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a b s t r a c t

We study a competition model with two sellers that auction non-identical objects, unlike most of the
literature on competing auctions. Each bidder has bidimensional private information, his values for the
objects, and chooses the auction in which he participates (if any) after each seller has set a reserve
price for her auction. We show that in some cases the duopoly reserve price is greater than the reserve
price for a monopolist auctioning a single object; thus, an increase in the number of sellers may make
some bidder’s types worse off. In our analysis we first characterize the unique symmetric equilibrium
for the game of auction choice played by the bidders and investigate its features. Then for the game
of reserve price setting played by the sellers, we show that in each symmetric equilibrium the reserve
price level is determined by the interplay of two effects, a virtual value effect and a business stealing
effect. The former tends to lift the equilibrium reserve price above the monopoly level, the latter
may drive the equilibrium reserve price significantly below the monopoly level when the number n of
bidders is small. For a large n we find that different reserve prices in the two auctions have little effect
on bidders’ auction choices. As a consequence, when n is large the business stealing effect weakens
with respect to the virtual value effect, and for the cases we consider the equilibrium reserve price is
above the monopoly level.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Consider a market with a monopolist auctioneer offering a
single object through a second-price auction with a reserve price.
Then suppose that an additional auctioneer becomes active and
offers an imperfect substitute, still through a second-price auction
with a reserve price. We show that the equilibrium reserve price
in the second setting may be higher than in the first setting.
Therefore going from one monopoly auction to two competing
auctions may be detrimental to some bidders.

In detail, we study a (technically challenging) duopolist model
of auction competition with differentiated goods, in which two
(female) sellers, A and B, face n ≥ 2 (male) bidders. For i = A, B,
seller i offers object i through a second-price auction, auction i,
for which she chooses the reserve price ri.1 The two objects are
heterogeneous and each bidder privately observes his value vA

✩ Funding: This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

∗ Corresponding author.
E-mail addresses: landim@smu.edu.sg (M. Landi),

domenico.menicucci@unifi.it (D. Menicucci), andrey.sarychev@unifi.it
(A. Sarychev).
1 In Landi et al. (2023) we show that our results extend to the case in which

sellers use first-price auctions.

for object A and his value vB for object B; the values are ex ante
i.i.d. across objects and across bidders, each with c.d.f. F , density f ,
support [v, v̄]. After sellers have chosen rA, rB, each bidder decides
in which auction (if any) to participate. Then the auctions take
place and the objects are allocated. Auctions for cars, houses, art
pieces provide examples of the scenario we have in mind, with
auction houses competing in the sale of non-identical items in the
same product category.

There is a large literature on monopoly auctions, but auction
competition has been much less studied, and most of the related
literature focuses on auctions for identical objects with many
sellers and many bidders. In this case, in equilibrium each seller
charges a reserve price of zero or close to zero – see next section
for a brief literature review. Conversely, we assume there are just
two sellers, who offer heterogeneous objects. We prove that there
exists a pure-strategy equilibrium in the continuation game of
auction choice among bidders, and show that there is a pure-
strategy equilibrium in the game in which sellers choose reserve
prices, if the set of feasible reserve prices is a suitable discretized
set – unlike in settings with identical objects and finitely many
agents. Moreover, we show that under duopoly the equilibrium
reserve price may be higher than under monopoly. This is some-
what surprising because it is common that a greater number of
competing sellers results in a lower price. Precisely, start from
a situation in which seller B is monopolist, that is she offers

https://doi.org/10.1016/j.jmateco.2023.102830
0304-4068/© 2023 Elsevier B.V. All rights reserved.
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object B through auction B, and there is no seller A nor object
A. Then it may be reasonable to expect that the entry of seller A
is convenient for the bidders because it widens their choice set
and reduces the equilibrium reserve price. We find that the latter
conjecture is sometimes incorrect, because with competition a
reserve price reduction may be less effective at winning bidders
than under monopoly. This induces each seller to increase the
reserve price above the monopoly level, and ultimately reduces
the utility of some bidder’s types.

As a first step, we characterize the unique symmetric bidders’
equilibrium for any pair rA, rB, that is, the equilibrium of the game
in which each bidder chooses between auction A, auction B, and
non-participation. Such equilibrium is described by a partition of
the type space, the square [v, v̄] × [v, v̄], into three sets: the
set of the types who stay out of each auction, the set of the
types who enter auction A, the set of the types who enter auction
B. We find that the equilibrium partition is characterized by an
integro-differential equation for which there is no closed form
solution.

Next, we consider the sellers’ game, in which each seller si-
multaneously chooses her reserve price, rA or rB, under the as-
sumption that the hazard rate of the distribution of the bidders’
values is increasing, which implies regularity in terms of virtual
valuations. We focus on symmetric Nash equilibria, that is such
that rA = rB = rD (D is from duopoly). The first order condition
determining rD is influenced by two effects, which we name the
business stealing effect and the virtual value effect. Starting from
rA = rB = r , a reduction of rB below r induces the entry in
auction B of some types with vB < vA who choose auction A when
rB = r; this increases the revenue of seller B and we call it the
business stealing effect. In addition, a reduction in rB reduces the
revenue of seller B if just one bidder enters auction B, but it also
determines the entry in auction B of types who previously would
find it best not to join any auction. The combination of the latter
effects is the virtual value effect. This is similar to what takes
place in a monopoly auction when the reserve price is reduced,
as in a monopoly there is no business stealing, and the sign of
the total effect on the revenue is captured by the virtual values
of the newly entered types. But under duopoly the virtual value
effect refers to a c.d.f. F̃ which is different from F and which we
describe in next paragraph.

To isolate the virtual value effect, consider the optimal reserve
price in the artificial setting in which any value of the reserve
price for auction B is automatically matched by the reserve price
for auction A. In this case there is no business stealing effect
and the types who enter auction B are those with valuation for
object B greater than the valuation for object A and greater than
the reserve price. Thus, the corresponding c.d.f. of types entering
auction B is F̃ (v) =

1
2 +

1
2F

2(v), with associated virtual value
J̃(v) = v −

1−F̃ (v)
f̃ (v)

. We find that F̃ (v) > F (v) and f̃ (v) <

f (v), so that the comparison between J̃(v) and the monopoly
virtual value J(v) = v −

1−F (v)
f (v) is not ex ante immediate. But a

mechanical computation shows that J̃(v) is strictly smaller than
J(v), which automatically implies that the optimal reserve price
in this artificial version of the duopoly, denoted rV , is larger than
the optimal reserve price rM for a monopolist.

Now consider seller B’s problem of determining the profitabil-
ity of reducing rB below r , given rA fixed at r . If r ≥ rV , then the
business stealing effect exerts a downward pressure and induces
seller B to lower rB below r; thus the equilibrium reserve price
rD is smaller than rV . Because of technical difficulties linked to
solving the above mentioned integro-differential equation, we
resort to a discretization of the set of reserve prices which each
seller can choose, and in this context we use numerical methods
to prove the existence of a pure-strategy equilibrium under the

assumption of uniformly distributed values. We find that rD may
be smaller than v, whereas rM is never below v. An important
feature of the bidders’ equilibrium is that the equilibrium par-
tition of [v, v̄] × [v, v̄] is not very sensible to a reserve price
difference when there are many bidders, which weakens the
business stealing effect when n is large. This reduces each seller i’s
incentive to reduce ri to widen the set of types entering auction i.
Consistently, in the settings we consider we see that rD increases
with n and is larger than rM for large n. However, rD is bounded
away from rV because even though ∆rB < 0 makes only a small
set of types switch from auction A to auction B, this generates
a non-negligible effect on the c.d.f. of the second highest bid in
auction B, since the latter is very sensitive to greater participation
in auction B when n is large. Therefore, even though the business
stealing effect is weak when n is large, it does not disappear in
the limit.

As a consequence, we learn that for each seller, say seller
B, there are significant differences with respect to choosing the
reserve price as a monopolist. In the latter setting, a given rB
induces participation in auction B by all bidders with value vB
greater than rB. But under duopoly, the existence of a competing
auction A induces some types with vB > rB to enter auction A if
they have high vA. This reduces seller B’s revenue, but also affects
her incentives in the choice of rB, as rB determines the set of
bidder types entering auction B in a more subtle way than under
monopoly. This affects the comparison between rD and rM .

When rD > rM holds, it is immediate that some bidder’s types
are worse off under duopoly. Precisely, consider the types with
both values less than rD, but with value for object B higher than
rM . These types are better off when there is no auction A, hence
when seller B is monopolist, than under duopoly.

The remainder of the paper is organised as follows. In Section 2
we briefly review the related literature. In Section 3 we introduce
the model. In Section 4 we examine the bidders’ game. In Sec-
tion 5 we deal with the sellers’ game. In Section 6 we conclude.
In the appendices we provide the proofs of our results.

2. Literature review

To the best of our knowledge, Parlane (2008) and Troncoso-
Valverde (2014) are the only available papers that examine com-
peting auctions with heterogenous objects.

Parlane (2008) assumes that the two objects are differentiated
à la Hotelling, thus bidders are distributed in the interval [0, 1]
and have perfectly negatively correlated values for the objects.
After determining a bidders’ equilibrium, consisting of a partition
of [0, 1] into three sets – types entering auction A, types entering
auction B, types entering no auction – Parlane (2008) deter-
mines a pure-strategy sellers’ equilibrium. Our paper analyzes a
bidimensional type space, in which each bidder’s values for the
objects are ex ante uncorrelated and cannot be summarized by
a single parameter. Thus, in our context a bidders’ equilibrium is
more complex, as it consists of a partition of the square [v, v̄] ×

[v, v̄] determined by a suitable function which we denote g ,
rather than of a partition of [0, 1] determined by two cutoffs.2
Moreover, in Section 5.5 we prove a new result for Parlane’s
setting, showing that also in such environment duopoly may
increase the equilibrium reserve price with respect to monopoly.

At the final stage of preparation of this paper, we have
learnt that Troncoso-Valverde (2014) analyzes the same environ-
ment for distributions with support [0, 1], and for this context
provides our Proposition 1. Troncoso-Valverde (2014) does not

2 In a sense, the relation between our paper and Parlane (2008) is analogous
to the relation between an Hotelling setting and the random utility model of
Perloff and Salop (1985).
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identify cases in which a pure-strategy equilibrium for the sell-
ers’ game exists, nor cases in which the equilibrium reserve
price is higher under duopoly than under monopoly. Specifically,
Troncoso-Valverde (2014) characterizes each bidder’s best replies
through cutoff strategies – in which each bidder’s auction se-
lection is determined by a function analogous to g mentioned
above – and characterizes symmetric bidders’ equilibria through
the integro-differential equation mentioned in the introduction,
showing that a unique solution to that equation exists – hence
a unique symmetric bidders’ equilibrium exists – if the reserve
prices are both positive or both zero.3

Our paper allows for bidders’ values drawn from the interval
[v, v̄] with v ≥ 0, and we determine a bidders’ equilibrium
even in the event that rA ≤ v and/or rB ≤ v. In fact, we
prove existence and uniqueness of symmetric bidders’ equilibria
for any pair of reserve prices. Moreover, we provide a more
detailed characterization of the bidders’ equilibrium, that allows
to perform comparative statics (e.g. on the number of bidders
and the sellers’ reserve prices) which is useful in understanding
some properties of the sellers’ equilibrium. Then we derive some
results for the sellers’ game,4 by identifying the virtual valuation
effect, the business stealing effect and showing that rV is an upper
bound for the equilibrium price. Finally, we perform a numeric
analysis of settings with uniformly distributed values in which
we illustrate how the interplay of the two effects determines rD.
We show that rD can be smaller or larger than the reserve price
under monopoly, but may also be smaller than v.

Our paper is related also to Burguet and Sakovics (1999),
who analyze a setting in which the two auctions offer identical
objects and each bidder has a same (bidder-specific) value for the
two objects, ex ante distributed with support [0, 1]. Hence, each
bidder has perfectly positively correlated values for the objects
and our paper – given uncorrelated values – can be viewed
as intermediate between Parlane (2008) with perfect negative
correlation, and Burguet and Sakovics (1999) with perfect pos-
itive correlation. As we illustrate in detail in Section 5.4, the
bidders’ equilibrium in Burguet and Sakovics (1999) is in mixed
strategies, whereas in our setting we determine a pure-strategy
equilibrium. Moreover, Burguet and Sakovics (1999) show that no
symmetric pure-strategy equilibrium exists in their sellers’ game
because a seller’s downward deviation is always profitable – but
a symmetric mixed-strategy equilibrium exists; no comparison
with the monopoly reserve price is provided. Conversely, in our
environment a pure-strategy equilibrium exists, at least for the
settings we consider, that is heterogeneity in bidders’ values for
the two objects softens enough competition between sellers that
a pure-strategy equilibrium may exist in the sellers’ game. In
Section 5.4 we discuss the differences between the two settings.

Virag (2010) examines the same setting as
Burguet and Sakovics (1999), but allows for more than two sellers
and shows that in some cases a symmetric pure-strategy Nash
equilibrium exists in the sellers’ game if the support for the bid-
ders’ values has a positive lower bound. Virag (2010) also shows
that if both the number of sellers and the number of bidders
tend to infinity, with an upper bound on the ratio between the
latter and the former, then for each sequence of equilibria (in pure
or mixed strategies), the equilibrium reserve price converges to
zero in distribution. McAfee (1993), Peters and Severinov (1997)
obtain analogous results for markets that are infinitely large.
Hernando-Veciana (2005) proves that there exists an equilibrium
in which each seller chooses a reserve price of zero when the
number of agents is large (but finite), under the assumption that
each seller can pick her reserve price from a finite set.

3 About uniqueness when rA = rB = 0, see also Troncoso-Valverde (2018).
4 Troncoso-Valverde (2014) establishes that a mixed-strategy equilibrium

exists. Our results suggest that a pure-strategy equilibrium exists in the settings
we consider.

3. The model

We consider a setting with two (female) sellers, A and B, and
n ≥ 2 (male) bidders. For i = A, B, seller i offers an object, object
i, using a second-price auction, called auction i, for which she
selects the reserve price ri. For j = 1, . . . , n, bidder j privately
observes his valuations vAj for object A and vBj for object B. Each
other bidder and the sellers view vAj, vBj as realizations of two
i.i.d. random variables, each having support [v, v̄] (with 0 ≤

v < v̄), c.d.f. F and density f which is continuous and positive
in [v, v̄]. Therefore, each bidder’s values belong to the set V =

[v, v̄] × [v, v̄]. Moreover, the valuations of different bidders are
independently distributed. Each seller is risk neutral and wants to
maximize her expected revenue (in the following we sometimes
omit the word expected). Each bidder is risk neutral and wants
to maximize the product between his valuation for the object
offered in the auction in which he participates and his probability
to win such object, minus his expected payment. For the sake of
brevity, in the main text we assume v = 0; in Appendix F we
examine the case of v > 0.

We analyze a game with the following (standard) timing:

Stage one: Seller i sets a reserve price ri ∈ [0, v̄) for auction i, for
all i;5 the sellers choose rA, rB simultaneously.

Stage two: After observing rA, rB, each bidder decides whether to
participate in auction A, or in auction B, or in no auction at all;
no bidder can participate in both auctions.

Stage three: After the bidders’ participation decisions, the auc-
tions take place. For i = A, B, the highest bidder in auction i wins
object i and pays to seller i the highest between ri and the second
highest bid in auction i.

In Section 5, when we examine the sellers’ game, in a set-
ting with uniformly distributed values we determine a candidate
equilibrium reserve price based on the first order condition for
maximization of a seller’s expected revenue. Then we consider a
discretization of the set of reserve prices available to each seller,
with a step of 0.001, and use numerical methods to establish that
in such setting there exists a symmetric equilibrium in which
each seller chooses the reserve price identified above.

4. Bidders’ auction choice

Since auctions A and B are second-price auctions, a weakly
dominant action at stage three for each bidder participating in
auction i is to bid his value for object i, for i = A, B.

At stage two, each bidder chooses among participation in
auction A, participation in auction B, and non-participation. For
the continuation game that begins at stage two, a Nash equi-
librium is called bidders’ equilibrium in the following. We focus
on symmetric bidders’ equilibria (but sometimes omit the word
symmetric), in which each bidder follows the same strategy of
auction choice, which depends on the bidder’s valuations but
not on his identity. Moreover, and without loss of generality, we
suppose that rB ≤ rA. Let Vi, for i = A, B, be the set of types
(vA, vB) of bidders attending auction i, and let VN be the set of
types (vA, vB) of bidders who do not attend any auction:

VN = {(vA, vB) ∈ V : vA < rA and vB < rB} (1)

It is clear that (vA, vB) ∈ Vi if vi ≥ ri and vj < rj because then
the bidder earns zero utility in auction j but may earn a positive
utility in auction i: see in Fig. 1(a) the rectangle with dashed
upper horizontal edge (in this case i = A, j = B) and the rectangle

5 If seller i sets ri = v̄, then the set of types choosing to participate in auction
i has zero measure; hence the revenue of seller i is zero.

3



M. Landi, D. Menicucci and A. Sarychev Journal of Mathematical Economics 106 (2023) 102830

Fig. 1. Sets VA , VB , VN for 0 < rB < rA (left) and 0 < rB = rA = r (right).

with dashed right vertical edge (in this case i = B, j = A). Finally,
bidders with values vA ≥ rA and vB ≥ rB will be partitioned
between VA and VB as we illustrate below.

It looks intuitive that a bidder selects auction B if and only if vB
is large relative to vA, and we express this intuition by postulating
the existence of a strictly increasing and differentiable function
g : [rA, v̄] → [rB, v̄] such that the bidder enters auction B (auction
A) if and only if vB > g(vA) (if and only if vB ≤ g(vA)).6 Precisely,
we suppose that g determines the equilibrium choices of bidder’s
types between the auctions as described in (2)–(3):7

VA = {(vA, vB) ∈ V : vA ≥ rA and vB ≤ g(vA)} (2)
VB = {(vA, vB) ∈ V : vA < rA and vB ≥ rB,

or vA ≥ rA and vB > g(vA)} (3)

and then we prove that such a function g indeed exists. Fig. 1(a)
represents the sets V (i.e., the whole square), VA, VB, VN for a case
with 0 < rB < rA.

The function g determines the boundary between the sets VA
and VB and is such that each bidder with values vA, vB = g(vA) is
indifferent between participating in auction A and participating
in auction B. In Appendix A we show that this implies g(rA) = rB
and that g solves the integro-differential equation(
1 −

∫ v̄

vA

F (g(v))f (v)dv
)n−1

= g ′(vA)
(
F (g(vA))F (vA) +

∫ v̄

vA

F (g(v))f (v)dv
)n−1

(4)

for each vA ∈ [rA, v̄].
The equality g(rA) = rB is intuitive, since a bidder with values

(vA, vB) = (rA, rB) earns zero utility from participating in either
auction, hence he is indifferent between the auctions. Eq. (4)
identifies g such that each bidder with values satisfying vB =

g(vA) is indifferent between the auctions.
In order to gain some insights about (4), given r ∈ [0, v̄) we

define g id
r as the identity function on [r, v̄], that is g id

r : [r, v̄] →

[r, v̄] satisfies g id
r (v) = v for each v ∈ [r, v̄]. The subscript r

is the lower extreme of the interval in which g id
r is defined. It

6 This intuition bas been formalized by Troncoso-Valverde (2014), and indeed
equation (4) below is the same equation he obtains for the case in which v̄ = 1.
7 In case a bidder is indifferent between the two auctions, we assume the

bidder enters auction A. Since indifference involves a set of types with zero
measure, this assumption has no practical consequences.

follows that when rA = rB = r , the function g id
r solves (4),

thus when the sellers set the same reserve price r , each bidder
participates in the auction for the object for which he has the
higher valuation, as long as such value is not less than r . Fig. 1(b)
represents the resulting sets VA, VB, VN . If instead rB < rA, then we
cannot determine analytically a solution to (4), g(rA) = rB, but we
prove in Appendix B that a unique solution exists.

In this way we establish the existence of a bidders’ equi-
librium, but in fact Troncoso-Valverde (2014) shows that each
bidders’ equilibrium (recall that we are considering symmetric
equilibria) is characterized by the sets VN , VA, VB in (1)–(3) with
a function g satisfying (4), g(rA) = rB. Since we prove that there
exists a unique solution to (4), g(rA) = rB, it follows that a unique
bidders’ equilibrium exists.

As the initial condition g(rA) = rB for (4) implies that (rA, rB)
affect g , in the following we write g(vA; rA, rB), or g(vA; r) with
r = (rA, rB), to represent the unique solution to (4), g(rA) = rB.

Proposition 1. Consider rA, rB such that rB ≤ rA < v̄. There
exists a unique symmetric bidders’ equilibrium, and it is described
by the sets VN , VA, VB in (1)–(3), in which g is defined in [rA, v̄]

and is the unique solution to (4), g(rA; r) = rB. Moreover, for each
vA ∈ (rA, v̄], g(vA; r) is strictly increasing with respect to rB and
strictly decreasing with respect to rA. In particular, if rB < rA then
g(vA; r) < vA for each vA ∈ [rA, v̄].8

By Proposition 1, if rB < rA then g(vA; r) < vA holds for each
vA ∈ [rA, v̄]. In particular, starting from rB = rA, a reduction in rB
makes auction B more attractive by reducing the price a bidder
pays in auction B if no other bidder enters auction B. This attracts
into auction B some types with a lower value for object B than
for object A. Precisely, given rB < rA, each type with vB ≥ vA ≥ rA
participates in auction B – these are types above the graph of g id

rA
in Fig. 2 – but also the types with vA > rA and vA > vB, as long as
vB is close enough to vA, enter auction B to benefit from a lower
reserve price: see the shaded region in Fig. 2 between the graph
of g and the graph of g id

rA .
As we mentioned in Section 2, Burguet and Sakovics (1999)

examine a setting in which the two auctions offer identical ob-
jects and each bidder j has a same value vj for each of the two
objects. Burguet and Sakovics (1999) prove that a unique sym-
metric bidders’ equilibrium exists, and it is in mixed strategies.
We explain in Section 5.4 why we obtain a different result, and
how it affects the sellers’ game.

8 As we mentioned in Section 2, Troncoso-Valverde (2014) proves
Proposition 1 for the case of [v, v̄] = [0, 1].
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Fig. 2. Given 0 < rB < rA , the types in the shaded region enter auction B even
though vA > rA and vA > vB .

5. The sellers’ game

In this section we examine the game in which seller i selects
a reserve price ri, anticipating that given rA, rB, the bidders will
choose among auction A, auction B, and non-participation accord-
ing to the bidders’ equilibrium described by Proposition 1. We
suppose that the hazard rate f (v)

1−F (v) is increasing, which implies
that the virtual valuation function J(v) = v −

1−F (v)
f (v) is strictly

increasing. In the next subsection we derive the expected revenue
functions.

5.1. The revenue functions

Let Ri(rA, rB) denote the expected revenue of seller i. In this
subsection we derive an expression for RA(rA, rB) and for RB(rA, rB).
Without loss of generality, we still suppose that rB ≤ rA.

For each v ∈ [rA, v̄] we denote by FA(v; r) the probability that
a bidder stays out of auction A, or enters auction A but has a value
for object A less than the given v, hence bids less than v in auction
A. Therefore

FA(v; r) = 1 −

∫ v̄

v

F (g(x); r)f (x)dx for each v ∈ [rA, v̄] (5)

In Fig. 3, FA(v; r) is the measure of the non-shaded region. In
order to interpret FA(v; r), consider for instance bidder 1, assume
that he participates in auction A and that his value for object
A is v ≥ rA. Then consider another bidder, say bidder 2. From
the point of view of bidder 1, FA(v; r) is the probability he beats
bidder 2 in auction A, either because bidder 2 does not enter
auction A, or because bidder 2 participates in auction A but bids
less than v.9 We employ α to represent the probability that a
bidder has values in VA and then we see that FA(rA; r) = 1 − α.
We extend FA for v < rA in such a way that FA(v; r) = 0 for each
v < 0, and FA(v; r) = 1 − α for each v ∈ [0, rA). Then FA can be
viewed as a c.d.f. with support [0, v̄],

In a similar way we define FB. We first denote with g−1 the
inverse function of g with respect to its first variable: for each

9 This approach is analogous to the one in McAfee (1993), and indeed the
function FA here is analogous to the function z introduced in (12) in McAfee
(1993). But in our setting bidders have different values for the two objects, thus
we introduce below a function FB for auction B, and also FB is analogous to the
function z.

Fig. 3. Given rA , rB such that 0 < rB < rA and given v ∈ (rA, v̄), FA(v; rA, rB) is
the measure of the non-shaded region.

v ∈ [rB, g(v̄; r)], g−1(v; r) is defined as w such that g(w; r) = v.
Then, for each v ∈ [rB, v̄], we let FB(v; r) represent the probability
that a given bidder stays out of auction B, or enters auction B but
has value for object B less than v, hence bids less than v in auction
B:

FB(v; r) =

⎧⎨⎩
F (v)F (g−1(v; r))

+
∫ v̄

g−1(v;r) F (g(x; r))f (x)dx if v ∈ [rB, g(v̄; r)]
F (v) if v ∈ (g(v̄; r), v̄]

(6)

and we extend FB for v < rB as we described for FA.
The functions FA, FB determine the sellers’ revenues because

for i = A, B, the c.d.f. Fi can be viewed, for each bidder, as the c.d.f.
of the bid that the considered bidder makes in auction i, with the
interpretation that a bid less than ri is equivalent to the bidder
not entering auction i. This reveals that seller i earns the same
expected revenue as a monopolist seller setting reserve price ri
and facing n bidders, each with value distributed according to Fi.
Therefore, for v ≥ ri we let

Ji(v; r) = v −
1 − Fi(v; r)

fi(v; r)
for i = A, B

denote the virtual value function for Fi, in which fi(v; r) is the
partial derivative of Fi with respect to its first variable, and we
use Ji to evaluate Ri(rA, rB) as

Ri(rA, rB) =

∫ v̄

ri

Ji(v; r)dF n
i (v; r) (7)

That is, Ri(rA, rB) is the expectation of the virtual value of the
bidder with the highest value (as long as it is greater than ri),
out of n draws from the c.d.f. Fi.10 It is important to notice that
ri affects both the interval of integration in the right hand side
in (7), as in a monopoly auction, and the integrand function.11 In
next subsection, from (7) we derive a first order condition for a

10 Since we focus on the case of rA, rB such that rA ≥ rB , it follows that
RA(rA, rB), RB(rA, rB) introduced in (7) are defined only when rA ≥ rB . In case
that rB > rA , the revenues can be obtained by using (7) as follows: the revenue
of seller A is equal to RB(rB, rA), the revenue of seller B is equal to RA(rB, rA).
11 Notice that how Fi has been extended for values less than ri does not affect
Ri(rA, rB) in (7).
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symmetric equilibrium in the sellers’ game. Before that, we make
two remarks about FA, FB.

Remark 1. As it is intuitive, under duopoly each seller faces a
worse distribution of bids in her auction compared to when she
is monopolist. For instance, suppose that seller B is a monopolist
as there is no seller A nor auction A. Then seller B faces n bidders,
each with a value distributed according to F . Moreover, suppose
that in such a setting seller B sets a reserve price equal to rB.
From (6) it follows that F (v) ≤ FB(v; r) for each v ∈ [rB, v̄], with
strict inequality for v ∈ [rB, g(v̄; r)), that is F first order stochasti-
cally dominates FB. In this sense, for each rB ≤ rA the existence of
seller A makes seller B face a worse distribution of bids relative
to a monopolist, thus lowering seller B’s expected revenue. This
occurs because each bidder has the option to enter auction A, and
there are some types with vB > rB who do not enter auction B as
they prefer auction A. (These are the types with (vA, vB) below
the graph of g .) Similarly, F first order stochastically dominates
FA in (5). Hence, each seller – independently of whether she plays
the higher or the lower reserve price – faces a worse c.d.f. of bids
with respect to a monopolist.12 □

Remark 2. Here we introduce a c.d.f. F̃ which plays an important
role in the following. Remember that when rA = rB = r , the
solution to (4) is g id

r . In this case the bidder’s types who enter
auction B (auction A) are those with vB > vA and vB ≥ r (with
vA ≥ vB and vA > r): see Fig. 1(b). Then FB in (6) and FA in (5)
both coincide with F̃ such that13

F̃ (v) =
1
2

+
1
2
F 2(v) for each v ∈ [0, v̄], and

f̃ (v) = F̃ ′(v) = f (v)F (v) (8)

Consistently with Remark 1, F first order stochastically dominates
FB = F̃ . Since we consider equilibria such that rA = rB = r , the
c.d.f. F̃ will appear in the first order condition determining the
equilibrium reserve price and in the evaluation of the equilibrium
revenue. □

5.2. First order condition for the equilibrium reserve price

We focus on symmetric Nash Equilibria, such that rA = rB = r ,
and without loss of generality we consider the point of view of
seller B. From (7) with i = B, given rA = r , we derive a first order
condition for the equilibrium reserve price. Precisely, in (9) below
we use ∂FB(v;r)

∂rB
to denote the partial derivative of FB with respect

to its third variable rB, and in particular ∂FB(rB;r)
∂rB

denotes such
partial derivative evaluated at v = rB. We obtain (the derivation
steps are in Appendix C)
∂RB(r, rB)

∂rB
= −nF n−1

B (rB; r)fB(rB; r)JB(rB; r)

−nrBF n−1
B (rB; r)

∂FB(rB; r)
∂rB

− n(n − 1)

×

∫ v̄

rB

F n−2
B (v; r)[1 − FB(v; r)]

∂FB(v; r)
∂rB

dv (9)

The term in the right hand side of the first line in (9) is the
derivative of RB with respect to the lower extreme of the inte-
gration interval in (7), and the terms in the second line in (9)

12 We thank one referee for suggesting this remark.
13 Precisely, from (6) we obtain FB(v) =

1
2 +

1
2 F

2(v) for each v in the interval
[r, v̄]. For v ∈ [0, r) we extend FB , that is F̃ , as specified in (8), that is by using
the same expression 1

2 +
1
2 F

2(v). This allows to view F̃ as independent of r , which
facilitates the interpretation in the following but does not affect revenues.

represent the effect on the integrand function in (7) of a change
in FB determined by a change in rB through g . Precisely, a change
in rB induces a shift of g which affects FB through (6). Indeed,
from (6) we find14

∂FB(v, r)
∂rB

=

∫ v̄

g−1(v;r)
f (g(x; r))f (x)

∂g(x; r)
∂rB

dx for each v ∈ [rB, g(v̄; r)]

(10)

Since rA = rB = r in a symmetric equilibrium, we evaluate (9)
at rB = r . Then g and g−1 coincide with g id

r , FB reduces to F̃ in (8),
and (9) yields

∂RB(r, r)
∂rB

= −nF̃ n−1(r)f̃ (r)J̃(r)

− nrF̃ n−1(r)
∫ v̄

r
f 2(v)

∂g(v; r, r)
∂rB

dv − n(n − 1)

×

∫ v̄

r
F̃ n−2(v)(1 − F̃ (v))

∫ v̄

v

f 2(u)
∂g(u; r, r)

∂rB
dudv

(11)

in which

J̃(r) = r −
1 − F̃ (r)

f̃ (r)

is the virtual value function of F̃ .15
In order to interpret (11), we notice that a reduction in rB

below r shifts g downward from g id
r by Proposition 1, that is

induces some types of bidder with vB < vA to move from auction
A to auction B – see the lighter shaded region in Fig. 4 – which
increases RB. We call this the business stealing effect (from auction
A to auction B) of a reduction in rB and it is represented by the
terms in the second line in (11), in which ∂g(v;r,r)

∂rB
is the derivative

of g with respect to rB evaluated at rA = r , rB = r . But a decrease
in rB also induces the entry in auction B of some types with vB >

vA who would stay out of either auction without the reduction
in rB: see the darker shaded region in Fig. 4. Finally, ∆rB < 0
reduces the revenue of seller B if just one bidder enters auction
B. The combination of the two latter effects is captured by the
first term in the right hand side of (11). Because of the function
J̃ , we call this combination the virtual value effect, and notice that
−nF̃ n−1(r)f̃ (r)J̃(r) can be written as nF̃ n−1(r)(1 − F̃ (r) − r f̃ (r)),
perhaps a more familiar expression. The virtual value effect is the
unique effect at work in a monopoly context, in which a change in
the reserve price does not affect the distribution of values of the
bidders participating in the auction, but affects only the marginal
type of bidder who participates. The virtual value of that type
captures the effect on revenue of participation of such type.

In order to get a better intuition about the virtual value effect,
consider the equation

J̃(r) = 0 (12)

14 In the proof of Proposition 1 we show that g is a continuously differentiable
function of (rA, rB).
15 In fact, as Footnote 10 explains, the revenue of seller B is given by RB(rA, rB)
defined in (7) if and only if rA ≥ rB . Thus

∂RB(r,r)
∂rB

in (11) is the left derivative
of RB with respect to rB , at rB = r . We can obtain the right derivative recalling
that when rB > r (here rA is fixed at r) the revenue of seller B is RA(rB, r), and
taking the derivative of this function with respect to its first variable when that
variable is equal to r . In Landi et al. (2023) we show that when rA = rB , the
left and the right derivative coincide. Hence, ∂RB(r,r)

∂rB
= 0 from (11) is indeed the

‘‘bilateral’’ first order condition for maximization of the revenue of seller B with
respect to rB .
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Fig. 4. The effect on VB of a reduction in rB from r to r − ε, given rA = r .

Fig. 5. Increased participation in auction B when rA = rB and the common
reserve price is reduced from r to r − ε.

for which there exists a unique solution in (0, v̄),16 which we de-
note with rV (V is from virtual value effect). We can see why (12)
and its solution rV are relevant to us by considering a setting in
which for each rB chosen by seller B, rA is set equal to rB; we
denote with r this common reserve price. Then a reduction in
the common reserve price from r to r − ε (with ε > 0) reduces
the revenue in auction B if just one bidder enters auction B but
also induces the participation in auction B of some types with
vB > vA: see the shaded region in Fig. 5. However, ∆r < 0 does
not generate business stealing because rA and rB vary by the same
amount, hence g does not shift and the set VB widens only by
the shaded region in Fig. 5. Therefore, here we have the same
virtual value effect captured by the right hand side of the first
line in (11). In fact, the darker shaded region in Fig. 4 does not
coincide precisely with the shaded region in Fig. 5 because of
the set of types in the triangle {(vA, vB) : vA ∈ [r − ε, r] and
vB ∈ [r − ε, vA]}. But when ε is close to zero, the measure of this
triangle is an infinitesimal of order greater than the measures of
the other sets, hence it does not affect the derivative in (11).

16 The property that the hazard rate of F is increasing implies that J̃ is strictly
increasing.

In the context with equal reserve prices, RB(r, r) is equal to∫ v̄

r J̃(vB)dF̃ n(vB) and it is interesting to maximize RB(r, r). This
is a standard monopoly problem in which the c.d.f. for each
bidder’s value is F̃ . The optimal r solves (12), that is it eliminates
the bidder’s types with negative virtual valuation (or negative
marginal revenues: see Bulow and Roberts (1989). Hence, the
optimal r is equal to rV .

Remark 3. On the interpretation of rV . It may look unintuitive to
maximize RB with respect to r , given rA = rB = r , since rA is not
chosen by seller B. Alternatively, we may think of a seller running
both auctions, and setting the same reserve price rA = rB = r .
Then the seller’s objective is RA(r, r) + RB(r, r), which is equal to
2RB(r, r) since RA(r, r) = RB(r, r), and the optimal r is rV also in
this case. Thus we can view rV as the optimal reserve price for a
seller running both auctions. □

Now we let rM denote the optimal reserve price that, say,
seller B would set in the absence of auction A – in this case seller
B is monopolist – and we show that rV > rM . For a monopolist
facing bidders with values distributed according to the c.d.f. F , it
is well known that rM solves J(r) = 0, that is r −

1−F (r)
f (r) = 0.

From (8) it follows that the inequality 1−F̃ (r)
f̃ (r)

>
1−F (r)
f (r) holds for

each r ∈ (0, v̄), hence J̃(r) < J(r). Therefore the virtual value J̃ for
a seller running both auctions is lower than the virtual value for
a single-object monopolist auction, therefore rV > rM . In other
words, maximizing RB(r, r) leads to a reserve price greater than
rM , a result we record in Proposition 2 below. We remark that the
inequality 1−F̃ (v)

f̃ (v)
>

1−F (v)
f (v) , which implies rV > rM , is determined

by the inequality f̃ (v) = f (v)F (v) < f (v). The latter inequality
means that a reserve price reduction given the density f̃ is less
effective in attracting new bidders into the auction than given the
density f .

We now use (11) to show that if (rA, rB) = (rD, rD) is an equi-
librium, then rD < rV . In fact, the first term in the right hand side
of (11), −nF̃ n−1(r)f̃ (r)J̃(r), is zero at r = rV , since J̃(rV ) = 0, and is
negative for r > rV , since J̃ is strictly increasing (see Footnote 16).
Furthermore, Proposition 1 reveals that ∂g(v;r,r)

∂rB
≥ 0 for each v ∈

[r, v̄], and g(r; r, rB) = rB implies ∂g(r;r,r)
∂rB

= 1 and that ∂g(v;r,r)
∂rB

>

0 for v close to r . Therefore, both nrF̃ n−1(r)
∫ v̄

r f 2(v) ∂g(v;r,r)
∂rB

dv and
n(n − 1)

∫ v̄

r F̃ n−2(v)(1 − F̃ (v))
∫ v̄

v
f 2(u) ∂g(u;r,r)

∂rB
dudv are positive for

each r ∈ [0, v̄). This implies ∂RB(r,r)
∂rB

< 0 for each r ∈ [rV , v̄) and
rD < rV – that is the business stealing effect makes rD smaller
than rV . In other words, if seller A chooses rA ≥ rV then seller B
is unwilling to set rB = rV because a slightly smaller rB induces
a few types with vA > vB to choose auction B, which widens the
set VB in a profitable way for seller B.

Proposition 2. The expected revenue RB(r, r) is maximized at r =

rV which solves (12), and rV is greater than rM , the optimal reserve
price for a monopolist. If (rA, rB) = (rD, rD) is an equilibrium when
the two sellers compete, then rD < rV .

From the perspective described in Remark 3, we conclude that
a seller running both auctions – and choosing rA = rB – sets
a reserve price rV higher than the reserve price rM chosen by
a monopolist who auctions a single object and faces no com-
petition (and thus is more harmful in terms of social welfare).
Duopoly competition leads to a reserve price lower than rV , but
the comparison between rD and rM is not immediate and we
show in next subsection that it depends on the virtual value effect
and the business stealing effect. We remark that the comparison
between rV and rD involves settings with two objects on sale – in
this case competition leads to lower reserve prices – whereas the

7
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comparison between rM and rD involves one setting with a single
object and one with two objects – in this case competition (and
a higher number of objects) may lead to higher reserve prices.

5.3. Nash equilibrium for the uniform environment

From (11) we see that evaluating ∂g(v;r,r)
∂rB

is necessary in order
to evaluate ∂RB(r,r)

∂rB
. In Appendix C we show that it is possible

to represent ∂g(v;r,r)
∂rB

through the solution of a variational matrix
differential equation derived from (4). Unfortunately, no analytic
solution is available for this equation, but once F is specified,
numerical methods can be applied to solve the equation. Thus
we focus on the case in which F is the c.d.f. of the uniform dis-
tribution with support [0, 1] and we consider n in the following
set N :

N = {2, 5, 10, 15, 20} (13)

For each n ∈ N , given r < v̄ we evaluate (11) and determine
r which satisfies ∂RB(r,r)

∂rB
= 0; we denote such r with rDn . In (14)

below we report rDn for each n ∈ N – in addition to rM , rV which
do not depend on n – after rounding to the third decimal digit
(see Landi et al. (2023). We conjecture that (rA, rB) = (rDn , rDn ) is
an equilibrium of the sellers’ game, and in order to prove this
conjecture we need to show that RB(rDn , rB), a function of rB, is
maximized at rB = rDn . The lack of an explicit solution to (4)
prevents us from proving this result analytically. However, for
each given rB we can use Wolfram Mathematica to solve (4) nu-
merically, which allows to determine the c.d.f. FB and to evaluate
RB(rDn , rB). Then we consider the finite set Sn consisting of each
number in [0, 1) that differs from rDn by a multiple (negative
or positive) of 1

1000 – see (15) below – and suppose that each
seller’s reserve price must be chosen from this set. By evaluating
RB(rDn , rB) numerically we find that RB(rDn , rDn ) > RB(rDn , rB) for each
rB ∈ Sn \ {rDn }, and for each n ∈ N .17 Therefore, for each n ∈ N
we conclude that (rA, rB) = (rDn , rDn ) is indeed an equilibrium of
the sellers’ game when Sn is the set of feasible reserve prices for
each seller. We have also verified that rB = rDn is a local maximum
point for RB(rDn , rB) as we find that ∂2RB(rDn ,rDn )

∂r2B
is negative.18 Fig. 6

shows the graph we obtain for RB(rD2 , rB) when n = 2.

Proposition 3. Suppose that each valuation is uniformly distributed
with support [0, 1]. For each n in the set N in (13), consider rDn as
follows:

rD2 = 0.445, rD5 = 0.479, rD10 = 0.496, rD15 = 0.503,

rD20 = 0.507; rM = 0.5, rV = 0.577 (14)

Then (rA, rB) = (rDn , rDn ) is an equilibrium of the sellers’ game in
which the set of feasible reserve prices for each seller is

Sn = {rB ∈ [0, 1) : rB = rDn +
1

1000
z for some integer number z} (15)

Proposition 3 establishes that a pure-strategy equilibrium ex-
ists in the sellers’ game, at least for the environments it cov-
ers, unlike the sellers’ game examined by Burguet and Sakovics

17 Numerical methods involve approximation errors, but (i) RB(rDn , rDn ) can be
evaluated analytically without any approximation error; (ii) Mathematica allows
to set an upper bound for approximation errors, and the upper bound on the
approximation error when evaluating RB(rDn , rB) is smaller, for each rB ∈ Sn \{rDn },
than the difference between RB(rDn , rDn ) and the evaluated RB(rDn , rB): see Landi
et al. (2023).
18 In Landi et al. (2023) we derive variational equations to evaluate ∂2g(v;rDn ,rDn )

∂r2B

and ∂2RB(rDn ,rDn )
∂r2B

.

(1999) with homogenous objects. In Section 5.4 we discuss the
relationship between the two results.

Moreover, Proposition 3 shows that the equilibrium reserve
price under duopoly can be smaller or higher than under
monopoly. Precisely, (14) shows that rDn < rM when n is relatively
small, but rDn > rM holds for large n. We can understand this
result if we recall the virtual value effect and the business stealing
effect introduced in Section 5.2. The former effect tends to favor
a reserve price higher than rM – recall from Proposition 2 that
rV > rM – but if n is small business stealing provides an incentive
for each seller to be aggressive because g is relatively sensible
to differences in reserve prices when n is small. This pushes the
equilibrium reserve price below rM .

However, the next proposition describes a feature of the func-
tion g which makes the business stealing effect weak for a large
n.

Proposition 4.
Given rA, rB such that rB ≤ rA, let g be the unique solution to (4),

g(rA; r) = rB. Then:
(i) As n tends to +∞, g converges uniformly to g id

v̂A
in the interval

[v̂A, v̄] for each v̂A ∈ (rA, v̄).
(ii) Given an arbitrary r ∈ (0, v̄), let θ = maxw∈[r,v̄]

f (w)
F (w) > 0.

Then we have(
1 + F 2(r)
1 + F 2(v)

)n−1 (
1 − 2θ

n − 1
n − 2

(v − r)
)

<
∂g(v; r, r)

∂rB
<

(
1 + F 2(r)
1 + F 2(v)

)n−1

for each v ∈ (r, v̄] (16)

Proposition 4(i) implies that for a large n, a difference between
reserve prices has a small effect on bidders’ auction choices since
for given rB < rA, g becomes close to g id

rA and the set of types
with vA > vB who participate in auction B is small. In fact, if a
bidder with value vi participates in auction i, he (wins and) pays
ri if and only if no other bidder enters auction i. But when n is
large, such event is very unlikely. It is much more likely that a
substantial number of bidders participate in either auction, and
so it is more important for a bidder to be in the auction for the
object for which he has a higher value, even though the reserve
price in that auction is higher. Hence, rB smaller than rA induces
only a small set of types with vA > vB to enter auction B.

By Proposition 4(i), for a large n a reduction in rB below rA = r
shifts g only slightly below the identity function, and indeed (16)
in Proposition 4(ii) reveals that ∂g(vA;r,r)

∂rB
converges to 0 for each

vA ∈ (r, v̄] as n tends to infinity. This suggests that the business
stealing effect is weak when n is large and provides a reduced
incentive to sellers to be aggressive. In fact, also the virtual value
effect weakens as n tends to infinity, since −nF̃ n−1(r)f̃ (r)J̃(r)
in (11) tends to 0. This is linked to the fact that nF̃ n−1(r)f̃ (r) is
the density of the highest out of n draws from the c.d.f. F̃ , and
when n is large almost all the probability is concentrated near v̄;
thus the probability that the highest draw is close to r < v̄ is very
small. However, our numerical results indicate that the business
stealing effect weakens with respect to the virtual value effect
when n increases, and this makes rD greater than rM .

From a different perspective, suppose we are at rA = rB = rM .
We notice that for, say, seller B the virtual value effect favors an
increase in rB above rM , since J̃(rM ) < 0. For a large n, the business
stealing effect is weak with respect to the virtual value effect.
Thus the bidder’s types who move from auction B to auction
A because of ∆rB > 0 constitute a set with measure close to
0, which does not discourage seller B from increasing rB above
rM . This suggests that rD is greater than rM when n is large,

8
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Fig. 6. The graph of RB(rD2 , rB) when n = 2, with rD2 = 0.445.

Fig. 7. Equilibrium reserve prices under duopoly (diamonds) given n =

2, 5, 10, 15, 20, and rM (circles), rV (squares) when F is uniform on [0, 1].

as Proposition 3 indicates for a specific environment.19 Fig. 7
represents graphically rM , rV , and rDn for n ∈ N .20

Corollary 5. There exist duopoly settings with a discretized set of
feasible reserve prices (with step of 0.001), in which the equilibrium
reserve price is greater than the reserve price under monopoly.

When rM < rD, some bidder’s types have zero utility un-
der duopoly even though they would earn positive utility under
monopoly. In order to see this, suppose that seller B is monopolist
as there is no auction A and, therefore, only the value vB is
relevant. Then consider a type with values (vA, vB) such that vA <
rD and rM < vB < rD. Under monopoly of seller B, this type has
a positive utility from participating in auction B since vB > rM .
But since vA and vB are both smaller than rD, under duopoly this
type does not participate in any auction; hence he is harmed by
the existence of a second auction.

19 Proposition 3 also reveals that the equilibrium reserve price under duopoly
depends on the number of bidders, as n affects both ∂g(v;r)

∂rB
and the effect

of a change in rB on F (n)
B in (7) when i = B. Under monopoly, the optimal

reserve price is constant with respect to n when the virtual valuation function
is increasing, but may depend on n otherwise: see Menicucci (2021).
20 In Appendix F we allow for v > 0 and provide an example in which rD < v,
although under monopoly the seller never sets the reserve price below v.

Although (14) suggests that rDn increases with n, we remark
that as n tends to +∞ it is not the case that the equilibrium
reserve price converges to rV . Proposition 6 below establishes
that there exists an upper bound r ′ for rD, and that r ′ is smaller
than rV . Such result does not rely on uniformly distributed values,
nor on discretizations or numeric analysis, but relies on the lower
bound for ∂g(vA;r,r)

∂rB
provided by (16).

Proposition 6. There exists r ′ < rV such that for each n, if r satisfies
∂RB(r,r)

∂rB
= 0 then r < r ′.

We mentioned above that the business stealing effect weak-
ens with respect to the virtual value effect as n increases, but
Proposition 6 establishes that it does not disappear in the limit
as n tends to +∞, and rather makes rD not only smaller than rV ,
but also bounded away from rV for each n. In the following we
provide a few details about how this result is established, which
clarify the root of the result. First notice that nF̃ n−1(r) > 0 for
each r ∈ [0, v̄), then observe that the left hand side in (17) is
equal to the right hand side in (11) divided by nF̃ n−1(r), since
−f̃ (r)J̃(r) = 1 − F̃ (r) − r f̃ (r). Hence, we can write ∂RB(r,r)

∂rB
= 0

as

1 − F̃ (r) − r f̃ (r) − r
∫ v̄

r
f 2(v)

∂g(v; r, r)
∂rB

dv

−

∫ v̄

r

F̃ n−2(v)(1 − F̃ (v))

F̃ n−1(r)

(
(n − 1)

∫ v̄

v

f 2(u)
∂g(u; r, r)

∂rB
du
)
dv = 0

(17)

From our discussion just before Proposition 2, we see that
the left hand side in (17) is negative for each r ≥ rV . Consid-
ering r < rV , the upper bound for ∂g(v;r,r)

∂rB
in (16) implies that

limn→+∞
∂g(v;r,r)

∂rB
= 0 and limn→+∞ r

∫ v̄

r f 2(v) ∂g(v;r,r)
∂rB

dv = 0.
However, using the lower bound for ∂g(v;r,r)

∂rB
in (16) we prove in

Appendix E that the term
∫ v̄

r
F̃n−2(v)(1−F̃ (v))

F̃n−1(r)

(
(n−1)

∫ v̄

v
f 2(u) ∂g(u;r,r)

∂rB

du
)
dv is positive and bounded away from zero. As a consequence,

there exists a left neighborhood of rV in which the left hand side
in (17) is negative for each n and each solution to (17) is smaller
than an r ′ which is less than rV .

We notice that
∫ v̄

r
F̃n−2(v)(1−F̃ (v))

F̃n−1(r)

(
(n − 1)

∫ v̄

v
f 2(u) ∂g(u;r,r)

∂rB
du
)
dv

is linked to the effect of a change in g on the c.d.f. of the

9
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Table 1
rab , rM and rV for a, b ∈ {1, 2, 3, 4} × {1, 2, 3, 4} and n = 2 .
a/b 1 2 3 4

1 0.445 0.500 0.577 0.318 0.333 0.393 0.243 0.250 0.297 0.196 0.200 0.239

2 0.485 0.577 0.669 0.385 0.422 0.500 0.312 0.333 0.400 0.262 0.276 0.333

3 0.506 0.630 0.723 0.428 0.486 0.571 0.361 0.398 0.474 0.311 0.338 0.405

4 0.515 0.669 0.760 0.456 0.536 0.623 0.397 0.450 0.530 0.349 0.389 0.462

second highest of n draws from the c.d.f. FB, denoted F (2)
B (see

the derivation of ∂RB(r,r)
∂rB

in Appendix C). When n is large, a small
change in rB generates a tiny change in g , which leads to a tiny
change in FB. But this generates a non-negligible change in F (2)

B as
a large n makes F (2)

B very sensible to a change in FB; this explains
why the last term in (17) is bounded away from 0.

The result that the equilibrium reserve price under duopoly
may be greater than under monopoly turns out to hold also in the
model of Parlane (2008), although such result is not mentioned
in Parlane (2008). In Section 5.5 we describe this result, provide
an intuition for it, and compare it to our result.

Remark 4. Business stealing effect and virtual value effect for
some Beta distributions. The Beta distribution has support [0, 1]
and density f (x) = xa−1(1 − x)b−1/B(a, b), with B(a, b) =

∫ 1
0 xa−1

(1−x)b−1dx. After setting n = 2, we have used numerical methods
to solve ∂RB(r,r)

∂rB
= 0 for a = 1, 2, 3, 4 and b = 1, 2, 3, 4, denoting

the solution with rab.21 We also computed the corresponding
values of rM and rV . The results are reported in Table 1.

We find that as a (b) increases, rab, rM , rV all increase (de-
crease), as it is intuitive since the Beta distribution with a higher
a (b) first order stochastically dominates (is first order stochas-
tically dominated by) the Beta distribution with a lower a (b).
Whereas we find rab < rM for each a, b we consider, we see that
the difference rM − rab increases (decreases) as a (b) increases. In
particular, the virtual valuation effect – which favors an increase
in rab above rM – becomes stronger as a increases, but also the
business stealing effect – which favors a decrease in rab below rM
– becomes stronger as a increases and the strengthening of the
latter is greater than the strengthening of the former. The result is
that rab is increasingly distant from rM as a increases. The reverse
occurs if b increases, as then both the virtual value effect and the
business stealing effect becomes weaker, but the weakening of
the latter is more significant than the weakening of the former,
and rab is increasingly close to rM as b increases. □

5.4. Comparison with Burguet and Sakovics (1999)

In the setting with homogenous objects of Burguet and Sakovics
(1999), each bidder j has a same (bidder-specific) value vj for
each of the two objects; vj is ex ante i.i.d. across bidders, with
support [0, 1] and c.d.f. F . We here illustrate and explain the main
differences between the results in our paper and in Burguet and
Sakovics (1999).

5.4.1. Differences in the bidders’ game
Given rB ≤ rA, Burguet and Sakovics (1999) prove that a

unique symmetric bidders’ equilibrium exists, it is in mixed

21 We have not analyzed a seller’s profitability from deviating from rab given
that the other seller chooses rab .

strategies and is characterized by a cutoff w ≥ rA as follows:⎧⎪⎨⎪⎩
each bidder with value v < rB stays out of each auction
each bidder with value v ∈ [rB, w) enters auction B
each bidder with v ∈ [w, 1] randomizes,

entering either auction with probability 1
2

(18)

and type w is indifferent between the auctions, a condition that
reduces to

rA = w −

∫ w

rB
(F (z) +

1
2 −

1
2F (w))n−1dz( 1

2 +
1
2F (w)

)n−1 (19)

In (19), the left hand side is the expected payment of type w in
case he participates in auction A and wins – in view of (18), he
wins if and only if no other bidder enters auction A, and then
pays rA. The right hand side is the expected payment of type w

if he participates in auction B and wins.22 Since type w has the
same probability

( 1
2 +

1
2F (w)

)n−1
to win in either auction, he is

indifferent between the auctions if and only if the two expected
payments are the same, which (19) establishes. In particular, w =

rA if and only if rB = rA. Moreover, w = 1 if rA is quite larger than
rB, as then the right hand side in (19) is less than the left hand
side for each w ∈ [rB, 1].

In order to explain the randomized entry choices of each type
in the interval [w, 1], Burguet and Sakovics (1999) show that
in equilibrium these types need to be indifferent between the
auctions.23 Since indifference holds for type w, the utility of
type v > w from participating in auction A must grow at the
same rate, as v grows, as the utility from entering auction B;
this occurs if and only if each type in [w, 1] selects each auction
with probability 1

2 . Hence, the entry choice of a bidder with value
above w does not depend on rA, rB, although w does. For instance,
suppose that rA = rB = r , which implies w = r . Then consider
a reduction of rB to r − ε, with ε > 0. This creates an interval
[r − ε, w) of types, with w > r , who enter auction B with
probability 1. But ∆rB < 0 does not affect the entry choices
of bidders with value above w, that is it has only a local effect,
affecting bidders with value close to r but not bidders with high
value.

Conversely, in our setting with heterogeneous objects no
mixed strategies emerge in equilibrium because there is only a
zero measure set of bidders which are indifferent between the
auctions, that is the types with values on the graph of g . More in
detail, recall that for i = A, B, Fi(vi; r) can be interpreted as the

22 Precisely, the right hand side is determined by deriving a c.d.f. FB for the bid
submitted by any bidder in auction B (as we have done in (6) for our setting),
which is FB(v; r) = F (v)+ 1

2 −
1
2 F (w) for each v ∈ [rB, w]. Then we evaluate the

expectation of the highest between rB and n−1 realizations from FB , given that
each realization is less than w.
23 There cannot be an interval I included in [w, 1] such that all types in I
prefer auction B to A (say), because if such interval existed then all types in I
would enter auction B and there would be more competition in auction B than
in A. Thus the types in I would earn a lower utility in auction B than in A, which
is a contradiction.

10
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probability that a bidder with value vi for object i participating in
auction i beats another given bidder relative to auction i. Then we
apply Lemma 2 in Myerson (1981), which implies that for a bidder
who participates in auction A and has valuation vA for object A,
the utility is the integral of the probability to win the auction,
over the values smaller than vA, plus the utility of the lowest type
– which here is zero. Hence, for a bidder with values (vA, vB), and
vi > ri, the expected utility from participating in auction i is

ui(vi; r) =

∫ vi

ri

F n−1
i (z; r)dz (20)

Then, as Troncoso-Valverde (2014) remarks, given vA ≥ rA and
vB ≥ rB, a bidder is indifferent between the two auctions if and
only if uA(vA; r) = uB(vB; r). Since uA, uB are strictly increasing
functions, it follows that the equality uA(vA; r) = uB(vB; r) holds
only in a set of (vA, vB) with zero measure. For the types in this set
it is optimal to choose randomly or deterministically the auction
to participate in (about this, see Footnote 7), but this has no effect
on the sellers’ revenues.

Another difference with respect to the case of homogenous
objects is revealed by Proposition 1: Given rA = rB = r , a
reduction in rB below r reduces g(vA; r), with respect to g id

r (vA) =

vA, for each vA ∈ [r, v̄]. Therefore, a reduction in rB determines
a downward shift of the whole graph of g , affecting the bidders’
entry decisions not only locally, but also of bidders with values
significantly different from (r, r).

5.4.2. Differences in the sellers’ game
In the context of Burguet and Sakovics (1999), no symmetric

pure-strategy equilibrium exists in the sellers’ game, unlike for
the settings we have considered in Section 5.3. In order to explain
this difference, fix an arbitrary r ∈ (0, 1) in the model with
homogenous objects and suppose that rA = rB = r; thus w = r .
As we described above, a reduction in rB to r − ε, with ε > 0
and small, generates an interval [r − ε, w) of types, with w > r ,
who participate in auction B for sure. Before ∆rB = −ε, the
types in the interval [r − ε, r) do not participate in any auction
whereas the types in [r, w) choose either auction with probability
1
2 . Thus the latter types’ entry in auction B with probability 1 is
the business stealing effect of ∆rB = −ε. Even though ∆rB < 0
reduces seller B’s revenue when just one bidder enters auction B,
the key aspect is that from (19) it follows that dw

drB
= −∞, that is

a slight reduction of rB below r generates a proportionally huge
increase in w, hence a very significant entry in auction B due to
business stealing. This dominates the negative effect mentioned
above, hence a small ∆rB < 0 is a profitable deviation for seller
B and no equilibrium exists such that rA = rB = r ∈ (0, 1)
because of a strong business stealing effect.24 In order to see why
dw
drB

= −∞, notice that the right hand side in (19) coincides with
the bid of type w in a first-price auction with n bidders, reserve
price rB and c.d.f. for each value equal to F (v) +

1
2 −

1
2F (w) for

each v ∈ [rB, w]. Such bid is strictly increasing in rB and in w,
hence ∆rB < 0 implies ∆w > 0 in order to keep (19) satisfied.
But at rA = rB = r we have that w = r and the equilibrium
bidding function in a first-price auction is flat at the value r [see
for instance Hu et al. (2010). Hence, starting from w = r , a small
∆w > 0 has a zero first order effect on the right hand side in (19)

24 A different argument shows that (rA, rB) = (0, 0) is not an equilibrium since
seller A gains from increasing rA above zero. This is less relevant for us, as the
main difference between the two settings is that with heterogenous objects the
derivative of g(v; r) with respect to rB is bounded, as we illustrate below. But
when the support [v, v̄] for the values is such that v > 0, it is possible that an
equilibrium with rA = rB = r < v exists (see Virag (2010)) because the equation
that determines w is different from (19) and is such that dw/drB is negative but
is not −∞. Thus a small ∆rB < 0 is not necessarily a profitable deviation for
seller B.

and a small ∆rB < 0 requires a proportionally very large ∆w > 0
to satisfy (19); therefore dw

drB
= −∞.

Conversely, with heterogenous objects a small reduction in rB
never generates a large change in a cutoff. We consider rA = rB =

r > 0, so that g = g id
r , FB = F̃ , and pick values (vA, vB) such that

vA = v̂A ∈ (r, v̄), vB = g id
r (v̂A) = v̂A. Here indifference is not

equivalent to equal expected payment in the two auctions, hence
we argue in terms of utility rather than in terms of payments.
We notice that a small reduction in rB below r has the effect
of increasing the utility from participating in auction B: see (20)
with i = B and with FB = F̃ . This implies that the cutoff g(v̂A)
(given vA = v̂A) decreases below v̂A in order for type (vA, vB) =

(v̂A, g(v̂A; r)) to be indifferent between the auctions.25 But the
derivative of uB(vB; r) with respect to vB at vB = g(v̂A; r) is strictly
positive, hence it follows that ∂g(v̂A;r)

∂rB
is bounded, that is it is not

equal to −∞. Thus, it never occurs that a small ∆rB < 0 increases
participation in auction B in a proportionally huge measure like
with homogenous objects. Hence, it is not the case that a small
∆rB < 0 is necessarily a profitable deviation for seller B, which is
consistent with our results in Proposition 3.

In a sense, the difference between auction competition with
homogenous goods and auction competition with heterogenous
goods is similar to the difference between the standard Bertrand
duopoly and a duopoly with differentiated products like the
Hotelling duopoly, for instance. In the former, there exists no
equilibrium in which the equilibrium price is greater than the
marginal cost because even a tiny downward deviation of a firm
makes the demand for the firm’s product jump up discontinu-
ously, thus the deviation is profitable. In the auction competition
setting of Burguet and Sakovics (1999) there is no discontinuity
but the proportionally huge increase in w following a small ∆rB <

0 has the same effect in terms of profitable deviation.
Conversely, in a duopoly with differentiated products like the

Hotelling model the demand for each firm is continuous and
smooth, so that a small downward deviation is not necessarily
profitable, and indeed often an equilibrium exists in which the
equilibrium price is greater than the marginal cost. Likewise, in
our auction competition setting the function g is a continuous and
smooth function of rB; thus a small ∆rB < 0 is not automatically
profitable for seller B. Therefore, as suggested by one referee, a
way to interpret our result is that heterogeneity in bidders’ values
for the objects softens competition among sellers to the point that
a pure-strategy equilibrium may exist in the sellers’ game.

5.5. Comparison with Parlane (2008)

In Parlane (2008) there are two sellers, A and B, and products
are differented à la Hotelling, with bidders distributed on the
interval [0, 1]; H denotes the c.d.f. for the bidders’ locations in
[0, 1]. Seller A (B) is located at θ = 0 (at θ = 1). A bidder with
location θ ∈ [0, 1] has value wA(θ ) = 1 − tθ for object A and
value wB(θ ) = 1 − t(1 − θ ) for object B, with t ∈ (0, 1). When
rA, rB are such that the market is fully covered (VN = ∅ in our
notation), Parlane (2008) shows that there exists a marginal type
– we denote its location with θ̂D – such that the types in [0, θ̂D)
enter auction A, the types in (θ̂D, 1] enter auction B, and type θ̂D
is indifferent between the auctions. Hence, θ̂D satisfies

[1 − H(θ̂D)]n−1
[wA(θ̂D) − rA] = Hn−1(θ̂D)[wB(θ̂D) − rB] (21)

In order to fix the ideas and to simplify the exposition, we
suppose that H is the uniform c.d.f. over [0, 1], and we focus on

25 Actually, there is also an effect generated by the fact that the whole graph
of g shifts downward after ∆rB < 0. This increases FA , reduces FB and favors
auction A over B. But this effect is relatively weak and is not crucial for our
argument.
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symmetric equilibria.26 Then the results in Parlane (2008) imply
that in equilibrium the market is fully covered, with θ̂D =

1
2 , and

the symmetric equilibrium reserve price rD is

rD =

{
1 −

1
2 t −

1
n (1 −

3
2 t) if t ∈ (0, 2

3 )

1 −
1
2 t if t ∈ [

2
3 , 1)

(22)

The bidder located at θ̂D =
1
2 is the one for whom max

{wA(θ ), wB(θ )} is minimal, and this bidder has value 1 −
1
2 t for

either object. His utility is 0 if t ∈ [
2
3 , 1) because then rD = 1−

1
2 t;

his utility is positive if t < 2
3 because then rD < 1 −

1
2 t .

Now suppose for one moment that seller B is a monopolist –
i.e. there is no auction A. Then a bidder located at θ enters auction
B if and only if wB(θ ) ≥ rB, that is if and only if θ ≥ θ̂M , with
θ̂M = 1−

1−rB
t . The optimal reserve price for the monopolist seller

B is

rM =

{
1 − t if t ∈ (0, 1

2 )
1
2 if t ∈ [

1
2 , 1)

(23)

From (22), (23) it follows that rM < rD for each t ∈ ( 2
n+3 , 1).

Hence, except for small t , duopoly increases the reserve price
above rM .

In order to see why rD may be greater than rM , suppose t > 1
2 ,

hence rM =
1
2 , and consider duopoly with rA = rB =

1
2 . Then (21)

implies that bidder’s types split between the auctions with θ̂D =
1
2 and each type earns a positive rent. As we illustrate below, in
this context either seller, for instance seller B, has an incentive to
increase her reserve price above 1

2 , which explains why rD > rM .
Precisely, both under monopoly and under duopoly, ∆rB > 0
has the positive effect of increasing seller B’s revenue when just
one bidder enters auction B, but has also the effect of moving to
the right the marginal type, which reduces entry in auction B;
under duopoly, this is the opposite of business stealing. Under
monopoly, starting from rB = rM , a ∆rB > 0 necessarily has
a negative net effect as we know that rB = rM is optimal. But
under duopoly, a key difference is that the entry-reduction effect
of ∆rB > 0 is smaller than under monopoly, that is dθ̂D

drB
<

dθ̂M
drB

,
hence seller B loses entrants in auction B at a lower rate than
under monopoly. Coupled with the positive effect of a higher
revenue when just one bidder enters auction B, this makes a small
∆rB > 0 profitable for seller B.

In order to see why dθ̂D
drB

<
dθ̂M
drB

, notice that under duopoly,
given rA = rB =

1
2 and θ̂D =

1
2 , a small ∆rB > 0 decreases

wB(θ̂D) − rB in (21), which suggests that θ̂D needs to increase to

keep (21) satisfied. But after writing (21) as
(

1−H(θ̂D)
H(θ̂D)

)n−1
[wA(θ̂D)−

rA] = wB(θ̂D) − rB, we notice that as θ̂D increases, the difference
wA(θ̂D) − rA decreases, that is the value of object A minus rA for
the marginal type decreases because of the negative correlation
between the objects’ values. Moreover, an increase in θ̂D increases
for each bidder the probability H(θ̂D) to enter auction A and
decreases the probability 1 − H(θ̂D) to enter auction B; thus the

term
(

1−H(θ̂D)
H(θ̂D)

)n−1
decreases and this effect is stronger the greater

is n.27 Both the decrease in wA(θ̂D) − rA and the decrease in(
1−H(θ̂D)
H(θ̂D)

)n−1
temper the increase in θ̂D needed to satisfy (21),

and make the marginal type grow significantly less under duopoly
than under monopoly. Indeed, from θ̂M = 1 −

1−rB
t we see that

26 Parlane (2008) allows for more general distributions and allows for
asymmetric equilibria.
27 The decrease in ( 1−H(θ̂D)

H(θ̂D)
)n−1 means that auction A becomes more crowded

– i.e., more competitive – than auction B.

dθ̂M
drB

=
1
t , whereas from (21) – given rA = rB = r – it follows that

dθ̂D
drB

=
1

2(n − 1)(2 − t − 2r)h(1/2) + 2t
(24)

in which h is the density of H . At r =
1
2 we have dθ̂D

drB
=

1
2(n−1)(1−t)h(1/2)+2t , which is less than dθ̂M

drB
.

The key difference between duopoly and monopoly is that in
the latter setting, a small ∆rB > 0 generates a change in θ̂M
determined by the fact that for each bidder, not entering auction
B yields a constant utility of zero. Conversely, under duopoly each
bidder not entering auction B has the opportunity to enter auction
A, which is a better alternative to staying out for types with
θ close to 1

2 . But as θ̂D increases, auction A becomes relatively
less attractive to type θ̂D since wA(θ̂D) − rA decreases, as well

as
(

1−H(θ̂D)
H(θ̂D)

)n−1
. This makes the marginal type increase less than

under monopoly after ∆rB > 0, and ultimately leads to rD > rM .
The more standard inequality rM > rD holds when t is small,

because in such case rM = 1−t and starting from rA = rB = 1−t ,
θ̂D is significantly more sensible to a change in rB than when t is
large and rA = rB =

1
2 .
28 This makes it profitable for seller B

to decrease, rather than increase, rB below rM and explains why
rD < rM .

As a final remark, we notice that for a given t > 0, even if very
small, a large n implies 2

n+3 < t and therefore rD > rM . As (24)

shows, a large n makes dθ̂D
drB

close to zero because
(

1−H(θ̂D)
H(θ̂D)

)n−1

decreases quickly as θ̂D increases above 1
2 . Hence, starting from

rA = rB = rM , a small ∆rB > 0 moves the marginal type only
slightly rightward, so that the entry-reduction effect for auction
B is dominated by the higher revenue when a single bidder enters
auction B. Thus it is profitable for seller B to increase rB above rM .

The arguments above suggest that a small dθ̂D
drB

is important

for the inequality rD > rM to hold. A small dθ̂D
drB

can be seen
as a weak business stealing effect, and in Section 5.3 we have
remarked that a weak business stealing effect plays an important
role for our result in Corollary 5. In the setting of Parlane (2008),
negatively correlated values contribute to weak business stealing,
but in both settings a large number of bidders weakens business
stealing. A difference between the two settings is that in Parlane
(2008), rD > rM occurs only if the market is fully covered (which
is true under the assumptions in this subsection), hence a bidder
type who leaves auction B because of ∆rB > 0 switches to auction
A. Instead, in our setting ∆rB > 0 induces both some types to
move from auction B to A, and some types to exit auction B
to remain out of each auction. The size of this set of types, in
addition to business stealing, affects the profitability of ∆rB > 0
for seller B.

6. Conclusions

In this paper we examine competing auctions when each
bidder has uncorrelated values for the objects on sale, whereas
most of the literature deals with valuations that are perfectly
correlated, positively or negatively. The latter assumption implies
that each bidder’s private information is one-dimensional. In

28 A small t makes the objects almost homogeneous, which magnifies the

importance of a change in a reserve price. Moreover, a decrease in
(

1−H(θ̂D)
H(θ̂D)

)n−1

has a reduced effect on the left hand side of
(

1−H(θ̂D)
H(θ̂D)

)n−1
[wA(θ̂D) − rA] =

wB(θ̂D) − rB because [wA(θ̂D) − rA] is smaller with respect to when rA = rB =
1
2 .

Thus a higher increase in θ̂D is necessary, that is θ̂D reacts more to ∆rB > 0.

12
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our setting, a bidimensional private information for each bidder
complicates the analysis, but it is still possible to prove the
existence of a unique symmetric equilibrium in the game of
bidders’ auction choice – as in Troncoso-Valverde (2014) – and
to determine some of its features, which provide useful insights
for the study of the sellers’ game of reserve price setting. We
also employ numeric analysis to reach some conclusions about
equilibria in environments with uniformly distributed values and
a discretized action set.

Precisely, for (say) seller B a reduction in rB has a more subtle
effect on bidders’ entry in auction B with respect to when seller
B is monopolist, as under duopoly each bidder has the option of
entering auction A, and the value of such option depends on rA
and on the bidder’s values. Precisely, ∆rB < 0 induces the entry
in auction B of some bidder’s types who would otherwise stay
out of each auction. The existence of auction A makes this set
of marginal types for seller B smaller than under monopoly, and
this tends to lift the equilibrium reserve price above the optimal
reserve price under monopoly. The reduction in rB attracts also
types who would otherwise enter auction A, and this business
stealing effect tends to reduce the equilibrium reserve price,
in some cases significantly below the monopoly level. But the
business stealing effect is weak when the number of bidders is
large because then a difference in reserve prices affects the entry
decisions of a set of types with small measure. Indeed, in the
setting we consider a higher n increases the equilibrium reserve
price, eventually above the monopoly level.

It would be useful if further research could extend our
Proposition 3 in terms of allowing for a continuum of feasible
reserve prices, and more general value distributions. In particular,
we have assumed that for each bidder, his values for the two
objects are identically distributed. It may be interesting to allow
for asymmetries in the value distributions for objects of different
sellers in order to study – for instance – competition under
vertical differentiation. It would also be interesting to extend the
analysis in this paper to the case of arbitrary numbers of sellers
and bidders, and eventually study the limit as the market be-
comes very large. However, it appears difficult even to determine
a bidders’ equilibrium when there are k ≥ 3 sellers and each
bidder has k-dimensional private information.
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Appendix A. Derivation of (4)

Using FA and FB from (5) and (6), we can derive each bidder’s
utility from participating in either auction as described in (20).
More in detail,

uA(vA; r) =

∫ vA

rA

F n−1
A (z; r)dz for each vA ∈ [rA, v̄] and

uB(vB; r) =

∫ vB

rB

F n−1
B (z; r)dz for each vB ∈ [rB, v̄] (25)

A bidder with values vA ≥ rA, vB ≥ rB is indifferent between
auction A and auction B if and only if uA(vA; r) = uB(vB; r). There-
fore, the property that indifference holds when vB = g(vA; r) is
equivalent to

uA(vA; r) = uB(g(vA; r); r) (26)

From (25) we notice that uA(rA; r) = uB(rB; r) = 0, hence
g(rA; r) = rB. Moreover, differentiating the two sides of (26) with
respect to vA yields

F n−1
A (vA; r) =

∂g(vA; r)
∂rA

F n−1
B (g(vA; r); r) for each vA ∈ [rA, v̄]

(27)

Substituting vB = g(vA; r) in (6) we obtain FB(g(vA; r); r) =

F (g(vA; r))F (vA)+
∫ v̄

vA
F (g(v; r))f (v)dv. This and (5) reveal that (27)

reduces to (4).

Appendix B. Proof of Proposition 1

Proof of existence of bidders’ equilibrium if g satisfies (4) and g(rA) =

rB We begin by proving that if g satisfies (26), that is if g
solves (4) and g(rA; r) = rB, then there exists a bidders’ equi-
librium in which each bidder enters auction A (auction B) if his
values (vA, vB) belong to VA (belong to VB), but stays out of each
auction if (vA, vB) ∈ VN . Precisely, if n − 1 bidders follow this
participation decision based on VN , VA, VB, then we show here
that it is optimal for the remaining bidder to do the same. As
we explained in Section 4, it is immediate that a bidder does
not participate in any auction if (vA, vB) ∈ VN but participates
in auction A (in auction B) if vA ≥ rA and vB < rB (if vA < rA
and vB ≥ rB). In case that the remaining bidder’s values are such
that vA ≥ rA, vB ≥ rB and vB < g(vA; r), then (vA, vB) ∈ VA and
uA(vA; r) = uB(g(vA; r); r) > uB(vB; r), where the equality comes
from (26), the inequality comes from the fact that uB in (25) is
strictly increasing. Hence, this type with (vA, vB) ∈ VA prefers
auction A to B. Arguing likewise, we see that if vB > g(vA; r), then
(vA, vB) ∈ VB and uA(vA; r) = uB(g(vA; r); r) < uB(vB; r). Hence,
this type with (vA, vB) ∈ VB prefers auction B to A.

Proof of existence of a unique solution to (4), g(rA) = rB To shorten
a bit the notation, in this proof we write g(v) rather than g(v; r);
notice that rA, rB are fixed throughout this proof. Here we show
that there exists a unique solution to (4), g(rA) = rB.

We define

G(vA) = 1 −

∫ v̄

vA

F (g(v))f (v)dv (28)

and show that a unique solution exists for the system, derived
from (4) and (28), which consists of{

G′(vA) = F (g(vA))f (vA)

g ′(vA) =

(
G(vA)

F (g(vA))F (vA)+1−G(vA)

)n−1 , vA ∈ [rA, v̄]. (29)

with g(rA) = rB. Besides, by the definition of g(rA) and according
to (28),

G(v̄) = 1, g(rA) = rB. (30)

It is evident that any solution of (29), (30) which has positive
components with g strictly increasing provides a solution to (4),
g(rA) = rB. We show below that there exists a unique solution
to (29), (30). Precisely, we consider the Cauchy problem given
by (29) and the initial conditions

G(rA) = γ , g(rA) = rB (31)

13
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in which γ ∈ [0, 1), and prove that for it there exists a unique
solution. Then we show that there exists a unique γ in (0, 1)
such that the associated solution satisfies G(v̄) = 1, consistently
with (30).

For (29), (31), local existence and uniqueness of a solution fol-
low from standard results [see for instance Theorem 2 in Pontrya-
gin (1962)] as long as the denominator ∆(vA) = F (g(vA))F (vA) +

1− G(vA) at the right-hand side of the second equation of (29) is
positive, and hence the right-hand side is C1-smooth.

We consider the set

{(vA, g,G) ∈ R3
: vA ∈ [rA, v̄], g ≥ rB,G ≥ 0, F (g)F (vA)+1−G > 0}

(32)

and now show that it is invariant for the system (29). We have
that ∆(rA) = F (rB)F (rA) + 1 − γ > 0. Differentiating ∆(vA), by
virtue of (29) we get

∆′(vA) = F (vA)f (g(vA))g ′(vA) = F (vA)f (g(vA))
(G(vA))n−1

(∆(vA))n−1

and hence
d∆n(vA)

dvA
= nGn−1(vA)f (g(vA))F (vA) ≥ 0.

Therefore, 0 < ∆(rA) ≤ ∆(vA) for each vA ∈ (rA, v̄].
To prove global existence and uniqueness of the solution on

the interval [rA, v̄] it suffices to demonstrate that the trajectory
(G(vA), g(vA)) of (29) is bounded on the interval [rA, v̄] [see for
instance Proposition (B) in Section 24 in Pontryagin (1962)]. It
is immediate from (29) that G′(vA) ≤ Mf for each vA ∈ [rA, v̄],
with Mf = maxv∈[0,v̄] f (v) > 0, and hence G(vA) is bounded.
Regarding g , we recall that 0 < ∆(rA) ≤ ∆(vA) and notice that
G(vA) < 1 + Mf (vA − rA). Then

g ′(vA) <

(
1 + Mf (vA − rA)

∆(vA)

)n−1

<

(
1 + Mf v̄

∆(rA)

)n−1

= µ

and thus g(vA) ≤ rB +µ(v̄ − rA). Note that also ∆(vA) is bounded:
there exists M∆ such that 0 < ∆(vA) ≤ M∆ for each vA ∈ [rA, v̄].

As far as the right-hand side of (29) is C1-smooth in the
domain (32), the solution (G, g) to (29) depends C1-smoothly on
its initial data.

Now we prove that there exists a unique γ such that the
unique solution to (29), (31) satisfies G(v̄) = 1.

Since G(vA) is continuous with respect to the initial data γ , we
first demonstrate that there exist γ1, γ2 such that the associated
solutions (G1, g1), (G2, g2) satisfy G1(v̄) < 1 < G2(v̄), and then
that G(v̄) is strictly increasing with respect to γ .

We take γ1 = 0 and prove that G1(v̄) < 1. Indeed

G1(v̄) =

∫ v̄

rA

F (g1(v))f (v)dv < F (g1(v̄))
∫ v̄

rA

f (v)dv

= F (g1(v̄)) (1 − F (rA)) ≤ F (g1(v̄)) ≤ 1.

Now we take γ2 = 1 − δ with δ > 0. Then the function
∆2 is such that ∆2(rA) = F (g2(rA))F (rA) + δ ≥ δ > 0. For the
corresponding solution of (29), (31) we obtain

G2(v̄) = 1 − δ +

∫ v̄

rA

F (g2(v))f (v)dv ≥ 1 − δ + mf

∫ v̄

rA

F (g2(v))dv,

where mf = minv∈[0,v̄] f (v) > 0. By virtue of (29), (F (g2(v)))′ =

f (g2(v))
(G2(v))n−1

(∆2(v))n−1 ≥ mf
(1−δ)n−1

Mn−1
∆2

and F (g2(v)) ≥ mf
(1−δ)n−1

Mn−1
∆2

(v−rA).

Substituting it into the inequality for G2(v̄) we conclude that

G2(v̄) ≥ 1 − δ + m2
f
(1 − δ)n−1

Mn−1
∆2

(v̄ − rA)2

2

which is greater than 1, provided that δ > 0 is chosen sufficiently
small.

Finally, we prove that the initial data G(rA) = γ ∈ [0, 1) for
which G(v̄) = 1 is uniquely defined and also the solution to (4) is
unique. More generally, we prove below that if γ1 < γ2 and the
associated solutions are (G1, g1), (G2, g2), then

g1(vA) < g2(vA) and G1(vA) < G2(vA) for each vA ∈ [rA, v̄]

(33)

Therefore, in particular, G(v̄) is strictly increasing with respect to
γ and hence there exists a unique γ such that G(v̄) = 1.

By the continuity of the solutions of (29), (31), the inequali-
ties (33) hold for each vA ∈ [rA, rA + δ] for some sufficiently small
δ > 0. Assuming that G1(vA) ≥ G2(vA) for some vA ∈ (rA + δ, v̄],
we take v̂A = min{vA ∈ [rA + δ, v̄] : G1(vA) ≥ G2(vA)}. Then

v̂A > rA + δ, G1(v̂A) = G2(v̂A), G1(vA) < G2(vA) ∀vA ∈ [rA, v̂A).

If g1(vA) ≤ g2(vA) for each vA ∈ [rA, v̂A), then

G1(v̂A) = γ1 +

∫ v̂A

rA

F (g1(vA))f (vA)dvA < γ2

+

∫ v̂A

rA

F (g2(vA))f (vA)dvA = G2(v̂A)

contradicting G1(v̂A) = G2(v̂A). This implies that g1(vA) > g2(vA)
for some vA ∈ [rA, v̂A). Let ṽA = min{vA ∈ [rA + δ, v̂A) :

g1(vA) ≥ g2(vA)}, and note that ṽA > rA + δ, g1(ṽA) = g2(ṽA),
G1(ṽA) < G2(ṽA). From the second equation in (29) it follows that
g ′

1(ṽA) < g ′

2(ṽA), which together with g1(ṽA) = g2(ṽA) implies
g1(vA) > g2(vA) for vA slightly smaller than ṽA, in contradiction to
the definition of ṽA. This establishes the second inequality in (33).

The first inequality in (33) is proved similarly. Given G1(vA) <

G2(vA) in [rA, v̄], if g1(vA) ≥ g2(vA) holds for some vA, then take
ṽA = min{vA ∈ [rA + δ, v̄] : g1(vA) ≥ g2(vA)}. Again, ṽA > rA + δ,
g1(ṽA) = g2(ṽA), G1(ṽA) < G2(ṽA). Therefore g ′

1(ṽA) < g ′

2(ṽA)
follows, which yields a contradiction.

Proof that g(vA) is strictly increasing with respect to rB for each
vA ∈ [rA, v̄] Consider rA, rB, r̂B such that rB < r̂B < rA. Let g be
the solution to (4) with g(rA) = rB and ĝ be the solution to (4)
with ĝ(rA) = r̂B. We show that g(vA) < ĝ(vA) for each vA ∈ [rA, v̄].

Assuming the converse, suppose there exists vA ∈ (rA, v̄] such
that g(vA) = ĝ(vA). Let v̂A = max{vA ∈ (rA, v̄] : g(vA) = ĝ(vA)}.
If v̂A = v̄, then g(v̄) = ĝ(v̄). Since G(v̄) = Ĝ(v̄) = 1, by the
uniqueness theorem we conclude that g(vA) = ĝ(vA) for each
vA ∈ [rA, v̄], contradicting g(rA) = rB < ĝ(rA) = r̂B.

If v̂A < v̄ and, say,

g(vA) < ĝ(vA) for each vA ∈ (v̂A, v̄] (34)

then
∫ v̄

v̂A
F (g(v))f (v)dv <

∫ v̄

v̂A
F (ĝ(v))f (v)dv. Using this inequality

together with g(v̂A) = ĝ(v̂A), and (4), we conclude that g ′(v̂A) >

ĝ ′(v̂A), and hence g(vA) > ĝ(vA) in some right semi-neighborhood
of v̂A, which contradicts (34). The case in which g(vA) > ĝ(vA) for
each vA ∈ (v̂A, v̄] is treated similarly.

Proof that g(v) is strictly decreasing with respect to rA Consider
rA, r̂A, rB such that rB < rA < r̂A. Let g be the solution to (4) with
g(rA) = rB and ĝ be the solution to (4) with ĝ(r̂A) = rB. We show
that ĝ(vA) < g(vA) for each vA ∈ [r̂A, v̄].

Notice that g(r̂A) > rB since g(rA) = rB, rA < r̂A, and g
is strictly increasing in v; let µ = g(r̂A). Then, in the interval
[r̂A, v̄], g solves (4) with the initial condition g(r̂A) = µ, whereas
ĝ solves (4) with the initial condition ĝ(r̂A) = rB. Since µ > rB,
it follows from the result proved above that g(vA) > ĝ(vA) in the
interval [r̂A, v̄].
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Proof that g(vA) < vA for each vA ∈ [rA, v̄] This is a consequence
of the fact that if rB = rA, then g(vA) = vA for each vA ∈ [rA, v̄],
and g is strictly increasing with respect to rB. Thus if rB is reduced
below rA, then we obtain g(vA) < vA for each vA ∈ [rA, v̄].

Appendix C. Derivation of (9), of ∂g(v;r,r)
∂rB

in (11)

To derive ∂RB(r,rB)
∂rB

, consider rB ≤ rA and notice that RB(r, rB) can
be written as

∫ v̄

rB
[vnF n−1

B (v; r)fB(v; r)−n(1−FB(v; r))F n−1
B (v; r)]dv.

Then integration by parts of the first term in the integrand func-
tion yields RB(r, rB) = v̄ − rBF n

B (rB; r) −
∫ v̄

rB
F (2)
B (v; r)dv, in which

F (2)
B is the c.d.f. of the second highest valuation out of n draws
from the c.d.f. FB, that is F (2)

B (v; r) = nF n−1
B (v; r)− (n− 1)F n

B (v; r).
Therefore
∂RB(r, rB)

∂rB
= −F n

B (rB; r) − nrBF n−1
B (rB; r)

(
fB(rB; r) +

∂FB(rB; r)
∂rB

)
+F (2)

B (rB; r) − n(n − 1)
∫ v̄

rB

F n−2
B (v; r)[1 − FB(v; r)]

×
∂FB(v; r)

∂rB
dv

= nF n−1
B (rB; r)[1 − FB(rB; r) − rBfB(rB; r)]

−nrBF n−1
B (rB; r)

∂FB(rB; r)
∂rB

−n(n − 1)
∫ v̄

rB

F n−2
B (v; r)[1 − FB(v; r)]

∂FB(v; r)
∂rB

dv

which coincides with (9).
From (11) we see that evaluating ∂RB(r,r)

∂rB
requires ∂g(v;r,r)

∂rB
, and

to this purpose we use the notation G(v; γ , r, rB) and g(v; γ , r, rB)
(r between γ and rB is the value of rA) to emphasize the depen-
dence of the solution of (29) on the initial data in (31). We need
to take into account that rB affects g both directly through the
second initial condition in (31), and also indirectly through γ –
in the first initial condition – which needs to satisfy

G(v̄; γ , r, rB) = 1 (35)

as we set in (30). Below, we apply the Implicit Function Theorem
to (35) to conclude that there exists a differentiable function
γ (rB), defined in a neighborhood of r , such that G(v̄; γ (rB), r, rB) =

1 for each rB in such neighborhood of r . Therefore, g is written as
g(v; γ (rB), r, rB) and the derivative of this function with respect
to rB at rB = r is denoted with ∂g(v;r,r)

∂rB
in the main text and in

Lemma 1 below.
We begin by introducing the variational system[
y′(v)
z ′(v)

]
= M(v)

[
y(v)
z(v)

]
for v ∈ [r, v̄] (36)

Here M(v) is the Jacobi matrix of the right hand side of (29) in
the variables G, g evaluated at the solution when rA = rB = r .
In such case, the solution is known to be g(v; γ (r), r, r) = v for
v ∈ [r, v̄], hence G(v; γ (r), r, r) =

1
2 +

1
2F

2(v) = F̃ (v) from (29)
(and γ (r) = F̃ (r)). Therefore

M(v) =

[
0 f 2(v)

2(n−1)
F̃ (v)

−
(n−1)f̃ (v)

F̃ (v)

]
and (36) reduces to{

y′(v) = f 2(v)z(v)
z ′(v) =

2(n−1)
F̃ (v)

y(v) −
(n−1)f̃ (v)

F̃ (v)
z(v) for v ∈ [r, v̄] (37)

Now we rely on a classical result (see Theorem 18 in Pon-
tryagin (1962), which establishes that G, g which solve (29)

are C1 functions of γ , rB, and the vector of partial derivatives[
∂G(v;γ (r),r,r)

∂γ

∂g(v;γ (r),r,r)
∂γ

]
satisfies the variational system (37) and the

initial condition[
y(r)
z(r)

]
=

[
1
0

]
. (38)

We denote with y1, z1 the solution to (37) with the initial con-

dition (38). Similarly,

[
∂G(v;γ (r),r,r)

∂rB
∂g(v;γ (r),r,r)

∂rB

]
solves the variational sys-

tem (37), with the initial condition[
y(r)
z(r)

]
=

[
0
1

]
(39)

We denote with y2, z2 the solution to (37) with the initial con-
dition (39). As we demonstrate in Lemma 1 below, the solution
to (37), (38) satisfies y1(v̄) > 0. Hence, ∂G(v̄;γ (r),r,r)

∂γ
> 0 and by the

Implicit Function Theorem there exists a differentiable function
γ (rB) such that G(v̄; γ (rB), r, rB) = 1 for each rB close to r , with

γ ′(r) = −

∂G(v̄;γ (r),r,r)
∂rB

∂G(v̄;γ (r),r,r)
∂γ

= −
y2(v̄)
y1(v̄)

.

The derivative of g(v; γ (rB), r, rB) with respect to rB, at rB = r ,
is ∂g(v;γ (r),r,r)

∂γ
γ ′(r) +

∂g(v;γ (r),r,r)
∂rB

and is denoted as ∂g(v;r,r)
∂rB

in the
main text. Lemma 1 expresses ∂g(v;r,r)

∂rB
in terms of the solutions

to (37), (38) and to (37), (39).

Lemma 1. For any r ∈ [0, v̄),
∂g(v; r, r)

∂rB
= z2(v) −

y2(v̄)
y1(v̄)

z1(v) for each v ∈ [r, v̄]

where y1, z1 solve (37), (38) and y2, z2 solve (37), (39).

Proof. We only need to show that y1(v̄) > 0, as the rest of the
proof has been accomplished before the statement of the lemma.
We show that y1(v) > 1 for each v ∈ [r, v̄]. Since z1(r) = 0
and z ′

1(r) =
2(n−1)
F̃ (r)

> 0, it follows that z1(v) > 0 in the interval
[r, r + δ] for a small δ > 0. Suppose there exists v > r + δ such
that z1(v) ≤ 0, and let v∗

= min{v ∈ [r + δ, v̄] : z1(v) ≤ 0}; then
z1(v∗) = 0 and z1(v) > 0 in (r, v∗). Moreover, y1(v) > 0 in (r, v∗

]

since y1(r) = 1 and y′

1(v) = f 2(v)z1(v) > 0 in (r, v∗). Finally,
notice that z ′

1(v
∗) =

2(n−1)
F̃ (v∗)

y1(v∗) > 0. Since z1(v∗) = 0, this
implies z1(v) < 0 for v slightly smaller than v∗, a contradiction
with the definition of v∗. Hence z1(v) > 0 and y1(v) > 1 in (r, v̄].

Appendix D. Proof of Proposition 4

D.1. Proof of part (i)

In this proof we denote with gn the solution to (4), g(rA) = rB.
We show that given any v̂A ∈ (rA, v̄) and any ε > 0, there exists
N such that for n > N: gn(v̂A) > v̂A − ε. Since g ′

n(vA) > 1 for each
vA ∈ [rA, v̄],29 it follows that gn(vA) > vA−ε for each vA ∈ (v̂A, v̄];
thus gn converges uniformly to g id

v̂A
in [v̂A, v̄].

Assuming the converse, suppose there exists v̂A ∈ (rA, v̄) and
ε > 0 such that gn(v̂A) ≤ v̂A − ε for infinitely many n; such
inequality and g ′

n(vA) > 1 imply gn(vA) < vA − ε for each
vA ∈ [rA, v̂A). As a consequence, for all vA ∈ [rA, v̂A) we have
F (gn(vA))F (vA) ≤ F (vA − ε)F (vA) ≤ F 2(vA) − ηF (vA), where η =

ε minv∈[0,v̄] f (v) > 0. Without loss of generality we can assume
η < 1.

29 Inserting in (4) the inquality gn(vA) < vA (for each vA ∈ [rA, v̄]) yields
g ′
n(vA) > 1.
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From the inequality gn(v) < v for each v ∈ [rA, v̄] we deduce∫ v̄

vA
F (gn(v))f (v)dv < 1

2 −
1
2F

2(vA) and applying these estimates
to (4) we conclude that

g ′

n(vA) >

(
1 +

2ηF (vA)
1 + F 2(vA) − 2ηF (vA)

)n−1

, for each vA ∈ [rA, v̂A].

The quotient 2ηF (vA)
1+F2(vA)−2ηF (vA)

is strictly increasing with respect to

vA. Hence it is greater than 2ηF (rA)
1+F2(rA)−2ηF (rA)

> ηF (rA). Therefore, for
infinitely many n and for ρ = 1 + ηF (rA) > 1 we have g ′

n(vA) >

ρn−1 for each vA ∈ [rA, v̂A], which contradicts gn(v̂A) ≤ v̂A − ε for
sufficiently large n.

D.2. Proof of part (ii)

The functions y1, z1 and y2, z2 which solve (37), (38) and
(37), (39), respectively, are linearly independent solutions of (37).
Consider now (37) with the initial condition y(r) = a, z(r) = b.
Then we obtain the solution y(v) = ay1(v) + by2(v), z(v) =

az1(v)+bz2(v). In particular, if we pick a = −
y2(v̄)
y1(v̄)

and b = 1, then
y(v) = y2(v)−

y2(v̄)
y1(v̄)

y1(v) and z(v) = z2(v)−
y2(v̄)
y1(v̄)

z1(v); hence z(v)
coincides with ∂g(v;r,r)

∂rB
from Lemma 1. Since y(v̄) = 0, it follows

that y, z solve (37) with the boundary conditions y(v̄) = 0, z(r) =

1. We know from Proposition 1 that z(v) ≥ 0, hence the first
equation in (37) reveals that y is increasing; thus y(v) ≤ 0 for
each v ∈ [r, v̄]. Now we write the second equation in (37) as

z ′(v) + p(v)z(v) = q(v)y(v) with p(v) =
(n − 1)f̃ (v)

F̃ (v)
and

q(v) =
2(n − 1)

F̃ (v)

and we consider it as a linear first-order non-homogenous equa-
tion in the unknown z, for given y. For such equation, given
z(r) = 1, the solution is well known to be

z(v) = e−
∫ v
r p(τ )dτ

+

∫ v

r
e−

∫ v
x p(τ )dτq(x)y(x)dx (40)

We obtain the upper bound in (16) by observing that q(x)y(x) ≤ 0

in [r, v̄]. Hence, z(v) ≤ e−
∫ v
r p(τ )dτ

=

(
F̃ (r)
F̃ (v)

)n−1
=

(
1+F2(r)
1+F2(v)

)n−1
.

Notice that for each v > r we have 0 <
1+F2(r)
1+F2(v)

< 1, hence

limn→+∞

(
1+F2(r)
1+F2(v)

)n−1
= 0 and limn→+∞

∂g(v;r,r)
∂rB

= 0 for each v ∈

(r, v̄]. From this it is possible to prove that also
∫ v̄

r f 2(v) ∂g(v;r,r)
∂rB

dv
in (17) tends to 0.

Now we prove the lower bound in (16). We start from y(v̄) −

y(v) =
∫ v̄

v
y′(w)dw and use y(v̄) = 0 plus the first equation in (37)

to obtain y(v) = −
∫ v̄

v
y′(w)dw = −

∫ v̄

v
f 2(w)z(w)dw. Now we

rely on the upper bound for z(w) in (16), that is z(w) ≤

(
F̃ (r)
F̃ (w)

)n−1
,

to see that y(v) ≥ −
∫ v̄

v
f 2(w)

(
F̃ (r)
F̃ (w)

)n−1
dw. Then (40) yields

z(v) ≥

(
F̃ (r)

F̃ (v)

)n−1 (
1 −

∫ v

r
2(n − 1)F̃ n−2(x)

(∫ v̄

x

f 2(w)

F̃ n−1(w)
dw
)
dx
)

Now we focus on
∫ v̄

x
f 2(w)

F̃n−1(w)
dw and notice that∫ v̄

x

f 2(w)

F̃ n−1(w)
dw =

∫ v̄

x

f (w)
F (w)

f (w)F (w)

F̃ n−1(w)
dw

≤

∫ v̄

x
θ
f (w)F (w)

F̃ n−1(w)
dw =

∫ v̄

x
θ

f̃ (w)

F̃ n−1(w)
dw

by definition of θ . We can evaluate precisely the rightmost term
and obtain∫ v̄

x
θ

f̃ (w)

F̃ n−1(w)
dw =

[
−

θ

n − 2
F̃ 2−n(w)

]v̄

x
=

θ

n − 2

(
1

F̃ n−2(x)
− 1

)
Hence, z(v) ≥

(
F̃ (r)
F̃ (v)

)n−1 (
1 − 2θ n−1

n−2

∫ v

r (1 − F̃ n−2(x))dx
)

and the

lower bound in (16) follows as F̃ n−2(x) > 0.

Appendix E. Proof of Proposition 6

We write the right hand side in (11) as

nF̃ n−1(r)
(
1 − F̃ (r) − r f̃ (r)

−r
∫ v̄

r
f 2(v)

∂g(v; r, r)
∂rB

dv −

∫ v̄

r
Λ(v)dv

)
= 0 (41)

with Λ(v) = (n − 1) F̃
n−2(v)(1−F̃ (v))

F̃n−1(r)

∫ v̄

v
f 2(u) ∂g(u;r,r)

∂rB
du. We know

from Footnote 16 that 1 − F̃ (r) − r f̃ (r) > 0 for r ∈ (0, rV ) and
1− F̃ (r)−r f̃ (r) < 0 for r ∈ (rV , v̄). As we remarked in Section 5.2,
r
∫ v̄

r f 2(v) ∂g(v;r,r)
∂rB

dv and
∫ v̄

r Λ(v)dv are both positive for each r ∈

(0, v̄), hence if rD solves (41) then rD < rV . Now consider a
left neighborhood of rV , for instance the interval [

1
2 r

V , rV ]. We
show that there exists a continuous function of r , λ(r), such that∫ v̄

r Λ(v)dv > λ(r) > 0 for each large n, for each r ∈ [
1
2 r

V , rV ].
Hence, there exists a r ′ < rV such that the left hand side in (41)
is negative for each r > r ′, for each n, and each solution to (41)
is smaller than r ′ for each n.

Step 1. Given r ∈ [
1
2 r

V , rV ] and given a small ε > 0, let
b = r + ε and let δ = (min f )2

(
1 − 2θ n−1

n−2ε
)

> 0 with θ =

maxw∈[rV /2,v̄]

f (w)
F (w) > 0. Then∫ v̄

r
Λ(v)dv > δ

∫ b

r

∫ b

v

(n − 1)
F̃ n−2(v)(1 − F̃ (v))

F̃ n−1(u)
dudv (42)

Proof of Step 1. For each v ∈ [r, v̄] we have ∂g(v;r,r)
∂rB

≥ 0 and
Λ(v) ≥ 0; thus if in

∫ v̄

r Λ(v)dv we reduce the upper extreme of
the interval of integration from v̄ to b > r , then we obtain a lower
bound for

∫ v̄

r Λ(v)dv:∫ v̄

r
Λ(v)dv

≥

∫ b

r
(n − 1)

F̃ n−2(v)(1 − F̃ (v))

F̃ n−1(r)

(∫ b

v

f 2(u)
∂g(u; r, r)

∂rB
du
)
dv

(43)

In particular, we consider b = r + ε with ε > 0 and small and
now prove that the right hand side in (43) is greater than the
right hand side in (42). From the lower bound in (16) we see that
the right hand side in (43) is greater than∫ b

r
(n − 1)

F̃ n−2(v)(1 − F̃ (v))

F̃ n−1(r)

×

⎛⎝∫ b

v

f 2(u)

(
F̃ (r)

F̃ (u)

)n−1 (
1 − 2θ

n − 1
n − 2

(u − r)
)
du

⎞⎠ dv (44)

and f 2(u)(1−2θ n−1
n−2 (u− r)) ≥ δ for each u ∈ [r, b]. Therefore (44)

is greater than the right hand side in (42).

Step 2. Given r ∈ [
1
2 r

V , rV ], let ρ = minx∈[rV /2,v̄]

1
f̃ (x)

> 0 and let

λ(r) =
1
3δρ

2
(
F̃ (b) − F̃ (r)

)(
2 − F̃ (b) − F̃ (r)

)
> 0. Then the right
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hand side in (42), and therefore also
∫ v̄

r Λ(v)dv, is greater than
λ(r) for each large n.

Proof of Step 2. We apply to the right hand side of (42) the
change of variables

s = F̃ (v), t = F̃ (u)

Hence, we write the right hand side in (42) as

δ

∫ F̃ (b)

F̃ (r)

∫ F̃ (b)

s
(n − 1)

sn−2(1 − s)
tn−1

1

f̃ (F̃−1(s))

1

f̃ (F̃−1(t))
dtds (45)

This is no less than δρ2
∫ F̃ (b)
F̃ (r)

∫ F̃ (b)
s (n − 1) s

n−2(1−s)
tn−1 dtds, which is

equal to

δρ2 n − 1
n − 2

∫ F̃ (b)

F̃ (r)

(
1 − s −

sn−2
− sn−1

F̃ n−2(b)

)
ds

= δρ2 n − 1
n − 2

(
1
2

(
F̃ (b) − F̃ (r)

)(
2 − F̃ (b) − F̃ (r)

)
+

1

F̃ n−2(b)

(
F̃ n(b) − F̃ n(r)

n
−

F̃ n−1(b) − F̃ n−1(r)
n − 1

))
The limit of the last expression as n → +∞ is 1

2δρ
2
(
F̃ (b) − F̃ (r)

)(
2 − F̃ (b) − F̃ (r)

)
> 0, which is greater than λ(r). Hence (45) is

greater than λ(r) if n is large enough.

Appendix F. The case of v > 0

The analysis in the main text relies on the assumption that
v = 0. When v > 0, such analysis can be extended in a
straightforward way to cover the case of v ≤ rB ≤ rA < v̄.
But v > 0 makes it feasible for each seller i to set ri below v.
Therefore, in Appendix F.1 we characterize the unique symmetric
bidders’ equilibrium when at least one reserve price is smaller
than v. Using such characterization, in Appendix F.2 we derive a
first order condition for a symmetric equilibrium in which the
equilibrium reserve price is less than v, and then consider an
example.

F.1. Bidders’ equilibrium when v > 0 and min{rA, rB} < v

Without loss of generality, we suppose that rB ≤ rA and we
determine a bidders’ equilibrium when rB < v. First we notice
that the set VN is empty, hence VA∪VB = V , because rB < v allows
each bidder type to earn a positive utility attending auction B.
Then we still postulate the existence of a strictly increasing and
differentiable function g that describes the boundary between VA
and VB.

The fact that each bidder has positive utility from entering
auction B has the consequence that a bidder with values (vA, vB)
chooses auction A if and only if he gets at least as much utility
attending A as he would attending auction B, that is uA(vA; r) ≥

uB(vB; r). This inequality requires that vA is large enough, and we
denote with v∗

A the lowest value for vA of bidders entering auction
A. In other words, all bidders with values vA < v∗

A are certain to
get a higher utility in auction B including those for whom vB = v,
that is uA(v∗

A; r) = uB(v; r), therefore g(v∗

A; r) = v. Hence g is
defined for vA in the interval [v∗

A, v̄], with v∗

A such that a bidder
with values (vA, vB) = (v∗

A, v) is indifferent between the auctions,
thus v∗

A ≥ max{v, rA}.
We can express this property formally by noticing that the sets

VA, VB are as follows (see Fig. 8 below for a graphical representa-
tion)

VA = {(vA, vB) ∈ V : vA ≥ v∗

A and

vB ≤ g(vA; r)} and VB = V\VA (46)

and α denotes the probability that a bidder has values in VA, that
is

α =

∫ v̄

v∗
A

F (g(v; r))f (v)dv (47)

A bidder with values (vA, vB) = (v∗

A, v) entering auction i wins
object i if and only if he is the only bidder in auction i. Hence, he is
indifferent between the two auctions, that is uA(v∗

A; r) = uB(v; r),
if and only if

(v∗

A − rA)(1 − α)n−1
− (v − rB)αn−1

= 0 (48)

For each v ∈ [v∗

A, v̄] we define FA(v; r) like in (5), and
FA(v∗

A; r) = 1 − α. Likewise, for each v ∈ [v, v̄] we define FB(v; r)
as in (6), and FB(v; r) = α.30 Then uA(vA; r), uB(vB; r), for vA ≥ v∗

A ,
vB ≥ v, are

uA(vA; r) = (vA − rA)(1 − α)n−1
+

∫ vA

v∗
A

(vA − v)dF n−1
A (v; r)

= (v∗

A − rA)(1 − α)n−1
+

∫ vA

v∗
A

F n−1
A (v; r)dv (49)

uB(vB; r) = (vB − rB)αn−1
+

∫ vB

v

(vB − v)dF n−1
B (v; r)

= (v − rB)αn−1
+

∫ vB

v

F n−1
B (v; r)dv (50)

For (vA, vB) such that vA > v∗

A and vB > v, indifference
between the auctions needs to hold if vB = g(vA; r), hence
uA(vA; r) = uB(g(vA; r); r), and differentiating this equality with
respect to vA – using (49) and (50) – yields (4). Thus we consider
equation (4) with the initial condition g(v∗

A; r) = v, and a minor
adaptation of Proposition 1 establishes that a unique solution g
exists. In this way, to each v∗

A we associate g and then α from (47),
that is we view α as a function of v∗

A . We show in the following
that there exists a unique solution to (48), and we pick v∗

A as such
unique solution. Observe that (i) the left hand side in (48) is a
continuous function of v∗

A; (ii) when v∗

A is close to v̄, we have that
α is about 0, therefore the left hand side in (48) is positive; (iii)
when rA ≤ v and v∗

A = v, we have that α =
1
2 = 1 − α, thus the

left hand side in (48) has the same sign as rB − rA ≤ 0 (if rB = rA,
then v∗

A = v solves (48)); (iv) when v < rA and v∗

A = rA, the left
hand side in (48) has the same sign as rB − v ≤ 0 (if rB = v, then
v∗

A = rA solves (48)); (i)-(iv) guarantee existence of a solution.
Uniqueness holds since α is decreasing with respect to v∗

A , hence
the left hand side in (48) is strictly increasing with respect to v∗

A .

Proposition 7. Given rA, rB such that rB < v, rB ≤ rA < v̄, there
exists a unique symmetric bidders’ equilibrium, which is described
by the sets VA, VB in (46), in which g is defined for vA ∈ [v∗

A, v̄] and
is the unique solution to (4), g(v∗

A; r) = v, and v∗

A ≥ max{v, rA} is
the unique solution to (48).

When rA = rB ≤ v, we obtain v∗

A = v and g = g id
v , that is

each bidder participates in the auction for the object for which
he has the higher valuation. When rB ≤ v and rB < rA, because
of the initial condition in this context, we have that g(vA; rA, rB)
coincides with g(vA; v∗

A, v) for each vA ∈ [v∗

A, v̄].

30 Moreover, we extend FA (for v < v∗

A) and FB (for v < v) as described in
Section 5.1.
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Fig. 8. The function g and the sets VA , VB when n = 3, F is the uniform
distribution with support [v, v̄] = [0.5, 1.5], and rB = 0.2, rA = 0.75. Then
v∗

A = 0.84915.

F.2. Sellers’ game when v > 0 and min{rA, rB} < v

When v > 0 and the equilibrium reserve price is not smaller
than v, then the analysis in Section 5 still applies. But it is possible
that the equilibrium reserve price is smaller than v, and then we
need to use

∂RB(r, r)
∂rB

=
n
2n +

n
2n−1

[
(n − 2)r − (n − 1)v

] ∫ v̄

v

f 2(v)
∂g(v; r, r)

∂rB
dv (51)

−n(n − 1)
∫ v̄

v

[F̃ n−2(v) − F̃ n−1(v)]
∫ v̄

v

f 2(u)
∂g(u; r, r)

∂rB
dudv

which holds for each r ∈ [0, v) (the derivation of (51) is described
in Appendix F.3). From (51) we obtain a first order condition
when the equilibrium reserve price is smaller than v.

Once F is specified, we can apply numerical methods as spec-
ified in Section 5.3 and here we assume that F is the c.d.f. of
the uniform distribution with support [1, 2] and n = 2. We find
that in this case ∂RB(r,r)

∂rB
is equal to 0 at r = 0.90041, which we

denote with rD2,1. Then we use numerical methods to show that
RB(rD2,1, r

D
2,1) ≥ RB(rD2,1, rB) for each rB in the set S2,1 of reserve

prices in [0, 2) which differ from rD2,1 by an integer multiple of
1

1000 , so that (rA, rB) = (rD2,1, r
D
2,1), is an equilibrium for the game

in which S2,1 is the set of feasible reserve prices for each seller.
We notice that in this case the equilibrium reserve prices is

less than v, something which cannot occur if v = 0, although
under monopoly the seller never sets the reserve price below v.
A similar result holds in Parlane (2008), who studies competing
auctions when the objects are differentiated à la Hotelling. In
case of low differentiation, bidders are nearly indifferent between
object A and object B; then competition between sellers is fierce
and leads to a low reserve price, which leaves a positive rent to
each bidder type who participates in his favorite auction.

F.3. Derivation of ∂RB
∂rB

in (51)

When rB < v and rB ≤ rA = r , the probability that a bidder
enters auction B (that is, that his values belong to VB) is 1 − α,
with α determined by (47). Then the expected revenue of seller
B can be written as

RB(r, rB) = rBn(1 − α)αn−1
+

∫ v̄

v

vdF (2)
B (v; r) (52)

in which n(1−α)αn−1 is the probability that just one bidder enters
auction B, and

∫ v̄

v
vdF (2)

B (v; r) takes care of the case in which at
least two bidders enter auction B. Applying integration by parts
to (52), we obtain RB(r, rB) = v̄ − n(v − rB)(1 − α)αn−1

− vαn
−∫ v̄

v
F (2)
B (v; r)dv. Hence

∂RB

∂rB
= n(1 − α)αn−1

+ rBn[(n − 1)αn−2
− nαn−1

]
∂α

∂rB

−vn(n − 1)αn−2(1 − α)
∂α

∂rB

−n(n − 1)
∫ v̄

v

[F n−2
B (v; r) − F n−1

B (v; r)]
∂FB(v; r)

∂rB
dv

About ∂α
∂rB

, from (47) we find that

∂α

∂rB
= −F (g(v∗

A; r))f (v
∗

A)
∂v∗

A

∂rB
+

∫ v̄

v∗
A

f (g(v; r))f (v)
∂g(v; r)

∂rB
dv

=

∫ v̄

v∗
A

f (g(v; r))f (v)
∂g(v; r)

∂rB
dv (53)

since F (g(v∗

A; r)) = F (v) = 0. About ∂FB(v,r)
∂rB

, from (10) we see that
∂FB(v,r)

∂rB
=
∫ v̄

g−1(v;r) f (g(u; r))f (u)
∂g(u;r)

∂rB
du. Therefore ∂RB

∂rB
is

∂RB

∂rB
= n(1 − α)αn−1

+ n
[(
(n − 1)αn−2

− nαn−1) rB
−v(n − 1)αn−2(1 − α)

] ∫ v̄

v∗
A

f (g(v; r))f (v)
∂g(v; r)

∂rB
dv

−n(n − 1)
∫ v̄

v

[F n−2
B (v; r) − F n−1

B (v; r)]

×

∫ v̄

g−1(v;r)
f (g(u; r))f (u)

∂g(u; r)
∂rB

dudv (54)

At rB = r we have v∗

A = v, g and g−1 coincide with g id
v , α =

1
2 , FB

boils down to F̃ . Thus (54) reduces to (51).
In order to evaluate ∂g(v;r,r)

∂rB
, we recall from Appendix F.1 that

for rB < v, rB ≤ rA, the following equality holds:

g(v; rA, rB) = g(v; v∗

A, v) (55)

since the initial condition establishes that g at v∗

A has value v,
with v∗

A determined by rA, rB through (48). Therefore, a change
in rB determines a change in v∗

A , which has the same effect on
g as a change in rA in the setting of Section 4 and ∂g(v;rA,rB)

∂rB
=

∂v∗
A

∂rB

∂g(v;v∗
A ,v)

∂rA
, in which ∂g

∂rA
at the right hand side indicates the

partial derivative of g with respect to its second variable and (see
Box I).

At rB = r we have v∗

A = v, g = g id
v , α =

1
2 . Hence,

∂g(v;r,r)
∂rB

=

∂v∗
A

∂rB
∂g(v;v,v)

∂rA
with ∂v∗

A
∂rB

=
1

4(v−r)(n−1)
∫ v̄
v f 2(v) ∂g(v;v,v)

∂rA
dv−1

, and by next

lemma we conclude that
∂g(v; r, r)

∂rB
=

1

4(v − r)(n − 1)
∫ v̄

v
f 2(u) ∂g(u;v,v)

∂rB
du + 1

∂g(v; v, v)
∂rB

in which ∂g(v;v,v)
∂rB

can be evaluated as described by Lemma 1.
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∂v∗

A

∂rB
= −

αn−1

(1 − α)n−1 − (n − 1)
[
(v∗

A − rA)(1 − α)n−2 + (v − rB)αn−2
] ∫ v̄

v∗
A
f (g(v; v∗

A, v))f (v)
∂g(v;v∗

A ,v)
∂rA

dv

Box I.

Lemma 2. ∂g(v;v,v)
∂rA

= −
∂g(v;v,v)

∂rB
.

Proof. Given a small ε, consider equation (4) with the initial
condition g(rA−ε; rA−ε, rB) = rB and notice that g(rA; rA−ε, rB) is
equal to rB+

∂g(rA−ε;rA−ε,rB)
∂v

ε+o(ε), with ∂g(rA−ε;rA−ε,rB)
∂v

determined
by (4). Thus the shift −ε in the initial condition g(rA − ε; rA −

ε, rB) = rB has the same effect in the first-order as a change by
∂g(rA−ε;rA−ε,rB)

∂v
ε+o(ε) in rB in the initial condition g(rA; rA, rB) = rB.

Hence

∂g(v; rA, rB)
∂rA

=
∂g(v; rA, rB)

∂rB
lim
ε→0

∂g(rA−ε;rA−ε,rB)
∂v

ε + o(ε)
−ε

= −
∂g(v; rA, rB)

∂rB

∂g(rA; rA, rB)
∂v

.

When rB = rA = v, we have that g is equal to gv . Hence
∂g(v;v,v)

∂rA
=

−
∂g(v;v,v)

∂rB
since ∂g(v;v,v)

∂v
= 1.
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