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Abstract

We introduce the notion of a multidimensional hybrid preference domain

on a (finite) set of alternatives that is a Cartesian product of finitely

many components. We demonstrate that in a model of public goods

provision, multidimensional hybrid preferences arise naturally through

assembling marginal preferences under the condition of semi-separability

- a weakening of separability. The main result shows that under a suit-

able “richness” condition, every strategy-proof rule on this domain can

be decomposed into component-wise strategy-proof rules, and more im-

portantly every domain of preferences that reconciles decomposability of

rules with strategy-proofness must be a multidimensional hybrid domain.
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1 Introduction

Public decisions entail vast expenditures on a variety of components such as

defence, education, health. A mechanism design approach would base the de-

cisions on the set of alternatives, formulated as the Cartesian product of these

multiple components (denoted A := ×s∈MAs), on the preferences of agents over

A. Decision making in such multidimensional settings is considerably more

tractable if it can be “decomposed”, that is, if the social planner is able to take

the decisions on each of the components independently based on “marginal”

preferences in each component that are derived from agents’ “overall” prefer-

ences, and then piece these component-wise decisions into a final social decision.

Of course, one would also like this decomposed decision making process to have

nice incentive properties. Thus we seek to study “straightforward”mechanisms

in multidimensional settings, that is, mechanisms that are decomposable and

strategy-proof.

If overall preferences satisfy separability1, a straightforward mechanism for

social decisions can be simply constructed by assembling independent component-

wise mechanisms that are also strategy-proof. However, separability is too de-

manding; for instance, in a model of club member recruitment (see Barberà

et al., 1991), one might imagine that while the appointment of exactly one can-

didate is preferred to nobody being appointed, it may be less desirable to recruit

all candidates, while in an auction model with non-quasilinear preferences (see

Morimoto and Serizawa, 2015), large-scale payments might influence an agent’s

ability to utilize objects. With a view to broadening the scope of straightfor-

ward mechanism design in multidimensional settings, we seek to develop here

a methodology that accommodates non-separable preferences that go beyond

1An overall preference is separable if a marginal preference on each component can be

induced such that for any two alternatives, the one endowed with a better element at each

disagreed component is preferred. Separability is an important preference restriction widely

investigated in both the literature on strategic voting (e.g., Le Breton and Sen, 1999) and on

mechanism design with monetary compensations (e.g., Roberts, 1979).
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multidimensional single-peakedness of Barberà et al. (1993), and allows us to

answer the following question: What sort of preference domain over alternatives

(formulated as a Cartesian product of multiple components) reconciles decom-

posability with strategy-proofness, that is, predicated on some way of deriving

marginal preferences on each component, (i) every rule2 that is strategy-proof

turns out to be decomposable into strategy-proof component-wise rules over

marginal preferences, and (ii) conversely, arbitrary strategy-proof component-

wise rules can be assembled into a strategy-proof rule?

Once non-separable preferences are involved, the derivation of marginal pref-

erences on a component may vary with the specification of elements on the

remaining components. Specifically, as proposed by Le Breton and Weymark

(1999), fixing an arbitrary alternative z, one can induce a marginal preference

in a component s from an overall preference by eliciting the relative rankings

of alternatives that share the same components z−s.3 This then would affect

the scope for designing strategy-proof component-wise rules, which would in

turn affect the class of decomposable, strategy-proof rules.4 We propose a

natural and consistent way of deriving marginal preferences from an overall

preference Pi: given an overall preference, refer to the top-ranked alternative

(a := (as, a−s)) and derive the marginal preference over a pair of elements xs

and ys by comparing (xs, a−s) with (ys, a−s) in Pi. We show that this way of

deriving marginal preferences has the merit of precipitating the decomposabil-

2We focus on strategy-proofness, wherein a direct mechanism reduces to a social choice

function that picks an outcome from A for each preference profile. The social choice function

will be assumed to satisfy the mild requirement of unanimity and we use the term “rule” to

refer to a unanimous social choice function.
3In particular, when the overall preference is a separable preference, a unique marginal

preference in each component is derived no matter which alternative z is referred to.
4If “too many” marginal preferences are derived, only dictatorships on each component

survive strategy-proofness. This implies that any strategy-proof rule other than a generalized

dictatorship (intuitively speaking, a combination of dictatorships on all components) fails to

be decomposable, and consequently the scope for assembling strategy-proof component-wise

rules is limited to the class of generalized dictatorships.
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ity property on all strategy-proof rules on a general class of multidimensional

models where preference domains satisfy a condition called multidimensional

hybridness (see an informal introduction in Section 2). This hence allows social

decisions to be made component wise and then assembled, thereby simplifying

the task confronting the social planner. Our way of deriving marginal prefer-

ences is mainly inspired by the fact that the top-ranked alternative does play

the role of an important benchmark in the specification of preference restric-

tions (recall the seminal preference restriction of single-peakedness) and in the

study of strategy-proof rules which in many models (e.g., Chatterji and Sen,

2011) are completely and endogenously determined by the profiles of top-ranked

alternatively, i.e., satisfy the tops-only property.

We make the following claims on domains of multidimensional hybrid prefer-

ences. First, the notion of multidimensional hybridness allows for more flexible

descriptions than separable and multidimensional single-peaked preferences re-

spectively (see an illustration in Section 2). Hence, multidimensional hybrid do-

mains variously contain separable preferences, multidimensional single-peaked

preferences and top-separable preferences of Le Breton and Weymark (1999).

Next, we demonstrate in a heuristic example of public goods provision in Section

2, that requiring “semi-separability” - a weakening of separability, in the proce-

dure wherein the information of hybridness restriction (introduced by Chatterji

et al., 2022) is extracted from the domains of marginal preferences and embed-

ded into the overall preferences, provides an intuitive route to the generation

of multidimensional hybrid preferences. Finally, we show that on a class of

rich domains (see the details in Section 4.2), multidimensional hybrid domains

are the unique ones that reconcile decomposability with strategy-proofness (see

Theorem 1). This in return enables us to fully characterize strategy-proof rules

on a rich multidimensional hybrid domain (see Corollary 1), so that earlier

characterization results on the separable domain, the multidimensional single-

peaked domain and the top-separable domain emerge as special cases of our

analysis. A key step in our analysis is establishing endogenously the tops-only
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Figure 1: The transportation system in the region6

property for all strategy-proof rules on a rich domain, and for marginal rules

on domains of marginal preferences5, which clearly further simplifies the task

of the designer since the social decision on each component is determined by

the profile of peaks on that component.

This paper is organized as follows. Section 2 provides a heuristic example

of public goods provision to illustrate how multidimensional hybrid preferences

arise. Section 3 sets out the model and preliminaries. In Section 4, we formally

introduce multidimensional hybrid domains and establish the characterization

results, while Section 5 contains some final remark and a review of the literature.

The proof of the main theorem is contained in the Appendix, while all other

omitted proofs are put in the Supplementary Material.

2 A heuristic example

Multidimensional hybrid preferences are generalizations of the hybrid prefer-

ences of Chatterji et al. (2022), and can arise naturally through assembling

hybrid preferences under the condition of semi-separability. We provide the

following example in the model of public goods provision to illustrate.

Imagine a railway running in a region, which contains several stations Ω =

{l1, . . . , lv}, v ≥ 2. An urban area stands in the center of the region, surrounded

by a large rural area. The railway goes through the urban area, and all multiple

urban stations cluster in the middle. The urban area is postulated to possess

5In many cases, the tops-only property is necessary for the decomposability of strategy-

proof rules (e.g., Barberà et al., 1991, 1993; Le Breton and Weymark, 1999).
6In Figure 1, the bold line represents the railway, while the dashed lines denote the metro

transportation system in the urban area that complements the railway.
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a modern metro transportation system that fully connects all urban stations

(see for instance Figure 1). Thus, we can identify two particular urban stations

lk and lk, where k < k (see l4 and l9 in Figure 1), that separate the railway

into three parts: left rural stations L = {l1, . . . , lk−1}, middle urban stations

M = {lk, . . . , lk} and right rural stations R = {lk+1, . . . , lv}. As lk is directly

connected to all urban stations and is the gate to the left rural stations, it

can be viewed as the left transportation hub. Symmetrically, lk is the right

transportation hub.

A set of multiple good public facilities M = {1, . . . ,m}, m ≥ 2, like a sports

complex and a shopping mall, needs to be allocated on stations. For each public

facility s, let a nonempty and non-singleton subset As ⊆ Ω collect locations that

are available for construction. Clearly, all locations of As are linearly ordered

on the railway, i.e., given as = lp ∈ As and bs = lq ∈ As, [as ≺s bs] ⇔ [p < q].

Given xs, ys ∈ As, let Int⟨xs, ys⟩ :=
{
as ∈ As : xs ≺s as ≺s ys or ys ≺s

as ≺s xs
}

collect feasible locations that are located strictly between xs and

ys. Furthermore, for simplicity, we assume that both transportation hubs are

available for the construction of the public facility s whenever at least two urban

locations are included in As, i.e.,
[
|As ∩M| ≥ 2

]
⇒
[
lk, lk ∈ As

]
. Henceforth,

for each public facility s ∈ M , we identify two particular feasible locations xs

and xs, called threshold locations, such that
[
|As ∩ M| ≤ 2

]
⇒
[
xs = xs ∈

As is arbitrary
]
and

[
|As ∩M| > 2

]
⇒
[
xs = lk and xs = lk

]
. Clearly, an m-

tuple (a1, . . . , am) ∈ ×s∈MAs represents a feasible allocation of these m public

facilities.

For each public facility s, an individual i living in this region has a marginal

preference P s
i over As. Each individual’s marginal preference is private in-

formation, and the social planner only knows that a domain Ds contains all

individuals’ marginal preferences. It is natural to assume here that the for-

mulation of an individual’s marginal preference is determined by the distance

between locations measured by both the railway and the metro transportation

system. Specifically, if |As∩M| ≤ 2, an individual would prefer an available lo-
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cation that is closer to his/her own location along the railway, and therefore has

single-peaked preferences on As w.r.t. ≺s; if |As ∩M| > 2, an individual living

around a rural station would have single-peaked preferences on available loca-

tions that lie at the two sides of the transportation hubs along the railway, and

prefer the proximate transportation hub to all other available locations in the

urban area, while an individual living in the urban area would have arbitrary

preferences on all urban available locations attributed to the complementary

metro transportation, and prefer an rural available location that is closer to

its proximate transportation hub. Overall, we summarize that each marginal

preference P̂ s
i ∈ Ds, say that xs is the top-ranked location, is hybrid on ≺s

w.r.t. xs and xs, i.e., given two distinct locations as, bs ∈ As,

[
as ∈ Int⟨xs, bs⟩ and as /∈ Int⟨xs, xs⟩

]
⇒
[
as P̂ s

i bs
]
.

Each individual i also has a private overall preference Pi over all feasible

allocations A := ×s∈MAs, which is private information as well.7 The social

planner of course will make some inference on individuals’ overall preferences

based on the known information. Specifically, the social planner believes that

each individual’s overall preference is formulated according to the condition of

semi-separability which requires the rankings of allocations to fully respect the

preference restrictions embedded in all marginal domains D1, . . . ,Dm. Formally,

an overall preference Pi, where the allocation x is top-ranked, is semi-separable

if for all distinct allocations a, b ∈ A, we have as P̂ s
i bs for all s ∈ M such that as ̸= bs and

all P̂ s
i ∈ Ds such that xs is top-ranked

⇒
[
a Pi b

]
.8

7Given s ∈ M , let A−s := ×
t∈M\{s}

At denote the set of all feasible allocations for public

facilities other than s.
8Indeed, semi-separability weakens the restriction of separability. For instance, given

s ∈ M , pairwise distinct xs, as, bs ∈ As and P̂ s
i , P̃

s
i ∈ Ds such that r1(P̂

s
i ) = r1(P̃

s
i ) = xs,

as P̂ s
i bs and bs P̃ s

i as, a semi-separable preference Pi that includes xs in its top-ranked

allocation, can have (as, y−s) Pi (b
s, y−s) and (bs, z−s) Pi (a

s, z−s) simultaneously.

7



Immediately, we realize that the overall preference Pi, recalling that x is top-

ranked, satisfies the following restriction: for all allocations a, b ∈ A that dis-

agree on exactly one dimension, say as ̸= bs and a−s = b−s, a is strictly preferred

to b whenever either as equals xs, or as is located strictly between xs and bs,

but not strictly between xs and xs, i.e.,

[
either as = xs, or as ∈ Int⟨xs, bs⟩ and as /∈ Int⟨xs, xs⟩

]
induce hybridness

===========⇒
[
as P̂ s

i bs for all P̂ s
i ∈ Ds such that xs is top-ranked

]
via semi-separability

=============⇒
[
a Pi b

]
.

We call such a preference restriction multidimensional hybridness, as it incor-

porates the restriction of hybridness embedded in the marginal domain of each

public facility in formulating relative rankings of allocations of allm public facil-

ities. Note that in the extreme case that xs = xs for all s ∈ M , multidimensional

hybridness is strengthened to the conventional restriction of multidimensional

single-peakedness. Therefore, the choice of distinct threshold allocations pro-

vides freedom to rank alternatives in ways that go beyond the requirement of

multidimensional single-peakedness; for instance, in the aforementioned multi-

dimensional hybrid preference Pi, given as ∈ Int⟨xs, bs⟩ and as ∈ Int⟨xs, xs⟩, we

may simultaneously have (as, y−s) Pi (b
s, y−s) and (bs, z−s) Pi (a

s, z−s), which

of course also indicate a violation of separability.

In the remainder of the paper, we establish a general multidimensional

model, where multidimensional hybrid preferences are formulated without the

imposition of any additional condition like semi-separability, and explore the

salience of multidimensional hybrid domains by characterizing that under some

mild richness condition, multidimensional hybridness is necessary and sufficient

for a preference domain to reconcile decomposability with strategy-proofness.
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3 Preliminaries

Let A be a finite set of alternatives. We throughout the paper assume that the

alternative set is represented by a Cartesian product of a finite number of sets,

each of which contains finitely many elements. Formally, we fix A = ×s∈MAs

where M = {1, . . . ,m}, m ≥ 2 is an integer, and 2 ≤ |As| < ∞ for each

s ∈ M .9 Here, each s is called a component; As is referred to as a component

set, and an element in As is denoted as as. An alternative is represented by

an m-tuple, i.e., a := (a1, . . . , am) = (as, a−s). Given s ∈ M and x−s ∈ A−s,

let (As, x−s) := {a ∈ A : a−s = x−s}. Given two alternatives a, b ∈ A, let

M(a, b) := {s ∈ M : as ̸= bs} denote the set of components on which a

and b disagree. In particular, a and b are said similar if |M(a, b)| = 1. Let

N := {1, . . . , n} be a finite set of voters with n ≥ 2. Each voter i has a

preference order Pi over A which is complete, antisymmetric and transitive, i.e.,

a linear order. For any a, b ∈ A, a Pi b is interpreted as“a is strictly preferred to

b according to Pi”. Given a preference Pi, let rk(Pi), where 1 ≤ k ≤ |A|, denote

the kth ranked alternative in Pi. Moreover, given a nonempty subset B ⊆ A,

let maxPi(B) and minPi(B) be the best and worst alternatives in B according

to Pi respectively. Two preferences Pi and P ′
i are called complete reversals if

for all a, b ∈ A, we have [a Pi b] ⇔ [b P ′
i a]. Let P denote the set of all linear

orders over A. The set of admissible preferences is a set D ⊆ P, referred to

as a preference domain.10 We call P the universal domain. Henceforth, each

domain D under investigation is assumed to be minimally rich, i.e., for each

a ∈ A, there exists Pi ∈ D such that r1(Pi) = a. A preference profile is an

n-tuple P := (P1, . . . , Pn) = (Pi, P−i) ∈ Dn. Analogously, for each s ∈ M , let

P s
i denote a marginal preference over As, Ps denote the universal marginal

domain, and Ds ⊆ Ps denote an admissible marginal domain.

A Social Choice Function (or SCF) is a map f : Dn → A, which associates

to each preference profile P ∈ Dn, a “socially desirable” outcome f(P ). First,

9The condition |As| ≥ 2 ensures indispensability of the component s.
10In this paper, ⊆ and ⊂ denote the weak and strict inclusion relations respectively.
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an SCF f : Dn → A is required to be unanimous, i.e., for all a ∈ A and

P ∈ Dn, we have [r1(Pi) = a for all i ∈ N ] ⇒ [f(P ) = a]. For ease of

presentation, a unanimous SCF henceforth is called a rule. Next, an SCF

f : Dn → A satisfies the tops-only property if for all P, P ′ ∈ Dn, we have

[r1(Pi) = r1(P
′
i ) for all i ∈ N ] ⇒ [f(P ) = f(P ′)]. Last, an SCF f : Dn →

A is strategy-proof if for all i ∈ N , Pi, P
′
i ∈ D and P−i ∈ Dn−1, we have

[f(Pi, P−i) ̸= f(P ′
i , P−i)] ⇒ [f(Pi, P−i) Pi f(P

′
i , P−i)]. Analogously, given s ∈

M and [Ds]n := Ds × · · · × Ds︸ ︷︷ ︸
n

, amarginal SCF is a map f s : [Ds]n → As. These

three axioms alluded to also apply to marginal SCFs. A unanimous marginal

SCF is henceforth called a marginal rule.

3.1 Separable preference and non-separable preference

Formally, a preference Pi is separable if there exists a marginal preference P s
i for

each s ∈ M such that for each pair of similar alternatives a, b ∈ A, sayM(a, b) =

{s}, we have
[
as P s

i bs
]
⇒
[
a Pi b

]
. Let DS denote the separable domain that

contains all separable preferences. Clearly, DS ⊂ P, and a preference that is

not separable is called a non-separable preference. Henceforth, a domain is said

to satisfy diversity+ if it contains two separable preferences that are complete

reversals.11

More importantly, we introduce a particular way of deriving marginal pref-

erences from both separable and non-separable preferences. Given a preference

Pi (separable or non-separable), say r1(Pi) = a, for each s ∈ M , referring to

a−s which are contained in the peak of Pi, we induce a marginal preference, de-

noted [Pi]
s, such that for all xs, ys ∈ As,

[
xs [Pi]

s ys
]
⇔
[
(xs, a−s) Pi (y

s, a−s)
]
.

Accordingly, let [D]s :=
{
[Pi]

s : Pi ∈ D
}
denote the set of marginal preferences

induced from all preferences of D. To avoid confusion with the notation P s
i

and Ds, we henceforth call [Pi]
s an induced marginal preference and [D]s an

11The term “diversity+” strengthens the notion of diversity introduced by Chatterji et al.

(2022), as it further requires the complete reversals to be separable preferences.
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induced marginal domain.12

3.2 Decomposable SCF and decomposable domain

An SCF f : Dn → A is said decomposable if for each s ∈ M , there exists a

marginal SCF f s :
[
[D]s

]n → As such that for all (P1, . . . , Pn) ∈ Dn, we have

[
f(P1, . . . , Pn) = a

]
⇔
[
f s([P1]

s, . . . , [Pn]
s) = as for all s ∈ M

]
.

We focus on preference domains that reconcile decomposability of all rules with

strategy-proofness.

Definition 1 A domain D is a decomposable domain if for every SCF

f : Dn → A, n ≥ 2, we have

[
f is a strategy-proof rule

]
⇔

f is decomposable, and all marginal SCFs

f 1, . . . , fm are strategy-proof marginal rules

 .

On the one hand, since dictatorships are strategy-proof marginal rules on

arbitrary induced marginal domains, by the requirement of the direction “⇐”

in Definition 1, all generalized dictatorships (recall footnote 4) are entitled

with strategy-proofness. This implies that a decomposable domain must be

embedded with some preference restriction. For instance, if all preferences of

the domain are separable, an SCF constructed by assembling strategy-proof

marginal rules immediately turns out to be a strategy-proof rule. On the other

hand, to meet the requirement of the direction“⇒” in Definition 1, a decompos-

able domain is required to contain sufficiently many preferences. For instance,

on the universal domain P, by the Gibbard-Satterthwaite Theorem (Gibbard,

1973; Satterthwaite, 1975), each strategy-proof rule is a dictatorship, and hence

can be decomposed into m marginal dictatorships that share the same dictator.

Therefore, a decomposable domain must be a restricted preference domain that

satisfies some richness condition.

12Indeed, both P s
i and [Pi]

s refer to linear orders over As. For the sake of notation, [Pi]
s

emphasizes that it is induced from a given preference Pi. Similarly, [D]s emphasizes that it

contains marginal preferences over As that are induced from preferences of D.

11



4 Results

In this section, we introduce multidimensional hybrid domains, and adopt it

to establish a complete characterization of decomposable domains under some

mild richness condition.

4.1 Multidimensional hybrid domains and fixed ballot rules

Fixing a linear order ≺s over As for each s ∈ M , let ≺ := ×s∈M ≺s denote the

Cartesian product of ≺1, . . . ,≺m. Given s ∈ M and as, bs ∈ As, let ⟨as, bs⟩ :=

{xs ∈ As : as ≼s xs ≼s bs or bs ≼s xs ≼s as} denote the set of elements that

located between as and bs on the linear order ≺s,13 and let Int⟨as, bs⟩ := {xs ∈

As : as ≺s xs ≺s bs or bs ≺s xs ≺s as} denote the set of elements that are

located strictly between as and bs. Given s ∈ M , two elements xs and xs are

called marginal thresholds if either xs = xs, or xs ̸= xs and |⟨xs, xs⟩| ≥ 3.

Correspondingly, two alternatives x and x are called thresholds if for each

s ∈ M , xs and xs are marginal thresholds.

Definition 2 A preference Pi, say r1(Pi) = x, is multidimensional hybrid

on ≺ w.r.t. x and x if for all similar a, b ∈ A, say M(a, b) = {s}, we have

(i)
[
as = xs

]
⇒
[
a Pi b

]
, and

(ii)
[
as ∈ Int⟨xs, bs⟩ and as /∈ Int⟨xs, xs⟩

]
⇒
[
a Pi b

]
.14

Remark 1 Consider two extreme cases: (1) xs = min≺s

(As) and xs = max≺
s
(As)

for each s ∈ M , and (2) x = x. In the first case, condition (ii) of Definition 2 is

redundant as as ∈ Int⟨xs, bs⟩ and as /∈ Int⟨xs, xs⟩ cannot hold simultaneously.

Thus, only condition (i) survives, and hence a multidimensional hybrid prefer-

ence turns to be a top-separable preference of Le Breton and Weymark (1999).

In the second case, since the hypothesis as /∈ Int⟨xs, xs⟩ = ∅ is vacuously satis-

fied, the two conditions of Definition 2 can be merged:
[
as ∈ ⟨xs, bs⟩

]
⇒ [a Pi b].

13For notational convenience, henceforth, let as ≼s bs denote either as ≺s b or as = bs.
14By transitivity, given distinct a, b ∈ A (not necessarily similar alternatives), if as = xs,

or as ∈ Int⟨xs, bs⟩ and as /∈ Int⟨xs, xs⟩ hold for all s ∈ M(a, b), we have a Pi b.

12



Figure 2: The Cartesian product of linear orders ≺=≺1 × ≺2

Then, a multidimensional hybrid preference becomes as restrictive as a multi-

dimensional single-peaked preference of Barberà et al. (1993).

We provide one example to explain multidimensional hybrid preferences.

Example 1 Recall the model of public goods provision in Section 2. Let M =

{1, 2}, A1 = {l2, l4, l6, l9} and A2 = {l3, l8}. Thus, we have the linear orders

l2 ≺1 l4 ≺1 l6 ≺1 l9 and l3 ≺2 l8, two thresholds x := (l4, l3) and x := (l9, l3), and

all feasible allocations A := A1×A2 arranged on the grid ≺=≺1 × ≺2 in Figure

2. For instance, we specify the restriction of multidimensional hybridness on a

preference with the peak (l2, l3). First, to meet condition (i) of Definition 2, it

must be the case that for each a1 ∈ {l4, l6, l9}, (l2, l8) is ranked above (a1, l8),

and (a1, l3) is ranked above (a1, l8). Second, since l4 ∈ Int⟨l2, l6⟩, l4 ∈ Int⟨l2, l9⟩

and l4 /∈ Int⟨l4, l9⟩ = Int⟨x1, x1⟩, to meet condition (ii) of Definition 2, we need

to ensure that for each a2 ∈ A2, (l4, a
2) is ranked above both (l6, a

2) and (l9, a
2).

It is worth mentioning that the relative ranking between (l6, l3) and (l9, l3) (also

between (l6, l8) and (l9, l8)) is allowed to be arbitrary. Accordingly, we specify

two examples of such multidimensional hybrid preferences:

Pi = (l2, l3)⇀(l4, l3)⇀(l6, l3)⇀(l9, l3)⇀(l2, l8)⇀(l4, l8)⇀(l6, l8)⇀(l9, l8), and

P̂i = (l2, l3)⇀(l2, l8)⇀(l4, l3)⇀(l4, l8)⇀(l6, l3)⇀(l9, l3)⇀(l9, l8)⇀(l6, l8).
15

Note that Pi is separable, and P̂i is a non-separable preference. □

We focus on a large family of domains of multidimensional hybrid pref-

erences where sufficiently many marginal preferences in each component can

15To save space, we specify the two preferences here horizontally. For instance, the notation

“(l2, l3)⇀(l4, l3)” in the specification of Pi represents “(l2, l3) Pi (l4, l3)”.
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be induced. To do so, we first introduce some standard concepts from graph

theory. An (undirected) graph, denoted G := ⟨V, E⟩, is a combination of a

“vertex set” V and an “edge set” E ⊆ V × V such that
[
(α, β) ∈ E

]
⇒
[
α ̸=

β and (β, α) ∈ E
]
. A vertex α ∈ V is called a leaf if there exists a unique

β ∈ V such that (α, β) ∈ E . Given α, β ∈ V , a path in G = ⟨V, E⟩ connect-

ing α and β is a sequence of non-repeated vertices (α1, . . . , αv), v ≥ 2, such

that α1 = α, αv = β and (αk, αk+1) ∈ E for all k = 1, . . . , v − 1. A graph

G = ⟨V, E⟩ is a connected graph if each pair of distinct vertices is connected

by a path. Note that the vertex set V here can be a subset of elements, of

alternatives, of marginal preferences, or of preferences. For instance, follow-

ing Definition 1 of Chatterji et al. (2013), two elements as, bs ∈ As are said

strongly connected, denoted as ≈ bs, if there exist [Pi]
s, [P ′

i ]
s ∈ [D]s such that

r1([Pi]
s) = r2([P

′
i ]
s) = as, r1([P

′
i ]
s) = r2([Pi]

s) = bs and rk([Pi]
s) = rk([P

′
i ]
s)

for all k = 3, . . . , |As|. Accordingly, given a nonempty subset Bs ⊆ As, we can

induce a graph GBs

≈ := ⟨Bs, EBs

≈ ⟩ where two elements of Bs form an edge if and

only if they are strongly connected.

Definition 3 A domain D is called a multidimensional hybrid domain

if there exist thresholds x, x ∈ A such that

(i) all preferences of D are multidimensional hybrid on ≺ w.r.t. x and x, and

(ii) for each s ∈ M , GAs

≈ is a connected graph, and[
s ∈ M(x, x)

]
⇒
[
G

⟨xs, xs⟩
≈ has no leaf

]
.

Given thresholds x, x ∈ A, it is evident that the multidimensional hybrid

domain which contains all multidimensional hybrid preferences on ≺ w.r.t. x

and x, denoted DMH(≺, x, x), is a multidimensional hybrid domain. It is easy

to verify that the separable domain DS is a multidimensional hybrid domain:

fixing thresholds x and x such that for each s ∈ M , [|As| = 2] ⇒ [xs = xs ∈ As]

and [|As| ≥ 3] ⇒ [xs = min≺s

(As) and xs = max≺
s
(As)], we have that (i) all

preferences of DS are multidimensional hybrid on ≺ w.r.t. x and x, and (ii) for

14



each s ∈ M , since [DS]
s = Ps, GAs

≈ is a connected graph and
[
s ∈ M(x, x)

]
⇒[

G
⟨xs, xs⟩
≈ = GAs

≈ has no leaf
]
.

Recall the two extreme cases in Remark 1: (1) xs = min≺s

(As) and xs =

max≺
s
(As) for each s ∈ M , and (2) x = x. In the first case, the multidi-

mensional hybrid domain DMH(≺, x, x) expands to the top-separable domain of

Le Breton and Weymark (1999), denoted DTS, while in the second case, DMH(≺

, x, x) shrinks to the multidimensional single-peaked domain of Barberà et al.

(1993), denoted DMSP(≺). Therefore, Definition 3 is also applicable to these two

important preference domains. Last, note that for any thresholds x, x ∈ A other

than the two extreme cases, it is true that DTS ⊃ DMH(≺, x, x) ⊃ DMSP(≺).

Fixing a multidimensional hybrid domain D on ≺ w.r.t. thresholds x and

x, given s ∈ M , by condition (i) of Definition 3, it is clear that each induced

marginal preference is hybrid on ≺s w.r.t. xs and xs (recall the definition in

Section 2). Consequently, in conjunction with condition (ii) of Definition 3, we

observe that if xs = xs, GAs

≈ is a line over As, while if xs ̸= xs, GAs

≈ is simply a

combination of a line between min≺s

(As) and xs, a connected subgraph G
⟨xs, xs⟩
≈

that has no leaf, and a line between xs and max≺
s
(As). More importantly, by

condition (ii) of Definition 3, sufficiently many hybrid marginal preferences are

induced so that we can establish a complete characterization of strategy-proof

marginal rules, using the class of fixed ballot rules introduced by Moulin (1980).

A marginal SCF f s : [Ds]n → As is a Fixed Ballot Rule (or FBR) on ≺s if

there exists bsJ ∈ As, called a fixed ballot, for each coalition J ⊆ N , satisfying

ballot unanimity, i.e., bs∅ = min≺s

(As) and bsN = max≺
s
(As), and monotonicity,

i.e., [J ⊂ J ′ ⊆ N ] ⇒ [bsJ ≼s bsJ ′ ], such that for all (P s
1 , . . . , P

s
n) ∈ [Ds]n,

f s(P s
1 , . . . , P

s
n) = max≺

s

J⊆N

(
min≺s

i∈J

(
r1(P

s
i ), b

s
J

))
.

Furthermore, given xs, xs ∈ As such that xs ≺s xs, the FBR f s is called an

(xs, xs)-FBR (introduced by Chatterji et al., 2022) if it in addition satisfies

the constrained-dictatorship condition, i.e., there exists i ∈ N such that [i ∈

15



J ] ⇒
[
xs ≼s bsJ

]
and [i /∈ J ] ⇒

[
bsJ ≼s xs

]
.16

Proposition 1 Fix a multidimensional hybrid domain D on ≺ w.r.t. thresh-

olds x and x. Given s ∈ M , the following two statements hold:

(i) Given xs = xs, an marginal SCF f s :
[
[D]s

]n → As is a strategy-proof

marginal rule if and only if it is an FBR.

(ii) Given xs ̸= xs, an marginal SCF f s :
[
[D]s

]n → As is a strategy-proof

marginal rule if and only if it is an (xs, xs)-FBR.

The proof of the Proposition is lengthy, and hence is relegated to the Sup-

plementary Material.

4.2 The Theorem

In this section, we provide a complete characterization of decomposable domains

under a mild richness condition. We first introduce some necessary notions

and notation for establishing the richness condition. Two preferences Pi and

P ′
i are adjacent, denoted Pi ∼ P ′

i , if there exist distinct a, b ∈ A such that

rk(Pi) = rk+1(P
′
i ) = a and rk(P

′
i ) = rk+1(Pi) = b for some 1 ≤ k < |A|, and

rℓ(Pi) = rℓ(P
′
i ) for all ℓ /∈ {k, k + 1}. As a natural extension of adjacency,

two preferences Pi and P ′
i are said adjacent+, denoted Pi ∼+ P ′

i , if they are

separable preferences, and there exist s ∈ M and distinct as, bs ∈ As such that

the following two conditions are satisfied:

(i) for all z−s ∈ A−s, (as, z−s) = rk(Pi) = rk+1(P
′
i ) and (bs, z−s) = rk(P

′
i ) =

rk+1(Pi) for some 1 ≤ k < |A|, and

(ii) for all c ∈ A,
[
cs /∈ {as, bs}

]
⇒
[
c = rℓ(Pi) = rℓ(P

′
i ) for some 1 ≤ ℓ ≤ |A|

]
.

Given a domain D, we construct a graph GD
∼/∼+ := ⟨D, E∼/∼+⟩ such that two

preferences form an edge if and only if they are adjacent or adjacent+. Fixing

16The constrained-dictatorship condition ensures that the FBR fs behaves like a dic-

tatorship on ⟨xs, xs⟩, i.e., for all (P s
1 , . . . , P

s
n) ∈ [Ds]n, [r1(P

s
1 ), . . . , r1(P

s
n) ∈ ⟨xs, xs⟩] ⇒[

fs(P s
1 , . . . , P

s
n) = r1(P

s
i )
]
.
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a path π = (Pi|1, . . . , Pi|v) in GD
∼/∼+ , given a, b ∈ A, the path π has {a, b}-

restoration if the relative ranking of a and b has been flipped for more than

once, i.e., there exist 1 ≤ o < p < q ≤ v such that either a Pi|o b, b Pi|p a and

a Pi|q b, or b Pi|o a, a Pi|p b and b Pi|q a hold. Sato (2013) restricted attention

to the notion of adjacency, and introduced the no-restoration condition: given

Pi, P
′
i ∈ D and a, b ∈ A, there exists a path in the graph GD

∼ := ⟨D, E∼⟩, where

two preferences form an edge if and only if they are adjacent, connecting Pi

and P ′
i that has no {a, b}-restoration.17 Intuitively speaking, the no-restoration

condition can be viewed as an ordinal counterpart of the convex-set assumption

imposed on the valuation space in a cardinal model, which reconciles the dif-

ference of any two preferences via a sufficiently short path. The following two

properties adopted from Chatterji and Zeng (2019) expand the no-restoration

condition to the graph GD
∼/∼+ that involves not only the edge of adjacency,

but the edge of adjacency+ which is customized for separable preferences, and

impose some additional requirements on some subgraphs of GD
∼/∼+ .

The Interior+ property concerns with preferences sharing the same peak,

and requires that such two preferences are connected by a path such that all

preferences on the path have the same peak.

Definition 4 A domain D satisfies the Interior+ property if for all distinct

Pi, P
′
i ∈ D such that r1(Pi) = r1(P

′
i ) := x, there exists a path π = (Pi|1, . . . , Pi|v)

in GD
∼/∼+ connecting Pi and P ′

i such that r1(Pi|k) = x for all k = 1, . . . , v.18

The Exterior+ property concentrates on preferences with distinct peaks.

It imposes not only the no-restoration condition on GD
∼/∼+ , but an additional

condition on the path connecting any two preferences that have similar peaks.

17Proposition 3.2 of Sato (2013) has shown that the no-restoration condition is necessary

for the equivalence between strategy-proofness and the notion of AM-proofness which only

prevents a voter’s manipulation via misreporting preferences adjacent to the sincere one.
18This immediately implies that Pi, and P ′

i are connected by a path in GD
∼/∼+ that has no

{x, a}-restoration for any a ∈ A\{x}.
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Definition 5 A domain D satisfies the Exterior+ property if for all Pi, P
′
i ∈

D such that r1(Pi) ̸= r1(P
′
i ), the following two conditions are satisfied:

(i) given a, b ∈ A, there exists a path π = (Pi|1, . . . , Pi|v) in GD
∼/∼+ connecting

Pi and P ′
i such that π has no {a, b}-restoration, and

(ii) (the no-detour condition) when r1(Pi) and r1(P
′
i ) are similar, say

r1(Pi), r1(P
′
i ) ∈ (As, x−s) for some s ∈ M and x−s ∈ A−s, there ex-

ists a path π = (Pi|1, . . . , Pi|w) in GD
∼/∼+ connecting Pi and P ′

i such that

r1(Pi|k) ∈ (As, x−s) for all k = 1, . . . , w.

Henceforth, a domain D is called a rich domain if it satisfies minimal rich-

ness, diversity+, and the Interior+ and Exterior+ properties. Clearly, the uni-

versal domain P is a rich domain. In Appendix A, we provide an example of a

domain, and verify that it is a rich domain. In the Supplementary Material, we

establish two clarifications to show that the multidimensional hybrid domain

and its intersection with the separable domain are both rich domains.19

The main theorem below shows that under the richness condition, multidi-

mensional hybridness is necessary and sufficient for a domain to be a decom-

posable domain.

Theorem 1 Let D be a rich domain. Then, D is a decomposable domain if

and only if it is a multidimensional hybrid domain.

The proof of the Theorem is contained in Appendix B.

By combining Proposition 1 and Theorem 1, we obtain the Corollary below

that provides a full characterization of strategy-proof rules on a rich multidi-

mensional hybrid domain.

Corollary 1 Let D be a rich multidimensional hybrid domain on ≺ w.r.t.

x and x. An SCF f : Dn → A is a strategy-proof rule if and only if f is

decomposable, f s is an FBR for each s ∈ M\M(x, x), and f t is an (xt, xt)-

FBR for each t ∈ M(x, x).
19Since DS ∩ DMH(≺, x, x) = DS when xs = min≺

s

(As) and xs = max≺
s

(As) hold for all

s ∈ M , this implies that the separable domain DS is also a rich domain.
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5 Final remark and literature review

In a class of rich preference domains, multidimensional hybrid domains are

shown to be the unique decomposable domains, which enables us to provide a

characterization of strategy-proof rules on these domains.

Border and Jordan (1983) initiated the study of strategy-proof SCFs in

a multidimensional setting where preferences over the real space Rm are as-

sumed to be separable and star-shaped (which can be viewed as a variant

of single-peakedness over Rm). They characterized that decomposability is

necessary and sufficient for strategy-proofness of a rule, and further justified

the salience of separability by showing that their decomposability result de-

generates to an impossibility result of the Gibbard-Satterthwaite Theorem as

soon as separability is slightly tampered with. Followed by Barberà et al.

(1991), Barberà et al. (1993) and Le Breton and Weymark (1999), the pref-

erence restrictions of inclusion/exclusion separability, multidimensional single-

peakedness and top-separability have been introduced respectively. The char-

acterizations of strategy-proof rules on these restricted domains indicate that

all these domains are decomposable domains.20 Our class of multidimensional

hybrid domains contains these important domains, and our characterization

of strategy-proof rules covers their characterization results as special cases. It

is worth mentioning that Barberà et al. (1993) and Le Breton and Weymark

(1999) were only able to derive decomposability for voting schemes21 since their

domains contain non-separable preferences and they did not derive marginal

preferences as we do here. Therefore, their characterizations of strategy-proof

rules require a combination of the tops-only property endogenously established

on rules, with the decomposition of the corresponding voting schemes. Our

way of deriving marginal preferences provides a unified approach for analyzing

20More discussion on strategy-proof SCFs in multidimensional settings can be found in the

two comprehensive survey papers of Sprumont (1995) and Barberà (2011).
21A voting scheme is a function g : A× · · · ×A︸ ︷︷ ︸

n

→ A that associates to each profile of

alternatives, an alternative. A tops-only SCF degenerates to a voting scheme.
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decomposability of strategy-proof rules in a multidimensional model involving

both separable and non-separable preferences. Le Breton and Sen (1999) re-

stricted attention to separable preferences and introduced an elegant richness

condition (loosely speaking, sufficiently many lexicographically separable prefer-

ences are included) on the preference domain that ensures its decomposability.

Our richness condition is different, and mainly related to the no-restoration

condition widely explored in the recent literature investigating the equivalence

between strategy-proofness and local strategy-proofness (e.g., Sato, 2013; Ku-

mar et al., 2021). More importantly, our theorem not only shows that multidi-

mensional hybridness under our richness condition is sufficient for the domain

to be a decomposable domain, but also characterizes its necessity. Recently,

Gershkov et al. (2020) study a multidimensional model where the preference

over Rm is measured by a norm towards the preference peak; their main re-

sult shows that the marginal median mechanism (i.e., a combination of median

marginal rules at all components) is strategy-proof if and only if the norm sat-

isfies orthant monotonicity - a condition that implies the star-shape preference

restriction of Border and Jordan (1983) and generalizes the requirement of sep-

arability. Chatterji and Zeng (2019) also investigate the domain implication

of strategy-proof rules in a multidimensional setting, and have characterized

that under a mild richness condition, multidimensional single-peakedness is

necessary and sufficient for the existence of an anonymous and strategy-proof

rule. Their investigation however cannot be used to detect decomposability

of all strategy-proof rules. Our paper does not concentrate on specific SCFs

like the marginal median mechanism, or exogenously require the SCF to be

anonymous, but focuses on an environment that ensures decomposability of all

strategy-proof rules.
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Figure 3: The Cartesian product of linear orders ≺=≺1 × ≺2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

(1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (3, 0)

(2, 0) (3, 0) (3, 0) (3, 0) (1, 1) (1, 1) (1, 0) (1, 0) (2, 1) (2, 1) (1, 0) (1, 0) (3, 1) (3, 1)

(3, 0) (2, 0) (2, 0) (1, 1) (3, 0) (3, 0) (3, 0) (2, 1) (1, 0) (1, 0) (2, 0) (3, 1) (1, 0) (1, 0)

(1, 1) (1, 1) (1, 1) (2, 0) (2, 0) (3, 1) (2, 1) (3, 0) (3, 0) (1, 1) (3, 1) (2, 0) (2, 0) (1, 1)

(2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (2, 0) (1, 1) (1, 1) (1, 1) (3, 0) (1, 1) (1, 1) (1, 1) (2, 0)

(3, 1) (3, 1) (2, 1) (2, 1) (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (3, 1) (2, 1) (2, 1) (2, 1) (2, 1)

P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

(1, 1) (1, 1) (1, 1) (1, 1) (2, 1) (2, 1) (2, 1) (2, 1) (2, 1) (2, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1) (3, 1)

(1, 0) (1, 0) (3, 1) (3, 1) (2, 0) (2, 0) (2, 0) (2, 0) (3, 1) (3, 1) (3, 0) (3, 0) (1, 1) (1, 1) (1, 1) (2, 1)

(3, 1) (3, 1) (1, 0) (2, 1) (1, 1) (1, 1) (3, 1) (3, 1) (2, 0) (1, 1) (1, 1) (1, 1) (3, 0) (2, 1) (2, 1) (1, 1)

(3, 0) (2, 1) (2, 1) (1, 0) (1, 0) (3, 1) (1, 1) (1, 1) (1, 1) (2, 0) (1, 0) (2, 1) (2, 1) (3, 0) (3, 0) (3, 0)

(2, 1) (3, 0) (3, 0) (3, 0) (3, 1) (1, 0) (1, 0) (3, 0) (3, 0) (3, 0) (2, 1) (1, 0) (1, 0) (1, 0) (2, 0) (2, 0)

(2, 0) (2, 0) (2, 0) (2, 0) (3, 0) (3, 0) (3, 0) (1, 0) (1, 0) (1, 0) (2, 0) (2, 0) (2, 0) (2, 0) (1, 0) (1, 0)

Table 1: Domain D

Appendix

A An example of a rich domain

In this section, we specify an example of a multidimensional domain, and mainly

verify the Interior+ and Exterior+ properties on the domain.

Let A = A1 × A2 where A1 = {1, 2, 3} and A2 = {0, 1} are respectively

endowed with the natural linear orders ≺1 and ≺2. The grid ≺=≺1 × ≺2

is specified in Figure 3. We fix two thresholds x = (1, 0) and x = (3, 0).

A domain D of 30 multidimensional hybrid preferences on ≺ w.r.t. x and

x is specified in Table 1. It is evident that D is minimally rich and satis-

fies diversity+ (see P1 and P30). Note that D contains both separable pref-

erences (e.g., P1) and non-separable preferences (e.g., P2). Indeed, D does

not contain all multidimensional hybrid preferences on ≺ w.r.t. x and x, e.g.,

Pi = (1, 1)⇀(2, 1)⇀(3, 1)⇀(1, 0)⇀(2, 0)⇀(3, 0) is multidimensional hybrid on ≺

w.r.t. x and x, but is not included in D. It is true that D is a multidimen-

sional hybrid domain: (i) all preferences of D are multidimensional hybrid on ≺

w.r.t. x and x, and (ii) for each s ∈ M , the induced marginal domain [D]s = Ps.
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Figure 4: The graph GD
∼/∼+

22

To verify the Interior+ and Exterior+ properties, we specify the graphGD
∼/∼+

in Figure 4. The following six paths in GD
∼/∼+ indicate the Interior+ property:

• (P1, P2, P3, P4, P5, P6), where each preference has the peak (1, 0),

• (P7, P8, P9, P10), where each preference has the peak (2, 0),

• (P11, P12, P13, P14), where each preference has the peak (3, 0),

• (P15, P16, P17, P18), where each preference has the peak (1, 1),

• (P19, P20, P21, P22, P23, P24), where each preference has the peak (2, 1), and

• (P25, P26, P27, P28, P29, P30), where each preference has the peak (3, 1).

Next, we turn to the no-detour condition in the Exterior+ property. Indeed,

it suffices to show that all preferences that have similar peaks form a con-

nected subgraph in GD
∼/∼+ . First, note that the edge between P3 and P11 and

the edge between P1 and P7 combine the three paths (P1, P2, P3, P4, P5, P6),

(P7, P8, P9, P10) and (P11, P12, P13, P14), and all these preferences have peaks

22In the graph GD
∼/∼+ , for instance, the symbol “P1

(2,0)
(3,0) P2 ” represents that P1 ∼ P2,

(2, 0) P1 (3, 0) and (3, 0) P2 (2, 0), while the symbol “P6
(1,0) (3,0) (2,0)

(1,1) (3,1) (2,1) P15” represents that

P6 ∼+ P15, (1, 0) P6 (1, 1), (1, 1) P15 (1, 0), (3, 0) P6 (3, 1), (3, 1) P15 (3, 0), (2, 0) P6 (2, 1)

and (2, 1) P15 (2, 0).
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in (A1, 0) = {(1, 0), (2, 0), (3, 0)}. Similarly, the edge between P18 and P28

and the edge between P24 and P30 combine the three paths (P15, P16, P17, P18),

(P19, P20, P21, P22, P23, P24) and (P25, P26, P27, P28, P29, P30), and all these prefer-

ences have peaks in (A1, 1) = {(1, 1), (2, 1), (3, 1)}. Next, note that (i) all prefer-

ences in the path (P1, P2, P3, P4, P5, P6, P15, P16, P17, P18) have peaks in (1, A2) =

{(1, 0), (1, 1)}, (ii) all preferences in the path (P7, P8, P9, P10, P19, P20, P21, P22, P23, P24)

have peaks in (2, A2) = {(2, 0), (2, 1)}, and (iii) all preferences in the path

(P11, P12, P13, P14, P25, P26, P27, P28, P29, P30) have peaks in (3, A2) = {(3, 0), (3, 1)}.

Hence, the no-detour condition is satisfied.

Last, we verify the first condition of the Exterior+ property. We first make

an important observation on GD
∼/∼+ : each pair of distinct preferences is con-

nected by three distinct paths, and whenever a restoration on a path con-

necting two preferences is spotted, one can immediately identify another path

between these two preferences that has no such a restoration. For instance,

the clockwise path (P1, P2, P3, P4, P5, P6, P15, P16, P17, P18, P28, P29, P30, P24, P23)

has {(2, 0), (1, 1)}-restoration, i.e., (2, 0) P3 (1, 1), (1, 1) P4 (2, 0) and (2, 0) P23

(1, 1), while (2, 0) and (1, 1) have not been locally switched on the counter-

clockwise path (P1, P7, P8, P9, P10, P19, P20, P21, P22, P23). Therefore, we can con-

clude that given arbitrary Pi, P
′
i ∈ D such that r1(Pi) ̸= r1(P

′
i ) and distinct

a, b ∈ A, there exists a path in GD
∼/∼+ connecting Pi and P ′

i that has no {a, b}-

restoration. In conclusion, D is a rich domain.

B Proof of Theorem 1

We first provide a sketch of the proof, which consists of three parts below.

Part 1. We explore the rich domain D, and establish three results that will be

applied for the proof of both the sufficiency and necessity parts of the Theo-

rem. First, we adopt Proposition 2 of Chatterji and Zeng (2019) to show that

every strategy-proof rule on D satisfies the tops-only property (see Lemma 1).

Second, for each s ∈ M and x−s ∈ A−s, we induce a connected graph over

the alternatives of (As, x−s), as an implication the no-detour condition of the
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Exterior+ property (see Lemma 2). Last, referring to these induced graphs, we

partially characterize strategy-proof rules on D (see Lemmas 3 and 4).

Part 2. We prove the sufficiency part of the Theorem: a rich multidimen-

sional hybrid domain D is a decomposable domain. First, by Lemmas 1, 2

and 4 established in Part 1, we show that every strategy-proof rule on D is

decomposable, and all marginal SCFs are strategy-proof marginal rules (see

Lemma 5). Conversely, we show that an SCF on D assembled by strategy-proof

marginal rules, which all are indeed FBRs by the necessity part of Proposition

1, is a strategy-proof rule (see Lemma 6).

Part 3. We verify the necessity part of the Theorem: if a rich domain D is a

decomposable domain, it is a multidimensional hybrid domain. The verification

consists of three steps. In the first step, for each s ∈ M , we first, by Lemmas

1 and 4 and the decomposable-domain hypothesis, show that every strategy-

proof marginal rule on [D]s satisfies the tops-only property (see Lemma 7),

and next adopt Lemma 2 to show that GAs

≈ is a connected graph (see Lemma

8). This immediately allows us to reveal by Corollary 2 of Chatterji and Zeng

(2023) that all induced marginal preferences of [D]s are hybrid on ≺s w.r.t. some

marginal thresholds xs and xs. In the second step, we by the sufficiency part of

Proposition 1, fix several 3-voter strategy-proof FBRs on the induced marginal

domains, and then by applying the decomposable-domain hypothesis, assemble

them to construct two strategy-proof rules on the domain D. We then show

that as an implication of strategy-proofness these two rules, all preferences of

D are multidimensional hybrid on ≺ w.r.t. the thresholds x = (x1, . . . , xm) and

x = (x1, . . . , xm) (see Lemma 9). This hence meets condition (i) of Definition

3. In the last step, we establish two lemmas to meet condition (ii) of Definition

3. We first identify a condition implied by the first condition of the Exterior+

property in each induced marginal domain (see Lemma 10). Then, using this

condition, we show that when the two marginal thresholds xs and xs identified

in the first step are distinct, the subgraph G
⟨xs, xs⟩
≈ has no leaf (see Lemma 11).

This hence concludes the whole proof.
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Now, we start the proof of Part 1. Let D be a rich domain investigated in

both the sufficiency and necessity parts of the Theorem.

Lemma 1 For all n ≥ 2, every strategy-proof rule f : Dn → A satisfies the

tops-only property.

Proof : To show the Lemma, we adopt Proposition 2 of Chatterji and Zeng

(2019), which says that on a domain of top-separable preferences satisfying

the Interior+ and Exterior+ properties, every strategy-proof rule satisfies the

tops-only property. Hence, by the richness of D, to complete the verification,

it suffices to show that all preferences are top-separable.

First, let D be the domain investigated in the sufficiency part of the Theo-

rem. Thus, D is a multidimensional hybrid domain on ≺ w.r.t. some thresholds

x and x. Immediately, by condition (i) of Definition 2, we know that all pref-

erences of D are top-separable, as required.

Next, let D be a rich domain investigated in the necessity part of the The-

orem. Thus, D is a decomposable domain. Given arbitrary Pi ∈ D, say

r1(Pi) = x, and similar a, b ∈ A, say M(a, b) = {s}, let as = xs. We show

a Pi b via strategy-proofness of some constructed SCF. Let N = {1, 2}. At the

component s, we construct a dictatorial marginal SCF f s :
[
[D]s

]2 → As where

voter 1 is the dictator (i.e., f s([P1]
s, [P2]

s) = r1([P1]
s) for all [P1]

s, [P2]
s ∈

[D]s), while at each t ∈ M\{s}, we construct a dictatorial marginal SCF

f t :
[
[D]t
]2 → At where voter 2 is the dictator. Clearly, every marginal SCF

here is a strategy-proof marginal rule. Then, by the decomposable-domain hy-

pothesis, we assemble a strategy-proof rule f : D2 → A such that f(P1, P2) =(
f 1([P1]

1, [P2]
1), . . . , fm([P1]

m, [P2]
m)
)
for all P ∈ Dn. Now, given P1, P

′
1, P2 ∈

D such that P1 = Pi, P2 ∈ Db and P ′
1 = P2, we have f(P1, P2) = (xs, b−s) = a

and f(P ′
1, P2) = b, which imply a P1 b by strategy-proofness, as required.

Hence, all preferences of D are top-separable. This proves the Lemma. □

For the next lemma, we introduce the notion of strong connectedness+

between alternatives. Formally, two alternatives a and b are said strongly
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Figure 5: The graph GA
≈+

connected+, denoted a ≈+ b, if there exist Pi, P
′
i ∈ D such that r1(Pi) = a,

r1(P
′
i ) = b and Pi ∼+ P ′

i . Accordingly, given a nonempty subset B ⊆ A, we

can induce a graph GB
≈+ := ⟨B, EB

≈+⟩ such that two alternatives of B form an

edge if and only if they are strongly connected+. The lemma below explores

the subgraph G
(As, x−s)

≈+ for each s ∈ M and x−s ∈ A−s. For instance, recalling

the domain of Appendix A, the graph GA
≈+ is specified in Figure 5.

Lemma 2 Given s ∈ M and x−s ∈ A−s, G
(As, x−s)

≈+ is a connected graph.

Proof : Given distinct a, b ∈ (As, x−s), we construct a path in G
(As, x−s)

≈+ con-

necting a and b. Fixing Pi, P
′
i ∈ D such that r1(Pi) = a and r1(P

′
i ) = b by min-

imal richness, by the no-detour condition, we have a path π = (Pi|1, . . . , Pi|v) in

GD
∼/∼+ connecting Pi and P ′

i such that r1(Pi|k) ∈ (As, x−s) for all k = 1, . . . , v.

Furthermore, we partition the path π according to preference peaks (without

changing the orders of preferences in π):(
Pi|1, . . . , Pi|k1

peak x1

, . . . ,
Pi|kp−1+1, . . . , Pi|kp

peak xp

,
Pi|kp+1, . . . , Pi|kp+1

peak xp+1

, . . . ,
Pi|kq−1+1, . . . , Pi|kq

peak xq

)
,

where q ≥ 2, k0 = 0, kq = v, r1(Pi|kp−1+1) = · · · = r1(Pi|kp) = xp for all

p = 1, . . . , q, and xp ̸= xp+1 for all p = 1, . . . , q − 1. Thus, we have a sequence

of alternatives (x1, . . . , xq).

Claim 1: We have xp ≈+ xp+1 for all 1 ≤ p < q.

Given 1 ≤ p < q, we have the preferences Pi|kp and Pi|kp+1 and the peaks

r1(Pi|kp) = xp and r1(Pi|kp+1) = xp+1. Since xp, xp+1 ∈ (As, x−s), we write

xp = (xs, x−s) and xp+1 = (ys, x−s) where xs ̸= ys. Clearly, either Pi|kp ∼ Pi|kp+1

or Pi|kp ∼+ Pi|kp+1 holds. If Pi|kp ∼+ Pi|kp+1, it is evident that xp ≈+ xp+1.

We complete the verification by ruling out the possibility that Pi|kp ∼ Pi|kp+1.
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Suppose by contradiction that Pi|kp ∼ Pi|kp+1. Thus, (x
s, x−s) and (ys, x−s) are

the unique two alternatives that are oppositely ranked across Pi|kp and Pi|kp+1.

However, since Pi|kp and Pi|kp+1 are shown to be top-separable in the proof of

Lemma 1, we have (xs, z−s) Pi|kp (ys, z−s) and (ys, z−s) Pi|kp+1 (xs, z−s) for all

z−s ∈ A−s - a contradiction. This completes the verification of the claim.

Note that some alternatives may appear multiple times in the sequence

(x1, . . . , xq). For instance, let xp = xp′ where 1 ≤ p < p′ ≤ q. Since xp ̸= xp+1,

it is clear that p+1 < p′. We then remove alternatives xp+1, . . . , xp′ , and refine

the sequence to (x1, . . . , xp, xp′+1, . . . , xq), where any consecutive alternatives

remain to be strongly connected+. By repeatedly eliminating repetitions of

alternatives, we finally construct a path in G
(As, x−s)

≈+ connecting a and b. □

Furthermore, we fix an arbitrary strategy-proof rule f : Dn → A, and par-

tially characterize f in the next two lemmas using the subgraphs G
(As, x−s)

≈+ for

all s ∈ M and x−s ∈ A−s. Clearly, by Lemma 1, f satisfies the tops-only

property. For notational convenience, we henceforth write (a, P−i) to denote a

preference profile where voter i reports an arbitrary preference with the peak

a, and all others report P1, . . . , Pi−1, Pi+1, . . . , Pn respectively. For ease of pre-

sentation, given Pi ∈ D such that r1(Pi) = a, let r1(Pi)
s := as for all s ∈ M ;

given P ∈ D and f(P ) = a, let f(P )s := as for all s ∈ M .

Lemma 3 Given i ∈ N , Pi, P
′
i ∈ D and P−i ∈ Dn−1, let M

(
r1(Pi), r1(P

′
i )
)
=

{s}. We have f(Pi, P−i)
t = f(P ′

i , P−i)
t for all t ∈ M\{s}.

Proof : For notational convenience, let r1(Pi) = (as, z−s) and r1(P
′
i ) = (bs, z−s),

where as ̸= bs. By Lemma 2, we have a path (a1, . . . , av) in G
(As, z−s)

≈+ con-

necting (as, z−s) and (bs, z−s). For ease of presentation, let f(ak, P−i) = xk

for all k = 1, . . . , v. Clearly, f(Pi, P−i) = f(a1, P−i) = x1 and f(P ′
i , P−i) =

f(av, P−i) = xv. To complete the verification, it suffices to show x−s
k = x−s

k+1 for

all k = 1, . . . , v − 1.

Given 1 ≤ k < v, we have f(ak, P−i) = xk and f(ak+1, P−i) = xk+1. The

result holds evidently if xk = xk+1. Next, assume xk ̸= xk+1. Since ak ≈+ ak+1,
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there exist P̂i, P̂
′
i ∈ D such that r1(P̂i) = ak, r1(P̂

′
i ) = ak+1 and P̂i ∼+ P̂ ′

i .

Since f(P̂i, P−i) = f(ak, P−i) = xk and f(P̂ ′
i , P−i) = f(ak+1, P−i) = xk+1,

strategy-proofness implies xk P̂i xk+1 and xk+1 P̂ ′
i xk. Since P̂i ∼+ P̂ ′

i , note

that any two alternatives that are oppositely ranked across P̂i and P̂ ′
i , agree on

all components other than s. Hence, x−s
k = x−s

k+1, as required. □

Lemma 4 Given i ∈ N , Pi, P
′
i ∈ D, P−i ∈ Dn−1 and t ∈ M , let r1(Pi)

t =

r1(P
′
i )

t. We have f(Pi, P−i)
t = f(P ′

i , P−i)
t.

Proof : The Lemma immediately follows from the tops-only property if r1(Pi) =

r1(P
′
i ). Henceforth, let r1(Pi) ̸= r1(P

′
i ). Assume w.l.o.g. thatM

(
r1(Pi), r1(P

′
i )
)
=

{1, . . . , s}, where 1 ≤ s < m. We write r1(Pi) = (a1, . . . , as, z{s+1,...,m}) and

r1(P
′
i ) = (b1, . . . , bs, z{s+1,...,m}) where ak ̸= bk for all k = 1, . . . , s. Clearly,

r1(Pi)
t = r1(P

′
i )

t implies s < t ≤ m. We construct the alternative xk =

(b1, . . . , bk, ak+1, . . . , as, z{s+1,...,m}) for each k = 0, 1, . . . , s. Thus, x0 = r1(Pi)

and xs = r1(P
′
i ). By minimal richness, for each k = 0, 1, . . . , s, we fix a pref-

erence Pi|k ∈ D such that r1(Pi|k) = xk. For each k = 0, 1, . . . , s − 1, since t /∈

M
(
r1(P

k
i ), r1(P

k+1
i )

)
, Lemma 3 implies f(Pi|k, P−i)

t = f(Pi|k+1, P−i)
t. There-

fore, we have f(Pi, P−i)
t = f(Pi|0, P−i)

t = · · · = f(Pi|s, P−i)
t = f(P ′

i , P−i)
t. □

This completes the verification in Part 1, and we then turn to Part 2.

(Sufficiency Part) Let D be a rich multidimensional domain on ≺ w.r.t. thresh-

olds x and x. We show that D is a decomposable domain. We fix a strategy-

proof rule f : Dn → A, and show that f is decomposable, and all marginal SCFs

are strategy-proof marginal rules. Of course, f satisfies the tops-only property

by Lemma 1 and triggers Lemma 4.

Lemma 5 SCF f is decomposable, and each marginal SCF is a strategy-proof

marginal rule.

Proof : The proof consists of three claims.
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Claim 1: Given P, P ′ ∈ Dn and t ∈ M , let r1(Pi)
t = r1(P

′
i )

t for all i ∈ N . We

have f(P )t = f(P ′)t.

We first construct the profile P (k) = (P ′
1, . . . , P

′
k, Pk+1, . . . , Pn) for each k =

0, 1, . . . , n. Clearly, P (0) = P and P (n) = P ′. For each i = 1, . . . , n, note that

P (i−1) = (P ′
1, . . . , P

′
i−1, Pi, Pi+1, . . . , Pn) and P (i) = (P ′

1, . . . , P
′
i−1, P

′
i , Pi+1, . . . , Pn)

agree on preferences of all voters other than i, and r1(Pi)
t = r1(P

′
i )

t. Then,

Lemma 4 implies f(P (i− 1))t = f(P (i))t. Hence, we have f(P )t = f(P (0))t =

· · · = f(P (n))t = f(P ′)t. This completes the verification of the claim.

Claim 2: SCF f is decomposable.

Given s ∈ M , by Claim 1 and minimal richness of D, we can construct a func-

tion gs : As × · · · × As︸ ︷︷ ︸
n

→ As such that for all (xs
1, . . . , x

s
n) ∈ As × · · · × As︸ ︷︷ ︸

n

and

all (P1, . . . , Pn) ∈ Dn with
(
r1(P1)

s, . . . , r1(Pn)
s
)
= (xs

1, . . . , x
s
n), g

s(xs
1, . . . , x

s
n) =

f(P1, . . . , Pn)
s. Then, we construct a marginal SCF f s :

[
[D]s

]n → As such

that f s([P1]
s, . . . , [Pn]

s) = gs
(
r1([P1]

s), . . . , r1([Pn]
s)
)
for all ([P1]

s, . . . , [Pn]
s) ∈[

[D]s
]n
. By construction, it is clear that for all (P1, . . . , Pn) ∈ Dn, we have[

f(P1, . . . , Pn) = a
]
⇔
[
f s([P1]

s, . . . , [Pn]
s) = as for all s ∈ M

]
. Therefore, f is

decomposable. This completes the verification of the claim.

Claim 3: Given s ∈ M , the marginal SCF f s constructed in Claim 2 is a

strategy-proof marginal rule.

First, we claim that f s is unanimous. Given a profile ([P1]
s, . . . , [Pn]

s) ∈[
[D]s

]n
, let r1([P1]

s) = · · · = r1([Pn]
s) = as. We show f s([P1]

s, . . . , [Pn]
s) = as.

Given z−s ∈ A−s, by minimal richness, we have a profile (P ′
1, . . . , P

′
n) ∈ Dn

such that r1(P
′
1) = · · · = r1(P

′
n) = (as, z−s). By unanimity of f , it is clear

that f(P ′
1, . . . , P

′
n) = (as, z−s). Then, by the decomposition of f , we have

f s([P1]
s, . . . , [Pn]

s) = f(P ′
1, . . . , P

′
n)

s = as, as required.

Last, we show strategy-proofness of f s. Given i ∈ N , [Pi]
s, [P ′

i ]
s ∈ [D]s and

[P−i]
s := ([P1]

s, . . . , [Pi−1]
s, [Pi+1]

s, . . . , [Pn]
s) ∈

[
[D]s

]n−1
, let f s([Pi]

s, [P−i]
s) =

as, f s([P ′
i ]
s, [P−i]

s) = bs and as ̸= bs. We show as [Pi]
s bs. Since f s by con-

struction satisfies the tops-only property, f s([Pi]
s, [P−i]

s) ̸= f s([P ′
i ]
s, [P−i]

s) im-
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plies r1([Pi]
s) ̸= r1([P

′
i ]
s). For notational convenience, let r1(Pi) = (zs, z−s) and

r1([P
′
i ]
s) = ẑs. Thus, to show as [Pi]

s bs, it suffices to show (as, z−s) Pi (b
s, z−s).

By minimal richness, we fix P̂i ∈ D such that r1(P̂i) = (ẑs, z−s), and fix P̂j ∈ D

such that r1(P̂j) =
(
r1([Pj]

s), z−s
)
for each j ∈ N\{i}. By the decomposition

of f and the tops-only property of f s, we have f(Pi, P̂−i)
s = f s([Pi]

s, [P̂−i]
s) =

f s([Pi]
s, [P−i]

s) = as and f(P̂i, P̂−i)
s = f s([P̂i]

s, [P̂−i]
s) = f s([P ′

i ]
s, [P−i]

s) = bs,

while by the decomposition of f and unanimity of marginal rules, f(Pi, P̂−i)
t =

f t([Pi]
t, [P̂−i]

t) = zt and f(P̂i, P̂−i)
t = f t([P̂i]

t, [P̂−i]
t) = zt for all t ∈ M\{s}.

Thus, f(Pi, P̂−i) = (as, z−s) and f(P̂i, P̂−i) = (bs, z−s), which by strategy-

proofness imply (as, z−s) Pi (b
s, z−s), as required. This completes the verifica-

tion of the claim, and hence proves the Lemma. □

Conversely, we fix a strategy-proof marginal rule f s :
[
[D]s

]n → As for each

s ∈ M , assemble an SCF f : Dn → A such that f(P ) =
(
f 1([P ]1), . . . , fm([P ]m)

)
for all P ∈ Dn, and show that f is a strategy-proof rule.

Lemma 6 The assembled SCF f is a strategy-proof rule.

Proof : Since f 1, . . . , fm are unanimous, the assembled SCF f by construc-

tion must be unanimous, and hence is a rule. We focus on showing strategy-

proofness of f . Since D is a multidimensional domain on ≺ w.r.t. the thresholds

x and x, we know D ⊆ DMH(≺, x, x) and hence [D]s ⊆ [DMH(≺, x, x)]s for each

s ∈ M . First, by Proposition 1, the marginal SCF f s :
[
[D]s

]n → As is an FBR

for each s ∈ M\M(x, x), and the marginal SCF f t :
[
[D]t
]n → At is an (xt, xt)-

FBR for each t ∈ M(x, x). Next, for each s ∈ M , adopting the fixed ballots

(bsJ)J⊆N of f s, we construct an FBR f̂ s :
[
[DMH(≺, x, x)]s

]n → As, which by

Proposition 1 is a strategy-proof marginal rule as well. Then, we assemble an

SCF f̂ : DMH(≺, x, x)n → A such that f̂(P ) =
(
f̂ 1([P ]1), . . . , f̂m([P ]m)

)
for all

P ∈ DMH(≺, x, x)n. Given D ⊆ DMH(≺, x, x), since f s and f̂ s share the same
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fixed ballots at each component s ∈ M , it is true that for all (P1, . . . , Pn) ∈ Dn,

f(P1, . . . , Pn) =
(
f 1([P1]

1, . . . , [Pn]
1), . . . , fm([P1]

m, . . . , [Pn]
m)
)

=
(
f̂ 1([P1]

1, . . . , [Pn]
1), . . . , f̂m([P1]

m, . . . , [Pn]
m)
)
= f̂(P1, . . . , Pn).

Hence, it suffices to show strategy-proofness of f̂ .

Given i ∈ N , Pi, P
′
i ∈ DMH(≺, x, x) and P−i ∈ DMH(≺, x, x)n−1, let f̂(Pi, P−i) =

a, f̂(P ′
i , P−i) = b and a ̸= b. We show a Pi b. For notational convenience, let

r1(Pi) = x. By the definition of multidimensional hybridness on ≺ w.r.t. x

and x, to show a Pi b, it suffices to show that for all s ∈ M(a, b), either

as = xs, or as ∈ Int⟨xs, bs⟩ and as /∈ Int⟨xs, xs⟩. Given s ∈ M(a, b), we

know either as = xs or as ̸= xs holds. Henceforth, we fix as ̸= xs, and show

as ∈ Int⟨xs, bs⟩ and as /∈ Int⟨xs, xs⟩. By the decomposition of f̂ , we have

f̂([Pi]
s, [P−i]

s) = as and f̂([P ′
i ]
s, [P−i]

s) = bs. Since f̂ s, as an FBR, satisfies the

tops-only property, we have f̂([P̂i]
s, [P−i]

s) = as for all [P̂i]
s ∈ [DMH(≺, x, x)]s

such that r1([P̂i]
s) = r1([Pi]

s) = xs. Immediately, by strategy-proofness of f̂ s,

we infer that for all [P̂i]
s ∈ [DMH(≺, x, x)]s,

[
r1([P̂i]

s) = xs
]
⇒
[
as [P̂i]

s bs
]
.

Since [DMH(≺, x, x)]s contains all hybrid marginal preferences on ≺s w.r.t. xs

and xs, it is true that if as /∈ Int⟨xs, bs⟩ or as ∈ Int⟨xs, xs⟩, there exists an

induced marginal preference of [DMH(≺, x, x)]s where xs is top-ranked, and bs

is ranked above as. Therefore, it must be the case that as ∈ Int⟨xs, bs⟩ and

as /∈ Int⟨xs, xs⟩, as required. This completes the verification of the Lemma,

and hence proves the sufficiency part of the Theorem. □

This completes the verification in Part 2, and we last turn to Part 3.

(Necessity Part) Let a rich domain D be a decomposable domain. We identify

two thresholds x and x, and show that D is a multidimensional hybrid domain

on ≺ w.r.t. x and x. By diversity+, we have two separable preferences P i, P i ∈

D that are complete reversals. For each s ∈ M , by relabeling elements as

necessary, we can assume w.l.o.g. that for all as, bs ∈ As, [as ≺s bs] ⇒
[
as [P i]

s

bs and bs [P i]
s as
]
.
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Lemma 7 Given s ∈ M , for all n ≥ 2, every strategy-proof marginal rule

f s :
[
[D]s

]n → As satisfies the tops-only property.

Proof : Suppose not, i.e., we have a non-tops-only and strategy-proof marginal

rule f s :
[
[D]s

]n → As for some n ≥ 2. There must exist i ∈ N , [Pi]
s, [P ′

i ]
s ∈ [D]s

with r1([Pi]
s) = r1([P

′
i ]
s) and [P−i]

s ∈
[
[D]s

]n−1
such that f s([Pi]

s, [P−i]
s) ̸=

f s([P ′
i ]
s, [P−i]

s). For each t ∈ M\{s}, we fix a dictatorial marginal SCF

f t :
[
[D]t
]n → At. We then assemble an SCF f : Dn → A such that f(P ) =(

f 1([P ]1), . . . , fm([P ]m)
)
for all P ∈ Dn. Since all marginal SCFs are strategy-

proof marginal rules, by the decomposable-domain hypothesis, f is a strategy-

proof rule. Immediately, f satisfies the tops-only property by Lemma 1, and

triggers Lemma 4. By construction, we have f(Pi, P−i)
s = f s

(
[Pi]

s, [P−i]
s
)
̸=

f s
(
[P ′

i ]
s, [P−i]

s
)
= f(P ′

i , P−i)
s. However, by Lemma 4, since r1(Pi)

s = r1([Pi]
s) =

r1([P
′
i ]
s) = r1(P

′
i )

s, we have f(Pi, P−i)
s = f(P ′

i , P−i)
s - a contradiction. □

Lemma 8 Given s ∈ M , consider the induced marginal domain [D]s. It is true

that GAs

≈ is a connected graph.

Proof : Given distinct as, bs ∈ As, we construct a path in GAs

≈ connecting

as and bs. Fixing arbitrary x−s ∈ As, we have the alternatives (as, x−s) and

(bs, x−s). Since G
(As, x−s)

≈+ is a connected graph by Lemma 2, we have a path

(x1, . . . , xv) in G
(As, x−s)

≈+ connecting (as, x−s) and (bs, x−s). Clearly, x−s
1 = · · · =

x−s
v = x−s and xs

k ̸= xs
k′ for all 1 ≤ k < k′ ≤ v. For each 1 ≤ k < v, by

xk ≈+ xk+1, we have Pi, P
′
i ∈ D such that r1(Pi) = xk, r1(P

′
i ) = xk+1 and

Pi ∼+ P ′
i , which implies r1([Pi]

s) = r2([P
′
i ]
s) = xs

k, r1([P
′
i ]
s) = r2([Pi]

s) = xs
k+1

and rℓ([Pi]
s) = rℓ([P

′
i ]
s) for all ℓ ∈ {3, . . . , |As|}. Hence, we have xs

k ≈ xs
k+1.

Thus, (xs
1, . . . , x

s
v) is a path in GAs

≈ connecting as and bs, as required. □

Now, given s ∈ M , GAs

≈ is a connected graph, [D]s contains complete rever-

sals [P i]
s and [P i]

s, and [D]s is a top-only marginal domain (i.e., every strategy-

proof marginal rule satisfies the tops-only property). Then, by Corollary 2 of

Chatterji and Zeng (2023), we can infer the following two conditions:
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Condition (a) there exist marginal thresholds xs, xs ∈ As (either identical or

not) such that all induced marginal preferences of [D]s are hybrid on ≺s

w.r.t. xs and xs, and

Condition (b) if xs ̸= xs, there exist no linear order ◁s over As and no marginal

thresholds x̂s, x̂
s ∈ As (either identical or not) such that all induced

marginal preferences of [D]s are hybrid on ◁s w.r.t. x̂s and x̂
s
, and〈

x̂s, x̂
s〉◁s

:=
{
xs ∈ As : x̂s ◁s xs ◁s x̂

s} ∪ {x̂s, x̂
s} ⊂ ⟨xs, xs⟩.23

Now, by Condition (a), we assemble the thresholds x = (x1, . . . , xm) and

x = (x1, . . . , xm). We first show that all preferences of D are multidimensional

hybrid on ≺ w.r.t. x and x.

Lemma 9 All preferences of D are multidimensional hybrid on ≺ w.r.t. x and x.

Proof : Fixing a preference Pi ∈ D and two similar alternatives a, b ∈ A,

let r1(Pi) = x, M(a, b) = {s}, and either as = xs, or as ∈ Int⟨xs, bs⟩ and

as /∈ Int⟨xs, xs⟩. We show a Pi b. For notational convenience, let a = (as, z−s)

and b = (bs, z−s). First, by the proof of Lemma 1, we know that Pi is a top-

separable preference. Hence, if as = xs, it is clear that a Pi b, as required.

Henceforth, let as ∈ Int⟨xs, bs⟩ and as /∈ Int⟨xs, xs⟩. Clearly, there are two

cases: (1) xs = xs and (2) xs ̸= xs.

23Corollary 2 of Chatterji and Zeng (2023) provides a classification of non-dictatorial and

tops-only domains (i.e., a non-dictatorial domain admits a non-dictatorial, strategy-proof

rule, while a tops-only domain endogenizes the tops-only property on all strategy-proof rules)

under a richness condition called unidimensionality (i.e., a unidimensional domain is anal-

ogous to a marginal domain Ds that induces a connected graph GAs

≈ , contains complete

reversals, and satisfies an additional condition called leaf symmetry), according to the ex-

istence and non-existence of anonymous and strategy-proof rules. Leaf symmetry plays a

trivial role in the classification - it is only adopted to ensure that all non-dictatorial domains

in question are able to be fully characterized by an explicit preference restriction. If we en-

large the classification to cover both non-dictatorial and dictatorial domains, the condition

of leaf symmetry can be removed without affecting their proof for the classification. Then,

the classification provides us Conditions (a) and (b) above.
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In case (1), all induced marginal preferences of [D]s are single-peaked on ≺s.

LetN = {1, 2, 3}. We construct a median marginal rule: for all ([P1]
s, [P2]

s, [P3]
s) ∈[

[D]s
]3
, f s([P1]

s, [P2]
s, [P3]

s) = med≺s(
r1([P1]

s), r1([P2]
s), r1([P3]

s)
)
. It is clear

that f s is a strategy-proof marginal rule. For each t ∈ M\{s}, we construct

a dictatorial marginal rule f t :
[
[D]t
]3 → At, where voter 2 is fixed to be the

dictator. It is also true that f t is a strategy-proof marginal rule. We assem-

ble the SCF f : D3 → A such that for all (P1, P2, P3) ∈ D3, f(P1, P2, P3) =(
f 1([P1]

1, [P2]
1, [P3]

1), . . . , fm([P1]
m, [P2]

m, [P3]
m)
)
. Clearly, by the decomposable-

domain hypothesis, f is a strategy-proof rule. Now, given P1 = Pi and P ′
1, P2, P3 ∈

D such that r1(P
′
1) = b, r1(P2) = a and r1(P3) = b, we have f(P1, P2, P3)

s =

med≺s

(xs, as, bs
)
= as, f(P ′

1, P2, P3)
s = med≺s

(bs, as, bs
)
= bs and f(P1, P2, P3)

t =

f(P ′
1, P2, P3)

t = r1([P2]
t) = zt for all t ∈ M\{s}. Hence, f(P1, P2, P3) =

(as, z−s) = a and f(P ′
1, P2, P3) = (bs, z−s) = b which by strategy-proofness

imply a P1 b, as required.

In case (2), all induced marginal preferences of [D]s are hybrid on≺s w.r.t. xs

and xs. Let N = {1, 2, 3}. We construct an (xs, xs)-FBR f s :
[
[D]s

]3 → As such

that the fixed ballots are specified as follows: bs∅ = bs{2} = bs{3} = min≺s

(As),

bs{2,3} = xs, bs{1} = xs and bs{1,2} = bs{1,3} = bs{1,2,3} = max≺
s
(As). By Proposition

1, f s is a strategy-proof marginal rule.

Claim 1: Given [P1]
s, [P2]

s, [P3]
s ∈ [D]s, we have

f s([P1]
s, [P2]

s, [P3]
s) =


r1([P1]

s) if r1([P1]
s) ∈ ⟨xs, xs⟩,

med≺
s(
r1([P1]

s), r1([P2]
s), r1([P3]

s), r1([P1]
s), xs

)
if r1([P1]

s) ≺s xs,

med≺
s(
r1([P1]

s), r1([P2]
s), r1([P3]

s), r1([P1]
s), xs

)
if xs ≺s r1([P1]

s).

According to the fixed ballots
(
bsJ
)
J⊆N

specified above and the definition of

the (xs, xs)-FBR, by eliminating redundant items, we have

f s([P1]
s, [P2]

s, [P3]
s) = max≺

s

(
min≺

s(
xs, r1([P1]

s)
)
, min≺

s(
r1([P1]

s), r1([P2]
s)
)
,

min≺
s(
r1([P1]

s), r1([P3]
s)
)
, min≺

s(
xs, r1([P2]

s), r1([P3]
s)
)
)
.

If r1([P1]
s) ∈ ⟨xs, xs⟩ which implies min≺s(

xs, r1([P1]
s)
)
= r1([P1]

s), we can

further calculate that f s([P1]
s, [P2]

s, [P3]
s) = r1([P1]

s).
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If r1([P1]
s) ≺s xs which implies min≺s(

xs, r1([P1]
s)
)
= r1([P1]

s), we can

further calculate that

f s([P1]
s, [P2]

s, [P3]
s) =max≺

s
(
r1([P1]

s),min≺s(
xs, r1([P2]

s), r1([P3]
s)
))

= med≺s(
r1([P1]

s), r1([P2]
s), r1([P3]

s), r1([P1]
s), xs

)
.

If xs ≺s r1([P1]
s) which implies min≺s (

xs, r1([P1]
s)
)
= xs, we can further

calculate that

f s([P1]
s, [P2]

s, [P3]
s) =max≺

s
(
xs,min≺s(

r1([P1]
s), r1([P2]

s)
)
,min≺s(

r1([P1]
s), r1([P3]

s)
))

= med≺s(
r1([P1]

s), r1([P2]
s), r1([P3]

s), r1([P1]
s), xs

)
.

This completes the verification of the claim.

Furthermore, for each t ∈ M\{s}, we construct a dictatorial marginal SCF

f t :
[
[D]t
]3 → At, where voter 3 is fixed to be the dictator. Then, we assem-

ble the SCF f : D3 → A such that for all (P1, P2, P3) ∈ D3, f(P1, P2, P3) =(
f 1([P1]

1, [P2]
1, [P3]

1), . . . , fm([P1]
m, [P2]

m, [P3]
m)
)
. Clearly, by the decomposable-

domain hypothesis, f is a strategy-proof rule. There are three subcases: (i)

xs ∈ ⟨xs, xs⟩, (ii) xs ≺s xs and (iii) xs ≺s xs.

In subcase (i), since as ∈ Int⟨xs, bs⟩ and as /∈ Int⟨xs, xs⟩, it is true that

either bs ≺s as ≼s xs ≼s xs ≼s xs and as ≺s xs, or xs ≼s xs ≼s xs ≼s

as ≺s bs and xs ≺s as. Fix P2 = Pi and P1, P
′
2, P3 ∈ D such that r1(P1) = b,

r1(P
′
2) = a and r1(P3) = a. If bs ≺s as ≼s xs ≼s xs ≼s xs and as ≺s xs

hold, by Claim 1, we have f(P1, P2, P3)
s = med≺s(

bs, xs, as; bs, xs
)
= as and

f(P1, P
′
2, P3)

s = med≺s(
bs, bs, as; bs, xs

)
= bs. Symmetrically, if xs ≼s xs ≼s

xs ≼s as ≺s bs and xs ≺s as hold, by Claim 1, we also have f(P1, P2, P3)
s =

med≺s(
bs, xs, as; bs, xs

)
= as and f(P1, P

′
2, P3)

s = med≺s(
bs, bs, as; bs, xs

)
= bs.

For all t ∈ M\{s}, f(P1, P2, P3)
t = f(P1, P

′
2, P3)

t = r1([P3]
t) = zt. Hence,

f(P1, P2, P3) = (as, z−s) = a and f(P1, P
′
2, P3) = (bs, z−s) = b which by

strategy-proofness imply a P2 b, as required.

Subcases (ii) and (iii) are symmetric. We focus on subcase (ii). Since

as ∈ Int⟨xs, bs⟩ and as /∈ Int⟨xs, xs⟩, it is true that either bs ≺s as ≺s xs ≺s xs,
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or xs ≺s xs ≺s xs ≼s as ≺s bs, or xs ≺s as ≼s xs and xs ≺s as ≺s bs. If bs ≺s

as ≺s xs ≺s xs or xs ≺s xs ≺s xs ≺s as ≺s bs holds, similar to the verification in

subcase (i), given P2 = Pi and P1, P
′
2, P3 ∈ D such that r1(P1) = b, r1(P

′
2) = a

and r1(P3) = a, we have f(P1, P2, P3) = (as, z−s) = a and f(P1, P
′
2, P3) =

(bs, z−s) = b which by strategy-proofness imply a P2 b, as required. If xs ≺s

as ≺s xs and xs ≺s as ≺s bs hold, fix P1 = Pi and P ′
1, P2, P3 ∈ D such

that r1(P
′
1) = b, r1(P2) = a and r1(P3) = b. Then,we have f(P1, P2, P3)

s =

med≺s(
xs, as, bs, xs, xs

)
= as and f(P ′

1, P2, P3)
s = med≺s(

bs, as, bs, bs, xs
)
= bs

by Claim 1. For all t ∈ M\{s}, f(P1, P2, P3)
t = f(P ′

1, P2, P3)
t = r1([P3]

t) = zt.

Hence, f(P1, P2, P3) = (as, z−s) = a and f(P ′
1, P2, P3) = (bs, z−s) = b which by

strategy-proofness imply a P1 b, as required.

In conclusion, Pi is multidimensional hybrid on ≺ w.r.t. x and x. □

By Lemma 8, we know that for each s ∈ M , GAs

≈ is a connected graph,

which partly meets condition (ii) of Definition 3. We complete the verification

of condition (ii) of Definition 3 in the last two lemmas.

Lemma 10 Given s ∈ M , consider the induced marginal domain [D]s. Given

as, bs, cs ∈ As such that as ̸= cs and bs ̸= cs, if bs is included in all paths in GAs

≈

connecting as and cs, we have bs [Pi]
s cs for all [Pi]

s ∈ [D]s with r1([Pi]
s) = as.

Proof : Suppose by contradiction that it is not true, i.e., there exists [Pi]
s ∈

[D]s such that r1([Pi]
s) = as and cs [Pi]

s bs. Let r1([Pi]
t) = xt for all t ∈

M\{s}. Thus, we know r1(Pi) = (as, x−s). Since cs [Pi]
s bs, we have (cs, x−s) Pi

(bs, x−s). We fix a preference P ′
i ∈ D such that r1(P

′
i ) = (cs, x−s) by minimal

richness. Since r1(Pi) ̸= r1(P
′
i ), by the Exterior+ property, there exists a path

(Pi|1, . . . , Pi|v) in GD
∼/∼+ connecting Pi and P ′

i that has no {(cs, x−s), (bs, x−s)}-

restoration. Since (cs, x−s) Pi (bs, x−s) and (cs, x−s) P ′
i (bs, x−s), we know

(cs, x−s) Pi|k (b
s, x−s) for all k = 1, . . . , v by no {(cs, x−s), (bs, x−s)}-restoration.

Claim 1: We have r1([Pi|k]
s) ̸= bs for all k = 1, . . . , v.

Suppose not, i.e., r1([Pi|k]
s) ̸= bs for some k ∈ {1, . . . , v}. By the proof of
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Lemma 1, we know that all preferences of D are top-separable, which implies

(bs, x−s) Pi|k (c
s, x−s) - a contradiction.

Claim 2: For all k ∈ {1, . . . , v − 1}, we have either [Pi|k]
s = [Pi|k+1]

s or

[Pi|k]
s ∼ [Pi|k+1]

s.24

Given k ∈ {1, . . . , v−1}, we consider the preferences Pi|k and Pi|k+1. Clearly,

either Pi|k ∼ Pi|k+1 or Pi|k ∼+ Pi|k+1 holds. First, let Pi|k ∼ Pi|k+1. Thus, there

exist y, z ∈ A such that rq(Pi|k) = rq+1(Pi|k+1) = y and rq(Pi|k+1) = rq+1(Pi|k) =

z for some 1 ≤ q < |A|, and rℓ(Pi|k) = rℓ(Pi|k+1) for all ℓ /∈ {q, q + 1}. If

y−s = z−s = x−s, then [Pi|k]
s and [Pi|k+1]

s differ exactly on the relative rankings

of ys and zs, and hence [Pi|k]
s ∼ [Pi|k+1]

s, as required. If y−s ̸= x−s or z−s ̸= x−s,

then [Pi|k]
s = [Pi|k+1]

s, as required. Next, let Pi|k ∼+ Pi|k+1. Thus, there exist

τ ∈ M and distinct yτ , zτ ∈ Aτ such that

(1) for each z−τ ∈ A−τ , (yτ , z−τ ) = rq(Pi|k) = rq+1(Pi|k+1) and (zτ , z−τ ) =

rq(Pi|k+1) = rq+1(Pi|k) for some 1 ≤ q < |A|, and

(2) for all d ∈ A,
[
dτ /∈ {yτ , zτ}

]
⇒
[
d = rℓ(Pi|k) = rℓ(Pi|k+1) for some 1 ≤ ℓ ≤ |A|

]
.

Clearly, either τ = s or τ ̸= s holds. If τ = s, (ys, x−s) and (zs, x−s) are

consecutively and oppositely ranked across Pi|k and Pi|k+1 by condition (1),

while all alternatives of (As, x−s)\{(ys, x−s), (zs, x−s)} are identically ranked in

both Pi|k and Pi|k+1 by condition (2). Therefore, we have [Pi|k]
s ∼ [Pi|k+1]

s, as

required. If τ ̸= s, then all alternatives of (As, x−s) are identically ranked in

both Pi|k and Pi|k+1 by condition (2), and hence we have [Pi|k]
s = [Pi|k+1]

s, as

required. This completes the verification of the claim.

Notice that by Claim 2, in the sequence
(
[Pi|1]

s, . . . , [Pi|k]
s, [Pi|k+1]

s, . . . , [Pi|v]
s
)
,

some induced marginal preferences may appear multiple times. For instance,

let [Pi|q]
s = [Pi|q′ ]

s where 1 ≤ q < q′ ≤ v. By Claim 2, we know either

[Pi|q′ ]
s = [Pi|q′+1]

s or [Pi|q′ ]
s ∼ [Pi|q′+1]

s. Hence, either [Pi|q]
s = [Pi|q′+1]

s or

24The notion of adjacency also works for the induced marginal preferences.
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[Pi|q]
s ∼ [Pi|q′+1]

s holds. Then, we remove [Pi|q+1]
s, . . . , [Pi|q′ ]

s, and refine the se-

quence to
(
[Pi|1]

s, . . . , [Pi|q]
s, [Pi|q′+1]

s, . . . , [Pi|v]
s
)
, where every consecutive pair

of the remaining induced marginal preferences remains to be either identical

or adjacent. By repeatedly eliminating repetitions of induced marginal prefer-

ences in the original sequence, we finally elicit a subsequence of pairwise distinct

induced marginal preferences
(
[Pi|k1 ]

s, . . . , [Pi|kq ]
s, [Pi|kq+1 ]

s, . . . , [Pi|kw ]
s
)
, where

w ≥ 2, such that [Pi|k1 ]
s = [Pi]

s, [Pi|kw ]
s = [P ′

i ]
s and [Pi|kq ]

s ∼ [Pi|kq+1 ]
s for all

q ∈ {1, . . . , w − 1}. Furthermore, let r1([Pi|kq ]
s) = xs

q for each q = 1, . . . , w.

Clearly, xs
1 = as and xs

w = cs. Note that for all q ∈ {1, . . . , w − 1}, either

xs
q = xs

q+1, or xs
q ̸= xs

q+1. Furthermore, if xs
q ̸= xs

q+1, [Pi|kq ]
s ∼ [Pi|kq+1 ]

s

immediately implies xs
q ≈ xs

q+1. Thus, in the sequence (xs
1, . . . , x

s
w), for all

q ∈ {1, . . . , w − 1}, we have either xs
q = xs

q+1, or xs
q ≈ xs

q+1. Then, by a

similar way of eliminating repeated elements, we can induce a subsequence of

pairwise distinct elements (xs
q1
, . . . , xs

qo , x
s
qo+1

, . . . , xs
qr), where r ≥ 2, such that

xs
q1

= xs
1 = as, xs

qr = xs
w = cs, and xs

qo ≈ xs
qo+1

for all o ∈ {1, . . . , r − 1}. Thus,

(xs
q1
, . . . , xs

qr) is a path in GAs

≈ that connects as and cs. Last, by Claim 1, we

know xs
qo ̸= bs for all o = 1, . . . , r. Consequently, the path (xs

q1
, . . . , xs

qr) in

GAs

≈ connects as and cs, and excludes bs. This contradicts the hypothesis of

statement (ii) that bs is included in all paths in GAs

≈ connecting as and cs. This

proves the Lemma. □

Lemma 11 Given s ∈ M , let xs ̸= xs. The subgraph G
⟨xs, xs⟩
≈ has no leaf.

Proof : For ease of presentation, let As =
{
as1, . . . , a

s
|As|
}
, where ask ≺s ask+1

for all k = 1, . . . , |As| − 1. Clearly, ask [P i]
s ask+1 and ask+1 [P i]

s ask for all

k = 1, . . . , |As| − 1. Furthermore, by Condition (b), we know xs = ask and

xs = as
k
for some 1 ≤ k < k ≤ |As| such that k − k > 1. Then, by Lemma

8 and Condition (a), GAs

≈ must be a combination of the line (as1, . . . , a
s
k), the

connected subgraph G
⟨ask, a

s
k
⟩

≈ , and the line (as
k
, . . . , as|As|).

Suppose by contradiction that G
⟨ask, a

s
k
⟩

≈ has a leaf. Thus, we have ask, a
s
k′ ∈

⟨ask, ask⟩ such that ask is a leaf of G
⟨ask, a

s
k
⟩

≈ and ask ≈ ask′ . There are two cases:
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k < k < k and k ∈ {k, k}. In each case, we induce a contradiction. First,

let k < k < k. Thus, ask′ is included in all paths in GAs

≈ connecting as1 and

ask, and that ask′ is also included in all paths in GAs

≈ connecting as|As| and ask.

Immediately, Lemma 10 implies ask′ [P i]
s ask and ask′ [P i]

s ask, which contradict

the fact that [P i]
s and [P i]

s are complete reversals. Henceforth, let k ∈ {k, k}.

We assume w.l.o.g. that k = k. The verification related to k = k is symmetric.

Claim 1: We have k < k′ < k.

It is clear that k < k′ ≤ k. Suppose by contradiction that k′ = k. Since

k−k > 1, we fix asp ∈ ⟨ask, ask⟩ such that k < p < k. Since G
⟨ask, a

s
k
⟩

≈ is a connected

subgraph, ask is a leaf and ask ≈ as
k
, it must be the case that as

k
is included in

all paths in G
⟨ask, a

s
k
⟩

≈ connecting ask and asp. Consequently, as
k
is included in all

paths in GAs

≈ connecting as1 and asp. Immediately, Lemma 10 implies as
k
[Pi]

s asp

for all [Pi]
s ∈ [D]s with r1([Pi]

s) = as1. However, we have r1([P i]
s) = as1 and

asp [P i]
s as

k
- a contradiction. This completes the verification of the claim.

Now, since G
⟨ask, a

s
k
⟩

≈ is a connected subgraph, ak is a leaf and ask ≈ ask′ , it

is evident that G
⟨ask, a

s
k
⟩\{ask}

≈ is also connected subgraph. Consequently, GAs

≈ is

a combination of the line (as1, . . . , a
s
k, a

s
k′), the connected subgraph G

⟨ask, a
s
k
⟩\{ask}

≈

and the line (as
k
, . . . , as|As|). There are two subcases: k − k = 2 and k − k > 2.

If k − k = 2, it is evident that k′ = k + 1. Then, GAs

≈ degenerates to the

line
(
as1, . . . , a

s
k, a

s
k+1, a

s
k, . . . , a

s
|As|
)
. Consequently, by Lemma 10, all induced

marginal preferences of [D]s are single-peaked on ≺s, and hence equivalently

hybrid on ≺s w.r.t. ask and as
k+1

. This contradicts Condition (b). Last, let

k − k > 2. We first construct a linear order ◁s over As such that (1)
[
1 ≤

p < p′ ≤ k or k ≤ p < p′ ≤ |As|
]
⇒ [asp ◁s asp′ ], (2) ask ◁s ask′ , and (3)

min◁s{ask+1, . . . , a
s
k
} = ask′ and max◁

s{ask+1, . . . , a
s
k
} = as

k
. We then fix distinct

marginal thresholds ask′ and as
k
on ◁s. Clearly, ⟨ask′ , ask⟩

◁s
= ⟨ask, ask⟩\{a

s
k} ⊂

⟨ask, ask⟩. Since GAs

≈ is a combination of the line (as1, . . . , a
s
k, a

s
k′) = ⟨as1, ask′⟩◁

s
,

the connected subgraph G
⟨ask, a

s
k
⟩\{ask}

≈ = G
⟨as

k′ , a
s
k
⟩◁s

≈ and the line (as
k
, . . . , as|As|) =

⟨as
k
, as|As|⟩◁

s
, Lemma 10 implies that all induced marginal preferences of [D]s are
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hybrid on ◁s w.r.t. ask′ and ask. This contradicts Condition (b) as well. This

proves the Lemma. □

This completes the verification in Part 3, and hence proves the Theorem.
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