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Abstract

This paper studies inference on the average treatment effect in experiments in which treatment status
is determined according to “matched pairs” and it is additionally desired to adjust for observed, baseline
covariates to gain further precision. By a “matched pairs” design, we mean that units are sampled i.i.d.
from the population of interest, paired according to observed, baseline covariates and finally, within each
pair, one unit is selected at random for treatment. Importantly, we presume that not all observed, baseline
covariates are used in determining treatment assignment. We study a broad class of estimators based on a
“doubly robust” moment condition that permits us to study estimators with both finite-dimensional and
high-dimensional forms of covariate adjustment. We find that estimators with finite-dimensional, linear
adjustments need not lead to improvements in precision relative to the unadjusted difference-in-means
estimator. This phenomenon persists even if the adjustments are interacted with treatment; in fact, doing
so leads to no changes in precision. However, gains in precision can be ensured by including fixed effects
for each of the pairs. Indeed, we show that this adjustment is the “optimal” finite-dimensional, linear
adjustment. We additionally study two estimators with high-dimensional forms of covariate adjustment
based on the LASSO. For each such estimator, we show that it leads to improvements in precision relative
to the unadjusted difference-in-means estimator and also provides conditions under which it leads to the
“optimal’ nonparametric, covariate adjustment. A simulation study confirms the practical relevance of
our theoretical analysis, and the methods are employed to reanalyze data from an experiment using a
“matched pairs” design to study the effect of macroinsurance on microenterprise.
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1 Introduction

This paper studies inference on the average treatment effect in experiments in which treatment status is
determined according to “matched pairs.” By a “matched pairs” design, we mean that units are sampled
i.i.d. from the population of interest, paired according to observed, baseline covariates and finally, within each
pair, one unit is selected at random for treatment. This method is used routinely in all parts of the sciences.
Indeed, commands to facilitate its implementation are included in popular software packages, such as sampsi
in Stata. References to a variety of specific examples can be found, for instance, in the following surveys of
various field experiments: Donner and Klar (2000), Glennerster and Takavarasha (2013), and Rosenberger
and Lachin (2015). See also Bruhn and McKenzie (2009), who, based on a survey of selected development
economists, report that 56% of researchers have used such a design at some point. Bai et al. (2021) develop
methods for inference on the average treatment effect in such experiments based on the difference-in-means
estimator. In this paper, we pursue the goal of improving upon the precision of this estimator by exploiting

observed, baseline covariates that are not used in determining treatment status.

To this end, we study a broad class of estimators for the average treatment effect based on a “doubly
robust” moment condition. The estimators in this framework are distinguished via different “working models”
for the conditional expectations of potential outcomes under treatment and control given the observed,
baseline covariates. Importantly, because of the double-robustness, these “working models” need not be
correctly specified in order for the resulting estimator to be consistent. In this way, the framework permits
us to study both finite-dimensional and high-dimensional forms of covariate adjustment without imposing
unreasonable restrictions on the conditional expectations themselves. Under high-level conditions on the
“working models” and their corresponding estimators and a requirement that pairs are formed so that units
within pairs are suitably “close” in terms of the baseline covariates, we derive the limiting distribution of
the covariate-adjusted estimator of the average treatment effect. We further construct an estimator for the

variance of the limiting distribution and provide conditions under which it is consistent for this quantity.

Using our general framework, we first consider finite-dimensional, linear adjustments. For this class of
estimators, our main findings are summarized as follows. First, we find that such adjustments need not
lead to improvements in terms of precision upon the unadjusted difference-in-means estimator. This finding
echoes similar findings by Yang and Tsiatis (2001) and Tsiatis et al. (2008) in settings in which treatment
is determined by i.i.d. coin flips, and Freedman (2008) in a finite population setting in which treatment is
determined according to complete randomization. See Negi and Wooldridge (2021) for a succinct treatment
of that literature. More surprisingly, we find that this phenomenon persists even if the adjustments are
interacted with treatment. In fact, doing so leads to no changes in precision. In this sense, our results
diverge from those in Lin (2013), who found in the same setting studied by Freedman (2008) that such
interactions ensured gains in precision relative to the unadjusted difference-in-means estimator. We show,
however, that gains in precision can be ensured by including fixed effects for each of the pairs. Similar
results have been obtained by Fogarty (2018) in a finite population framework for the estimation of the
sample average treatment effect. Our analysis further reveals that the resulting covariate-adjusted estimator
is “optimal” among all finite-dimensional, linear adjustments. In particular, further interaction of these
adjustments with treatment leads to no further improvements. These results support the simulation-based

findings of Bruhn and McKenzie (2009), who advocate for including fixed effects for each of the pairs when



analyzing such experiments. We emphasize, however, that the usual heteroskedascity-robust standard errors
for the corresponding ordinary least squares estimator that naively treats the data (including treatment

status) as if it were i.i.d. need not be consistent for the limiting variance derived in our analysis.

We then use our framework to consider high-dimensional adjustments based on the LASSO. We study, in
particular, two estimators of this form. The first estimator is motivated by the observation that the finite-
dimensional, linear adjustment that includes fixed effects for each of the pairs is identical to the intercept
term in the linear regression of the pairwise differences in outcomes on the pairwise differences in covariates.
The first estimator we consider is therefore defined as the intercept term in a LASSO-penalized regression
of the pairwise difference in the outcomes on the pairwise differences in the covariates. As with its finite-
dimensional counterpart, we show that this estimator is more precise than the unadjusted difference-in-means
estimator. The second estimator we consider first obtains an intermediate estimator by using the LASSO
to estimate the “working model” for the relevant conditional expectations. In a finite population setting
in which treatment is determined according to complete randomization, Cohen and Fogarty (2020) show
that such an estimator is necessarily more precise than the unadjusted difference-in-means estimator. When

“matched pairs,” however, this intermediate estimator need not be

treatment is determined according to
the case. We therefore consider, in an additional step, an estimator based on the finite-dimensional, linear
adjustment described above that uses the predicted values for the “working model” as the covariates and
includes fixed effects for each of the pairs. We show that the resulting estimator improves upon both the
intermediate estimator and the unadjusted difference-in-means estimator in terms of precision. Moreover,
we provide conditions under which both of these high-dimensional adjustments attain the relevant semi-

parametric efficiency bound derived in Armstrong (2022).

The remainder of our paper is organized as follows. In Section 2, we describe our setup and notation.
In particular, there we describe the precise sense in which we require that units in each pair are “close”
in terms of their baseline covariates. In Section 3, we introduce our general class of estimators based on a
“doubly robust” moment condition. Under certain high-level conditions on the “working models” and their
corresponding estimators, we derive the limiting behavior of the covariate-adjusted estimator. In Section
4, we use our general framework to study a variety of estimators with finite-dimensional, linear covariate
adjustment. In Section 5, we use our general framework to study two estimators with high-dimensional
covariate adjustment based on the LASSO. In Section 6, we examine the finite-sample behavior of tests
based on these different estimators via a small simulation study. We find that covariate adjustment can lead
to considerable gains in precision. Finally, in Section 7, we apply our methods to reanalyze data from an

experiment using a “matched pairs” design to study the effect of macroinsurance on microenterprise.

2 Setup and Notation

Let Y; € R denote the (observed) outcome of interest for the ith unit, D; € {0, 1} be an indicator for whether
the ith unit is treated, and X; € R¥* and W; € R*» denote observed, baseline covariates for the ith unit;
X; and W; will be distinguished below through the feature that only the former will be used in determining
treatment assignment. Further denote by Y;(1) the potential outcome of the ith unit if treated and by Y;(0)

the potential outcome of the ith unit if not treated. The (observed) outcome and potential outcomes are



related to treatment status by the relationship
Y = Yi(1)D; + Yi(0)(1 — D;) . (1)

For a random variable indexed by i, A;, it will be useful to denote by A™ the random vector (Ay, ..., As,).
Denote by P, the distribution of the observed data Z(™, where Z;, = (Y;,D;, X;,W;), and by @, the
distribution of U™ where U; = (Y;(1),Y;(0), X;, W;). Note that P, is determined by (1), Q,, and the
mechanism for determining treatment assignment. We assume throughout that U(") consists of 2n i.i.d.
observations, i.e., @, = @, where Q is the marginal distribution of U;. We therefore state our assumptions
below in terms of assumptions on ) and the mechanism for determining treatment assignment. Indeed,
we will not make reference to P, in the sequel, and all operations are understood to be under ) and the
mechanism for determining the treatment assignment. Our object of interest is the average effect of the

treatment on the outcome of interest, which may be expressed in terms of this notation as

A(Q) = EfYi(1) = Y3(0)] . (2)

We now describe our assumptions on Q). We restrict @ to satisfy the following mild requirement:
Assumption 2.1. The distribution @ is such that
(a) 0 < E[Var[Y;(d)|X;]] for d € {0, 1}.
(b) E[Y?(d)] < oo for d € {0,1}.

(c) E[Yi(d)|X; = x] and E[Y(d)|X; = ] are Lipschitz for d € {0, 1}.

Next, we describe our assumptions on the mechanism determining treatment assignment. In order to
describe these assumptions more formally, we require some further notation to define the relevant pairs of

units. The n pairs may be represented by the sets

{m(2j —1),7n(2j)} for j=1,...,n,

where m = Wn(X(”)) is a permutation of 2n elements. Because of its possible dependence on X, 7
encompasses a broad variety of different ways of pairing the 2n units according to the observed, baseline
covariates X (™). Given such a 7, we assume that treatment status is assigned as described in the following

assumption:

Assumption 2.2. Treatment status is assigned so that (Y (1), Y™ (0), W) 1. D|X ™ and, condi-

tional on X (") (Dr(2j-1), Dr(2jy),7 = 1,...,n are i.i.d. and each uniformly distributed over the values in

{(0,1),(1,0)}.

Following Bai et al. (2021), our analysis will additionally require some discipline on the way in which
pairs are formed. Let || - ||2 denote the Euclidean norm. We will require that units in each pair are “close*

in the sense described by the following assumption:



Assumption 2.3. The pairs used in determining treatment status satisfy

1 P
- Z [ X725y — Xr2j—1)lla = 0

1<j<n

for r € {1,2}.

It will at times be convenient to require further that units in consecutive pairs are also “close” in terms of
their baseline covariates. One may view this requirement, which is formalized in the following assumption,

as “pairing the pairs® so that they are “close® in terms of their baseline covariates.

Assumption 2.4. The pairs used in determining treatment status satisfy

1 P
- > I Xrjor) = Xngaj—pll3 =0

1<i<13%]

for any k € {2,3} and ¢ € {0,1}.

Bai et al. (2021) provide results to facilitate constructing pairs satisfying Assumptions 2.3-2.4 under weak
assumptions on (. In particular, given pairs satisfying Assumption 2.3, it is frequently possible to “re-order“
them so that Assumption 2.4 is satisfied. See Theorem 4.3 in Bai et al. (2021) for further details. As in Bai
et al. (2021), we highlight the fact that Assumption 2.4 will only be used to enable consistent estimation of

relevant variances.

3 Main Results

To accommodate various forms of covariate-adjusted estimators of A(Q) in a single framework, it is useful
to note it follows from Assumption 2.2 that for any d € {0,1} and any function mg,,, : R*s x R*» — R such
that E[|mg,n(X;, W;)|] < oo,

ERI{D; = d}(Y; — man(Xi, W;)) + man (X, Wy)] = E[Y;(d)] . (3)

We note that (3) is just the augmented inverse propensity score weighted (AIPW) moment for E[Y;(d)]
in which the propensity score is 1/2 and the conditional mean model is mg,(X;, W;). Such a moment is
also “double robustness.” As the propensity score for the “matched pairs” design is exactly 1/2, we do not
require the conditional mean model to be correctly specified, i.e., mq,(X;, W;) = E[Y;(d)| X;, W;]. See, for
instance, Robins et al. (1995). Intuitively, mq, is the “working model” which researchers use to estimate
E[Y;(d)|X;,W;], and can be arbitrarily misspecified because of (3). Although mg, will be identical across
n > 1 for the examples in Section 4, the notation permits mq,, to depend on the sample size n in anticipation
of the high-dimensional results in Section 5. Based on the moment condition in (3), our proposed estimator
of A(Q) is given by

Ap = fn(1) = in(0) , (4)



where, for d € {0,1},

nld) = 5= (20{D: = dY(Y; — g (X5, W) + g (Ko, W) 5)

1<i<2n
and 7hg,, is a suitable estimator of the “working model“ mg,, in (3).
We require some disciplines on the behavior of mg,, for d € {0,1} and n > 1:

Assumption 3.1. The functions mgy,, for d € {0,1} and n > 1 satisfy

(a) For d € {0,1},

liminf F

n—oo

Var

Yi(d) — %(mlm(Xi,Wi) + mom(Xi,Wi))‘XiH > 0.

(b) For d € {0,1},
lim limsup E[m2 ,, (X;, W) I{|ma.n(Xi, W;)| > A} =0 .
A—=00 p—oo ’
(¢) Elmgn(X;, W)|X; = z], E[min(Xi, Wi)|X; = z], and Elmgn(X;, W;)Y;(d)|X; = z] for d € {0,1}, and
E[mq n(Xi, Wi)mo (X, W;)|X; = x] are Lipschitz uniformly over n > 1.

Assumption 3.1(a) is an assumption to rule out degenerate situations. Assumption 3.1(b) is a mild
uniform integrability assumption on the “working models.” If mg, = mgq for d € {0,1}, then it is satisfied
as long as E[m3(X;,W;)] < oo. Assumption 3.1(c) ensures that units that are “close” in terms of the

observed covariates are also “close” in terms of potential outcomes, uniformly across n > 1.

Theorem 3.1 below establishes the limit in distribution of A,. We note that the theorem depends on

high-level conditions on mg,, and 7g4,,. In the sequel, these conditions will be verified in several examples.

Theorem 3.1. Suppose Q satisfies Assumption 2.1, the treatment assignment mechanism satisfies Assump-
tions 2.2-2.3, and mq ., for d € {0,1} and n > 1 satisfy Assumption 3.1. Further suppose Mg, satisfies
1

e > (2Di = 1) (g (X3, Wi) = man(Xs, W5)) Zo. (6)

Then, A, defined in (4) satisfies

ViR, = AQ)) 4
@ N

where 07(Q) = 07 ,(Q) + 03(Q) + 03(Q) with

0,1), (7)

9%.0(Q) = 3 B [Vax [BIYi(1) + Yi(0) [ Xe, W] — (ma (X, W) + (X2, W)X

@ - ) i

03(Q) = E[Var[Y;(1)|X;, W;] + Var[;(0)| X;, Wi]] .



In order to facilitate the use of Theorem 3.1 for inference about A(Q), we next provide a consistent

estimator of ¢, (Q). Define

. 1
=Y — §(m1,n(Xi7 W;) + o, (Xs, W5))
R 1 = =
. = - Z (Yej—1) — Ya(2i)?
1<j<n
~ 2 ~ ~ ~ ~
)\n = H (Y'n-(4j73) - Y7r(4j72))(Y7r(4j71) - Yﬂ—(4j))(Dﬂ—(4j,3) — D7r(4j72))<D7r(4j71) — D7r(4j)) .
1<5< %

The variance estimator is given by )
6—3 = Az - 5(5‘71 + Ai) . (8)

Note it can be shown similarly as in Remark 3.9 of Bai et al. (2021) that 62 in (8) is nonnegative.

Theorem 3.2 below establishes the consistency of this estimator and its implications for inference about
A(Q). In the statement of the theorem, we make use of the following notation: for any scalars a and b,

[a &£ b] is understood to be [a — b, a + b].

Theorem 3.2. Suppose Q satisfies Assumption 2.1, the treatment assignment mechanism satisfies Assump-

tions 2.2-2.3, and mgq, for d € {0,1} and n > 1 satisfy Assumption 3.1. Further suppose g, satisfies (6)

and .
5 2 (an(Xi Wi) = ma (X0, Wi)? 5 0. 9)
n 1<i<2n
Then,
On_ Py
on(Q)

Hence, (7) holds with &, in place of 0,(Q). In particular, for any a € (0,1),

P{A(Q)e [Ani&n@—l (1—%)”%1—04,

where ® is the standard normal c.d.f.
Remark 3.1. An important and immediate implication of Theorem 3.1 is that 02 (Q) is minimized when

EY;(0) +Yi(1)| X, Wi] — E[Y;(0) + Yi(1)[X,] =
Mo, (Xs, Wi) + man(Xs, Wi) — Elmo o (Xs, Wi) + man (X5, W3)| X5]

with probability one. In other words, the “working model” for E[Y;(0)+Y;(1)|X;, W] given by mo ,, (X, W;)+
m1. (X, W;), need only be correct “on average” over the variables that are not used in determining the pairs.

For such a choice of mq ,,(X;, W;) and mq ,(X;, W;), 02(Q) in Theorem 3.1 becomes simply
1
5 Var [B [¥i(1) = ¥:(0) [ Xs, Wi] | + EIVar{Yi(1)]X, Wi + Var{Yi(0) X, Wil]

which agrees with the variance obtained in Bai et al. (2021) when both X; and W; are used in determining

the pairs. Such a variance also achieves the efficiency bound derived by Armstrong (2022). ®



Remark 3.2. Following Bai et al. (2022), it is straightforward to extend the analysis in this paper to the case
with multiple treatment arms and where treatment status is determined using a “matched tuples” design,

but we do not pursue this further in this paper. ®

4 Linear Adjustments

In this section, we consider linearly covariate-adjusted estimators of A(Q) based on a set of regressors
generated by X; € R*s and W; € RFv. To this end, define ¥; = ¥(X;, W;), where ¢ : R¥s x RF» — RP.

We impose the following assumptions on the function :

Assumption 4.1. The function ¢ is such that

(a) no component of 9 is constant and E[Var[y);|X;]] is nonsingular.

(b) Var[y;] < oo.

(¢) E[i|X; = 2], B[} X; = z], and E[¢;Y;(d)|X; = z] for d € {0,1} are Lipschitz.

Assumption 4.1 is analogous to Assumption 2.1. Note, in particular, that Assumption 4.1(a) rules out

situations where 1; is a function of X; only. See Remark 4.2 for a discussion of the behavior of the covariate-

adjusted estimators in such situations.

4.1 Linear Adjustments without Pair Fixed Effects
Consider the following linear regression model:
Yi=a+AD; + B+ ¢ . (10)

Let araive, Anaive and fnaive denote the OLS estimators of a, A, and S in (10). It follows from direct

calculation that

PO 1 P
Analve I )/:L _ / naive 2Dz _ 1 .
=~ 3 (Y- g 2D - )

1<i<2n

Therefore, Abve satisfies (4)(5) with

fign(Xi, W;) = 1] Breve .

Theorem 4.1 establishes (6) and (9) for a suitable choice of mg,,(X;, W;) for d € {0,1} and, as a result,

the limiting distribution of A2¥e and the validity of the variance estimator.

Theorem 4.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2-2.3. Further suppose v satisfies Assumption J.1. Then, as n — oo,

Bpave Ly grave = Var[yh] ™! Covlapy, Yi(1) + Yi(0)] -



Moreover, (6), (9), and Assumption 3.1 are satisfied with
Man(Xi, Wi) = ;8"

ford e {0,1} and n > 1.

Remark 4.1. Freedman (2008) studies regression adjustment based on (10) when treatment is assigned
by complete randomization instead of a “matched pairs” design. In such settings, Lin (2013) proposes

adjustment based on the following linear regression model:

Y, =a+AD; + (¥i — ¥n)'y + Di(Yi — ) n+ € (11)
where )
#M = 5%; EE: ¢i~
1<i<2n

Let @it Aint 4int pint denote the OLS estimators for o, A,~,n in (11). It is straightforward to show A
satisfies (4)—(5) with

11,0 (Xi, W3) = (5 — i n (1)) (5 + i)
mo,n(Xia Wz) = ("/’z - ﬂw,n(o))'%nt )

where
R 1
fiyn(d) = - Z I{D; = d}i; .
1<i<2n
It can be shown using similar arguments to those used to establish Theorem 4.1 that (6) and Assumption

3.1 are satisfied with
Man(Xi, Wi) = (¢; — E[;]) Var[y;] ! Cov[y, Y;(d)]

for d € {0,1} and n > 1. Tt thus follows by inspecting the expression for ¢2(Q) in Theorem 3.1 that the

limiting variance of A™ is the same as that of A"V based on (10). m

4.2 Linear Adjustments with Pair Fixed Effects

Remark 4.1 implies that in “matched pairs” designs, including interaction terms in the linear regression does
not lead to an estimator with lower limiting variance than the one based on the linear regression without
interaction terms. It is therefore interesting to study whether there exists a linearly covariate-adjusted
estimator with lower limiting variance than the one based on (10) and (11). To that end, consider instead

the following linear regression model:

Y;=AD;+ 4B+ Y 0;I{i € {m(2j — 1), 7(2))}} + € - (12)

1<j<n



Let Affi Bgfe, and 4, », 1 < j < n denote the OLS estimators of A, 3, 6;, 1 < j <n in (12). It follows from
the Frisch-Waugh-Lovell theorem that

Arfe = (Y; — ¥l B) (2D, — 1) .

1<i<2n

SRS

Therefore, AP satisfies (4)-(5) with
i (Xi, Wi) = 4685

Theorem 4.2 establishes (6) and (9) for a suitable choice of mg ,(X;, W;),d € {0,1} and, as a result, the
limiting distribution of Affe and the validity of the variance estimator.

Theorem 4.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2-2.3. Then, as n — oo,
Brie 55 gete = (2B[Varly;| X,)) 7 E[Covlys, Yi(1) + Y;(0)|X]] -
Moreover, (6), (9), and Assumption 3.1 are satisfied with
Ma.n(Xi, W) = . gPfe

ford e {0,1} and n > 1.

Remark 4.2. When 1 is restricted to be a function of X; only, then Agfe coincides to first order with the

unadjusted difference-in-means estimator defined as

N o1 1
R SRCIE) 13

1<i<2n 1<i<2n

To see this, suppose further that 1 is Lipschitz and that Var[Y;(d)|X; = z],d € {0,1} are bounded. The
proof of Theorem 4.2 reveals that AP and P coincide with the OLS estimators of the intercept and
slope parameters in a linear regression of (Yr(2;) — Yr(2j-1))(Dr(25) — Dr(2j—1)) on a constant and (¢x(2;) —
Yr2i-1))(Dr(25) — Dr(2j—1))- Using this observation, it follows by arguing as in Section S.1.1 of Bai et al.
(2021) that

VR(ARF = A(Q)) = V(AR — A(Q)) +op(1) .

See also Remark 3.8 of Bai et al. (2021). m

Remark 4.3. Note in the expression of ¢2(Q) in Theorem 3.1 only depends on mgn,(X;, W;),d € {0,1}
through ain(Q). With this in mind, consider the class of all linearly covariate-adjusted estimators based on
i, 1e., mgn(X;, W;) = ¢5(d). For this specification of mg,(X;, W;),d € {0,1},

01 ,(Q) = E[(E[Yi(1) + Y;(0)| Xy, Wi] — E[Y;(1) + Y;(0)|Xi] — (¥ — E[vs]Xa))"(B(1) + 5(0)))?] -
It follows that among all such linear adjustments, o2 (Q) in (7) is minimized when

B(1) + B(0) = 257 .



This observation implies that the linear adjustment with pair fixed effects, i.e., Agfe7 yields the optimal linear
adjustment in the sense of minimizing 2 (Q). Its limiting variance is, in particular, weakly smaller than the
limiting variance of the unadjusted difference-in-means estimator defined in (13). The same limiting variance
is attained by mg,(X;, W;) = ¢;B(d) + ha(X;) for d € {0,1}. On the other hand, the covariate-adjusted
estimators based on (10) or (11), i.e., Aff”i"e and A;nt, are in general not optimal among all linearly covariate-
adjusted estimators based on ;. In fact, the limiting variances of these two estimators may even be larger
than that of the unadjusted difference-in-means estimator. Simulation evidence in Section 7 illustrates such
a phenomenon in an example. In this sense, these estimators suffer from a counterpart to the critique raised
by Freedman (2008). ®

Remark 4.4. Even though Agfe can be computed via ordinary least squares estimation of (12), we emphasize
that the usual heteroskedascity-robust standard errors that naively treats the data (including treatment
status) as if it were i.i.d. need not be consistent for the limiting variance derived in our analysis. See Bai
et al. (2022) for details.

Remark 4.5. One can also consider the estimator based on the following linear regression model:

Y, =AD; + (¢; — @n)’v + D;(v; — ﬂw,n(l))/n + Z ejf{i e{n(2j—1),7(2§)}} + e . (14)

1<j<n

Let Aint—pfe gyint—pfe pint—pfe jenote the OLS estimators for A,~,n in (14). It is straightforward to show
Aint—pfe gatisfies (4)-(5) with

1,0 (Xiy Wi) = (3 — fig,n (1)) P
10, (Xiy Wi) = (i = fig,n(0))' (7 7PF = 4;0¢7PF)

Following similar arguments to those used in the proof of Theorem 4.1, we can establish that (6) and

Assumption 3.1 are satisfied with

mi (X, Ws) = (¢ — E[wi])/nint—pfe
Mon(Xs, Wi) = (1b; — E[iy])! (™ Pfe — yint—pfey

where

ymtPle — (B[Var(y; | X;]]) "' E[Cov([iy, Y;(1) — Y;(0)|X,]]
nint—pfc — (E[Var[wzIXl]])_lE[COV[w“Y;(l)‘Xl]]

Because 2pint—pfe _ pint—pfe — 9gpfe it follows from Remark 4.3 that the limiting variance of Aint—pfe jg

identical to the limiting variance of Agfe. |
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5 High-Dimensional Adjustments

In this section, we study covariate adjustments based on high-dimensional regressors. Such settings can arise
if the covariates W; are high-dimensional or if the regressors include many transformations of X; and W;.
To accommodate situations where the dimension of W; increases with n, we add a subscript and denote
it by W,,; instead. Let k, , denote the dimension of W, ;. For n > 1, let ¢,,; = ¥, (X;, W,;), where
P : RF» x R¥wn — RP» and p,, will be permitted below to be possibly much larger than n.

In what follows, we propose two distinct LASSO-based high-dimensional counterparts to Agfe studied in
Section 4.2. The first method is motivated by the observation in Section 4.2 that APfe satisfies (4)—(5) with

Tan(Xi, W;) = laRe

where Bgfe can be obtained, as described in Remark 4.2, through OLS regression of the pairwise differences in
the outcomes on a constant and the pairwise differences in the covariates. For our first method, we therefore
consider a LASSO-penalized version of this same procedure. As explained further below in Theorem 5.1,
when, for d € {0,1}, mg(X;, W;) is sufficiently well approximated by a sparse linear function of 4, ;, the
resulting estimator, Aﬁd’pd, is optimal in the sense that it minimizes the limiting variance in Theorem 3.1.
Moreover, when this is not the case, its limiting variance is still weakly smaller than the limiting variance of

the unadjusted difference-in-means estimator.

The second method is a two-step method in the spirit of Fogarty (2018). In the first step, an intermediate

hd

estimator, A;¢,

mation to my,(X;, W;). As explained further below in Theorem 5.2, when, for d € {0,1}, mgn,(X;, W;) is

sufficiently well approximated by a sparse linear function of 1, ;, such an estimator is also optimal in the

is obtained using (4) with a “working model” obtained through a LASSO-based approxi-

sense that it minimizes the limiting variance in Theorem 3.1. When this is not the case, however, for reasons
analogous to those put forward in Remark 4.2, it need not have a limiting variance weakly smaller than the
unadjusted difference-in-means estimator. In a second step, we therefore consider an estimator based on
OLS estimation of a version of (12) in which the covariates v; are replaced by the LASSO-based estimates of
man (X, W;) for d € {0,1}. The resulting estimator, A}T‘Ld_f, has limiting variance weakly smaller than that
of the intermediate estimator and thus remains optimal in the same sense. Moreover, like A%d*pd, it too
has limiting variance weakly smaller than the unadjusted difference-in-means estimator. Some comparisons

between Ahd=Pd and Ahd=f are described in Remark 5.5.

Before proceeding, we introduce some additional notation that will be required in our formal description
of the methods. To this end, define

pa(X;) = E[Y;(d)| X
U(X;) = E[tn | Xi]

1/}77,,1' = ’l/)n,i - \II(X’L) .

We denote by 9, ;; and 1/37”1 the l[the components of v, ; and 15,“, respectively. For a vector a € R* and

11



0 < p < 00, recall that

faly = (32 Jau)”

1<I<k
where it is understood that |lallo = >°; ;<) [{ar # 0} and ||allsc = sup;<;<y, |ai|. Using this notation, we
further define

En = sup [¥n,i(z, W)l -
(z,w)xsupp(X;)xsupp(W;)

5.1 First LASSO-based Adjustment

Define )
(Gpd=d Bhd=Pd) € argmin = Y (byy; —a— 6, ;)% + APY Q0 (15)
a€R,bERPn T 155<n ’
where
dv,j = (Dr2j—1) — Dr2j)) Yr(2j-1) — Yr(25))
0ypj = (Dr2j—1) = Dr2j)) Wn,x2i—1) = Ynn2i)) >
Abd—pd j5 5 penalty parameter that will be disciplined by the assumptions below, €, = diag(@n.1, - ,@n.p,, )

is a diagonal matrix, and @, ; is the penalty loading for the ith regressor. For some ¢ and ¢, we require that

0 <c<liminf min @,; <limsup max @,; <¢ < oo (16)
n—oo 1<I<p, n—oo 1<I<ps,

with probability one. Let A}ﬁd_pd denote the estimator in (4) with My (X, Whi) = Mo n (X, Whi) =

apd=Pd 44y Brd=Pd. Because there is no penalty term for a in (15), Ahd—Pd = gpd=pd,

Our analysis of this estimator will require the following assumptions. In our statement of the assumptions,

we will make use of the quantity (agdn pd, gil—pd), which will be assumed to satisfy
hd—pd hd—pd
Pt = mae (18557 o (1)
and
IB[(L 4 ) ensy P ()] [loo = oA PY) (18)
where

e T (d) = Yild) — gy = 90

n,i

It is instructive to note that (17) requires ﬁhd pd

to be sparse and (18) is the subgradient condition for a ¢;-
penalized regression of the outcome Y;(d) on 4, ; when the penalty is of order o(A24=Pd). If p, = o(n), then
both conditions are satisfied for the Bhd pd equal to the coefficients of a linear projection of Y;(d) onto 1;71 i
When p,, > n, but E[Y;(d)|X;, W;] is approximately sparse in the sense that there exists some sparse 37,
with maxgego,1y 187 ,/lo < n such that the approximation error |E[Y;(d)| X, Wi — n}iﬁd7n| is sufficiently

small, then (17) and (18) are satisfied for 5hd pd _ Bin- We emphasize, however, these conditions can still

12



hold when E[Y;(d)|X;, W;] is neither approximately sparse nor linear in 1, ;. We additionally require that

hmsup max ||6dd pd

0o < 00 . 19
msup max. |5 (19)

hd—pd and )\hd pd

Further restrictions on ﬁ will be imposed through a combination of the assumptions below.

We now proceed with the statement of our assumptions. The first assumption collects a variety of moment

conditions that will be used in our formal analysis:

Assumption 5.1. (a) For some ¢ > 2 and constant Cf,
Elld ; 11X:] <
il;}; 12%};71 Hwn,ul” z] >~ Cl
hd-pd
Sup|1)/)nz d| < ¢

sup | E[Y;(a)| Xi, Wil < C1

n>1
with probability one.

(b) For some c¢q, o, 7, the following statements hold with probability one:

S > Eleh (@) X] <o < o0

max 2
def0,1},1<i<pn 2n %
{01} 1<i<p 1<i<2n

D) d)] <cp <
G

min Var[Y;(d) — ¢, ;(B1% P + Ao P4)/2] = % > 0

n,s

de{0,1}
1 -
in — L — . >g

\min — 1<ZZ<:2n I{D; = d} Var[th i €n.:(d)| X;] > 0* > 0

: 1 72 n n n
Bin Z E[} 0y D™, XM E[€ 0, 1) Dr(2j—1)| D™, XM > 0% > 0

1<j<n

.1 "

min - — Z E[w?Lﬂ'Q] 1)l|D X( )}E[ €n,m(25) 71'(2_7)|D ™) X( )] ZQ— >0

Ehn i 16n.i(d)|X;]] > o? .
1<l<pn,1dn€{0 1}V&I‘[ [wn,z,len,z(d” z]]_Q' >0

Assumption 5.1(a)—(b) are standard in the high-dimensional estimation literature; see, for instance, Belloni
et al. (2017). The last four inequalities in Assumption 5.1(b), in particular, permit us to apply the high-

dimensional central limit theorem in Chernozhukov et al. (2017, Theorem 2.1).

As in the preceding sections, we will additionally require some discipline on the way in which pairs are
formed. As before, we will require that units in each pair are “close” in the sense described by the first
part of the following assumption, but we will additionally require a Lipschitz-like condition that will play
the role of Assumption 2.1(c). Bai et al. (2021) provide algorithms ensuring that part (a) is satisfied with

¢ = O(n~Y(k2)) under weak assumptions on the distribution of X;.
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Assumption 5.2. (a) For some (,,

1/2

= Z | X2y — Xﬂ(zj_l)H; < +/Var[||X;||2]¢, with probability one .

(b) For some L > 0 and any z; and x5 in the support of X;, we have

(W (1) — U(22)) B35 P4 < Llfwy — a2l]2 -

We next specify our restrictions on the penalty parameter \Rd—pd,

Assumption 5.3. (a) For some ¢¢,, — oo,

0.1
hd—pd _ 211
& tn (\/ﬁ ( 210g(n)pn> * C”) ’

where ¢, is as in Assumption 5.2(a).

(b) Z2(log(p, vV n))"/n — 0, £4,s89=Pdlog(p, V n)/\/n — 0, and shd—pd logl/Q(pn vV n)llyCn — 0.

We note that the first three requirements in Assumption 5.3(b) allow p, to be much greater than n. If
Cn = O(n~Y (k) then the last requirement in Assumption 5.3(b) implies shd—Pd = o(n!/(2ke)),

Finally, as is common in the analysis of ¢;-penalized regression, we require a “restricted eigenvalue”
condition. See, for instance, Belloni et al. (2017). This assumption permits us to apply Bickel et al. (2009,

Lemma 4.1) and establish the error bounds for

[ahA=pd — ah=pd] 4| hdpd _ ghApd||, o

2
~hd—pd hd—pd 2hd—pd hd—pd
Z (an P -0y P +6:b,](ﬁn P _B’ri P )) ’

1<j<n

1
n

where =Pt = a1 — agi P and GiATPe = (8157 + G5 /2.

Assumption 5.4. For some x; > 0, ko and ¢, — oo, the following statements hold with probability

approaching one:

. (1 ..
inf B (Ivli3) 11/(" > 5w,j5§p,j>02fﬁ

hd d
de{0,1},veRPnt+1:||v]o<(sn" P +1)L, 1<j<n

_ 1 vy
sup (Il13) 1v'<n > 5¢,j5§p,j>vémz,

de{0,1},veRPrt1||v[ o< (sh4Pd41)e, 1<j<n
Iy _ / /
where 0y ; = (1,0;, ;)"

Using these assumptions, the following theorem characterizes the behavior of Agd’f’d:

Theorem 5.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-
sumptions 2.2-2.3. Further suppose Assumptions 5.1-5.4 and (16) — (19) hold. Then, (6), (9), and As-

sumption 3.1 are satisfied with Mg, = G247Pd + zb;’iBgd*pd and mg,n(Xi, Wy,;) = ahd=pd +¢;’iﬂ2d7pd for
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d € {0,1} and n > 1. Moreover, the variance of A?Ld_pd, denoted by ohd—Pd2 satisfies

hd—pd,2 na,2
—op®*) <0.

lim sup(o,,
n—oo

If we further assume the true specification is approzimately sparse, i.e., there exists B ,, such that |\5§7n||1
O(sn), BIYi(d)|Xi,Wi] = aj,, + 4,85, + Rui and E[R}, ;] = o(1), then ohd=pd:2 gchieves the minimum

variance, i.e.,

lim opt™P4? = 03(Q) + 03(Q) -

n— oo

Remark 5.1. If the additional covariates W, ; are fixed-dimensional, and 1, ; contains sieve bases of
(Wi, Xi), then approximate sparsity holds under appropriate smoothness conditions on the conditional ex-
pectation. Under these circumstances, Theorem 5.1 implies the LASSO-based adjustment achieves minimum
variance derived in Remark 3.1, which achieves the semiparametric efficiency bound derived by Armstrong
(2022). m

Remark 5.2. In practice, we choose
= +/loglogn/5

and replace ¢, by
1/2
1 A
(n > X - Xw<2j—1>H§> /6x
1<j<n

where 6x is the sample standard deviation of {||X;||2}i<i<n. W

Remark 5.3. While our theory only requires that @, ¢,¢ = 1,...,p, satisfy (16), we recommend employing
an iterative estimation procedure outlined by Belloni et al. (2017) to estimate (G, ahd—pd,(m ), A(}ilfil_pd), in which
the m-th step’s penalty loadings are estimated based the (m — 1)-th step’s LASSO estimates. Formally, this

iterative procedure is described by the following algorithm:

Algorithm 5.1.

Step 0: Set € “hd pd,(0) _ Oy,
Step m: Compute & ! l \/ Zl<]<n .. Z(Ahd pd,(m-— 1)) and compute (& (Ahd pd, (m) ghd—pd, m)) fol-
lowing (15) with whd pd.(m) as the penalty loadings, and € Ahd L) — 5y —an®” pd’(m)*%,jﬂzd_pd’(m)-

Step M: ...

Step M + 1: Set, fii-pd = ghd-pd.00.

As suggested by Belloni et al. (2017), we set M to be 15. We note that R package hdm has a built-in option
for this iterative procedure. For this choice of penalty loadings, arguments similar to those in Belloni et al.

(2017) can be used to verify (16) under “matched pairs” designs. W
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5.2 Second LASSO-based Adjustment

For d € {0,1}, define

A 1 A
(0 i) € aremin o D, (Yima =y b+ NGO (b] (20)
acR,beERPR T8y i conD,=d

where A\j4, is a penalty parameter that will be disciplined by the assumptions below, O, (d) = diag(@1(d), - - -,
Wp, (d)) is a diagonal matrix, and @, ;(d) is the penalty loading for the [th regressor. Define Q}(d) =
diag(wy, 1(d), -+ ,wy, , (d)), where w:?(d) = Var[¢,, s v;] and v; = Y; — E[Y;|X;, W;]. For some ¢ and ¢, we

,Pn

require that

0 <c<liminf min @, ;(d)/w, (d) < limsup max. Wni(d)/wy (d) <€ < oo (21)

n—oo 1<I<p, n—ooo 1<I<

with probability one. Let Ak denote the estimator in (4) with 774, = 1#;”,33‘; for d € {0,1}.

Our analysis of this estimator will require the following assumptions. In our statement of the assumptions,

we will make use of the quantity b4 don» Which will be assumed to satisfy

st = e 185110 (22)
and
195, (d) " Eln, i (d)] [l oo + | Eeni(d)] = 0 (A5S,) (23)
where

?Ldv(d) *}/l(d) 7O[dn wn 16
Here, it is useful to recall the discussion after equations (17)—-(18).

We now proceed with the statement of our assumptions. The first assumption collects a variety of moment

conditions that will be used in our formal analysis:

Assumption 5.5. (a) For some ¢ > 2 and constant C,

sup max Bl |IXi] < Cy
n>1

sup [0,iBi 2 < Ca

sup |E[Yi(a)|Xi, Whill < Cq

n>1
with probability one.
(b) For some ¢y, o, 7,
0 < ¢? < liminf min w2 ,(d) < limsup max w2 ,(d) <5% < o0 .
n—oo  de{0,1},1<i<p, ~’ n—oo  d€{0,1},1<i<p,
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Moreover, the following statements hold with probability one:

sup max E[(lbnlﬁ ) | <cp<oo

n>1d€{0,1}
1
— Ele* (d)|X;] <eco <
de{O,Ilr}l,al};lgpn 2n 1<Zz<:2n [en (DI Xi] < eo < o0

Elet (d)] < ¢ <
sup e [en.i(d)] < co < o0

min Var[V;(d) — 4, ;(B1% + Bo%)/2] > ¢® >0
de{0,1} ’ ’ ’

1
in — E I{D; = 16n.i(d)]| X5] > o?
él}g})n w2 {D; = d} Var[i,, ; 1€,,:(d)| X;] > 0 >0

1> o2 .
lgg;n Var[E[¢nzl6n z( )|XZ]] 20°>0

The discussion after Assumption 5.1 applies to the preceding assumption as well. Our analysis will, as before,
also require some discipline on the way in which pairs are formed. For this purpose, Assumption 2.3 will

suffice, but we will need an additional Lipshitz-like condition, similar to Assumption 5.2(b):

Assumption 5.6. For some L > 0 and any x; and x5 in the support of X;, we have

(W (1) — U(2)) B4%] < Lllzy — 2]z -

We next specify our restrictions on the penalty parameter Al

Assumption 5.7. (a) For some ¢¢,, — oo,

124 0.1
abd gy D0 )
n = /n < 2log(n)pn )
(b) Z2(logp,)7/n — 0 and (4,24 1logp,)/v/n — 0.

We note that Assumption 5.7(b) permits p,, to be much greater than n.

Finally, as is common in the analysis of ¢;-penalized regression, we require a “restricted eigenvalue”

condition. This assumption permits us to apply Bickel et al. (2009, Lemma 4.1) and establish the error
2
bounds for |ad n ad n‘ + ||ﬁd n ﬂgdnHl a‘nd Zl<z<2n I{D - d} (ad n ad n + ¢ ( d n 3,%)) .

Assumption 5.8. For some k1 > 0,k2 and ¢, — oo, the following statements hold with probability

approaching one:

Z I{D; = d}ijnzz}z};z>v > K1

1<i<2n

Z I{Di = d}&n,ﬂ%m)” < Ka

/
sup v][2)" v
de{0,1},veRPnt1l:||v| o< (shd+1)4, 1<i<2n

inf (lll3) (
de{0,1} eRPrF1:|[v]lo<(shd+1)2, n

S|

S 1D, - d}Ewn,ﬂzg,Axi])v -

inf ([lv][2)
de{0,1},veRPr+1:[[v]o<(shd+1)e, N di<on
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1 v v
sup (lvll3) "o’ (n > D= d}E[wn,iib;,ilXi])v < ka2,

de{0,1} weERPn+1:||v]lo< (s2d+1)e,, 1Si<on

where ¢, ; = (1,4, ,)".

n,t

Using these assumptions, the following theorem characterizes the behavior of Abd:

Theorem 5.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-
sumptions 2.2-2.53. Further suppose Assumptions 5.5-5.8 and (21) hold. Then, (6), (9), and Assumption
3.1 are satisfied with ., = &lj5, + 1), ; Agi and

Md.n (X'L'a Wn,l) = ad n T @/}n zﬂ

for d € {0,1} and n > 1. Denote the variance of Ahd by o842, [If the LASSO adjustment is approzimately
correctly specified, i.e., E[Y;(d)|X;, W;] = ad wtUn ﬂl + Ry, i(d) and maxgeqo1y E[RE ;(d)] = o(1), then

o2 gehieves the minimum variance, i.e.,

lim 0,,%% = 03(Q) + 03(Q).

n— oo

Remark 5.4. As in Remark 5.3, we recommend employing an iterative estimation procedure outlined by
Belloni et al. (2017) to estimate Bc}lﬁ%’ in which the m-th step’s penalty loadings are estimated based the
(m—1)-th step’s LASSO estimates. Formally, this iterative procedure is described by the following algorithm:

Algorithm 5.2.

Step 0: Set ¢ Ahd (O) (d) =Y; if Dy = d.

Step m: Compute &7 ( \/ Y <icon H{Di = d}y2 l(Ahd ("1 (d))2 and compute (ad ,ﬂd )
following (20) with @ A(m) as the penalty loadings, and ¢ ehd: (m)(d) =Y, — Ahd m) — ] ﬁsd (m) if D; =d.

Step M: ...
Step M + 1: Set Bgﬂl = ASE(M).
As suggested by Belloni et al. (2017), we set M to be 15. We note that R package hdm has a built-in

option for this iterative procedure. For this choice of penalty loadings, arguments similar to those in Belloni

et al. (2017) can be used to verify (21) under “matched pairs” designs. m

When the LASSO adjustment is approximately correctly specified, Theorem 5.1 shows A};Ld derived in
Remark 3.1, and thus, is guaranteed to be weakly more efficient than the ATE estimator without any
adjustments. On the other hand, when the LASSO adjustment is not approximately correctly specified,

A?Ld suffers from Freedman (2008)’s critique that it may be less efficient than A%nadj. To overcome this
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/ Ahd / Ahd

problem, we consider an additional step in which we treat the LASSO adjustments (1, ;575 ¥y, :80%

) as
linear covariates and rerun a linear regression with pair fixed effects. Such a procedure has also been studied
by Cohen and Fogarty (2020) in the setting with low-dimensional covariates and complete randomization.
Theorem 5.3 below shows the new estimator for the ATE is weakly more efficient than both A}‘Lnadj and
Al To state the results, define T',, ; = ( Bl U B0 Lo = ( ;”B{“il, i Agﬂl)7 and AN a5 the
estimator in (12) with t; replaced by fn, Note that A%d_f remains numerically the same if we include the
intercept dgfin in the definition of fm Following Remark 4.2, A};Ld’f is the intercept in the linear regression
of (Dr(2j-1) = Dr(2j—1))(Ya(2j—1) = Yn(2j)) on constant and (Drzj—1) — Drzjm1)) Cnn2jm1) = Famia)-

Replacing r n,i DY fnl + (d}ffin, dgfin)’ will not change the regression estimators.

The following assumption will be employed to control I', ; in our subsequent analysis:

Assumption 5.9. For some k1 > 0 and ks,

inf inf SW'E T, X0 >
;glvlenRQIIvIIz v E[Var[l'y, ;| Xi]lv > k1

sup sup ||v||3 20" E[Var[T,,.:| X;]Jv < Kz .
n>1veR2

The following theorem characterizes the behavior of Abd~—f:

Theorem 5.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-
sumptions 2.2-2.3. Further suppose Assumptions 5.5-5.8 and (21) hold. In addition, suppose Assumption
5.9 holds. Then, (6), (9), and Assumption 3.1 are satisfied with Mg n(X;, Wy i) = f‘%’iﬁgd*f and

Md,n(Xi, Whi) = F’/n,iﬁgd_f

for d € {0,1} and n > 1, where B2~f = (2E[Var[[,, ;| X;]]) "1 E[Cov[[,.4, Yi(1) + Y;(0)|X;]]. In addition,

denote the variance of Abd—t g5 ghd=1.2 " Then, gna2 > ghd=£2 gnd ghd.2 > hd=f,2.

Remark 5.5. We briefly comment on the comparison between the two LASSO-based adjustment methods.
First, when the LASSO adjustment is approximately correctly specified, then both methods produce the same
adjustment asymptotically, which achieves the minimum variance. Second, when the pseudo-true values in
the two methods are different, it is unclear which adjustment is more efficient. However, it is possible to
use the regression adjustments obtained from both LASSO estimations as regressors in the refitting step in
the second method and produce one regression-adjusted ATE estimator which is more efficient than both
A],‘Ld_pd and A],‘ld_f, provided that the full rank condition in Assumption 5.9 holds. Third, the first method
tends to select less regressors when the dimension of X; is large, as its ¢ penalty depends on (,. Fourth,
the ¢; penalty of the second method is well studied in the literature. See, for example, Belloni et al. (2012),
Belloni et al. (2014), and Belloni et al. (2017). Finally, it is possible to relax the full rank condition in
Assumption 5.9 by running a ridge regression or truncating the minimum eigenvalue of the gram matrix in

the refitting step in the second method, which is left for future work. |
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6 Simulations

In this section, we conduct Monte Carlo experiments to assess the finite-sample performance of the inference
methods proposed in the paper. In all cases, we follow Bai et al. (2021) to consider tests of the hypothesis
that

Hy : A(Q) = Ap versus Hy : A(Q) # Ao.

with Ag = 0 at nominal level o = 0.05.

6.1 Data Generating Processes
We generate potential outcomes for d € {0,1} and 1 <14 < 2n by the equation
Yi(d) = pag +ma( X, Ws) + 0a(Xi, Wi)eq,i, a=0,1, (24)

where fi4, mg (X;, W), 04 (X;, W;), and ¢4, are specified in each model as follows. In each of the specifica-
tions, (X;, Wi, €0,i,€1,4) are i.i.d. across . The number of pairs n is equal to 100 and 200 respectively. The

number of replications is 10,000.

Model 1 (X;,W;)" = (® (Vi1),® (Vi2)) ", where ®(-) is the standard normal distribution function and

() G)

mo (X5, W) 'y( ) my (X;, Wi) = mo (X3, W5); €4 ~ N(0,1) for a =0, 1; 0 (X, W;) =09 =1
and o1 (X;,W;) =01. Weset y=4,01 =1, p=0.2.

Model 2 (X;,W;)" = (® (Vi1),V1:Via) ", where V; is the same as in Model 1. mqo (X3, W;) = my (X;, W;)
N (Wi = p)+92 (@71 (X)) = 1) €q ~ N(0,1) for a = 0,15 g (Xi, Wi) = 00 = 1 and o (X;, W)

o1 () =(1,2)" o =1,p=02

Model 3 The same as in Model 2, except that mo (X;, W;) = mq (Xi, W;) = v (W; — p)+72 (@ (Wy) — 1)+
. T
V3 ((I)71 (X1)2 - 1) with (71,’72773)T = (%a 172)
Model 4 (Xi,VVi)—r = (Vil,VHVig)T, where V; is the same as in Model 1. mg (X;, W;) = my (X;, W;) =
(Wi —p) + 72 (2 (W;) — %) + 793 (X2 —1). €q; ~ N(0,1) for a = 0,1; 0o (X;,W;) = 09 = 1 and
o1 (Xi, W) = a1 (71,72,73) | = (2,1,2) "
Model 5 The same as in Model 4, except that mq (X;, W;) = mo (X;, W;) + (<I> (X;) — %)

Model 6 The same as in Model 5, except that og (X;, W;) = (® (X;) 4+ 0.5) and o1 (X;, W;) = (P (X;) + 0.5) 07.

Model 7 X; = (Viy,Viz)| and W; = (ViVis, ViaVis) ', where V; ~ N(0,%) with dim(V;) = 4 and %
consisting of 1 on the diagonal and p on all other elements. mg (X;, W;) = mq (X;, W;) =~ (W; — p)+
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2 (®(Wi) = 1) + 93 (X2 — 1) with 3 = (2,2)" ;9 = (1,L1) " ;73 = 1. eqq ~ N(0,1) for a = 0,1;
(o) (Xi,Wi) =09 = 1 and g1 (Xi,Wi) =01. 01 = 1, P = 0.2.

Model 8 The same as in Model 7, except that my (X;, W;) = mo (X;, W;) + (<I> (Xin) — %)
Model 9 The same as in Model 8, except that oo (X;, W;) = (® (X;1) + 0.5) and oy (X;, W;) = (@ (X;1) + 0.5) 0y

Model 10 X; = (® (Viy),---,® (Vig)) " and W; = (Vi1Vis, ViaVig) |, where V; ~ N(0,%) with dim(V;) = 6

and ¥ consisting of 1 on the diagonal and p on all other elements. mg (X;, W;) = mq (X;, W;) =

T : T
0¥ = ot (0 07) = 9495 ( (27 (6 07 (X)) = 1) withn = (117 22 = (3,3) 17 =

(%, %)T €ai ~ N(0,1) for a =0,1; o9 (X;,W;) =09 =1 and 01 (X;,W;) =01. 01 =1, p=0.2.

Model 11 The same as in Model 10, except that my (X;, W;) = mo (X;, W;) + %Z?Zl (Xij — %)

Model 12 X; = (®(Viy),---,® (Vig))" and W; = (VaVigr, -+, ViaoViso) |, where V; ~ N(0,%) with
dim(V;) = 80. X is the Toeplitz matrix

1 05 052 ... 0.57
0.5 1 0.5 -+ 057
y=|05 05 1 < 0577
0.5 0.5 057 ... 1
_ T o
mo (Xi, W) = my (Xi, W) = ~1 (Wi = 5)+7% (‘I) LX) - 1) 1= (Frr 92, qoz) withdim(y) =
40, and 72 = (3, % 5 %)T with dim(y2) = 4. €q; ~ N(0,1) for a = 0,1; 0o (X;,W;) = 09 = 1 and
o1 (Xi, W;) = o1 with o1 =

Model 13 The same as in Model 12, except that mg (X;, W;) = my (X;, W;) = ~v; (W; — p)—&-% (@(W;) — 1)+
_ T .
73 ((I) ! (Xl) - 1)771 = (]_727 7&) y V2 = % (1%7 aﬁ) ,al’ld’)/g = (%7%7%7%) Wlthdlm(’h) =
dim(v;) = 40 and dim(y3) = 4.

Model 14 The same as in Model 13, except that my (X;, W;) = mo (X;, W) + Z?zl %2 (X — 1),

Model 15 The same as in Model 14, except that oo (X;, W;) = (X;1 + 0.5) and o1 (X;, W;) = (X1 + 0.5) 01

It is worth noting that Models 1, 2, 3, 4, 7, 10, 12, and 13 imply homogeneous treatment effects because
my (X, Wi) = mo (X;, W;). Among them, E[Y;(a)|X;, W;] — E[Y;(a)|X;] is linear in W; in Models 1, 2, and
12. Models 5, 8, 11, and 14 have heterogeneous but homoscedastic treatment effects. In Models 6, 9, and 15,
however, the implied treatment effects are both heterogeneous and heteroscedastic. Models 12-15 contain

high-dimensional covariates.

We follow Bai et al. (2021) to match pairs. Specifically, if dim (X;) = 1, we match pairs by sorting
Xt =1,...,2n. If dim (X;) > 1, we match pairs by the permutation 7 calculated using the R package
nbpMatching. For more details, see Bai et al. (2021, Section 4). After matching the pairs, we flip coins to

randomly select one unit within each pair for treatment and another for control.
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6.2 Estimation and Inference

We set pop = 0 and pq = A, where A = 0 and 1/4 are used to illustrate the size and power, respectively.
Rejection probabilities in percentage points are presented. To further illustrate the efficiency gains obtained
by regression adjustments, in Figure 1, we plot the average standard error reduction in percentage relative

to the standard error of the estimator without adjustments for various estimation methods.

Specifically, we consider the following adjusted estimators.

(i) NA: the estimator with no adjustments. In this case, our standard error is identical to the adjusted

standard error proposed by Bai et al. (2021).
(ii) LA: the linear adjustments with regressors W; but without pair dummies.
(iii) LA2: the linear adjustments with X; and W; regressors but without pair dummies.
(iv) LDA: the linear adjustments with regressors W; and pair dummies.
(v) HD-PD: the first LASSO-based adjustment.

(vi) HD-F: the second LASSO-based adjustment.

See Section C for the regressors used in the LASSO adjustments.

For Models 1-11, we examine the performance of estimators (i)-(v). For Models 12-15, we assess the
performance between estimators (i) and (v) in high-dimensional settings. Note that the adjustments are
misspecified for almost all the models. The only exception is Model 1, for which the linear adjustment in

W, is correctly specified because mq(X;, W;) is just a linear function of W;.

6.3 Simulation Results

Tables 1 and 3 report size at the 0.05 level and power of the different methods for Models 1-11 when n is
100 and 200, respectively. Several patterns emerge. First, for all the estimators, the rejection rates under Hy
are close to the nominal level even when n = 100 and with misspecified adjustments. This result is expected
because all the estimators take into account the dependence structure arising in MPDs, consistent with the
findings in Bai et al. (2021).

Second, in terms of power, “LDA” is higher than “NA”, “LA”, and “LA2” for all eleven models, as
predicted by our theory. This finding confirms that “LDA” is the optimal linear adjustment and will not
degrade the precision of the ATE estimator. In contrast, we observe that “LA” and “LA2” in Model 3 are
even less powerful than the unadjusted estimator “NA.” Figure 1 further confirms that these two methods
inflate the estimation standard error. This result echos Freedman’s critique (Freedman, 2008) that careless
regression adjustments may degrade the estimation precision. Our “LDA” addresses this issue because it

has been proven to be weakly more efficient than the unadjusted estimator.

Third, the improvement of power for “LDA” is mainly due to the reduction of estimation standard

errors, which can be more than 50% as shown in Figure 1 for Models 4-9. This means that the length
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of the confidence interval of the “LDA” estimator is just half of that for the “NA” estimator. Note the
standard error of the “NA” estimator is the one proposed by Bai et al. (2021), which has already been
adjusted to account for the cross-sectional dependence created in pair matching. The extra 50% reduction is
therefore produced purely by the regression adjustment. For Models 10-11, the reduction of standard error
achieved by “LDA” is more than 40% as well. For Model 1, the correct specification in the adjustments
leads to all three methods achieving the global minimum asymptotic variance and maximum power. For
Model 2, mq(X;, W;) — E[mg(X;, W)|X;] = v(W; — E[W;|X;]) so that the linear adjustment W, satisfies
the conditions in Theorem 3.1. Therefore, “LDA”, as the best linear adjustment, is also the best adjustment
globally, achieving the global minimum asymptotic variance and maximum power. In contrast, “LA” and
“LA2” are not the best linear adjustment and therefore less powerful than “LDA” because of the omitted

pair dummies.

Finally, the LASSO-based adjustments have the best power for most models as they automatically achieve
the global minimum asymptotic variance. Compared to “HD-PD”, “HD-F” has slightly better power.

Tables 2 and 4 report the size and power for LASSO-based adjustments when both W; and X, are high-
dimensional. We see that the size under the null is close to the nominal 5% while the power for the adjusted
estimator is higher than the unadjusted one. Figure 1 further illustrates the reduction of the standard error

is more than 30% for all high-dimensional models.

Table 1: Rejection probabilities for Models 1-11 when n = 100

H()Z A=0 Hli A= 1/4

Model NA LA LA2 LDA HD-PD HD-F NA LA LA2 LDA HD-PD HD-F
1 547 557 563 576 6.12 5.84 2248 43.89 43.95 4391 44.69 43.92
2 496 526 530 547 574 5.32  23.32 28.02 2796 37.21 39.00 33.12
3 499 528 524 548 5.78 5.27 3219 27.88 27.96 37.34 38.59 36.29
4 531 528 528 548 5.93 5.79  11.78 27.88 28.03 37.34 42.21 43.28
5 543 5.09 5.08 549 584 5.78  11.87 27.72 2788 36.69 41.24 43.08
6 5.28 543 541 558  5.90 5.79  11.78 26.67 26.72 34.71 38.76 40.29
7 5.64 5.63 562 598 6.45 6.04 9.24 3455 34.65 37.96 37.72 42.08
8 5.63 554 551 6.03 6.26 6.17 9.28 34.11 34.42 3722 36.78 41.29
9 574 569 576 6.19 6.32 5.89 8.99 32.39 32.30 35.42 34.66 38.75
10 524 578 573 6.06 6.07 6.04 14.27 30.80 30.75 32.02 28.37 32.51
11 5.19 578 572 6.07 6.01 595 14.36 30.60 30.49 32.21 27.92 32.81

Table 2: Rejection probabilities for Models 12-15 when n = 100

Hy: A=0 Hy: A=1/4

NA HD-PD HD-F NA HD-PD HD-F
12 5.35 6.15 6.12 22.01 39.59 42.56
13 5.31 6.21 6.11 21.47 39.62 42.47
14 5.24 6.04 6.07 21.39 38.11 41.14
15 5.31 6.05 6.23 20.73 35.90 38.67
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Table 3: Rejection probabilities for Models 1-11 when n = 200

Hoi A=0 Hli A= 1/4

Model NA LA LA2 LDA HD-PD HD-F NA LA LA2 LDA HD-PD HD-F
1 5.08 504 510 521 5.38 531 3894 70.35 70.36 70.32 70.53 70.30
2 5.69 528 528 524 542 5.40  40.31 49.25 49.32 65.36 65.71 57.87
3 544 529 530 535 5.60 5.41 56.89 49.43 49.51 64.96 65.34 62.42
4 545 529 529 535 5.42 5.20  18.55 49.43 49.67 64.96 67.93 69.96
5 545 524 518 519 5.44 529  18.41 48.65 4880 64.11 66.83 69.09
6 5.62 532 531 535 5.50 543 18.19 46.71 46.67 61.09 63.95 65.98
7 524 551 546 534 5.78 549 11.86 60.73 60.63 65.14 64.88 69.24
8 523 549 547 535  6.00 5.65  11.84 60.00 60.10 64.93 64.02 68.02
9 530 5,58 5,57 5.66 5.73 5.81 11.90 57.25 57.28 61.61 60.98 64.88
10 534 519 515 525 5.33 5.31 23.95 55.49 55.44 56.64 52.05 56.43
11 541 536 532 534 5.53 5.41 23.88 55.01 55.056 56.31 51.87 56.18

Table 4: Rejection probabilities for Models 12-15 when n = 200

Hoi A=0 Hli A= 1/4

NA HD-PD HD-F NA HD-PD HD-F
12 4.97 5.22 5.22 38.91 65.28 68.10
13 4.95 5.24 5.19 38.04 65.29 68.06
14 5.01 5.20 5.24 37.65 63.92 66.69
15 5.15 5.27 5.40 36.61 61.11 63.79

7 Empirical Illustration

In this section, we revisit the randomized experiment with a matched pairs design conducted in Groh and
McKenzie (2016). In the paper, they examined the impact of macroinsurance on microenterprises. Here, we
apply the covariate adjustment methods developed in this paper to their data and investigate the average
effect of macroinsurance on three outcome variables: the microenterprise owners’ loan renewal, their firms’

monthly profits, and revenues.

The subjects in the experiment are microenterprise owners, who were the clients of the largest micro-
finance institution in Egypt. In the randomization, after an exact match of gender and the institution’s
branch code, those clients were grouped into pairs by applying an optimal greedy algorithm to additional 13
matching variables. Within each pair, a macroinsurance product was then offered to one randomly assigned
client, and the other acted as a control. Based on the pair identities and all the matching variables, we
re-order the pairs in our sample according to the procedure described in Section 5.1 of Jiang et al. (2022).

The resulting sample contains 2824 microenterprise owners, that’s, 1412 pairs of them.'

Table 5 reports the ATEs with the standard errors (in parentheses) estimated by different methods.
Among them, “GM” corresponds to the method used in Groh and McKenzie (2016).? The description

1See Groh and McKenzie (2016) and Jiang et al. (2022) for more details.

2@Groh and McKenzie (2016) estimated the effect by regression with regressors including some baseline covariates and dummies
for the pairs. Specifically, for loan renewal, the regressors include a variable “high chance of renewing loan” and its interaction
with treatment status. For the other two outcome variables, the regressor is the baseline value for the outcome of interest.
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Figure 1: Average Standard Error Reduction in Percentage under H; when n = 200

Notes: The figure plots average standard error reduction in percentage achieved by regression adjustments
relative to “NA” under H; for Models 1-15 when n = 200.

of other methods is similar to that in Section 6.2.> The results in this table prompt the following four

observations.

First, in line with the theoretical and simulation results, the standard errors for the covariate-adjusted

The standard errors for the “GM” ATE estimate are calculated by the usual heteroskedastity-consistent estimator. The “GM”
results in Table 5 were obtained by applying the Stata code provided by Groh and McKenzie (2016).
3To maintain comparability, we keep X; and W; the same in all the adjustments for each outcome variable. Specifically,

(i) X; include gender and 13 additional matching variables for all the adjustments. Three of the matching variables are
continuous and others are dummies.

(ii) For loan renewal, W; include baseline value of loan amount, high chance of renewing loan, the interaction between the
high chance of renewing loan and treatment status, and the interaction of these three variables with three continuous
variables and the first three discrete variables in X;. For the other two outcome variables, W; only includes the baseline
value for the outcome of interest and its interaction with three continuous variables and the first three discrete variables
in X;. All the continuous variables in X;, the baseline values of loan amount, and the baseline value for the other three
outcome variables are standardized at first when the regression-adjusted estimators are used.



ATEs are generally lower than those for the ATE estimate without adjustment. This observation holds
for almost all the outcome variables and adjustment methods. For example, when the outcome variable is
revenue, the standard errors for the covariate-adjusted ATE estimates are at least 9.7% less than that for
the ATE estimate without adjustment.

Second, the standard errors for the ATE estimates obtained by the “GM” method are mostly higher than
those for the ATE estimates obtained by the covariate adjustments. Especially, when the outcome variable
is loan renewal, the standard errors for the “GM” ATE estimates are at least 16.7% higher than those for
all other estimates. This observation may imply that the “GM” method is not the most efficient way to

estimate the ATE of macrofinance on loan renewal.

Third, the size of the standard errors is mostly similar for all the covariate-adjustment ATEs. Among
them, the standard errors for the “LA2” and “LDA” estimates are slightly less than those for the other

regression-adjusted estimates.

Finally, between the two LASSO-based adjustments, “HD-F” achieves the smaller size of the standard
errors. Surprisingly, “HD-PD” has the same estimates as “NA”, which means it selects none of the variables
in the adjustments. This result is caused by using a large rule-of-thumb penalty. There are more than 10
matching variables in this application, which leads to low matching quality and then produces a large penalty

for the adjustments.

Table 5: Impacts of Macronsurance for Microenterprises

Y n NA GM LA LA2 LDA  HD-PD  HD-F
Loan 1350 -0.007 0.004 -0.004 -0.006 0.006 -0.007 -0.003
renewal (0.0180)  (0.0212)  (0.0178)  (0.0177)  (0.0177)  (0.0180)  (0.0177)
Profits 1322 -85.6 -50.9 -35.6 -46.8 -40.6 -85.6 -55.1
(49.4) (46.4) (45.7) (45.3) (45.6) (49.4) (45.7)
Revenue 1318 -838.6 ~657.6 -666.8 -664.7 671.3 -838.6 -590.1

(319.0)  (283.4)  (283.5)  (279.8)  (281.4)  (319.0)  (285.2)

Notes: The table reports the ATE estimates of the effect of macroinsurance for microenterprises. Standard

errors are in parentheses.
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A Proofs of Main Results

In the appendix, we use a,, < b, to denote there exists ¢ > 0 such that a,, < cb,,.

~

A.1 Proof of Theorem 3.1

To begin, note

1 3 A
fn(1) = o (2D;(Y;(1) —an(Xi’Wi)) +m1,n(Xi,Wi))
1<i<2n
1
=5 (2D;Y;(1) — (2D; — 1)1y o ( Xy, W5))
" &iTom
1
= o (2D;Yi(1) — (2D; — 1)ymy o (X;, W3)) + op(n='/?)
1<i<2n
1
T (2D;Y;(1) = Dima o (X3, W3) = (1= Di)ma (X, W) + 0p(n™/?) (25)
1<i<2n

where the third equality follows from (6). Similarly,

fin(0) = L > 21 = Di)Yi(0) = Dimon(Xi, W;) = (1 = Di)mon(Xi, W3)) + op(n=1/?) . (26)

2n £
1<i<2n

It follows from (25)—(26) that

1 1
Ap=— Digrni—— > (1= Di)doni+op(n?), (27)

1<i<2n 1<i<2n

where

1
Gins =Yi(1) — §(m1,n(Xi, W3) + mon(Xs, W5))

1
Go,n,i = Yi(0) — §(m1,n(Xi, W;) + mon (X5, W3)) .

Next, consider

For simplicity, define My, (X;) = E[mqn(X;, W;)|X;] for d € {0,1}. It follows from Assumption 2.2 that
E[L,|X™)] = 0. On the other hand,

1 2
Var[L, | X ()] = n Z (M1 (Xr2j-1)) + Mon(Xr2j-1)) = (M1n(Xni2j)) + Mo (Xr(25))))

1<j<n
1 1
S n > My (Xr(2jm1) = My (Xages)]” + o D Mo (Xn2j-1) = Mo (Xnzp)I?
1<j<n 1<j<n
Lo,
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where the inequality follows from (a + b)? < 2(a? + b?) and the convergence follows from Assumptions 2.3
and 3.1(c). By Markov’s inequality and the fact that E[L,|X ()] =0, for any ¢ > 0,

Var[L, | X™] p

P{ILa| > ffx™} < 22

€
Since probabilities are bounded, we have L, = op(1). This fact, together with (27), imply

\/ﬁ(An - A(Q)) = An - Bn + Cn - Dn s

where
1
Ap = — 4 nz_ 4 an(n D(n)
\/ﬁ 1<i<2n ( (bl ¢1 | ])
1
ani n,g _Di an(n)vD(n)
2 %( D;)6o,n,i — El(1 = Di)o,ui )
1
Cn=—= D;i(BY;(1)|Xi] — E[Yi(1)])
Vin 1<i<2n
1
Dy =—= (1= Dy)(E[Y:(0)|X:] — E[Yi(0)]) .
vn 1<i<2n

Note that conditional on X (™ and D(”), A, and B, are independent while C,, and D,, are constants.

We first analyze the limiting behavior of A,,. Define

Z DiVar[gbLn’i\Xi] .

1<i<2n

Note by Assumption 2.2 that s2 = n Var[4,|X ™), D(™]. We proceed verify the Lindeberg condition for A,

conditional on X and D™ i.e., we show that for every ¢ > 0,

1 n n P
= " ElDi(¢1,n,i — Elo1,mil X)) PI{IDi(¢1,0,5 — Elo1,ni|Xi])| > €5} X™, D] S0 . (28)

1<i<2n

To that end, first note Lemma B.2 implies

2

S P
n —1. 29
E[Var[$1,n,:|X;]| @)
(29) and Assumption 3.1(a) imply that for all A > 0,
Ples, > A} 5 1. (30)
Furthermore, for some ¢ > 0,
2
P{S">c}—>1. (31)
n
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Next, note for any A > 0 and §; > 0, the left-hand side of (28) can be written as

1 1 " n
> Ellérni — Elbrnil XillPI{|é1.ni — ElbrnilXi]| > esn}| X, DO

1<i<2n:D;=1
1 1
<= Y Ellérni — Elorai XilPI{I61,n,: — Eld1nil Xi]| > s, }| XM, D]
S”/n n 1<i<2n
11
<-- Z El|¢1,ni — Eld1,0,6 Xil PI{|$1,ni — Eld1,n,4 Xi]| > AHX ™, D] 4 0p(1)
cn 1<i<2n
21
<> Y Elléimi — ElrnilXil PI{|$1m: — Elérnil Xil| > AHXi] + 0p(1) (32)
¢2n 1<i<2n

where the first inequality follows by inspection, the second follows from (30)—(31), and the last follows from

Assumption 2.2. We then argue

1

— El|p1,ni — Elp1.n:] Xi]|*T nyi — L1, X; AH X
g0 2 Pl = Fipua KIPH61ms~ Flornd Xl > MK

= Ell¢1,n,i — El1,0,0 X H|b1,n,i — Blg1,n,il Xi]| > M +op(1) . (33)

To this end, we once again verify the Lindeberg condition in Lemma 11.4.2 of Lehmann and Romano (2005).
Note

101,00 — Elo1,0:| XillPT{|01,ni — Elo1.n:1Xil| > A} < |10, — Elo1.0.4 X1

Therefore, in light of Lemma B.1, we only need to verify

lim limsup E[|¢1,n,i — E[¢1,0.,: Xi][*I{|¢1,n,i — Eld1,n,:1Xi]1> > 7} =0, (34)

Y= nooo
which follows immediately from Lemma B.3.

Another application of (34) implies (28). Lindeberg’s central limit theorem and (29) then imply that

sup |P{An/\/E[var[¢1,n,i|Xi]] <t x™ DM} —a(t) L0 .
teR

Similar arguments lead to

sup |P{Bn/\/E[Var[¢0,n,i|Xi]] <t x™ DM} —a(t) 5o .
teR

Meanwhile, it follows from the same arguments as those in (S.22)-(S.25) of Bai et al. (2021) that
d 1
Cpn—=Dp = N <O, SE BN ()1X] - EY;(1)] - (BY;(0)1X,] - E[E(O)D)Q]) :
To establish (7), define v} = v{, +155,, + 3, where

E[Var[qﬁl’n,ﬂXi]]
E[Var[go n | Xi]]

2
Vl,n

2
VO,n
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Note
VilBn —AQ) _ An vin  Bu ton | Cn = Dnve

Vn Vin VUn Yo,n VUn 1) Vn

Further note v, 1 1, Vo n, V2 are all constants conditional on X (") and D™ . Suppose by contradiction that
V(A —AQ))

Vn

does not converge in distribution to N(0,1). Then, there exists ¢ > 0 and a subsequence {ny}
such that

sup [PV (B, = A@)) /vn, <t} = @(t)] = €. (35)

Because the sequence vy ,,, and vy ,, are bounded by Assumptions 3.1(b), there is a further subsequence,
which with some abuse of notation we still denote by {ns}, along which 4 ,,, — v§ and vy, — v for some

vi, v > 0. Then, v1 . /Vngs Vons/Vng» V2/Vn, all converge to constants. Therefore, it follows from Lemma
S.1.2 of Bai et al. (2021) that

Vig(An, = A@Q)) /v, % N(0,1)

a contradiction to (35). Therefore, the desired convergence in Theorem 3.1 follows. The form of the variance
formula as stated in the theorem can be obtained using the arguments in the proof of Theorem 3.1 almost

verbatim.

It then follows from Assumption 3.1(a) and similar arguments to those in the proof of Lemma S.1.4 of
Bai et al. (2021) that

sup |P{A4, < ¢ X™, DM — &(t/\/Var[pr..:| X)) 50, (36)
teR

where @ is the distribution function of the standard normal distribution. Similarly,
sup | P{A, < X, DM} — &(t//Var[go .| Xi])] 50, (37)
teR

Meanwhile, it follows from the same arguments as those in (S.22)-(S.25) of Bai et al. (2021) that

Co—D, 5N <o, %E [(B[Y:(1)|X,] — E[Y:(1)] — (E[Y;(0)|X,] — E[E(O)]))ﬂ) :

A subsequencing argument similar to the one in the proof of Lemma S.1.4 of Bai et al. (2021) implies

Vn(A, — A(Q)) & N(0,02(Q)), where

1
3(Q) = EVar(gyn,i| Xill + E[Var(go.ni| Xil] + 5 B [(BYVi(1)]X:] = BY:(1)] = (E[Y;(0)|Xi] - EYi(0)]))*] -
To conclude the proof with the the variance formula as stated in the theorem, note

1
Var {Yi(O) - §(m1,n(Xi7 Wi) + mon(Xi, Wz))‘Xz}

= Var [E [Y,(O) - %(an(Xi, W;) 4 mon (X, Wi))’Xi, Wz}

x|

n E[Var [Yi(()) — Z (myp(Xa, Wi) + mon (X, Wz'))‘Xia W}

1
2 x|
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= Var [E [M‘X“ Wl} —

+ E[Var[V;(0)| X, W;]| Xi]

(M (Xis W)+ mon(Xos Wi) — E[M‘X wi]

| .
= Var [E{M’X“ Wl} - %(ml,n(Xia W) 4+ mon (X5, Wz))‘XJ
+ Var [E[M’quz]
el 0]

+ E[Var[Yi(0)| X, Wi] | Xi] , (38)

x|

(M1 (Xs, W) + mon(Xi, W), E[M‘X WZ}

x)

where the first equality follows from the law of total variance, the second one follows by direct calculation,

and the last one follows by expanding the variance of the sum. Similarly,

Var [Yi(1) = 3 (ma i (Xe, W) + mo (X, W) | ]
— Var [E[M‘X Wl} _ %(ml,n(Xi W) + mo’n(Xi,Wi))‘Xl}
+ Var [E{M’X“WZ]

+2Cov [E[M’X WZ} _ %(ml,n(xi, Wi) + mo.n (X, Wi)), E[M‘X Wl}

x|

x|

+ E[Var[Y; (1) X, Wi] [ Xi] - (39)

It follows that

02(Q) = 3 BIVarlBIYi(1) + Yi(0)|Xe, Wi] — (ma (X5, Wi) + mo.(X:, W)X,
+ 3 BIVarlBIYi(1) — Yi(0)| Xo, Wl Xil] + 3 Var[BIYi(1) ~ Y;(0)|X]]
+ E[Var[Y;(0)|X;, Wil| Xi] + E[Var[Y;(1)| X, Wi] | X]
_ %E[Var[E[Yi(l) +Yi(0)[ X, Wi — (o (Xs, Wi) + mon(Xs, Wi)) | X))
+ S B(EY(1) ~ Yi(0)|X:, W] ~ E[Yi(1) ~ Yi(0)| X,])?
+ S B(EYQ) - Yi(0)X1] - B¥i(1) - Yi(0)])]
+ B[(Yi(0) — E[Yi(0)|X:, Wil)?] + E[(Yi(1) — E[Y(1)|X:, W)
= S BIVArlBIYi(1) + Yi(0)| Xz, Wil — (ma, (X5, Wi) + o, (X5, W) X0

+ 3 V[ BIY;(1) = Yi(0)|Xe, Wil + B[Varl¥i(0) X, Wil + B[VarlY ()], Wi

where the first equality follows by definition, the second one follows from (38)—(39), the third one again

follows by definition, and the last one follows because by the law of iterated expectations,
E[(EYi(1) - Y3(0)| X, Wi] — E[Yi(1) — Y3(0)| X)) (E[Y:(1) — Y3(0)|X;] — E[Yi(1) — Y;3(0)])] =0 .

The conclusion then follows. B
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A.2 Proof of Theorem 3.2

Theorem 3.1 implies A, Lt A(Q). Next, we show

fn — E[Var[g1 .| Xi)] + E[Var[go ni| Xil] + E[(E[Y;(1)|Xi] — E[Yi(0)| Xi])?] =0 . (40)
To that end, define .
Y= Vi = o (mn (X0 W)+ mo (X3, W)
Note
o 1 . . . 2
n T (YW(ZJ’—U 7r(2a) + (Yaj-1) — Yaezy) — Yrjo1) — Yﬂ'(2_j))))
1<j<n
1 o 3 1 ~ - . .
~ (Yr(2j—1) = Yr(2j))? + o Z (Ye2j—1) — Ya(2i) — Yei—1) — Yai2j)))?
1<j<n 1<j<n
2 N . . . . .
T > Vrien) = Yazj) = Vajon) = Vo)) Vajon) = Yagzp) -
1<j<n

Therefore, to establish (40), we first show

- Z Vr(2i—1)~ Ya(2i))? = EIVar(gy i Xi]| + E[Var[go n.i| X)) + E[(E[Y: (1) X;] - E[Y;(0)| X:])?] 5 0 (41)

1<]<n

and
~ ~ o o P
(Ye2j—1) — Yre2j) — Yr(2j—1) — Y7r(2j)))2 —=0. (42)
1<j<n

S|

(42) immediately follows from repeated applications of the inequality (a —b)? < 2(a?+b?) and (9). To verify
(41), note

*Z Yricn) = Yaep)® = Z Yz**ZY2J1 (25) -

1<j<n 1<z<2n 1<j<n

It follows from similar arguments to those in the proof of Lemma B.2 below that

P

Z Y2 ¢1nz]+E[¢0nz] —0.

1<z<2n

Similarly, it follows from the proof of the same lemma that

2 o o P
ﬁ Z Y7r(2j71)Y7r(2j) - QE[E[¢l7n,i|Xi}E[¢0,n,i|Xi]] —0.

1<j<n

To establish (41), note

il = 2E[E[¢1,n,:| Xi] E[¢o,n.:| Xi]]
= E[Var[¢y ni| Xi]] + E[Var[¢o n.i| Xil] + E[E[$1,n.:|X:]%] + E[E[¢0.n.:|Xi]*] — 2E[E[¢1.0.:| X E|
= E[Var[p ni| Xi]] + E[Var[go n,i| Xil] + E[(E[¢1,0,:|X] = E[¢oni|Xi])?)
= E[Var[¢y . :|Xi]] + E[Var[po,ni| Xi]] + E[(E[Y;(1)|X,] — E[Y;(0)|X])?] ,

Xil]
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where the last equality follows from the definition of ¢1,,; and ¢g ;. It then follows from the Cauchy-
Schwarz inequality that

1

E Z (}771'(2]'—1) - }7#(2]‘) - ({/77(2]’—1) - 30/7r(2j)))(}0/7r(2j—1) - }O/Tr(2j))
1<j<n
1 . . 1 : . o D »
=1, Z (Yr2j—1) — Ya(2j)? o Z (Ya(2j-1) = Ya(2i) — Vaj—1) — Ya2))? | =0,
1<j<n 1<j<n

which, together with (41)—(42) as well as Assumptions 2.1(b) and 3.1(b), imply (40).

Next, we show

A B E[(EY(1)]X:) - E[Yi(0)[X)?] - (43)
Note
~ 2 - B o o
Ao = (Yr(aj-3) = Ya(aj-2)) Yrj—1) = Yr))(Draj-3) = Dr(1j-2))(Dr(aj—1) = Drajy)  (44)
1<5<| 5]
2 . . . . . .
= n (Yw(41—3) - Yw(4j—3) - (Yw(4j—2) - YTr(4j—2)))(Y7r(4j—1) - Y7l'(4j))
1<5< %]

X (Dr(4j-3) = Dr(aj—2))(Draj-1) = Dr(aj))

2 o . - o ~ o
-+ g Z (Yﬂ-(4j73) - Y7|'(4j72))(Y7T(4j71) - Y’n’(4j71)) - (Yﬂ’(4j) - YW(‘U)))
1<5<| %]

X (Dr(4j-3) — Draj—2))(Dr(aj—1) — Dr(aj))

9 . . . .
+ - Z (Yraj—3) — Yraj—3) — Yaj—2) — Yr(4j—-2)))

1<i<[%]

X (3777(4]‘—1) — Yrj-1)) — (Y/ﬂ(zg) = Y045)))(Dr(aj—3) — Dr(aj—2))(Draj—1) — Draj)) -

In what follows, we show

2 o o

o Z (Ya(aj—3) — Ya(aj—2))> = Op(1) (45)
1<5<3]

9 . .

- > Vej—1) = Yeup)® = 0p(1) (46)
1<5<13]

9 . . 8 .

= D> Vrjms) = Yawaj—s) = Veaj—2) = Yaaj—2))* = op(1) (47)
1<5<1%]

9 . . . .

= Y (Vejon) = Yajon) = Vegajy = Yaa)® = op(1) (48)

n
1<i<( %]

2 o o o o
- D Vi) = Ya(aj—2) Veaj1) = Yaaj)) (Dr(aj—8) = Dr(aj2))(Dr(aj1) = D)
1<5< (2]
P
= E[(E[Y;(1)|X;] — E[Y:(0)|X3]))?] - (49)

To establish (45)—(46), note they follow directly from (41) and Assumptions 2.1(b) and 3.1(b). Next, note

33



(47) follows from repeated applications of the inequality (a+b)? < 2(a?+b?) and (9). (48) can be established
by similar arguments. (49) follows from similar arguments to those in the proof of Lemma S.1.7 of Bai et al.
(2021), with the uniform integrability arguments replaced by arguments similar to those in the proof of
Lemma B.2, together with Assumptions 2.1-2.4 and 3.1. (44)—(49) imply (43) immediately.
Finally, note we have shown
~2 2 P
0, —0,—0.

Assumption 3.1(a) implies 2 is bounded away from zero, so

On P
251,

Un

The conclusion of the theorem then follows. H

A.3 Proof of Theorem 4.1

We will apply the Frisch-Waugh-Lovell theorem to obtain an expression for Bﬁai"e. Consider the linear

regression of ¥; on 1 and D;. Define

punld) = 3 GiI{D; = d)

1<i<2n

for d € {0,1} and

Ayn = fupn(1) = fy.n(0) -
The ith residual based on the OLS estimation of this linear regression model is given by

'l/] 1/12 Mw n( ) - AllhnDi .

Bgaive is then given by the OLS estimator of the coefficient in the linear regression of Y; on ;. Note

S gl = % S Wi o ()~ (D) Di 45 S (W= g (0) (s — o n (0)) (1~ Dy)

1<i<2n 1<i<2n 1<i<2n
1. X
o 3 gt i (1) — ()i (0)
1<z<2n

It follows from Assumption 4.1(b) and the weak law of large number that

S i) S Bl

1<i<2n

On the other hand, it follows from Assumptions 2.2-2.3 and 4.1(b)—(c) as well as similar arguments to those
in the proof of Lemma S.1.5 of Bai et al. (2021) that

,aw n(d) —> EW’@]
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for d € {0,1}. Therefore,

e Y =g Y Wi e+ 5 Y (W= @)Y - D)

1<i<2n

It follows from similar arguments as above as well as Assumptions 2.1(b), 2.2-2.3, and 4.1(b)—(c) that

o O ¥ B Covlun, Yi(1) + Yi(0)]

1<i<2n

The convergence of Bﬁai"e therefore follows from the continuous mapping theorem and Assumption 4.1(a).

To see (9) is satisfied, note

Z (md,n(Xh Wz) _ md,n(Xi, WZ))Z _ (Bzaive _ ﬂnaive)/ % Z wzw: (Bzaive _ Bnaive) )

1<i<2n 1<i<2n

2n

(9) then follows from the fact that gnaive £ B, Assumption 4.1(b), and the weak law of large numbers. To
establish (6), first note

S @D — 1) (X, W) — ma(Xi, Wi)) = —=

\/EAI n(Bzaive _ 5naive) )
Van, 52, V2

In what follows, we establish

Vihy, = 0p(1) (50)

from which (6) follows immediately because 3221v¢ — 72ive — (1), Note by Assumption 2.2 that E[y/nAy .| X (M) =
0. Also note

\/ﬁAw,n:Fn_Gn'i'Hn:

where
B = — (i — B[l X:)D
n=—F7= i — i| X)) Di
Vi 1<i<2n
1
Gpn=— (i — E[¢i| Xi])(1 = D;) , and
\/ﬁ 1<i<2n
1
Hy = ﬁ (E[wﬂ@j*l)lXﬂ(?jfl)] - E[wﬂ'(zj)|X7r(2j)])(D7r(2j71) - Dﬂ'(2j)> .

1<j<n

We will argue F,, G, H, are all Op(1). Since this could be carried out separately for each entry of F,, and
G, we assume without loss of generality that ky, = 1. First, it follows from Assumptions 2.2-2.3 and 4.1(c)
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as well as similar arguments to those in the proof of Lemma S.1.4 of Bai et al. (2021) that

1
Var[F,|X™ D] = - Z Var[y;| X;|D; 5 E[Var[ti] Xi]] > 0 .

1<i<2n

It then follows from similar arguments using the Lindeberg central limit theorem as in the proof of Lemma
S.1.4 of Bai et al. (2021) that F,, = Op(1). Similar arguments establish G,, = Op(1). Finally, we show
H, = Op(1). Note that E[H,|X™] =0 and by Assumptions 2.2-2.3 and 4.1(c),

oy 1 .
Var[Hn\X( )] ~n Z (E[Yn(2j-1) [ Xr2j-1)] — E[ww(zj)|XW(2j)D2 = 0.

1<j<n
Therefore, for any fixed € > 0, Markov’s inequality implies

Var[H,,| X ()] 2

P{|H, — B[H, | X")| > ¢ x(} < ~5

Since probabilities are bounded and therefore uniformly integrable, we have that
P{|H, — E[H,|X™]| > ¢} - 0.

Therefore, (50) follows. Finally, it is straightforward to see Assumption 3.1 is implied by Assumption 4.1. m

A.4 Proof of Theorem 4.2

By the Frisch-Waugh-Lovell theorem, Bgfe is equal to the OLS estimator in the linear regression of {(Y,r(gj,l) -
Yr2j) Ya2i) = Yai-1) : 1 < j < n}oon {(2Drgj-1) — 1,2Dxe5y — 1) : 1 < j < n} and {(¢¥r2j-1) —
Yr25), Ur25) — Ym(2j—1)) : 1 < j < n}. To apply the Frisch-Waugh-Lovell theorem again, we study the linear
regression of {(Vr(2j—1) = Vr(2j)s Yr(2j) = Vr(2j—1)) 1 1 < j <n}on {(2Dr2j-1)—1,2D(25y—1) : 1 < j < n}.

The OLS estimator of the regression coefficient in such a regression equals

1

Apn= - > (Dr@j-1) = Dr2y) @n2i—1) — Yr(2j)) -

1<j<n

The residual is therefore {(1%(2]‘—1) —’l,[)ﬂ-(Qj) — (2D7'r(2j—l) — I)AU),YH 1/)7‘-(2]) _1/)7T(2j—1) — (2Dﬂ-(2]) — 1)Aw7n) 01 S
j<n}. Bgfe equals the OLS estimator of the coefficient in the linear regression of { (Y (2j—1) = Yr(25), Yr(25) —
Yij—1)) 1 <5< n} on those residuals. Define

Ovj = (Dr(2j—1) = Dr(2j)) Yr2j—1) — Yr(2)) and
dp,j = (Dr(2j—1) — Dr(25)) (¥r(2j-1) = ¥r(25))

Apparently Ay, = L3 <j<nOv,j- A moment’s thought reveals that fBPfe further equals the coefficient
estimate using least squares in the linear regression of dy; on dy ; — A¢,n for 1 < j < n. It follows from

Assumptions 2.1(b)—(c), 2.2-2.3, and 4.1(b)—(c) as well as similar arguments to those in the proof of Lemma
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S.1.5 of Bai et al. (2021) that

Aypn B0 and (51)
1
=3 o S AQ)
" SGn
Next, note that
1
- Z 8y 0y,
1<j<n
1
= Z (Vr(2i-1) = Yr(25) Cr(2i-1) — Yr(25))
1<j<n
1 1
= Z Vi — o Z (1/%(2]‘—1)1/1;(2]') +¢7r(2j)7//;(2j—1)) . (52)
1<i<2n 1<j<n

For convenience, we introduce the following notation:

pa(X;) = E[Y;(d)| X
U(X;) = B[] Xi]
§a(Xy) = E[Yi(d)| Xy] .

The first term in (52) converges in probability to 2E[1;1)}] by the weak law of large numbers. For the second

term, we have that

1 n
E[ﬁ Z (Vr(2j-1) U (2j) +¢n(2j)¢;(2j_1))’X( )]
1<j<n
1 1
= ﬁ Z \II(XZ)\II(Xl)I - Z (\I/(XW(Qj—l)) - \IJ(XW(Qj)))(\II(Xﬂ'(Zj—l)) - \II(XW(Zj)))/
1<i<2n 1<j<n

5 2B (X) (X))
where the convergence in probability holds because of Assumptions 2.2-2.3 and 4.1(c). It follows from
Assumptions 2.2-2.3 and 4.1(b)—(c) as well as similar arguments to those in the proof of Lemma S.1.6 of Bai
et al. (2021) that

1 ,

1 n
‘g Z (Ym(2j—1)Un(aj) T Vr(2i)Vr(2j—1)) — E[ﬁ Z (Yr(2j—-1)Yn(aj) + ¢w(2j)¢;(zj_1))’X( )} ‘ = 0.

1<j<n 1<j<n

Therefore, )
o D Sy 5 2B [Var[v;| X)) .

1<j<n

We now turn to ) )
-~ D Oygbvy = - D (Wri1) — Yrei) Ye@j-1) — Yaj) -

1<j<n 1<j<n
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Note that

1 1
Er(2i—1)Yr(2j—1)| X ™] = §EI(X7T(2]’71)) + §€O(X7r(2j71))
n 1
E[Yr2i—1) Yr(2j)| X™] = 5‘1’(Xn(2j—1))(M1(Xn(2j)) + 110(Xr(25))) -

It follows from Assumptions 2.1(b)—(c), 2.2-2.3, 4.1(b)—(c) as well as similar arguments to those in the proof
of Lemma S.1.6 of Bai et al. (2021) that

LS bugbv B B (Y1) + Yi0))]  BIEX) (01 (X) + (X))

1<j<n

The convergence in probability of B}ffe now follows from Assumption 4.1(a) and the continuous mapping
theorem. (6)—(9) can be established using similar arguments to those in the proof of Theorem 4.1. Finally,

it is straightforward to see Assumption 3.1 is implied by Assumption 4.1. H

A.5 Proof of Theorem 5.1

We first show
apd=rd — ghd=pd| || ghd=pd _ ghd=pd ||, — Op (shd=pdphd=pd) (53)

Note that

(Sv,j — apt P = 8y, ;B0 4+ AP B Py

1 _ _ - A -
D D R A RSP U (U

Rearranging the terms, we then have

1 A - - 3 - - _ A A —
n Z (a}ﬁd pd_agd pd+5;¢7j(62d pd_ﬁgd pd))2+/\}ﬁd deQnﬁgd pd”1
1<j<n

2 2 o R
<203 6oy | (akirt—abiordy g [ 2057 Gl | (AR P ghdoe) A, haed

1<j<n 1<j<n
(54)
where ald=pd = oszl_pd — 2?0—pd and
de.; = (Dr(2j) — Dr(2j—1)) Ya(2j) = Yu(2j—1) — Wnor(2i) — Ynn(zj—1)) Bt Pd) — apd—pd
Next, define
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and
En(d) = WMM<NW< MWW“+@>02§:&J<MW< MWWU+%>

n n
1<j<n

Lemma B.4 implies P{&,(d)} — 1 for d € {0,1}.
On the event &,(d), we have

2 A
oD Gealyy | (BrtTr = grir)

1<j<n

h

<102 ST G| (B e
- ,

1<j<n o

< 2/|Unloo |2 (8277 = 24P

< 200,20, (B0 — AR

where the last inequality follows the fact that

&“m>%« M@?H+@>.

Next, define
G = Biop — gt

and let Sy, be the support of Bhd=pd Then, we have

2€£;1/2Hﬂn8d,n”1 + ||Qnﬁ£d7pd||1 — HQnﬂAg‘i*Pd”l
= 20 2 @)+ 260 uBam)sy, [ + 1205585 — 2,354,

1235y = (B P syl + 1B P ss N1 = (@B syl + [(@ndan)ss 1
and
120, 85421 = [[(QnBEY D)5, ll < QB P s, I + 11055 D)5, Il -

Denote Sdm = (ahd-pd _ af‘ld_pd,gé’n)’, Sw,j = (1,(5:/}’j)’7 and S’dm = {1, 84 + 1}.* Together with (54), we
have
1 NS 2
0=~ > (0504n)
1<j<n

< XA (14 200,12) [ (@udan) sl — (1= 20672) [[(@ndan)ss |

3

1} n MT—LUQ (Agd—pd) |d17'1ld—pd _ agd—pd

4Suppose Sg, = {1,4,10}, then Sy, = {1,2,5,10}.
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< NP [ (14 26612) 2l B, = (1 - 200272) el Gandgg 1] -

Define
Co=<ueRM:|ug |1 < %Hugd g
d,n Q ’

Then, we have 5d,n € C,. It follows from Bickel et al. (2009, Lemma 4.1) and Assumption 5.4 that
. _ _ 1 ¢ ¥
ulélgn(||u§dv"L||1) 2(shd=pd 4 1)/ - Z OOy ; | u > 0.25K7 .
1<j<n
Therefore, we have
0.253[|0a,n) 5, I < (1 + 2@5;1/2) eI (BIP 4 1)[(Bgn)s,
which implies
|Gan)s, Il < 4 (1+206,1/2) (53704 4 )P0/
We then have

|d}11Ld—pd _ Oz%d_pd| + ||Br};d_pd _ Bgd_del
= [100an)g, I +11(0an)ss I

< (14—26/gﬂK5¢n)§inH1 < 4(14—2@/Q>(14—2€£;1/2)(ggd—pd_%l)Agd—pdE/ﬁ%

Then, (53) holds because P{&,(d)} — 1. (9) also follows follows (55) because
1 hd_ _ N
~ D> H{Di=d}(an ™ = ant P+ 4 (Ban — Ban))®

1<i<2n

< NP (14 200,12) 2l (B,
< AP (14 200,172) (B

=Op (spd7PAARITP)2) = 5p(1) .

Next, we show (6) for 324-Pd. First note

1
—F (2Dz - 1)(md,7L(Xia Wn,z) - md,n(Xia Wn,i))
V2n 52,
1 A
=|—7= (2D; — 1)y, ;(Bpd—Pd — prd—rd)
vV2n 52,
1 «
<1 9D; — 1), ; hd—pd _ ghd—pd||
< Vﬂzglgign( YWnia|l 118y B Pl
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Note that it follows from Assumption 2.2 that conditional on X (™ and WT(ln)7

{Dr2j-1) = Dr(2jy: 1 <j <n}

is a sequence of independent Rademacher random variables. Therefore, Hoeffding’s inequality implies

P > @D = | >t X W
\ Van 1<i<2n -
1 n n
Z P NeT Z (Vnom(2j—1) = Ynr25)) (Dr(2j—1) — Dr2j))| >t XM
1<i<pn 1<j<n
> -
< 2 exp .
1<i<p, 1 Zl<g<n(’¢)n w(2j—1) — ’L/)n ,m(27) )
Define
2 J—
Vp = lggiin ji: 1ﬁnzl
1<i<2n
We then have
‘\/% Z D)thni > vpy/2log(py V n) X("),Wén) <(pnVvn)~t. (56)
1<i<2n

o0

Next, we determine the order of v/2. Note

1
V2] < max 2B[2, |+ 2B | o= Y (i — B

1<i<pn -
1<i<2n

1

<1+ F | max |—

SR FE o b Z iV
1<i<2n

1
<1+=Z,F | max |— E €in il
1<I<p, |20 - 7
1<i<2n

1
<14+ZE,F - (i1 — Elth, Eli,
STHEE | max o 1<§i<2nez(wn,z,z [¥n.i1]) +1g}g>;n| [¥n,i]

_ 1
S14+E,E | sup |— Z fleis¥nin)
fe€Fn 1<i<2n

where {e; : 1 <i < n} is an i.i.d. sequence of Rademacher random variables,
Fo={f:RxR" =R, fle,) =ep,1 <1< pn},

and 1); is the [th element of ¥. Note the second inequality follows from Lemma 2.3.1 of van der Vaart and
Wellner (1996), the third inequality follows from Theorem 4.12 of Ledoux and Talagrand (1991) and the
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definition of Z,,, and the last follows from Assumption 5.1. Note also F,, has an envelope F' = =,, and

sup sup E[f?] < oo
TLZle]:n

because of Assumption 5.1. Because the cardinality of F,, is p,, for any ¢ < 1 we have that

sup N(elFllgs F La(@) < 22,

Q:Q is a discrete distribution with finite support

where N (e, F, L2(Q)) is the covering number for class F under the metric Lo(Q) using balls of radius e.
Therefore, Corollary 5.1 of Chernozhukov et al. (2014) implies

1 logp, Z=.logpy, _1
FE — i n.i —F n.i < = = .
S o Y eiltnii— Elnid))|| S/ — o(E,7)

1<i<2n

Therefore, v, = Op(1). Together with (56), they imply

Dibnil| = Op (Vioglpa V) -

o0

1<i<2n

B

In light of (53) and Assumption 5.3, we have

Dbl 1350720 = BhA2y = Op (5P 10g!/2(p v )AL PY) = 0p(1) .

oo

H \/% 1<;2n

Next, we turn to the variance ¢4=P42. Let Y;(d) = Yi(d) — pa(X;) for d € {0,1}. By Theorem 3.1, we

have

ghd=pd.2 _ Gna2 _ %E {Var |:ED/1(1) +Yi(0)1Xi, Wil = (man(Xi, W) + mon (X, an))‘XZH
~ %E [Var [ BIYi(1) + Y;(0)| X, W] | Xi] |
= LB [BITi(1) + Vi)W, Xi) = 00,8287 4 b))
— %E [E[z(l) Y(O)‘Wn,mXi]}Q

= B [(en.i(1) + 0 0)) (4 (B + 5P| = B (0, (B1P 4 e )2

< B [(eni(1) + na(0) (P (BYS + 8657
It suffices to show E [(emu) +€,4(0)) (¢, (BAPd 4 ghd= Pd))} = o(1). We have

0,n Hl

B [(eni(1) + €00 (8757 + B35 H < ||B [(ena ) + ens(0))ibn]

= oAy TPls TP = o(1)

‘ HBhd pd | ghd—pd
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where the second last equality is by (18) and (19) and the last equality is by Assumption 5.3(f). This leads
to the desired result that

lim sup(oRd—Pd2 _ 5022y <,
n>1

Last, we assume the true specification is approximately sparse as specified in Theorem 5.1. Then, it

suffices to show
B [(BITi(1) + i(0) [Wai, X = 1 (8157 + 85 72)?] = o(1).
Note that
[(BIT:(1) + () Wi Xi] = 0 (8157 + B65))?]

E
S B | i(Bh + Bi — (BIP + 860 )] + 0(1)

S B8t — 819 P‘W] + B (00850 — B P2 + 01)

In addition, we have

Ewn lwn 1(61 - ﬁhd pd) {1;”71 |:E[Yl(1)|Wn,le] — Rz - ‘I/(Xz)/ﬁin - 17;71 i hd pd:| }
= Ein,i<ED/i(1)|Wn,i7 Xz] - }/1(1)) o qun’iRi + E¢n,i€n,i(1)
= _E'(/;n,iRi + Ei;n,lenﬂ(l)

Therefore, we have

B [, (81 = 10 P )] < BB 0 = B PPN LERS J2 4+ 118 — B | Bdmsena (D)
= {B[(ni(B7 = AL P 20(1) +0(1)

where we use the facts that {ER?L,Z»}I/2 =o(1) and
181 = B | Bdnien (V)| = olsh®A0) = o(1).
oo

This implies E( J(BY . — ﬂhd pdy)2 ] = 0(1). Similarly, we can show F [( (B — b= pd)) } = o(1),

which implies

E [(BI¥i(1) + Yi(0) Wi, Xi] = G, (815" + By P))2] = 0(1).

Last, we note that Assumption 3.1(a) and 3.1(b) follow Assumption 5.1. Assumption 3.1(c) follows
Assumptions 5.1 and 5.2. This concludes the proof. B
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A.6 Proof of Theorem 5.2

We first show

A, — g + 11855 = 8% = Op (sh A7) (57)
To that end, note
1 ) A R .
- I{D; = d}(Yi(d) — dgj — ¥n,iBin)? + Mo |0 (@) B35 1
1<i<2n
1 R
1<i<2n

Rearranging the terms, we then have

1<z<2n

Z I{D; = d}en ()¢, ; | (B39, — B5L) + % > H{Di =d}e,i(d) | (ahs, — k)

Qgn — Xgn
1<z<2n

1<i<2n
N 12 () Bt 1+ (58)
Next, define
_1opa1
U, =9, (d)g Z I{D; = d}(¥n,i€n,i(d) — E[thn,i€ni(d)])
1<i<2n
and
60 [log(2np,) |1 log(2npy,
uld) = [Unlloe < /B 1257 1D, = o) - Blens(@)]| </ E222)
1€[2n]
Lemma B.6 implies P{&,(d)} — 1 for d € {0, 1}.
On the event &,(d), we have
Z I{D _d}e’ﬂl() nz (Atlil,i_ 3,(17,)
" <i<on
< > HDi=dyen (i) Q@) (85 = 855
1<i<2n oo
< 2| Unlloo | Qn () (BES, — BES) I + || Z {D; = d}Elen i(d)bn ]| [12a(d)(B55, — BES) I

1<z<2n
00

< 21U, e 920 () (B2, — B9+ 2 (d)2E e ()| 1920 (d)(B — B2 s
120
< (570 dn ) M (@B, = I

where the second last inequality is by wy; ;(d) < wn,i(d), dn = 0(1), and the last inequality follows from (23)
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and the fact that

s g log(2npy,) .
n
Next, define
S = Agd _ pud

and let Sy, be the support of 631‘;. Then, we have

126 R N N R
(2 + o) 190 @Bl + I @R~ [ @3]
125 126 . e o
= (22 4 ) N0 Fin)sinll + (2o + o) IO Dan)s, -+ 10 (@B~ 20 (D)5
and

192 (D) B85 111 = 1 (d)BE5) s I+ I (D)BE) 5., 11 = 1(Qu(d)BE3) 5.
19288511 = 1 (D)8 50 1 < N(Qu(d)BE) 500 11+ 1 Qn(d)SG5,) s, 1

1+ 1(Qn(d)dan)ss

1

Further define é4, = (&, — ah,, (5& ) and Sg,, = {1,S4, + 1} as illustrated in the proof of Theorem
5.1 above and recall wn,z = (1,4, ;)"- Then, together with (58), we have

0<~ S H{D; = d}(@, ban)?

n
1<i<2n

N 120 A 126 .
< | (o ot 0) N D)l = (2= - = o ) 1@n@an)sy, ]

+(1/£ )|&2dniadn

[/ 120 126 A
< A5, _<0Mn +dn + C) )1 (0an)sunllt — (C ~ o dn> Q||(5d,n)52,n”1]
+ (1/€ )|d2dn adn

[( 126 126 «
< [(B o+ du+) ollbans, (2= o = o) ellGan)s; ] -

Define
20¢
Cn = {u e RPHL: ||uSc lli < 7““5(1 ll1 } :

For sufficiently large n, we have 5d’n € Cp. It follows from Bickel et al. (2009) and Assumption 5.8 that

1 U
inf (|lug, | )72 (st + D! - > HDi=d}n i), | u> 02567 .

uel
" 1<i<2n

Therefore, we have

9 126 v
02508 B, 8 < (2age + o +) MAGR+ DGan)se s
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which implies
N 1260
IBam)sanls <4 (g + d-t) sh3 + DAY

We then have

| —

anln < NGam)g, N1+ 10an)gs Il < 41(Gan)g, I

20 _
<16 (aw +dp +c> (spd + )AL,

n

and

hd/yhd
n ()‘d,n)2/l<ﬁ .

S|

120
- _ < G
I{ d}(adn adn—’_wnz(sdn) 6(0_5671 n )

1<i<2n

(57) follows because P{&,(d)} — 1. (9) also follows because

1

Z I{D = d}(adn 7adn+¢n z(ﬁdn 6(1,%)) - OP( ()‘hd) ) - OP(I) .

1<i<2n

Next, we show (6) for B}jﬁl. First note

\/% S @5 — 1) (it (Xis W) — a0 (Ko, W)

N <i<on

1 ~
— Z (2D; — 1)y, i( g(iz - gi)
Van 1<i<2n

1 .
< @2D; — 1)y hd _ hd
> H\/T 1<;n w ||Bd,n Bd,n”l

Next, note that it follows from Assumption 2.2 that conditional on X (™ and WT(Ln)7

{Dr2j-1) = Dr(2jy : 1 <j <n}

is a sequence of independent Rademacher random variables. Therefore, Hoeffding’s inequality implies

P > @D — ) X0
Von 1<i<2n -
2P \ﬁ Y Wnim@j-1) = Ynr(2) (Dr(2j-1) — Dag2g)| > t| X, W™
1<l<p 1<j<n

t2
< 2exp | — .
1S§pn ( % Elgjgn('(/)nﬂr(ijl) - wn,ﬂ'(Qj))2>

Define
2
v, = max — E wn il -

1<7,<2n
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We then have

1
P{|l— 2D; — Dbni| > vn/210g(pn V )| XM WM 8 < (p, vin)~L. 59
‘mlgg%( ), V/2log(pn V 1) < (pn V1) (59)

oo

Next, we determine the order of v2. Note

1
Elvp] < max 2B[Y] ]+ 2B | o~ > (0 — Bl

L= 1<i<2n

1
<14+ F| max |— Z eiwi,i,l

1<I<p, | 2n 1\ Sizom
SIHEE | | 3 ot
S1+E.E | max ;n1§%nei<wn,i,l—E[wn,i,z]) + max |Elnil]
S1+E.E -sup QL Z flei, nit)
| /€T " <i<on

where {e; : 1 <i < n} is an i.i.d. sequence of Rademacher random variables,
Fon={fRxR" =R, fle,¢) =ep,1 <I<p,},

and v, is the lth element of ¥). Note the second inequality follows from Lemma 2.3.1 of van der Vaart and
Wellner (1996), the third inequality follows from Theorem 4.12 of ? and the definition of =,,, and the last

follows from Assumption 5.5. Note also F,, has an envelope F' = Z,, and

sup sup E[f?] < oo
n>1 feFn

because of Assumption 5.5. Because the cardinality of F,, is p,, for any ¢ < 1 we have that

sup N(e|Fllg2 F, L(Q)) < 22,

Q:Q is a discrete distribution with finite support €

where N (e, F, L2(Q)) is the covering number for class F under the metric Lo(Q) using balls of radius e.
Therefore, Corollary 5.1 of Chernozhukov et al. (2014) implies

1 log p =, logp, _
Blsup o= > eiltnir—Bltnal)|| S /2 + =20 — o2

n
fe€Fn 1<i<2n
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Therefore, v, = O,(1). Together with (59), they imply

H\/127l 1<§<:2n(2Di —Dni|| =O0p ( log(pn V n)) )

o0

In light of (57) and Assumption 5.7, we have

1 5 shdge, log(p, V n)
S 3 @D | 13k - sl = 0n
‘ \/ﬂ 1S%2n * ot \/ﬁ

o0

> = op(1) .

Next, note that Assumption 3.1(a) and 3.1(b) follow Assumption 5.5, and Assumption 3.1(c) follows

Assumptions 5.5 and 5.6.

Last, suppose the true specification is approximately sparse as specified in Theorem 5.2. Let fﬁ(d) =
Y;(d) - ,ud(Xl)7 '(Z)n,i = wn,i - E[l/)n,i|Xi]7 and Rn,l(d) = Rn,l(d) - E[Rn,z(dﬂxl} Then, we have

B [(BIV:(1) + Vi(0) Wi, Xi) = (815 + B3] = Bl(Rus(1) + Ras0))%) = o(1)

Ly

This concludes the proof. ®

A.7 Proof of Theorem 5.3

Further denote Agd as the estimator in (12) with ; replaced by I, ;. We first show

Bhd=t — ghd=t = op(1) . (60)
Let

A 1
Arn = (Dr2j-1) = Dr(2j)) Cnr@i—1) = Tnin(2i) 5

1<j<n
~ 1 ~ ~
B = (Dr(2j-1) = Dr(2j)) T m(2j—1) = Tnyrzi))

1<j<n

or; = (Dr2j-1) = Dr2j)) Tnir2i—1) — Tnr2i) >
Op j = (Dr(2j—1) — Dﬂ(?j))(fn,ﬂ@jfl) —Thnp) -

Then, by the proof of Theorem 4.2, we have 319~ equals the coefficient estimate using least squares in the

linear regression of dy,; on o ; — Af ... Then, for any u € R? such that ||u||> = 1, we have

1/2 1/2
1 ~ 1 N
-~ Z ((0p; = Ap ) w)? s Z ((6r,; — Ar,p)'u)?
1<j<n 1<j<n
1/2
1 « .
<= > (G, =) w)’ = ((Ap,, = Arn)w)?

1<j<n
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1/2

P (8%, 658 — T — (ol o) |

SJ Z 771 Z (agdn adn+wnz( d,n 2,(17,))2:013(1)7

de{0,1} 1<i<2n

where the second inequality is by the fact that

0r; = (Drzj—1) = Drj)) Tnmizj—1) + (4%, 00%,)

Op

- 1_‘n;fr(2j) (alllciu O‘B%)/) )

5= (Dr2jm1) = Driep) Conizj—n) + (645, 66%) = Do) — (615, 465,)")

and the last equality is by the proof of Theorem 5.2. This implies

1 A "
(Op ; — Ap,,)(0p ; — Ap ) — 2E[Var([, ;] Xi]]
1<j<n
1 A A 1 < A

= Op; = Ap )0, = Ap ) == > (0rj = Arn)(0r; — Ary)’

1<j<n 1<j<n

1 A A /

+ E Z (6I‘,j - Ap,n)((sr’j - Ap’n) - 2E[Var[l"nﬂ|Xl]] = Op(l) s

1<j<n

where the last equality holds due to the same argument as used in the proof of Theorem 4.2. Similarly, we
can show that

1 A
~ D 0vi(r; = Ap,) — B[Cov[Tn s, Yi(1) + Yi(0)| X)) = op(1) |
1<j<n

which leads to (60).

Next, we show (6). We have

\/j (2Dz - 1)(md,n(Xia Wn,z') - md,n(Xia Wn,i))
1<i<
1 N A 1 ~
=—— 2D; = )T = Tnd) BT+ —= > (2D; = DT, (Bt~ = gnd=)
2n 1<i<2n 2n 1<i<2n
= (f E <z<2n( 1) :m( A{lfviz - hd) \/ﬁ Zl<z<2n(2D ) ;11( A(}Jl,(iz - 8%)) /Bgd_f
(b Sicican(2Di = DY) B1%, = 3010 (2D — D) 854, ) (B — 819
=op(1),

where the last equality holds by (60) and the facts that

(A= Srcican(@Di = D (B — A1), A= 32 i (D1 — 1), (B — %)) =

0,n OP(l)

as shown in Theorem 5.2 and
(72 Trcicon@Di = D6 8%, = T 0 (2Di = DY), 85, ) = Op(1) -
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For (9), we note that

1 .
27 Z (md,n(Xi7 Wn,z) - md,n(Xia Wn,i))2
1<i<2n
1 . - 1 R
So D0 (Pug =T B2 4 o 37 (T, (3T — g2
1<i<2n 1<i<2n
1 A 5 3 —
S5 (%n,s (BT = BS))? + (W, 4(B55 — Boc)))I1B 113
1<i<2n
1 Ahd _
+a, [(Un,iB15)% + (WniBe) 218~ = Bt 13
1<i<2n
1 A .
DI [(alit, — b+, (B4, = B))? + (akd, — &t 2] IBRY1I13 + o (1)
d=0,1 1<i<2n
=op 1)

Assumption 3.1 can be verified in the same manner as we did in the proof of Theorem 5.2.

Last, we compare gi&2 ghd2 shd=£2 Recall 62(Q) and 02(Q) defined in Theorem 3.1. As we have
already verified (6) for g, (X;, Wy,:) = fnyiﬁﬁd*f and mgn(X;, Wy,) = Fmﬂgd*f, we have, for b €
{na, hd, (pfe,hd)}, that

o8 = 03(Q)  63(@Q) = 5 [Var[BIYi(1) + Yi(0)|X;, W] = T, 211
with
ywmadi — (00) | M = (1,1, and AT = ghd—T
In addition, we note that
LB [VarlE[Yi(1) + ¥i(0)|Xi, W] — T 111 X1]

is minimized at v = Bﬂd’f, which leads to the desired result. B

B Auxiliary Lemmas

Lemma B.1. Suppose ¢,,,n > 1 is a sequence of random variables satisfying
lim limsup E[|¢n|I{|¢n] > A} =0 (61)
A—=00 psoco

Suppose X is another random variable defined on the same probability space with ¢,,n > 1. Then,

ln L sup B{E {6 XJH{E6,]|X] > 71 = 0. (62)

y—>0o0
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PRroOOF. Fix € > 0. We will show there exists v > 0 so that
lim sup E[E[¢, || XIT{Ell6,]|X] > 7)) <. (63)
n—oo

First note the event {E[|¢,||X] > ~} is measurable with respect to the o-algebra generated by X, and

therefore
E[E[|¢n| [ XIH{E[lpn||X] > 7} = Ell¢n| I{E[|¢n]|X] > ~}] . (64)

Next, by Theorem 10.3.5 of Dudley (1989), (61) implies that there exists a § > 0 such that for any sequence
of events A,, such that limsup,,_,., P{A,} < ¢, we have

limsup Ef|¢n|I{An}] < €. (65)

n— oo

In light of the previous result, note

P{E[|¢,||X] >~} < E[E[lﬁanﬂ _ Enjn]

By Theorem 10.3.5 of Dudley (1989) again, (61) implies limsup,,_,., F[|¢n|] < oo, so by choosing v large
enough, we can make sure
limsup P{E[|¢,||X] >~} < § for all n .
n—oo

(63) then follows from (64)—(65). W

Lemma B.2. Suppose Assumptions 2.1-2.3 and 3.1 hold. Then,

2
Sn P

nE[Var[¢1 | X;]] b

PRrROOF. To begin, note it follows from Assumption 2.2 and Q,, = Q" that

1 1
n 2 Divar[(bl,n,”Xi]:% Z Var[p1,n,i| X;]
1<i<2n 1<i<2n
1 1
+ 5 > Var[gy n i Xi] = o > Var[gialXi] . (66)
1<i<2n:D;=1 1<i<2n:D; =0
Next,
LS VarlguadXl -0 Y VarlralXi]
o I n,i|Ni] — 3 n,i|<%q
m Ln, m HP1n,
1<i<2n:D;=1 1<i<2n:D;=0
1
§% Z | Var[oq n r(2j—1) | Xr2j—1)] = Var[é1 o r )| Xre@pll - (67)
1<j<n

In what follows, we will show

1
- Z | Cov[Yr(zj—1)(1), m1n(Xr2j—1), Wr2j—1))| Xr2i—1)]]

1<j<n

o1



P
— Cov| ﬂ(QJ)(1)7m1,n(er(2j)7 Wﬂ(?j))lXﬂ'(Zj)]H —0.

To that end, first note from Assumptions 2.3 and 3.1(c) that

— Z ﬂ(zg 1) )ml,n(Xﬂ'(Qj—l)vWw(2j—1))‘X7r(2j—1)]_E[Y‘fr(Zj)(l)mlyn(Xﬂ(QjﬁWW(Qj))‘XW(Qj)]|

1<]<n

1 P
Sy Y Xa@jn) = Xappl = 0.

1<j<n

Next, note

-~ Z Y(2j-1) (DI Xr(2j-) E[man(Xr(2j-1) Wr(2j-1)) [ Xr(2j-1)]

1<j<’ﬂ

— ElYa(25) (DI Xr2p) Elman(Xa(2j), Wa(e) )| Xn(ep]l

1
< n |E[Y7r(2j 1 (1)|X7r(2j 1)]||E[m1,n(X7r(2j71)aW7r(2j71))|X7r(2j71)]_E[ml,n(Xﬂ'(Qj)vWﬂ(2j))|X7r(2j)]|
1< S
+* Y BNy (D) Xy -1)] = By (D Xe@p I Elman(Xa(zg), W) Xr@p)]]
1<]<n
1/2
< E Z w(25—1) )|X (25— 1)”
1<j<n
1/2
1 2
X ﬁ Z ‘E[ml,n(X‘n'(Qj—l)vWﬂ(2j—1))|X7r(2j—1)]_E[ml,n(Xﬂ(Qj)7Wﬂ(2j))‘X7r(2j)H
1<j<n
1/2
+ (= Z (M1 (Xr(25)s Wa(25)| X212
1<]<n
1/2
1
o > BNy (DI Xa@i—n)] = EYa@i) (D) Xne@p]l?
1<j<n
1/2 1/2
1 1
Sy |E[Y;(1)]X,]]? - D [ Xei1) — Xagop?
1<i<2n 1<j<n
1/2 1/2
1 1 P
o D Bl (X W) X ~ D [ Xajon) ~ Xnepl* ] 20,
1<i<2n 1<j<n

where the first inequality follows from the triangle inequality, the second follows from the Cauchy-Schwarz
inequality, the last follows from Assumptions 2.1(c) and 3.1(c). To see the convergence holds, first note

because

B(|IEY;(1) X)) < BIE[Y? (1) Xi]] = E[Y?(1)] < o0

b

the weak law of large numbers implies
1
=Y IEMOIXIP S 2B B (11X < oo .

1<i<2n
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On the other hand,

Z |E[ma (X, Wi)| X4]? <

1<i<2n

E[mi (X, W;)|X,] .

1
2n 2n &
1<i<2n

Assumption 3.1(b) and Lemma B.1 imply

lim limsup E[E[m] ,(X;, Wi)| X[ I{E[m3 ,,(X;, Wi)|X;] > A} =0.

A= p—oo
Therefore, Lemma 11.4.2 of Lehmann and Romano (2005) implies
1
o 2 Blmi (X, WolXi] = BIE[mi, (X, W) [ X,]] 50
1<i<2n
Finally, note E[E[m] ,(X;, W;)|Xi]] = E[mi ,,(X;, W;)] is bounded for n > 1 by Assumption 3.1(b), so
| Elman (Xi, Wi)| Xi)|* = Op(1) .

1<i<2n

S

The desired convergence therefore follows.

Similar arguments applied termwise imply the right-hand side of (67) is op(1). (66)—(67) then imply

s2 1
; — % Z Var[¢1,n7i|Xi] —0. (68)
1<i<2n
Next, we argue )
— V. nil Xi| — E|V: il X 0. 69
s 3 Varlonndl Xl = E[Varfon X, - (69)

To establish (69), we verify the uniform integrability condition in Lemma 11.4.2 of Lehmann and Romano

(2005). To that end, we will repeatedly use the inequality

SToa I D a>Aap< > k|aj|1{|aj|>2} (70)

1<j<k 1<j<k 1<j<k

lab|I{|ab] > A} < |a>I{|a] > vV} + |b]2I{|b] > VA} . (71)
Note

E[| Var[py 5| Xi] — E[Var[¢yn,q| Xi]]|I{| Var[p1,n,:| Xi] — E[Var[¢1ni| Xi]]| > A}]

S B | Vorlwn d X1 { [ Vorlon X1 > 5 | + ElVarlon X0 { ElVarton sl i) > 5 }

\V]

A A
< BBl X0 { Bl X0 > 5 )| + it { B0 > 5 ]

where in the second inequality we use the fact that the variance of a random variable is bounded by its
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2

second moment. Note Assumption 3.1 implies E[¢7 ,, ;

] is bounded for n > 1, and therefore

lim limsup E[¢7 ;|1 {E[ﬁm)i] > ;} =0.

A—=00 n—oo
On the other hand

A

B | Blotaxir { Bl x> 3 ]

s B ez {Erwix) > 3|+ B[ pwd.comoixar{ s oo wix > 3

+ B Bl (6, w101 { Blmd (X W10 > 3}

+E |E[Yi(1)ml,n(Xi7Wi)|Xi]|I{|E[Yi(1)m1,n(Xi7Wi)Xi” > 1/\2}}

+ E | |E[Yi(1)mon(Xi, Wi)| Xi] | {|Em(1)m0>n(xi’Wi)Xi“ ~ 1/\2}}

A
+E |E[m1,n<xi7wi)mo,n<xi,Wi>|Xi]|I{E[ml,n(xi,wnmo,n(Xi,Wi>|Xi]|>6}] .

It follows from Assumptions 2.1(b) and 3.1(b) together with Lemma B.1 that

lim limsup E [E[Yf(l)|Xi]I {E[Yf(l)Xi] >

—00 n—oo

A—00 p—oo

lim limsup E {E[min(Xi, W)X I {E[min(Xi, W) |X;] >

_.
wl> wl> tol>
e e
Il
()

it sup [ Blnd (6 W)X { Bl (6,91, >

A—=00 p—oo

For the last term in (72), note

E {|E[m1,n(Xi,Wi)moyn(Xi,Wi)|Xi]|I {|E[m17n(Xi,Wi)mo’n(Xi,WiﬂXi] > 2}]

< B | Bl (s Wopm (X, W)X { Bl (X5, Wimo (65 110 > 31
Meanwhile,

EE[|my ,(Xs, Wi)mon (X, Wi) [ {|man (X, Wi)mo o (X, Wi)| > A}]
< E[m3 ,(Xi, W) I{|m1 (X3, Wi)| > VMY + E[mg . (Xi, Wi) I{|mo n (X3, Wi)| > VA}] -

It then follows from the previous two inqualities, Assumption 3.1(b), and Lemma B.1 that

A

A—=00 p—oo
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Similar arguments establish

hm limsup £ DE[ i(D)ma (X5, Wa) [ XG] |1 {|E[E(1)mla”(Xi’Wi)|Xi” o 1)\2” =0

A—00 n—o0

0.

i timsup 2 ||ELY; (1o (65 WO { BV (0mo 0 (X W10 > 25

A—00 p—oo
Therefore, (69) follows. The conclusion then follows from (68)—(69) and Assumption 3.1(a). B

Lemma B.3. Suppose Assumptions 2.1-2.3 and 3.1 hold. Then,

lim limsup E[|¢1n,i — El¢1,0.,: Xi] 2 1{|¢1,n,i — Elp1nal Xi]]> >4} =0

Y70 n—oo

ProOOF. Note
XilPH{|¢1,n,i — Elpr,nil XilI> > 7]
1]2)1{ 1nz+E[ Z]2>%}:|

< E[ Lni {tﬁn,i > %H +F {E[d)lvnv“Xi}zI{E[(ﬁl,n,i‘Xi]z S %H '

El|¢p1,n,i — Eld1,n,i
< E |:( 1,n,: +E[

where the first inequality follows from (a + b)? < 2(a? + b?) and the second inequality follows from (70).

Next, note

FE [E[¢1,n,i|X] { [¢1 nz|X] %}}
5E[Em<1)|xi]2f{ VI > L] + B [Blma (X0 WoIXG2E { Bl (Xs, W) X2 > 2]
e

mOan»W)‘X] Z}}
+E[\E[ SDIX Bl (X3, WLX {IEYG(DIX Elma (X5, W)l Xi)| > 2]
+ B || BIY: (1) X Blmo.n (X3, WOl XIE { | BIY: (V)X Blmon (Xi, W)|Xi)| > 32 ]

+E E[mO o (Xa, W) | X)2

+FE _‘E[ml,n(Xz‘,Wi)|Xi]E[mO,n(XiaWi)|XiHI{|E[m1,n(Xi7Wi)|Xi] [mo,n (X3, Wi)| X5]| > EH

S BBV { BV > L + B |Blmd, (X, w1 { Blm? (X w)lx) > 2]

+ B |Blm}, (X;, W)X, 1 { Bl (X, W) X) > 2]

+ E ||E[mq o (X, W) | X < | E[man (Xs, Wi)| X5 >

{ Vai))
1 B || Blmo (X, W)|X] I{IEmOn Xi W) | Xill > \/Z}
{ i}
{ :

+ E ||E[my o (Xi, Wi)| X

|E[ma o (X, W) | X4]| >

+ E ||E[mon (X, W) | X)|T

|E[mon (X, W) | X4]| >

< B [BY?OIXI {BYZ 01X > ] + B [Blm? (X0, W) X1 { Efmd (X, W) X > 2]
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+ B | Elmd , (Xe, W) X { Blm3 (X, Wo)| Xi] >

+E:Em2(1>|xi]I{E[ YIXi] > ;;H

+E[E[ WX W) XTI L Elm2,, (X, W) Xi] >

o]

(=)

ﬁ\%
——
[

!
| o)

B E[ma,nm«,wmxm{E[manm,mm> K

\q@

+ E|E[m? (X, W) | Xa)T § E[m?3 . (X;, W;)| Xi] >

+ E | E[m2,, (X, Wy)|X; I{EmOn (X0, Wi)|X,) >

where the first inequality follows from (70), the second one follows from the conditional Jensen’s inequality
and (71), and the third one follows again from the conditional Jensen’s inequality. It then follows from

Lemma B.1 together with Assumptions 2.1(b) and 3.1(b) that

lim limsup E {E[¢1,n7i|Xi}21{E[¢17n7i|Xi}2 > %H =0.

Y7 nsoco

Similar arguments lead to

fl-o

lim limsup & [ L {(b%nz >

YR n—oo

2

The conclusion then follows. B
Lemma B.4. Suppose Assumptions in Theorem 5.1 hold. Then,

1 log(2npn) 1 log(2npn )
- Z de.j :OP< ?—FQ}L and Q”IE Z 8ei0pill =Op T"‘Cn i

1<j<n 1<j<n o

PROOF. Note wy; > g > 0. It suffices to bound & 37, i, dc 6y ;. We have

Sej =0y, — 0, Jﬂhd—pd — ghd=pd
= (Dr(2j-1) = Do) ) (Ya(zj—1) = Ya2p) = Wnn(2i—1) = Ynm(z) Ba P — and P
= (Dr(2j-1) = Drap)(Ya(zj-1) = Ya(2p) = Wnm(zj—1) = Pnm(z) Br04) — apd 7P
— (Dr(2j—1) = Dr2j)) (¥ (Xni2j—1)) — ¥ (Xr(25))) Bt P — apd-—pd
= (Dr2j—-1) = Dr(2j))(€nn2j)(Dr2j-1)) = €nn(2j-1)(Dr(2j)))

— (Dr(2j-1) = D)) (W (Xnzj 1)) = ¥(X(a)) Bt P4
hd—pd _ shd—pd
+ (Dr(2j-1) = Dr(2) Wn n(2j—1) + ¥nm2i) ( D"(Qj_l)’n2 DW(QM)
+ (Dﬂ'(2j71) -D (23))( hdﬂ(idl),n - a%i;‘f,n) - agd_pd

= (Dx(2j—1) = Dr@2j))(€n,n(2j—1) (Dr2i-1)) = €n,n(2j) (Dr(2)))
— (Dr(2j—1) = D)) (W (Xnzj 1)) = ¥(Xr(2)) Bt P4

hd—pd _ phd—pd
~ ~ D2i—1),m D 24),m
+(Dw(2j—1)Dw@j))(%w(zj—l)+¢n,w(2j>)'( — = > (73)

2
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where we use the fact that

hd—pd hd—pd _ _hd—pd hd—pd __ _hd—pd
(Dx(2j-1) = Dr(2j)) (e o )=a — Qg = aps P

Dr(2j—1)n " Dx(2j),n 1,n

To see the first result in Lemma B.4, we note that that

1

— 2 (Drj—1) = Drizj))(€nm2j-1) (Dr(2j—1)) = €nn(2) (Dr2)))
J€Eln]
= LS D = Dei() = = 3 1(Ds = 0)eni(0)
~ o ‘ i — 1)€n om i — U)€nq
1€[2n] 1€[2n]
1 1
~on (Di = 1)(€n,i(1) — E(€n,i(1)]X5)) mn Z (Di = 0)(€n,i(0) — E(€n,i(0)] X:))
i€[2n] i€[2n]
1 1
+ m Z I(D; = 1)E(en,i(1)|X5) — E(en,i(1)) + m Z I(D; = 0)E(€5,i(0)|X;) — E(€n,:(0))
i€[2n] 1€[2n]

Following the same arguments used in the proof of &, 1(d) and &, 2(d) below, we can show that

e 3 TDs = Densl) = Blens(MIX0) = 5 3 1(D: = 0)ens(0) ~ Blens0)1X:0) = O (=

i€[2n] n ic[on] \/ﬁ
- X 10 = DB (DIX) ~ Blens) + 5 3 1D = 0B (60 s0)1X:) ~ Blens0) = Or (=)
2n P . n,? 7 n, m o i = n,i i nii =Op \/’E )

Then, Assumption 5.1 implies

- Z m(25—1) 7r(2j))(€n,7r(2j71)(Dﬂ'(2j71)) - 6n,ﬂ'(Qj)(1371'(2]’))) =0Op (

JE [n]

log(2npy,) ) .

n

In addition, by Lemma B.5, we have

- Z Dr(2j) = Dr2j-1) (¥ (Xn(25) = ¥(Xr(2j—1))) B¢ = Op (Ca)

1<]<n

hd—pd Bhd—pd

- ~ Dy (2jy,mn Dr2j—1),n 1
- Z 7r(2j)_ 2j1))(¢n,ﬂ'(2j)+wn,w(2j1))l< @5) B) (251 ) :Op (ﬁ) R

1<]<n

which leads to the first result in Lemma B.4.
In addition, (73) implies

1
- D Geiby;

1<j<n

1
= g Z (1/1n,7r(2j) - wn,ﬂ'(ijl))(en,ﬂ(Zj)(D7r(2j)) - 6n,7r(2j71)(D7r(2j71)))

1<j<n
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(nr2i) = Ynom2j—1)) (U (Xn(2g)) — U(Xn(aj_1))) Bt P4

hd—pd _ ghd—pd
Dy (25),n Dw<2j1)7">

(Vn,x(25) — Tﬂn,w(zj—l))@n,w(zj) + &n,w(?jfl))/ ( 9

S|

1<j<n

IN

+
S|

1<j<n

Lemma B.5 below shows

1 log(2npy,
- Z (Ynr2s) — Yrm(2i—1) (¥ (Xr(2j) = U(Xn2j—1)) B4 P =op < log(2npn) + Cn)

<5<
1<j<n s

and

1 hd—pd _ phd—pd 1 (2 )
~ ~ D (25),m Dr2j—1);n 0) Npn
n Z (Vnr2j) = Ynom(2i-1)) Cnr@2j) T Unom2i-1)) ( = 5 A ) =0Op ( 28 Cn) :

- n
1<j<n
oo

It remains to bound %Zlgjgn(qz[}n,‘n'@j) — Y r(2i-1)) (€nm(25) (Dr(2j)) = €nm(2i—1)(Dr(2j—1))). We have

1

- > (Wnirei) = Ynm@i-)E€nm@) (Drei) = €nn@i-1)(Drej-1))
1<j<n o0
1 ~ ,
< E Z (1/1n,7r(2j) - wn,ﬂ'(ijl))(en,ﬂ(Zj)(Dﬂ(Qj)) - 6n,7r(2j71)<D7r(2j71)))
1<j<n oo
1
= Y (U(Xnep) = ¥ Xn(zj—1)) (€nm(z) (Dr2) = enmizj—1)(Pr(zi-1))
1<j<n oo
=1+11.
Let p=¢q/(qg—1) < 2. For I, we have
1
s~ > X2y = Xezi—n)ll2len,n(z) (Pr) = €nir2im1)(Pr(2j-1))]
1<j<n
1/p 1/q
1 1
S s > I Xr2) — Xei-nllb - > Jenm@i) (Drizs) = €nm(2j—1) (Drzj—1))|*
1< 1<j<n
1/p 1/q
1 1
Sy > 1Xr@i) — Xe@i-llb - > (leni(D)]? + leni(0)]9)
1<j<n 1<i<2n
= P(Cn)

For I, we have

1 - -
- Z (1/1n,rr(2j) - wn,ﬂ'(ijl))(en,rr(Qj)(Drr(Qj)) - 6n,7r(2j71)(D7r(2j71)))

1<j<n o0
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% Z —d¢nz€nz( )

1 ~ ~
+ E {wn,ﬂ@j)en,w@jfl)(D7r(2j71)) + wn,ﬂ'(2j71)€n,ﬂ'(2j) (D7T(2j)):|
1<j<n 00
1 - log(2np,,
<Y |- X D= ddnienid)]| +0r ( °g<n”p)> ,

oo

where the last inequality is by Lemma B.5. To bound the first term on the RHS of the above display, we
further define

¢ O(d) = Zl<7,<2n [ ( )|X] <cyp <00 ,
n, minlﬁlﬁpn n ZlSiSQH I{_DZ = d} Var[wn,i,len,i( )|Xz} > _2 >0 7

Ena(d) = { % Z H{D; = d}("/;n,ien,i(d) - E[&ﬂ,zen,Z(dﬂXl])

1<i<2n

<Cvy log(2npn)/n} )

o0

sn,2<d>={ =S HDi= Bl iens( DX~ Bl eni(d)) sc\/log@npn)/n} ,

1<i<2n
oo

1/2
1 .
5",3(d) = 12%){ % Z ( [wn i, len z( )‘Xl] - E[wi,i,lei,i(d)]) < C )
SiSPn 1<i<2n
and

1/2

1 - -

Sn’4(d) = 13}?’; m Z (2I{D; = d} — 1)(E[€%,i(d)wg,i,l|Xi] - E[Eiz(d)wr%zl]) <C
== 1<i<2n

We aim to show that P{&, 1(d)} — 1 and P{&, 2(d)} — 1 for some sufficiently large constant C, which

P{ >C ( 710g(inp”) + <n> }

< P{EL ()} + P{E; »(d)} = 0,

implies

% Z I(DZ‘ :d)’(/;n,ien,i(d)

1<i<2n

1<1,<2n o
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where the first inequality is by (23).

First, we show P{&, 3(d)} — 1. Let

log(np,)=2
n

t,=0C

for some sufficiently large constant C' and {e; }1<;<2, be a sequence of i.i.d. Rademacher random variables

independent of everything else. Then, we have

dmax; <i<p, Var[E[)2 ; €2 (d)|X,] 1 . .
(1— T S P max (o= [ B2 (@)X - BRE e (@)]| =t
n StSPn 1<i<2n
< 2P de; Xl >t
= 12225” 271 1<§<:2n e F n i, len 7,( )| ] -
=o(1)+2E | P max |— > 4eE[], € (d)|X]] >tn‘X(”) I{&n0(d)}

1<I<
=t=Pn 1<z<2n

nt?
< o(1) + prexp (—_:) — (1),
:nc

where the first inequality is by van der Vaart and Wellner (1996, Lemma 2.3.7), the second inequality is by
the Hoeffding’s inequality conditional on X (™) and the fact that, on &, o(d),

1 1
%IS%%(E[ D7 e (@) Xi)” §%1§ZZ;2RE[ 1 IXIEL (@)X
=2 5
SQ;W Z E[wi,i,ﬂXi] € id )1 Xs] <E2C«¢ .
1<i<2n

To see the above inequality,

and the last inequality is by the fact that log(p,)=2 = o(n). Furthermore, we note that

dmaxy <i<p, Var[E[)2 ; €2 (d)| X))

2nt2
_ maxisisp, B [ Bl X Bleh(d) X
~ nt2
_ Ehmaxizigy, B B XilFleh ()] X]]
~ n
_ E2ELeL ()]

2
ntz

=o(1).

Therefore, we have P{&, s(d)} — 1.
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Next, we show P{E, 4(d)} — 1. Define a,, ;; = E[e2 ;(d) ~3L,i,l|Xi] — Elez ;(d) )2 . ]. Then, we have

n,i n n,i,l

Xi] — B[E (g2, )| > tu|X™ 3 1{E, 0(d)}

P max € Z (2I{D; = d} — 1)(Ele, ;(d) ~721,i,l

n,t n,i,l
LSi<pn | 210 1<i<2n
1 n
< > P m Z (I{Dx(2j-1) = d} = I{Dr(2jy = d})(n n(2j 1)1 = Onm(2j) )| > tn| X 0 {En0(d)}
1<I<pn 1<j<n

< Y e <— 2nt, )I{En,o(d)}

1 . _ NAY
1<i<pn n Zlgjgn(an,ﬂ'(%fl),l a’n,fr(?g),l)

2nt2
< exp (log@n) - ) ,

=2 2
Eic

where, conditional on X (™, {I{Drj—1) = d} = I{Dy2;y = d}}1<j<n is a sequence of i.i.d. Rademacher
random variables, the second last inequality is by Hoeffding’s inequality, and the last inequality is by that,
on 57%0 (d),

1/2

1 2
-~ D (@nr2j-1)0 = nn(2i) 1)

1<j<n

1/2 1/2

1 7 n 1 7 n
< D0 (B oy i @IX D) 3T (B o 065 (@) X))

1<j<n 1<j<n

(Bl i a6ni(d)|X])?

n,i,len,i

(
|

Recall t, = C4/ % for some sufficiently large C' and note that P{&, ¢(d)} — 1. We have

2n n

Z (2I{D; = d} - 1)(E[Eiz(d)¢izz|Xz] - E[G%,i(d) ?uz]) —0p < log(npn)E%> ’

and thus, P{&,4(d)} — 1.
Next, we show P{&,.1(d)} — 1. We note that, for d € {0, 1}, conditional on (D™, X (™) {4}, i€, i(d) }1<i<an

are independent. In what follows, we couple

Un= 1 Y0 HD: = d)nienild) - Bldniens(d)|Xi)

1<i<2n

with a centered Gaussian random vector as in Theorem 2.1 in Chernozhukov et al. (2017). Let Z =
(Z1,...,Z,,) be a Gaussian random vector with E[Z;] = 0 for 1 <1 < p,, and Var[Z] = Var[U,|X ™), D™V
that additionally satisfies the conditions of that theorem. Specifically, Z = (Z1,---,Zp,) is a centered
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Gaussian random vector in RP» such that on &, o(d) N &, 3(d) N E, 4(d),

E22)= 5 S IH{Di=d}E[E ()| X

1<i<2n

_i(i > I{Di=d}E[e,L,i(d)1ﬁn,i|Xi]) (i > I{D,-=d}E[en,i(dwn,ilX,»])

1<i<2n 1<i<2n

and by the definitions of E,, 5(d) and E,, 4(d),

< maxi <i<p, Z1gi§2n H{D; = d}E[Giy(d) ~72L,i7l‘Xi]

2
115, Elzi] = n?
< Cc? i maxi<i<p, Zl<1<2n I{D; = d}(Ele;, a(d WMM il — E[E%z(d) Ni,i,l])
~n n2
< Co? n maxi <i<p, ZlSiSZn(QI{Di =d} — 1)(E[63u(d) ?Lzl'Xl] - E[G?L,i(d) 72”1])
~n 2n?2
n maxi <i<p, EISiSQn(E[G%,i(d)wZ,i,I|Xi] - E[fiz(d) 72”1])
2n2
52
S -
n

Further define ¢(1 — «) as the (1 — «) quantile of ||Z]|s. Then, we have

C5(y/21og(2p,) + 1/21og(n))
\/ﬁ

where the first inequality is by the last display in the proof of Lemma E.2 in Chetverikov and Sgrensen
(2022) and the second inequality is by the fact that v/a + Vb < \/2(a + b) for a,b > 0. Therefore, we have

q(1—1/n) <

< 2C7+/log(2np,)/n

P{E 1(d)) < PAES 1(d), En0(d), En 3(d), Ena(d)} + o(1)
= EP{&; 1(d)|D"), X"}{E,0(d), En,3(d), En,a(d)} + o(1)
< E[P{|\Z||OO > 207+/10g(2np, ) /n| D™, XMYI{E, o(d), En 5(d), Ena(d)}] + o(1)
< BIP{||Z|loc = q(1 = 1/n)| D™, X"} I{Ey0(d), E,5(d), Ena(d)}] +o0(1) = o(1) ,

where the second inequality is by Theorem 2.1 in Chernozhukov et al. (2017).

Finally, we turn to &, 2(d) with d = 1. We have

Z I{D; = 1}(E[1/;n,i€n,i(1)‘Xi] - Ew;n,ien,i(l)})

= % Z (E[n,in,i(1)|Xi] = E[Ynieni(1)]) + 2i Z (2D; — 1) (E[Yn,i€n,i(1)|X;] — E[hn,i€n,i(1))).

(74)
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Note {E[i)nzem(lﬂXz] — Etpn i€n,i(1)] }1<i<on is a sequence of independent centered random variables and

max E[(E[n ii€n,i(1)|Xi] — Ethn.i60.(1)])?] < CF>.

1<i<pn

Following Theorem 2.1 in Chernozhukov et al. (2017), Lemma E.2 in Chetverikov and Sgrensen (2022), and

similar arguments to the coupling argument above, we have

P 2i S (Bldnieni(D)Xi] — Eldnseni(D])|| < Cov/loglnpa)jn | = 1. (75)

1<i<2n
- = 00

For the second term on the RHS of (74), we define g, ;; = E[i[)n”enl(lﬂXZ] — E[z/;n”enz(l)] We have

1 - -
Pl > (2Di = 1)E[dn,i€n,i(1)|Xi] — E[n,i€n.i(1)] >t’X(")
1<i<2n o
1 n
< Z P o Z (Dr(2j—1) = Dr@2))(9n.x2j—1)0 = Gn,x(25).1) >t‘X( )
1<i<pn, 1<j<n

2nt?
< exp | — )
1;%£;n ( i§:15jgn(9nnwzj—1xlgnnd2ﬁJ)2>

where, conditional on X (™, {(Dxr(2j-1) = Dr(2j)) }1<j<n is a sequence of i.i.d. Rademacher random variables

and the last inequality is by Hoeffding’s inequality. In addition, on &, 3(1), we have

1/2
1 2
n Z (g"»‘ff(2j—1),l _gn,fr(Qj),z)
1<j<n
1/2 12
1 j 1 ~
e D P e L I (Eln.n(2)06n.m(2) (1) Xr(2)])?
1<j<n 1<j<n
1/2
2 N
<= Y Elnien:(1)1Xi)?
1<i<2n
1/2
2 5
<| = > Bl 0)X]
1<i<2n
1/2
2 ) 7 p—
<|2 X [BWRac. X - BE2 e 0)] | +2
1<i<2n
< Co.
Therefore, we have
! b ; log(np,)a”
Pl Y @D = DEFnen (VX = Bldnieni(D]| >0y =200

1<i<2n
oo
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. P{ % Z (2D; — I)E[T;n,iﬁn,i(lﬂxi} — E[?Lmzfn,i(l)] > C\/W7 En,s(l)} +0o(1)

1<i<2n
1 , P e (DX e [ 108(mpn)7? | ()
<E|P{|5 12;2“(21)1 = DB iens(DIXi] = Bl iens (V]| > Cyf === |X" 6 H{E,5(1)}] +o(1)
=o(1) . (76)

Combining (74), (75), and (76), we have P{€, 2(1)} — 1. The same result holds for &, 2(0). ®

Lemma B.5. Supposes Assumptions in Theorem 5.1 hold. Then, we have

1 , _
n Z (ql)n,ﬂ'(Zj) - ¢n,ﬂ(2j—1))(qj(—Xﬂ(2j)) - ‘I’(Xﬂ(zj—l))) 52d pd =op (Cn) ,

1<j<n -

1 _
n > (D) = Dri2j-1) (¥ (Xn(2j) — U Xn2j-1)) B = Op (Cn)

1<j<n

S|

hd-pd _ ghd—pd g o]
¥ bt D (25),m Dr2j—1):n 0) n
Z (Vnr2j) = Ynom@i-1) Cnr@j) T nomi-1)) ( - et > =Op < 28 Pn) Cn> ;

- 2 n
1<j<n

. hd—pd _ ghd—pd
~ ~ D (24),n Dr(2j-1):m
o Z (Dr(2j) = Dr(2j-1)) Wn,m(25) + Ynor2j—1)) < 24 2i-1) ) —0p (

2

- log(pn
1l)7l,7r(2j)e1'b,7'r(2j—1)(Dﬂ'(Qj—l)) = OP < gflp )> ; and

oo

) log(pn)
w"’ﬂ'@j—l)enﬂ"@j)(D7r(2j)) =0p ( .

- n
1<)

IN

o0

PROOF. Recall QLM = 1y, — U(X;). For the first result, we note that

1

= ) Wnr) — Yrmi 1) (¥ (Xn() = ¥ (Xnzj1))) Bt P

1<j<n 0

IN
S|

(Vnm(2j) = Pnn(2j—1) (¥ (Xn(2j) — U( Xn(aj_1))) BRd—Pd

1 n

IN
IN

J )

(U(Xr2i) = U (Xn(2jm1) (U (Xr(2j) = U(Xn2j-1))) Brd P4

n

3=

1

IN
IA

J o

S|

('J}n,‘n'(Qj) - 1;71,,#(2j—1))(\II(X7r(2j)) - \IJ(XW(Qj—l))),BEdipd

1 n

IN
IN

J 00

=lQ

(Xn(2j) = Xn(2j-1))”

S

1<5<
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1 _ _
= E Z (wn,ﬂ'(2j) - wn,ﬂ(2j71))(m(X7r(2j)) - \IJ(X‘II'(QJ 1) )) 6hd pd + OP(C’?L) (77)

1<j<n oo

For the First term on the RHS of the above display, we note that, conditional on (D™, X)) (U, i =
(&nﬂr@j) - Z;n,ﬂ(gjfl))(‘l'(Xﬂ(gj)) — \I'(X,r@j,l)))’ﬁgd_pd}lggn are independent and mean zero. We have

2

2 — 2
S8 n Z nad < D (Xrj) = Xnzj-1)* = Op(E2C2).

1<j<n 1<j<n

For an arbitrary € > 0, let A, 1 = {maxi<i<;, %ZKK” U? ;. < CiEZGA} for some large Cy so that
P{A,1} > 1 — ¢, where U, ;; is the lth element of U, ;. Further denote {e;}1<;<, as a sequence of
independent Rademacher random variables. Then, for ¢, = M logl/ 2 (pn)gnEnn_l/ 2 with some sufficiently

large M, we have

1
- > (n) y(n)
11;}2}}; - Z Unji| 2 tn| DV, X
1<j<n

dmaxi<i<p, Xi<j<n Var[Uy ;1| D™, X ()]
1- === P
n2t2

1<I< n
SUSPn 1<j<n

1
<2P<{ max |— Z 4e; Uy 51 ztn’D("),X(")

1
<e+2F |P{ max |- Z 4e;Uy ;1 Zt‘D(”),X("),W}j‘) I{A,.}| D™ x™

1<i< n
= =P T gi<n

nt?
< e+ Cp,exp _”20”2 < Cl,

where the first inequality is by van der Vaart and Wellner (1996, Lemma 2.3.7) and the second last inequality
is by the Hoeffding’s inequality. In addition, for a sufficiently large M and by Assumption 5.2, we have

4max1§l§pn Zlgjgn Val"[UnJ,l‘D(nLX(n)] < CCTQL
pEr = Z2¢2M?1log(pn)

<1,
where the first inequality is because, by Assumption 5.1,

(n) x(n)
1%2)1;1 E (wn ,(24),1 wn ,m(25—1),1 ) ‘D X 1211,a<Xn 122);7» CE[ n i, llX] C

for some constant C'. This implies

l Z (’J}n,ﬂ'(Qj) - q[)n,w(Qj—l))(\Ij(Xw(Zj)) - \IJ(X (25-1) )) ﬁhd = OP(IOgl/Q(pn)CnEnn_l/Q) = OP(Cn)'

1<j<n IS

The second result in Lemma B.5 is a direct consequence of the Cauchy Schwartz inequality and Assump-
tion 5.2(a).
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For the third result in Lemma B.5, we have

1

1<j<n

1
<=

Z (Jjn,ﬂ@j) - %/;n,w(Qj—l))@n,w(zj) =+ lzn,w(gj—n)/

- Z (Ynm2i) = Yrn(2j—1)) Cnor(2j) + Ynm@i—1))’

2

hd—pd _Bhdfpd
( D7r(2j)7n D7\'(2j1)1n>

hd—

oo

hd—pd
Dﬂ(2j) sn 6
2

pd
D7r(2j1)7n>

1<j<n oc
) hd—pd _ ghd—pd
7 7 D, ) D, j—1)
+— D 1 Xn(2g) — Xnjll2 |(Vnm(z) + Unmzimn) ( B n)‘
1<j<n
) j}sd—pd _6gd—pd
<= Z (wn,ﬂ(Zj) - wn,ﬂ'(ijl))(wn,w@j) + '(/)n,ﬂ'(ijl))/ ( T 2 T >
1<j<n -
_ 1/2 hd—pd hd—pd 2
1 2 1 7 7 1 [ Dy 6Dw(2j—1>a”
+ . > I Xr@i) — Xe@i—nll3 = Y |Wnri) + Cnmi-1) 5
1<j<n 1<5<n
) hd—pd _ ghd—pd
~ ~ ~ ~ D2y),m Dy(2j—1),n
= Y e Pnmey) — Prori-1) Vi) ( = 2 o )
1<j<n 0o
) hd—pd _ ghd—pd
5 7 Dy (25),m Dr(2j—1),m
+ln 22 P Paei-y ( 5 )
1<j<n 0o
) hd—pd _ ghd—pd
~ ~ Dy (25),m Dy(25-1):m
il Y nrzi-1¥nnan) ( ——— . ) +Op(Cn)
1<j<n 0
= Rn,l + Rn,Z + Rn,B + OP(Cn)
For R, 1, we note that, conditional on (D™ X)),
%dfpd _ gdfpd
{(wnm'(zj)w;’ﬂ-(zj) _ ¢n7ﬂ(2j_1)¢;’ﬂ(2j71)) ( 7(25) 2 (25 —1)» ) }
1<j<n
are independent and mean zero. In addition, we have
hd—pd 7l8hd—pd 2
7 7 7 7 D7r(2j)7n Dvr(2j—1)7n
él}gn n 1; <(¢n,7r(2j)7l¢':z,ﬂ'(2j) - ¢7l,7"(2j*1);lw;z,7r(2j—1)) ( 9 ))
<j<n
2/q q/(q—2)
1 ~ 1 ~ ~
< - q ) o / ) hd—pd 2q/(q—2) / ) hd—pd 2q/(q72) _
Some g 2 | |5y D WhaBl PO s Or(1)

and

max F
1<I<pn

S|

1<i<2n

2.

1<j<n

((J}n,w@j),ﬂ;;,ﬂ(zj) - J’n,w(Qj—l),ﬂZJ;lm(zj_l)) (

1<i<2n
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hd—pd
Dﬂ(zj) ;T

—-p

hd—pd
D7r(2j71)vn
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2
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o q/(q—2)
Z E{h/}nzlﬂild pd|2q/(q 2)+|,‘/}n1l5hd Pd|2q/(q 2) X}

1<z<2n

SJ inax Z sznzl

1<z<2n

Therefore, by the same argument as that used to bound the first term on the RHS of (77), we have

hd—pd _ phd—pd
Dr(2y,m Drj—nm — Op log(pn)
" .
Also note that, conditional on (D), X (")),

1 ~ ~ ~ -
max — Z [(¢n,7r(2j),l¢iz,7r(2j) —1/Jn,7r(2j1),z¢;77,(2j1))( 5
hd—pd _ ghd—pd hpd _ ghd-pd
) b D 7)o" Dx i=1)" 7 7 D, 5) 2T D j—1),1
{¢71’”(2j)w;,w(2j1) ( (23) 5 2i-1) ) } and {wnm@j—l)”(/];m@j) ( 24) > 2i-1) >}
1<j<n 1<j<n

1<i<p, N 155<n
are independent cross j and mean zero. By the same argument as that used to bound the first term on the
RHS of (77), we can show

hd—pd _ shd—pd
Z 1[} ) ,J/ ) Dr(2j),m Dr(2j-1)m -0 log(pn)
n,m(25) Yn,m(25-1) B P "

1<j<n

o0

and

SRS

hd—pd ﬂhdfpd
J} (2j-1) 1;/ 1) < Dz (25),m Dw(zjnv") —O0p ( log(pn)>
(25— n,m(27 9 - .

1<j<n IS

This leads to the desired result.

The fourth result holds because conditionally on (D™, X™), {1/;,,7”(2]-_1) + 1/~Jn7ﬂ(2j)}je[n] are mean zero

and independent.

For the fifth result in Lemma B.5, we note that, conditional on (D), X (")),

{wn,ﬂ@j) - \I/(Xﬂ(2j))en,7r(2j—l)(D7r(2j—1))}1§j§"

are independent and mean zero. In addition, there exist constants (b, C') such that

0<b< min Z E{ (Vn m(25),0 — U(X (2j),l)6n,7r(2j71)(D'n'(2j71)))2 D(n)7X(”)}

1<i<pn 1 52
= 12%3’,3” =Y E{ (Yn,m(2i)0 = ‘I’(Xw(zm)en,w@j—l)(Dw(2j—1)))2‘D(")vX(")}
1<j<n
< max ¢ Z Bl (1) + € ,(0)]X;
T 1<i<p. n £ ”’Z mt ’
1<i<2n
<(C < oo
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Therefore, following Theorem 2.1 in Chernozhukov et al. (2017), Lemma E.2 in Chetverikov and Sgrensen

(2022), and the coupling argument used to bound &, 1(d) in the proof of Lemma B.4, we have

1 log(pn
- > Wi — Y Xr@i))enn@i-1)(Drj—1)|| =Op < T(L)> - (78)

1<j<n I

The last result of Lemma B.5 can be established in the same manner.
| ]

Lemma B.6. Suppose Assumptions in Theorem 5.2 hold. Then,

1 log 2npn)
pll= — (d) — )
n Z I{D; = d}en i(d) — Elen,i(d)]| <
1€[2n]
and
_ 1 65 [log( 2npn
! - z:d nznzd*E ninl < —
P (2@ Y H{Di=d}(¢ni€ni(d) = Eltbnic _g\/

1<i<2n

PROOF. For the first result, we note that

IN

=3 Dy = d}ens(d) ~ Bleni(@)]| < |5 37 1{D: = d(ens(d) — Bleni(d)|Xi)

i€[2n] i€[2n]

F ST (D = )~ 1/2) (Blen (D] Xi] ~ Bleni(d))

i€[2n]

n ZL Z [eni(@)|Xi] = Eleni(d)])] -

€[2n

The first two terms on the RHS of the above display are Op(1/4/n) following the proof of &, 1(d) and &, 2(d)
in Lemma B.4. The last term on the RHS is also Op(1/+4/n) by Chebyshev’s inequality. This implies the

desired result.

For the second result, define

Eno(d) = maXdE{O 1} 2 doi<i<on Elep ;(d)|Xi] <o < o0,
7 minlﬁlﬁpn n Zl§i§2n,I{D1 =d} VarW’n,i,ZGn,i( )1Xi] > 0% >0,
1
Enn(d) =1~ > HDi = d}(¢n,i€ni(d) — E[nieni(d)|Xi])|| < 2.045+/log(2np,)/n 3
1<i<2n -
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Enp2(d) = % Z I{D; = d}(E[tn,i€n,i(d)| X;] — E[tni€ni(d)])|| < 3.965+/log(2np,)/n ¢

)

1<i<2n -
1/2
Ens(d) = { max L Z (B[22 (d)|X:] — ERp2 & .(d)])|  <0.017
n,3 1<i<pn | 200 ' n,i,ln,i 4 n,i,0%n,i = Y- ’
1<i<2n
and

1/2

Enald) = Z (2H{D; =d} — 1)(E[6iz(d)¢72”l|Xz} - E[eiz(d)wgzl]) < 0.0l

525, |20
1<i< n
<I<pn 1<i<on

We aim to show that P{&, 1(d)} — 1 and P{&,, 2(d)} — 1. Then, by letting C' = 65 /¢ which implies

P{gn(d)} =1- P{Eﬁ(d)}

21-P{ L S D = Y sensd) — Elvmsensl@))| = Coy/ 282
n 1<i<2n - n
1P T Y D= A} ienild) — Blbnicns(d))|| > 60\/@
1<i<2n N

> 1= P{& 1 (d)} = P{&5(d)} — 1.

First, we show P{&, 3(d)} — 1. Let

log(np,)=2
n

t, =C —0

for some sufficiently large constant C' > 0 and {e; }1<i<2n be a sequence of i.i.d. Rademacher random variables

independent of everything else. Then, for any fixed ¢t > 0, we have

2nit2 ,
1<i<2n

4maX1§l§Pn Var[E[wrQL,i,lei,i(d”Xi]] 1 2 2 2 2
<1 - P 12%2};n % Z [E[ n,i,len,i(d)‘Xi] - E[ n,i,len,i(d)u >

1 2 2
<2P{ max o Z de; By, 516, (D) X5]| >t

1<I1<pn
SisP 1<i<2n

1 2 2 (n)
= —_ , 2 1 >
o(1) +2E |P Jax 2n1<§<2 de; B[y, ;165 ()| X] _t'X I{&n0(d)}

S o)+ pewp (-2 ) = o)

=2
Elc

where the first inequality is by van der Vaart and Wellner (1996, Lemma 2.3.7), the second inequality is by
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the Hoeffding’s inequality conditional on X (™ and the fact that, on Eno(d),

1

2n

Y (B e (d)IXi)? < o Y Bl XilEle, (d)|Xi]

1<i<2n 1<i<2n

IN

2
o > B IXElE, (d)|Xi] < B Ce,
1<i<2n

where C is a fixed constant, and the last equality is by the fact that log(p,)=2 = o(n). Furthermore, we
note that

dmaxi<i<p, Var[ER ; er (d)] X))

2n
maxi i<y, B | Bl [ X Bleh ()X
5 n
_ Ehmaaizisy, B B2l XilFleh (D)X

n

Therefore, we have

max |— S (B2, (d)|X] - B2, 2 (D] | >t = o(1)

1<i< 2n
=i=Pn 1<i<2n

for any fixed ¢ > 0, which is the desired result.

Next, we show P{&,4(d)} — 1. Define ayi; = Ele;, ;(d)y; ;| Xi] — Eles ;(d)} ;). Then, we have

n,t n,i

1<I< 2n
StSPn 1<i<2n

P{ max | Y @D =d} = 1)(Ele, J(d)vr ;1 Xi] = Elen ()47 ;) >t‘X(") I{&n0(d)}

1 n
< >y P o > (I{Drj-1) = d} = I{Drzjy = d})(an,n(2j—1)1 = Gn,n(25).0)| > t’X( )8 H{Eno(d)}

1<i<pn 1<j<n
2nt?
< Z exp | —3 2 H{&no(d)}
S5, w 21<i<n(@nm(2j-1)0 = Gn,x(25).0)
2nt?
< exp <10g(pn) - =2 CQ) )
n

where, conditional on X (), {I{Drj-1) = d} — I{Dr2;y = d}}1<j<n is a sequence of i.i.d. Rademacher
random variables, the second last inequality is by Hoeffding’s inequality, and the last inequality is by that,

70



1/2
(an,‘n'(2j71),l - a”ﬂ,ﬂ'(2j),l)2

1/2 1/2

(Bl rzj-1a6ni(DXn@i-)?* | + (B3 x2gyi€mi(d)Xnezp))?

IA

IN

2N (Bl ()X

( 1/2

By letting t = C'/ % for some sufficiently large C' and noting that P{&, ¢(d)} — 1, we have

max
2n

n
1<i<2n

S~ (2ID: = ) = DE (V31X = P @) | Op( 1og<pn>az> |
1<i<pn

and thus, P{&, 4(d)} — 1.

Next, we show P{&, 1(d)} — 1. We note that, for d € {0, 1}, conditional on (D™, X)) L), i€, i(d) }1<i<on

are independent. In what follows, we couple

U, = % Z I{Di = d}("/’n,ien,i(d) - E[wn,zen,z(dﬂxl])

1<i<2n

with a centered Gaussian random vector as in Theorem 2.1 in Chernozhukov et al. (2017). Let Z =
(Zy1,...,Zp,) be a Gaussian random vector with E[Z;] = 0 for 1 <[ < p,, and Var[Z] = Var[U,|X ™, D]
that additionally satisfies the conditions of that theorem. Specifically, Z = (Z,---,Z,,) is a centered
Gaussian random vector in RP» such that on &, o(d) N &, 3(d) N &, a(d),

1
E[ZZ)=— Y H{Di=d}Ee,(d)bnt,|Xi]
1<i<2n
1
n

LY D= dElen@n X | 3 1D = d}Blen (@, X

1<i<2n 1<i<2n
and

_ 2 2
max E[Z7] < maxi1<i<p, ZISiSQn I{D; = d}E[Gn,i(d)d}n,iﬂXi}

1<i<pn n2

< zz I maxi<i<p, Zl§i§2n I{D; = d}(E[G?u(d) ?Hz‘Xz] - E[G?m(d) 72”1])

~n n2

< iz i maxi<i<p, Zlgigzn(QI{Di =d} — 1)(E[€72¢,¢(d)¢721,¢,l|xi] - E[efu(d) 72”1])
~n 2n2

n maxi<i<pn, Z1§i§2n(E[€i,¢(d)¢i,i,l|Xi] - E[fiz(d) 72”1})

2n2
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< 1.0252 .
n

Further define ¢(1 — a) as the (1 — «) quantile of ||Z]||oc. Then, we have

(1= 1/n) < 1.025(+/21og(2py) + 1/21og(n)) < 2.045\/log@np.)
~ \/ﬁ — . n )

where the first inequality is by the last display in the proof of Lemma E.2 in Chetverikov and Sgrensen
(2022) and the second inequality is by the fact that v/a + Vb < \/2(a + b) for a,b > 0. Therefore, we have

PLEL1(d)) < PLEL 1(d), Eno(d), En3(d); Enald)} + o(1)
= EP{&; 1(d)| D", X"} {E,0(d), E,3(d), En,a(d)} + (1)
< B[P{|Zll = 2.047\/log(2np,.) /n| D™, X )} {E,,0(d), En3(d), Ena(d)}] + o(1)
< E[P{||Z]]s = q(1 = 1/n)| D™, X™}] = o(1),

where the second inequality is by Theorem 2.1 in Chernozhukov et al. (2017).
Finally, we turn to &, 2(d) with d = 1. We have

1

LY D= 1B nien s (DX — Bl iens(1)
= o > Blniens (VX Blbnieni(D) + 5 S (2D~ D(Elnieni(1)IXi] ~ Bl ien i (1)
1<i<2n 1<i<2n

(79)

Note {E[¢n,i€n,i(1)|X;] — E[tn,i€n,i(1)] }1<i<on is a sequence of independent centered random variables and

max  E[(E[¢nii€ni(1)|Xi] = Elthnii€n.i(1)])*] <7
1<I<pn
Following Theorem 2.1 in Chernozhukov et al. (2017), Lemma E.2 in Chetverikov and Sgrensen (2022), and

similar arguments to the ones above, we have

P % > (Elbnieni(1)|Xi] = Elbnieni(D])|| < 7v/2log(2np,)/n | — 1. (80)

1<i<2n
oo

For the second term on the RHS of (79), we define gy i1 = E[tn,i,1€n,:(1)|X;i] — E[tn i 1€n,i(1)]. We have

1
Pillgs 2o @Di=DEWnieni(DIXi] = Elnieni(1)] >t’XW

1<i<2n
oo

1 n
= Z P n Z (Dr(2j-1) = Dr(2i))(nm(2j—-1)1 = In,m(25).1) >t‘X( )

1<I<pn, 1<j<n

2nt?
< exp | — )
1§§pn ( o 2acj<n(In (210 — gnﬂr(2j),l)2>
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where, conditional on X (™), {(Dﬂ(Qj,l) - D,,(Qj))}lgjgn is a sequence of i.i.d. Rademacher random variables

and the last inequality is by Hoeffding’s inequality. In addition, on &, 3(1), we have

1/2
1
n Z (Gn,m(2j-1),1 *gn,w(Qj),z)Q
1<j<n
1/2 1/2
1 1
< n Z (E[qpn,‘n'(2j*1)1len,i(l)|X7T(2j71)])2 + - (E[wn,w@j),ﬁn,i(l)|X,r(2j)])2
1<j<n 1<j<n
1/2
2
S Z (E[wn,i,len,i(lﬂXiDQ
" <i<on
1/2
2
<> D0 EWLueIXi
1<i<2n
1/2
2
S [E[¢fz,i,l€i,i(1)|xi]—E[wi,i,lﬁi,i(lm + 20
" i<i<on
< 2.027.
Therefore, we have
! log(npn )7
P ST @D DEWnien (DX = Blimien (D] > 202/ 25T
1<i<2n N
: log(npa)?”
<Pqlls > (2D — VE[Wni€ni(1)|X] = Eltni€ni(D)]|| > 202\ ——"— &n5(1) p +o(1)
nlgz‘an . n
1 log(np,, &> ()
SE|P{Q|l— Y (2D; = 1)E[bnieni(1)|Xi] — Eltbniens(D]|| > 2.02/ —=—"—| X b [{&€, 5(1)} | +0(1)
2”1952” C T N n ,
=o(1) . (81)

Combining (79), (80), (81), and the fact that v/2 + 2.02 < 3.98, we have P{&,2(1)} — 1. The same result
holds for &,2(0). m

C Details for Simulations

The regressors in both the first and second LASSO-based adjustments are as follows.

(i) For Models 1-6, we use {1, X;, Wi, X2, W2, X;W;, (X; — X)I{X; > X}, (W; — W)I{W; > W}, (X, —
X)QI{XZ' > X}7 (W; — W)QI{Wi > W}} where X and W are the sample medians of {Xi}icpen) and
{Wi}ician), respectively.

(ii) For Models 7-9, we use {1, X;, W;, X2, W2, X;W;, (X;;— X)) I{Xs; > X;}, (Xi—X;)2I{ X5 > X;}, (Wyj—
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W) I{W;; > W;}, (Wi; — W;)2I{W,; > W;}} where X; and W;, for j = 1,2, are the sample medians
of {Xij}ican) and {Wi;}ic[an], respectively.

(111) For Models 9-11, we use {].7 Xi, Wi, Xlz, I/Viz7 XﬂWﬂ, XZ'QWiQ, XZ-3WZ-1, Xi4WZ‘2, (X”—X])I{X” > Xj}, (XZJ—
Xj)QI{Xij > Xj}, (Wij — WJ)I{W” > Wj}, (W” — Wj)2I{WiJ‘ > Wj}} where X'j,forj =1,2,3,4, and
Wj, for j = 1,2, are the sample medians of {X;;}ic[2n) and {Wi; }ie[2n), respectively.

(iv) Models 12-15 already contain high-dimensional covariates. We just use X; and W; as the LASSO

regressors.
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