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Abstract 

A semiparametric triangular systems approach shows how multicointegrating linkages occur naturally in an I(1) 

cointegrated regression model when the long run error variance matrix in the system is singular. Under such 

singularity, cointegrated I(1) systems embody a multicointegrated structure that makes them useful in many 

empirical settings. Earlier work shows that such systems may be analyzed and estimated without appealing to 

the associated I(2) system but with suboptimal convergence rates and potential asymptotic bias. The present 

paper develops a robust approach to estimation and inference of such systems using high dimensional IV 

methods that have appealing asymptotic properties like those known to apply in the optimal estimation of 

cointegrated systems (Phillips, 1991). The approach uses an extended version of high-dimensional trend IV 

(Phillips, 2006, 2014) estimation with deterministic orthonormal instruments. The methods and derivations 

involve new results on high-dimensional IV techniques and matrix normalization in the limit theory that are of 

independent interest. Wald tests of general linear restrictions are constructed using a fixed-b long run variance 

estimator that leads to robust pivotal HAR inference in both cointegrated and multicointegrated cases. 

Simulations show good properties of the estimation and inferential procedures in finite samples. An empirical 

illustration to housing stocks, starts and completions is provided. 

Keywords: Cointegration, HAR inference, High-dimensional IV, Long run variance matrix, 

Multicointegration, Singularity, Trend IV estimation 

 

1. Introduction 

Economic identities that link some variables to partial sums of constituent variables arise frequently in economic 

data. Examples include common relations between stock and flow versions of variables such as the capital stock 

and fixed investment, inventory investment and inventory stock, housing construction completions and housing 

units under construction. Many of these variables have nonstationary characteristics and cointegration models 

have proved a frequently used framework for empirical work investigating such time series. 

The concept of multicointegration was introduced by Granger and Lee, 1989, Granger and Lee, 1990 

to allow explicitly for linkages among stock and flow forms of integrated order one (I(1)) variables. In particular, 

multicointegration was suggested to capture the notion that 
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equilibrium errors in an 𝐼(1) cointegrating relation may accumulate so that they cointegrate with the original variables. Engsted and
Haldrup (1999) remark that this phenomenon is likely to occur in practice when characterizing the dynamic interactions of stock and
flow variables. Granger and Lee (1990) and Lee (1996) showed how multicointegration can arise in the context of optimum control
problems and infinite horizon quadratic adjustment cost models. One of the latest empirical applications of multicointegration has
been to global climate change modeling, where the effects of accumulating cointegration disequilibria in temperature and surface
radiation raise oceanic heat storage which leads to a multicointegrated linkage influencing global temperature (Bruns et al., 2020).

In these models the equilibrium errors (or residuals in an 𝐼(1) cointegrating relation) are considered 𝐼(0) or stationary, so that
upon cumulation these errors become 𝐼(1), and then subsequent cointegration may occur with the original variables or partial sums
of them. Somewhat naturally it has therefore been posited in the multicointegration literature that multicointegration cannot occur
in 𝐼(1) systems (Engsted and Johansen, 1999; Engsted and Haldrup, 1999). This idea has been well accepted in the literature but
was developed in a VAR framework and does not necessarily hold in general models such as semiparametric 𝐼(1) cointegrating
settings (Phillips, 1991). Instead, as demonstrated here and in recent related work on fully modified least squares (Kheifets and
Phillips, 2023, hereafter, KP), multicointegration occurs in any cointegrated 𝐼(1) model whenever there is a rank deficiency in the
long run conditional covariance matrix of the cointegrating equation error. The phenomenon is a general one and rank deficiency
turns out to be the determining factor of multicointegration in an 𝐼(1) system. Multicointegration arises because singularity in the
long run conditional covariance matrix induces a further long run cointegrating relation simply because the singularity implies a
moving average 𝐼(−1) (or higher level) component in that direction in the equation error, which leads directly to cointegration
upon accumulation. This formulation of multicointegration in terms of rank deficiency in the long run conditional error covariance
matrix is intuitive because it points directly to latent higher order relations in the 𝐼(1) system and indicates their direction without
further complications or the use of additional notation. The phenomenon has an analogue reduced rank structure in the parametric
VAR model context and was noted but not analyzed by Engsted and Haldrup (1999, p.241).

Johansen (1992, 1995) provided explicit representations of reduced rank VAR structures which ensure the existence of cointe-
grated 𝐼(1) and 𝐼(2) systems. The implications of these conditions for characterizing models with multicointegration were employed
in Engsted and Johansen (1999, hereafter, EJ), demonstrating the relevance of the 𝐼(2) system for embodying multicointegrated
structures in VAR systems. Outside the VAR setting, multicointegration can exist in an 𝐼(1) reduced rank VARMA setting or in 𝐼(1)
cointegrated systems with infinite order bidirectional lags.1 These models and approaches to multicointegration are reconciled in
what follows.

The present paper makes three main contributions. First, a general analysis of multicointegration is provided within an
𝐼(1) cointegrated system using the semiparametric triangular model framework. Multicointegration in such systems arises from
singularity in the long run error covariance matrix, which in turn is shown to affect the asymptotic behavior of standard cointegrated
system estimation procedures by introducing bias and non-pivotal inference. These findings are illustrated in PK (2021), Section
4.1.1, in the case of the integrated modified least squares (IM-OLS) approach (Vogelsang and Wagner, 2014). Similarly, KP
(2023) recently developed asymptotics for the fully modified least squares (FM-OLS) cointegration coefficient estimator under
multicointegration, showing degenerate limit theory in general but accelerated convergence over the usual 𝑂(𝑛) rate in the direction
of multicointegration, accompanied by second order bias in the limit theory.2 In a second contribution, it is shown that an extended
version of high-dimensional trend IV (TIV) estimation with deterministic orthonormal instruments (Phillips, 2006, 2014) provides an
approach to optimal estimation with mixed normal limit theory and pivotal inference in singular multicointegrated systems as well as
standard cointegrated 𝐼(1) systems. This TIV method therefore delivers a convenient IV approach to estimation and inference in 𝐼(1)
cointegrated systems that also applies under multicointegration. The methodology and asymptotic results are linked to maximum
likelihood estimation in the specialized case of multicointegrated VAR systems studied in earlier work.

Third, high-dimensional TIV estimation has the further advantage of a faster convergence rate under multicointegration than the
FM-OLS estimator studied in KP (2023) and this approach enables inference using standard Wald statistics formulated in the same
way with a HAR variance matrix under both cointegration and multicointegration. This property opens the door to the analysis of
cointegrated time series without full specification of the dynamics and without pretesting for multicointegration, thereby extending
earlier work on VAR methods.

A final contribution of the paper is technical, with a group of new findings concerning the limit theory of functionals of trend
transformed stationary and nonstationary variables in the case of asymptotically infinite instrument numbers. This contribution
includes some new methods of developing limit theory for estimators and Wald statistics in highly complex cases involving
singularities in signal matrices and partitioned regression asymptotics that require component-wise analysis or matrix normalization
rather than diagonal matrix normalization to extract the correct asymptotics. These methods and results are of independent interest
given recent research on large instrument numbers and deterministic transforms of variables that enable empirical investigations to
focus on long run behavior.

The paper is organized as follows. The next section explains the source of multicointegration in the standard semiparametric
triangular cointegrated system of 𝐼(1) variables. Section 3 presents and analyzes TIV approaches to the estimation of cointegrated
systems under conditions of multicointegration. Limit theory for these approaches is provided. Section 4 develops methods of
inference using HAR methods that lead to pivotal asymptotics suited for inference in practical work. Section 5 shows optimality

1 Estimation of 𝐼(1) and 𝐼(2) VAR processes where the lag order increases with the sample size is discussed in Li and Bauer (2020). Such a VAR can also be
used to estimate invertible VARMA process.

2 Other popular cointegration estimators such as dynamic OLS (Phillips and Loretan, 1991; Saikkonen, 1991; Stock and Watson, 1993) also generally suffer
from second order asymptotic bias in the presence of multicointegration.
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properties of the TIV estimation. Section 6 reports some simulation results and an empirical illustration is given in Section 7.
Section 8 concludes with some general discussion and future research possibilities. Proofs of all the results in the paper are provided
in a supplementary document for online publication (Phillips and Kheifets, 2023).3 Some of the proofs in this Online Supplement
involve new methods and technical calculations relevant to high-dimensional IV methods that are of wider interest. As an aid to
readers, a glossary of notation is given in Section 9 at the end of the paper for the most common functionals that appear in the
formulae of the paper.

2. Multicointegration in the 𝑰(𝟏) framework

The starting point in developing a framework for the source of multicointegation is the following 𝐼 (1) triangular matrix system
of cointegration (Phillips, 1991)

𝑦𝑡 = 𝐴𝑥𝑡 + 𝑢0𝑡 (1)

𝑥𝑡 = 𝑥𝑡−1 + 𝑢𝑥𝑡, 𝑡 = 1,… , 𝑇 . (2)

Here 𝐴 is an 𝑚0 ×𝑚𝑥 cointegrating coefficient matrix, the 𝐼 (1) 𝑚𝑥-vector 𝑥𝑡 is initialized at 𝑡 = 0 by 𝑥0 = 𝑂𝑝(1), and the composite
error vector 𝑢𝑡 = (𝑢′0𝑡, 𝑢

′
𝑥𝑡)

′ is assumed throughout the paper to follow the linear process

𝑢𝑡 = 𝐷(𝐿)𝜂𝑡 =
∞
∑

𝑗=0
𝐷𝑗𝜂𝑡−𝑗 , with

∞
∑

𝑗=0
𝑗‖𝐷𝑗‖ <∞, 𝜂𝑡 ∼ 𝑖𝑖𝑑(0, 𝐼𝑚), (3)

where 𝑚 = 𝑚0 +𝑚𝑥. Let 𝛤ℎ = E𝑢𝑡𝑢′𝑡+ℎ and VLR (

𝑢𝑡
)

=
∑∞
ℎ=−∞ 𝛤ℎ denote the long run variance matrix of 𝑢𝑡. The linear operator 𝐷(𝐿)

and long run variance matrix V𝐿𝑅(𝑢𝑡) = 𝛺 =
∑∞
ℎ=−∞ 𝛤ℎ = 𝐷(1)𝐷(1)′ =

∑∞
𝑗,𝑘=0𝐷𝑗𝐷′

𝑘 of 𝑢𝑡 are partitioned conformably with 𝑢𝑡 as

𝐷(𝐿) =

[

𝐷00(𝐿) 𝐷0𝑥(𝐿)

𝐷𝑥0(𝐿) 𝐷𝑥𝑥(𝐿)

]

, 𝛺 =
[

𝛺00 𝛺0𝑥
𝛺𝑥0 𝛺𝑥𝑥

]

(4)

where 𝛺𝑥𝑥 > 0 is positive definite, ensuring that 𝑥𝑡 is a full rank unit root vector process which delivers 𝑚𝑥 common stochastic
trends to the 𝐼(1) system (1)–(2). This full rank condition is maintained throughout the paper. The conditional long run variance
matrix 𝛺00.𝑥 = 𝛺00 −𝛺0𝑥𝛺−1

𝑥𝑥𝛺𝑥0 is the Schur complement of the block 𝛺𝑥𝑥 in 𝛺 and this matrix is positive (semi-) definite if and
only if 𝛺 is positive (semi-) definite by virtue of the Guttman rank additivity formula rank (𝛺) = rank(𝛺𝑥𝑥) + rank

(

𝛺00.𝑥
)

.
The case of nonsingular 𝛺 is well studied. The case where 𝛺𝑥𝑥 may be singular and the regressors 𝑥𝑡 not full rank 𝐼(1) processes

was studied in Phillips (1995). But the situation where the conditional long run variance matrix 𝛺00.𝑥 is singular seems largely to
have been ignored4 in the now vast literature on cointegration and, with the exception of KP (2023), none of the implications of
singularity for estimation and inference have been explored in the (1)–(2) setting. This neglect is partly because, as we will show,
singularity in the long run error covariance matrix leads to an 𝐼(1) reduced rank VARMA representation rather than a reduced
rank 𝐼(1) VAR representation. So while such systems fall naturally within the semiparametric framework5 above, they do not fall
so neatly within the VAR framework, at least without raising the order of the system to 𝐼(2) . Nonetheless, the singular long run
variance matrix case is especially interesting because it leads directly to a situation where partial sums of the observed variables 𝑦𝑡
and 𝑥𝑡 (which then become 𝐼 (2) variables) are cointegrated with 𝑥𝑡 in some unknown direction — see (6) below. The importance
of this situation is that it provides a primitive (that is, within the 𝐼(1) system) link to the phenomenon of multicointegration, as
envisaged in special cases by Granger and Lee (1989). But the source of the multicointegration is now firmly evident in the 𝐼 (1)
framework (1)–(2). Moreover, the condition for multicointegration is straightforwardly expressed in terms of the existing parameters
of the 𝐼(1) system without further notation or complications.

An alternate representation of (1) which is useful in the development of efficient estimation methods of 𝐼 (1) cointegrated systems
by FM-OLS or trend IV regression (Phillips, 2014) is the augmented regression

𝑦𝑡 = 𝐴𝑥𝑡 +𝛺0𝑥𝛺
−1
𝑥𝑥𝛥𝑥𝑡 + 𝑢0.𝑥𝑡, 𝑢0.𝑥𝑡 ∶= 𝑢0𝑡 −𝛺0𝑥𝛺

−1
𝑥𝑥 𝑢𝑥𝑡

=∶ 𝐴𝑥𝑡 + 𝐹𝛥𝑥𝑡 + 𝑢0.𝑥𝑡, 𝛥𝑥𝑡 = 𝑢𝑥𝑡, (5)

where both the cointegrating coefficient matrix 𝐴 and the nonparametric long run regression coefficient 𝐹 = 𝛺0𝑥𝛺−1
𝑥𝑥 are treated as

unknown. The matrix 𝐹 measures the long run endogeneity of the regressor 𝑥𝑡. Applying partial sum operations to (5) gives

𝑌𝑡 = 𝐴𝑋𝑡 + 𝐹
(

𝑥𝑡 − 𝑥0
)

+ 𝑈0.𝑥𝑡, (6)

3 Further material and discussions are available in the original working paper (Phillips and Kheifets, 2021).
4 The possibility of full system singularity with rank failure in 𝛺 is mentioned by Engsted and Haldrup (1999, p.241) but is not analyzed. Singularity in the

long run conditional variance matrix and the implications of this singularity on estimation procedures such as fully modified least squares (FM-OLS) were the
subject of a Yale Take Home Examination in 2011 (http://korora.econ.yale.edu/phillips/teach/ex/553a-ex11a.pdf). That approach was analyzed in KP (2023).

5 The system is semiparametric because the nonparametric formulation of the system innovations in (3) generalizes the specific dynamics assumed to apply
in a VAR system of cointegration or multicointegration.

http://korora.econ.yale.edu/phillips/teach/ex/553a-ex11a.pdf


4

P.C.B. Phillips and I.L. Kheifets

with 𝑌𝑡 =
∑𝑡
𝑠=1 𝑦𝑠, 𝑋𝑡 =

∑𝑡
𝑠=1 𝑥𝑠, and 𝑈0.𝑥𝑡 =

∑𝑡
𝑠=1 𝑢0.𝑥𝑠. Now suppose that the long run (conditional) variance matrix 𝛺00.𝑥 of 𝑢0.𝑥𝑡

is singular of rank 0 < 𝑝 < 𝑚0 and 𝐻 is an 𝑚0 × (𝑚0 − 𝑝) matrix of full rank 𝑚0 − 𝑝 spanning the null space of 𝛺00.𝑥, so that

𝐻 ′𝛺00.𝑥𝐻 = 0. (7)

Then in this direction the transformed error 𝐻 ′𝑢0.𝑥𝑡 has zero long run variance matrix and zero spectral density matrix at the origin.
There therefore exists some 𝑝 dimensional 𝐼 (0) process 𝜀𝐻𝑡 for which 𝐻 ′𝑢0.𝑥𝑡 = 𝛥𝜀𝐻𝑡 𝑎.𝑠., in the absence of fractional antipersistence6

which is ruled out by the absolute 1-summability condition (3), leading to the representation

𝐻 ′𝑦𝑡 = 𝐻 ′𝐴𝑥𝑡 +𝐻 ′𝐹𝛥𝑥𝑡 + 𝛥𝜀𝐻𝑡,

and by partial summation to

𝐻 ′𝑌𝑡 = 𝐻 ′𝐴𝑋𝑡 +𝐻 ′𝐹
(

𝑥𝑡 − 𝑥0
)

+
(

𝜀𝐻𝑡 − 𝜀𝐻0
)

.

It follows that

𝐻 ′𝑌𝑡 = 𝐻 ′𝐴𝑋𝑡 +𝐻 ′𝐹𝑥𝑡 +
(

𝜀𝐻𝑡 − 𝜀𝐻0 −𝐻 ′𝐹𝑥0
)

=∶ 𝐻 ′𝐴𝑋𝑡 +𝐻 ′𝐹𝑥𝑡 + 𝜂𝐻𝑡, (8)

where 𝜂𝐻𝑡 = 𝜀𝐻𝑡 − 𝜀𝐻0 − 𝐻 ′𝐹𝑥0 is 𝐼 (0) up to (and conditional on) the initial condition 𝑥0 = 𝑂𝑝 (1), and provided no further
level of long run degeneracy (or higher order multicointegration) is present for which V𝐿𝑅(𝜀𝐻𝑡) = 0. From (8) it follows that the
variables

(

𝑌𝑡, 𝑋𝑡, 𝑥𝑡
)

are cointegrated, involving both the 𝐼 (2) time series
(

𝑌𝑡, 𝑋𝑡
)

and the 𝐼 (1) time series 𝑥𝑡. This accords with the
conventional definition of multicointegration. Importantly, in this general framework the multicointegration coefficients, notably
𝐻 and 𝐻 ′𝐹 = 𝐻 ′𝛺0𝑥𝛺−1

𝑥𝑥 , are nonparametric.

3. Estimation

With the exception of certain specialized models involving known relationships between variables such as stocks and flows,
the existence of multicointegration will often not be anticipated in practical applied work on estimation and inference in 𝐼(1)
cointegrated systems. Tests for the presence of multicointegration have been developed for VAR systems (Engsted et al., 1997) but
multicointegration may not be suspected, pre-test analyses may not be conducted or they may lead to pre-test bias and misleading
outcomes; and empirical research may be conducted using triangular cointegrated systems rather than VAR specifications. In the
absence of such tests it is obviously useful to have methods of estimating 𝐼(1) cointegrated systems that are robust to the presence
of multicointegration.7

Since semiparametric formulations of cointegrated 𝐼(1) systems may be conducted in the presence of multicointegration, standard
efficient methods of estimating these systems such as FM-OLS or dynamic OLS may continue to be employed in practical work. But
the properties of such regressions are influenced by the singularity of the long run error covariance matrix. The typical impact of
singularity is to raise the rate of convergence in the direction of singularity, thereby producing a degenerate limit theory for the
estimate of the full cointegrating matrix. Moreover, common semiparametric methods of estimation such as FM-OLS involve the use
of nonparametric kernel estimates of the long run variance and covariance matrices for bias correction and inference. In consequence,
the accelerated rate of convergence in FM-OLS estimation is affected by the asymptotic behavior of these kernel estimates under
rank degeneracy, as in the analysis of regression with cointegrated regressors and unrestricted VAR regression in the presence of
cointegration (Phillips, 1995). Inference is correspondingly affected with further nonstandard limit distribution complications and
non-pivotal limit theory in test statistics. These consequences may be analyzed8 but are not pursued here. Instead, for reasons
explained below the present paper develops new methods of estimation based on trend instrumental variable (TIV) methods that
have clear advantages for efficient estimation and robust inference. To keep the analysis as brief as possible we confine attention
to a scalar cointegrating relationship, which enables a convenient introduction of the basic ideas, highlights the main implications,
and covers one of the most common cases arising in practice. Extension to the multivariate model follows usual lines but inferential
analysis using Wald statistics is further complicated9 by the need for matrix normalization to take account of differing rates of
convergence in differing directions and arbitrary linear combinations of the matrix coefficients under test.

6 Under fractional antipersistence in which 𝜀𝐻𝑡 is such that 𝐻 ′𝑢0.𝑥𝑡 = 𝛥𝑑𝜀𝐻𝑡 = (1−𝐿)𝑑𝜀𝐻𝑡 for some 𝑑 ∈ (0, 1), the system (8) would be replaced by the equation
𝐻 ′(1−𝐿)−𝑑𝑦𝑡 = 𝐻 ′𝐴(1−𝐿)−𝑑𝑥𝑡 +𝐻 ′𝐹 (1−𝐿)−𝑑𝑢𝑥𝑡 + 𝜀𝐻𝑡. Both the matrix transform 𝐻 and the antipersistence parameter 𝑑 would be unknown in this case, leading
to further complications that are left for future research.

7 Of course, the methods we introduce may result in misleading outcomes if the triangular system itself is misspecified.
8 KP (2023) developed the limit theory of FM-OLS estimation under rank failure of the long run conditional variance matrix of the error in the augmented

regression equation. Those results illustrate some of the effects that apply for other methods of cointegration system estimation.
9 These complications are by no means trivial. Often in such cases, simplifying assumptions are made to assure no loss of rank or degrees of freedom in the

limit, e.g., Andrews and Cheng (2012, 2014), and Vogelsang and Wagner (2014). Analyses of Wald statistic testing under matrix normalization without such
prior requirements are developed in ongoing work in Magdalinos and Phillips (2019) for general nonstationary regression cases and for time polynomial trend
regression in Phillips (2022).
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3.1. Estimation approaches

To fix ideas, consider the following scalar version of the augmented 𝐼(1) cointegrating Eq. (5)

𝑦𝑡 = 𝑎′𝑥𝑡 + 𝑓 ′𝛥𝑥𝑡 + 𝑢0.𝑥𝑡, 𝛥𝑥𝑡 = 𝑢𝑥𝑡, 𝑢0.𝑥𝑡 = 𝑢0𝑡 −𝛺0𝑥𝛺
−1
𝑥𝑥 𝑢𝑥𝑡 (9)

where 𝑓 ′ = 𝛺0𝑥𝛺−1
𝑥𝑥 and the conditional long run variance 𝛺00.𝑥 = 𝛺00 −𝛺0𝑥𝛺−1

𝑥𝑥𝛺𝑥0 ≥ 0. We will consider both the standard form
of the equation where 𝛺00.𝑥 > 0 and the singular form where 𝛺00.𝑥 = 𝛺00 −𝛺0𝑥𝛺−1

𝑥𝑥𝛺𝑥0 = 0. In that event, we write 𝑢0.𝑥𝑡 = 𝛥𝑒𝑡 where
𝑒𝑡 has variance 𝜎2𝑒 and long run variance 𝜔𝑒𝑒 > 0. The condition 𝜔𝑒𝑒 > 0 is maintained in the rest of the paper. Its relaxation leads
to further complications involving higher order singularity that may be dealt with using similar methods to those developed here.
In what follows, we consider two methods of estimation of the parameters in (9).

We start by requiring the following high-level conditions, which hold under well-known conditions (e.g., Phillips and Solo
(1992)). Here and in what follows we use ⇝ to signify weak convergence in the relevant probability space.

(𝑎) 1
√

𝑛

⌊𝑛⋅⌋
∑

𝑡=1
𝑒𝑡 ⇝ 𝐵𝑒 (⋅) ≡ 𝐵𝑀

(

𝜔2
𝑒
)

, when 𝛺00.𝑥 = 0, (10)

(𝑏) 1
√

𝑛

⌊𝑛⋅⌋
∑

𝑡=1
𝑢0.𝑥𝑡 ⇝ 𝐵0.𝑥 (⋅) = 𝐵𝑀

(

𝛺00.𝑥
)

, when 𝛺00.𝑥 > 0. (11)

In case (a) we further assume the joint functional law

1
√

𝑛

⌊𝑛⋅⌋
∑

𝑡=1

(

𝑒𝑡, 𝑢
′
𝑥𝑡
)′

⇝
(

𝐵𝑒 (⋅) , 𝐵𝑥 (⋅)′
)′ ≡ 𝐵𝑀

([

𝜔𝑒𝑒 𝜔𝑒𝑥
𝜔𝑥𝑒 𝛺𝑥𝑥

])

with
[

𝜔𝑒𝑒 𝜔𝑒𝑥
𝜔𝑥𝑒 𝛺𝑥𝑥

]

> 0. (12)

The functional law (11) already holds under (3), and (12) similarly holds under analogous linear process conditions, as in Phillips
and Solo (1992). Although 𝑢0.𝑥𝑡 = 𝛥𝑒𝑡 has zero long run covariance with 𝑢𝑥𝑡 in case (a) the same is not necessarily so of 𝑒𝑡. For
instance, if 𝑒𝑡 = 𝛼′𝑢𝑥𝑡 + 𝜀𝑡 where 𝜀𝑡 ∼ 𝑖𝑖𝑑

(

0, 𝜎2𝜀
)

and independent of 𝑢𝑥𝑡, then 𝑢0.𝑥𝑡 = 𝛼′𝛥𝑢𝑥𝑡 + 𝛥𝜀𝑡 has zero long run covariance with
𝑢𝑥𝑡 but the long run covariance of 𝑢𝑥𝑡 and 𝑒𝑡 is CVLR (

𝑢𝑥𝑡, 𝑒𝑡
)

= 𝜔𝑥𝑒 = 𝛺𝑥𝑥𝛼 ≠ 0. Condition (12) allows for both 𝜔𝑥𝑒 = 0 and 𝜔𝑥𝑒 ≠ 0
possibilities.

Using capitals as before to denote partial summation, write 𝑌𝑡 =
∑𝑡
𝑠=1 𝑦𝑠, 𝑋𝑡 =

∑𝑡
𝑠=1 𝑥𝑠, and 𝑈0.𝑥𝑡 =

∑𝑡
𝑠=1 𝑢0.𝑥𝑠. The transformed

system (9), up to initial conditions (in particular, taking 𝑒0 = 0), is then

𝑌𝑡 = 𝑎′𝑋𝑡 + 𝑓 ′𝑥𝑡 + 𝑒+𝑡 (13)

𝑒+𝑡 = 𝑒𝑡𝟏
{

𝛺00.𝑥 = 0
}

+ 𝑈0.𝑥𝑡𝟏
{

𝛺00.𝑥 > 0
}

, (14)

a formulation that covers both singular and non-singular cases.

3.1.1. Trend instrumental variable estimation
The approach developed here is based on the trend IV (TIV) method of Phillips (2014)10 which employs orthonormal (ON)

deterministic trend functions as instrumental variables for the regressors in (9). These ON instruments are designed to transform
the system so that its long run properties are brought into primary focus both for regression estimation (Phillips, 1998) and for long
run variance matrix estimation (Phillips, 2005b; Müller, 2007). These methods have recently become popular in examining various
properties of long run relations among time series variables (e.g., Phillips (2005a), Müller and Watson (2018) and Hwang and Sun
(2018)) and have numerous empirical applications as revealed in these studies.

In the TIV method of estimating cointegrating equations such as (9), deterministic instrumental variables
{

𝜑𝑘
(

𝑡
𝑛

)}𝐾

𝑘=1
are

employed, where
{

𝜑𝑘 (𝑟)
}∞
𝑘=1 are orthonormal basis functions of 𝐿2 [0, 1] and 𝐾 is allowed to pass to infinity as 𝑛 → ∞. This

approach is high-dimensional TIV estimation. An alternate version of this method is based on a fixed number 𝐾 of orthonormal trend
instruments and is used in recent work by Hwang and Sun (2018). We call this method the fixed-𝐾 approach of TIV regression.
Various classes of orthonormal functions may be used in these regressions without materially affecting the limit theory or finite
sample performance, as demonstrated in Phillips (2014) and Hwang and Sun (2018). The latter paper shows a particular advantage
in terms of 𝐹 and 𝑡 distribution limit theory for conventional test statistics of coefficient restrictions, which can enhance inference
in finite samples in standard cointegrated systems. This advantage has received wider attention recently (Lazarus et al., 2018). But
as shown later in the current work, the fixed-𝐾 approach does not deal as effectively with multicointegrated systems.

In what follows, we let �̃�𝐾 (𝑟) =
(

𝜑1 (𝑟) ,… , 𝜑𝐾 (𝑟)
)′, and 𝛷′

𝐾 =
[

�̃�𝐾1,… , �̃�𝐾𝑛
]

where �̃�𝐾𝑡 = �̃�𝐾
(

𝑡
𝑛

)

=
[

𝜑1

(

𝑡
𝑛

)

,… , 𝜑𝐾
(

𝑡
𝑛

)]′
.

The projector matrix onto the space of the instruments is 𝑃𝛷𝐾 = 𝛷𝐾
(

𝛷′
𝐾𝛷𝐾

)−1𝛷′
𝐾 . For trigonometric orthonormal polynomials we

10 The TIV approach was originally proposed in a York University Workshop conference presentation given in 2003. The same paper was presented in the Faro
Time Series Econometrics Conference 2005 and distributed as a Cowles Foundation Discussion Paper (Phillips, 2006). That paper also introduced the concept
of a trend likelihood associated with the low frequency components of a time series obtained by fitted regression on a number of deterministic orthonormal
regressors. Phillips (2005b) introduced the related idea of trend coordinates based on these fitted regression components to study long run covariability among
trending time series, a subject that has been extensively investigated recently by Müller and Watson (2018). The approach has earlier origins in band spectral
regression (Hannan, 1963; Engle, 1974; Corbae et al., 2002) in the frequency domain.
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have 𝑛−1𝛷′
𝐾𝛷𝐾 = 𝐼𝐾 +𝑂

(

1
𝑛

)

, as shown in Phillips (2005b, Lemma A) when 𝜑𝑘 (𝑟) =
√

2 sin
{

𝑘 − 1
2 𝜋𝑟 , so that 𝑃𝛷𝐾 ∼ 𝑛−1𝛷𝐾𝛷′

𝐾 .
TIV estimation of (9) is then asymptotically equivalent to simple least squares regression on the linearly transformed 𝐾-dimensional
system

𝑉𝑦 = 𝑉𝑥𝑎 + 𝑉𝛥𝑥𝑓 + 𝑉𝑢0.𝑥 , (15)

where we use the general notation 𝑉𝑐 = 𝛷′
𝐾𝑐 =

∑𝑛
𝑡=1 �̃�𝐾𝑡𝑐

′
𝑡 for the trigonometric transform of a time series 𝑐𝑡. The resulting coefficient

estimates of (15) have the following form in standard partitioned regression notation

�̂�𝑇 𝐼𝑉 − 𝑎 =
(

𝑉 ′
𝑥𝑄𝑉𝛥𝑥𝑉𝑥

)−1
𝑉 ′
𝑥𝑄𝑉𝛥𝑥𝑉𝑢0.𝑥 , (16)

𝑓𝑇 𝐼𝑉 − 𝑓 =
(

𝑉 ′
𝛥𝑥𝑄𝑉𝑥𝑉𝛥𝑥

)−1
𝑉 ′
𝛥𝑥𝑄𝑉𝑥𝑉𝑢0.𝑥 , (17)

where we use the usual general notation11 𝑄𝑥 = 𝐼 − 𝑃𝑥, 𝑃𝑥 = 𝑥
(

𝑥′𝑥
)−1 𝑥′. This least squares procedure is called transformed

augmented least squares (TA-OLS) in Hwang and Sun (2018), who investigate its asymptotic properties when 𝛺00.𝑥 > 0 and 𝐾
is fixed as 𝑛→ ∞. It is asymptotically equivalent to fixed-𝐾 TIV.

The approach we suggest here is designed to robustify the TIV estimation procedure to the presence of multicointegration and
singularity. The idea is to apply TIV regression to the following augmented regression form of (13)

𝑌𝑡 = 𝑎′𝑋𝑡 + 𝑓 ′𝑥𝑡 + 𝑔′𝛥𝑥𝑡 + 𝑒+𝑡 = 𝑎′𝑋𝑡 + 𝑓 ′𝑥𝑡 + 𝑔′𝑢𝑥𝑡 + 𝑒+𝑡 , (18)

where the additional (redundant) regressor 𝛥𝑥𝑡 is included with coefficient 𝑔 = 0 and the regression error is 𝑒+𝑡 = 𝑒𝑡𝟏
{

𝛺00.𝑥 = 0
}

+
𝑈0.𝑥𝑡𝟏

{

𝛺00.𝑥 > 0
}

as before. Thus, this time aggregated version of the model is augmented by the inclusion of the additional regressor
𝛥𝑥𝑡, analogous to the original system (5). As before, in practical work it is useful to include a fitted intercept in (18), which is
innocuous but takes care of initialization effects in the singular case where 𝑒+𝑡 = 𝑒𝑡𝟏

{

𝛺00.𝑥 = 0
}

and 𝑒0 ≠ 0. Again, the limit theory
is simply adjusted to employ deviations from means for the relevant stochastic processes, which for ease of notation is not done
here.

In observation form, we write (18) as

𝑌 =
[

𝑋,𝐶𝑥
]

𝛾 + 𝑒+, with 𝛾 ′ = (𝑎′, 𝑓 ′, 𝑔′) =∶
(

𝑎′,𝓁′) (19)

and

𝐶 ′
𝑥 =

[

𝑐𝑥1,… , 𝑐𝑥𝑛
]

=
[

𝑥1 ⋯ 𝑥𝑛
𝑢𝑥1 ⋯ 𝑢𝑥𝑛

]

=∶
[

𝑥′

𝑢′𝑥

]

.

Eq. (18) may, of course, also be estimated by direct application of least squares, leading to a form of augmented IM-OLS
regression. This estimator, as well as IM-OLS, have nuisance parameter dependencies in the limit (PK (2021)). Therefore, we proceed
with the analysis of TIV estimation of the augmented system. The TIV estimator of 𝑎 in (18) has the form

�̂�𝑇 𝐼𝑉 = argmin
𝑎

(𝑌 −𝑋𝑎)′ 𝑅𝐾 (𝑌 −𝑋𝑎) =
(

𝑋′𝑅𝐾𝑋
)−1 (𝑋′𝑅𝐾𝑌 ), (20)

where the projector matrix is 𝑅𝐾 = 𝑃𝛷𝐾 − 𝑃𝛷𝐾𝐶𝑥
(

𝐶 ′
𝑥𝑃𝛷𝐾𝐶𝑥

)−1
𝐶 ′
𝑥𝑃𝛷𝐾 and 𝑌 ′ =

[

𝑌1,… , 𝑌𝑛
]

. The TIV estimation procedure projects
all the variables in the augmented system (18) onto the deterministic instruments using the projector 𝑃𝛷𝐾 . For fixed 𝐾, this approach
is, as above in (15), asymptotically equivalent to least squares regression on the transformed system

𝑉𝑌 = 𝑉𝑋𝑎 + 𝑉𝑥𝑓 + 𝑉𝛥𝑥𝑔 + 𝑉𝑒+ =∶ 𝑉𝑋𝑎 + 𝑉𝐶𝓁 + 𝑉𝑒+ , (21)

where we employ the notation 𝑉𝑍 = 𝛷′
𝐾𝑍 for an observation matrix 𝑍. Standard partitioned least squares regression on (21) leads

to the following estimator of 𝑎

�̂�𝑓𝑇 𝐼𝑉 − 𝑎 =
(

𝑉 ′
𝑋𝑄𝑉𝐶 𝑉𝑋

)−1
𝑉 ′
𝑋𝑄𝑉𝐶 𝑉𝑒+ , (22)

giving the fixed-𝐾 trend IV (fTIV) estimate.
The results that follow provide the asymptotic theory for TIV estimation with fixed-𝐾 and as 𝐾 → ∞ in both 𝛺00.𝑥 > 0 and

𝛺00.𝑥 = 0 cases. The proofs involve new complications due to the presence of the redundant regressor 𝛥𝑥𝑡 in the fitted equation, the
partially spurious nature of the regression equation when 𝛺00.𝑥 > 0, and the impact of singularity when 𝛺00.𝑥 = 0.

New asymptotic theory is provided to address these complications. The analysis is particularly difficult when 𝐾 → ∞ as 𝑛 → ∞
and the development of the asymptotic theory of inference in the following section involves new methods and results. But the final
limit theory is satisfyingly simple for both the singular and nonsingular 𝛺00.𝑥 cases. The result for fixed-𝐾 TIV estimation is given
in Theorem 1. The main result is given in Theorem 2 for TIV estimation when 𝐾 → ∞. This approach leads to mixed normal
limit distribution theory in both 𝛺00.𝑥 > 0 and 𝛺00.𝑥 = 0 cases, therefore providing a basis for robust estimation and inference in
cointegrated/multicointegrated systems even when the presence of multicointegration is unknown a priori. For convenient reading
of the following theorems and subsequent development, readers may be aided by consulting the notation glossary in Section 9.

11 For convenience, a list of notation is provided in the glossary, Section 9.
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Theorem 1 (TIV Estimation with Fixed 𝐾). When 𝛺00.𝑥 > 0, (11) holds, 𝐾 is fixed, and 𝑛→ ∞

(i) 𝑛
(

�̂�𝑓𝑇 𝐼𝑉 − 𝑎
)

⇝ 𝑆′
𝐾𝛹0.𝑥𝐾 ≡ 

(

0, 𝛺00.𝑥𝑆′
𝐾

(

∫ 1
0 ∫ 1

0 (𝑟 ∧ 𝑠) �̃�𝐾 (𝑟) �̃�𝐾 (𝑠)′ 𝑑𝑟𝑑𝑠
)

𝑆𝐾
)

,

where 𝑆𝐾 = 𝐽𝐾𝜇𝐾
(

𝜇′𝐾𝐽𝐾𝜇𝐾
)−1, 𝜇𝐾 = ∫ 1

0 �̃�𝐾𝐵
′
𝑋 , 𝛹0.𝑥𝐾 = ∫ 1

0 �̃�𝐾𝐵0.𝑥, 𝐽𝐾 = 𝑄𝜉𝐾 −𝑄𝜉𝐾 𝜂𝐾
(

𝜂′𝐾𝑄𝜉𝐾 𝜂𝐾
)−1

𝜂′𝐾𝑄𝜉𝐾 , 𝜂𝐾 = ∫ 1
0 �̃�𝐾 (𝑟)𝐵𝑥 (𝑟)′ 𝑑𝑟,

𝜉𝐾 = ∫ 1
0 �̃�𝐾 (𝑟) 𝑑𝐵𝑥 (𝑟)′, 𝐵𝑋 (𝑟) = ∫ 𝑟0 𝐵𝑥, and �̃�𝐾 is defined before (15).

When 𝛺00.𝑥 = 0, (12) holds, 𝐾 is fixed, and 𝑛→ ∞

(ii) 𝑛2
(

�̂�𝑓𝑇 𝐼𝑉 − 𝑎
)

⇝ 𝑆′
𝐾𝜓𝑒𝐾 ,

where 𝜓𝑒𝐾 = ∫ 1
0 �̃�𝐾𝑑𝐵𝑒. When 𝜔𝑒𝑥 = 0, the limit distribution is mixed normal and

(ii)* 𝑛2
(

�̂�𝑓𝑇 𝐼𝑉 − 𝑎
)

⇝ 
(

0, 𝜔𝑒𝑒
(

𝜇′𝐾𝑅𝐾𝜇𝐾
)−1

)

.

Theorem 2 (TIV Estimation with 𝐾 → ∞). When 𝛺00.𝑥 > 0, (11) holds, and (𝐾, 𝑛) → ∞ with 𝐾 = 𝑜
(

𝑛4∕5−𝛿
)

for some 𝛿 > 0

(iii) 𝑛
(

�̂�𝑇 𝐼𝑉 − 𝑎
)

⇝ −1
𝑋.𝑥

(

∫ 1
0 𝐵𝑋.𝑥𝐵0.𝑥

)

= −1
𝑋.𝑥 ∫

1
0
⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑋.𝑥𝑑𝐵0.𝑥 ≡ 

(

0, 𝛺00.𝑥−1
𝑋.𝑥 ∫

1
0
⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑋.𝑥 ⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑋.𝑥′−1

𝑋.𝑥

)

, where 𝑋.𝑥 = ∫ 1
0 𝐵𝑋.𝑥𝐵

′
𝑋.𝑥,

⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑋.𝑥 (𝑟) = ∫ 1
𝑟 𝐵𝑋.𝑥, 𝐵𝑋.𝑥 (𝑟) = 𝐵𝑋 (𝑟) − ∫ 1

0 𝐵𝑋𝐵
′
𝑥

(

∫ 1
0 𝐵𝑥𝐵

′
𝑥

)−1
𝐵𝑥 (𝑟)

When 𝛺00.𝑥 = 0, (12) holds, and (𝐾, 𝑛) → ∞ with 𝐾 = 𝑜
(

𝑛4∕5−𝛿
)

for some 𝛿 > 0

(iv) 𝑛2
(

�̂�𝑇 𝐼𝑉 − 𝑎
)

⇝ −1
𝑋.𝑥

(

∫ 1
0 𝐵𝑋.𝑥𝑑𝐵𝑒.𝑥

)

≡ 
(

0, 𝜔𝑒𝑒.𝑥−1
𝑋.𝑥

)

,

where 𝐵𝑒.𝑥 (𝑟) = 𝐵𝑒 (𝑟) − 𝜔𝑒𝑥𝛺−1
𝑥𝑥𝐵𝑥 (𝑟) ≡ 𝐵𝑀

(

𝜔𝑒𝑒.𝑥
)

where 𝐵𝑒.𝑥 is independent of the Brownian motion 𝐵𝑥 and 𝜔𝑒𝑒.𝑥 = 𝜔𝑒𝑒 − 𝜔𝑒𝑥𝛺−1
𝑥𝑥𝜔𝑥𝑒.

As expected, in both Theorems 1 and 2 the limit distributions differ for the two cases 𝛺00.𝑥 = 0 and 𝛺00.𝑥 > 0. For Theorem 2
we employ the expansion rate condition on the instrument number 𝐾 = 𝑜

(

𝑛4∕5−𝛿
)

for some 𝛿 > 0. The same condition was used
in Phillips (2014) and facilitates the joint limit theory (𝐾, 𝑛) → ∞.

TIV regression has the usual 𝑂 (𝑛) convergence rate for cointegrating regressions when 𝛺00.𝑥 > 0 in both fixed 𝐾 and 𝐾 → ∞
cases. Just as in standard cointegrating regression theory with 𝛺00.𝑥 > 0 mixed normal limit theory applies, as it does for other
methods of estimation such as FM-OLS regression in the nonsingular case; and when 𝐾 → ∞ as 𝑛 → ∞, Theorem 2(iii) shows that
the mixed normal limit theory of TIV is the same as that of the IM-OLS estimator given in PK (2021), Theorem 1(i). OLS estimation
may also be used in the augmented model (18) with the redundant regressor 𝛥𝑥𝑡 and without the long run transforms but there are
non-trivial effects on the estimated residuals from the use of OLS on the augmented system that make inference difficult with this
approach.

The singular case with 𝛺00.𝑥 = 0 is more intriguing. First, rates of convergence rise to 𝑂
(

𝑛2
)

as they do for IM-OLS. But the limit
theory for TIV is much simpler because the long run transforms are effective in focusing attention on long run properties. Second,
the TIV regression is successful in removing both endogeneity and serial correlation biases in both singular and nonsingular cases
under joint convergence when 𝐾 → ∞ as 𝑛 → ∞. Third, the limit theory is mixed normal and conducive to pivotal inference in
both cases, even though the rates of convergence are different for singular and nonsingular systems. Fourth, the mixed normal limit
theory in (iv) may be written in standardized form as


(

0, 𝜔𝑒𝑒.𝑥𝛺
−1∕2
𝑥𝑥 −1

𝑊 ,𝑋.𝑥𝛺
−1∕2
𝑥𝑥

)

≡ 𝜔−1∕2
𝑒𝑒.𝑥 𝛺

−1∕2
𝑥𝑥 ×

(

0,−1
𝑊 ,𝑋.𝑥

)

, (23)

with 𝑊 ,𝑋.𝑥 = ∫ 1
0 𝑊𝑋.𝑥𝑊 ′

𝑋.𝑥, since by simple matrix scale manipulations we have the representation

𝐵𝑋.𝑥 (𝑟) = 𝐵𝑋 (𝑟) − ∫

1

0
𝐵𝑋𝐵

′
𝑥

(

∫

1

0
𝐵𝑥𝐵

′
𝑥

)−1

𝐵𝑥 (𝑟)

= 𝛺1∕2
𝑥𝑥

⎧

⎪

⎨

⎪

⎩

𝑊𝑋 (𝑟) − ∫

1

0
𝑊𝑋𝑊

′
𝑥

(

∫

1

0
𝑊𝑥𝑊

′
𝑥

)−1

𝑊𝑥 (𝑟)

⎫

⎪

⎬

⎪

⎭

=∶ 𝛺1∕2
𝑥𝑥 𝑊𝑋.𝑥, (24)

where 𝐵𝑥 = 𝛺1∕2
𝑥𝑥 𝑊𝑥, 𝐵𝑋 (𝑟) = 𝛺1∕2

𝑥𝑥 ∫ 𝑟0 𝑊𝑥, and 𝑊𝑥 ≡ 𝐵𝑀
(

𝐼𝑚𝑥
)

. The limit distribution (23) is then a matrix scaled form of a

mixed normal distribution that depends only on functionals of standard Brownian motion. Importantly, the convergence rate of TIV
regression is faster than that of FM-OLS in the multicointegrated case where the rate does not achieve 𝑂(𝑛2) – see KP (2023).

Theorems 1 and 2 highlight differences in TIV estimation between the fixed 𝐾 and high-dimensional 𝐾 → ∞ cases. For the fixed
𝐾 case. TIV does not fully remove endogeneity bias as the limiting error transform 𝜓𝑒𝐾 = ∫ 1

0 �̃�𝐾𝑑𝐵𝑒 in the limit distribution (ii)
remains correlated with the regressor variable limiting transforms

(

𝜇𝐾 , 𝜂𝐾 , 𝜉𝐾
)

=
(

∫ 1
0 �̃�𝐾𝐵

′
𝑋 , ∫

1
𝑟=0 �̃�𝐾𝐵

′
𝑥𝑑𝑟, ∫

1
0 �̃�𝐾𝑑𝐵𝑥

)

when the long
run covariance 𝜔𝑒𝑥 ≠ 0. But when 𝜔𝑒𝑥 = 0 and 𝐾 is fixed the TIV estimator �̂�𝑇 𝐼𝑉 does have mixed normal limit theory, given by

𝑛2
(

�̂�𝑇 𝐼𝑉 − 𝑎
)

⇝ 
(

0, 𝜔𝑒𝑒
(

𝜇′𝐾𝑅𝐾𝜇𝐾
)−1

)

, (25)

which may be written in standardized Brownian motion form, analogous to (23) in this case. So under the long run orthogonality
condition 𝜔𝑒𝑥 = 0 TIV estimation with fixed 𝐾 instruments provides robust estimation and is effective in pivotal inference. But
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in the general case where the long run covariance CVLR (

𝑒𝑡, 𝑢𝑥𝑡
)

= 𝜔𝑒𝑥 ≠ 0 and there is long run endogeneity in the singular
multicointegrated model, the limit distribution in (iii) for the fixed 𝐾 case is no longer mixed normal.

These results show the key advantage of high-dimensional trend IV regression on the augmented aggregated system (18). The
limit theory of TIV regression is mixed normal in both non-singular and singular cases when 𝐾 → ∞ as 𝑛→ ∞. The method therefore
provides a useful foundation for a robust approach to estimation and inference about cointegrating coefficients in both cointegrated
and multicointegrated systems.

4. Inference

Theorems 1–2 show that TIV methods provide consistent and asymptotically mixed normal estimation procedures which might
be expected to form a basis for inference in the standard 𝐼 (1) cointegrating regression model with nonsingular 𝛺00.𝑥 > 0. But when
𝛺00.𝑥 > 0 the augmented system (18) is a partially spurious regression, just like the original aggregated system (13) with 𝐼 (1)
regressors and an 𝐼 (1) error. The spurious nature of this regression complicates inference and requires special methods to estimate
the long run variance 𝛺00.𝑥 in constructing Wald tests. Moreover, when 𝛺00.𝑥 = 0, IM-OLS suffers from asymptotic second order bias
and limit theory that is unsuited to pivotal inference, thereby failing to resolve endogeneity and serial correlation bias problems in
the limit (PK (2021), Theorem 1). In what follows we therefore concentrate on the TIV approach to testing.

More specifically, consider a Wald test of the linear hypothesis 0 ∶ 𝐻𝑎 = ℎ about the cointegrating vector 𝑎 where 𝐻 is 𝑞 ×𝑚𝑥
of rank 𝑞 and ℎ is a 𝑞-vector. Just as in estimation, the problem of inference is complicated by the fact that it is unknown a priori
whether the system is singular or not in the absence of prior information or pre-testing. Robust inference therefore requires that the
same approach be employed in both cases since 𝛺00.𝑥 is, of course, unknown. For this purpose it is convenient to employ a sandwich
form in estimating the covariance matrix metric for the Wald statistic in order to deal in a comprehensive way with the different
types of temporal dependencies that arise in the nonsingular 𝛺00.𝑥 > 0 and singular 𝛺00.𝑥 = 0 cases. This matrix can be constructed
in a general way by using the form of the TIV estimate �̂�𝑇 𝐼𝑉 . In view of (19) and (20), �̂�𝑇 𝐼𝑉 satisfies

�̂�𝑇 𝐼𝑉 − 𝑎 =
(

𝑋′𝑅𝐾𝑋
)−1 (𝑋′𝑅𝐾𝑒

+) = 𝐺𝐾𝛷
′
𝐾𝑒

+ = 𝐺𝐾
𝑛
∑

𝑡=1
�̃�𝐾

( 𝑡
𝑛

)

𝑒+𝑡 , (26)

where 𝑅𝐾 = 𝑃𝛷𝐾 − 𝑃𝛷𝐾𝐶𝑥
(

𝐶 ′
𝑥𝑃𝛷𝐾𝐶𝑥

)−1
𝐶 ′
𝑥𝑃𝛷𝐾 , so that

𝐻
(

�̂�𝑇 𝐼𝑉 − 𝑎
)

= 𝐻𝐺𝐾𝛷
′
𝐾𝑒

+ = 𝐻𝐺𝐾

( 𝑛
∑

𝑡=1
�̃�𝐾

( 𝑡
𝑛

)

𝑒+𝑡

)

,

in which the coefficient matrix 𝐺𝐾 has the form

𝐺𝐾 =
(

𝑋′𝑅𝐾𝑋
)−1

{

𝑋′𝛷𝐾
(

𝛷′
𝐾𝛷𝐾

)−1 −𝑋′𝑃𝛷𝐾𝐶𝑥
(

𝐶 ′
𝑥𝑃𝛷𝐾𝐶𝑥

)−1
𝐶 ′
𝑥𝛷𝐾

(

𝛷′
𝐾𝛷𝐾

)−1
}

, (27)

and 𝛷′
𝐾𝑒

+ =
∑𝑛
𝑡=1 �̃�𝐾

(

𝑡
𝑛

)

𝑒+𝑡 is the transformed error vector in the model after projection on the instruments 𝛷𝐾 . We may estimate
the residuals 𝑒+𝑡 from the fitted TIV regression giving

𝑒+𝑡 = 𝑌𝑡 − �̂�′𝑇 𝐼𝑉𝑋𝑡 − 𝑓 ′
𝑇 𝐼𝑉 𝑥𝑡 − �̂�

′
𝑇 𝐼𝑉 𝛥𝑥𝑡

= 𝑒+𝑡 −
(

�̂�𝑇 𝐼𝑉 − 𝑎
)′𝑋𝑡 −

(

𝑓𝑇 𝐼𝑉 − 𝑓
)′ 𝑥𝑡 −

(

�̂�𝑇 𝐼𝑉 − 𝑔
)′ 𝑢𝑥𝑡,

and construct the kernel estimates12

𝑉𝐾𝑛 =
𝑀
∑

𝑗=−𝑀+1
𝑘
(

𝑗
𝑀

)

1
𝑛

𝑛
∑

1≤𝑡,𝑡+𝑗≤𝑛
�̃�𝐾

( 𝑡
𝑛

)

�̃�𝐾

(

𝑡 + 𝑗
𝑛

)′
𝑒+𝑡 𝑒

+
𝑡+𝑗 , (28)

�̂�2
𝑒+ =

𝑀
∑

𝑗=−𝑀+1
𝑘
(

𝑗
𝑀

)

1
𝑛

𝑛
∑

1≤𝑡,𝑡+𝑗≤𝑛
𝑒+𝑡 𝑒

+
𝑡+𝑗 , (29)

as if we were estimating a long run variance matrix of �̃�𝐾
(

𝑡
𝑛

)

𝑒+𝑡 and long run variance of 𝑒+𝑡 , thereby ignoring the spurious nature
of the regression when 𝛺00.𝑥 > 0.

The lag kernel function 𝑘 (⋅) ∶ R → [0, 1] used in (28) and (29) is assumed to be a symmetric, piecewise smooth density with
𝑘 (𝑥) = 0 for |𝑥| > 1, and ∫ 1

−1 𝑘 (𝑥) 𝑑𝑥 = 1. In the case of standard HAC estimation, the lag truncation parameter 𝑀 is assumed to
satisfy 1

𝑀 + 𝑀
𝑛 → 0 as 𝑛→ ∞. In the case of HAR inference with a fixed-𝑏 setting leading to 𝑀 = 𝑏𝑛, we use the notation 𝑘𝑏 (𝑥) = 𝑘( 𝑥𝑏 )

and correspondingly define the HAR kernel estimator as

𝑉𝑏𝐾𝑛 =
𝑛−1
∑

𝑗=−𝑛+1
𝑘𝑏

(

𝑗
𝑛

)

1
𝑛

𝑛
∑

1≤𝑡,𝑡+𝑗≤𝑛
�̃�𝐾

( 𝑡
𝑛

)

�̃�𝐾

(

𝑡 + 𝑗
𝑛

)′
𝑒+𝑡 𝑒

+
𝑡+𝑗 . (30)

12 We warn the reader not to confuse the kernel estimators of the variance 𝑉𝐾𝑛 and 𝑉𝑏𝐾𝑛 in this section and transformed variables 𝑉𝑌 , 𝑉𝑋 and such in (21).
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With these components we can construct the following HAC and HAR Wald statistics in conventional form as follows

Wald𝑇 𝐼𝑉 =
(

𝐻�̂�𝑇 𝐼𝑉 − ℎ
)′ [𝐻𝐺𝐾

(

𝑛𝑉𝐾𝑛
)

𝐺′
𝐾𝐻

′]−1 (𝐻�̂�𝑇 𝐼𝑉 − ℎ
)

, (31)

Wald𝑇 𝐼𝑉 ,𝑏 =
(

𝐻�̂�𝑇 𝐼𝑉 − ℎ
)′ [𝐻𝐺𝐾

(

𝑛𝑉𝑏𝐾𝑛
)

𝐺′
𝐾𝐻

′]−1 (𝐻�̂�𝑇 𝐼𝑉 − ℎ
)

. (32)

The regression error is 𝑒+𝑡 = 𝑒𝑡𝟏
{

𝛺00.𝑥 = 0
}

+𝑈0.𝑥𝑡𝟏
{

𝛺00.𝑥 > 0
}

. So the asymptotic properties of (28), (29) and therefore both Wald
test statistics Wald𝑇 𝐼𝑉 and Wald𝑇 𝐼𝑉 ,𝑏 depend on the asymptotic behavior of the residuals 𝑒+𝑡 , the long run error variance estimate
�̂�2
𝑒+ , and the long run variance matrix estimates 𝑉𝐾𝑛 and 𝑉𝑏𝐾𝑛 associated with the transformed error components �̃�𝐾

(

𝑡
𝑛

)

𝑒+𝑡 .
Two forms of TIV inference can be considered, corresponding to fixed-𝐾 and 𝐾 → ∞ cases, just as in estimation. A disadvantage

of the fixed-𝐾 approach is that the partially spurious nature of the fitted regression carries the inconsistencies of the estimates
(

𝑓𝑇 𝐼𝑉 , �̂�𝑇 𝐼𝑉
)

into the regression residuals 𝑒+𝑡 and their 𝐼 (1) character in the usual 𝛺00.𝑥 > 0 case. This leads to divergence of
statistical tests as 𝑛 → ∞ under the null hypothesis, just as in standard spurious regression limit theory (Phillips, 1986). Even with
the use of sandwich formulae and HAC estimators such as (28) the divergence rate of the Wald test for fixed 𝐾 is 𝑂𝑝

(

𝑛
𝑀

)

, as shown
in the proof of Theorem 3 below.13 This divergence rate for the Wald test with a HAC covariance matrix estimate is the same as
that obtained in Phillips (1998) for standard spurious regression inference with HAC error variance matrix estimators. Hence, use of
fixed 𝐾 inference with HAC variance estimation is not readily compatible with both singular and nonsingular cases and encounters
difficulties similar to those arising in the use of IM-OLS and FM-OLS. In view of these drawbacks, we do not pursue the fixed-𝐾 TIV
approach further in this context of potential singularity and multicointegration in 𝐼(1) systems.

The use of HAR inference leads to very different limit theory that is much more useful in practical work. Importantly, fixed-𝑏
settings for the bandwidth parameter as in (30) with 𝑀 = 𝑏𝑛 and 𝑏 ∈ (0, 1] control divergence, just as in other work on spurious
regressions with HAR inference methods (Sun, 2004; Phillips et al., 2019). As usual, the HAR approach introduces nonstandard limit
theory. But, as we see below, the limit theory is pivotal even for quite general linear hypothesis tests such as 0 ∶ 𝐻𝑎 = ℎ.

Under HAR inference, a substantial degree of robustness in terms of asymptotic size control in testing is achieved. Importantly,
this robustness covers both cointegration and multicointegration cases. The following results give the limit theory of the two test
statistics Wald𝑇 𝐼𝑉 and Wald𝑇 𝐼𝑉 ,𝑏 when (𝐾, 𝑛) → ∞ when 𝛺00.𝑥 > 0 and 𝛺00.𝑥 = 0.

Theorem 3 (TIV Inference with 𝐾 → ∞). Under the assumptions of Theorem 2 and under the null hypothesis 0 ∶ 𝐻𝑎 = ℎ, the following
hold as 1

𝑀 + 𝑀
𝑛 → 0, (𝐾, 𝑛) → ∞ with 𝐾 = 𝑜

(

𝑛4∕5−𝛿
)

for some 𝛿 > 0 ∶
When 𝛺00.𝑥 > 0 ∶

(v) Wald𝑇 𝐼𝑉 = 𝑂𝑝
(

𝑛
𝑀

)

, Wald𝑇 𝐼𝑉 ,𝑏 ⇝ 𝜂′𝑊 𝐿
{

𝐿𝐿′}−1 𝐿′𝜂𝑊 ,

where 𝐿 = 1∕2
𝑊 𝛺−1∕2

𝑥𝑥 𝐻 , and setting 𝑘𝑏 (⋅) = 𝑘
(

⋅
𝑏

)

,

𝑊 ∶= −1
𝑊 ,𝑋.𝑥

(

∫

1

0 ∫

1

0
𝑘𝑏 (𝑟 − 𝑝)

(

𝑊𝑋.𝑥 (𝑟)𝑊𝑋.𝑥 (𝑝)′
)

𝑊0.𝑥 (𝑟)𝑊0.𝑥 (𝑝) 𝑑𝑟𝑑𝑝

)

−1
𝑊 ,𝑋.𝑥,

𝜂𝑊 ∶= −1∕2
𝑊

(

∫

1

0
𝑊𝑋.𝑥𝑊

′
𝑋.𝑥

)−1

∫

1

0
⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊𝑋.𝑥𝑑𝑊0.𝑥.

where

𝑊0.𝑥 (𝑟) = 𝑊0 (𝑟) −𝛺0𝑥𝛺
−1
𝑥𝑥𝑊𝑥 (𝑟) ,

𝑊0.𝑥 (𝑟) = 𝑊0.𝑥 (𝑟) − ∫ 𝑊0.𝑥𝑊
′
𝑋.𝑥

(

∫ 𝑊𝑋.𝑥𝑊
′
𝑋.𝑥

)−1
𝑊𝑋 (𝑟) − ∫ 𝑊0.𝑥𝑊

′
𝑥.𝑋

(

∫ 𝑊𝑥.𝑋𝑊
′
𝑥.𝑋

)−1
𝑊𝑥 (𝑟) ,

𝑊𝑥.𝑋 (𝑟) = 𝑊𝑥 (𝑟) − ∫ 𝑊𝑥𝑊
′
𝑋

(

∫ 𝑊𝑋𝑊
′
𝑋

)−1
𝑊𝑋 (𝑟) ,

𝑊𝑋.𝑥(𝑟) = 𝑊𝑋 (𝑟) − ∫ 𝑊𝑋𝑊
′
𝑥

(

∫ 𝑊𝑥𝑊
′
𝑥

)−1
𝑊𝑥 (𝑟)

When 𝛺00.𝑥 = 0 ∶

(vi) Wald𝑇 𝐼𝑉 ⇝ 𝜒2
𝑞 , Wald𝑇 𝐼𝑉 ,𝑏 ⇝ 𝜂′𝑒.𝑥

′
𝑞

{

𝑞𝑊  ′
𝑞

}−1
𝑞𝜂𝑒.𝑥,

where

𝑊 ∶= −1
𝑊 ,𝑋.𝑥

(

∫

1

0 ∫

1

0
𝑘𝑏 (𝑟 − 𝑝)𝑊𝑋.𝑥 (𝑝)𝑊𝑋.𝑥 (𝑟)′ 𝑑𝑊 (𝑝) 𝑑𝑊 (𝑟)

)

−1
𝑊 ,𝑋.𝑥,

𝜂𝑒.𝑥 ∶= −1
𝑊 ,𝑋.𝑥

(

∫

1

0
𝑊𝑋.𝑥𝑑𝑊𝑒.𝑥

)

, 𝑊𝑒.𝑥 (𝑟) = 𝜔−1∕2
𝑒𝑒.𝑥 𝐵𝑒.𝑥 = 𝜔−1∕2

𝑒𝑒.𝑥
(

𝐵𝑒 − 𝜔𝑒𝑥𝛺−1
𝑥𝑥𝐵𝑥

)

,

13 In the Online Supplement, see equations (51) and equation (52) in the proof of Theorem 3 for the residual inconsistency and (60) for the divergence rate
of the Wald test of 𝑂𝑝

(

𝑛
𝑀

)

when 𝐾 is fixed.
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𝑊 ,𝑋.𝑥 = ∫

1

0
𝑊𝑋.𝑥𝑊

′
𝑋.𝑥, 𝑎𝑛𝑑 𝑞 =

[

𝐼𝑞 , 0
]

.

𝑊 and 𝜂𝑒.𝑥 depend only on the vector standard Brownian motions (𝑊𝑥,𝑊𝑋 ) and the standard Brownian motion 𝑊𝑒.𝑥 which is independent
of (𝑊𝑥,𝑊𝑋 ). The stochastic process 𝑊 (⋅) is also a functional of these standard Brownian motions and is defined in (76) in the Online
Supplement.

Remarks

(a) The first result of (v) shows that the HAC-based Wald statistic Wald𝑇 𝐼𝑉 diverges at rate 𝑂𝑝
(

𝑛
𝑀

)

, just as the squared 𝑡-statistic in
Phillips (1998). So HAC variance matrices in the construction of the Wald statistic fail to resolve the partially spurious nature
of the regression (18) and are therefore not recommended in the present context where there is potential multicointegration.

(b) On the other hand, the second result of (v) shows that the fixed-𝑏 HAR variance matrix estimator leads to the modified Wald
statistic Wald𝑇 𝐼𝑉 ,𝑏 whose limit distribution can be represented by the pivotal quadratic form quantity 𝜂′𝑊 𝐿

{

𝐿𝐿′}−1 𝐿′𝜂𝑊 .
Importantly, the random projection matrix 𝑃𝐿 = 𝐿

{

𝐿𝐿′}−1 𝐿′ has rank 𝑞 = rank(𝐿) = rank(𝐻) 𝑎.𝑠. and is diagonalizable by an
orthogonal matrix. Since the distribution of the random vector 𝜂𝑊 = 1∕2

𝑊 𝜂𝑊 is invariant to orthogonal transformation in the
same way as the vector standard Brownian motions (𝑊𝑥,𝑊𝑋 ), the random quadratic form 𝜂′𝑊 𝐿

{

𝐿𝐿′}−1 𝐿′𝜂𝑊 , which is a

nonlinear functional of these standard Brownian motions and 𝑊0.𝑥, depends only on the rank of the matrix 𝐿, viz. the number
of restrictions 𝑞. The HAR statistic Wald𝑇 𝐼𝑉 ,𝑏 is constructed in the usual manner for trend IV inference and in the cointegration
case with 𝛺00.𝑥 > 0 provides a simple alternative to the procedures suggested in Vogelsang and Wagner (2014).14

(c) Analysis under the local alternative hypothesis 𝐴 ∶ 𝐻𝑎 = ℎ+ 𝑑(𝑎)
𝑛 shows that the Wald test based on the Wald𝑇 𝐼𝑉 ,𝑏 statistic has

non-trivial asymptotic power under cointegration, with strength that depends on a random noncentrality parameter involving
the quadratic form 𝜃𝑑 = 𝑑(𝑎)′1∕2

𝑊 𝐿
{

𝐿𝐿′}−1 𝐿′1∕2
𝑊 𝑑(𝑎).

(d) In (vi) under multicointegration, the HAC-based Wald statistic Wald𝑇 𝐼𝑉 ⇝ 𝜒2
𝑞 and the HAR-based statistic

Wald𝑇 𝐼𝑉 ,𝑏 ⇝ 𝜂′𝑒.𝑥
′
𝑞

{

𝑞𝑊  ′
𝑞

}−1
𝑞𝜂𝑒.𝑥, with 𝑞 =

[

𝐼𝑞 , 0
]

.

Both test statistics have nontrivial asymptotic power under multicointegration and local alternative hypotheses of the
form 𝐴 ∶ 𝐻𝑎 = ℎ + 𝑑(𝑎)

𝑛2
. The statistic Wald𝑇 𝐼𝑉 has a noncentral 𝜒2

𝑞 limit distribution with noncentrality parameter
𝑑(𝑎)′𝑑(𝑎); and the Wald𝑇 𝐼𝑉 ,𝑏 statistic has a noncentral limit distribution involving the random noncentrality parameter

𝜗𝑑 = 𝑑(𝑎)′ ′
𝑞

{

𝑞𝑊  ′
𝑞

}−1
𝑞𝑑(𝑎).

(e) Theorem 3 (v) and (vi) show that the same HAR Wald statistic Wald𝑇 𝐼𝑉 ,𝑏 is asymptotically valid and pivotal for both cointegrated
and multicointegrated systems, therefore providing a robust approach to inference concerning the cointegrating coefficients
even under singularity. When no prior information on the presence of the multicointegration is available, appropriate critical
values can be chosen after pretesting for multicointegration or more directly by using a bootstrap procedure for which the
pivotal limit theory is an advantage. Exploration of these approaches will be considered in future research.

(f) These findings for the Wald test Wald𝑇 𝐼𝑉 ,𝑏 extend in a straightforward way to HAR-based 𝑡 ratio statistics which produce
asymptotically pivotal tests for both 𝛺00.𝑥 = 0 and 𝛺00.𝑥 > 0 cases.

In nonsingular systems with 𝛺00.𝑥 > 0 we can expect some loss of cointegration estimation efficiency and test power when using
TIV estimation on the extended system (13) and the associated robust Wald𝑇 𝐼𝑉 ,𝑏 test rather than TIV estimation of (5) and associated
Wald tests that rely on correct prior knowledge that the conditional error variance 𝛺00.𝑥 > 0. But when 𝛺00.𝑥 = 0, the faster 𝑂(𝑛2)
convergence rate of the estimator sharpens estimation efficiency and improves the discriminatory power of both the Wald𝑇 𝐼𝑉 test
and the Wald𝑇 𝐼𝑉 ,𝑏 test.

5. Comparison with likelihood-based estimation

It is interesting to compare the performance of the TIV estimator with the maximum likelihood estimator in a correctly specified
parametric model. Likelihood-based estimators of the cointegrating parameter in multicointegrated systems have been analyzed in
the parametric 𝐼(2) VAR framework (Johansen, 1997, 2006; Boswijk, 2000, 2010; Paruolo, 2000), and those asymptotics continue
to hold in 𝐼(2) VARs when the order of the autoregression is allowed to tend to infinity as a function of the sample size (Li and
Bauer, 2020).

14 The procedures suggested in Vogelsang and Wagner (2014) are designed only for the cointegration case with 𝛺00.𝑥 > 0 and do not apply under
multicointegration.
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For a comparison with VAR maximum likelihood estimation it is convenient to use the following notation from (Boswijk, 2010)

𝛥2𝑍𝑡 = 𝛼𝛽′𝑍𝑡−1 + 𝛤𝛥𝑍𝑡−1 +
𝑘−2
∑

𝑗=1
𝛹𝑗𝛥

2𝑍𝑡−𝑗 + 𝜀𝑡, �̄�⟂𝛼
′
⟂𝛤𝛽⟂𝛽

′
⟂ = 0, (33)

where the errors 𝜀𝑡 ∼𝑖.𝑖.𝑑.  (0, 𝛺𝑧) with 𝑚 × 𝑚 variance matrix 𝛺𝑧 > 0, 𝛼 and 𝛽 are 𝑚-vectors, and 𝛤 , {𝛹𝑗}𝑘−2𝑗=1 are 𝑚 × 𝑚 coefficient
matrices.15 In (33) the subscript ⟂ signifies the orthogonal complement of a matrix or vector, and the overbar notation is defined
by �̄� = 𝛼(𝛼′𝛼)−1. Let 𝛿 = �̄�′𝛤𝛽⟂, then (33) becomes

𝛥2𝑍𝑡 = 𝛼(𝛽′𝑍𝑡−1 + 𝛿𝛽′⟂𝛥𝑍𝑡−1) + 𝛤𝛽𝛽
′𝛥𝑍𝑡−1 +

𝑘−2
∑

𝑗=1
𝛹𝑗𝛥

2𝑍𝑡−𝑗 + 𝜀𝑡. (34)

This formulation yields the following cointegrating structure: the 𝐼(2) time series 𝑍𝑡 cointegrates with coefficient 𝛽 to the 𝐼(1) times
series 𝛽′𝑍𝑡; the 𝐼(1) time series 𝛽′𝑍𝑡−1 and 𝛽′⟂𝛥𝑍𝑡−1 cointegrate with coefficients 1 and 𝛿 to the 𝐼(0) times series 𝛽′𝑍𝑡−1+𝛿𝛽′⟂𝛥𝑍𝑡−1; and
𝛿 is called a multicointegrating coefficient for multicointegrated time series 𝑍𝑡. As shown in the Online Supplement, the coordinates
of 𝑍𝑡 can be rearranged so that 𝛽′ = [1,−𝑎′] and 𝛼′ = [−1, 0], with 𝛽′⟂ = [𝑎, 𝐼𝑚𝑥 ] and 𝛼′⟂ = [0, 𝐼𝑚𝑥 ] and 𝑍𝑡 partitioned with 𝛽 as
𝑍′
𝑡 = [𝑌 ′

𝑡 , 𝑋
′
𝑡 ], translating (34) into the following equivalent system

[

𝛥𝑦𝑡
𝛥𝑥𝑡

]

= 1
1 + 𝑎′𝑎

𝛤
[

1
−𝑎

]

(𝑦𝑡−1 − 𝑎′𝑥𝑡−1) +
𝑘−2
∑

𝑗=1
𝛹𝑗

[

𝛥𝑦𝑡−𝑗
𝛥𝑥𝑡−𝑗

]

+
[

−1
0

]

(𝑈0.𝑥,𝑡−1 − 𝑓 ′(𝑎𝑎′ + 𝐼𝑚𝑥 )
−1𝑎𝑢0,𝑡−1) + 𝜀𝑡, (35)

where 𝑈0.𝑥,𝑡−1 =
∑𝑡−1
𝑠=1 𝑢0.𝑥,𝑠 =

∑𝑡−1
𝑠=1 𝛥𝑒𝑠 = 𝑒𝑡−1 − 𝑒0 which is 𝐼(0) under multicointegration. Importantly, in (34) the cointegrating

relationship is expressed in terms of the 𝐼(2) variates 𝑍𝑡 and the equation has 𝑖𝑖𝑑 errors 𝜀𝑡, whereas the rearranged system (35) is
expressed in 𝐼(1) form with the cointegrating relationship directly involving the 𝐼(1) time series {𝑦𝑡−1, 𝑥𝑡−1} and this equation has
moving average errors involving the pair of 𝐼(0) time series {𝑒𝑡−1, 𝜀𝑡}. Calculations leading to (35) are given in the Online Supplement
following the proof of Proposition 1, which is stated below.

Let 𝛽 be the maximum likelihood estimator of 𝛽 in (34) and 𝑎𝑀𝐿𝐸 the corresponding estimator of 𝑎. The following proposition
shows that time series generated by (33) correspond to a special case of (9) and (14) with multicointegration and that TIV estimation
under this specialization is asymptotically equivalent to maximum likelihood estimation.

Proposition 1. Time series 𝑍′
𝑡 = [𝑌 ′

𝑡 , 𝑋
′
𝑡 ] generated by the parametric VAR system (33) satisfy the semiparametric systems (9) and (14)

with 𝛺00.𝑥 = 0. The TIV estimator 𝑎𝑇 𝐼𝑉 and maximum likelihood estimator 𝑎𝑀𝐿𝐸 are then asymptotically equivalent with the same limit
distribution.

Under multicointegration the TIV estimator of the cointegrating coefficient is therefore asymptotically equivalent to the maximum
likelihood estimator applied to the specialized and correctly specified finite dimensional VAR cointegrated system. Furthermore, the
TIV estimator of the multicointegrating coefficient is asymptotically equivalent to the corresponding maximum likelihood estimator,
again in the same specialized and correctly specified VAR multicointegrated systems. Indeed, for such multicointegrated systems
𝛿 = −𝑓 ′(𝑎𝑎′ + 𝐼𝑚𝑥 )

−1 and the limiting distribution of 𝑓𝑇 𝐼𝑉 , given in Phillips and Kheifets (2021), Theorem 4, is asymptotically
equivalent to the limiting distribution of −(𝑎𝑀𝐿𝐸𝑎′𝑀𝐿𝐸 + 𝐼𝑚𝑥 )𝛿

′, and of −(𝑎𝑎′ + 𝐼𝑚𝑥 )𝛿
′, where 𝛿 is the maximum likelihood estimator

of 𝛿 in (34), which follows by a similar argument to that in proof of Proposition 1. Further analysis shows that the joint asymptotic
distribution of the TIV and ML estimators of [𝑎′, 𝑓 ′]′ is the same and has the following form

[

𝑛2(𝑎𝑇 𝐼𝑉 − 𝑎)

𝑛(𝑓𝑇 𝐼𝑉 − 𝑓 )

]

⇝ 𝛺−1∕2
𝑥𝑥

⎡

⎢

⎢

⎢

⎣

(

∫ 1
0 𝑊𝑋.𝑥𝑊 ′

𝑋.𝑥

)−1
∫ 1
0 𝑊𝑋.𝑥𝑑𝑊𝑒.𝑥

(

∫ 1
0 𝑊𝑥.𝑋𝑊 ′

𝑥.𝑋

)−1
∫ 1
0 𝑊𝑥.𝑋𝑑𝑊𝑒.𝑥

⎤

⎥

⎥

⎥

⎦

𝑤1∕2
𝑒𝑒.𝑥,

which will be explored in later work.

6. Simulations

This section reports the finite sample performance of TIV estimation of cointegrating relationships and compares TIV performance
with IM-OLS estimation for various model specifications that include time series with and without multicointegration. Finite
sample properties of the TIV Wald statistics are also studied in cases of cointegration and multicointegration. As a baseline for
cointegrated series without multicointegration, simulations in past work (Phillips, 2014) showed good performance characteristics
for TIV estimation in relation to other standard procedures such as FM-OLS and dynamic least squares in triangular systems as well
as reduced rank regression (RRR) of Johansen (1988) in VAR system formulations with cointegration but not multicointegration.
Those findings are now extended to include comparisons with IM-OLS in the present case.

15 The present case is the one of (𝑟, 𝑠, 𝑝 − 𝑟 − 𝑠) = (1, 0, 𝑝 − 1) using notation in Johansen (1992).
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Fig. 1. Kernel estimates of the density functions of the estimation errors 𝑎−𝑎 for the TIV, RRR and LS estimators for sample size 𝑛 = 50 in the pure cointegration
model 10 and the multicointegration models 22 and 23.

Several experimental designs were employed based on the data generating process16

𝑦𝑡 = 𝑎𝑥𝑡 + 𝑢0𝑡
𝑥𝑡 = 𝑥𝑡−1 + 𝑢𝑥𝑡, 𝑡 = 1,… , 𝑛,

where 𝑢𝑡 = 𝜂0𝑡 +𝐷1𝜂0𝑡−1, 𝜂
0
𝑡 ∼ 𝑖𝑖𝑑𝑁(0, 𝛴), 𝛴 =

[

1 𝜌
𝜌 1

]

, the cointegrating coefficient 𝑎 = 2, and the initialization of 𝑥𝑡 is 𝑥0 = 0. Both

cointegrated and multicointegrated systems are considered and these are determined by the parameter settings of the (endogeneity)
correlation coefficient 𝜌 and the moving average coefficient matrix 𝐷1. Various sample sizes are used and the number of replications
in each experiment is 10,000. The following models were used.

Cointegrated models

Model 10: 𝐷1 = 02×2, 𝜌 = 0
Model 11: 𝐷1 = 02×2, 𝜌 = 0.5

Model 12: 𝐷1 =
[

0.3 0.4
0.8 0.6

]

, 𝜌 = 0.5

Multicointegrated models

Model 20: 𝐷1 =
[

−1 0
0 0

]

, 𝜌 = 0

Model 21: 𝐷1 =
[

−1 0
0 0

]

, 𝜌 = 0.5

Model 22: 𝐷1 =
[

0.3 0.4
5.2 0.6

]

, 𝜌 = 0.5

Model 23: 𝐷1 =
[

−0.3 0.4
0.7 −0.6

]

, 𝜌 = 0.5

The models with 𝜌 = 0 and zero diagonal elements in 𝐷1 do not generate endogeneity or serial cross-correlation. So those models
are pure cointegrated systems with exogenous regressors and 𝑖𝑖𝑑 innovations. Model 12 has been used in the cointegration literature
in earlier work (Phillips and Loretan, 1991), and Model 22 modifies model 12 by introducing multicointegration into the system.
Model 23 also generates a multicointegrated system, but with less variability in 𝑢𝑥 compared17 to Model 22.

For TIV estimation the orthonormal trigonometric polynomials 𝜑𝑘(𝑟) =
√

2 sin{(𝑘 − 1∕2)𝜋𝑟} were used as instrumental variables
and the number of instruments was based on the setting 𝐾 = 𝑛3.8∕5 in accord with the requirement in Theorem 2 that 𝐾 = 𝑜

(

𝑛4∕5−𝛿
)

for some 𝛿 > 0. Following the recommendation in the paper the model was estimated by TIV with a fitted intercept. The asymptotic
distributions in Theorem 3 were obtained by numerical computation from simulations with time series of length 𝑛 = 1000 using
1000 replications.

16 To make explicit the role of endogeneity of stochastic regressors in the simulation analysis, we allow nonzero correlation between the first and second
coordinates of 𝜂0𝑡 as opposed to the equivalent linear process assumptions in Section 2, where 𝜂𝑡 ∼ 𝑖𝑖𝑑𝑁(0, 𝐼𝑚).

17 The eigenvalues of 𝐷1 are (0, 0), (0, 0), (−0.1352, 1.0352) for cointegrated models 10, 11, 12 and (−1, 0), (−1, 0), (−1, 1.9), and (−1, 0.1) for cointegrated models
20, 21, 22, and 23, respectively.
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Fig. 2. Kernel density estimates of the density functions of the estimation error 𝑛(𝑎−𝑎) for the TIV and the IM-OLS estimators and the density of the mixed-normal
limit of the TIV estimator for sample sizes 𝑛 = 50 and 𝑛 = 100 and cointegration models 10, 11, and 12.

6.1. Finite sample distributions of the estimators

This subsection compares finite sample performance and convergence rates of TIV, RRR and OLS estimators of the cointegrating
parameter 𝑎. Empirical densities of the centered and scaled TIV and IM-OLS estimators are compared with the asymptotic
distributions given in Theorem 2.

The centered densities of the TIV, RRR and OLS estimators are shown in Fig. 1 for 𝑛 = 50 for three models. In the pure
cointegration model 10, the three estimators show similar behavior although TIV, which is not needed in this pure cointegration
case, shows somewhat greater dispersion than OLS and RRR. In models 22 and 23 under multicointegration the TIV estimator shows
much greater concentration and little bias compared with OLS and RRR which are biased and skewed with greater dispersion. These
results corroborate the limit theory in which TIV has an 𝑂(𝑛2) convergence rate in multicointegrated models instead of the usual
𝑂(𝑛) rate for cointegrated systems.

We now compare the performance characteristics of TIV and IM-OLS in finite samples. Fig. 2 plots the densities of the centered
TIV and IM-OLS estimators scaled by the appropriate convergence rate for each model against the mixed-normal asymptotic
distribution. For the cointegration models 10–12, Fig. 2 plots the densities of the standardized TIV estimator 𝑛(�̂�𝑇 𝐼𝑉 − 𝑎) based
on the sample sizes 𝑛 = 50 and 𝑛 = 100 together with the asymptotic mixed normal density given in Theorem 2(iii). For the three
models, the mixed-normal approximation works well as an approximation to the finite sample distributions of TIV, even for 𝑛 = 50.
The same is true for the densities of the standardized IM-OLS estimators, confirming the result in PK (2021), Theorem 1(i) and
earlier results in Vogelsang and Wagner (2014).

For the multicointegrated models 20–23, the densities of the standardized TIV estimator 𝑛2(�̂�𝑇 𝐼𝑉 − 𝑎), based on sample sizes
𝑛 = 50 and 𝑛 = 100 and the simulated asymptotic mixed normal density, based on Theorem 2(iv), are plotted in Fig. 3. For all
these models and cases the mixed-normal approximation to the distribution of the TIV estimator works well, again even for 𝑛 = 50,
whereas the IM-OLS estimator shows clear evidence of bias, skewness and greater dispersion for models 21–23. For model 20, where
no endogeneity or serial correlation is present, which is the perfect set of conditions for the IM-OLS estimator, the densities of both
estimators are approximated well by the mixed normal density, as predicted by PK (2021), Theorems 1(ii) and 2(iv) with some
finite sample advantage in terms of reduced dispersion to the IM-OLS estimator in this case.

6.2. Size and power properties of the Wald test

Finite sample performance of Wald test statistics for testing the null hypothesis 0 ∶ 𝑎 = 2 were explored next. The empirical
rejection rates under the null for the Wald statistics using the HAR variance estimate and the fixed-b asymptotic distribution given
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Fig. 3. Kernel density estimates of the density functions of the estimation error 𝑛2(𝑎−𝑎) for the TIV and the IM-OLS estimators and the density of the mixed-normal
limit of the TIV estimator for sample sizes 𝑛 = 50 and 𝑛 = 100 and multicointegration models 20, 21, 22 and 23.

in Theorem 3 were calculated with the setting 𝑏 = 1 and are reported in Table 1 for levels 10%, 5% and 1%. The results show
excellent size control in all cases even for 𝑛 = 50 in both the cointegrated and multicointegrated models.

For the Wald statistics using the HAC variance estimate calculated with the setting 𝑀 = 3𝑛1∕5 and using a 𝜒2 asymptotic
distribution are presented in Table 2. For the cointegration models size is not controlled and the statistics diverge with the
sample size. For the multicointegration models the rejection rates are 2–3 times larger than the nominal ones. Both cases show
the importance of the HAR specification and appropriate limit theory for controlling size in Wald statistic testing.

Two control parameters – the number of instruments 𝐾 and the bandwidth 𝑀 (or 𝑏, the sample fraction) – are used in variance
estimation. These parameters need to be set by the user. We analyzed the sensitivity of the Wald test to these parameter settings
for models 12 and 22. Empirical rejection rates of the Wald test at the 5% nominal level were studied, taking 𝐾 ∈ {10, 20, 30, 40}
for 𝑛 = 50 and 𝐾 ∈ {20, 40, 60, 80} for 𝑛 = 100 and varying 𝑀 as fractions {0.2, 0.4, 0.6, 0.8, 1} of the sample size 𝑛.18 The rates under
the null in Table 3 show: (i) that size is stable across a wide range of values of 𝐾 and 𝑏 in the cointegrated case; and (ii) that the
size is stable across a wide range of values of 𝐾, when 𝑏 > 0.5 in the multicointegrated case.

18 Our asymptotic theory requires that 𝐾 = 𝑜(𝑛4∕5−𝛿 ) for some 𝛿 > 0 and 𝑀 = 𝑏𝑛 for some 𝑏 ∈ (0, 1].
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Table 1
Test size using HAR variance estimates. Empirical rejection rates are shown at nominal 10%, 5% and 1% levels
Wald test using the fixed-b asymptotic approximation, calculated for different models and sample sizes.

Model n 10% 5% 1%

10 50 0.1178 0.0612 0.0163
10 100 0.1100 0.0591 0.0139
11 50 0.1178 0.0612 0.0163
11 100 0.1100 0.0591 0.0139
12 50 0.1139 0.0585 0.0154
12 100 0.1141 0.0581 0.0163
20 50 0.1070 0.0552 0.0130
20 100 0.0958 0.0479 0.0095
21 50 0.1070 0.0552 0.0130
21 100 0.0958 0.0479 0.0095
22 50 0.1242 0.0653 0.0139
22 100 0.1161 0.0623 0.0138
23 50 0.1201 0.0613 0.0135
23 100 0.0950 0.0513 0.0121

Table 2
Test size using HAC variance estimates. Empirical rejection rates are shown at nominal 10%, 5% and 1% levels
for the Wald test using 𝜒2 critical values as approximations, calculated for different models and sample sizes.

Model n 10% 5% 1%

10 50 0.6981 0.6442 0.5494
10 100 0.7302 0.6852 0.5949
11 50 0.6981 0.6442 0.5494
11 100 0.7302 0.6852 0.5949
12 50 0.6893 0.6348 0.5391
12 100 0.7359 0.6833 0.5907
20 50 0.2212 0.1488 0.0661
20 100 0.1722 0.1056 0.0396
21 50 0.2212 0.1488 0.0661
21 100 0.1722 0.1056 0.0396
22 50 0.2492 0.1730 0.0788
22 100 0.2318 0.1560 0.0638
23 50 0.2601 0.1871 0.0932
23 100 0.1983 0.1312 0.0536

Size-adjusted power calculations under the alternative 𝐻1 ∶ 𝑎 = 2.1 are reported in Table 4. The results show that power is
stable across all 𝐾 values with a minor drop for larger bandwidths in the cointegration case. The size-adjusted power results in the
multicointegration case under the alternative 𝐻1 ∶ 𝑎 = 2.001 in Table 4 show that the power is high and increases with the sample
size but with a minor drop for larger 𝐾 and bandwidth size. In view of the faster convergence rate in the multicointegration case,
local power in this case is evident for the much smaller departure 𝐻1 ∶ 𝑎 = 2.001 from the null compared with the cointegration
case where results for 𝐻1 ∶ 𝑎 = 2.1 are reported.

Finally, in Table 5 we calculate the empirical rejection rates of Wald test statistics at the 5% level taking 𝐾 as in Table 3 and
(small) bandwidth as fractions {0.02, 0.04, 0.06, 0.08, 0.1} of the sample size 𝑛 using a 𝜒2 approximation instead of the correct limit
theory. The test statistic diverges for all values of 𝐾 and bandwidths in the cointegration case, while the size in the multicointergation
case is sensitive to both number of instruments and bandwidth size.

7. Empirical illustration

Lee (1996) considered a model of the housing market that implies a long run equilibrium relationship between time series of
housing starts and housing completions. If these series are multicointegrated then a parametric VAR 𝐼(1) model will be misspeci-
fied. Engsted and Haldrup (1999) therefore analyzed the time series within an 𝐼(2) framework allowing for multicointegration. In
this section, we analyze the long run relationship between housing starts and completions over the five decade period 1968−2020
in an 𝐼(1) semiparametric triangular model using the new TIV estimator and associated Wald tests. The number of instruments is
again set to 𝐾 = 𝑛3.8∕5, and the HAC and HAR variance estimates are calculated with the settings 𝑀 = 3𝑛1∕5 and 𝑏 = 1.

The data are provided by the U.S. Census Bureau and the U.S. Department of Housing and Urban Development. They were
obtained from FRED, the Federal Reserve Bank of St. Louis on March 16, 2021. We consider two series: 𝑠𝑡𝑎𝑟𝑡𝑠 = Housing Starts,
which comprise Total New Privately-Owned Housing Units Started [HOUST]; and 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 = Total New Privately-Owned Housing
Units Completed [COMPUTSA]. Both series are reported in thousands of units and are seasonally adjusted. Our empirical analysis
considers the following five decadal periods: (1) 1968-01-01–1979-12-31, (2) 1980-01-01–1989-12-31, (3) 1990-01-01–1999-12-31,
(4) 2000-01-01–2009-12-31, (5) 2010-01-01–2019-12-31.

The cointegration relationship between 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 and 𝑠𝑡𝑎𝑟𝑡𝑠 is estimated in each of these decades. In estimation no a priori
assumption is made about the existence or non-existence of multicointegration. The results are given in Table 6. Over decades (1)
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Table 3
Test size across 𝐾 and 𝑏. Empirical rejection rates at nominal 5% level Wald test using the fixed-b asymptotic approximation,
calculated for different models and sample sizes, for a range of instrument numbers 𝐾 (in rows) and a range of bandwidths used
in the kernel estimation of the variance determined by 𝑏 (in columns).

Model n K∖b 0.2 0.4 0.6 0.8 1

12 50 10 0.0533 0.0550 0.0576 0.0622 0.0633
12 50 20 0.0582 0.0541 0.0553 0.0593 0.0577
12 50 30 0.0580 0.0549 0.0540 0.0582 0.0581
12 50 40 0.0577 0.0543 0.0543 0.0587 0.0585
12 100 20 0.0612 0.0594 0.0606 0.0646 0.0625
12 100 40 0.0607 0.0557 0.0555 0.0588 0.0583
12 100 60 0.0599 0.0546 0.0544 0.0579 0.0567
12 100 80 0.0594 0.0548 0.0542 0.0576 0.0554
22 50 10 0.0345 0.0604 0.0660 0.0682 0.0662
22 50 20 0.0744 0.0766 0.0753 0.0716 0.0670
22 50 30 0.0982 0.0856 0.0803 0.0781 0.0713
22 50 40 0.1070 0.0935 0.0889 0.0839 0.0766
22 100 20 0.0622 0.0634 0.0627 0.0631 0.0599
22 100 40 0.0886 0.0723 0.0715 0.0672 0.0612
22 100 60 0.1020 0.0798 0.0716 0.0710 0.0629
22 100 80 0.1011 0.0855 0.0823 0.0754 0.0672

Table 4
Size-adjusted power across 𝐾 and 𝑏. Empirical rejection rates at nominal 5% level Wald test using fixed-b approximation,
calculated for different models and sample sizes, for a range of number of instruments, 𝐾 (shown in rows), and a range of
bandwidths used in the kernel estimation of the variance determined by 𝑏 (shown in columns).

Model n K∖b 0.2 0.4 0.6 0.8 1

12 50 10 0.8011 0.7657 0.7312 0.7036 0.6773
12 50 20 0.8143 0.7883 0.7593 0.7278 0.7057
12 50 30 0.8177 0.7883 0.7644 0.7320 0.7058
12 50 40 0.8208 0.7884 0.7624 0.7311 0.7019
12 100 20 0.9440 0.9233 0.9044 0.8819 0.8650
12 100 40 0.9484 0.9276 0.9095 0.8905 0.8747
12 100 60 0.9493 0.9289 0.9116 0.8921 0.8778
12 100 80 0.9494 0.9281 0.9126 0.8926 0.8786
22 50 10 0.5742 0.5313 0.4955 0.4627 0.4291
22 50 20 0.5222 0.4793 0.4369 0.3966 0.3621
22 50 30 0.4229 0.3749 0.3280 0.2976 0.2782
22 50 40 0.3129 0.2693 0.2423 0.2148 0.2049
22 100 20 0.9671 0.9577 0.9453 0.9282 0.9108
22 100 40 0.9396 0.9246 0.9084 0.8891 0.8652
22 100 60 0.8941 0.8722 0.8533 0.8258 0.8006
22 100 80 0.8274 0.8013 0.7787 0.7488 0.7238

and (2) to 1990, the estimate 0.97 is basically the same as that found in Lee (1996) and Engsted and Haldrup (1999). The estimate
then declines to 0.96 in 1990–2000, then it is again 0.97 and goes to 0.95 in recent years. A possible interpretation is that 5%
of houses under construction were never completed in those decades. A practical question is whether this fraction of uncompleted
houses is significant, which can be formalized as a test of the null hypothesis 0 ∶ 𝑎 = 1 against the alternative 1 ∶ 𝑎 < 1.

The equilibrium errors from the cointegrated relationship between 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 and 𝑠𝑡𝑎𝑟𝑡𝑠 accumulate into a stock variable of
incomplete constructions. In each period, the inventory stock variable is measured as

𝑆𝑡𝑜𝑐𝑘𝑡 =
𝑡

∑

𝑗=1

(

�̂�𝑇 𝐼𝑉 ⋅ 𝑠𝑡𝑎𝑟𝑡𝑗 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑𝑗
)

, (36)

and is plotted together with the flow variables 𝑠𝑡𝑎𝑟𝑡𝑠 and 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 in Fig. 4. The figure reveals that these variables are again
cointegrated, revealing a multicointegrated relationship between 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑠 and 𝑠𝑡𝑎𝑟𝑡𝑠. To conduct a test of the null 0, the
asymptotic distributions of the Wald test statistic given in Theorem 4 are approximated by Monte Carlo simulations with 1000
replications for a sample size of 1000, and p-values for the two distributions (under cointegration and multicointegration) are
calculated for each period.

The empirical findings for these tests are shown in Table 6. Allowing for multicointegration in the relationship we conclude
that the null hypothesis 0 ∶ 𝑎 = 1 is rejected at the 5% level for all periods, except for period (5), as indicated by the p-values
shown in the column ‘pvalue-M’. If the multicointegrated relationship is ignored, the null hypothesis would not be rejected for
any period, except for period (4), as indicated by the p-values given in the column ‘pvalue-C’. Allowing for the presence of a
multicointegrated relationship among starts, completions, and the housing stock therefore has a material impact on the empirical
(cointegrating) relationship between starts and completions that suggests a significant shift in the relationship that raises the fraction
of uncompleted houses.
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Table 5
Test size across 𝐾 and small 𝑏. Empirical rejection rates at nominal 5% level for the Wald test using 𝜒2 critical values, calculated
for different models and sample sizes, for a range instrument numbers 𝐾 (shown in rows), and a range of bandwidths used in
the kernel estimation of the variance determined by 𝑏 (shown in columns).

Model n K∖b 0.02 0.04 0.06 0.08 0.1

12 50 10 0.7086 0.7086 0.6790 0.6450 0.6281
12 50 20 0.7460 0.7460 0.7174 0.6838 0.6614
12 50 30 0.7497 0.7497 0.7222 0.6891 0.6660
12 50 40 0.7518 0.7518 0.7222 0.6905 0.6658
12 100 20 0.8140 0.7525 0.7081 0.6773 0.6565
12 100 40 0.8238 0.7617 0.7182 0.6853 0.6615
12 100 60 0.8250 0.7635 0.7189 0.6865 0.6612
12 100 80 0.8256 0.7631 0.7183 0.6863 0.6607
22 50 10 0.0009 0.0009 0.0025 0.0129 0.0340
22 50 20 0.0172 0.0172 0.0301 0.0694 0.1172
22 50 30 0.0686 0.0686 0.0953 0.1524 0.2047
22 50 40 0.1481 0.1481 0.1757 0.2214 0.2549
22 100 20 0.0008 0.0062 0.0401 0.0863 0.1238
22 100 40 0.0104 0.0544 0.1367 0.1946 0.2285
22 100 60 0.0483 0.1284 0.2100 0.2511 0.2702
22 100 80 0.1172 0.1890 0.2378 0.2617 0.2761

Table 6
US housing construction data. Wald test statistics and p-values for the null hypothesis 0 ∶ 𝑎 = 1 under
cointegration and multicointegration for successive decades over 1968–2020.

Period begins Period ends TIV pvalue-M pvalue-C

1968-01-01 1979-12-31 0.9722 0.0398 0.1418
1980-01-01 1989-12-31 0.9735 0.0149 0.0746
1990-01-01 1999-12-31 0.9607 0.0274 0.1169
2000-01-01 2009-12-31 0.9709 0.0050 0.0448
2010-01-01 2019-12-31 0.9455 0.0522 0.1667

The parameter estimates are similar to those in Lee (1996) and Engsted and Haldrup (1999) for the corresponding periods. What
our analysis and findings reveal in addition to the results in those papers is that the long run relationship between housing starts and
completions is significantly different from a one-to-one relation when a multicointegrating linkage among the variables is present.

To keep this illustration of the methodology brief we focus on parameter estimation and inference, omitting detailed analysis
of model assumptions and fit. Choosing time periods by decade, while not data-driven and somewhat arbitrary, displays some
instabilities in the coefficients over these periods. The results provide motivation to develop formal tests for structural breaks within
the present setup of potential multicointegration, a subject that is left for future research.

A primary contribution of the present work is the construction of a Wald test statistic that has a pivotal asymptotic distribution
with or without multicointegration. This appealing property of the statistic opens the door to designing a test procedure and
bootstrap algorithm that do not require a practitioner to choose a particular cointegration regime and associated critical values.
Such a procedure is currently under development.

8. Conclusion

This paper has studied the effects of singularities in long run conditional covariance matrices on estimation and inference in
cointegrating regression models. Such singularities are shown to be present whenever a cointegrated 𝐼(1) system happens to involve
multicointegrated time series. Singularities complicate estimation and inference by leading to non-pivotal, nuisance parameter
dependencies in all existing methods of estimating nonstationary time series regressions. But in view of their natural focus on the
analysis of long run properties, instrumental variable regression with deterministic trend regressors or similar trend transforms have
appealing properties even under singularities. The results of the present analysis show that, in spite of the complications introduced
by long run variance matrix singularities, certain key advantages of the trend IV regression approach continue to apply. Notably,
the limit theory of trend IV regression is mixed normal and Wald tests based on traditional sandwich formulae may be conducted
under pivotal asymptotics without knowledge of potential singularities or the presence of multicointegration in the time series.
Use of fixed-𝑏 methods in conjunction with trend IV regression are particularly helpful in achieving pivotal limit theory when the
regression equation is partially spurious with nonstationary errors and usual HAC-based test statistics are divergent under the null.

The analysis in this paper deals with estimation and inference in a scalar cointegrating relationship. The main ideas and methods
of estimation and inference extend to systems estimation. In such cases, the higher convergence rate 𝑂

(

𝑛2
)

applies in the (possibly
matrix) direction 𝐿1 of singularity of 𝛺00.𝑥 for which 𝐿′

1𝛺00.𝑥𝐿1 = 0 and the slower 𝑂 (𝑛) rate applies in the orthogonal direction 𝐿2.
The full matrix of cointegrating coefficients then converges to a mixed normal limit distribution which is a matrix transform of the
slower rate limit distribution, just as in usual cointegration limit theory (Park and Phillips, 1988, 1989; Phillips, 1988, 1989). The
analysis and algebra in this general case follows the same approach as that in cointegrated regression systems with cointegrated
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regressors and unrestricted VAR estimation with cointegrated variates, as detailed in Phillips (1995). But inferential limit theory
is more subtle in this case of singularity in the matrix 𝛺00.𝑥 because of interaction between the restriction matrix 𝐻 , the rotation
matrix 𝐿 = [𝐿1, 𝐿2] isolating the two directions of convergence, and the matrix normalization involved in standardizing the TIV
estimation errors. A full analysis of this case requires the use of methods and limit theory for Wald tests under general conditions
of matrix normalization as recently developed in Magdalinos and Phillips (2019). The application of those methods in the present
context is left for subsequent work.

9. Glossary of notation

We use the following notation for data matrices, various functionals of the Brownian motions (𝐵𝑋 , 𝐵𝑥, 𝐵𝑒, 𝐵0.𝑥), and associated
stochastic processes including their standard Brownian motion analogues (𝑊𝑋 ,𝑊𝑥,𝑊𝑒,𝑊0.𝑥). The functionals are defined in the
paper and repeated here for convenience. In the following formulae ∫ represents ∫ 1

0 when the limits are not provided.

𝑃𝑥 = 𝑥
(

𝑥′𝑥
)−1 𝑥′, 𝑄𝑥 = 𝐼 − 𝑥

(

𝑥′𝑥
)−1 𝑥′

𝑋 = [𝑋1,… , 𝑋𝑛], 𝑥 = [𝑥1,… , 𝑥𝑛], 𝑌 = [𝑌1,… , 𝑌𝑛], 𝑢𝑥 = [𝑢𝑥1,… , 𝑢𝑥𝑛]

𝐵𝑋 (𝑟) = ∫

𝑟

0
𝐵𝑥 = 𝛺1∕2

𝑥𝑥 𝑊𝑋 = 𝛺1∕2
𝑥𝑥 ∫

𝑟

0
𝑊𝑥

𝐵𝑋.𝑥 (𝑟) = 𝐵𝑋 (𝑟) − ∫ 𝐵𝑋𝐵𝑥

(

∫ 𝐵𝑥𝐵
′
𝑥

)−1
𝐵𝑥 (𝑟) = 𝛺1∕2

𝑥𝑥 𝑊𝑋.𝑥(𝑟)

𝑊𝑋.𝑥(𝑟) = 𝑊𝑋 (𝑟) − ∫ 𝑊𝑋𝑊
′
𝑥

(

∫ 𝑊𝑥𝑊
′
𝑥

)−1
𝑊𝑥 (𝑟)

⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑋.𝑥 (𝑟) = ∫

1

𝑟
𝐵𝑋.𝑥 = 𝛺1∕2

𝑥𝑥 ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊𝑋.𝑥(𝑟) = 𝛺1∕2
𝑥𝑥 ∫

1

𝑟
𝑊𝑋.𝑥

𝑋.𝑥 = ∫ 𝐵𝑋.𝑥𝐵
′
𝑋.𝑥 = 𝛺1∕2

𝑥𝑥 𝑊 ,𝑋.𝑥𝛺
1∕2
𝑥𝑥 = 𝛺1∕2

𝑥𝑥 ∫ 𝑊𝑋.𝑥𝑊
′
𝑋.𝑥 𝛺

1∕2
𝑥𝑥

𝐵𝑒.𝑥 (𝑟) = 𝐵𝑒 (𝑟) − 𝜔𝑒𝑥𝛺−1
𝑥𝑥𝐵𝑥 (𝑟) =𝑑 𝜔

1∕2
𝑒𝑒.𝑥𝑊𝑒.𝑥, 𝜔𝑒𝑒.𝑥 = 𝜔𝑒𝑒 − 𝜔𝑒𝑥𝛺−1

𝑥𝑥𝜔𝑥𝑒,

𝐵0.𝑥 (𝑟) = 𝐵0 (𝑟) −𝛺0𝑥𝛺
−1
𝑥𝑥𝐵𝑥 (𝑟) =𝑑 𝛺

1∕2
00.𝑥𝑊0.𝑥

𝐵𝑥.𝑋 (𝑟) = 𝐵𝑥 (𝑟) − ∫ 𝐵𝑥𝐵
′
𝑋

(

∫ 𝐵𝑋𝐵
′
𝑋

)−1
𝐵𝑋 (𝑟) =𝑑 𝛺

1∕2
𝑥𝑥 𝑊𝑥.𝑋

𝑊𝑥.𝑋 (𝑟) = 𝑊𝑥 (𝑟) − ∫ 𝑊𝑥𝑊
′
𝑋

(

∫ 𝑊𝑋𝑊
′
𝑋

)−1
𝑊𝑋 (𝑟)

𝐵0.𝑥 (𝑟) = 𝐵0.𝑥 (𝑟) − ∫ 𝐵0.𝑥𝐵
′
𝑋.𝑥

(

∫ 𝐵𝑋.𝑥𝐵
′
𝑋.𝑥

)−1
𝐵𝑋 (𝑟)

− ∫ 𝐵0.𝑥𝐵
′
𝑥.𝑋

(

∫ 𝐵𝑥.𝑋𝐵
′
𝑥.𝑋

)−1
𝐵𝑥 (𝑟)

= 𝛺1∕2
𝑥𝑥 𝑊0.𝑥(𝑟)

𝜂𝐾 = ∫

1

𝑟=0
�̃�𝐾 (𝑟)𝐵𝑥 (𝑟)′ 𝑑𝑟, 𝜉𝐾 = ∫

1

𝑟=0
�̃�𝐾 (𝑟) 𝑑𝐵𝑥 (𝑟)′ , 𝜇𝐾 = ∫

1

𝑟=0
�̃�𝐾 (𝑟)𝐵𝑋 (𝑟)′ 𝑑𝑟

𝜂𝑊 =
(

∫ 𝑊𝑋.𝑥𝑊
′
𝑋.𝑥

)−1

∫
⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑊𝑋.𝑥𝑑𝑊0.𝑥,

𝜂𝑒.𝑥 =
(

∫ 𝑊𝑋.𝑥𝑊
′
𝑋.𝑥

)−1 (

∫ 𝑊𝑋.𝑥𝑑𝑊𝑒.𝑥

)

𝛹0.𝑥𝐾 = ∫ �̃�𝐾𝐵0.𝑥 ≡ 
(

0, 𝛺00.𝑥

(

∫ ∫ (𝑟 ∧ 𝑠) �̃�𝐾 (𝑟) �̃�𝐾 (𝑠)′ 𝑑𝑟𝑑𝑠
))

𝜓𝑒𝐾 = ∫ �̃�𝐾𝑑𝐵𝑒

𝐽𝐾 = 𝑄𝜉𝐾 −𝑄𝜉𝐾 𝜂𝐾
(

𝜂′𝐾𝑄𝜉𝐾 𝜂𝐾
)−1

𝜂′𝐾𝑄𝜉𝐾
𝑞 =

[

𝐼𝑞 , 0
]

𝜗𝐾 = ∫ 𝐵𝑋.𝑥 (𝑟) �̃�𝐾 (𝑟)′ 𝑑𝑟 =
(

𝜁1,… , 𝜁𝐾
)

𝓁′
𝑋 = ∫ 𝑑𝐵𝑒.𝑥𝐵

′
𝑋.𝑥

(

∫ 𝐵𝑋.𝑥𝐵
′
𝑋.𝑥

)−1
=𝑑 𝜔𝑒𝑒.𝑥𝓁′

𝑊 ,𝑋𝛺
−1∕2
𝑥𝑥

𝓁′
𝑊 ,𝑋 = ∫ 𝑑𝑊𝑒.𝑥𝑊

′
𝑋.𝑥

(

∫ 𝑊𝑋.𝑥𝑊
′
𝑋.𝑥

)−1
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Fig. 4. Housing starts (Starts), completions (Completions) and accumulated difference (Stock) data for successive decades (a) 1970s, (b) 1980s, (c) 1990s (d)
2000s and (e) 2010s.

𝓁′
𝑥 = ∫ 𝑑𝐵𝑒.𝑥𝐵𝑥.𝑋

(

∫ 𝐵𝑥.𝑋𝐵
′
𝑥.𝑋

)−1
=𝑑 𝜔𝑒𝑒.𝑥𝓁′

𝑊 ,𝑥𝛺
−1∕2
𝑥𝑥

𝓁′
𝑊 ,𝑥 = ∫ 𝑑𝑊𝑒.𝑥𝑊

′
𝑥.𝑋

(

∫ 𝑊𝑥.𝑋𝑊
′
𝑥.𝑋

)−1
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𝓁+ = (𝓁′
𝑋 ,𝓁

′
𝑥)

′ =𝑑 𝜔𝑒𝑒.𝑥𝓁′
𝑊 ,+𝛺

−1∕2
𝑥𝑥

𝓁′
𝑊 ,+ = (𝓁′

𝑊 ,𝑋 ,𝓁
′
𝑊 ,𝑥)

′

𝐵+(𝑟) =
(

𝐵𝑋 (𝑟)′, 𝐵𝑥(𝑟)′
)′ = 𝛺1∕2

𝑥𝑥 𝑊+(𝑟) = 𝛺1∕2
𝑥𝑥

(

𝑊𝑋 (𝑟)′,𝑊𝑥(𝑟)′
)′

𝐵 = 𝐵𝑒.𝑥(𝑟) + 𝓁′
+ ∫

𝑟

0
𝐵+ = 𝛺1∕2

𝑒𝑒.𝑥𝑊 (𝑟)

𝑊 (𝑟) = 𝑊𝑒.𝑥(𝑟) + 𝓁′
𝑊 ,+ ∫

𝑟

0
𝑊+,

where �̃�𝐾 (𝑟) =
(

𝜑1 (𝑟) ,… , 𝜑𝐾 (𝑟)
)′.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2023.105622.
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