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Abstract. This paper investigates rationalizable implementation of social choice functions 
(SCFs) in incomplete information environments. We identify weak interim rationalizable 
monotonicity (weak IRM) as a novel condition and show it to be a necessary and almost 
sufficient condition for rationalizable implementation. We show by means of robust exam-
ples that interim rationalizable monotonicity (IRM), found in the literature, is strictly stron-
ger than weak IRM and that IRM is not necessary for rationalizable implementation, as 
had been previously claimed. These examples also demonstrate that Bayesian monotonic-
ity, the key condition for full Bayesian implementation, is not necessary for rationalizable 
implementation. That is, rationalizable implementation can be more permissive than 
Bayesian implementation. We revisit well-studied classes of economic environments and 
show that the SCFs considered there are interim rationalizable implementable. A compre-
hensive discussion of related issues, including well-behaved mechanisms, mechanisms sat-
isfying the best response property, double implementation, and responsive SCFs is also 
provided.

Funding: This work was supported by Ministry of Education, Singapore [Grant MOE Academic 
Research Fund Tier 2/MOE-T2EP402A20-0]. 

Keywords: Bayesian incentive compatibility • Bayesian monotonicity • weak interim rationalizable monotonicity •
interim rationalizable monotonicity • implementation • rationalizability

1. Introduction
A leading solution concept in game theory is rationalizability (Bernheim [12], Pearce [35], Brandenburger and Dekel 
[13], Lipman [25]). When players are rational and there is common belief among them that this is the case, they play 
their rationalizable strategies, without necessarily imposing the additional assumption that their beliefs are correct, 
as is the case in an equilibrium.1 Its extension to Bayesian games of incomplete information, our concern in this 
paper, is the notion of interim correlated rationalizability, from Dekel et al. [16], which will be defined in a later 
section.2

Despite the impressive effort made by implementation theorists in the 1980s and 1990s, using a plethora of game- 
theoretic solution concepts, a characterization of the rules that are implementable in rationalizable strategies under 
incomplete information has remained an open problem. The current paper settles this issue, by essentially provid-
ing such a characterization, for the case of single-valued rules or social choice functions (SCFs). A previous working 
paper (Bergemann and Morris [7]) provides valuable results for the case of finite mechanisms.3

Our main finding is to propose a novel condition, which we term weak interim rationalizable monotonicity 
(weak IRM), that is necessary and almost sufficient for implementation in interim rationalizable strategies (Theo-
rems 1 and 2). Weak IRM is a weakening of the IRM condition proposed in Bergemann and Morris [7], which will 
be shown not to be necessary for rationalizable implementation (Section 7).4 We stress this point because Oury and 
Tercieux [33] make an incorrect claim that IRM is necessary for interim rationalizable implementation in its footnote 
4. IRM, but not weak IRM, implies Bayesian monotonicity (Bergemann and Morris [7]), a necessary condition for 
implementation in Bayesian equilibrium.5 Indeed, we show in several examples in Section 7 that weak IRM can be 
satisfied even when Bayesian monotonicity fails. Our results thus demonstrate that rationalizable implementation 
may be more permissive than equilibrium implementation. Figure 1 summarizes the relationship between Bayesian 
implementation and interim rationalizable implementation, which is elaborated in detail later (Sections 5, 7, and 8).

The finding just described, that making the assumption of equilibrium or correct expectations may be restricting 
the set of rules that can be decentralized by means of play in mechanisms, ought to be compared with results in 
complete information environments. In contrast to our finding, Bergemann et al. [11] and Xiong [45] show that 
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rationalizable implementation of SCFs under complete information is more restrictive than equilibrium implemen-
tation. For set-valued rules, however, Kunimoto and Serrano [24] come to the reverse conclusion that rationalizable 
implementation is generally more permissive than equilibrium implementation under complete information.6 For 
general correspondences, Kunimoto and Serrano [24] identify uniform monotonicity, which is a weakening of the 
classic Maskin monotonicity (Maskin [26]) and that reduces to it in the case of SCFs as a necessary and almost suffi-
cient condition for rationalizable implementation. Because Maskin monotonicity is necessary and almost sufficient 
for Nash implementation, regardless of whether one wishes to implement SCFs or general correspondences, find-
ing rules that are Nash implementable but not implementable in rationalizable strategies is generally very difficult: 
such rules are Maskin monotonic, which in addition to the other weak conditions identified in Kunimoto and Ser-
rano [24], will also make them rationalizably implementable. Conversely, it is easy to find set-valued rules that are 
implementable in rationalizable strategies but not in Nash equilibrium.

This paper’s results show that the permissiveness of rationalizable implementation, in comparison with equilib-
rium implementation, carries over to incomplete information environments, but now even for SCFs.7 This happens 
if the implementing mechanism in rationalizable strategies fails to have equilibria, showcasing the additional 
requirement of the best-response correspondence having fixed points (see Examples 2 and 6 in Section 7 for this). 
Note how one should not discard a mechanism outright because it fails to have equilibria; if one accepts more flexi-
ble patterns of behavior, such as different bounded-rationality rules of thumb or rationalizability, which concerns 
us here, one should be open to that possibility. Certainly, to understand the restrictions that rationalizable play 
imposes on implementability, such mechanisms must be considered, as we do here. In doing so, we construct an 
implementing mechanism that works using rationalizable strategies, regardless of whether it has equilibria or not. 
In the quest of the general conditions for rationalizable implementation, we view this as an improvement over the 
canonical constructions in the existing literature. We plan to explore generalizations of the findings in Kunimoto 
and Serrano [24], as well as those in the current study, in a separate paper posing the question of set-valued rules 
under incomplete information.8

The plan of the paper is as follows. Section 2 presents preliminaries. Section 3 introduces our notion of implemen-
tation in interim rationalizable strategies. Weak IRM, as the necessary condition for interim rationalizable imple-
mentation, is presented in Section 4. Section 5 relates weak IRM and IRM to previous conditions (Bayesian 
incentive compatibility and Bayesian monotonicity). Section 6 shows that weak IRM and an additional weak condi-
tion are sufficient for interim rationalizable implementation. Section 7 demonstrates the significance of our results 
in a series of well-studied classes of economic environments and, in particular, shows that IRM and Bayesian mono-
tonicity are not necessary for interim rationalizable implementation. Section 8 discusses a number of extensions of 
our results and Section 9 concludes the paper. Most proofs are relegated to the appendices.

2. Preliminaries
Let I � {1, : : : , n} denote the finite set of agents or players, and Ti be a finite set of types of agent i. Let T ≡ T1 ×⋯×
Tn, and T�i ≡ T1 ×⋯× Ti�1 × Ti+1 ×⋯× Tn.9 Let ∆(T�i) denote the set of probability distributions over T�i. Each 
agent i has a system of “interim” beliefs that is expressed as a function πi : Ti→ ∆(T�i). Then, we call (Ti,πi)i∈I a type 
space. Let A denote a countable set of pure outcomes, which are assumed to be independent of the information state. 
Let ∆(A) be the set of probability distributions over A. Agent i’s state dependent von Neumann-Morgenstern utility 
function is denoted ui : ∆(A) × T→ R. We can now define an environment as E � (A, {ui, Ti,πi}i∈I).

Figure 1. Relationship between interim rationalizable implementation and Bayesian implementation. 

Note. BRP, best response property; NWR, no-worst-rule.
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A (stochastic) social choice function (SCF) is a single-valued function f : T→ ∆(A).10 In any arbitrary type space, 
some states might be deemed impossible by all agents, complete information environments being the most notable 
case. If the designer thinks that allocations in states occurring with probability zero are irrelevant, the designer’s 
interest in implementation applies only to a subset of T. To take this into account, we let T∗ ⊆ T be the set of states 
that the designer cares about. We assume that T∗ is such that

{t ∈ T : ∃i ∈ I s:t: πi(ti)[t�i] > 0} ⊆ T∗:

This formulation requires the designer to care about all states that are deemed possible by at least one agent while at 
the same time it still allows the designer’s flexibility to care about states that are deemed impossible by all agents.11

Consider any two SCFs f , f ′. We say that f and f ′ are equivalent (denoted by f ≈ f ′) if f (t) � f ′(t) for all t ∈ T∗.12

A mechanism (or game form) Γ � ((Mi)i∈I, g) describes: (i) a nonempty countable message space Mi for each agent i 
and (ii) an outcome function g : M→ ∆(A), where M �

Q
i∈I Mi. Let ΓDR � ((Ti)i∈I, f ) denote the direct revelation mech-

anism (or direct mechanism) associated with an SCF f, that is, a mechanism where Mi�Ti for all i and g� f.
In the direct mechanism associated with an SCF f, the interim expected utility of agent i of type ti who pretends to 

be of type t′i , whereas all other agents truthfully announce their types, is defined as

Ui(f ; t′i |ti) ≡
X

t�i∈T�i

πi(ti)[t�i]ui f (t′i , t�i), (ti, t�i)
� �

:

Let Ui(f |ti) �Ui(f ; ti |ti).
For any i ∈ I and function y : T�i→ ∆(A), we define

Ui(y |ti) ≡
X

t�i∈T�i

πi(ti)[t�i]ui y(t�i), (ti, t�i)
� �

:

3. Implementation in Interim Rationalizable Strategies
We adopt interim correlated rationalizability (Dekel et al. [16]) as a solution concept and investigate the implications of 
implementation in interim correlated rationalizable strategies.13 We fix a mechanism Γ � ((M)i∈I, g) and define a 
message correspondence profile S � (S1, : : : , Sn), where each Si : Ti→ 2Mi , and we write S for the collection of mes-
sage correspondence profiles. The collection S is a lattice with the natural ordering of set inclusion: S ≤ S′ if Si(ti) ⊆

S′i (ti) for all i ∈ I and ti ∈ Ti. The largest element is S � (S1, : : : , Sn), where Si(ti) �Mi for each i ∈ I and ti ∈ Ti. The 
smallest element is S � (S1, : : : , Sn), where Si(ti) � ∅ for each i ∈ I and ti ∈ Ti.

We define an operator b to iteratively eliminate never best responses. The operator b : S→ S is thus defined as: 
for every i ∈ I and ti ∈ Ti,

bi(S)[ti] ≡ mi :

∃λi ∈ ∆(T�i ×M�i) such that
(1)λi(t�i, m�i) > 0⇒m�i ∈ S�i(t�i);

(2)margT�i
λi � πi(ti);

(3)mi ∈ arg max
m′i

X

t�i,m�i

λi(t�i, m�i)ui(g(m′i , m�i), (ti, t�i))

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

:

Observe that b is increasing by definition: that is, S ≤ S′ ⇒ b(S) ≤ b(S′). By Tarski’s fixed-point theorem, there is a 
largest fixed point of b, which we label SΓ(T). Thus, (i) b(SΓ(T)) � SΓ(T) and (ii) b(S) � S⇒ S ≤ SΓ(T).

We can also construct the fixed point SΓ(T) by starting with S, the largest element of the lattice, and iteratively 
applying the operator b. Let the message correspondence profile SΓ(T), 0 � S and, for all i ∈ I, ti ∈ Ti, k ≥ 1, iteratively 
define,

SΓ(T), k
i (ti) ≡ bi

�
SΓ(T), k�1�[ti]:

If the message sets are finite, we have

SΓ(T)i (ti) ≡
\

k≥0
SΓ(T), k

i (ti)

for each i ∈ I and ti ∈ Ti. However, because the mechanism Γ�may be infinite, transfinite induction may be necessary 
to reach the fixed point. Thus, SΓ(T)i (ti) are the sets of messages surviving (transfinite) iterated deletion of never best 
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responses of type ti of agent i.14 We denote by σi a selection from SΓ(T)i and call it a rationalizable strategy of agent i. 
We recall the following structure of SΓ(T):

SΓ(T) �
Y

i∈I
SΓ(T)i :

Definition 1. A mechanism Γ�implements an SCF f in interim rationalizable strategies if there exists an SCF f̂ ≈ f 
such that the following two conditions hold: 

1. Nonemptiness: SΓ(T)i (ti)≠ ∅ for all ti ∈ Ti and i ∈ I.
2. Uniqueness: for any t ∈ T, m ∈ SΓ(T)(t) implies g(m) � f̂ (t).

Remark. The uniqueness requirement in interim rationalizable implementation is stronger than the usual one, 
because we require that every rationalizable strategy profile induces outcomes specified by the equivalent SCF f̂ 
over the entire T rather than T∗. This strengthening allows us to obtain a clean characterization for interim ratio-
nalizable implementation, whereas it makes our notion more stringent than the one used by Bergemann et al. 
[11] and Xiong [45], which can ignore many zero-probability states in complete information environments.

We say that an SCF f is implementable in interim rationalizable strategies if there exists a mechanism Γ�that imple-
ments f in interim rationalizable strategies.

4. Necessity for Implementation of an SCF in Interim Rationalizable Strategies
In this section, we uncover a necessary condition for interim rationalizable implementation of an SCF. First, we turn 
to some preliminary definitions.

Definition 2. A deception is a profile of correspondences β � (β1, : : : ,βn) such that βi : Ti→ 2Ti and ti ∈ βi(ti) for all 
ti ∈ Ti and i ∈ I.

Intuitively, βi(ti) describes the set of possible types which agent i of type ti pretends to be in the direct mecha-
nism associated with the SCF. This is an important consideration in implementation theory because the designer 
aims to elicit the types of the agents, typically by letting them announce their types, and the designer is fully 
aware that the agents can announce any types as long as it is in their interest to do so.

Remark. These set-valued deceptions have already been used in previous literature on interim rationalizable 
implementation (Bergemenn and Morris [7], Oury and Tercieux [33]). The requirement that ti ∈ βi(ti) for all ti is 
made to simplify the writing of some steps in the proof below. It is not essential at all for our results.

Definition 3. A deception β�is acceptable for an SCF f if, for all t, t′ ∈ T, t′ ∈ β(t) ⇒ f (t) � f (t′); otherwise, β�is unac-
ceptable for f.

Unacceptable deceptions are a concern for the designer since the agents undermine the designer’s goal of 
implementing the outcome f(t) for any t ∈ T.

Given an SCF f, for each i ∈ I and ti ∈ Ti, define

Yi[ti, f ] ≡ y : T�i→ ∆(A) :
either y(t�i) � f (ti, t�i), ∀t�i ∈ T�i

or Ui(f | ti) >Ui(y |ti)

� �

:

Thus, Yi[ti, f ] is the collection of all mappings y : T�i→ ∆(A) that individual i of type ti considers to be “equivalent” 
to f or strictly worse than f.

For any SCF f and individual i ∈ I, we define a binary relation ~f
i on Ti × Ti as follows: We say that ti ~f

i t′i if f is 
not responsive to this change in i’s type, that is,

f (ti, t�i) � f (t′i , t�i), ∀t�i ∈ T�i:

Otherwise, we say ti ¿
f
i t′i . Notice that ~f

i is symmetric, that is, ti ~f
i t′i if and only if t′i ~f

i ti. We say that an SCF f is 
nonresponsive to agent i’s type if ti ~f

i t′i for all ti, t′i ∈ Ti.

Definition 4. A deception β�that is unacceptable for an SCF f is weakly refutable if there exist i ∈ I, ti ∈ Ti, and t′i ∈
βi(ti) satisfying t′i ¿

f
i ti such that for all ψi ∈ ∆(T�i × T) satisfying ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �

P
t̃∈Tψi(t�i, t̃) for all t�i ∈ T�i, there exists an SCF f ′ such that f ′(t̃i, ·) ∈ Yi[t̃i, f ] for all t̃i ∈ Ti and

X

t�i, t̃

ψi(t�i, t̃)ui f ′(t̃), (ti, t�i)
� �

>
X

t�i, t̃

ψi(t�i, t̃)ui f (t′i , t̃�i), (ti, t�i)
� �

:
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Unlike equilibrium, the solution concept of rationalizability allows different types of an agent to hold distinct 
beliefs about the behavior of the other agents. To illustrate this while keeping matters simple, suppose for each 
type t̃j of each agent j we can find a strategy profile σt̃ j

�j such that σt̃ j
�j(t�j) ∈ SΓ(T)�j (t�j), for all t�j, which rationalizes 

the behavior of type t̃j (i.e., type t̃ j has a rationalizable message that is a best response to the belief that the other 
agents play according to the rationalizable strategy profile σt̃ j

�j). Now suppose that instead of reporting their own 
rationalizable messages, agents use the deception β�(i.e., agents of types t̂ report rationalizable messages corre-
sponding to types in β(t̂)). When the deception β�is weakly refutable, the designer finds an agent’s type (say, type 
ti of agent i) as an ally to undermine the deception. Specifically, this type finds a collection of SCFs, one for each 
belief ψi ∈ ∆(T�i × T) that is compatible with the fact that the other agents are using the deception β

�i. Notice that 
the belief ψi is defined over T�i × T rather than T�i × T�i because player i is aware that types t̂�i are playing mes-
sages that are rationalizable for types β

�i(t̂�i), which in turn rationalize the behavior of different types of player i. 
Therefore, the rationalizable messages for types β

�i(t̂�i) could vary depending on which type of player i’s behav-
ior those of types β

�i(t̂�i) rationalize. For instance, σti
�i(β�i(t̂�i)) ∈ SΓ(T)�i (β�i(t̂�i)) that rationalize the behavior of 

type ti of player i might be different from σt′i
�i(β�i(t̂�i)) ∈ SΓ(T)�i (β�i(t̂�i)) that rationalize the behavior of type t′i of 

player i. Thus, when contemplating the behavior of types t̂�i under the deception β, player i needs to form a 
belief over messages in ∪t̃ i∈Ti

{σt̃ i
�i(β�i(t̂�i))}, which explains why the domain of ψi includes Ti as a component.

It is instructive to appreciate this feature of ψi in comparison with equilibrium implementation in incomplete 
information environments. For instance, in Bayesian implementation, all players share a common belief that one 
particular equilibrium strategy profile σ∗ is played in the mechanism. Then, when contemplating the behavior of 
types t̂�i under the deception β, player i’s belief is simply that types t̂�i report σ∗�i(β�i(t̂�i)), which is independent 
of player i’s type.

The collection of SCFs that the ally finds to undermine the deception is required to satisfy the following two 
properties. First, by definition, each type t̃i places each of these SCFs f ′ in the strictly lower contour set of f under 
truth-telling whenever f ′(t̃i, ·)≠ f (t̃ i, ·). Second, when the deception β�is used, then under belief ψi, type ti strictly 
prefers the corresponding SCF f ′ in the collection to f. If one insists on restricting the collection of SCFs to those f ′
that are nonresponsive to agent i’s type, then one would speak of strong refutability. Under this restriction, there 
is a mapping y : T�i→ ∆(A) such that f ′(t̃ i, ·) � y for all t̃i. Then, the requirement that f ′(t̃ i, ·) ∈ Yi[t̃i, f ] for all t̃i ∈ Ti 
means that y ∈ ∩t̃ i∈Ti

Yi[t̃i, f ]. As discussed in the next section, this will be important to understand the difference 
with the previous condition proposed in the literature.

Definition 5. An SCF f satisfies weak interim rationalizable monotonicity (weak IRM) if every deception β�that is unac-
ceptable for f is weakly refutable.

If an SCF satisfies weak IRM, the designer can plan on using the services of the ally identified in the definition 
of weak refutability in order to succeed in the designer’s attempt of implementing f.15 If the designer insisted on 
the deception being “strongly” refutable, as defined in the next section, then the SCF would satisfy IRM, a stron-
ger condition introduced in the literature (Bergemann and Morris [7], Oury and Tercieux [33]). In particular, it is 
claimed in Oury and Tercieux ([33], footnote 4) that IRM is necessary for the interim rationalizable implementa-
tion of SCFs. We will show this claim to be incorrect in the sequel.

Next, we present our first main result, which shows that weak IRM is necessary for implementation in ratio-
nalizable strategies.

Theorem 1. If an SCF f is implementable in interim rationalizable strategies, then there exists an SCF f̂ ≈ f that satisfies 
weak IRM.

5. Weak IRM, IRM, and Other Relevant Conditions
In this section, we investigate the connections between weak IRM, IRM, and the conditions of incentive compatibil-
ity and Bayesian monotonicity, central in the characterization of SCFs that are implementable in Bayesian equilib-
rium. Further connections will be uncovered in a later section, after we state and prove our sufficiency result.

Definition 6. An SCF f satisfies Bayesian incentive compatibility (BIC) if for all i ∈ I and ti ∈ Ti,

Ui(f |ti) ≥Ui(f ; t′i | ti), ∀t′i ∈ Ti:

If these constraints are strict whenever ti ¿
f
i t′i , then we say that f satisfies strict-if-responsive Bayesian incentive com-

patibility (SIRBIC).
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Clearly, SIRBIC is a strenghthening of BIC, whereas it is a weakening of strict IC, which imposes strict inequal-
ities on all incentive constraints. Then, we can show the following.

Lemma 1. If an SCF f satisfies weak IRM, then it satisfies SIRBIC.

Remark. It is well known that BIC is necessary for implementability in Bayesian equilibrium. Lemma 1, along 
with Theorem 1, shows that SIRBIC, a stronger condition, is necessary for implementation in interim rationaliz-
able strategies.

As discussed in the previous section when we defined weak refutability, one can propose its stronger version.

Definition 7. A deception β�that is unacceptable for an SCF f is strongly refutable if there exist i ∈ I, ti ∈ Ti, and t′i ∈
βi(ti) satisfying t′i ¿

f
i ti such that for all ψi ∈ ∆(T�i × T) satisfying ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �

P
t̃∈Tψi(t�i, t̃) for all t�i ∈ T�i, there exists an SCF f ′ such that f ′ is nonresponsive to agent i’s type, f ′(t̃i, ·) ∈ Yi[t̃i, f ]

for all t̃i ∈ Ti, and
X

t�i, t̃

ψi(t�i, t̃)ui f ′(t̃), (ti, t�i)
� �

>
X

t�i, t̃

ψi(t�i, t̃)ui f (t′i , t̃�i), (ti, t�i)
� �

:

Remark. The SCF f ′ in the statement for strong refutability is required to be nonresponsive to agent i’s type, as 
opposed to allowing f ′ that could respond to a change in agent i’s type in the statement for weak refutability. 
This additional requirement for strong refutability, in conjunction with the stipulation that f ′(t̃i, ·) ∈ Yi[t̃i, f ] for all 
t̃i ∈ Ti, implies that there exists a mapping y ∈ ∩t̃ i∈Ti

Yi[t̃i, f ] that is strictly preferred to f by type ti of agent i when 
the deception β�is used. Interim rationalizable monotonicity introduced by Bergemann and Morris [7] requires 
the existence of such a mapping y ∈ ∩t̃ i∈Ti

Yi[t̃i, f ] to undermine an unacceptable deception.16 Indeed, as we show 
next, interim rationalizable monotonicity is equivalent to strong refutability of every unacceptable deception.

Definition 8. An SCF f satisfies IRM if, for every deception β�that is unacceptable for f, there exist i ∈ I, ti ∈ Ti, and 
t′i ∈ βi(ti) satisfying t′i ¿

f
i ti such that for all φi ∈ ∆(T�i × T�i) satisfying φi(t�i, t̃�i) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i]

�
P

t̃�i∈T�i
φi(t�i, t̃�i) for all t�i ∈ T�i, there exists y ∈ ∩t̃ i∈Ti

Yi[t̃i, f ] such that
X

t�i, t̃�i

φi(t�i, t̃�i)ui y(t̃�i), (ti, t�i)
� �

>
X

t�i, t̃�i

φi(t�i, t̃�i)ui f (t′i , t̃�i), (ti, t�i)
� �

:

Lemma 2. An SCF f satisfies IRM if and only if every deception β�that is unacceptable for f is strongly refutable.

As it is clear that strong refutability implies its weak version, we state the following result without proof.

Corollary 1. If an SCF f satisfies IRM, it also satisfies weak IRM.

A single-valued deception βs is a profile of functions (βs
1, : : : ,βs

n) such that βs
i : Ti→ Ti for all i ∈ I. The single-valued 

deception βs is acceptable for an SCF f if, for any t ∈ T, f (βs(t)) � f (t); otherwise, βs is unacceptable for f.
It is worth distinguishing between single-valued deceptions and our set-valued deceptions that happen to be sin-

gle valued. Recall that our definition of a set-valued deception β�requires that ti ∈ βi(ti) for all ti ∈ Ti and i ∈ I. Thus, 
there is a unique set-valued deception that is single-valued, that is, β�such that βi(ti) � {ti} for all ti ∈ Ti and i ∈ I. 
Hence, any single-valued deception βs such that βs

i (ti)≠ ti for some ti ∈ Ti and i ∈ I cannot be expressed as a special 
case of our set-valued deceptions.

Next, we recall another necessary condition for full implementation in Bayesian equilibrium.

Definition 9. An SCF f satisfies Bayesian monotonicity (BM) if, for every single-valued deception βs that is unac-
ceptable for f, there exist i ∈ I, ti ∈ Ti, and y : T�i→ ∆(A) such that

Ui(y ◦ βs
�i |ti) >Ui(f ◦ βs |ti), 

whereas for all ̃ti ∈ Ti,

Ui(f | t̃ i) ≥Ui(y | t̃i):

By undermining an unacceptable deception, as with weak IRM or IRM, type ti can be used as an ally to a designer 
who wishes to implement f, this time in Bayesian equilibrium. However, because equilibrium (as opposed to ratio-
nalizability) is the solution concept used, the deceptions considered in BM are single-valued and the requirements 
on beliefs over the preference reversal are significantly reduced. As a consequence, Bergemann and Morris [7] are 
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able to show that IRM implies BM. However, as we show in Examples 2 and 6, BM is not necessarily weaker than 
weak IRM.

6. Sufficiency for Implementation of an SCF in Interim Rationalizable Strategies
In this section, we show that weak IRM is sufficient for implementation in interim rationalizable strategies under a 
mild additional assumption: weak no-worst-rule (weak NWR).

For each i ∈ I and ti ∈ Ti, define

Yw
i [ti, f ] ≡ {y : T�i→ ∆(A) : Ui(f |ti) ≥Ui(y | ti)}: (1) 

Thus, Yw
i [ti, f ] is the collection of all mappings y : T�i→ ∆(A) such that y is weakly worse than f for individual i of 

type ti. Notice that Yi[ti, f ] is a subset of Yw
i [ti, f ].)

Definition 10. The SCF f satisfies the weak no-worst-rule condition (weak NWR) if, for all i ∈ I, ti ∈ Ti, and 
φi ∈ ∆(T�i × T�i), there exist y, y′ ∈ Yw

i [ti, f ] such that
X

t�i, t′
�i

φi(t�i, t′�i)ui y(t′�i), (ti, t�i)
� �

≠
X

t�i, t′
�i

φi(t�i, t′�i)ui y′(t′�i), (ti, t�i)
� �

:

Remark. The weak NWR condition implies that the strictly lower contour set of f is nonempty for all types. Kuni-
moto [22] also defines a “no-worst-rule” condition that is stronger than our definition. Kunimoto [22] requires 
the existence of mappings y and y′ in the set ∩t̃ i∈Ti

Yw
i [t̃i, f ], whereas we only require the existence of y and y′ in 

the set Yw
i [ti, f ].

In the sufficiency result, we focus on a countable subset of Yw
i [ti, f ], as defined next. We denote by ∆∗(A) a 

countable dense subset of ∆(A). For each i ∈ I and ti ∈ Ti, define

Y∗i [ti, f ] ≡ y : T�i→ ∆(A) :
(i) y(t�i) ∈ ∆∗(A)

[

t′i∈Ti

{f (t′i , t�i)}, ∀t�i ∈ T�i, and

(ii) Ui(f |ti) ≥Ui(y | ti):

8
<

:

9
=

;

Note that Y∗i [ti, f ] ⊆ Yw
i [ti, f ]. Because T�i is finite and ∆∗(A)∪t′i∈Ti{f (t′i , t�i)} is countable, Y∗i [ti, f ] is also countable. 

Thus, we denote Y∗i [ti, f ] by {y0
i [ti, f ], y1

i [ti, f ], : : : , yk
i [ti, f ], : : : }. For each i ∈ I and ti ∈ Ti, we then define yti, f

i such 
that

yti, f
i (t�i) � (1� δ)

X∞

k�0
δkyk

i [ti, f ](t�i), ∀t�i, 

where δ ∈ (0, 1).
Similarly, because A is countable, we denote it by {a0, a1, : : : , ak, : : : }. Then, we define

α � (1� η)
X∞

k�0
ηkak, 

where η ∈ (0, 1).
The following lemma notes two important consequences of weak NWR.

Lemma 3. If an SCF f satisfies weak NWR, then the following statements are true: 
(a) For all i ∈ I, ti ∈ Ti, and φi ∈ ∆(T�i × T�i), there exists y ∈ Y∗i [ti, f ] such that

X

t�i, t′
�i

φi(t�i, t′�i)ui y(t′�i), (ti, t�i)
� �

>
X

t�i, t′
�i

φi(t�i, t′�i)ui(y
ti, f
i (t

′
�i), (ti, t�i)):

(b) For all i ∈ I, ti ∈ Ti, and z1
i ∈ ∆(T�i), there exists a ∈ A such that

X

t�i

z1
i (t�i)ui a, (ti, t�i)( ) >

X

t�i

z1
i (t�i)ui α, (ti, t�i)( ):

We now state and prove our sufficiency result for implementation in interim rationalizable strategies.

Theorem 2. For any SCF f, if there exists an SCF f̂ ≈ f such that f̂ satisfies weak IRM and weak NWR, then the SCF f is 
implementable in interim rationalizable strategies.

The example shows that weak NWR is not necessary for interim rationalizable implementation:
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Example 1. Let there be two agents, that is, I � {1, 2}. Agent 1 is uninformed of the state, so that he has one possi-
ble type t1. Agent 2 is informed of the state, so that he has two possible types, t2 and t′2. There are three alterna-
tives, that is, A � {a1, a2, a3}. Agent 1 has state-independent preferences such that a1 is strictly better than a2, 
which is strictly better than a3. Agent 2’s his preferences in state (t1, t2) are a3 better than a2 better than a1, and 
those in state (t1, t′2), a3 better than a1 better than a2. Let f be the constant SCF, prescribing a3 in both states.

Consider a mechanism in which agent 2 dictates an alternative, and it is implemented. Obviously, f is imple-
mentable in interim rationalizable strategies, which, by our Theorem 1, implies that f satisfies weak IRM. How-
ever, f violates weak NWR.

Hence, although weak NWR could be dispensed with in some environments, and although we consider it a very 
mild condition, we currently do not know whether weak NWR is indispensable in our Theorem 2.

7. Significance of the Results
We have shown that weak IRM is necessary and almost sufficient for implementation in interim rationalizable strat-
egies (Theorems 1 and 2). In this section, we demonstrate the significance of these results in economically meaning-
ful classes of environments.

Here is the roadmap for this section. In Section 7.1, we focus on private values environments and prove that many 
socially desirable SCFs are interim rationalizable implementable. First, acknowledging the difficulty of checking 
weak IRM directly, we propose an easy-to-check condition, which we term COND-1. Together with SIRBIC, COND-1 
implies weak IRM. Second, we present a political-economy example with a class of nonconstant SCFs that always vio-
late IRM. Then, using the workable COND-1, we show that a subset of those SCFs are implementable in interim ratio-
nalizable strategies. Furthermore, by focusing on this subset of SCFs, we show that there are some circumstances in 
which these SCFs satisfy BM, whereas in other circumstances, these SCFs violate it and therefore are not Bayesian 
implementable. Third, when we focus on interior SCFs, that is, those assigning positive probability to every pure out-
come, we show that two mild conditions, closely related to those found in the literature, are sufficient for interim ratio-
nalizable implementation. Applying this result to a model of bilateral trading, we show that any SCF that satisfies BIC 
is “virtually” implementable (i.e., implementable with arbitrarily high probability) in interim rationalizable strategies. 
Fourth, we consider strategy-proof SCFs. COND-1, together with strategy-proofness, weak nonbossiness, and weak 
NWR, is sufficient for interim rationalizable implementation. We apply this result to two well-known classes of eco-
nomic environments (pure exchange economies and a market with indivisible objects).

Finally, in Section 7.2, we also show that there exists an SCF that violates BM but is implementable in interim 
rationalizable strategies in an interdependent values environment. We also argue that this example is robust to the 
perturbation of the environment in an open set of utilities or beliefs. Thus, our findings in the previous subsection 
are extended to interdependent values environments.

7.1. Private Values Environments
We speak of a private values environment whenever each agent’s preferences are independent of the other agents’ 
types. Formally, the von Neumann-Morgenstern utility function of each agent i of type ti is expressed as follows: 
for any t�i, t′�i ∈ T�i and ℓ ∈ ∆(A),

ui(ℓ, (ti, t�i)) � ui(ℓ, (ti, t′�i)):

For simplicity, we then write the utility function as ui(·, ti).

7.1.1. Easy-to-Check Sufficient Condition. For interim rationalizable implementation, the key condition is weak 
IRM, which may often be tedious to check directly. We therefore propose a simple condition, which together with 
SIRBIC implies weak IRM.

Definition 11. The SCF f satisfies COND-1 (condition 1) if, for any i ∈ I and ti, t′i ∈ Ti, if t′i ¿
f
i ti, then there exists y ∈

Yw
i [t′i , f ] such that, for any t�i ∈ T�i,

ui(y(t�i), ti) > ui(f (t′i , t�i), ti):

COND-1 requires that whenever ti ¿
f
i t′i , there be a preference reversal with respect to the SCF f between two 

types ti and t′i such that the strict inequality holds for type ti in terms of “ex post” preferences, whereas the weak 
inequality holds for type t′i in terms of “interim” preferences. This is weaker than requiring ex post preference 
reversals between the two types.

Proposition 1. In a private values environment, if the SCF f satisfies SIRBIC and COND-1, it satisfies weak IRM.
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Remark. This result shows that, in a private values environment, weak IRM can roughly be decomposed into the 
“incentive compatibility” part (i.e., SIRBIC) and the “preference reversal” part (i.e., COND-1). These two distinct 
parts can also be found in the necessary conditions for Bayesian implementation: BIC and BM correspond to the 
incentive compatibility part and the preference reversal part, respectively.

We then obtain the following as a corollary of the previous proposition and Theorem 2.

Corollary 2. In a private values environment, for any SCF f, if there exists an SCF f̂ ≈ f such that f̂ satisfies SIRBIC, 
COND-1, and weak NWR, then f is implementable in interim rationalizable strategies.

We now present a political-economy example with a class of nonconstant SCFs that always violate IRM. Then, 
we show that a subset of those SCFs, parameterized by ɛ ∈ (0, 1), satisfy the sufficient conditions in Corollary 2, and 
hence, every SCF in that subset is implementable in interim rationalizable strategies. This disproves the claim made 
in Oury and Tercieux ([33], footnote 4) that IRM is necessary for interim rationalizable implementation. In the rest 
of the example, we focus on the subset of SCFs parametrized by ɛ. First, Claim 3 below exhibits circumstances in 
which every SCF in the subset satisfies BM. Second, Claim 4 below provides other circumstances in which every 
SCF in the subset violates BM, and thus those SCFs are not Bayesian implementable.17

Example 2 (Gaps Between IRM, BM, and Weak IRM). There are two players, that is, I � {1, 2}. There is a set of five 
alternatives A � {a, b, c, d, e} on the real line, which can be interpreted as political positions, with the following 
ordering: a < b < c < d < e. Each player i ∈ I has three types: Ti � {ti, t′i , t′′i }. Each type’s preferences on A are single- 
peaked. Types ti and t′i of player i are extremists, whereas type t′′i is a moderate. Specifically, type ti is a left 
extremist, whose preferences peak at a. In contrast, type t′i is a right extremist, whose preferences peak at e. Type 
t′′i of player i is a moderate but left-of-center, whose preferences peak at b.

For each player i ∈ I, Table 1 lists the payoffs of the extremist and moderate types:
An extremist believes that the other player is also an extremist, with equal probability of being either left or 

right extremist. Thus, the belief of type ti of player i is πi(ti)[t�i] � πi(ti)[t′�i] � 0:5. Likewise, the belief of type t′i of 
player i is πi(t′i )[t�i] � πi(t′i )[t′�i] � 0:5. In contrast, the moderate type t′′i of player i believes that the other player 
is more likely to be a moderate than an extremist. That is, πi(t′′i )[t′′�i] ≥ 0:5.

We envision a planner with somewhat moderate goals. Specifically, throughout the example, we focus on the 
class of SCFs F that assign the center alternative c whenever both players are extremists, that is, if f ∈ F, then 
f (t1, t2) � f (t1, t′2) � f (t′1, t2) � f (t′1, t′2) � c. We now show that any nonconstant SCF in F violates IRM.

Claim 1. Let f ∈ F. If the SCF f is not constant, it violates IRM.

Proof. Let f be the SCF such that f ∈ F and it is not constant. Consider the deception β�such that βi(ti) �

{ti}, βi(t′i ) � {t′i} and βi(t′′i ) � {ti, t′i , t′′i } for all i ∈ I. Because f ∈ F and f is not constant, it follows that there exist i ∈ I 
and t̂�i ∈ T�i such that f (t′′i , t̂�i)≠ c. However, regardless of the actual value of t̂�i, there always exists t̃ ∈ βi(t′′i ) ×
β�i(t̂�i) such that f (t̃) � c. Hence, β�is unacceptable for f.

Suppose, by way of contradiction, that the SCF f satisfies IRM. Then there exist i ∈ I, t̂ i ∈ Ti, and t̂′i ∈ βi(t̂i) satis-
fying t̂′i ¿

f
i t̂i such that for all φi ∈ ∆(T�i × T�i) satisfying φi(t̂�i, t̃�i) > 0⇒ t̃�i ∈ β�i(t̂�i) and πi(t̂i)[t̂�i] �

P
t̃�i∈T�i 

φi(t̂�i, t̃�i) for all t̂�i ∈ T�i, there exists y ∈ ∩t̃ i∈Ti
Yi[t̃i, f ] such that

X

t̂�i , t̃�i

φi (t̂�i, t̃�i)ui(y(t̃�i), t̂i) >
X

t̂�i , t̃�i

φi(t̂�i, t̃�i)ui(f (t̂
′

i , t̃�i), t̂i):

Because βi(ti) � {ti} and βi(t′i ) � {t′i}, it must be that t̂i � t′′i and t̂′i ∈ {ti, t′i}. Now consider the belief φi ∈ ∆(T�i ×

T�i) such that φi(t�i, t�i) � πi(t′′i )[t�i], φi(t
′
�i, t′�i) � πi(t′′i )[t′�i], and φi(t

′′
�i, t�i) +φi(t

′′
�i, t′�i) � πi(t′′i )[t′′�i] (i.e., φi(t

′′
�i, 

t′′�i) � 0) such that

φi(t
′′
�i, t�i) +φi(t�i, t�i) � φi(t

′′
�i, t′�i) +φi(t

′
�i, t′�i) � 0:5:

Table 1. The payoffs of the extremist and moderate types 
in Example 2.

a b c d e

ti 1 3/4 1/2 1/16 0
t′i 0 2/5 1/2 3/4 1
t′′i 1/16 1 3/4 1/2 0
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Such a φi exists because, by assumption, πi(t′′i )[t′′�i] ≥ 0:5. Furthermore, φi satisfies the requirement that 
φi(t̂�i, t̃�i) > 0⇒ t̃�i ∈ β�i(t̂�i) and πi(t′′i )[t̂�i] �

P
t̃�i∈T�i

φi(t̂�i, t̃�i) for all t̂�i ∈ T�i. Thus, there must exist a y ∈
∩t̃ i∈Ti

Yi[t̃i, f ] such that
X

t̂�i, t̃�i

φi(t̂�i, t̃�i)ui(y(t̃�i), t′′i ) >
X

t̂�i, t̃�i

φi(t̂�i, t̃�i)ui(f (t̂
′

i , t̃�i), t′′i )

w 0:5ui(y(t�i), t′′i ) + 0:5ui(y(t′�i), t′′i ) > ui(c, t′′i ):

As y ∈ ∩t̃ i∈Ti
Yi[t̃i, f ], we must satisfy two other inequalities: Ui(f |ti) ≥Ui(y |ti) and Ui(f |t′i ) ≥Ui(y |t′i ). The three 

inequalities together boil down to

0:5ui(y(t�i), t′′i ) + 0:5ui(y(t′�i), t′′i ) >
3
4 ;

1
2 ≥ 0:5ui(y(t�i), ti) + 0:5ui(y(t′�i), ti); and

1
2 ≥ 0:5ui(y(t�i), t′i ) + 0:5ui(y(t′�i), t′i ):

Let ℓ1 � y(t�i) and ℓ2 � y(t′�i) be the lotteries we consider. Then, the previous inequalities translate into, respectively,
1
16 (ℓ1[a] + ℓ2[a]) + (ℓ1[b] + ℓ2[b]) +

3
4 (ℓ1[c] + ℓ2[c]) +

1
2 (ℓ1[d] + ℓ2[d]) >

3
2 ;

1 ≥ (ℓ1[a] + ℓ2[a]) +
3
4 (ℓ1[b] + ℓ2[b]) +

1
2 (ℓ1[c] + ℓ2[c]) +

1
16 (ℓ1[d] + ℓ2[d]); and

1 ≥ 2
5 (ℓ1[b] + ℓ2[b]) +

1
2 (ℓ1[c] + ℓ2[c]) +

3
4 (ℓ1[d] + ℓ2[d]) + (ℓ1[e] + ℓ2[e]), 

where ℓk[x] denotes the probability that alternative x ∈ A is chosen under the lottery ℓk. However, it is impossible to 
simultaneously satisfy these three inequalities, a contradiction. w

Next, let the lottery ℓ∗ � 2a=5+ 3d=5 (Table 2). Fix any ɛ ∈ (0, 1), and consider the following SCF f ɛ:
Notice that f ɛ ∈ F for all ɛ ∈ (0, 1). We now show that f ɛ satisfies the sufficient condition in Corollary 2, and hence 

it is implementable in interim rationalizable strategies.

Claim 2. For all ɛ ∈ (0, 1), the SCF f ɛ is implementable in interim rationalizable strategies.

Proof. It is straightforward to check that f ɛ satisfies SIRBIC. (All types strictly prefer c to ℓ∗. Moreover, the incentive 
constraints are strict for type t′′i because, by assumption, πi(t′′i )[t′′�i] ≥ 0:5.) It can also be easily checked that f ɛ satis-
fies weak NWR because for all t̂ ∈ T and i ∈ I, there exists an alternative that is strictly worse than f ɛ(t̂) for type t̂i.

Finally, we claim that f ɛ satisfies COND-1. Fix i ∈ I. Let y : T�i→ ∆(A) be such that y(t̂�i) � a for all t̂�i ∈ T�i. By 
construction of y, we confirm that y ∈ Yw

i [t′′i , f ɛ] and ui(y(t̂�i), ti) > ui(f ɛ(t′′i , t̂�i), ti) for all t̂�i ∈ T�i. Hence, COND-1 
holds for the case that t′′i ¿

f ɛ
i ti. By a similar argument (e.g., letting y(t̂�i) � e for all t̂�i ∈ T�i), COND-1 also holds 

for the case that t′′i ¿
f ɛ
i t′i .

Next, let y : T�i→ ∆(A) be such that y(t̂�i) � 7b=11+ 4d=11 for all t̂�i ∈ T�i. By construction of y, we confirm 
that y ∈ Yw

i [ti, f ɛ] and ui(y(t̂�i), t′′i ) > ui(f ɛ(ti, t̂�i), t′′i ) for all t̂�i ∈ T�i. Hence, COND-1 holds for the case that 
ti¿

f ɛ
i t′′i .

Last, let y : T�i→ ∆(A) such that y(t̂�i) � b for all t̂�i ∈ T�i. By construction of y, we confirm that y ∈ Yw
i [t′i , f ɛ]

and ui(y(t̂�i), t′′i ) > ui(f ɛ(t′i , t̂�i), t′′i ) for all t̂�i ∈ T�i. Hence, COND-1 holds for the case that t′i ¿
f ɛ
i t′′i . This completes 

the proof that f ɛ satisfies COND-1.
It follows from Corollary 2 that f ɛ is implementable in interim rationalizable strategies. w

Table 2. The description of the SCF f ɛ in Example 2.

f ɛ t2 t′2 t′′2

t1 c c (1� ɛ)c+ ɛℓ∗
t′1 c c (1� ɛ)c+ ɛℓ∗
t′′1 (1� ɛ)c+ ɛℓ∗ (1� ɛ)c+ ɛℓ∗ b
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The previous two claims demonstrate that IRM can be strictly stronger than weak IRM and the former condition 
is not necessary for interim rationalizable implementation. The next claim establishes that IRM can be strictly stron-
ger than BM. Because f ɛ ∈ F and it is not constant, it follows from Claim 1 that f ɛ does not satisfy IRM for all 
ɛ ∈ (0, 1). However, now we show that if πi(t′′i )[t′′�i] � 1 for all i ∈ I, then f ɛ satisfies BM.

Claim 3. Suppose πi(t′′i )[t′′�i] � 1 for all i ∈ I. The SCF f ɛ satisfies BM for all ɛ ∈ (0, 1).

Proof. Consider any single-valued deception βs such that βs is unacceptable for f ɛ. As βs is unacceptable, there 
must exist j ∈ I such that at least one of the following is true: βs

j (t′′j )≠ t′′j , βs
j (tj) � t′′j or βs

j (t′j ) � t′′j .
First, suppose βs

j (t′′j )≠ t′′j for some j ∈ I. There are three possible subcases to consider here: 
Subcase 1. Suppose βs

j (t′′j )≠ t′′j and βs
�j(t′′�j) � t′′�j. Then f ɛ(βs

j (t′′j ),β
s
�j(t′′�j)) � (1� ɛ)c+ ɛℓ

∗. Let y : T�j→ ∆(A) be 
such that y(t�j) � y(t′�j) � (1� ɛ)c+ ɛℓ

∗ and y(t′′�j) � b. Then

Uj(y ◦ βs
�j |t

′′
j ) >Uj(f ɛ ◦ βs | t′′j ), 

whereas Uj(f ɛ | t̂j) ≥Uj(y | t̂j) for all t̂ j ∈ Tj.
Subcase 2. Suppose βs

j (t′′j )≠ t′′j and βs
�j(t′′�j) � t�j. Then f ɛ(βs

j (t′′j ),β
s
�j(t′′�j)) � c. Let y : T�j→ ∆(A) be such that 

y(t�j) � y(t′′�j) � b and y(t′�j) � a=5+ 4d=5. Then

Uj(y ◦ βs
�j |t

′′
j ) >Uj(f ɛ ◦ βs | t′′j ), 

whereas Uj(f ɛ | t̂j) ≥Uj(y | t̂j) for all t̂ j ∈ Tj.
Subcase 3. Suppose βs

j (t′′j )≠ t′′j and βs
�j(t′′�j) � t′�j. Then f ɛ(βs

j (t′′j ),β
s
�j(t′′�j)) � c. Let y : T�j→ ∆(A) be such that 

y(t′�j) � y(t′′�j) � b and y(t�j) � a=5+ 4d=5. Then

Uj(y ◦ βs
�j |t

′′
j ) >Uj(f ɛ ◦ βs | t′′j ), 

whereas Uj(f ɛ | t̂j) ≥Uj(y | t̂j) for all t̂ j ∈ Tj.
Second, suppose βs

i (t′′i ) � t′′i for all i ∈ I but βs
j (tj) � t′′j for some j ∈ I. There are two possible subcases to consider 

here: 
Subcase 1. Suppose both βs

�j(t�j) and βs
�j(t′�j) are in {t�j, t′�j}. Then f ɛ(βs

j (tj),βs
�j(t�j)) � f ɛ(βs

j (tj),βs
�j(t′�j)) �

(1� ɛ)c+ ɛℓ∗. Let y : T�j→ ∆(A) be such that y(t̂�j) � c for all t̂�j ∈ T�j. Then

Uj(y ◦ βs
�j |tj) >Uj(f ɛ ◦ βs | tj), 

whereas Uj(f ɛ | t̂j) ≥Uj(y | t̂j) for all t̂ j ∈ Tj.
Subcase 2. Suppose there exists t̂�j ∈ {t�j, t′�j} such that βs

�j(t̂�j) � t′′�j. Without loss of generality, suppose 
t̂�j � t�j. Then f ɛ(βs

j (tj),βs
�j(t�j)) � b and f ɛ(βs

j (tj),βs
�j(t′�j)) ∈ {b, (1� ɛ)c+ ɛℓ∗}. Let y : T�j→ ∆(A) be such that y(t�j) �

y(t′�j) � c and y(t′′�j) � a. Then
Uj(y ◦ βs

�j |tj) >Uj(f ɛ ◦ βs | tj), 

whereas Uj(f ɛ | t̂j) ≥Uj(y | t̂j) for all t̂ j ∈ Tj.
Finally, suppose βs

i (t′′i ) � t′′i for all i ∈ I but βs
j (t′j ) � t′′j for some j ∈ I. There are two possible subcases to consider 

here: 
Subcase 1. Suppose both βs

�j(t�j) and βs
�j(t′�j) are in {t�j, t′�j}. Then f ɛ(βs

j (t′j ),β
s
�j(t�j)) � f ɛ(βs

j (t′j ),β
s
�j(t′�j)) � (1� ɛ)c 

+ɛℓ∗. Let y : T�j→ ∆(A) be such that y(t̂�j) � c for all t̂�j ∈ T�j. Then

Uj(y ◦ βs
�j |t

′
j ) >Uj(f ɛ ◦ βs | t′j ), 

whereas Uj(f ɛ | t̂j) ≥Uj(y | t̂j) for all t̂ j ∈ Tj.
Subcase 2. Suppose there exists t̂�j ∈ {t�j, t′�j} such that βs

�j(t̂�j) � t′′�j. Without loss of generality, suppose 
t̂�j � t�j. Then f ɛ(βs

j (t′j ),β
s
�j(t�j)) � b and f ɛ(βs

j (t′j ),β
s
�j(t′�j)) ∈ {b, (1� ɛ)c+ ɛℓ∗}. Let y : T�j→ ∆(A) be such that y(t�j)

� y(t′�j) � c and y(t′′�j) � e. Then

Uj(y ◦ βs
�j |t

′
j ) >Uj(f ɛ ◦ βs | t′j ), 

whereas Uj(f ɛ | t̂j) ≥Uj(y | t̂j) for all t̂ j ∈ Tj.
It follows from the previous arguments that f ɛ satisfies BM. w
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Thus, as a consequence of the previous claims, when πi(t′′i )[t′′�i] � 1 for all i ∈ I, the SCF f ɛ satisfies both BM and 
weak IRM but not IRM.

In the final claim, we show that, when πi(t′′i )[t�i] � πi(t′′i )[t′′�i] � 1=2 for all i ∈ I, the SCF f ɛ violates BM. However, 
as f ɛ satisfies weak IRM under those conditions, the claim demonstrates that weak IRM can be strictly weaker than 
BM too and that there are SCFs that are implementable in interim rationalizable strategies but not in Bayesian 
equilibrium.

Claim 4. Suppose πi(t′′i )[t′�i] � πi(t′′i )[t′′�i] � 1=2 for all i ∈ I. The SCF f ɛ violates BM for all ɛ ∈ (0, 1).

Proof. Consider the single-valued deception βs such that βs
i (ti) � β

s
i (t′′i ) � ti and βs

i (t′i ) � t′i for all i ∈ I. Then f ◦
βs(t̂) � c for all t̂ ∈ T. Hence, βs is unacceptable for f ɛ.

Suppose, by way of contradiction, that the SCF f ɛ satisfies BM. Then there exist i ∈ I, t̃i ∈ Ti, and y : T�i→ ∆(A)
such that

Ui(y ◦ βs
�i | t̃ i) >Ui(f ɛ ◦ βs | t̃i), 

whereas Ui(f ɛ | t̂i) ≥Ui(y | t̂i) for all t̂ i ∈ Ti.
It cannot be the case that t̃i is either equal to ti or t′i . For instance, suppose t̃i � ti. Then Ui(y ◦ βs

�i | ti) �Ui(y |ti)

and Ui(f ɛ ◦ βs |ti) �Ui(f ɛ |ti). Hence, we cannot obtain the preference reversal required by BM. The same argu-
ment applies to the case when t̃i � t′i .

Therefore, suppose t̃i � t′′i . Then Ui(y ◦ βs
�i |t′′i ) >Ui(f ɛ ◦ βs |t′′i ), Ui(f ɛ | ti) ≥Ui(y |ti), and Ui(f ɛ |t′i ) ≥Ui(y |t′i ) are 

equivalent to, respectively,

0:5ui(y(t�i), t′′i ) + 0:5ui(y(t′�i), t′′i ) >
3
4 ;

1
2 ≥ 0:5ui(y(t�i), ti) + 0:5ui(y(t′�i), ti); and

1
2 ≥ 0:5ui(y(t�i), t′i ) + 0:5ui(y(t′�i), t′i ):

However, as mentioned in the proof of Claim 1, it is impossible to simultaneously satisfy the three inequalities, a 
contradiction. w

We compare the results in this class of examples with Oury and Tercieux [33], which proves that IRM is necessary for 
strict continuous (partial) implementation in Bayesian equilibrium. Our examples show that, although the SCF f ɛ is 
interim rationalizable implementable, it cannot be strictly continuously implemented in Bayesian equilibrium because it 
fails IRM. Thus, any mechanism that implements f ɛ in interim rationalizable strategies must exhibit either of the follow-
ing two types of failures of strict continuous implementation: either nonexistence of strict Bayesian equilibria, or the lack 
of a “continuous” extension of strict Bayesian equilibria to nearby environments where a continuous extension is defined 
as a continuous mapping from the universal type space endowed with the product topology to the space of lotteries over 
outcomes endowed with the standard Euclidean metric. That is, even if there exist strict Bayesian equilibria in the imple-
menting mechanism, any strict Bayesian equilibrium in the original incomplete information environment cannot be 
extended to a nearby incomplete information environment as a Bayesian equilibrium in a “continuous” manner.

7.1.2. Interior SCFs. By the interior of ∆(A), we mean the set of all lotteries that assign a positive probability to all 
a ∈ A. We now show that for SCFs whose range is in the interior of ∆(A), both COND-1 and weak NWR are satisfied 
under mild conditions, that is, the environment satisfies “no-total-indifference” and the SCF is “responsive only 
when preferences differ.”

The environment satisfies no-total-indifference (NTI) if, for all i ∈ I and ti ∈ Ti, there exist alternatives a, a′ ∈ A such that

ui(a, ti)≠ ui(a′, ti):

For private-values environments, the previous definition is equivalent to the no-total-indifference condition intro-
duced in Serrano and Vohra [40].

The SCF f is responsive only when preferences differ if, for any i ∈ I and ti, t′i ∈ Ti, if ti ¿
f
i t′i , it follows that ti and t′i have 

different preferences on ∆(A); that is, ui(·, t′i ) is not a positive affine transformation of ui(·, ti). This condition is 
slightly weaker than the type diversity condition in Serrano and Vohra [40], as the latter requires every pair of dis-
tinct types to have different preferences on ∆(A).
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Proposition 2. In a private values environment satisfying NTI, if the SCF f is responsive only when preferences differ and 
f(t) is in the interior of ∆(A) for all t ∈ T, then f satisfies weak NWR and COND-1.

We then obtain the following as a corollary of the above proposition and Corollary 2.

Corollary 3. In a private values environment satisfying NTI, for any SCF f, if there exists an SCF f̂ ≈ f such that f̂ satisfies 
SIRBIC, is responsive only when preferences differ, and f̂ (t) is in the interior of ∆(A) for all t ∈ T, then f is implementable in 
interim rationalizable strategies.

We now use this result to show that, in a model of bilateral trading, any SCF that satisfies BIC is “virtually” 
implementable in interim rationalizable strategies:

Example 3 (Bilateral Trading). Consider the model of bilateral trading from Myerson and Satterthwaite [29] except 
for the following modifications: We assume a discrete type space and monetary transfers that are rational numbers, 
allowing for correlated beliefs.

Formally, we consider a simple trading problem with two individuals, a seller, who has a single indivisible object 
to sell, and a buyer. Both attempt to agree on an exchange of the object for money. The buyer’s type is equal to the 
value v whereas the seller’s type is equal to the cost c. The buyer’s value and the seller’s cost are elements of a dis-
crete grid on [0, 1]. (This assumption makes the set of types finite.) The traders’ beliefs are derived from a common 
prior π�such that π(v, c) > 0 for all (v, c). Then πb(v) denotes the belief of type v of the buyer and πs(c) denotes the 
belief of type c of the seller.

Let one (zero) denote the event that the good is traded (not traded). We restrict the transfers to be rational 
numbers. Thus, A � {(x, y) : x ∈ {0, 1} and y ∈Q}. Note that A is countable.

The buyer’s utility is ub((x, y), v) � vx� y and the seller’s utility is us((x, y), c) � y� cx. Given these utility func-
tions, the environment satisfies private values and NTI.

In this model, every SCF is responsive only when preferences differ. This is because the environment satisfies 
the slightly stronger condition of type diversity (Serrano and Vohra [40]), that is, ti ≠ t′i implies that ti and t′i have 
different preferences on ∆(A).

Consider any SCF f that satisfies BIC. We now argue that f is virtually implementable in interim rationalizable 
strategies, that is, for all ɛ > 0, we can find an f ɛ such that sup{ | f (v, c)[a]� f ɛ(v, c)[a] | : a ∈ A} < ɛ, for all (v, c), and 
f ɛ is implementable in interim rationalizable strategies. Here f (v, c)[a] denotes the probability that outcome a is 
realized under f(v, c).

The environment satisfies type diversity and NTI. Pick any i ∈ I and ti, t′i ∈ Ti such that ti ≠ t′i . Then, as argued 
in the proof of Proposition 2, there exist lotteries ℓ′, ℓ′′ ∈ ∆(A) such that ℓ′ and ℓ′′ have finite supports and satisfy 
(A.10). Applying the lemma in Abreu and Matsushima [1], we get that for each i ∈ I, there exists ℓi : Ti→ ∆(A)
such that for all ti ≠ t′i ,

ui(ℓi(ti), ti) > ui(ℓi(t′i ), ti):

Pick any ɛ ∈ (0, 1) and let f ɛ(v, c) � (1� ɛ)f (v, c) + ɛ=3(ℓb(v) + ℓs(c) + ℓ), for all (v, c), where ℓ�is any lottery that 
assigns a positive probability to all alternatives in A. Then f ɛ satisfies SIRBIC, indeed, it satisfies strict BIC, is 
responsive only when preferences differ, and f ɛ(v, c) is in the interior of ∆(A) for all (v, c). Hence, it follows from 
Corollary 3 that f ɛ is implementable in interim rationalizable strategies. Thus, in the bilateral trading model, any 
SCF that satisfies BIC is virtually implementable in interim rationalizable strategies.

Corollary 1 of Serrano and Vohra [40] implies that, in the bilateral trading model, any SCF that satisfies BIC is 
virtually Bayesian implementable. Thus, we show that virtual implementation in interim rationalizable strategies 
is not less permissive in this setting.

7.1.3. Strategy-Proof SCFs. Strategy-proof SCFs have been extensively studied in the context of private values 
environments. The reader is referred to Barberà [3] for a survey on this literature. The SCF f is strategy proof if, for all 
i ∈ I, ti, t′i ∈ Ti, and t�i ∈ T�i,

ui(f (ti, t�i), ti) ≥ ui(f (t′i , t�i), ti):

The strategy proofness of f requires that telling their true type constitutes a dominant-strategy equilibrium in the 
direct mechanism associated with f. We now provide a sufficiency result for the implementation of strategy-proof 
SCFs in interim rationalizable strategies. We need one more definition before we present the result.

The SCF f satisfies weak nonbossiness if, for all i ∈ I and ti, t′i ∈ Ti, if ti ¿
f
i t′i , then there exists t′�i ∈ T�i such that 

ui(f (ti, t′�i), ti)≠ ui(f (t′i , t′�i), ti). See Thomson [44] for an extensive discussion on various versions of nonbossiness 
used in the literature.
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Saijo et al. [38] and Mizukami and Wakayama [28] show that strategy-proofness and weak nonbossiness charac-
terize SCFs that are dominant-strategy implementable by the associated direct mechanisms. However, dominant- 
strategy implementation does not rule out the possibility of “bad” equilibria or “bad” rationalizable strategies in 
the mechanism. The next result tells us that any such SCF that also satisfies COND-1 and weak NWR is implemen-
table in interim rationalizable strategies in any environment where beliefs are strictly in the interior.

Proposition 3. Suppose that in a private values environment, we have πi(ti)[t�i] > 0 for all t ∈ T and i ∈ I.18 If the SCF f 
satisfies strategy-proofness, weak nonbossiness, COND-1, and weak NWR, then f is implementable in interim rationalizable 
strategies.

Proof. Because f satisfies strategy proofness, it satisfies BIC. We first claim that f also satisfies SIRBIC. Pick any i ∈
I and ti, t′i ∈ Ti such that ti ¿

f
i t′i . Then weak nonbossiness implies that there exists t′�i ∈ T�i such that ui(f (ti, t′�i), ti)

≠ ui(f (t′i , t′�i), ti). By strategy proofness of f, it follows that ui(f (ti, t′�i), ti) > ui(f (t′i , t′�i), ti). Since πi(ti)[t′�i] > 0 for 
any t′�i ∈ T�i, we conclude that f satisfies SIRBIC.

The result follows because f satisfies SIRBIC, COND-1, and weak NWR. w

We now present two applications of the foregoing result.

Example 4 (Pure-Exchange Economy). There are a finite number of goods, L. (We use L to denote both the set and 
number of goods.) Each individual i ∈ I has an initial endowment ei, where el

i denotes the endowment of good l. 
We assume that each el

i is a nonnegative rational number with 
P

l∈Lel
i > 0, which means that individual i is 

endowed with a positive quantity of at least one good ℓ. The set of alternatives A is equal to (a1, : : : , an) ∈ RLn
+

such that each al
i is a rational number and 

P
i∈Ial

i �
P

i∈Iel
i for all l ∈ L.

Each agent cares about only her own consumption. That is, for all i ∈ I, ti ∈ Ti, and a, â ∈ A, if ai � âi, then 
ui(a, ti) � ui(â, ti). We assume that the agents’ utility functions are strictly increasing in the quantity of each good. 
That is, for all i ∈ I, ti ∈ Ti, and a, â ∈ A, if al

i ≥ âl
i for all ℓ ∈ L but ai ≠ âi, then ui(a, ti) > ui(â, ti).

Here we focus only on individually rational SCFs. The SCF f : T→ ∆(A) is individually rational if ui(f (t), ti) ≥

ui(e, ti) for all t ∈ T, ti ∈ Ti, and i ∈ I.
We confirm that any individually rational SCF f that satisfies strategy proofness and SIRBIC also satisfies 

COND-1 and weak NWR in our pure-exchange economy. Because f is individually rational, 
P

l∈Lel
i > 0, for all 

i ∈ I, and utility functions are strictly increasing in the quantity of each good, it must be that for all i ∈ I and t ∈ T, 
the allocation f(t) assigns a positive quantity of some good to individual i. Let a(i) denote the allocation where 
individual i obtains the total endowment of the economy. COND-1 follows from strategy proofness and SIRBIC 
because ui(a(i), ti) > ui(f (t′), ti) for all t′ ∈ T, ti ∈ Ti, and i ∈ I.19 Weak NWR follows because, for any i, j ∈ I with 
i ≠ j, we have that ui(f (t′), ti) > ui(a(j), ti) for all t′ ∈ T, ti ∈ Ti, and i ∈ I.

It follows from Proposition 3 that in a pure-exchange economy, if πi(ti)[t�i] > 0, for all t ∈ T and i ∈ I, then any 
SCF f that satisfies strategy-proofness, weak nonbossiness, and individual rationality is implementable in 
interim rationalizable strategies. (Recall from the proof of Proposition 3 that strategy proofness and weak non-
bossiness imply SIRBIC when beliefs are in the interior.) For instance, the SCFs defined by the fixed-proportion 
anonymous trading are strategy proof, weakly nonbossy, and individually rational (Barberà and Jackson [4]). 
Hence, these SCFs are also implementable in interim rationalizable strategies whenever beliefs are strictly in the 
interior.

Example 5 (Market with Indivisible Goods). Each individual owns an indivisible good (e.g., a house). Let e �
(e1, : : : , en) denote the initial endowment, where ei denotes the good owned by individual i. An allocation a is a per-
mutation of the n goods over the n individuals. Thus, an allocation results in each individual receiving exactly one 
of the n indivisible goods. Let ai denote the good assigned to individual i in the allocation a. We let A be the set of all 
allocations. This is an important class of economies, which has been investigated by many researchers since it was 
introduced by Shapley and Scarf [42].

Each agent cares about only the good assigned to her. That is, for all i ∈ I, ti ∈ Ti, and allocations a and â, if 
ai � âi, then ui(a, ti) � ui(â, ti). We assume that the agents’ have strict preferences over the goods. That is, for all 
i ∈ I, ti ∈ Ti, and allocations a and â, if ai ≠ âi, then ui(a, ti)≠ ui(â, ti).

For each t ∈ T, the core of this economy is nonempty, and it consists of a single allocation (Roth and Postle-
waite [37]). Let f c be the SCF such that f c(t) is the core allocation for all t ∈ T. Svensson [43] shows that f c is strat-
egy proof, weakly nonbossy, and individually rational (i.e., ui(f c(t), ti) ≥ ui(e, ti) for all t ∈ T and i ∈ I).

Now suppose the designer has the ability to reward or punish any one of the agents (e.g., through monetary trans-
fers). Specifically, for any allocation a ∈A, let a(i) (a(i)) denote the alternative in which every agent j ∈ I receives the 
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same good aj but agent i receives a reward (punishment) as well. The set of alternatives is defined as A � ∪a∈A, i∈I 
{a, a(i), a(i)}.

We now expand the agent’s preferences to the set of alternatives A by assuming that each agent cares about 
the good assigned to herself and whether she is rewarded or punished. Thus, for all a ∈A, ti ∈ Ti, and i ∈ I,

ui(a(i), ti) > ui(a, ti) > ui(a(i), ti)

and j ≠ i⇒ ui(a(j), ti) � ui(a, ti) � ui(a(j), ti):

Finally, the rewards and punishments are sufficiently small so that, for any a, a′ ∈A, if ui(a, ti) > ui(a′, ti), then 
ui(a, ti) > ui(a(i), ti) > ui(a′(i), ti) > ui(a′, ti).

When the set of alternatives is expanded into A and the beliefs are strictly in the interior, the SCF f c satisfies 
COND-1 and weak NWR. COND-1 can be shown using strategy proofness, SIRBIC (itself a consequence of strat-
egy proofness and weak nonbossiness of f c, as shown in the proof of Proposition 3), and the following: pick any 
i ∈ I and ti ∈ Ti. Let a∗ti 

be type ti’s most-preferred allocation. Then ui(a∗ti
(i), ti) > ui(f c(t′), ti) for all t′ ∈ T. (See the 

argument in Endnote 19.) Let f c(t′)(i) denote the alternative in which every agent j ∈ I receives the same good as 
in f c(t′) and agent i receives the punishment. Then, weak NWR follows because ui(f c(t′), ti) > ui(f c(t′)(i), ti) for all 
t′ ∈ T, ti ∈ Ti, and i ∈ I.

It follows from Proposition 3 that in a market with indivisible goods, if πi(ti)[t�i] > 0, for all t ∈ T and i ∈ I, and 
the designer has the ability to reward or punish any one of the agents, then the SCF f c that selects the core alloca-
tion in each state is implementable in interim rationalizable strategies.

7.2. Beyond Private Values Environments
In this section, we argue that the implications in Example 2 are extended from private values to interdependent 
values environments. We base our arguments on the following example, which is built on the example presented in 
Kunimoto and Saran [23].

Example 6. There are two players i ∈ {1, 2}. Player 1 has three types: T1 � {t1, t′1, t′′1 }, and player 2 has two types: 
T2 � {t2, t′2}. The beliefs of the players are as follows:

π1(t1)[t2] � 0:99, π1(t′1)[t2] � π1(t′′1 )[t2] � 0 

and

π2(t2)[t1] � π2(t2)[t′1] � π2(t2)[t′′1 ] �
1
3 , π2(t′2)[t

′
1] � 1:

Notice that T∗ � T because for every state, there is a type of a player who puts positive probability on that state. 
Thus, we do not need to discuss equivalent SCFs in this example.

There are six pure alternatives: A � {a, b, c, d, z, z′}. Tables 3–8 list the payoffs of the two players:
The SCF f selects the alternative that maximizes the aggregate payoff in each state (Table 9).

Table 3. The payoff profiles in each type profile 
when alternative a is chosen in Example 6.

a t2 t′2

t1 4, 4 4, 0
t′1 0, 0 4, 1
t′′1 1, 1 4, 0

Table 4. The payoff profiles in each type profile 
when alternative b is chosen in Example 6.

b t2 t′2

t1 0, 0 3, 3
t′1 1, 1 2, 0
t′′1 0, 0 2, 1

Kunimoto, Saran, and Serrano: Interim Rationalizable Implementation of Functions 
Mathematics of Operations Research, Articles in Advance, pp. 1–34, © 2023 INFORMS 15 



Here we omit the derivation in all the claims we establish later.20 We emphasize that the analysis based on this 
example is robust to small perturbations of the underlying beliefs and utility functions, as all the relevant condi-
tions are expressed in terms of a finite number of strict inequalities.

Claim 5. The SCF f violates BM.
Because we know from Bergemann and Morris [7] that IRM implies BM, we also state the following.

Claim 6. The SCF f violates IRM.
In contrast, we have the following.

Claim 7. The SCF f satisfies weak IRM.

Claim 8. The SCF f satisfies weak NWR.
These two claims lead to the following.

Claim 9. The SCF f is implementable in interim rationalizable strategies by the canonical mechanism we used in 
Theorem 2.

Furthermore, there are no mixed Bayesian equilibria in that canonical mechanism.

Claim 10. There are no mixed Bayesian equilibria in the canonical mechanism implementing the SCF f used in 
Theorem 2.

To illustrate the important foregoing claim, we consider the following strategy profile σ�where σi(ti) � (m1
i , m2

i , 
m3

i , m4
i ) such that 

item A m1
i [i] � ti (i.e., each player announces her own type truthfully)

item B m1
1[2] � t2 and m1

2[1] � t1 (i.e., player 1 always announces t2 as player 2’s type and player 2 always 
announces t1 as player 1’s type in the first component of the message)

item C m2
1 �m2

2 � 1 (i.e., each player announces one in the second component of the message)
By Step 1 of the proof of Theorem 2, every rationalizable strategy profile induces Rule 1. By construction, the 

strategy profile σ�induces Rule 1. In Step 3 of the proof of Theorem 2, each such σi(ti) is rationalizable. However, 
we argue that the strategy profile σ�does not constitute a Bayesian equilibrium. If this were true, either player 1 
of some type or player 2 of some type has a profitable deviation that triggers Rule 2-1. We indeed show that type 
t′1 of player 1 has a profitable deviation that triggers Rule 2-1.

Player 1 of type t1 receives the following payoff under σ:

U1(f | t1) � 0:99 × 4 + 0:01 × 3 � 3:99:

Define y : T2→ ∆(A) such that y(t2) � y(t′2) � 0:99 × a+ 0:01 × b. Then, we obtain

U1(y | t1) � 0:99U1(a |t1) + 0:01U1(b | t1) � 0:99 × 4+ 0:01 × 0:03 � 3:9603 < 3:99, 

where U1(a | t1) � 4 and U1(b |t1) � 0:03. This implies that y ∈ Y∗1[t1, f ]. Next, we compute

U1(y |t′1) � 0:99U1(a | t′1) + 0:01U1(b |t′1) � 0:99 × 4+ 0:01 × 2 � 3:98 > 3 �U1(f |t′1), 

Table 5. The payoff profiles in each type profile 
when alternative c is chosen in Example 6.

c t2 t′2

t1 0, 0 3, 1
t′1 3, 3 3, 0
t′′1 3, 3 3, 0

Table 6. The payoff profiles in each type profile 
when alternative d is chosen in Example 6.

d t2 t′2

t1 3, 4 2, 0
t′1 0, 3 3, 3
t′′1 0, 3 3, 3
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where U1(a |t′1) � 4 and U1(b |t′1) � 2. Define m̂1 � (m̂1
1, m̂2

1, m̂3
1, m̂4

1) as being the same as σ1(t′1) except that we set 
m3

1[t1] � y and m̂2
1 as an integer high enough. Then, m̂1 becomes type t′1’s profitable deviation that triggers Rule 2-1 

where player 2 announces m1
2[1] � t1. This shows that σ�is not an equilibrium.

8. Discussion of Other Issues
8.1. Well-Behaved Mechanisms
We say that a mechanism Γ � ((M)i∈I, g) is well behaved if every type ti of every agent i has a best response to any conjec-
ture λi ∈ ∆(T�i ×M�i) such that margT�i

λi � πi(ti).21 Our canonical mechanism proposed in Theorem 2, as many other 
implementing mechanisms in the literature, fail to satisfy this definition. In contrast, in their analysis of robust imple-
mentation, both Bergemann and Morris [9] and Ollár and Penta [30] define each Ti as a compact set of payoff types on 
the real line and focus on the associated direct mechanisms, which are well-behaved according to our definition.22

In finite environments such as ours, finite mechanisms are to be anticipated. Finite mechanisms are clearly well 
behaved. However, Dutta and Sen [18] construct a finite environment in which the necessity of infinite mechanisms 
is established even for pure-strategy Bayesian implementation. This implies that the restriction to finite mecha-
nisms is not as innocuous as one might think, and this is why we do not impose it in our search for general results 
in rationalizable implementation, even in finite-type settings.

Bergemann and Morris [7] show that, if an SCF f is implementable in interim rationalizable strategies by a finite 
mechanism, it satisfies IRM. Because IRM implies BM (Bergemann and Morris [7]), it follows that, if an SCF f is 
implementable in interim rationalizable strategies by a finite mechanism, it satisfies BM. Indeed, if the implement-
ing mechanism is well behaved, then, because of the single-valuedness of the SCF, any selection of the rationaliz-
able strategies correspondence forms a pure-strategy Bayesian equilibrium in the mechanism. Therefore, if an SCF 
is implementable in interim rationalizable strategies by a well-behaved mechanism, it is also implemented in Bayes-
ian equilibrium by the same mechanism. Thus, within the class of well-behaved mechanisms, interim rationalizable 
implementation could be more restrictive than Bayesian implementation. This boils down to the difference between 
BM and IRM, because, as we argue in the next section, IRM is necessary for interim rationalizable implementation 
by well-behaved mechanisms. The difference between these two properties is well illustrated in Example 2, where 
the SCF f ɛ violates IRM but satisfies BM in some circumstances.

For complete information environments, Chen et al. [14] characterizes rationalizable implementation by means 
of finite mechanisms when lotteries and transfers are allowed. The characterization is in terms of Maskin monoto-
nicity*, a strengthening of Maskin monotonicity.23 Chen et al. [15] also show, in the same environments, that 
Maskin monotonicity is necessary and sufficient for Nash implementation by finite mechanisms, thereby identify-
ing a class of domains for which rationalizable implementation is more restrictive than Nash implementation. How-
ever, this result does not stand if one performs robust implementation: as shown in Kunimoto and Saran [23], using 
finite mechanisms, robust implementation in rationalizable strategies and in interim equilibria are equivalent.

8.2. Mechanisms with the Best Response Property
Bergemann and Morris [7] defines a class of (possibly countably infinite) mechanisms satisfying the best response 
property, which, assuming SΓ(T) is nonempty valued, includes well-behaved mechanisms as a special case. A mech-
anism Γ � ((Mi)i∈I, g) satisfies the best response property if, for each agent i ∈ I, there exists νi : T�i→ ∆(M�i) such that 

Table 7. The payoff profiles in each type profile 
when alternative z is chosen in Example 6.

z t2 t′2

t1 4, 1 2, 0
t′1 2, 2 5, 0
t′′1 2, 2 2, 0

Table 8. The payoff profiles in each type profile 
when alternative z′ is chosen in Example 6.

z′ t2 t′2

t1 4, 0 4, 1
t′1 2, 0 2, 2
t′′1 2, 0 5, 0
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νi(t�i)[m�i] > 0⇒m�i ∈ SΓ(T)�i (t�i) and for all ̃ti ∈ Ti,

arg max
mi∈Mi

X

t�i,m�i

πi(t̃i)[t�i]νi(t�i)[m�i]ui(g(mi, m�i), (t̃i, t�i))≠ ∅:

Note that νi has to be defined independently of ̃ti.
Bergemann and Morris [7] shows that IRM is necessary for implementation in interim rationalizable strategies by 

a mechanism that satisfies the best response property. In its Proposition 5, Bergemann and Morris [7] claims that 
three conditions (BIC, IRM, and no total indifference) are sufficient for implementation in interim rationalizable strat-
egies.24 However, we are unable to replicate this proof. Specifically, we believe that the no total indifference condi-
tion is too weak to prove the claim.

If we strengthen no total indifference to the no-worst-rule (NWR) condition (Kunimoto [22]), then the following 
result is true.25

Theorem 3. For any SCF f, if there exists an SCF f̂ ≈ f such that f̂ satisfies IRM and the NWR condition, then the SCF f is 
implementable in interim rationalizable strategies by a mechanism that has a Bayesian equilibrium, and hence satisfies the 
best response property.26

Thus, IRM is necessary and almost sufficient for implementation in interim rationalizable strategies by a mecha-
nism satisfying the best response property. Because IRM implies BM and the best response property allows for 
countably infinite mechanisms with canonical type constructions, we might be tempted to conclude that implemen-
tation in interim rationalizable strategies is less permissive than Bayesian implementation. The relevant examples 
in Section 7 show that this conclusion is wrong.

The restriction to mechanisms satisfying the best response property is not innocuous because, for most SCFs, imple-
mentation in interim rationalizable strategies by a mechanism satisfying the best response property implies that the 
SCF is Bayesian implementable. To see this, pick any SCF f satisfying the NWR condition. If f is implementable in 
interim rationalizable strategies by a mechanism satisfying the best response property, then it must satisfy IRM. How-
ever, then Theorem 3 implies that f is implementable in interim rationalizable strategies by a mechanism that has a 
Bayesian equilibrium, and thus this mechanism must implement f in Bayesian equilibria. If there are only two agents, 
one can actually prove a stronger result: If an SCF is implementable in interim rationalizable strategies by a mechanism 
satisfying the best response property, then the same mechanism must implement the SCF in Bayesian equilibrium. In 
contrast, if an SCF satisfies weak IRM but not IRM (as in several examples in Section 7), the SCF could be implemented 
in rationalizable strategies, but the implementing mechanism cannot satisfy the best response property (thus, it cannot 
be finite or well behaved) because IRM is necessary for implementation by mechanisms satisfying that property.

8.3. Double Implementation
The foregoing discussion may lead to the question of double implementation in Bayesian equilibrium and rational-
izable strategies. Let BΓ(T) be the set of (possibly mixed) Bayesian equilibria in the game Γ(T). That is,

BΓ(T) � {σ ∈ Σ |σ constitutes a Bayesian equilibrium of the game Γ(T)}, 

where Σ � Σ1 ×⋯× Σn and Σi � {σi |σi : Ti→ ∆(Mi)}. Recall that any message profile that is played by some types in a 
Bayesian equilibrium is rationalizable for those types. This leads to the following definition of double implementation.

Definition 12. A mechanism Γ�doubly implements an SCF f in Bayesian equilibria and rationalizable strategies if 
there exists an SCF f̂ ≈ f such that the following two conditions hold: 

1. Nonemptiness: BΓ(T) ≠ ∅.
2. Uniqueness: for any t ∈ T, m ∈ SΓ(T)(t) implies g(m) � f̂ (t).
We now argue that IRM is necessary and almost sufficient for double implementation in Bayesian equilibria and 

rationalizable strategies. If a mechanism doubly implements an SCF in Bayesian equilibria and rationalizable strate-
gies, then the mechanism must satisfy the best response property (due to the existence of Bayesian equilibrium). 

Table 9. The description of the SCF f in Example 6.

f t2 t′2

t1 a b
t′1 c d
t′′1 c d
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Therefore, as per the necessity result of Bergemann and Morris [7], IRM must be necessary for double implementation. 
Moreover, Theorem 3 implies that IRM and the NWR condition are sufficient conditions for double implementation.

To get additional implications, we revisit Example 2. In that example, we show that there are some circumstances 
in which the SCF f ɛ satisfies weak IRM and BM but violates IRM (Claim 3). This means that, in these circumstances, 
f ɛ cannot be doubly implemented by a single mechanism in both Bayesian equilibrium and rationalizable strategies. 
There could, however, exist necessarily distinct mechanisms that achieve separate implementations of f ɛ in interim 
rationalizable strategies and in Bayesian equilibrium.

8.4. Responsive SCFs
An SCF f is responsive if, for all i ∈ I and ti, t′i ∈ Ti: ti ≠ t′i ⇒ ti ¿

f
i t′i . Otherwise, f is nonresponsive. Then, for a responsive 

SCF, we can establish that weak IRM and IRM are identical conditions.

Theorem 4. If the SCF f is responsive, then f satisfies IRM if and only if it satisfies weak IRM.

Proof. The key to the proof is based on the observation that SIRBIC and responsiveness imply strict BIC. Using 
the strict BIC of f, one can construct an SCF yɛ close to f with its desired property for f to satisfy IRM. The detailed 
proof is in Appendix A. w

Thus, within the class of responsive SCFs, there is no difference between IRM and weak IRM. This result helps us 
better delineate the boundary between Bayesian implementation and implementation in interim rationalizable 
strategies. Together with Theorem 3, the result implies that, within the class of responsive SCFs, there is essentially 
no gap between implementation in interim rationalizable strategies and Bayesian implementation.

Having said that, responsiveness could be a very restrictive requirement in many situations of interest to the 
designer. For example, the designer could be facing types who have the same ex post preferences but who differ in 
their beliefs. In such environments, any SCF that depends only on the agents’ ex post preferences will naturally be 
nonresponsive. Even in environments where different types have different ex post preferences, there are important 
examples where the SCF is nonresponsive, for example, the second-best trading rule in bilateral trading. Hence, the 
class of nonresponsive SCFs is nontrivial and of interest in its own right.

8.5. Complete Information Environments
Multiple examples in Section 7 show that rationalizable implementation could be more permissive than equilibrium 
implementation. Interestingly, this relation reverses when one considers the restricted class of complete information 
environments and single-valued rules, that is, equilibrium implementation of SCFs is more permissive than rational-
izable implementation. Bergemann et al. [11] shows that the necessary condition for rationalizable implementation is 
stronger than Maskin monotonicity, which is necessary for Nash implementation (Maskin [26]). The paper also gives 
an example of an SCF that is implementable in Nash equilibrium but not in rationalizable strategies. Xiong [45] pro-
vides a complete characterization of SCFs that are implementable in rationalizable strategies when there are at least 
three agents. For the sufficiency part of the argument, that paper constructs a mechanism in which the set of Nash 
equilibria is nonempty; therefore, the mechanism implements the SCF both in rationalizable strategies and Nash equi-
librium. However, we emphasize that the restriction to SCFs is not innocuous in these results. Indeed, as shown in 
Kunimoto and Serrano [24] and Jain [21], when it comes to social choice correspondences, rationalizable implementa-
tion is more permissive than equilibrium implementation in complete information environments.

9. Concluding Remarks
We propose weak interim rationalizable monotonicity (weak IRM) as the key condition that almost characterizes, that 
is, it is necessary and almost sufficient, interim rationalizable implementation of social choice functions. We also show 
by means of examples that IRM and Bayesian monotonicity are not necessary for interim rationalizable implementa-
tion. This suggests that interim rationalizable implementation can be more permissive than Bayesian implementation. 
In obtaining this conclusion, it is important to consider mechanisms that are well behaved from the viewpoint of ratio-
nalizability (sets of rationalizable messages are nonempty) but lack Bayesian equilibria. Such mechanisms, as it turns 
out, are essential in uncovering the exact constraints that rationalizable play imposes on the decentralization of single- 
valued rules. One of the main contributions of our paper is to construct an implementing mechanism that works 
regardless of whether it has equilibria or not. Because the question we posed was the identification of conditions for 
rationalizable implementation with no restrictions on the mechanisms uses, we view this as an improvement over the 
canonical constructions in the existing literature. We also plan to explore generalizations of the current study’s find-
ings to multivalued social choice rules, that is, social choice sets, in a separate paper.
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Appendix A. Omitted Proofs
In this appendix, we provide the proofs we omitted in the main body of the paper.

Proof of Theorem 1. Suppose the mechanism Γ � ((Mi)i∈I, g) implements f in rationalizable strategies. Then, there exists an SCF 
f̂ ≈ f such that 

1. Nonemptiness: SΓ(T)i (ti)≠ ∅ for all ti ∈ Ti and i ∈ I.
2. Uniqueness: for any t ∈ T, m ∈ SΓ(T)(t) implies g(m) � f̂ (t).
For any i ∈ I, ti ∈ Ti, we set mti

i ∈ SΓ(T)i (ti) (such a message mti
i exists by the nonemptyness requirement of implementability in 

interim rationalizable strategies). By the uniqueness requirement,

f̂ (t) � g(mt1
1 , : : : , mtn

n ), ∀t ∈ T:

We now argue that f̂ satisfies weak IRM.
As mti

i ∈ SΓ(T)i (ti), by the definition of rationalizable strategies, there exists a belief λti
i ∈ ∆(T�i ×M�i) such that margT�i

λti
i �

πi(ti); λti
i (t�i, m�i) > 0⇒m�i ∈ SΓ(T)�i (t�i); and

mti
i ∈ arg max

mi∈Mi

X

t�i,m�i

λti
i (t�i, m�i)ui(g(mi, m�i), (ti, t�i)):

For each t�i such that πi(ti)[t�i] > 0, define the conditional distribution σti
�i(t�i) ∈ ∆(M�i) as follows: for any m�i ∈M�i,

σti
�i(t�i)[m�i] �

λti
i (t�i, m�i)

πi(ti)[t�i]
:

For each t�i such that πi(ti)[t�i] � 0, let σti
�i(t�i) ∈ ∆(M�i) denote the degenerate distribution that puts probability one on mt�i

�i , 
that is, σti

�i(t�i)[mt�i
�i ] � 1. In either case, σti

�i(t�i)[m�i] > 0⇒m�i ∈ SΓ(T)�i (t�i). This is true by construction if t�i is such that 
πi(ti)[t�i] � 0, whereas if t�i is such that πi(ti)[t�i] > 0, then σti

�i(t�i)[m�i] > 0⇒ λti
i (t�i, m�i) > 0⇒m�i ∈ SΓ(T)�i (t�i).

Now for each mi ∈Mi, define ymi , ti : T�i→ ∆(A) as follows: for all t�i ∈ T�i,

ymi , ti (t�i) �
X

m�i∈M�i

σti
�i(t�i)[m�i]g(mi, m�i):

Because margT�i
λti

i � πi(ti), if πi(ti)[t�i] � 0, then λti
i (t�i, m�i) � 0 for all m�i ∈M�i. Hence,

X

t�i,m�i

λti
i (t�i, m�i)ui(g(mi, m�i), (ti, t�i))

�
X

t�i :πi(ti)[t�i]>0

X

m�i

λti
i (t�i, m�i)ui(g(mi, m�i), (ti, t�i))

({πi(ti)[t�i] � 0⇒ λti
i (t�i, m�i) � 0, ∀m�i)

�
X

t�i :πi(ti)[t�i]>0

X

m�i

πi(ti)[t�i]
λti

i (t�i, m�i)

πi(ti)[t�i]
ui(g(mi, m�i), (ti, t�i))

�
X

t�i :πi(ti)[t�i]>0
πi(ti)[t�i]

X

m�i

σti
�i(t�i)[m�i]ui(g(mi, m�i), (ti, t�i))

{σti
�i(t�i)[m�i] �

λti
i (t�i, m�i)

πi(ti)[t�i]

� �

�
X

t�i :πi(ti)[t�i]>0
πi(ti)[t�i]ui(ymi , ti (t�i), (ti, t�i))

({by linearity of expected utility ui(·, (ti, t�i)))

�Ui(ymi , ti | ti): (A.1) 

Define the set

Li(ti) � {ymi , ti : mi ∈Mi}:

Kunimoto, Saran, and Serrano: Interim Rationalizable Implementation of Functions 
20 Mathematics of Operations Research, Articles in Advance, pp. 1–34, © 2023 INFORMS 



Consider the message mti
i set forth in the beginning of the proof. Recall that mti

i ∈ SΓ(T)i (ti). By the requirement of implementation 
and the fact that σti

�i(t�i)[m�i] > 0⇒m�i ∈ SΓ(T)�i (t�i), we get

ymti
i , ti (t�i) � f̂ (ti, t�i), ∀t�i ∈ T�i:

Therefore, the following is true for all mi ∈Mi:

Ui(f̂ |ti) �Ui(ymti
i , ti | ti) �

X

t�i,m�i

λti
i (t�i, m�i)ui(g(mti

i , m�i), (ti, t�i))

≥
X

t�i,m�i

λti
i (t�i, m�i)ui(g(mi, m�i), (ti, t�i))

�Ui(ymi , ti | ti), (A.2) 

where the second and last equalities follow from (A.1), and the weak inequality follows because mti
i is a best response of type ti 

against the belief λti
i .

We now claim that if mi is such that ymi, ti (t�i)≠ f̂ (ti, t�i) for some t�i ∈ T�i, then it must be that

Ui(f̂ | ti) >Ui(ymi , ti | ti):

If the foregoing strict inequality were not true, then it would follow from (A.2) that

Ui(f̂ | ti) � Ui(ymi , ti | ti)

⇒
X

t�i, m�i

λti
i (t�i, m�i)ui(g(mti

i , m�i), (ti, t�i)) �
X

t�i, m�i

λti
i (t�i, m�i)ui(g(mi, m�i), (ti, t�i)):

Thus, mi would also be a best response of type ti against the belief λti and hence mi ∈ SΓ(T)i (ti). Then, by the requirement of imple-
mentation and the fact that σti

�i(t�i)[m�i] > 0⇒m�i ∈ SΓ(T)�i (t�i), we get

ymi , ti (t�i) � f̂ (ti, t�i), ∀t�i ∈ T�i, 

which is a contradiction. This establishes that the previous strict inequality holds.
We are now ready to prove that f̂ satisfies weak IRM. Consider any deception β. Define the message correspondence profile 

S � (S1, : : : , Sn) such that

Si(ti) �
[

t′i∈βi(ti)

SΓ(T)i (t
′
i ):

Suppose β�is unacceptable for f̂ but not weakly refutable. Then, by definition of weak refutability, for all i ∈ I, ti ∈ Ti, and t′i ∈
βi(ti) satisfying t′i ¿

f
i ti, there exists ψi ∈ ∆(T�i × T), which satisfies ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �

P
t̃∈Tψi(t�i, t̃) for 

all t�i ∈ T�i, such that for all SCFs f ′ that satisfy f ′(t̃i, ·) ∈ Yi[t̃ i, f ] for all t̃i ∈ Ti, we have
X

t�i, t̃

ψi(t�i, t̃)ui(f̂ (t′i , t̃�i), (ti, t�i)) ≥
X

t�i, t̃

ψi(t�i, t̃)ui(f ′(t̃), (ti, t�i)): (A.3) 

We first show that for any i ∈ I, ti ∈ Ti, and t′i ∈ βi(ti) satisfying t′i ~f̂
i ti, there exists ψi ∈ ∆(T�i × T), which satisfies ψi(t�i, t̃) > 0⇒ t̃�i ∈

β
�i(t�i) and πi(ti)[t�i] �

P
t̃∈Tψi(t�i, t̃) for all t�i ∈ T�i, such that (A.3) holds for all SCFs f ′ that satisfy f ′(t̃i, ·) ∈ Yi[t̃i, f ] for all t̃i ∈ Ti.

Pick any i ∈ I, ti ∈ Ti, and t′i ∈ βi(ti) satisfying t′i ~f̂
i ti. We set the belief ψi ∈ ∆(T�i × T) such that ψi(t�i, t̃) � 0 whenever either 

t̃ i ≠ ti or t̃�i ≠ t�i and ψi(t�i, t̃) � πi(ti)[t�i]whenever t̃i � ti and t̃�i � t�i. As t�i ∈ β�i(t�i), the belief ψi satisfies ψi(t�i, t̃) > 0⇒ t̃�i 

∈ β
�i(t�i). Moreover, πi(ti)[t�i] �

P
t̃∈Tψi(t�i, t̃) for all t�i ∈ T�i.

Consider any SCF f ′ such that f ′(t̃i, ·) ∈ Yi[t̃ i, f ] for all t̃i ∈ Ti. Then
X

t�i, t̃

ψi(t�i, t̃)ui(f̂ (t′i , t̃�i), (ti, t�i)) �
X

t�i, t̃

ψi(t�i, t̃)ui(f̂ (ti, t̃�i), (ti, t�i))

�Ui(f̂ | ti)

≥Ui(f ′(ti, ·) | ti)

�
X

t�i, t̃

ψi(t�i, t̃)ui(f ′(t̃), (ti, t�i)), 

where the first equality follows from the fact that t′i ~f̂
i ti, the second and last equalities follow from the construction of the belief 

ψi, and the inequality follows from the fact that f ′(ti, ·) ∈ Yi[ti, f̂ ].
Thus, if we combine the previous result with the hypothesis that β�is not weakly refutable, then we can hypothesize that for all 

i ∈ I, ti ∈ Ti, and t′i ∈ βi(ti), there exists ψi ∈ ∆(T�i × T), which satisfies ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �
P

t̃∈Tψi(t�i, t̃)
for all t�i ∈ T�i, such that (A.3) holds for all SCFs f ′ that satisfy f ′(t̃ i, ·) ∈ Yi[t̃ i, f ] for all t̃i ∈ Ti.27
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We next show that b(S) ≥ S. Pick any i ∈ I, ti ∈ Ti, and m′i ∈ Si(ti). We now construct a belief λΓi ∈ ∆(T�i ×M�i) satisfying 
λΓi (t�i, m�i) > 0 implies m�i ∈ S�i(t�i) and margT�i

λΓi � πi(ti) such that m′i is a best response for agent i of type ti against λΓi .
By the definition of S, we have m′i ∈ SΓ(T)i (t′i ) for some t′i ∈ βi(ti). Then, by our hypothesis, there exists ψi ∈ ∆(T�i × T), which 

satisfies ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �
P

t̃∈Tψi(t�i, t̃) for all t�i ∈ T�i, such that (A.3) holds for all SCFs f ′ that sat-
isfy f ′(t̃i, ·) ∈ Yi[t̃ i, f ] for all t̃i ∈ Ti.

Define the belief λΓi ∈ ∆(T�i ×M�i) as follows: for any (t�i, m�i),

λΓi (t�i, m�i) �
X

t̃

ψi (t�i, t̃) × σt̃ i
�i(t̃�i)[m�i]:

By construction, λΓi (t�i, m�i) > 0 implies that there exists ̃t ∈ T such that ψi(t�i, t̃) > 0 and σt̃ i
�i(t̃�i)[m�i] > 0. However, ψi(t�i, t̃) > 0 

implies ̃t�i ∈ β�i(t�i). Moreover, σt̃ i
�i(t̃�i)[m�i] > 0 implies m�i ∈ SΓ(T)�i (t̃�i); recall the definition of σt̃ i

�i(t̃�i)[m�i] from the beginning 
of this proof. Because ̃t�i ∈ β�i(t�i) and m�i ∈ SΓ(T)�i (t̃�i), it follows from the definition of S that m�i ∈ S�i(t�i).

Again, by construction, for all t�i ∈ T�i,

margT�i
λΓi (t�i) �

X

m�i

λΓi (t�i, m�i) �
X

t̃

ψi (t�i, t̃) � πi(ti)[t�i]:

Thus, margT�i
λΓi � πi(ti).

Pick any m̃i ∈Mi and consider ym̃i , t̃ i as defined earlier in the proof. Now define the SCF f m̃i such that f m̃i (t̃) � ym̃i , t̃ i (t̃�i) for all 
t̃ ∈ T. Recall that if m̃i is such that ym̃i , t̃ i (t�i)≠ f̂ (t̃i, t�i) for some t�i ∈ T�i, then it must be that Ui(f̂ | t̃i) >Ui(ym̃i , t̃ i | t̃i). Therefore, 
f m̃i (t̃ i, ·) � ym̃i, t̃ i ∈ Yi[t̃ i, f̂ ] for all t̃i ∈ Ti. Therefore, Inequality (A.3) holds for f m̃i .

By the requirement of implementability, we have

f̂ (t′i , t̃�i) �
X

m�i∈M�i

σt̃ i
�i(t̃�i)[m�i]g(m′i , m�i), ∀t̃�i ∈ T�i:

We are ready to show that m′i is a best response for agent i of type ti against λΓi . Consider any m̃i ∈Mi. Then
X

t�i,m�i

λΓi (t�i, m�i)ui(g(m′i , m�i), (ti, t�i))

�
X

t�i,m�i

 
X

t̃

ψi(t�i, t̃) × σt̃ i
�i(t̃�i)[m�i]ui(g(m′i , m�i), (ti, t�i))

!

by definition of λΓi
� �

�
X

t�i, t̃

ψi(t�i, t̃)

 
X

m�i

σt̃ i
�i(t̃�i)[m�i]ui(g(m′i , m�i), (ti, t�i))

!

�
X

t�i, t̃

ψi(t�i, t̃)ui

 
X

m�i

σt̃ i
�i(t̃�i)[m�i]g(m′i , m�i), (ti, t�i)

!

(by linearity of expected utility ui(·, (ti, t�i)))

�
X

t�i, t̃

ψi(t�i, t̃)ui(f̂ (t′i , t̃�i), (ti, t�i))

(by the requirement of implementability of f̂ )

≥
X

t�i, t̃

ψi(t�i, t̃)ui(f m̃i (t̃), (ti, t�i))

({ inequality (4) holds for f m̃i )

�
X

t�i, t̃

ψi(t�i, t̃)ui(ym̃i , t̃ i (t̃�i), (ti, t�i))

(by definition of f m̃i )

�
X

t�i, t̃

ψi(t�i, t̃)

 
X

m�i

σt̃ i
�i(t̃�i)[m�i]ui(g(m̃i, m�i), (ti, t�i))

!

(by definition of ym̃i , t̃ i and linearity of expected utility ui(·, (ti, t�i)))

�
X

t�i,m�i

λΓi (t�i, m�i)ui(g(m̃i, m�i), (ti, t�i))

Because m′i is a best response of player i of type ti against λΓi satisfying λΓi (t�i, m�i) > 0⇒m�i ∈ S�i(t�i) and margT�i
λΓi � πi(ti), it 

follows by definition that m′i ∈ bi(S)[ti].
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As b(S) ≥ S, we have S ≤ SΓ(T). Consider any t ∈ T and t′ ∈ β(t). Pick a message profile mt′ ∈ SΓ(T)(t′) as defined in the beginning 
of the proof. By definition, g(mt′ ) � f̂ (t′). Now SΓ(T)(t′) ⊆ S(t) ⊆ SΓ(T)(t), where the first set inclusion follows from the definition of 
the message correspondence profile S and the second set inclusion follows from S ≤ SΓ(T). Therefore, mt′ ∈ SΓ(T)(t). Hence, 
g(mt′ ) � f̂ (t) by the uniqueness requirement of implementation. Thus, f̂ (t′) � f̂ (t). Therefore, β�is acceptable for f̂ , which is a con-
tradiction. This completes the proof. w

Proof of Lemma 1. Suppose the SCF f satisfies weak IRM. Fix i ∈ I and ti ∈ Ti. Pick any t′i ∈ Ti. If ti ~f
i t′i , then clearly 

Ui(f | ti) �Ui(f ; t′i | ti).
Next, suppose ti ¿

f
i t′i . Consider the deception β�such that βj(tj) � {tj} for all tj ∈ Tj and j ≠ i but

βi(t̃i) �
{ti, t′i}, if t̃i � ti

{t̃ i}, otherwise:

(

Because ti ¿
f
i t′i , the deception β�is unacceptable for f. Hence, by weak IRM, it must be weakly refutable. That is, there exist j ∈ I, t̂ j ∈ Tj, 

and t̂′j ∈ βj(t̂ j) satisfying t̂′j ¿
f
j t̂j such that for any ψj ∈ ∆(T�j × T) satisfying ψj(t�j, t̃) > 0⇒ t̃�j ∈ β�j(t�j) and πj(t̂ j)[t�j] �

P
t̃∈Tψj 

(t�j, t̃) for all t�j ∈ T�j, there exists an SCF f ′ such that f ′(t̃ j, ·) ∈ Yj[t̃ j, f ] for all ̃tj ∈ Tj and
X

t�j, t̃

ψj(t�j, t̃)uj(f ′(t̃), (t̂j , t�j)) >
X

t�j, t̃

ψj(t�j, t̃)uj(f (t̂
′

j , t̃�j), (t̂j, t�j)):

Because t̂′j ¿
f
j t̂ j and t̂′j ∈ βj(t̂j), it must be that j� i, t̂ j � ti, and t̂′j � t′i .

Consider the belief ψi such that (i) ψi(t�i, t̃) � 0 whenever either t̃i ≠ ti or t̃�i ≠ t�i and (ii) ψi(t�i, t̃) � πi(ti)[t�i]whenever t̃ i � ti 

and t̃�i � t�i. As t�i ∈ β�i(t�i), the belief ψi satisfies ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i). Moreover, πi(ti)[t�i] �
P

t̃∈Tψi(t�i, t̃) for all 
t�i ∈ T�i. Hence, we must have some SCF f ′ such that f ′(t̃i, ·) ∈ Yi[t̃i, f ] for all ̃ti ∈ Ti such that

Ui(f ′ | ti) �
X

t�i, t̃

ψi(t�i, t̃)ui(f ′(t̃), (ti, t�i)) >
X

t�i, t̃

ψi(t�i, t̃)ui(f (t′i , t�i), (ti, t�i))

�Ui(f ; t′i | ti):

However, f ′(ti, ·) ∈ Yi[ti, f ] implies that Ui(f | ti) ≥Ui(f ′ |ti). Therefore, Ui(f | ti) >Ui(f ; t′i |ti), which completes the proof. w

Proof of Lemma 2. Pick any deception β�that is unacceptable for an SCF f.
(Only-if part) Suppose f satisfies IRM. Then, there exist i ∈ I, ti ∈ Ti, and t′i ∈ βi(ti) satisfying t′i ¿

f
i ti such that for all φi ∈ ∆(T�i ×

T�i) satisfying φi(t�i, t̃�i) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �
P

t̃�i∈T�i
φi(t�i, t̃�i) for all t�i ∈ T�i, there exists y ∈ ∩t̃ i∈Ti

Yi[t̃i, f ] such 
that

X

t�i, t̃�i

φi(t�i, t̃�i)ui(y(t̃�i), (ti, t�i)) >
X

t�i, t̃�i

φi(t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)):

We argue that the tuple (i, ti, t′i ) satisfies the requirement for strong refutability of β. Pick any belief ψi ∈ ∆(T�i × T) satisfying 
ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �

P
t̃∈Tψi(t�i, t̃) for all t�i ∈ T�i.

Let φ′i ∈ ∆(T�i × T�i) be such that, for all t�i, t̃�i ∈ T�i,

φ′i (t�i, t̃�i) �
X

t̃ i

ψi(t�i, t̃i, t̃�i):

Then, by construction, φ′i (t�i, t̃�i) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �
P

t̃�i∈T�i
φ′i (t�i, t̃�i) for all t�i ∈ T�i. Therefore, it follows 

from IRM that there exists y′ ∈ ∩t̃ i∈Ti
Yi[t̃ i, f ] such that

X

t�i, t̃�i

φ′i (t�i, t̃�i)ui(y′(t̃�i), (ti, t�i)) >
X

t�i, t̃�i

φ′i (t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)): (A.4) 

Define the SCF f ′ such that f ′(t̃) � y′(t̃�i) for all t̃ ∈ T. Then f ′(t̃ i, ·) � y′ for all t̃i. Hence, f ′ is nonresponsive to agent i’s type and 
f ′(t̃ i, ·) ∈ Yi[t̃i, f ] for all ̃ti. Moreover, it follows from (A.4) that

X

t�i, t̃

ψi(t�i, t̃)ui(f ′(t̃), (ti, t�i)) �
X

t�i, t̃

ψi(t�i, t̃)ui(y′(t̃�i), (ti, t�i))

�
X

t�i, t̃�i

φ′i (t�i, t̃�i)ui(y′(t̃�i), (ti, t�i))

>
X

t�i, t̃�i

φ′i (t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i))

�
X

t�i, t̃

ψi(t�i, t̃)ui(f (t′i , t̃�i), (ti, t�i)):

Thus, β�is strongly refutable.
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(If-part) Suppose that every unacceptable deception for f is strongly refutable. Then, there exist i ∈ I, ti ∈ Ti, and t′i ∈ βi(ti) satis-
fying t′i ¿

f
i ti such that for all ψi ∈ ∆(T�i × T) satisfying ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �

P
t̃∈Tψi(t�i, t̃) for all t�i ∈ T�i, 

there exists an SCF f ′ such that f ′ is nonresponsive to agent i’s type, f ′(t̃i, ·) ∈ Yi[t̃i, f ] for all t̃ i ∈ Ti, and
X

t�i, t̃

ψi(t�i, t̃)ui(f ′(t̃), (ti, t�i)) >
X

t�i, t̃

ψi(t�i, t̃)ui(f (t′i , t̃�i), (ti, t�i)):

We argue that the tuple (i, ti, t′i ) satisfies the requirement in IRM for deception β. Pick any belief φi ∈ ∆(T�i × T�i) satisfying 
φi(t�i, t̃�i) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �

P
t̃�i∈T�i

φi(t�i, t̃�i) for all t�i ∈ T�i.
Let ψ′i ∈ ∆(T�i × T) be such that ψ′i (t�i, t̃) � 0 whenever t̃i ≠ ti and ψ′i (t�i, t̃) � φi(t�i, t̃�i) whenever t̃ i � ti. Then, by construc-

tion, ψ′i (t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �
P

t̃∈Tψ
′
i (t�i, t̃) for all t�i ∈ T�i. Therefore, it follows from strong refutability of β�

that there exists an SCF f ′′ such that f ′′ is nonresponsive to agent i’s type, f ′′(t̃i, ·) ∈ Yi[t̃i, f ] for all ̃ti ∈ Ti, and
X

t�i, t̃

ψ′i (t�i, t̃)ui(f ′′(t̃), (ti, t�i)) >
X

t�i, t̃

ψ′i (t�i, t̃)ui(f (t′i , t̃�i), (ti, t�i)): (A.5) 

Define the mapping y : T�i→ ∆(A) such that y(t̃�i) � f ′′(ti, t̃�i) for all t̃�i ∈ T�i. Since f ′′ is nonresponsive to agent i’s type, we 
have y � f ′′(t̃ i, ·) for all t̃i. Hence, y � f ′′(t̃ i, ·) ∈ Yi[t̃i, f ] for all t̃i ∈ Ti. That is, y ∈ ∩t̃ i∈Ti

Yi[t̃i, f ]. Moreover, it follows from (A.5) that
X

t�i, t̃�i

φi(t�i, t̃�i)ui(y(t̃�i), (ti, t�i)) �
X

t�i, t̃

ψ′i (t�i, t̃)ui(f ′′(t̃), (ti, t�i))

>
X

t�i, t̃

ψ′i (t�i, t̃)ui(f (t′i , t̃�i), (ti, t�i))

�
X

t�i, t̃�i

φi(t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)):

Thus, f satisfies IRM. w

Proof of Lemma 3. We prove separate proofs of the two statements in the lemma.
We prove (a) first. Suppose an SCF f satisfies weak NWR. Pick any i ∈ I, ti ∈ Ti, and φi ∈ ∆(T�i × T�i).
First, it follows from the definition of weak NWR that there exists ỹ ∈ Yw

i [ti, f ] such that Ui(f | ti) >Ui(ỹ | ti). To see this, consider 
the belief φ̃i such that φ̃i(t�i, t′�i) � 0 whenever t′�i ≠ t�i and φ̃i(t�i, t′�i) � πi(ti)[t�i] whenever t′�i � t�i. Then, there must exist 
ỹ, ỹ′ ∈ Yw

i [ti, f ] such that

Ui(f | ti) ≥Ui(ỹ′ | ti) �
X

t�i, t′
�i

φ̃ i(t�i, t′�i)ui(ỹ′(t′�i), (ti, t�i))

>
X

t�i, t′′
�i

φ̃ i(t�i, t′�i)ui(ỹ(t′�i), (ti, t�i))

�Ui(ỹ |ti), 

where the first weak inequality follows from the fact that ỹ′ ∈ Yw
i [ti, f ], and the strict inequality follows from weak NWR.

Second, because f satisfies weak NWR, there exist y, y′ ∈ Yw
i [ti, f ] such that

X

t�i, t′
�i

φi(t�i, t′�i)ui(y(t′�i), (ti, t�i)) >
X

t�i, t′
�i

φi(t�i, t′�i)ui(y′(t′�i), (ti, t�i)):

Pick any ɛ ∈ (0, 1) and define yɛ : T�i→ ∆(A) such that yɛ(t�i) � (1� ɛ)y(t�i) + ɛỹ(t�i) for all t�i ∈ T�i. We similarly define y′ɛ. By 
construction, yɛ and y′ɛ are such that

Ui(f | ti) >Ui(yɛ | ti) and Ui(f | ti) >Ui(y′ɛ | ti):

For ɛ sufficiently close to one, we have
X

t�i, t′
�i

φi(t�i, t′�i)ui(yɛ(t′�i), (ti, t�i)) >
X

t�i, t′
�i

φi(t�i, t′�i)ui(y′ɛ(t′�i), (ti, t�i)):

We fix any such sufficiently large ɛ.
Third, because ∆∗(A) is a dense subset of ∆(A), for each t�i, there exists a sequence of lotteries {ℓz(t�i)}

∞
z�1 ∈ ∆∗(A) converging 

to yɛ(t�i). For each z ≥ 1, define yz : T�i→ ∆∗(A) such that yz(t�i) � ℓ
z(t�i) for all t�i ∈ T�i. Similarly, we can define y′z : T�i→

∆∗(A) such that y′z(t�i) converges to y′ɛ(t�i) for all t�i ∈ T�i. As T�i is finite, there exists a sufficiently large integer z such that

Ui(f |ti) >Ui(yz | ti) and Ui(f |ti) >Ui(y′z | ti)
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and
X

t�i, t′
�i

φi(t�i, t′�i)ui(yz(t′�i), (ti, t�i)) >
X

t�i, t′
�i

φi(t�i, t′�i)ui(y′z(t′�i), (ti, t�i)): (A.6) 

The first set of inequalities imply that yz, y′z ∈ Y∗i [ti, f ].
Last, because yti, f

i , by construction, assigns a positive weight to all y ∈ Y∗i [ti, f ], if, contrary to what we want to establish, we had
X

t�i, t′
�i

φi(t�i, t′�i)ui(y
ti , f
i (t

′
�i), (ti, t�i)) ≥

X

t�i, t′
�i

φi(t�i, t′�i)ui(y(t′�i), (ti, t�i)), ∀y ∈ Y∗i [ti, f ], 

then it must be that
X

t�i, t′
�i

φi(t�i, t′�i)ui(yz(t′�i), (ti, t�i)) �
X

t�i, t′
�i

φi(t�i, t′�i)ui(y′z(t′�i), (ti, t�i)), 

which contradicts (A.6).
We prove (b) next. Suppose that an SCF f satisfies weak NWR. Pick any i ∈ I, ti ∈ Ti, and z1

i ∈ ∆(T�i). As α�assigns a positive 
weight to all a ∈ A, if

X

t�i

z1
i (t�i)ui(α, (ti, t�i)) ≥

X

t�i

z1
i (t�i)ui(a, (ti, t�i)), ∀a ∈ A, 

then it must be that
X

t�i

z1
i (t�i)ui(a, (ti, t�i)) �

X

t�i

z1
i (t�i)ui(a′, (ti, t�i)), 

for all a, a′ ∈ A. Now consider the belief φ̃i ∈ ∆(T�i × T�i) such that φ̃i(t�i, t�i) � z1
i (t�i) for all t�i ∈ T�i. Then, by weak NWR, there 

must exist ỹ, ỹ′ ∈ Yw
i [ti, f ] such that

X

t�i, t′
�i

φ̃ i(t�i, t′�i)ui(ỹ(t′�i), (ti, t�i)) >
X

t�i, t′
�i

φ̃i(t�i, t′�i)ui(ỹ′(t′�i), (ti, t�i)):

However, the left-hand side of the previous inequality equals 
P

t�i
z1

i (t�i)ui(ỹ(t�i), (ti, t�i)), whereas the right-hand side equals 
P

t�i
z1

i (t�i)ui(ỹ′(t�i), (ti, t�i)), which contradicts the fact that type ti is indifferent over all alternatives when type ti holds the belief 
z1

i . w

Proof of Theorem 2. We propose the following mechanism Γ � ((Mi)i∈I, g) to prove the sufficiency result: For each individual i, 
pick any one type from Ti. We denote this type as t∗i .

Each individual i sends a message mi � (m1
i , m2

i , m3
i , m4

i ), where, 
item A m1

i � (m1
i [j])j∈I such that m1

i [j] ∈ Tj for all j ∈ I,
item B m2

i ∈ N,
item C m3

i � (m3
i [ti])ti∈Ti 

such that m3
i [ti] ∈ Y∗i [ti, f̂ ] for all ti ∈ Ti,

item D and m4
i ∈ A.

Each Mi is countable.
The outcome function g : M→ ∆(A) is defined as follows: For each m ∈M: 

Rule 1: If m2
i � 1 for all i ∈ I⇒ g(m) � f̂ (m1

1[1], m1
2[2], : : : , m1

n[n]).
Rule 2: If there exists i ∈ I such that m2

i > 1 but m2
j � 1 for all j ∈ I\{i}, then one of the following subrules apply.

Rule 2-1: If there exists ti ∈ Ti such that m1
j [i] � ti for all j ∈ I\{i}, then

g(m) �
m3

i [ti]((m1
j [j])j≠i) with probability m2

i =(m2
i + 1),

yti , f̂
i ((m1

j [j])j≠i) with probability 1=(m2
i + 1):

8
<

:

Rule 2-2: If m1
j′ [i]≠ m1

k[i] for some j′, k ∈ I\{i}, then

g(m) �
m3

i [t∗i ]((m1
j [j])j≠i) with probability m2

i =(m2
i + 1),

yt∗i , f̂
i ((m1

j [j])j≠i) with probability 1=(m2
i + 1):

8
<

:

Rule 3: In all other cases,

g(m) �

m4
1 with probability m2

1=(1 +m2
1)n,

m4
2 with probability m2

2=(1 +m2
2)n,

⋮ ⋮
m4

n with probability m2
n=(1 +m2

n)n,
α with the remaining probability:

8
>>>>>><

>>>>>>:
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We now prove that the mechanism Γ�implements the SCF f in interim rationalizable strategies. The proof consists of Steps 1 
through 3.

Step 1: mi ∈ SΓ(T)i (ti) ⇒m2
i � 1.

Proof of Step 1. Suppose by way of contradiction that mi ∈ SΓ(T)i (ti) but m2
i > 1. Then, mi is a best response of individual i of type 

ti against some conjecture λi ∈ ∆(T�i ×M�i) satisfying margT�i
λi � πi(ti).

For each t′i ≠ t∗i and t′�i ∈ T�i, we define

M2
�i(t
′
i , t′�i) � {m�i : m2

j � 1 and m1
j [i] � t′i , ∀j ≠ i, and (m1

j [j])j≠i � t′�i}:

For t∗i and each t′�i ∈ T�i, we define

M2
�i(t
∗
i , t′�i) � m�i :

(m1
j [j])j≠i � t′�i and

either m2
j � 1 and m1

j [i] � t∗i , ∀j ≠ i,
or m2

j � 1, ∀j ≠ i, but m1
j′ [i]≠ m1

k[i] for some j′, k ≠ i

8
>><

>>:

9
>>=

>>;

:

Also, define

M3
�i � {m�i : there exist one or more j ≠ i such that m2

j > 1}:

Note that ((M2
�i(t̃i , t′�i))t̃ i∈Ti , t′

�i∈T�i
, M3
�i) defines a partition of M�i. As m2

i > 1, if m�i ∈M2
�i(t̃ i, t′�i), then Rule 2 is used under the 

profile (mi, m�i), whereas if m�i ∈M3
�i, then Rule 3 is used under the profile (mi, m�i).

For each ̃ti ∈ Ti, define

Λ2, t̃ i
i �

X

t�i, t′′
�i

X

m�i∈M2
�i(t̃ i, t′′

�i)

λi(t�i, m�i):

Thus, Λ2, t̃ i
i is the probability of the event that all other individuals report a message profile in ∪t′′

�i
M2
�i(t̃i, t′′�i).

Also, define

Λ3
i �

X

t�i

X

m�i∈M3
�i

λi(t�i, m�i):

Thus, Λ3
i is the probability of the event that all other individuals report a message profile in M3

�i.
If ̃ti is such that Λ2, t̃ i

i > 0, then define φ2, t̃ i
i ∈ ∆(T�i × T�i) such that for all t�i, t′�i ∈ T�i,

φ2, t̃ i
i (t�i, t′�i) �

X

m�i∈M2
�i(t̃ i, t′

�i)

λi(t�i, m�i)

Λ2, t̃ i
i

:

Thus, φ2, t̃ i
i (t�i, t′�i) is the conditional probability of the event that the type profile of all other individuals is t�i, and they report a 

message profile in M2
�i(t̃i, t′�i) given the event that all other individuals report a message profile in ∪t′′

�i
M2
�i(t̃i, t′′�i).

If the type profile of all other individuals is t�i and those agents of types t�i report a message profile in M2
�i(t̃ i, t′�i), then when 

individual i of type ti plays mi, she expects the outcome to be given by the lottery

m2
i

1+m2
i

� �

m3
i [t̃ i](t′�i) + 1� m2

i
1+m2

i

� �

yt̃i, f̂
i (t

′
�i):

As a result, conditional on the event that all other individuals report a message profile in ∪t′′
�i

M2
�i(t̃i, t′′�i), the expected payoff of 

individual i of type ti when playing mi is

m2
i

1+m2
i

� �
X

t�i, t′
�i

φ2, t̃ i
i (t�i, t′�i)ui(m3

i [t̃ i](t′�i), (ti, t�i))

+ 1� m2
i

1+m2
i

� �
X

t�i, t′
�i

φ2, t̃ i
i (t�i, t′�i)ui(y

t̃i, f̂
i (t

′
�i), (ti, t�i)): (A.7) 

If Λ3
i > 0, then define φ3

i ∈ ∆(T�i) such that, for any t�i ∈ T�i,

φ3
i (t�i) �

X

m�i∈M3
�i

λi(t�i, m�i)

Λ3
i

:

Thus, φ3
i (t�i) is the conditional probability of the event that the type profile of all other individuals is t�i, and those agents of 

types t�i report a message profile in M3
�i given the event that all other individuals report a message profile in M3

�i.
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If the type profile of all other individuals is t�i and those agents of types t�i report a message profile m�i ∈M3
�i, then when 

playing mi, individual i of type ti expects the outcome to be given by the lottery:

1
n

m2
i

1+m2
i

� �

m4
i +

1
n

1� m2
i

1+m2
i

� �

α +
X

j≠i

1
n

m2
j

1+m2
j

 !

m4
j +

1
n

1�
m2

j

1+m2
j

 !

α

 !

:

As a result, conditional on the event that all other individuals report a message profile in M3
�i, the expected payoff of individual i 

of type ti when playing mi is

1
n

m2
i

1+m2
i

� �
X

t�i

φ3
i (t�i)ui(m4

i , (ti, t�i)) +
1
n

1� m2
i

1+m2
i

� �
X

t�i

φ3
i (t�i)ui(α, (ti, t�i))

+
X

t�i

X

m�i∈M3
�i

λi(t�i, m�i)

Λ3
i

X

j≠i

1
n

m2
j

1+m2
j

 !

ui(m4
j , (ti, t�i)) +

1
n

1�
m2

j

1+m2
j

 !

ui(α, (ti, t�i))

 !

: (A.8) 

Now let individual i of type ti deviate to m̂i � (m1
i , m̂2

i , m̂3
i , m̂4

i ) such that m̂2
i �m2

i + 1. m̂3
i is defined as follows: for each ̃ti ∈ Ti: 

. If Λ2, t̃ i
i > 0, then let m̂3

i [t̃ i] ∈ Y∗i [t̃i, f̂ ] be such that
X

t�i, t′
�i

φ2, t̃ i
i (t�i, t′�i)ui(m̂3

i [t̃i](t′�i), (ti, t�i)) ≥
X

t�i, t′
�i

φ2, t̃ i
i (t�i, t′�i)ui(m3

i [t̃i](t′�i), (ti, t�i))

and
X

t�i, t′
�i

φ2, t̃ i
i (t�i, t′�i)ui(m̂3

i [t̃i](t′�i), (ti, t�i)) >
X

t�i, t′
�i

φ2, t̃ i
i (t�i, t′�i)ui(yt̃i , f̂

i (t
′
�i), (ti, t�i)):

Such m̂3
i [t̃i] exists because of Lemma 3.
. If Λ2, t̃ i

i � 0, then let m̂3
i [t̃ i] �m3

i [t̃ i].
• m̂4

i is defined as follows: 
. If Λ3

i > 0, then let m̂4
i ∈ A be such that

X

t�i

φ3
i (t�i)ui(m̂4

i , (ti, t�i)) ≥
X

t�i

φ3
i (t�i)ui(m4

i , (ti, t�i))

and
X

t�i

φ3
i (t�i)ui(m̂4

i , (ti, t�i)) >
X

t�i

φ3
i (t�i)ui(α, (ti, t�i)):

Such m̂4
i exists because of Lemma 3.
. If Λ3

i � 0, then let m̂4
i �m4

i .
If Λ2, t̃ i

i > 0, then conditional on the event that all other individuals report a message profile in ∪t′′
�i

M2
�i(t̃ i, t′′�i), the expected pay-

off of individual i of type ti when playing m̂i is

m̂2
i

1+ m̂2
i

 !
X

t�i, t′
�i

φ2, t̃ i
i (t�i, t′�i)ui(m̂3

i [t̃i](t′�i), (ti, t�i))

+ 1� m̂2
i

1+ m̂2
i

 !
X

t�i, t′
�i

φ2, t̃ i
i (t�i, t′�i)ui(y

t̃i , f̂
i (t

′
�i), (ti, t�i)), 

which is, by construction, greater than type ti’s expected payoff in (A.7) when she plays mi.
If Λ3

i > 0, then conditional on the event that all other individuals report a message profile in M3
�i, the expected payoff of indi-

vidual i of type ti when playing m̂i is

1
n

m̂2
i

1+ m̂2
i

 !
X

t�i

φ3
i (t�i)ui(m̂4

i , (ti, t�i)) +
1
n

1� m̂2
i

1+ m̂2
i

 !
X

t�i

φ3
i (t�i)ui(α, (ti, t�i))

+
X

t�i

X

m�i∈M3
�i

λi(t�i, m�i)

Λ3
i

X

j≠i

1
n

m2
j

1+m2
j

 !

ui(m4
j , (ti, t�i)) +

1
n 1�

m2
j

1+m2
j

 !

ui(α, (ti, t�i))

 !

, 

which is, by construction, greater than type ti’s expected payoff in (A.8) when she plays mi.
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As 
P

t̃ i
Λ2, t̃ i

i +Λ
3
i � 1 (because m2

i > 1), it follows that m̂i is a better response for individual i of type ti against λi, a contradiction. 
This completes the proof of Step 1. w

Step 2: For each i ∈ I and ti ∈ Ti, let

βi(ti) � {ti} ∪ {t′i ∈ Ti : ∃mi ∈ SΓ(T)i (ti) such that m1
i [i] � t′i}:

Then, the deception β � (βi)i∈I is acceptable for f̂ .

Proof of Step 2: Suppose not, that is, β�is unacceptable for f̂ . Then, by weak IRM, β�must be weakly refutable. That is, there 
exist i ∈ I, ti ∈ Ti, and t′i ∈ βi(ti) satisfying t′i ¿

f
i ti such that for all ψi ∈ ∆(T�i × T) satisfying ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and 

πi(ti)[t�i] �
P

t̃∈Tψi(t�i, t̃) for all t�i ∈ T�i, there exists an SCF f ′ such that f ′(t̃i, ·) ∈ Yi[t̃i, f̂ ] for all ̃ti ∈ Ti and
X

t�i, t̃

ψi(t�i, t̃)ui(f ′(t̃), (ti, t�i)) >
X

t�i, t̃

ψi(t�i, t̃)ui(f̂ (t′i , t̃�i), (ti, t�i)):

As t′i ¿
f
i ti and t′i ∈ βi(ti), we can find a message mi ∈ SΓ(T)i (ti) such that m1

i [i] � t′i . From Step 1, we know that m2
i � 1. Then, mi is a 

best response to some belief λi ∈ ∆(T�i ×M�i) such that λi(t�i, m�i) > 0⇒m�i ∈ SΓ(T)�i (t�i) and margT�i
λi � πi(ti). From Step 1, it 

follows that λi(t�i, m�i) > 0 implies m2
j � 1 for all j ≠ i. We next define a partition of all those message profiles in M�i such that 

m2
j � 1 for all j ≠ i.
For each t̂i ≠ t∗i and ̃t�i ∈ T�i, we define

M1
�i(t̂i , t̃�i) � {m�i : m2

j � 1 and m1
j [i] � t̂ i, ∀j ≠ i, and (m1

j [j])j≠i � t̃�i}:

For t∗i and each ̃t�i ∈ T�i, we define

M1
�i(t
∗
i , t̃�i) � m�i :

(m1
j [j])j≠i � t̃�i and

either m2
j � 1 and m1

j [i] � t∗i , ∀j ≠ i,
or m2

j � 1, ∀j ≠ i, but m1
j′ [i]≠ m1

k[i] for some j′, k ≠ i

8
>><

>>:

9
>>=

>>;

:

Define the belief ψ1
i ∈ ∆(T�i × T) as follows: For each t�i ∈ T�i and ̃t ∈ T, let

ψ1
i (t�i, t̃) �

X

m�i∈M1
�i(t̃ i, t̃�i)

λi(t�i, m�i):

Thus, ψ1
i (t�i, t̃) is the probability of the event that the type profile of all other individuals is t�i and those agents of types t�i report 

a message profile in M1
�i(t̃i, t̃�i). In this event, individual i of type ti expects the outcome to equal f̂ (t′i , t̃�i)when playing mi. As a 

result, the expected payoff of individual i of type ti when playing mi is
X

t�i, t̃

ψ1
i (t�i, t̃)ui(f̂ (t′i , t̃�i), (ti, t�i)): (A.9) 

Now, ψ1
i (t�i, t̃) > 0 implies that λi(t�i, m�i) > 0 for some m�i ∈M1

�i(t̃i, t̃�i). However, λi(t�i, m�i) > 0 also implies that m�i ∈

SΓ(T)�i (t�i). Hence, because of the construction of β, we have t̃�i ∈ β�i(t�i). Moreover, because λi(t�i, m�i) > 0 implies m2
j � 1 for all 

j ≠ i, it follows that

πi(ti)[t�i] �
X

m�i∈M�i

λi(t�i, m�i) �
X

m�i∈∪t̃∈TM1
�i(t̃)

λi(t�i, m�i) �
X

t̃∈T

ψ1
i (t�i, t̃):

Therefore, it follows from weak refutability of β�that there exists an SCF f ′ such that f ′(t̃ i, ·) ∈ Yi[t̃ i, f̂ ] for all t̃i ∈ Ti and
X

t�i, t̃

ψ1
i (t�i, t̃)ui(f ′(t̃), (ti, t�i)) >

X

t�i, t̃

ψ1
i (t�i, t̃)ui(f̂ (t′i , t̃�i), (ti, t�i)):

It is without loss of generality to assume that the SCF f ′ is such that f ′(t̃ i, ·) ∈ Y∗i [t̃i, f̂ ] for all ̃ti ∈ Ti. To see this, pick any ̃ti ∈ Ti.
If f ′(t̃ i, ·) ∈ Y∗i [t̃i, f̂ ], then for each integer z ≥ 1 and t�i ∈ T�i, define f z(t̃ i, t�i) � f ′(t̃ i, t�i). Then f z(t̃i, ·) ∈ Y∗i [t̃i, f̂ ] for all z.
If f ′(t̃i, ·) ∉ Y∗i [t̃ i, f̂ ], then for each integer z ≥ 1 and t�i ∈ T�i, define f z(t̃i, t�i) ∈ ∆∗(A)∪t′i∈Ti{f̂ (t′i , t�i)} such that (a) if f ′(t̃i, t�i)

� f̂ (t̃ i, t�i), then f z(t̃i, t�i) � f ′(t̃ i, t�i) for all z, whereas (b) if f ′(t̃i, t�i)≠ f̂ (t̃i, t�i), then f z(t̃ i, t�i) converges to f ′(t̃ i, t�i) as z→∞. 
Because f ′(t̃i, ·) ∈ Yi[t̃ i, f̂ ] but f ′(t̃i, ·) ∉ Y∗i [t̃ i, f̂ ], it must be that f ′(t̃i, t�i)≠ f̂ (t̃ i, t�i) for some t�i ∈ T�i. This implies that 
Ui(f̂ | t̃i) >Ui(f ′(t̃i, ·) | t̃i). As f z(t̃ i, ·) converges pointwise to f ′(t̃ i, ·), T�i is finite, and ui(·, t) is continuous over ∆(A), we can find a 
sufficiently large integer ẑ[t̃i] such that

Ui(f̂ | t̃i) >Ui(f ẑ[t̃ i](t̃i, ·) | t̃i), ∀z > z[t̃ i]:

Therefore, f ẑ[t̃ i](t̃i, ·) ∈ Y∗i [t̃ i, f̂ ] for all z > z[t̃i].
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Consider the sequence of SCFs {f z}z∈N as defined previously. As f z converges pointwise to f ′, Ti is finite, and ui(·, t) is continu-
ous over ∆(A), we can find a sufficiently large integer ẑ such that f ẑ (t̃i, ·) ∈ Y∗i [t̃i, f̂ ] for all t̃i ∈ Ti and

X

t�i, t̃

ψ1
i (t�i, t̃)ui(f ẑ (t̃), (ti, t�i)) >

X

t�i, t̃

ψ1
i (t�i, t̃)ui(f̂ (t′i , t̃�i), (ti, t�i)):

Therefore, f ′(t̃ i, ·) ∈ Y∗i [t̃i, f̂ ] for all ̃ti ∈ Ti.
Now, let individual i of type ti deviate to m̂i � (m1

i , m̂2
i , m̂3

i , m4
i ) such that 

item A m̂2
i > 1, where the specific value is chosen later.

item B m̂3
i is defined as follows: m̂3

i [t̃ i] � f ′(t̃ i, ·) for all t̃ i ∈ Ti.
Consider the event that the type profile of all other individuals is t�i, and those agents of types t�i report a message profile in 

M1
�i(t̃i, t̃�i). In this event, after the deviation to m̂i, type ti of individual i expects the outcome to equal

m̂2
i

1+ m̂2
i

 !

f ′(t̃ i, t̃�i) + 1� m̂2
i

1+ m̂2
i

 !

yt̃i , f̂
i (t̃�i):

As a result, the expected payoff of individual i of type ti when deviating to m̂i is

m̂2
i

1+ m̂2
i

 !
X

t�i, t̃

ψ1
i (t�i, t̃)ui(f ′(t̃), (ti, t�i)) + 1� m̂2

i

1+ m̂2
i

 !
X

t�i, t̃

ψ1
i (t�i, t̃)ui(y

t̃i , f̂
i (t̃�i), (ti, t�i)):

If m̂2
i is large enough, then the previous expression is greater than type ti’s expected payoff in (A.9) when she plays mi. It follows 

that m̂i is a better response for individual i of type ti against λi, a contradiction. Thus, β�is acceptable. This completes the proof of 
Step 2. w

It follows from Steps 1 and 2 that m ∈ SΓ(T)(t) ⇒ g(m) � f̂ (t). 
Step 3: Define the message correspondence profile S � (S1, : : : ,Sn)where each Si : Ti→ 2Mi such that for all i ∈ I and ti ∈ Ti:

Si(ti) � {(m1
i , 1, m3

i , m4
i ) : m1

i [i] � ti}:

Then, we have b(S) ≥ S, which implies that S ≤ SΓ(T).

Proof of Step 3. Pick any i ∈ I, ti ∈ Ti, and mi ∈ Si(ti). Pick any σ̃�i : T�i→M�i such that, for all j ≠ i and tj ∈ Tj, (i) σ̃j(tj) ∈ Sj(tj)

and (ii) σ̃1
j (tj)[i] � ti. Let the belief λi ∈ ∆(T�i ×M�i) be such that for all t�i ∈ T�i, λi(t�i, m�i) � 0 whenever m�i ≠ σ̃�i(t�i). Then, 

by construction, λi(t�i, m�i) > 0 implies that m�i ∈ S�i(t�i) and margT�i
λi � πi(ti). When holding the belief λi and playing mi, 

individual i of type ti expects the payoff of
X

t�i

πi(ti)[t�i]ui(f̂ (ti, t�i), (ti, t�i)):

On the one hand, when deviating to m̂i such that m̂1
i [i] � t′i and m̂2

i � 1, then individual i of type ti expects the payoff of 
X

t�i

πi(ti)[t�i]ui(f̂ (t′i , t�i), (ti, t�i)), 

which is not improving due to SIRBIC. Recall that weak IRM of f̂ implies that f̂ satisfies SIRBIC (Lemma 1). On the other hand, 
when deviating to m̂i such that m̂2

i > 1, then individual i of type ti expects the payoff of

m̂2
i

1+ m̂2
i

 !
X

t�i

πi(ti)[t�i]ui(m̂3
i [ti](t�i), (ti, t�i)) + 1� m̂2

i

1+ m̂2
i

 !
X

t�i

πi(ti)[t�i]ui(y
ti , f̂
i (t�i), (ti, t�i)):

As m̂3
i [ti] ∈ Y∗i [ti, f̂ ], individual i of type ti cannot improve the payoff by any such deviation. Hence, mi ∈ bi(S)[ti]. This completes 

the proof of Step 3. w

Steps 1 through 3 together comprise the proof of the theorem. w

Proof of Proposition 1. Pick any unacceptable deception β. Then, there exist i ∈ I, ti ∈ Ti, and t′i ∈ βi(ti) such that t′i ¿
f
i ti.

Fix any belief ψi ∈ ∆(T�i × T) such that ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �
P

t̃∈Tψi(t�i, t̃) for all t�i ∈ T�i. Pick any t̃i ∈ Ti 

such that 
P

t�i, t̃�i
ψi(t�i, t̃ i, t̃�i) > 0.

First, suppose ̃ti ¿
f
i t′i . As t′i ¿

f
i ti and f satisfies COND-1, we can find y ∈ Yw

i [f , t′i ] such that

ui(y(t̃�i), ti) > ui(f (t′i , t̃�i), ti), ∀t̃�i ∈ T�i:

For any ɛ ∈ [0, 1], define f ɛ(t̃i, ·) � ɛy(·) + (1� ɛ)f (t′i , ·). Then the following holds for all ɛ > 0:
X

t�i, t̃�i

ψi(t�i, t̃ i, t̃�i)ui(f ɛ(t̃i, t̃�i), ti) >
X

t�i, t̃�i

ψi(t�i, t̃ i, t̃�i)ui(f (t′i , t̃�i), ti):
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Because ̃ti ¿
f
i t′i , it follows from SIRBIC that

X

t̃�i

πi[t̃i](t̃�i)ui(f (t̃ i, t̃�i), t̃ i) >
X

t̃�i

πi[t̃i](t̃�i)ui(f (t′i , t̃�i), t̃i):

Using the continuity of expected utility, there exists a sufficiently small but positive ɛ such that
X

t̃�i

πi[t̃i](t̃�i)ui(f (t̃ i, t̃�i), t̃i) >
X

t̃�i

πi[t̃i](t̃�i)ui(f ɛ(t̃i, t̃�i), t̃ i):

Let ɛ(t̃ i) be any such sufficiently small but positive value of ɛ.
Second, suppose ̃ti ¿

f
i t′i . Then t′i ~f

i ti implies that ̃ti ¿
f
i ti. Since f satisfies COND-1, we can find y ∈ Yw

i [t̃ i, f ] such that

ui(y(t̃�i), ti) > ui(f (t̃i, t̃�i), ti), ∀t̃�i ∈ T�i:

For any ɛ ∈ [0, 1], define f ɛ(t̃i, ·) � (1� ɛ)y(·) + ɛf (ti, ·). Because ̃ti ¿
f
i ti, it follows from SIRBIC that

X

t̃�i

πi[t̃i](t̃�i)ui(f (t̃ i, t̃�i), t̃ i) >
X

t̃�i

πi[t̃ i](t̃�i)ui(f (ti, t̃�i), t̃i):

Because y ∈ Yw
i [t̃i, f ], the following holds for all ɛ > 0:

X

t̃�i

πi[t̃i](t̃�i)ui(f (t̃ i, t̃�i), t̃ i) >
X

t̃�i

πi[t̃i](t̃�i)ui(f ɛ(t̃i, t̃�i), t̃i):

As ui(y(t̃�i), ti) > ui(f (t̃i, t̃�i), ti) for all t̃�i ∈ T�i, there exists sufficiently small but positive ɛ such that
X

t�i, t̃�i

ψi(t�i, t̃ i, t̃�i)ui(f ɛ(t̃i, t̃�i), ti) >
X

t�i, t̃�i

ψi(t�i, t̃ i, t̃�i)ui(f (t̃i, t̃�i), ti)

�
X

t�i, t̃�i

ψi(t�i, t̃ i, t̃�i)ui(f (t′i , t̃�i), ti), 

where the equality follows from the fact that ̃ti ~f
i t′i .

Let ɛ(t̃ i) be any such sufficiently small but positive value of ɛ. Now define the SCF f ′ as follows: for any t̃i ∈ Ti and ̃t�i ∈ T�i,

f ′(t̃ i, t̃�i) �

f ɛ(t̃ i)(t̃i, t̃�i), if
X

t�i, t̃�i

ψi(t�i, t̃ i, t̃�i) > 0,

f (t̃i, t̃�i), if
X

t�i, t̃�i

ψi(t�i, t̃ i, t̃�i) � 0,

8
>>><

>>>:

where ɛ(t̃ i) is as defined in the preceding arguments. By construction, f ′(t̃i, ·) ∈ Yi[t̃i, f ] for all ̃ti ∈ Ti and
X

t�i, t̃

ψi(t�i, t̃)ui(f ′(t̃), ti) >
X

t�i, t̃

ψi(t�i, t̃)ui(f (t′i , t̃�i), ti):

It follows that f satisfies weak IRM. w

Proof of Proposition 2. We first show that f satisfies weak NWR. Pick any i ∈ I, ti ∈ Ti, and φi ∈ ∆(T�i × T�i). Fix t′�i ∈ T�i arbi-
trarily. As f (ti, t′�i) is in the interior of ∆(A) and the environment satisfies NTI, we can find a lottery y′(t′�i) ∈ ∆(A) such that 
ui(f (ti, t′�i), ti) > ui(y′(t′�i), ti). Then, f (ti, ·), y′(·) ∈ Yw

i [ti, f ] and
X

t�i, t′
�i

φi(t�i, t′�i)ui(f (ti, t′�i), ti)≠
X

t�i, t′
�i

φi(t�i, t′�i)ui(y′(t′�i), ti):

Thus, f satisfies weak NWR.
Next, we show that f satisfies COND-1. Fix i ∈ I and ti, t′i ∈ Ti arbitrarily and suppose t′i ¿

f
i ti. Pick any t�i ∈ T�i. To establish 

COND-1, we show the existence of a lottery ℓ(t�i) ∈ ∆(A) such that

ui(f (t′i , t�i), t′i ) ≥ ui(ℓ(t�i), t′i ) and ui(ℓ(t�i), ti) > ui(f (t′i , t�i), ti):

This is so because if such ℓ(t�i) is constructed, we can set y : T�i→ ∆(A) such that y(t�i) � ℓ(t�i) for all t�i ∈ T�i. By construction 
of y, we confirm that y ∈ Yw

i [t′i , f ] and ui(y(t�i), ti) > ui(f (t′i , t�i), ti) for all t�i ∈ T�i. Thus, f satisfies COND-1.
Recall that, as A is countable, we denote it by {a0, a1, : : : , ak, : : : }. For any k ≥ 1, let

Uk � ui(ak, ti)� ui(a0, ti) and U′k � ui(ak, t′i )� ui(a0, t′i ):

Because f is responsive only when preferences differ, ui(·, t′i ) is not a positive affine transformation of ui(·, ti). Then, the vectors 
(U′k)k≥1 and (Uk)k≥1 are not codirectional; that is, there does not exist an α > 0 such that U′k � αUk for all k ≥ 1. Using NTI, we can 
strengthen the previous statement to claim that there does not exist an α ≥ 0 such that U′k � αUk for all k ≥ 1.
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We next show that there exist lotteries ℓ′, ℓ′′ ∈ ∆(A) such that both ℓ′ and ℓ′′ have finite supports and

ui(ℓ
′′, t′i ) > ui(ℓ

′, t′i ) and ui(ℓ
′, ti) > ui(ℓ

′′, ti): (A.10) 

If A has only two elements, that is, A � {a0, a1}, then NTI implies that U1 ≠ 0 and U′1 ≠ 0. Letting α �U′1=U1, we have U′1 � αU1. 
Then it must be that α < 0; otherwise, we will contradict the established claim that there does not exist an α ≥ 0 such that U′1 � αU1. 
Thus, if U1 > 0, then (A.10) is true when ℓ′ � a1 and ℓ′′ � a0, whereas if U1 < 0, then (A.10) is true when ℓ′ � a0 and ℓ′′ � a1.

Next, consider the case when A has three or more elements.
First, suppose there exists an α < 0 such that U′k � αUk for all k ≥ 1. Because of NTI, there exists k̂ ≥ 1 such that Uk̂ ≠ 0. Thus, if 

Uk̂ > 0, then (A.10) is true when ℓ′ � ak̂ and ℓ′′ � a0, whereas if Uk̂ < 0, then (A.10) is true when ℓ′ � a0 and ℓ′′ � ak̂ .
Second, suppose there exists no α�such that U′k � αUk for all k ≥ 1. (This is the only option left because we have already established 

that there does not exist an α ≥ 0 such that U′k � αUk for all k ≥ 1.) Because of NTI, there exists k̂ ≥ 1 such that Uk̂ ≠ 0. Let α �U′k̂=Uk̂ . 
Because A has at least three elements, by our hypothesis that U′k ≠ αUk for all k ≥ 1 and α, there exists k ≥ 1 with k ≠ k̂ such that

U′k ≠
U′k̂
Uk̂

Uk:

Hence, for all ε > 0, there exists (r1, r2) ∈ R2
++ such that |0:25� r1 | + |0:25� r2 | < ε�and

0:25U′k + 0:25Uk̂
′ > r1U′k + r2U′k̂ and r1Uk + r2Uk̂ > 0:25Uk + 0:25Uk̂ : (A.11) 

If ε�is sufficiently small, we can guarantee that r1 + r2 ≤ 1. Take any such ε�and define lottery ℓ′′ as the one that assigns probabil-
ity 0.25 each to ak and ak̂ and probability 0:5 to a1. Also, define lottery ℓ′ as the one that assigns probability r1 to ak, r2 to ak̂ , 
and probability 1� r1 � r2 to a1. Then, (A.10) follows from (A.11).

Define ℓ(t�i) � f (t′i , t�i) + δ(ℓ
′ � ℓ′′) where ℓ′ � ℓ′′ ≡ (ℓ′[a]� ℓ′′[a])a∈A. Because f (t′i , t�i) is in the interior of ∆(A) and both 

ℓ′ and ℓ′′ have finite supports, we can find a sufficiently small but positive δ�such that ℓ(t�i) ∈ ∆(A) and

ui(f (t′i , t�i), t′i ) > ui(ℓ(t�i), t′i ) and ui(ℓ(t�i), ti) > ui(f (t′i , t�i), ti):

This completes the proof of the proposition. w

Proof of Theorem 4. Pick a responsive SCF f. Clearly, if f satisfies IRM, then it satisfies weak IRM. We prove that if f satisfies 
weak IRM, then it must satisfy IRM.

Because weak IRM implies SIRBIC (Lemma 1) and f is responsive, it follows that f satisfies strict BIC, that is, Ui(f | ti) >

Ui(f ; t′i | ti) for all i ∈ I and ti, t′i ∈ Ti such that ti ≠ t′i .
Pick any unacceptable deception β. Because of weak IRM, β�must be weakly refutable. That is, there exist i ∈ I, ti ∈ Ti, and t′i ∈

βi(ti) satisfying t′i ¿
f
i ti such that for all ψi ∈ ∆(T�i × T) satisfying ψi(t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �

P
t̃∈Tψi(t�i, t̃) for 

all t�i ∈ T�i, there exists an SCF f ′ such that f ′(t̃i, ·) ∈ Yi[t̃i, f ] for all ̃ti ∈ Ti and
X

t�i, t̃

ψi(t�i, t̃)ui(f ′(t̃), (ti, t�i)) >
X

t�i, t̃

ψi(t�i, t̃)ui(f (t′i , t̃�i), (ti, t�i)):

Consider any belief φi ∈ ∆(T�i × T�i) such that φi(t�i, t̃�i) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �
P

t̃�i∈T�i
φi(t�i, t̃�i) for all t�i ∈ T�i.

Let ψ′i ∈ ∆(T�i × T) be such that ψ′i (t�i, t̃) � 0 whenever t̃i ≠ t′i and ψ′i (t�i, t̃) � φi(t�i, t̃�i) whenever t̃i � t′i . Then, by con-
struction, ψ′i (t�i, t̃) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �

P
t̃∈Tψ

′
i (t�i, t̃) for all t�i ∈ T�i. Therefore, it follows from weak refutabil-

ity of β�that there exists an SCF f ′′ such that f ′′(t̃i, ·) ∈ Yi[t̃i, f ] for all ̃ti ∈ Ti, and
X

t�i, t̃

ψ′i (t�i, t̃)ui(f ′′(t̃), (ti, t�i)) >
X

t�i, t̃

ψ′i (t�i, t̃)ui(f (t′i , t̃�i), (ti, t�i))

⇒
X

t�i, t̃�i

φi(t�i, t̃�i)ui(f ′′(t′i , t̃�i), (ti, t�i)) >
X

t�i, t̃�i

φi(t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)): (A.12) 

Pick any ɛ ∈ (0, 1) and define yɛ : T�i→ ∆(A) such that yɛ(t̃�i) � (1� ɛ)f ′′(t′i , t̃�i) + ɛf (t′i , t̃�i) for all t̃�i ∈ T�i. Because f ′′(t′i , ·)
∈ Yi[t′i , f ], it follows that yɛ ∈ Yi[t′i , f ] for all ɛ. Because of strict BIC of f and finiteness of Ti, there exists a sufficiently large ɛ < 1 
such that yɛ ∈ Yi[t̃i, f ] for all t̃i ≠ t′i . Thus, for a sufficiently large ɛ < 1, we have yɛ ∈ ∩t̃ i∈Ti

Yi[t̃i, f ]. Moreover, it follows from 
(A.12) that

X

t�i, t̃�i

φi(t�i, t̃�i)ui(yɛ(t̃�i), (ti, t�i)) >
X

t�i, t̃�i

φi(t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)):

Thus, f satisfies IRM. w

Appendix B. Equivalence Between Our IRM and (Strict) Interim Rationalizable Monotonicity in 
Bergemann and Morris [7]

Bergemann and Morris [7] formulates interim rationalizable monotonicity (referred to as BM’s-IRM. differently from us. It also 
defines a stricter condition, termed strict interim rationalizable monotonicity (referred to as BM’s-strict-IRM). We now argue 
that both these conditions are equivalent to IRM as defined in this paper.
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Recall that we define a deception as a profile of correspondences β � (β1, : : : ,βn) such that βi : Ti→ 2Ti and ti ∈ βi(ti) for all 
ti ∈ Ti and i ∈ I. That is, we restrict a deception to always include truthful reports. To present BM’s-(strict)-IRM, we need to first 
remove that restriction.

Thus, we define a weak deception as a profile of correspondences βw � (βw
1 , : : : ,βw

n ) such that βw
i : Ti→ 2Ti\{∅} for all i ∈ I. A 

weak deception βw is acceptable for an SCF f if, for all t, t′ ∈ T, t′ ∈ βw(t) ⇒ f (t) � f (t′); otherwise, βw is unacceptable for f.

Definition B.1. An SCF f satisfies BM’s-IRM if, for every weak deception βw that is unacceptable for f, there exist i ∈ I, ti ∈ Ti, and 
t′i ∈ β

w
i (ti) such that for all φi ∈ ∆(T�i × T�i) satisfying φi(t�i, t̃�i) > 0⇒ t̃�i ∈ β

w
�i(t�i) and πi(ti)[t�i] �

P
t̃�i∈T�i

φi(t�i, t̃�i) for all 
t�i ∈ T�i, there exists y ∈ ∩t̃ i∈Ti

Yw
i [t̃i, f ] such that
X

t�i, t̃�i

φi(t�i, t̃�i)ui(y(t̃�i), (ti, t�i)) >
X

t�i, t̃�i

φi(t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)):

The SCF satisfies BM’s-strict-IRM if, in addition, y ∈ ∩t̃ i∈Ti
Yi[t̃ i, f ].

Clearly, BM’s-strict-IRM implies BM’s-IRM. We now show that both of these are equivalent to IRM. However, first, we point 
out that BM’s-IRM implies SIRBIC.

Lemma B.1. If the SCF f satisfies BM’s-IRM, then f satisfies SIRBIC.

Proof. We leave the the proof of this lemma to the reader as it is similar to the proof of Lemma 1. w

Lemma B.2. IRM, BM’s-IRM, and BM’s-strict-IRM are all equivalent.

Proof. We prove the lemma in two steps. First, we argue that IRM implies BM’s-strict-IRM. Second, we argue that BM’s-IRM 
implies IRM. The result follows because BM’s-strict-IRM implies BM’s-IRM.

IRM implies BM’s-strict-IRM: Suppose f satisfies IRM. Pick any unacceptable weak deception βw. Then define the deception β�
as follows: βi(ti) � {ti} ∪ β

w
i (ti), for all ti ∈ Ti and i ∈ I. Because βw is unacceptable, it follows that β�is unacceptable. Then, by 

IRM, there exist i ∈ I, ti ∈ Ti, and t′i ∈ βi(ti) satisfying t′i ¿
f
i ti such that for all φi ∈ ∆(T�i × T�i) satisfying φi(t�i, t̃�i) > 0⇒ t̃�i ∈

β
�i(t�i) and πi(ti)[t�i] �

P
t̃�i∈T�i

φi(t�i, t̃�i) for all t�i ∈ T�i, there exists y ∈ ∩t̃ i∈Ti
Yi[t̃i, f ] such that

X

t�i, t̃�i

φi(t�i, t̃�i)ui(y(t̃�i), (ti, t�i)) >
X

t�i, t̃�i

φi(t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)):

Because t′i ∈ βi(ti) and t′i ¿
f
i ti, it must be that t′i ∈ βw

i (ti). Pick any φi ∈ ∆(T�i × T�i) satisfying φi(t�i, t̃�i) > 0⇒ t̃�i ∈ β
w
�i(t�i) and 

πi(ti)[t�i] �
P

t̃�i∈T�i
φi(t�i, t̃�i) for all t�i ∈ T�i. Because βw

�i(t�i) ⊆ β�i(t�i), for all t�i ∈ T�i, it follows that φi satisfies φi(t�i, t̃�i) >

0⇒ t̃�i ∈ β�i(t�i). Hence, there must exist y ∈ ∩t̃ i∈Ti
Yi[t̃i, f ] such that

X

t�i, t̃�i

φi(t�i, t̃�i)ui(y(t̃�i), (ti, t�i)) >
X

t�i, t̃�i

φi(t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)):

Thus, f satisfies BM’s-strict-IRM.
BM’s-IRM implies IRM: Suppose f satisfies BM’s-IRM. Pick any unacceptable deception β. As any deception is a weak decep-

tion, it follows that β�is also an unacceptable weak deception. Then by BM’s-IRM, we can find an i ∈ I, ti ∈ Ti, and t′i ∈ βi(ti) such 
that for all φi ∈ ∆(T�i × T�i) satisfying φi(t�i, t̃�i) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �

P
t̃�i∈T�i

φi(t�i, t̃�i) for all t�i ∈ T�i, there 
exists y ∈ ∩t̃ i∈Ti

Yw
i [t̃ i, f ] such that

X

t�i, t̃�i

φi(t�i, t̃�i)ui(y(t̃�i), (ti, t�i)) >
X

t�i, t̃�i

φi(t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)):

For any ɛ ∈ (0, 1), define yɛ(t�i) � (1� ɛ)y(t�i) + ɛ(
1
2 f (ti, t�i) +

1
2 f (t′i , t�i)), for all t�i ∈ T�i.

Now, if t′i ¿
f
i ti, then the following is true for all t̃ i ∈ Ti: either t̃ i ¿

f
i ti or t̃i ¿

f
i t′i . Then, from the facts that ɛ > 0, y ∈ Yw

i [t̃ i, f ], and 
f satisfies SIRBIC (Lemma B.1), it follows that Ui(f | t̃ i) >Ui(yɛ | t̃ i), for all t̃i ∈ Ti. Thus, yɛ ∈ ∩t̃ i∈Ti

Yi[t̃ i, f ]. Furthermore, if ɛ is small 
enough, then yɛ will also satisfy the following inequality:

X

t�i, t̃�i

φi(t�i, t̃�i)ui(yɛ(t̃�i), (ti, t�i)) >
X

t�i, t̃�i

φi(t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)):

Thus, if t′i ¿
f
i ti, then we can conclude that f satisfies IRM.

Therefore, what is left to argue is that t′i ¿
f
i ti. Suppose otherwise. Then f (t′i , t�i) � f (ti, t�i), for all t�i. Now consider the belief 

φ̃ i ∈ ∆(T�i × T�i) such that φ̃i(t�i, t′�i) � πi(ti)[t�i], if t�i � t′�i, and φ̃i(t�i, t′�i) � 0, if t�i ≠ t′�i. Recall that t�i ∈ β�i(t�i) by the defini-
tion of β. Thus, φ̃i(t�i, t̃�i) > 0⇒ t̃�i ∈ β�i(t�i) and πi(ti)[t�i] �

P
t̃�i∈T�i

φ̃i(t�i, t̃�i) for all t�i ∈ T�i. Hence, by BM’s-IRM, there 
exists ỹ ∈ ∩t̃ i∈Ti

Yw
i [t̃ i, f ] such that

X

t�i, t̃�i

φ̃i(t�i, t̃�i)ui(ỹ(t̃�i), (ti, t�i)) >
X

t�i, t̃�i

φ̃i(t�i, t̃�i)ui(f (t′i , t̃�i), (ti, t�i)):
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However, the previous inequality is equivalent to Ui(ỹ |ti) >Ui(f |ti), which contradicts ỹ ∈ Yw
i [ti, f ]. Hence, we must have t′i ¿

f
i ti, 

which completes the proof. w

Endnotes
1 Some authors refer to the former property as “common knowledge of rationality” and to the latter as the “rational-expectations assumption.” 
We remain neutral about such issues of terminology.
2 For belief-free games, Battigalli and Siniscalchi [5] defines ∆-rationalizability by imposing extra restrictions on the first-order beliefs, and 
Battigalli et al. [6] shows that (a suitably defined) ∆-rationalizability is equivalent to interim correlated rationalizability.
3 Although the authors have recently taken it down from their webpages, this draft still deserves much credit for some of the concepts we use, 
as explained in the sequel. Important related treatments were previously given for the case of virtual or approximate implementation (Abreu 
and Matsushima [1]), with its robust counterparts (Bergemann and Morris [8], Artemov et al. [2]; the latter paper using ∆-rationalizability). The 
different conclusions reached in Bergemann and Morris [8] and Artemov et al. [2] can be traced back to the different results in the two papers 
by Serrano and Vohra [39, 40], explained by the issue of negligibility of types that cannot be distinguished by their interim preferences. A recent 
paper, Kunimoto and Saran [23], studies the robust version of the implementation notion we use here. Ollár and Penta [31, 32] provide results 
for robust implementation using direct mechanisms when the agents commonly believe that types are drawn from identical distributions.
4 Our formulation of IRM differs from that in Bergemann and Morris [7]. However, the two conditions, as well as strict interim rationalizable 
monotonicity (strict IRM) also defined in Bergemann and Morris [7], are all equivalent (see Appendix B). Although Oury and Terceiux [33] for-
mulate strict IRM differently from Bergemann and Morris [7], it can be shown that those are also equivalent (the argument is similar to the one 
used to prove Lemma B.2 in Appendix B). IRM can also be seen as an incomplete information analogue of robust monotonicity (Bergemann and 
Morris [10]).
5 Oury and Tercieux [33] is mainly concerned with continuous partial Bayesian implementation. The paper shows that if an SCF is strictly 
continuously partially Bayesian implementable, then it must satisfy IRM. It follows from our results that strict continuous partial Bayesian 
implementation is even more difficult than interim rationalizable implementation. Di Tillio [17] shows that continuous implementation in 
interim rationalizable strategies is not more demanding than interim rationalizable implementation when the designer is restricted to use 
finite mechanisms. That is, if a finite mechanism implements an SCF in interim rationalizable strategies, then the same mechanism continu-
ously implements the SCF in interim rationalizable strategies. It remains an open question whether Di Tillio’s result extends to infinite mech-
anisms, such as the canonical mechanism that we construct to prove our sufficiency result.
6 See also Jain [21], which follows the approach in Mezzetti and Renou [27] of implementation via supports.
7 Kunimoto and Saran [23] come to a similar conclusion for robust implementation.
8 The fact that almost all previous papers in this literature have dealt with SCFs, as well as the fact that the issues under consideration are 
likely to be quite different (as our preliminary study of set-valued rules suggests) justify the restriction to functions in the current paper.
9 Similar notation will be used for products of other sets.
10 There are several reasons to consider stochastic SCFs. First, the stochastic SCFs provide a more general treatment because a deterministic 
SCF is a special case thereof, and the designer might be interested in implementing a stochastic SCF. Second, since randomness in players’ 
beliefs is natural in the context of rationalizability, the implementing mechanism might as well be stochastic. To the extent that the resulting 
outcome function of the mechanism corresponds to the SCF, we find it natural to include stochastic SCFs in the analysis. Finally, we wish to 
follow the literature (Bergemann and Morris [7], Oury and Tercieux [33]) in this assumption.
11 For instance, a complete information environment is given by a type space such that Ti�Tj for all i, j ∈ I, and the beliefs of any type ti ∈ Ti 
of player i ∈ I are such that πi(ti)[t�i] � 1 if tj� ti for all j ≠ i. In this case, T∗ � {t ∈ T : ti � tj, ∀i, j ∈ I}. Thus, at each state t ∈ T∗, every agent 
always believes with probability one that all other agents’ types are also the ones corresponding to t. Note that T∗ is not a singleton in a non-
trivial complete information environment: the true state in T∗ is common knowledge among the agents, but there are multiple states that the 
planner must consider.
12 The notion of equivalent SCFs is discussed in Jackson [19].
13 Unlike Dekel et al. [16], we do not have the payoff-relevant state space separately from the type space in our formulation of interim correlated 
rationalizability. We chose this specification to be consistent with most of the papers on implementation in incomplete information environments.
14 For our necessity result, we require that SΓ(T)i (ti)≠ ∅ for all ti. For sufficiency, our implementing mechanism has the same property.
15 We refer the reader to Section 7.1.1, where we provide an intuitive account for weak IRM in private values environments.
16 As noted in Endnote 4, Bergemann and Morris [7] formulate IRM slightly differently from us but the two conditions are equivalent; see Appendix B.
17 See Postlewaite and Schmeidler [36], Palfrey and Srivastava [34], and Jackson [19] for the necessity of BM for implementation in pure 
Bayesian equilibrium and Serrano and Vohra [41] and Kunimoto [22] for the necessity of mixed BM for implementation in mixed Bayesian 
equilibrium. Mixed BM is a strictly stronger condition than BM, as shown in Example 1 of Serrano and Vohra [41].
18 Note that T∗ � T in this case. Hence, f ≈ f̂ if and only if f (t) � f̂ (t) for all t ∈ T.
19 Suppose t′i ~f

i ti. For any ε ∈ [0, 1], define yε : T�i→ ∆(A) as follows: yɛ(t�i) � εa(i) + (1� ε)f (ti, t�i), for all t�i. Because of strategy proofness, we 
have the following: for all ε > 0: ui(yε(t�i), ti) > ui(f (t′i , t�i), ti), for all t�i. Because t′i ~f

i ti, it follows from SIRBIC and finiteness of T�i that there exists 
a sufficiently small but positive ε�such that Ui(f | t′i ) >Ui(yε | t′i ). Thus, we have found the required yε ∈ Yw

i [f , t′i ], implying COND-1 holds.
20 The full discussion of this example is available in our previous working paper version.
21 Our definition of well-behaved mechanisms is a natural extension of “the best response property” proposed by Jackson et al. [20]. That def-
inition says that every agent has a best response to every (pure) strategy profile of the other agents. The authors argue that in order for the 
“Nash” part of the solution to make sense, we should require the best response property (p. 482).
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22 Ollár and Penta [30] allow for general belief restrictions, subsuming the fixed type-space model as a special case. In the quasilinear setting, 
the authors provide a “moment condition” that is sufficient to generate transfers to implement a differentiable and responsive SCF in interim 
rationalizable strategies using the associated direct mechanism.
23 This condition features in Bergemann et al. [11]—for the rationalizable implementation of SCFs, albeit allowing general mechanisms.
24 The SCF f satisfies no total indifference if for all i ∈ I and ti ∈ Ti, there exist y, y′ ∈ ∩t̃ i∈Ti

Yw
i [t̃ i, f ] such that Ui(y |ti)≠ Ui(y′ | ti).

25 Oury and Tercieux [33] proves a similar result for three or more players, while imposing an extra condition, stronger than NWR.
26 The proof requires a slight modification of the mechanism constructed to prove Theorem 2; the mechanism is similar to the one con-
structed by Bergemann and Morris [7] in its proof of proposition 5, except that that mechanism is not countable because the players can 
report elements in the reward set and the set of lotteries, which are not necessarily countable. The detailed proof is available upon request.
27 We are able to drop t′¿f̂

i ti as part of the qualification in the hypothesis.
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