q1,ℓ +
1
nT

η′B′

1M
∗B1η,

10 Note: (i) eigenvalues of a projection matrix are either 0 or 1; (ii) eigenvalues of a positive definite matrix are strictly positive; (iii) for
symmetric matrix A and positive semidefinite (p.s.d.) matrix B, γmin(A)tr(B) ≤ tr(AB) ≤ γmax(A)tr(B); (iv) for symmetric matrices A and B,
γmax(A + B) ≤ γmax(A) + γmax(B); and (v) for p.s.d. matrices A and B, γmax(AB) ≤ γmax(A)γmax(B). See, e.g., Bernstein (2009).



Q2 =

9

`

∑
ℓ=1

Q2,ℓ +
1
nT

η′

−1B
′

2M
∗B2η−1,

Q3 =

14∑
ℓ=1

Q3,ℓ +
1
nT

η′B′

1M
∗B2η−1,

where Qkℓ takes one of the forms: 1
nT y

′

0Φ1(δ)y0, 1
nT v

′Φ2(δ)v, 1
nT ε′Φ3(δ)ε, 1

nT y
′

0Ψ1(δ)v, 1
nT y

′

0Ψ2(δ)ε, 1
nT ε′Ψ3(δ)v, 1

nT y
′

0Π1(δ),
1
nT v

′Π2(δ), and 1
nT ε′Π3(δ). The matrices Φr (δ) and Ψr (δ), and vectors Πr (δ), r = 1, 2, 3, depend on δ through B1, B2 and

M∗, and involve Q, Q−1, S, S−1, B, B−1, η and η−1, which are all matrix or vector functions of true parameters.
By Lemma A.1, Assumption E and the expressions in (2.15) and (2.16), the nT × nT matrices R, R−1, S, S−1, B and B−1

are uniformly bounded in both row and column sums, and the elements of the nT × 1 vectors η and η−1 are uniformly
bounded. By Assumption E(iii) and (v), Assumption D, Lemma A.1 and Lemma A.3, B1, B2 and M∗ are uniformly bounded
in either row or column sums. By Lemma A.6, it can be easily shown that 1

nT [y′

0Φ1(δ)y0 − E(y′

0Φ1(δ)y0)] = op(1), and
1
nT [y′

0Π1(δ)−E(y′

0)Π1(δ)] = op(1). The point wise convergence of the quadratic terms 1
nT v

′Φ2(δ)v and 1
nT ε′Φ3(δ)ε, and the

bilinear term 1
nT y

′

0Ψ1(δ)v, can be established by Assumption B and Lemma A.4. The result 1
nT {y′

0Ψ2(δ)ε − E[y′

0Ψ2(δ)ε]} =

op(1) is proved by decomposing y0 into three terms using (2.17) and then applying Lemma A.4 under Assumptions B and F.
The point wise convergence of the linear terms 1

nT v
′Π2(δ) and 1

nT ε′Π3(δ) are proved by Chebyshev’s inequality. Therefore,
for k = 1, 2, 3, and all ℓ,

Qk,ℓ(δ) − EQk,ℓ(δ)
p

−→ 0, for each δ ∈ ∆.

Now, all the Qk,ℓ(δ) terms are linear or quadratic in ρ, λ1 and λ2, and it is easy to show that supδ∈∆ |
∂
∂ω

Qk,ℓ(δ)| = Op(1),
for ω = ρ, λ1, λ2. Note that only matrix M∗ involves λ3 and φ. For ω = φ, λ3, some algebra leads to the following simple
expression d

dωM
∗

= −M∗Ω̇ωM∗, where Ω̇λ3 =
∂
∂λ3
Ω = IT ⊗(B′

3B3)−1(B′

3W3+W ′

3B3)(B′

3B3)−1 and Ω̇φ =
∂
∂φ
Ω = JT ⊗In. Thus,

by applying Lemmas A.1, A.4 and A.6, repeatedly, it is easy to show that, for k = 1, 2, 3, and all ℓ, supδ∈∆ |
∂
∂λ3

Qk,ℓ(δ)| =

Op(1). It follows that Qk,ℓ(δ) are stochastically equicontinuous. The pointwise convergence and stochastic equicontinuity
therefore lead to,

Qk,ℓ(δ) − EQk,ℓ(δ)
p

−→ 0, uniformly in δ ∈ ∆,

by Theorem 2.1 of Newey (1991).
It left to show EQ4(δ) =

1
nT E[(B

∗

1Y
◦

− B∗

2Y
◦

−1)
′P(B∗

1Y
◦

− B∗

2Y
◦

−1)] → 0, uniformly in δ ∈ ∆. By Assumption D,
γmin

(X′X
nT

)
> cx. By Assumption E,

sup
δ∈∆

γmin(Ω) ≥ inf
δ∈∆

γmin(Ω) ≥ inf
λ3∈Λ3

γ−1
max(B

′

3B3) ≥ sup
λ3∈Λ3

γ−1
max(B

′

3B3) ≥
1
c3
.

Hence, supδ∈∆ γmin(X
′Ω−1X
nT ) ≥ supφ∈Φ

c3
φc3+1 cx ≥ c ≥ 0. Therefore, we have by the assumptions in Theorem 2.1 and

Assumption D,

EQ4 =
1
nT tr[Ω

−1X(X′Ω−1X)−1X′Ω−1Var(B1Y − B2Y−1)]

≤
1
nT γ

−2
min(Ω)γ−1

min

(X′Ω−1X
nT

)
c̄y 1

nT tr[X
′X] = O(n−1),

Hence, σ̂ 2
v (δ) − σ̄ 2

v (δ)
p

−→ 0, uniformly in δ ∈ ∆, completing the proof of (b).
Proofs of (c)–(g). Using the expressions (B.3) and (B.4) and the representation (2.16), all the quantities inside |·| in

(c)–(g) can all be expressed in the forms similar to (B.5). Thus, the proofs of (c)–(g) follow the proof of (b). See the
Supplementary Appendix for more details on the proof of Theorem 2.1. ■

Proof of Theorem 2.2. We have by the mean value theorem (henceforth MVT),

0 =
1

√
nT

S∗

SDPD(ψ̂SDPD) =
1

√
nT

S∗

SDPD(ψ0) +
[ 1
nT

∂

∂ψ ′
S∗

SDPD(ψ̄)
]√

nT (ψ̂M − ψ0),

where ψ̄ lies elementwise between ψ̂M and ψ0. The result of the theorem follows if

(a) 1
√
nT

S∗
SDPD(ψ0)

D
−→ N

[
0, limn→∞ Γ ∗

SDPD(ψ0)
]
,

(b) 1
nT

[
∂
∂ψ ′ S∗

SDPD(ψ̄) −
∂
∂ψ ′ S∗

SDPD(ψ0)
] p

−→ 0, and

(c) 1
nT

[
∂
∂ψ ′ S∗

SDPD(ψ0) − E
(
∂
∂ψ ′ S∗

SDPD(ψ0)
)] p

−→ 0.



Proof of (a). By e = ε + B−1
30 v and letting Π◦

r0 = B′−1
30 Πr0, r = 1, . . . , 4, Ψ ◦

r0 = B′−1
30 Ψr0, r = 1, 2, 3, and

Φ◦

r0 = B′−1
30 Φr0B−1

30 , r = 1, . . . , 6, and Φ◦

r0 = B′−1
30 Φr0 and Φ⋄

r0 = B′−1
30 Φr0B−1

30 , r = 1, . . . , 6, dropping subscript ‘‘0’’ to
simplify notations, the AQS functions given by (2.15) can be further expressed as follows,

S∗

SDPD(ψ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π ′

1ε +Π◦′

1 v,

ε′Φ1ε + v′Φ⋄

1 v + 2v′Φ◦

1ε − µσ2
v
,

ε′Φ2ε + v′Φ⋄

2 v + 2v′Φ◦

2ε − µφ,

ε′Ψ1y0 + v′Ψ ◦

1 y0 +Π ′

2ε +Π◦′

2 v + ε′Φ3ε + v′Φ⋄

3 v + 2v′Φ◦

3ε − µρ,

ε′Ψ2y0 + v′Ψ ◦

2 y0 +Π ′

3ε +Π◦′

3 v + ε′Φ4ε + v′Φ⋄

4 v + 2v′Φ◦

4ε − µλ1 ,

ε′Ψ3y0 + v′Ψ ◦

3 y0 +Π ′

4ε +Π◦′

4 v + ε′Φ5ε + v′Φ⋄

5 v + 2v′Φ◦

5ε − µλ12 ,

ε′Φ6ε + v′Φ⋄

6 v + 2v′Φ◦

6ε − µλ3 ,

(B.6)

where µσ2
v

=
nT

2σ2
v0
, µφ =

1
2 tr[Ω

−1
0 (JT ⊗ In)], µρ = tr[(φ0C−10 + D−10)Ω−1

0 ], µλ1 = tr[(φ0C0 + D0)Ω−1
0 W1], µλ2 =

tr[(φ0C−10 + D−10)Ω−1
0 W2], and µλ3 = tr(Ω−1

0 Ω̇λ30).
Partition the vectors or matrices Πr and Π◦

r according to t = 1, . . . , T , and denote the partitioned vectors or matrices,
respectively, by {Πrt} and {Π◦

rt}; partition the matrices Φr , Φ◦
r , Φ

⋄
r , Ψr , and Ψ ◦

r according to t, s = 1, . . . , T , and denote
the partitioned matrices, respectively, by {Φrts}, {Φ◦

rts}, {Φ
⋄
rts}, {Ψrts}, and {Φ◦

rts}. As ε = 1T ⊗ ε and y0 = 1T ⊗ y0, denoting
Πr+ =

∑T
t=1Πrt , Φ◦

rt+ =
∑T

s=1Φ
◦
rts, Φr++ =

∑T
s=1

∑T
s=1Φrts, we have

Π ′

rε = Πr+ε, ε′Φε = ε′Φr++ε, ε′Ψ y0 = ε′Ψr++y0, v′Ψ ◦

r y0 = v′Ψ ◦

r+y0, v′Φ◦

r ε = v′Φ◦

r+ε.

where Ψ ◦
r+ = Ψ ◦

r (1T ⊗ In) and Φ◦
r+ = Φ◦

r (1T ⊗ In). Now, by (3.2), the terms bilinear in ε and y0, and the terms bilinear in
v and y0 can be expressed as

ε′Ψr++y0 = ε′Ψr++Kmε + ε′Ψr++Km(η∗

m + V ∗

m), and v′Ψ ◦

r+y0 = v′Ψ ◦

r+Kmε + v′Ψ ◦

r+Km(η∗

m + V ∗

m).

Therefore, the AQS vector at the true parameters consists of terms linear-quadratic in v, linear-quadratic in ε, and
bilinear in ε and v. Thus, for every non-zero dim(ψ) × 1 vector of constants c , c ′S∗

SDPD(ψ0) can be expressed as

c ′S∗

SDPD(ψ0) = v′Av + v′ζ + ε′Bε + ε′ϕ + vDε − c ′µψ ,

for suitably defined non-stochastic matrices A, B and D, and (random) vectors ζ and ϕ, where µψ = {0′

dim(β), µσ2
v
, µφ, µρ,

µλ1 , µλ2 , µλ3}
′. Both ζ and ϕ are measurable functions of Vm, and hence are independent of ε and v. Putting c ′S∗

SDPD(ψ0)
in a more compact form: V′AV + V′ϖ − c ′µψ , where V = (v′, ε′)′, A = {A,D; 0, B}, ϖ = (ζ ′, ϕ)′, and 0 denotes a matrix
of zeros, the asymptotic normality of 1

√
nT

c ′S∗
SDPD(ψ0) follows from Lemma A.5. Finally, the Cramér–Wold devise leads to

the joint asymptotic normality of 1
√
nT

S∗
SDPD(ψ0).

Proof of (b). The Hessian matrix, H∗
SDPD(ψ) =

∂
∂ψ ′ S∗

SDPD(ψ), has the distinct elements:

H∗

ββ = −
1
σ2
v
X ′Ω−1X, H∗

βσ2
v

= −
1
σ4
v
X ′Ω−1e(θ ), H∗

βφ =
1
σ2
v
X ′Ω̇−

φ e(θ ), H∗

βρ = −
1
σ2
v
X ′Ω−1Y−1,

H∗

βλ1
= −

1
σ2
v
X ′Ω−1W1Y , H∗

βλ2
= −

1
σ2
v
X ′Ω−1W2Y−1 H∗

σ2
v σ

2
v

= −
1
σ6
v
e′(θ )Ω−1e(θ ) +

nT
2σ4
v
, H∗

βλ3
=

1
σ2
v
X ′Ω̇−

λ3
e(θ ),

H∗

σ2
v φ

=
1

2σ4
v
e′(θ )Ω̇−

φ e(θ ), H∗

σ2
v ρ

= −
1
σ4
v
e′(θ )Ω−1Y−1, H∗

σ2
v λ2

= −
1
σ4
v
e′(θ )Ω−1W2Y−1, H∗

σ2
v λ1

= −
1
σ4
v
e′(θ )Ω−1W1Y ,

H∗

σ2
v λ3

=
1

2σ4
v
e′(θ )Ω̇−

λ3
e(θ ), H∗

φρ =
1
σ2
v
e′(θ )Ω̇−

φ Y−1, H∗

φλ1
=

1
σ2
v
e′(θ )Ω̇−

φ W1Y , H∗

φλ2
=

1
σ2
v
e′(θ )Ω̇−

φ W2Y−1,

H∗

φφ = −
1

2σ2
v
e′(θ )Ω̈−

φ e(θ ) −
1
2 tr[Ω̇

−

φ (JT ⊗ In)], H∗

φλ3
= −

1
2σ2
v
e′(θ )Ω̈−

φ,λ3
e(θ ) −

1
2 tr[Ω̇

−

λ3
(JT ⊗ In)],

H∗
ρρ = −

1
σ2
v
Y ′

−1Ω
−1Y−1 − tr[(φĊ−1,ρ + Ḋ−1,ρ)Ω−1

], H∗

ρλ1
= −

1
σ2
v
Y ′W ′

1Ω
−1Y−1 − tr[(φĊ−1,λ1 + Ḋ−1,λ1 )Ω

−1
],

H∗

ρλ2
= −

1
σ2
v
Y ′

−1W
′

2Ω
−1Y−1 − tr[(φĊ−1,λ2 + Ḋ−1,λ2 )Ω

−1
], H∗

λ1λ2
= −

1
σ2
v
Y ′

−1W
′

2Ω
−1W1Y − tr[(φĊλ2 + Ḋλ2 )Ω

−1W2],

H∗

ρλ3
=

1
σ2
v
e′(θ )Ω̇−

λ3
Y−1 − tr[(Ḋ−1,λ3Ω

−1) + (φC1 + D1)Ω̇−

λ3
], H∗

λ1ρ
= −

1
σ2
v
Y ′W ′

1Ω
−1Y−1 − tr[(φĊρ + Ḋρ)Ω−1W1],

H∗

λ1λ1
= −

1
σ2
v
Y ′W ′

1Ω
−1W1Y − tr[(φĊλ1 + Ḋλ1 )Ω

−1W1], H∗

λ1λ3
=

1
σ2
v
e′(θ )Ω̇−

λ3
W1Y − tr{[Ḋλ3Ω

−1
+ (φC + D)Ω̇−

λ3
]W1},
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H∗

λ2ρ
= −

1
σ2
v
Y ′

−1W
′

2Ω
−1Y−1 − tr[(φĊ−1,ρ + Ḋ−1,ρ)Ω−1W2],

H∗

λ2λ1
= −

1
σ2
v
Y ′

−1W
′

2Ω
−1W1Y − tr[(φĊ−1,λ1 + Ḋ−1,λ1 )Ω

−1W2],

H∗

λ2λ2
= −

1
σ2
v
Y ′

−1W
′

2Ω
−1W2Y1 − tr[(φĊ−1,λ2 + Ḋ−1,λ2 )Ω

−1W2],

H∗

λ2λ3
=

1
σ2
v
e′(θ )Ω̇−

λ3
W2Y−1 − tr{[Ḋ−1λ3Ω

−1
+ (φC1 + D1)Ω̇−

λ3
]W2},

H∗

λ3λ3
= −

1
2σ2
v
e′(θ )Ω̈−

λ3
e(θ ) −

1
2 tr(Ω̇

−

λ3
Ω̇λ3 +Ω−1Ω̈λ3 ),

H∗

λ3ρ
=

1
σ2
v
e′(θ )Ω̇−

λ3
Y−1, H∗

λ3λ1
=

1
σ2
v
e′(θ )Ω̇−

λ3
W1Y , H∗

λ3λ2
=

1
σ2
v
e′(θ )Ω̇−

λ3
W2Y−1,

where Ċω =
∂C
∂ω

, Ḋω =
∂D
∂ω

, Ċ−1,ω =
∂C−1
∂ω

, Ḋ−1,ω =
∂D−1
∂ω

, for ω = ρ, λ1, λ2, λ3, and these expressions can easily be obtained
from the expressions of C, C−1, D, and D−1 given in Lemma 2.1; and further,

Ω̇λ3 =
∂Ωλ3
∂λ3

= (B′

3B3)−1(B′

3W3 + W′

3B3)(B′

3B3)−1,

Ω̈λ3 =
∂Ω̇λ3
∂λ3

= 2[Ω̇λ3 (B
′

3W3 + W′

3B3)(B′

3B3)−1
− (B′

3B3)−1(W′

3W3)(B′

3B3)−1
],

Ω̇−

λ3
=

∂Ω−1

∂λ3
= −Ω−1Ω̇λ3Ω

−1, Ω̈−

λ3
=

∂Ω̇−

λ3
∂λ3

= −2Ω−1Ω̇λ3Ω̇
−

λ3
−Ω−1Ω̈λ3Ω

−1,

Ω̇−

φ =
∂Ω−1

∂φ
= Ω−1(JT ⊗ In)Ω−1, Ω̈−

φ =
∂Ω̇−1

φ

∂φ
= 2Ω−1(JT ⊗ In)Ω−1(JT ⊗ In)Ω−1,

Ω̈−

φ,λ3
=

∂Ω̇−

φ

∂λ3
= 2Ω−1Ω̇λ3Ω

−1(JT ⊗ In)Ω−1.

It is easy to show that 1
nT H

∗
SDPD(ψ0) = Op(1) by Lemma A.1 and the model assumptions. Thus, 1

nT H
∗
SDPD(ψ̄) = Op(1)

because ψ̄ − ψ0 = op(1), which is implied by ψ̂M
p

−→ ψ0. As σ̄ 2
v

p
−→ σ 2

v0, σ̄
−r
v = σ−r

v0 + op(1), r = 2, 4, 6. As σ r
v appears

in H∗
SDPD(ψ) multiplicatively,

1
n(T−1)H

∗
SDPD(ψ̄) =

1
n(T−1)H

∗
SDPD(β̄, σ

2
v0, φ̄, ρ̄, λ̄) + op(1).

The proof of (b) is thus equivalent to the proof of

1
n(T−1)

[
H∗
SDPD(β̄, σ

2
v0, φ̄, ρ̄, λ̄) − H∗

SDPD(ψ0)
] p

−→ 0.

Writing e(θ ) = e− (λ1 − λ10)W1Y − (ρ− ρ0)Y−1 − (λ2 − λ20)W2Y−1 −X(β −β0), and by the representations for Y and
Y−1 given in (2.14), we see that all the random elements of H∗

SDPD(ψ) can be written as linear combinations of terms:

quadratic in e : (ϖ −ϖ0)j(ω − ω0)ke′AG(φ, λ3)Be,
quadratic in y0 : (ϖ −ϖ0)j(ω − ω0)ky′

0AG(φ, λ3)By0,
linear in e : (ϖ −ϖ0)je′AG(φ, λ3)BZ,
linear in y0 : (ϖ −ϖ0)jy′

0AG(φ, λ3)BZ,
bylinear in e and y0 : (ϖ −ϖ0)j(ω − ω0)ke′AG(φ, λ3)By0,

for j, k = 0, 1, ϖ,ω = ρ, λ1, λ2, where A and B denote generically nT × nT non-stochastic matrices, and Z generically
nT × d non-stochastic vector or matrices, all from (2.14) and free from parameters; and G(φ, λ3) can be Ω−1, Ω̇−

λ3
, Ω̈−

λ3
,

Ω̇−

φ , Ω̈−

φ , and Ω̈−

φ,λ3
.

Take a typical quadratic term of e, e′AG(φ, λ3)Be, for example. Letting (φ∗, λ∗

3) be between (φ̄, λ̄3) and (φ0, λ30), we
have by MVT,

1
nT

[e′AG(λ̄3, φ̄)Be − e′AG(λ30, φ0)Be] =
φ̄ − φ0

nT
e′AĠφ∗Be +

λ̄3 − λ0

nT
e′AĠλ∗

3
Be,

where Ġφ and Ġλ3 are the partial derivatives of G(φ, λ3) evaluated at (φ∗, λ∗

3). Noting that G is a linear combination of the
matrices Ω−1, B−1

3 and W3, and their products, its partial derivatives evaluated at (φ, λ3) are linear combinations of Ω−1,
B−1
3 and W3, and their products as well, and hence are uniformly bounded in both row and column sums for (φ, λ3) in a

neighborhood of (φ0, λ30). By Lemma A.4(i) and the consistency of ψ̂M, 1
nT [e′AG(φ̄, λ̄3)Be − e′AG(φ0, λ30)Be]

p
−→ 0. The

convergence of all other terms can be shown similarly by using Lemma A.4, Assumption F, and the consistency of ψ̂M.
It is left to show that all the ‘trace’ terms in 1

nT

[
H∗
SDPD(β̄, σ

2
v0, φ̄, ρ̄, λ̄) − H∗

SDPD(ψ0)
]
are op(1). Consider, for example,

its ρρ-element. Denote E−1 ≡ E−1(φ, ρ, λ) = φC−1 + D−1 and let Ė−1,ρ(φ, ρ, λ) be its partial derivative w.r.t. ρ. For



(φ∗, ρ∗, λ∗) be between (φ̄, ρ̄, λ̄) and (φ0, ρ0, λ0), we have by MVT,

1

`

nT {tr[Ė−1,ρ(φ̄, ρ̄, λ̄)Ω−1(φ̄, λ̄3)] − tr[Ė−1,ρ(φ0, ρ0, λ0)Ω−1(φ0, λ30)]}

=
φ̄−φ0
nT tr[φ∗Ω−1(φ∗, λ∗

3) + Ė−1,ρ∗Ω̇−1
φ∗ ] +

ρ̄−ρ0
nT tr[Ëρ

∗

−1,ρΩ
−1(φ∗, λ∗

3)]

+
λ̄1−λ10

nT tr[Ë
λ∗
1

−1,ρΩ
−1(φ∗, λ∗

3)] +
λ̄2−λ20

nT tr[Ë
λ∗
2

−1,ρΩ
−1(φ∗, λ∗

3)]

+
λ̄3−λ30

nT tr[Ë
λ∗
3

−1,ρΩ
−1(φ∗, λ∗

3) + Ė−1,ρΩ̇
−1(λ∗

3)],

where Ër∗
−1,ρ, r = φ, ρ, λ1, λ2, λ3, are the partial derivatives of Ė−1,ρ evaluated at (φ∗, ρ∗, λ∗). Consider W.L.O.G. T = 2.

Recall the definitions of C and D, we have,

D(ρ, λ1, λ2, λ3) =

(
B−1
1 (B′

3B3)−1, B−1
1 (B′

3B3)−1

BB−1
1 (B′

3B3)−1, BB−1
1 (B′

3B3)−1

)
,

C(ρ, λ1, λ2) =

(
(
∑m

i=0 B
i)B−1

1 , (
∑m

i=0 B
i)B−1

1
(
∑m+1

i=0 Bi)B−1
1 , (

∑m+1
i=0 Bi)B−1

1

)
.

This shows that the elements of E−1 and E−1,ρ are linear combinations of the matrices W1, B−1
1 , B2 and B−1

3 , and their
products. Therefore, Ër

−1,ρ has elements being linear combinations of W1, W2, W3, B−1
1 , B2, and B−1

3 , and their products,
and hence are uniformly bounded in both row and column sums for (ρ, λ) in a neighborhood of (ρ0, λ0) by Lemmas A.1
and A.2. Therefore, each trace term in the equation above divided by nT , such as 1

nT tr[φ
∗Ω−1(φ∗, λ∗

3) + Ė−1,ρ∗Ω̇−1
φ∗ ], is

Op(1). This completes the proof (b).
Proof of (c). By the representations given in (2.16), the elements of Hessian matrix can be written as linear

combinations of quadratic and linear terms of v and ε, quadratic and linear terms of y0, bilinear terms of v and y0, ε
and y0, v and ε. Thus, the results follow by repeatedly applying Lemmas A.1, A.4, and A.6. ■

Appendix C. Proofs for Section 3

Proof of Lemma 3.1. The result (3.7) is obvious. To show (3.8), we need the result:

E[(a′vt )(b′vt )(c ′vt )(d′vt )] = (µ(4)
v0 − 3σ 4

v0)(a ⊙ b)′(c ⊙ d) + σ 4
v0[(a

′b)(c ′d) + (a′c)(b′d) + (a′d)(b′c)],

where ⊙ denotes the Hadamard product, and a, b, c , and d are n × 1 vectors. Write

gΦr i =

T∑
t=1

(eite∗

ri,t − d1Φr it ) +

T∑
t=1

(eitϕri,t − d2Φr it ) = Qr1,i + Qr2,i, r = 1, 2, . . . , 6.

As e∗

ri,t = Φrii,t+εi +
∑T

s=1Φrii,tsb′

ivs and ϕri,t = a′

ri,t+ε +
∑T

s=1 c
′

ri,tsvs, we have

E(Qr1,iQν1,j) =

T∑
t=1

Cov(eite∗

rit , ejte
∗

νjt ) +

T∑
t=1

T∑
s=1,s̸=t

Cov(eite∗

rit , ejse
∗

νjs)

= σ 4
v0

T∑
t=1

T∑
s=1

[
Φrii,tsΦνjj,st (b′

ibj)
2
+Φrii,tsΦνjj,ts(b′

ibj)
2]

+ (µ(4)
v0

− 3σ 4
v0)

T∑
t=1

Φrii,ttΦνjj,tt (bi ⊙ bi)′(bj ⊙ bj),

E(Qr1iQν2j) = σ 4
v0

T∑
t=1

T∑
s=1

[Φrii,ts(b′

icνj,st )(b
′

ibj) +Φrii,ts(b′

icνj,ts)(b
′

ibj)] + σ 2
v0σ

2
ε0

T∑
t=1

(Φrii,t+ +Φrii,+t )(1′

iaνj,t+)(b
′

ibj)

+ (µ(4)
v0

− 3σ 4
v0)

T∑
t=1

Φrii,tt (bi ⊙ bi)′(bj ⊙ cνj,tt ),

E(Qr2iQν1j) = σ 4
v0

T∑
t=1

T∑
s=1

[Φνjj,ts(b′

jcri,st )(b
′

ibj) +Φνjj,ts(b′

jcri,ts)(b
′

ibj)] + σ 2
v0σ

2
ε0

T∑
t=1

(Φνjj,t+ +Φνjj,+t )(1′

jari,t+)(b
′

ibj)

+ (µ(4)
v0 − 3σ 4

v0)
T∑

t=1

Φνjj,tt (bj ⊙ bj)′(bi ⊙ cri,tt ),

E(Qr2iQν2j) = σ 4
v0

T∑
t=1

T∑
s=1

[(b′

icνj,st )(b
′

jcri,ts) + (b′

ibj)(c
′

ri,tscνj,ts)]

+ σ 2
v0σ

2
ε0

T∑
t=1

[(1′

jari,t+)(b
′

icνj,+t ) + (1′

iaνj,t+)(b
′

jcri,+t ) + (a′

ri,t+aνj,t+)(b
′

ibj)]

+ (µ(4)
v0

− 3σ 4
v0)

∑T
t=1(bi ⊙ cri,tt )′(bj ⊙ cνj,tt ).
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Summarizing and simplifying by letting c∗

ri,ts be the ith row of (Φ l
r,ts +Φ

u′
r,st +Φ

d
r,ts)B

−1
3 , we obtain the result for E(gΦr igΦν j),

i.e., (3.8) in Lemma 3.1.
To show (3.9), write gΨr i =

∑T
t=1(eitΨ

∗

rii,t+y
∗

0i − dΨr it ) +
∑T

t=1 e
′

itξri,t = Qr1,i + Qr2,i. Using eit = εi + b′

ivt , and
y∗

0 = ε + η∗
m + V ∗

m, we obtain

E(Qr1,iQν1,j) =

T∑
t=1

Cov(e′

itΨ
∗

rii,t+y
∗

0i, e
′

jtΨ
∗

νjj,t+y
∗

0j) +

T∑
t=1

∑
s(̸=t)

Cov(e′

itΨ
∗

rii,t+y
∗

0i, e
′

jsΨ
∗

νjj,s+y
∗

0j)

=

T∑
t=1

E
[
(εi + b′

ivt )Ψ
∗

rii,t+y
∗

0i(εj + b′

jvt )Ψ
∗

νjj,t+y
∗

0j

]
− dΨr itdΨν jt

+

T∑
t=1

∑
s(̸=t)

E
[
(εi + b′

ivt )Ψ
∗

rii,t+y
∗

0i(εj + b′

jvs)Ψ
∗

νjj,s+y
∗

0j

]
− dΨr itdΨν js

= σ 2
v0(b

′

ibj)
T∑

t=1

(Ψ ∗

rii,t+Ψ
∗

νjj,t+)E(y
∗

0iy
∗

0j),

where the double summation part vanishes, because for i ̸= j and t ̸= s, e′

itΨ
∗

rii,t+y
∗

0i and e′

jsΨ
∗

νjj,s+y
∗

0j are conditionally
independent given Vm as they are, respectively, measurable-(εi, vt , Vm) and measurable-(εj, vs, Vm). Similarly, using ξri,t =

w′

ri,ty
∗

0, we show that

E(Qr1,iQν2,j) = σ 2
v0(b

′

ibj)
T∑

t=1

Ψ ∗

rii,t+E(y
∗

0iξνj,t ),

E(Qr2,iQν1,j) = σ 2
v0(b

′

ibj)
T∑

t=1

Ψ ∗

νjj,t+E(y
∗

0jξri,t ),

E(Qr2,iQν2,j) = σ 2
v0(b

′

ibj)
T∑

t=1

E(ξri,tξνj,t ) + σ 4
ε0(1

′

jwri,+)(1′

iwνj,+),

where 1i denotes an n × 1 vector of element 1 at the ith position and zero elsewhere. Summarizing and simplifying, we
have the result for E(gΨr i gΨν j) given in (3.9).

To show (3.11), write gΠν i =
∑T

t=1Π
′

νj,tejt = Pνi, ν = 1, 2, . . . , kϖ . Using this and gΨr i = Qr1i +Qr2i, r = 1, 2, 3, given
above, we obtain

E(Qr1,iPνj) = σ 2
v0

T∑
t=1

(b′

ibj)Π
′

νj,tΨ
∗

rii,t+E(y
∗

0i) and E(Qr2,iPνj) = σ 2
v0

T∑
t=1

(b′

ibj)Π
′

νj,tE(ξri,t ),

leading to E(gΨr ig
′

Πν j) = σ 2
v0

∑T
t=1Π

′

νj,tE(ξ
∗

ri,t )(b
′

ibj).

Result (3.10) and (3.12) are derived in a similar way in which we separate each gΦr i and gΨr i into two terms,
and calculate the covariances of each pair of the terms and then sum them up. Details on these can be found in the
Supplementary Appendix. ■

Proof of Theorem 3.1. First, the result Σ∗
SDPD(ψ̂M) − Σ∗

SDPD(ψ0)
p

−→ 0 is implied by the result (b) in the proof of
Theorem 2.2. The result Γ̂ ∗

SDPD − Γ ∗
SDPD(ψ0)

p
−→ 0 follows from

(a) 1
nT

∑n
i=1

[
ĝiĝ′

i − E(gig′

i)
] p

−→ 0,

(b) 1
nT

∑n
1=1

∑n
j=1,j̸=i

[̂
E(gig′

j) − E(gig′

j)
] p

−→ 0.

To show (a): the result follows if (i) 1
nT

∑n
i=1(ĝiĝ′

i − gig′

i)
p

−→ 0, and (ii) 1
nT

∑n
i=1[gig′

i − E(gig′

i)]
p

−→ 0. The proof of (i)
is straightforward by MVT. We focus on the proof of (ii).

The components of S∗
SDPD(ψ0) are mixtures of terms of the forms: Π ′e =

∑n
i=1 gΠ i, e′Ψ y0 − E(e′Ψ y0) =

∑n
i=1 gΨ i, and

e′Φe − E(e′Φe) =
∑n

i=1 gΦi. It suffices to show that

1
nT

n∑
i=1

[gkig ′

ri − E(gkig ′

ri)] = op(1), for gki, gri = gΠ i, gΨ i, gΦi. (C.1)



First, we show 1

`

nT

∑n
i=1[g

2
Π i − E(g2

Π i)]
p

−→ 0. Assuming, W.L.O.G, Πit are scalars, write

gΠ i =

T∑
t=1

Πiteit =

T∑
t=1

Πit (εi + b′

ivt ) = Πi+εi + b′

ivi, (C.2)

whereΠi+ =
∑T

t=1Πit and vi =
∑T

t=1Πitvt . We have 1
nT

∑n
i=1

[
g2
Π i−E(g2

Π i)
]

≡ U1+U2+U3, where U1 =
1
nT

∑n
i=1Π

2
i+(ε

2
i −

σ 2
ε0), U2 =

2
nT

∑n
i=1(Πi+εi)(b′

ivi) and U3 =
1
nT

∑n
i=1

[
(b′

ivi)
2
− σ 2

v0(
∑T

t=1Π
2
it )(b

′

ibi)
]
. Now, it is straightforward to show that

Ur = op(1), for r = 1, 2, 3, by applying Lemmas A.1 and A.4, and Chebyshev’s inequality.

Second, we show 1
nT

∑n
i=1[g

2
Φi − E(g2

Φi)]
p

−→ 0. Using (3.4), we can write

gΦi = ki(ε2i − σ 2
ε ) + εiz1i + εi(r ′

i ε) + (ui − µui ) +

T∑
t=1

(q′

itε)(b
′

ivt ), (C.3)

where ki are scalar constants that are uniformly bounded; z1i =
∑T

t=1 p
′

itvt with p′

it being the ith row of some
non-stochastic matrix uniformly bounded in row and column sums; ui =

∑T
t=1

∑T
s=1 v

′
tAi,tsvs with mean µui =

σ 2
v

∑T
t=1 tr(Ai,tt ), where Ai,ts = Φii,ts(bib′

i) + (bic ′

i,ts); bi are defined as before, and r ′

i and q′

it represent ith row of some
non-stochastic strictly lower triangular matrices which are uniformly bounded in both row and column sums. Noticing
that the five terms in (C.3) are uncorrelated, it follows that

1
nT

n∑
i=1

[
g2
Φi − E(g2

Φi)
]

=

15∑
r=1

Ur , (C.4)

where U1 =
1
nT

∑n
i=1 k

2
i {(ε

2
i − σ 2

ε0)
2
− E[(ε2i − σ 2

ε0)
2
]}, U2 =

2
nT

∑n
i=1 ki(ε

2
i − σ 2

ε0)εi(r
′

i ε),

U3 =
1
nT

n∑
i=1

[ε2i (r
′

i ε)
2
− σ 4

ε0

n∑
j=1

r2ij ], U4 =
2
nT

n∑
i=1

εi(r ′

i ε)
T∑

t=1

(q′

itε)(b
′

ivt ),

U5 =
2
nT

n∑
i=1

ε2i (r
′

i ε)z1i, U6 =
2
nT

n∑
i=1

ki(ε2i − σ 2
ε0)εiz1i,

U7 =
2
nT

n∑
i=1

ki(ε2i − σ 2
ε0)

T∑
t=1

(q′

itε)(b
′

ivt ), U8 =
2
nT

n∑
i=1

[εiz1i
T∑

t=1

(q′

itε)(b
′

ivt )],

U9 =
2
nT

n∑
i=1

εi(r ′

i ε)(ui − µui ), U10 =
2
nT

n∑
i=1

ki(ε2i − σ 2
ε0)(ui − µui ),

U11 =
1
nT

n∑
i=1

[ε2i z
2
1i − (

T∑
t=1

p′

itpit )σ
2
v0σ

2
ε0], U13 =

1
nT

n∑
i=1

εiz1i(ui − µui ),

U12 =
1
nT

n∑
i=1

{[

T∑
t=1

(q′

itε)(b
′

ivt )]
2
− σ 2

v0σ
2
ε0(

T∑
t=1

q′

itqit )(b
′

ibi)},

U14 =
2
nT

n∑
i=1

(ui − µui )
T∑

t=1

(q′

itε)(b
′

ivt ), U15 =
1
nT

n∑
i=1

{(ui − µui )
2
− E[(ui − µui )

2
]}.

To show each of the fifteen terms above is op(1), we write it as the sum of a martingale differences (MD) array and
thus the weak law of large numbers (WLLN) for an MD array, e.g., Theorem 19.7 of Davidson (1994, p.299), can be applied
to prove its convergence in probability to zero. As the full proof is tedious, we present details for a few typical terms: U2,
U4, U10 and U15. More details are put in the Supplementary Appendix.

Write U2 =
2
nT

∑n
i=1 ki(ε

3
i − µ(3)

ε0
)(r ′

i ε) +
2
nT

∑n
i=1 kiµ

(3)
ε0
(r ′

i ε) −
2
nT σ

2
ε0

∑n
i=1 kiεi(r

′

i ε) ≡
2
nT

∑3
r=1

∑n
i=1 Vrn,i. Let Fε

ni be
the increasing σ -field generated by (ε1, . . . , εi). As (r ′

i ε) is Fε
n,i−1 measurable, we have for r = 1, 3, E(Vrn,i|Fε

n,i−1) = 0,
and thus {Vrn,i,Fε

n,i} forms an MD array. As ki are uniformly bounded, it is easy to see {V1n,i} and {V3n,i} are uniformly
integrable. With constant coefficients 1

nT , the other two conditions of WLLN for MD array of Davidson are satisfied. So
1
nT

∑n
i=1 Vrn,i = op(1), r = 1, 3, by Davidson’s WLLN for MD arrays. Finally, 1

nT

∑n
i=1 V2n,i =

∑n
i=1 aniεi, for some constants

ani. Therefore, U2
p

−→ 0.
Write U4 =

2
nT

∑n
i=1 εi(r

′

i ε)
∑T

t=1(q
′

itε)(b
′

ivt ) ≡
∑n

i=1 Vni. Let Gni be the increasing σ -field generated by (v, ε1, . . . , εi).
We have E(Vni|Gn,i−1) = 0, and thus {Vni, Gni} form an MD array. By Assumption B and Lemma A.1 we have E(V 2

ni) =∑T
t=1(b

′

ibi)σ
2
ε0σ

2
v0{(µ

(4)
ε0 − 3σ 4

ε0)(ri ⊙ ri)′(qit ⊙ qit ) + σ 4
ε0[(r

′

i ri)(q
′

itqit ) + 2(r ′

i qit )
2
]} ≤ K ≤ ∞. Therefore, {Vni} is uniformly



`

integrable. The other two conditions of the WLLN for MD arrays of Davidson are satisfied with constant coefficients 1
nT .

So we have U4
p

−→ 0.
Write U10 =

2
nT

∑n
i=1 ki(ε

2
i −σ 2

ε0)ui−
2
nT

∑n
i=1 ki(ε

2
i −σ 2

ε0)µui ≡
2
nT

∑2
r=1

∑n
i=1 Vrn,i. As ki and µui are uniformly bounded,

we immediately have 2
nT

∑n
i=1 V2n,i

p
−→ 0 by Kolmogorov’s law of large numbers (LLN). For V1n,i, first we notice that ui

depends only on v, and thus is independent of εi for all i. So, {V1n,i, Gn,i} form an MD array. We have

E(u2
i ) = σ 4

v0

T∑
t=1

∑
s̸=t

[
tr(Ai,tt )tr(Ai,ss) + tr(Ai,tsA′

i,ts) + tr(Ai,tsAi,st )
]
+ (µ(4)

v0
− 3σ 4

v0)
T∑

t=1

n∑
j=1

a2itt,jj.

where aitt,jj denotes the (j, j) element of Ai,tt . As Ai,ts = Φii,ts(bib′

i) + (bic ′

i,ts), we have tr(Ai,ts) = c∗′i,tsbi, which is the
(i, i) element of Φ∗

ts(B
′

3B
′

3)
−1. So tr(Ai,ts) = O(h−1

n ) by Lemma A.1 and Assumption D. Similarly we have
∑n

j=1 a
2
itt,jj ≤

tr(Ai,tsA′

i,ts) = O(h−1
n ) and tr(Ai,tsAi,st ) = O(h−1

n ). Therefore, the condition, E(|V1n,i|
1+ϵ) < Kv < ∞ for some ϵ > 0, is

satisfied. With constant coefficients 1
nT , the other two conditions of WLLN for MD array of Davidson are satisfied. So we

have 2
nT

∑n
i=1 V1n,i

p
−→ 0 and thus, U10

p
−→ 0.

Write U15 =
1
nT

∑n
i=1[u

2
i −E(u2

i )]−
1
nT

∑n
i=1 µui (ui−µui ). The convergence of the second term follows from Lemma A.4.

Now, write u2
i = (

∑T
t=1

∑T
s=1 v

′
tAi,tsvs)2 =

∑4
r=1 Hr,ni, where

H1,ni =

∑
t

∑
s

∑
k

∑
ℓ̸=t ̸=s̸=k

v′

tAi,tsvsv
′

kAi,kℓvℓ; H3,ni =

∑
t

∑
s̸=t

v′

tAi,tsvsv
′

tAi,tsvs;

H2,ni =

∑
t

∑
s̸=t

v′

tAi,ttvtv
′

sAi,ssvs; H4,ni =

∑
t

v′

tAi,ttvtv
′

tAi,ttvt .

Write H1,ni =
∑

ℓ v
′

ℓϕiℓ, where ϕiℓ =
∑

t ̸=ℓ
∑

s̸=ℓ
∑

k̸=ℓ A
′

i,kℓvkv
′
tAi,tsvs. We have E(v′

ℓϕiℓ) = 0 as vℓ and ϕiℓ are
independent. For each ℓ, we can write 1

n

∑n
i=1 v

′

ℓϕiℓ =
1
nv

′

ℓ

∑n
i=1 ϕiℓ, which is a bilinear form. Therefore, by Assumptions B

and D, it is easy to verify the conditions of Lemma A.5. As T is fixed, we have 1
nT

∑n
i=1 H1,ni = op(1).

Rewrite H2,ni =
∑

t
∑

s̸=t uituis. For each t and s, write 1
nT

∑n
i=1[uituis − E(uit )E(uis)] =

1
nT

∑n
i=1[uit − E(uit )]E(uis) +

1
nT

∑n
i=1[uis − E(uis)]uit ≡

1
nT

∑n
i=1 V1n,i +

1
nT

∑n
i=1 V2n,i. Let v∗

t = [
∑n

i=1 A
d
i,tt tr(Ai,ss)]vt and ξt = [

∑n
i=1(A

l
i,tt + Au′

i,tt )]vt . The
V1n,i is decomposed into:

1
nT

n∑
i=1

V1n,i =
1
nT

n∑
i=1

[(
v′
tA

d
i,ttvt − σ 2

v0tr(Ai,tt )
)
+ v′

t (A
l
i,tt + Au′

i,tt )vt
]
E(uis)

=
σ2
v0
nT v

′
t

[ n∑
i=1

Ad
i,tt tr(Ai,ss)

]
vt −

σ4
v0
nT

n∑
i=1

tr(Ai,tt )tr(Ai,ss) +
1
nT v

′
t

[ n∑
i=1

(Al
i,tt + Au′

i,tt )
]
vt

=
σ2
v0
nT [v′

tv
∗
t − E(v′

tv
∗
t )] +

1
nT v

′
tξt =

σ2
v0
nT

n∑
j=1

(
vjtv

∗

jt − E(vjtv∗

jt )
)
+

1
nT

n∑
j=1

vjtξjt .

Clearly, the first term is the average of n independent terms. The second term can be seen to be the average of the MD array
{vjtξjt} with respect to the increasing σ -field, Fv

nj, generated by {v1t , . . . , vjt , t = 1, . . . , T }. The ξjt is Fv
n,j−1-measurable

and the conditions of WLLN of Davidson are easily verified. Hence, 1
nT

∑n
i=1 V1n,i = op(1). Similarly but more tediously,

we show that 1
nT

∑n
i=1 V2n,i = op(1). Therefore, 1

nT

∑n
i=1(H2,ni − EH2,ni) = op(1).

The result 1
nT

∑n
i=1[H3,ni − E(H3,ni)]

p
−→ 0 can be shown in a similar way.

As H4,ni =
∑

t (v
′
tv

∗

it + v′
tξit )

2, where v∗

it = Ad
i,ttvt and ξit = (Al

i,tt + Au′
i,tt )vt , we have, for each t , 1

nT

∑n
i=1(v

′
tv

∗

it + v′
tξit )

2
=

1
nT

∑n
i=1(v

′
tv

∗

it )
2
+

1
nT

∑n
i=1(v

′
tξit )

2
+

2
nT

∑n
i=1 v

′
tv

∗

itv
′
tξit ≡

1
nT

∑3
r=1

∑n
i=1 Vrn,it . By Assumptions B and E, and Lemma A.1, it

is easy to show that 1
nT

∑n
i=1[V1n,it − E(V1n,it )] =

1
nT

∑n
j=1(v

4
jt −µ(4)

v )ajj + 1
nT

∑n
j=1

∑
k̸=j(v

2
jtv

2
kt − σ 4

v0)akj = op(1). Similarly,
1
nT

∑n
i=1[V3n,it − E(V3n,it )] = op(1). Decompose 1

nT

∑n
i=1[V2n,it − E(V2n,it )] as:

1
nT

n∑
j=1

(v2jt − σ 2
v0)(

n∑
i=1

ξ 2it,j) +
1
nT

n∑
j=1

[
(

n∑
i=1

ξ 2it,j) − E(
n∑

i=1

ξ 2it,j)
]
+
σ 2
v0

nT

n∑
j=1

vjt
[∑
k̸=j

vkt (
n∑

i=1

ξit,jξit,k)
]
.

The first and third terms can be shown to be op(1) by WLLN for MD arrays as ξit,j is Fv
n,j−1-measurable. Let a′

i,j be the j th
row of Al

i,tt +Au′
i,tt , then we have ξit,j = a′

i,jvt . The second term becomes 1
nT

∑n
j=1

[
v′
t (
∑n

i=1 ai,ja
′

i,j)vt − σ
2
v0tr(

∑n
i=1 ai,ja

′

i,j)
]

=

op(1) by Lemmas A.1, A.2 and A.4. Therefore, 1
nT

∑n
i=1 H4,ni = op(1). Combining these results, we have U15 = op(1). Other

terms can be proved similarly, and therefore, 1
nT

∑n
i=1[g

2
Φi − E(g2

Φi)] = op(1).



Third, we show 1

`

nT

∑n
i=1[g

2
Ψ i − E(g2

Ψ i)]
p

−→ 0. Write, using y∗

0 = η∗
m + ε + V ∗

m and (3.3),

gΨ i = εihi + Ψ ∗

ii+(ε
2
i − σ 2

ε ) + εi(w′

i+ε) + z2i +
T∑

t=1

(b′

ivt )(w
′

itε), (C.5)

where hi = a′

iV
∗
m +

∑T
t=1 c

′

itvt , z2i =
∑T

t=1 s
′

itvt , and a′

i , s
′

i , and c ′

it are ith row of some non-stochastic matrices that are
uniformly bounded in both row and column sums. Recall w′

it is the ith row of (Ψ ∗l
t+ +Ψ ∗u

t+ ) and note that the ith element
of w′

it is 0. We have,

1
nT

n∑
i=1

[g2
Ψ i − E(g2

Ψ i)] =

15∑
r=1

Ur , where (C.6)

U1 =
1
nT

n∑
i=1

[ε2i h
2
i − σ 2

ε0E(h
2
i )], U2 =

1
nT

n∑
i=1

Ψ ∗2
ii+{(ε2i − σ 2

ε )
2
− E[(ε2i − σ 2

ε )
2
]},

U3 =
1
nT

n∑
i=1

[ε2i (w
′

i+ε)
2
− σ 4

ε0

n∑
j=1

w2
ij], U4 =

1
nT

n∑
i=1

[z22i − E(z22i)],

U6 =
2
nT

n∑
i=1

Ψ ∗

ii+(ε
2
i − σ 2

ε )εihi, U7 =
2
nT

n∑
i=1

ε2i (w
′

i+ε)hi,

U8 =
2
nT

n∑
i=1

εihiz2i, U9 =
2
nT

n∑
i=1

εihi

T∑
t=1

(b′

ivt )(w
′

itε),

U10 =
2
nT

n∑
i=1

Ψ ∗

ii+(ε
2
i − σ 2

ε )εi(w
′

i+ε), U11 =
2
nT

n∑
i=1

Ψ ∗

ii+(ε
2
i − σ 2

ε )
T∑

t=1

(b′

ivt )(w
′

itε),

U12 =
2
nT

n∑
i=1

Ψ ∗

ii+(ε
2
i − σ 2

ε )z2i, U13 =
2
nT

n∑
i=1

εi(w′

i+ε)
T∑

t=1

(b′

ivt )(w
′

itε),

U14 =
2
nT

n∑
i=1

εi(w′

i+ε)z2i, U15 =
2
nT

n∑
i=1

z2i
T∑

t=1

(b′

ivt )(w
′

itε).

U5 =
1
nT

n∑
i=1

[(
T∑

t=1

(b′

ivt )(w
′

itε))
2
− σ 2

v0σ
2
ε0(b

′

ibi)
T∑

t=1

(w′

itwit )].

By Assumptions A and B, V ∗
m is independent of ε and vt , and η∗

m is exogenous. With Assumption F, the terms in
(C.6) are similar to those in (C.4), and therefore their convergence is proved similarly. Using (C.2), (C.3) and (C.5), the
convergence of the cross product terms 1

nT

∑n
i=1

[
gΠ igΦi − E(gΠ igΦi)

]
= op(1), 1

nT

∑n
i=1

[
gΦigΨ i − E(gΨ igΨ i)

]
= op(1), and

1
nT

∑n
i=1

[
gΠ igΨ i − E(gΨ igΨ i)

]
= op(1) can also be shown similarly. Detailed expressions for the cross product terms can

be found in the Supplementary Appendix. These complete the prove of convergence in the single summation part of
Theorem 3.1.

To show (b): the result 1
nT

∑n
1=1

∑n
j=1,j̸=i

[̂
E(gig′

j) − E(gig′

j)
] p

−→ 0 follows if

(i)
1
nT

n∑
i=1

n∑
j=1,j̸=i

(̂E(gig′

j) − Υij)
p

−→ 0, and (ii)
1
nT

n∑
i=1

n∑
j=1,j̸=i

[Υij − E(gig′

j)]
p

−→ 0,

where Υij is from E(gig′

j) by removing E(·) in E(ξ ∗

ri,t ) and E(ξ ∗

ri,tξ
∗

νj,t ). As each element of Υij is a linear combination of the
terms in (3.7)–(3.12), only the consistency of them matters.

Proof of (i): (1). By Lemma 3.1 we have, E(gπr g
′
πν
) = σ 2

v0
∑T

t=1(b
′

ibj)π
′

r,itπν,jt . As T is fixed, and as σ 2
v0 enters linearly

and σ̂ 2
v is consistent, it suffices to prove

Q t
0 =

1
n

n∑
i=1

∑
j̸=i

[(b̂′

ib̂j)π̂it π̂jt − (b′

ibj)πitπjt ]
p

−→ 0, for each t = 1, . . . , T ,

which is done by applying Holder’s inequality, Lemmas A.1 and A.2, and Assumption E.
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(2). By the expression of E(gΦr i gΦν j) given in (3.8) in Lemma 3.1, dropping r and ν,

Q t
1 =

1
n

n∑
i=1

∑
j̸=i

[(b̂′

j ĉ
∗

i,ts)(b̂
′

i ĉ
∗

j,st ) − (b′

jc
∗

i,ts)(b
′

ic
∗

j,st )]
p

−→ 0,

Q t
2 =

1
n

n∑
i=1

∑
j̸=i

[(b̂′

ib̂j)(ĉ
∗′

i,tsĉ
∗

j,ts) − (b′

ibj)(c
∗′

i,tsc
∗

j,ts)]
p

−→ 0,

Q t
3 =

1
n

n∑
i=1

∑
j̸=i

[âji,t+(b̂′

j ĉ
∗

i,+t ) − aji,t+(b′

jc
∗

i,+t )]
p

−→ 0,

Q t
4 =

1
n

n∑
i=1

∑
j̸=i

[âij,t+(b′

i ĉ
∗

j,+t ) − aij,t+(b′

ic
∗

j,+t )]
p

−→ 0,

Q t
5 =

1
n

n∑
i=1

∑
j̸=i

[(â∗′

i,t+â
∗

j,t+)(b̂
′

ib̂j) − (a∗′

i,t+a
∗

j,t+)(b
′

ibj)]
p

−→ 0,

Q t
6 =

1
n

n∑
i=1

∑
j̸=i

[(b̂i ⊙ ĉ∗

i,tt )
′(b̂j ⊙ ĉ∗

j,tt ) − (bi ⊙ c∗

i,tt )
′(bj ⊙ c∗

j,tt )]
p

−→ 0.

(3). E(gΨr ,igΨν ,j) = σ 4
ε0(wrij,+wνji,+) + σ 2

v0
∑T

t=1(b
′

ibj)E(ξ
∗

ri,tξ
∗

νj,t ). We need to show:

Q t
7 =

1
n

n∑
i=1

∑
j̸=i

(ŵij,+ŵji,+ − wij,+wji,+)
p

−→ 0, and

Q t
8 =

1
n

n∑
i=1

∑
j̸=i

[(b̂′

ib̂j)(ξ̂
∗

i,t ξ̂
∗

j,t ) − (b′

ibj)(ξ
∗

i,tξ
∗

j,t )]
p

−→ 0.

(4). E(gΦigΠ ′j) = µ
(3)
v0

∑T
t=1(bi ⊙ c∗

i,tt )
′bjπj,t from Lemma 3.1, and thus we need to show:

Q t
9 =

1
n

n∑
i=1

∑
j̸=i

[(b̂i ⊙ ĉ∗

i,tt )
′b̂jπ̂j,t − (bi ⊙ c∗

i,tt )
′bjπj,t ]

p
−→ 0.

(5). E(gΨ igΠ ′j) = σ 2
v0

∑T
t=1 πj,tE(ξ ∗

ri,t )(b
′

ibj) from Lemma 3.1, and thus we need to show:

Q t
10 =

1
n

n∑
i=1

∑
j̸=i

[(π̂j,t ξ̂
∗

i,t )(b̂
′

ib̂j) − (πj,tξ
∗

ri,t )(b
′

ibj)]
p

−→ 0.

(6). Finally by Lemma 3.1, E(gΦigΨ j) = σ 2
ε0
σ 2
v0

∑T
t=1[(b

′

ibj)(a
′

ri,t+w
∗

νj,t )+wνji,+(b
′

jc
◦

ri,+t )]+σ
4
ε0(wji,+aij,++)+µ

(3)
v0

∑T
t=1(bi⊙

c∗

ri,tt )
′bjE(ξ ∗

νj,t ), and thus we need to show:

Q t
11 =

1
n

n∑
i=1

∑
j̸=i

[(b̂′

ib̂j)(â
′

i,t+ŵ
∗

j,t ) − (b′

ibj)(a
′

i,t+w
∗

j,t )]
p

−→ 0,

Q t
12 =

1
n

n∑
i=1

∑
j̸=i

[ŵji,+(b̂′

j ĉ
◦

i,+t ) − wji,+(b′

jc
◦

i,+t )]
p

−→ 0,

Q t
13 =

1
n

n∑
i=1

∑
j̸=i

[(ŵji,+âij,++) − (wji,+aij,++)]
p

−→ 0,

Q t
14 =

1
n

n∑
i=1

∑
j̸=i

[(b̂i ⊙ ĉ∗

i,tt )
′b̂j(ξ̂ ∗

j,t ) − (bi ⊙ c∗

i,tt )
′bj(ξ ∗

j,t )]
p

−→ 0.

Following (3.2) and Assumption F, we can see that all the terms in (3)-(6) are similar to the terms in (i) and (ii), and
therefore their convergence in probability to zero is proved similarly to that of the terms in (i) and (ii).



Proof of (ii): First we note that (ii) is not needed for the terms not involving y∗

0. For the terms which involve y∗

0, we
need to prove:

Rt
1 =

1
n

n∑
i=1

∑
j̸=i

(b′

ibj)[ξ
∗

i,tξ
∗

j,t − E(ξ ∗

i,tξ
∗

j,t )]
p

−→ 0,

Rt
2 =

1
n

n∑
i=1

∑
j̸=i

πj,t [ξ
∗

i,t − E(ξ ∗

i,t )]
p

−→ 0,

Rt
3 =

1
n

n∑
i=1

∑
j̸=i

[(bi ⊙ c∗

i,tt )
′bj][ξ ∗

j,t − E(ξ ∗

j,t )]
p

−→ 0.

Recall that ξ ∗

i,t = w∗′

it y
∗

0 where w∗′

it is the ith row of Ψ ∗
t . The convergence of Rt

2 and Rt
3 immediately follow by Lemmas A.1

and A.6. To show Rt
1

p
−→ 0, note that Ψ ∗

t = ΨtKm, and y∗

0 = K−1
m y0, so we can write, ξ ∗

i,t = a′

ity0, where a′

it is the ith row
of Ψt . Then we have,

∑n
i=1

∑
j̸=i(b

′

ibj)ξ
∗

i,tξ
∗

j,t = y′

0[
∑n

i=1(aitb
′

i)
∑

j̸=i(bja
′

jt )]y0 = y′

0Aty0, where At = Ψ ′
t BΨt − Ψ ′

t diag(B)Ψt ,
and B = (B′

3B3)−1. Clearly, At is bounded in both row and column sums by Assumption E(iii) and Lemma A.1(i). Therefore,
Rt
1 =

1
n [y

′

0Aty0−E(y′

0Aty0)] = op(1), by Lemma A.6. These complete the proof of the convergence of the double summation
part in Theorem 3.1, and therefore complete the proof of Theorem 3.1. ■

Additional details on the proof of Theorem 3.1, in particular, the proof of (b), can be found in the Supplementary
Appendix available at http://www.mysmu.edu/faculty/zlyang/.
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