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Abstract

This paper studies inference on the average treatment effect in experiments in which treatment status

is determined according to “matched pairs” and it is additionally desired to adjust for observed, baseline

covariates to gain further precision. By a “matched pairs” design, we mean that units are sampled i.i.d.

from the population of interest, paired according to observed, baseline covariates and finally, within each

pair, one unit is selected at random for treatment. Importantly, we presume that not all observed, baseline

covariates are used in determining treatment assignment. We study a broad class of estimators based on a

“doubly robust” moment condition that permits us to study estimators with both finite-dimensional and

high-dimensional forms of covariate adjustment. We find that estimators with finite-dimensional, linear

adjustments need not lead to improvements in precision relative to the unadjusted difference-in-means

estimator. This phenomenon persists even if the adjustments are interacted with treatment; in fact, doing

so leads to no changes in precision. However, gains in precision can be ensured by including fixed effects

for each of the pairs. Indeed, we show that this adjustment is the “optimal” finite-dimensional, linear

adjustment. We additionally study two estimators with high-dimensional forms of covariate adjustment

based on the LASSO. For each such estimator, we show that it leads to improvements in precision relative

to the unadjusted difference-in-means estimator and also provides conditions under which it leads to the

“optimal’ nonparametric, covariate adjustment. A simulation study confirms the practical relevance of

our theoretical analysis, and the methods are employed to reanalyze data from an experiment using a

“matched pairs” design to study the effect of macroinsurance on microenterprise.

KEYWORDS: Experiment, matched pairs, covariate adjustment, randomized controlled trial, treatment

assignment, LASSO
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1 Introduction

This paper studies inference on the average treatment effect in experiments in which treatment status is

determined according to “matched pairs.” By a “matched pairs” design, we mean that units are sampled

i.i.d. from the population of interest, paired according to observed, baseline covariates and finally, within each

pair, one unit is selected at random for treatment. This method is used routinely in all parts of the sciences.

Indeed, commands to facilitate its implementation are included in popular software packages, such as sampsi

in Stata. References to a variety of specific examples can be found, for instance, in the following surveys of

various field experiments: Donner and Klar (2000), Glennerster and Takavarasha (2013), and Rosenberger

and Lachin (2015). See also Bruhn and McKenzie (2009), who, based on a survey of selected development

economists, report that 56% of researchers have used such a design at some point. Bai et al. (2021) develop

methods for inference on the average treatment effect in such experiments based on the difference-in-means

estimator. In this paper, we pursue the goal of improving upon the precision of this estimator by exploiting

observed, baseline covariates that are not used in determining treatment status.

To this end, we study a broad class of estimators for the average treatment effect based on a “doubly

robust” moment condition. The estimators in this framework are distinguished via different “working models”

for the conditional expectations of potential outcomes under treatment and control given the observed,

baseline covariates. Importantly, because of the double-robustness, these “working models” need not be

correctly specified in order for the resulting estimator to be consistent. In this way, the framework permits

us to study both finite-dimensional and high-dimensional forms of covariate adjustment without imposing

unreasonable restrictions on the conditional expectations themselves. Under high-level conditions on the

“working models” and their corresponding estimators and a requirement that pairs are formed so that units

within pairs are suitably “close” in terms of the baseline covariates, we derive the limiting distribution of

the covariate-adjusted estimator of the average treatment effect. We further construct an estimator for the

variance of the limiting distribution and provide conditions under which it is consistent for this quantity.

Using our general framework, we first consider finite-dimensional, linear adjustments. For this class of

estimators, our main findings are summarized as follows. First, we find that such adjustments need not

lead to improvements in terms of precision upon the unadjusted difference-in-means estimator. This finding

echoes similar findings by Yang and Tsiatis (2001) and Tsiatis et al. (2008) in settings in which treatment

is determined by i.i.d. coin flips, and Freedman (2008) in a finite population setting in which treatment is

determined according to complete randomization. See Negi and Wooldridge (2021) for a succinct treatment

of that literature. More surprisingly, we find that this phenomenon persists even if the adjustments are

interacted with treatment. In fact, doing so leads to no changes in precision. In this sense, our results

diverge from those in Lin (2013), who found in the same setting studied by Freedman (2008) that such

interactions ensured gains in precision relative to the unadjusted difference-in-means estimator. We show,

however, that gains in precision can be ensured by including fixed effects for each of the pairs. Similar

results have been obtained by Fogarty (2018) in a finite population framework for the estimation of the

sample average treatment effect. Our analysis further reveals that the resulting covariate-adjusted estimator

is “optimal” among all finite-dimensional, linear adjustments. In particular, further interaction of these

adjustments with treatment leads to no further improvements. These results support the simulation-based

findings of Bruhn and McKenzie (2009), who advocate for including fixed effects for each of the pairs when
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analyzing such experiments. We emphasize, however, that the usual heteroskedascity-robust standard errors

for the corresponding ordinary least squares estimator that näıvely treats the data (including treatment

status) as if it were i.i.d. need not be consistent for the limiting variance derived in our analysis.

We then use our framework to consider high-dimensional adjustments based on the LASSO. We study, in

particular, two estimators of this form. The first estimator is motivated by the observation that the finite-

dimensional, linear adjustment that includes fixed effects for each of the pairs is identical to the intercept

term in the linear regression of the pairwise differences in outcomes on the pairwise differences in covariates.

The first estimator we consider is therefore defined as the intercept term in a LASSO-penalized regression

of the pairwise difference in the outcomes on the pairwise differences in the covariates. As with its finite-

dimensional counterpart, we show that this estimator is more precise than the unadjusted difference-in-means

estimator. The second estimator we consider first obtains an intermediate estimator by using the LASSO

to estimate the “working model” for the relevant conditional expectations. In a finite population setting

in which treatment is determined according to complete randomization, Cohen and Fogarty (2020) show

that such an estimator is necessarily more precise than the unadjusted difference-in-means estimator. When

treatment is determined according to “matched pairs,” however, this intermediate estimator need not be

the case. We therefore consider, in an additional step, an estimator based on the finite-dimensional, linear

adjustment described above that uses the predicted values for the “working model” as the covariates and

includes fixed effects for each of the pairs. We show that the resulting estimator improves upon both the

intermediate estimator and the unadjusted difference-in-means estimator in terms of precision. Moreover,

we provide conditions under which both of these high-dimensional adjustments attain the relevant semi-

parametric efficiency bound derived in Armstrong (2022).

The remainder of our paper is organized as follows. In Section 2, we describe our setup and notation.

In particular, there we describe the precise sense in which we require that units in each pair are “close”

in terms of their baseline covariates. In Section 3, we introduce our general class of estimators based on a

“doubly robust” moment condition. Under certain high-level conditions on the “working models” and their

corresponding estimators, we derive the limiting behavior of the covariate-adjusted estimator. In Section

4, we use our general framework to study a variety of estimators with finite-dimensional, linear covariate

adjustment. In Section 5, we use our general framework to study two estimators with high-dimensional

covariate adjustment based on the LASSO. In Section 6, we examine the finite-sample behavior of tests

based on these different estimators via a small simulation study. We find that covariate adjustment can lead

to considerable gains in precision. Finally, in Section 7, we apply our methods to reanalyze data from an

experiment using a “matched pairs” design to study the effect of macroinsurance on microenterprise.

2 Setup and Notation

Let Yi ∈ R denote the (observed) outcome of interest for the ith unit, Di ∈ {0, 1} be an indicator for whether

the ith unit is treated, and Xi ∈ Rkx and Wi ∈ Rkw denote observed, baseline covariates for the ith unit;

Xi and Wi will be distinguished below through the feature that only the former will be used in determining

treatment assignment. Further denote by Yi(1) the potential outcome of the ith unit if treated and by Yi(0)

the potential outcome of the ith unit if not treated. The (observed) outcome and potential outcomes are
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related to treatment status by the relationship

Yi = Yi(1)Di + Yi(0)(1−Di) . (1)

For a random variable indexed by i, Ai, it will be useful to denote by A(n) the random vector (A1, . . . , A2n).

Denote by Pn the distribution of the observed data Z(n), where Zi = (Yi, Di, Xi,Wi), and by Qn the

distribution of U (n), where Ui = (Yi(1), Yi(0), Xi,Wi). Note that Pn is determined by (1), Qn, and the

mechanism for determining treatment assignment. We assume throughout that U (n) consists of 2n i.i.d.

observations, i.e., Qn = Q2n, where Q is the marginal distribution of Ui. We therefore state our assumptions

below in terms of assumptions on Q and the mechanism for determining treatment assignment. Indeed,

we will not make reference to Pn in the sequel, and all operations are understood to be under Q and the

mechanism for determining the treatment assignment. Our object of interest is the average effect of the

treatment on the outcome of interest, which may be expressed in terms of this notation as

∆(Q) = E[Yi(1)− Yi(0)] . (2)

We now describe our assumptions on Q. We restrict Q to satisfy the following mild requirement:

Assumption 2.1. The distribution Q is such that

(a) 0 < E[Var[Yi(d)|Xi]] for d ∈ {0, 1}.

(b) E[Y 2
i (d)] <∞ for d ∈ {0, 1}.

(c) E[Yi(d)|Xi = x] and E[Y 2
i (d)|Xi = x] are Lipschitz for d ∈ {0, 1}.

Next, we describe our assumptions on the mechanism determining treatment assignment. In order to

describe these assumptions more formally, we require some further notation to define the relevant pairs of

units. The n pairs may be represented by the sets

{π(2j − 1), π(2j)} for j = 1, . . . , n ,

where π = πn(X(n)) is a permutation of 2n elements. Because of its possible dependence on X(n), π

encompasses a broad variety of different ways of pairing the 2n units according to the observed, baseline

covariates X(n). Given such a π, we assume that treatment status is assigned as described in the following

assumption:

Assumption 2.2. Treatment status is assigned so that (Y (n)(1), Y (n)(0),W (n)) ⊥⊥ D(n)|X(n) and, condi-

tional on X(n), (Dπ(2j−1), Dπ(2j)), j = 1, . . . , n are i.i.d. and each uniformly distributed over the values in

{(0, 1), (1, 0)}.

Following Bai et al. (2021), our analysis will additionally require some discipline on the way in which

pairs are formed. Let ‖ · ‖2 denote the Euclidean norm. We will require that units in each pair are “close“

in the sense described by the following assumption:

3



Assumption 2.3. The pairs used in determining treatment status satisfy

1

n

∑
1≤j≤n

‖Xπ(2j) −Xπ(2j−1)‖r2
P→ 0

for r ∈ {1, 2}.

It will at times be convenient to require further that units in consecutive pairs are also “close“ in terms of

their baseline covariates. One may view this requirement, which is formalized in the following assumption,

as “pairing the pairs“ so that they are “close“ in terms of their baseline covariates.

Assumption 2.4. The pairs used in determining treatment status satisfy

1

n

∑
1≤j≤bn2 c

‖Xπ(4j−k) −Xπ(4j−`)‖22
P→ 0

for any k ∈ {2, 3} and ` ∈ {0, 1}.

Bai et al. (2021) provide results to facilitate constructing pairs satisfying Assumptions 2.3–2.4 under weak

assumptions on Q. In particular, given pairs satisfying Assumption 2.3, it is frequently possible to “re-order“

them so that Assumption 2.4 is satisfied. See Theorem 4.3 in Bai et al. (2021) for further details. As in Bai

et al. (2021), we highlight the fact that Assumption 2.4 will only be used to enable consistent estimation of

relevant variances.

3 Main Results

To accommodate various forms of covariate-adjusted estimators of ∆(Q) in a single framework, it is useful

to note it follows from Assumption 2.2 that for any d ∈ {0, 1} and any function md,n : Rkx ×Rkw → R such

that E[|md,n(Xi,Wi)|] <∞,

E [2I{Di = d}(Yi −md,n(Xi,Wi)) +md,n(Xi,Wi)] = E[Yi(d)] . (3)

We note that (3) is just the augmented inverse propensity score weighted (AIPW) moment for E[Yi(d)]

in which the propensity score is 1/2 and the conditional mean model is md,n(Xi,Wi). Such a moment is

also “double robustness.” As the propensity score for the “matched pairs” design is exactly 1/2, we do not

require the conditional mean model to be correctly specified, i.e., md,n(Xi,Wi) = E[Yi(d)|Xi,Wi]. See, for

instance, Robins et al. (1995). Intuitively, md,n is the “working model” which researchers use to estimate

E[Yi(d)|Xi,Wi], and can be arbitrarily misspecified because of (3). Although md,n will be identical across

n ≥ 1 for the examples in Section 4, the notation permits md,n to depend on the sample size n in anticipation

of the high-dimensional results in Section 5. Based on the moment condition in (3), our proposed estimator

of ∆(Q) is given by

∆̂n = µ̂n(1)− µ̂n(0) , (4)
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where, for d ∈ {0, 1},

µ̂n(d) =
1

2n

∑
1≤i≤2n

(2I{Di = d}(Yi − m̂d,n(Xi,Wi)) + m̂d,n(Xi,Wi)) (5)

and m̂d,n is a suitable estimator of the “working model“ md,n in (3).

We require some disciplines on the behavior of md,n for d ∈ {0, 1} and n ≥ 1:

Assumption 3.1. The functions md,n for d ∈ {0, 1} and n ≥ 1 satisfy

(a) For d ∈ {0, 1},

lim inf
n→∞

E

[
Var

[
Yi(d)− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi))

∣∣∣∣∣Xi

]]
> 0 .

(b) For d ∈ {0, 1},
lim
λ→∞

lim sup
n→∞

E[m2
d,n(Xi,Wi)I{|md,n(Xi,Wi)| > λ}] = 0 .

(c) E[md,n(Xi,Wi)|Xi = x], E[m2
d,n(Xi,Wi)|Xi = x], and E[md,n(Xi,Wi)Yi(d)|Xi = x] for d ∈ {0, 1}, and

E[m1,n(Xi,Wi)m0,n(Xi,Wi)|Xi = x] are Lipschitz uniformly over n ≥ 1.

Assumption 3.1(a) is an assumption to rule out degenerate situations. Assumption 3.1(b) is a mild

uniform integrability assumption on the “working models.” If md,n ≡ md for d ∈ {0, 1}, then it is satisfied

as long as E[m2
d(Xi,Wi)] < ∞. Assumption 3.1(c) ensures that units that are “close” in terms of the

observed covariates are also “close” in terms of potential outcomes, uniformly across n ≥ 1.

Theorem 3.1 below establishes the limit in distribution of ∆̂n. We note that the theorem depends on

high-level conditions on md,n and m̂d,n. In the sequel, these conditions will be verified in several examples.

Theorem 3.1. Suppose Q satisfies Assumption 2.1, the treatment assignment mechanism satisfies Assump-

tions 2.2–2.3, and md,n for d ∈ {0, 1} and n ≥ 1 satisfy Assumption 3.1. Further suppose m̂d,n satisfies

1√
2n

∑
1≤i≤2n

(2Di − 1)(m̂d,n(Xi,Wi)−md,n(Xi,Wi))
P→ 0 . (6)

Then, ∆̂n defined in (4) satisfies √
n(∆̂n −∆(Q))

σn(Q)

d→ N(0, 1) , (7)

where σ2
n(Q) = σ2

1,n(Q) + σ2
2(Q) + σ2

3(Q) with

σ2
1,n(Q) =

1

2
E
[
Var

[
E[Yi(1) + Yi(0)|Xi,Wi]− (m1,n(Xi,Wi) +m0,n(Xi,Wi))

∣∣∣Xi

]]
σ2

2(Q) =
1

2
Var

[
E
[
Yi(1)− Yi(0)

∣∣∣Xi,Wi

]]
σ2

3(Q) = E[Var[Yi(1)|Xi,Wi] + Var[Yi(0)|Xi,Wi]] .
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In order to facilitate the use of Theorem 3.1 for inference about ∆(Q), we next provide a consistent

estimator of σn(Q). Define

Ỹi = Yi −
1

2
(m̂1,n(Xi,Wi) + m̂0,n(Xi,Wi))

τ̂2
n =

1

n

∑
1≤j≤n

(Ỹπ(2j−1) − Ỹπ(2j))
2

λ̂n =
2

n

∑
1≤j≤bn2 c

(Ỹπ(4j−3) − Ỹπ(4j−2))(Ỹπ(4j−1) − Ỹπ(4j))(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j)) .

The variance estimator is given by

σ̂2
n = τ̂2

n −
1

2
(λ̂n + ∆̂2

n) . (8)

Note it can be shown similarly as in Remark 3.9 of Bai et al. (2021) that σ̂2
n in (8) is nonnegative.

Theorem 3.2 below establishes the consistency of this estimator and its implications for inference about

∆(Q). In the statement of the theorem, we make use of the following notation: for any scalars a and b,

[a± b] is understood to be [a− b, a+ b].

Theorem 3.2. Suppose Q satisfies Assumption 2.1, the treatment assignment mechanism satisfies Assump-

tions 2.2–2.3, and md,n for d ∈ {0, 1} and n ≥ 1 satisfy Assumption 3.1. Further suppose m̂d,n satisfies (6)

and
1

2n

∑
1≤i≤2n

(m̂d,n(Xi,Wi)−md,n(Xi,Wi))
2 P→ 0 . (9)

Then,
σ̂n

σn(Q)

P→ 1 .

Hence, (7) holds with σ̂n in place of σn(Q). In particular, for any α ∈ (0, 1),

P
{

∆(Q) ∈
[
∆̂n ± σ̂nΦ−1

(
1− α

2

)]}
→ 1− α ,

where Φ is the standard normal c.d.f.

Remark 3.1. An important and immediate implication of Theorem 3.1 is that σ2
n(Q) is minimized when

E[Yi(0) + Yi(1)|Xi,Wi]− E[Yi(0) + Yi(1)|Xi] =

m0,n(Xi,Wi) +m1,n(Xi,Wi)− E[m0,n(Xi,Wi) +m1,n(Xi,Wi)|Xi]

with probability one. In other words, the “working model” for E[Yi(0)+Yi(1)|Xi,Wi] given by m0,n(Xi,Wi)+

m1,n(Xi,Wi), need only be correct “on average” over the variables that are not used in determining the pairs.

For such a choice of m0,n(Xi,Wi) and m1,n(Xi,Wi), σ
2
n(Q) in Theorem 3.1 becomes simply

1

2
Var

[
E
[
Yi(1)− Yi(0)

∣∣∣Xi,Wi

]]
+ E[Var[Yi(1)|Xi,Wi] + Var[Yi(0)|Xi,Wi]] ,

which agrees with the variance obtained in Bai et al. (2021) when both Xi and Wi are used in determining

the pairs. Such a variance also achieves the efficiency bound derived by Armstrong (2022).
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Remark 3.2. Following Bai et al. (2022), it is straightforward to extend the analysis in this paper to the case

with multiple treatment arms and where treatment status is determined using a “matched tuples” design,

but we do not pursue this further in this paper.

4 Linear Adjustments

In this section, we consider linearly covariate-adjusted estimators of ∆(Q) based on a set of regressors

generated by Xi ∈ Rkx and Wi ∈ Rkw . To this end, define ψi = ψ(Xi,Wi), where ψ : Rkx ×Rkw → Rp.

We impose the following assumptions on the function ψ:

Assumption 4.1. The function ψ is such that

(a) no component of ψ is constant and E[Var[ψi|Xi]] is nonsingular.

(b) Var[ψi] <∞.

(c) E[ψi|Xi = x], E[ψiψ
′
i|Xi = x], and E[ψiYi(d)|Xi = x] for d ∈ {0, 1} are Lipschitz.

Assumption 4.1 is analogous to Assumption 2.1. Note, in particular, that Assumption 4.1(a) rules out

situations where ψi is a function of Xi only. See Remark 4.2 for a discussion of the behavior of the covariate-

adjusted estimators in such situations.

4.1 Linear Adjustments without Pair Fixed Effects

Consider the following linear regression model:

Yi = α+ ∆Di + ψ′iβ + εi . (10)

Let α̂naive
n , ∆̂naive

n , and β̂naive
n denote the OLS estimators of α, ∆, and β in (10). It follows from direct

calculation that

∆̂naive
n =

1

n

∑
1≤i≤2n

(Yi − ψ′iβ̂naive
n )(2Di − 1) .

Therefore, ∆̂naive
n satisfies (4)–(5) with

m̂d,n(Xi,Wi) = ψ′iβ̂
naive
n .

Theorem 4.1 establishes (6) and (9) for a suitable choice of md,n(Xi,Wi) for d ∈ {0, 1} and, as a result,

the limiting distribution of ∆̂naive
n and the validity of the variance estimator.

Theorem 4.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Further suppose ψ satisfies Assumption 4.1. Then, as n→∞,

β̂naive
n

P→ βnaive = Var[ψi]
−1 Cov[ψi, Yi(1) + Yi(0)] .

7



Moreover, (6), (9), and Assumption 3.1 are satisfied with

md,n(Xi,Wi) = ψ′iβ
naive

for d ∈ {0, 1} and n ≥ 1.

Remark 4.1. Freedman (2008) studies regression adjustment based on (10) when treatment is assigned

by complete randomization instead of a “matched pairs” design. In such settings, Lin (2013) proposes

adjustment based on the following linear regression model:

Yi = α+ ∆Di + (ψi − ψ̄n)′γ +Di(ψi − ψ̄n)′η + εi , (11)

where

ψ̄n =
1

2n

∑
1≤i≤2n

ψi .

Let α̂int
n , ∆̂int

n , γ̂int
n , η̂int

n denote the OLS estimators for α,∆, γ, η in (11). It is straightforward to show ∆̂int
n

satisfies (4)–(5) with

m̂1,n(Xi,Wi) = (ψi − µ̂ψ,n(1))′(γ̂int
n + η̂int

n )

m̂0,n(Xi,Wi) = (ψi − µ̂ψ,n(0))′γ̂int
n ,

where

µ̂ψ,n(d) =
1

n

∑
1≤i≤2n

I{Di = d}ψi .

It can be shown using similar arguments to those used to establish Theorem 4.1 that (6) and Assumption

3.1 are satisfied with

md,n(Xi,Wi) = (ψi − E[ψi])
′Var[ψi]

−1 Cov[ψi, Yi(d)]

for d ∈ {0, 1} and n ≥ 1. It thus follows by inspecting the expression for σ2
n(Q) in Theorem 3.1 that the

limiting variance of ∆̂int
n is the same as that of ∆̂naive

n based on (10).

4.2 Linear Adjustments with Pair Fixed Effects

Remark 4.1 implies that in “matched pairs” designs, including interaction terms in the linear regression does

not lead to an estimator with lower limiting variance than the one based on the linear regression without

interaction terms. It is therefore interesting to study whether there exists a linearly covariate-adjusted

estimator with lower limiting variance than the one based on (10) and (11). To that end, consider instead

the following linear regression model:

Yi = ∆Di + ψ′iβ +
∑

1≤j≤n

θjI{i ∈ {π(2j − 1), π(2j)}}+ εi . (12)

8



Let ∆̂pfe
n , β̂pfe

n , and γ̂j,n, 1 ≤ j ≤ n denote the OLS estimators of ∆, β, θj , 1 ≤ j ≤ n in (12). It follows from

the Frisch-Waugh-Lovell theorem that

∆̂pfe
n =

1

n

∑
1≤i≤2n

(Yi − ψ′iβ̂pfe
n )(2Di − 1) .

Therefore, ∆̂pfe
n satisfies (4)–(5) with

m̂d,n(Xi,Wi) = ψ′iβ̂
pfe
n .

Theorem 4.2 establishes (6) and (9) for a suitable choice of md,n(Xi,Wi), d ∈ {0, 1} and, as a result, the

limiting distribution of ∆̂pfe
n and the validity of the variance estimator.

Theorem 4.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Then, as n→∞,

β̂pfe
n

P→ βpfe = (2E[Var[ψi|Xi]])
−1E[Cov[ψi, Yi(1) + Yi(0)|Xi]] .

Moreover, (6), (9), and Assumption 3.1 are satisfied with

md,n(Xi,Wi) = ψ′iβ
pfe

for d ∈ {0, 1} and n ≥ 1.

Remark 4.2. When ψ is restricted to be a function of Xi only, then ∆̂pfe
n coincides to first order with the

unadjusted difference-in-means estimator defined as

∆̂unadj
n =

1

n

∑
1≤i≤2n

YiDi −
1

n

∑
1≤i≤2n

Yi(1−Di) . (13)

To see this, suppose further that ψ is Lipschitz and that Var[Yi(d)|Xi = x], d ∈ {0, 1} are bounded. The

proof of Theorem 4.2 reveals that ∆̂pfe
n and β̂pfe

n coincide with the OLS estimators of the intercept and

slope parameters in a linear regression of (Yπ(2j) − Yπ(2j−1))(Dπ(2j) −Dπ(2j−1)) on a constant and (ψπ(2j) −
ψπ(2j−1))(Dπ(2j) −Dπ(2j−1)). Using this observation, it follows by arguing as in Section S.1.1 of Bai et al.

(2021) that
√
n(∆̂pfe

n −∆(Q)) =
√
n(∆̂unadj

n −∆(Q)) + oP (1) .

See also Remark 3.8 of Bai et al. (2021).

Remark 4.3. Note in the expression of σ2
n(Q) in Theorem 3.1 only depends on md,n(Xi,Wi), d ∈ {0, 1}

through σ2
1,n(Q). With this in mind, consider the class of all linearly covariate-adjusted estimators based on

ψi, i.e., md,n(Xi,Wi) = ψ′iβ(d). For this specification of md,n(Xi,Wi), d ∈ {0, 1},

σ2
1,n(Q) = E[(E[Yi(1) + Yi(0)|Xi,Wi]− E[Yi(1) + Yi(0)|Xi]− (ψi − E[ψi|Xi])

′(β(1) + β(0)))2] .

It follows that among all such linear adjustments, σ2
n(Q) in (7) is minimized when

β(1) + β(0) = 2βpfe .
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This observation implies that the linear adjustment with pair fixed effects, i.e., ∆̂pfe
n , yields the optimal linear

adjustment in the sense of minimizing σ2
n(Q). Its limiting variance is, in particular, weakly smaller than the

limiting variance of the unadjusted difference-in-means estimator defined in (13). The same limiting variance

is attained by md,n(Xi,Wi) = ψ′iβ(d) + hd(Xi) for d ∈ {0, 1}. On the other hand, the covariate-adjusted

estimators based on (10) or (11), i.e., ∆̂naive
n and ∆̂int

n , are in general not optimal among all linearly covariate-

adjusted estimators based on ψi. In fact, the limiting variances of these two estimators may even be larger

than that of the unadjusted difference-in-means estimator. Simulation evidence in Section 7 illustrates such

a phenomenon in an example. In this sense, these estimators suffer from a counterpart to the critique raised

by Freedman (2008).

Remark 4.4. Even though ∆̂pfe
n can be computed via ordinary least squares estimation of (12), we emphasize

that the usual heteroskedascity-robust standard errors that näıvely treats the data (including treatment

status) as if it were i.i.d. need not be consistent for the limiting variance derived in our analysis. See Bai

et al. (2022) for details.

Remark 4.5. One can also consider the estimator based on the following linear regression model:

Yi = ∆Di + (ψi − ψ̄n)′γ +Di(ψi − µ̂ψ,n(1))′η +
∑

1≤j≤n

θjI{i ∈ {π(2j − 1), π(2j)}}+ εi . (14)

Let ∆̂int−pfe
n , γ̂int−pfe

n , η̂int−pfe
n denote the OLS estimators for ∆, γ, η in (14). It is straightforward to show

∆̂int−pfe
n satisfies (4)–(5) with

m̂1,n(Xi,Wi) = (ψi − µ̂ψ,n(1))′η̂int−pfe
n

m̂0,n(Xi,Wi) = (ψi − µ̂ψ,n(0))′(η̂int−pfe
n − γ̂int−pfe

n ) .

Following similar arguments to those used in the proof of Theorem 4.1, we can establish that (6) and

Assumption 3.1 are satisfied with

m1,n(Xi,Wi) = (ψi − E[ψi])
′ηint−pfe

m0,n(Xi,Wi) = (ψi − E[ψi])
′(ηint−pfe − γint−pfe) ,

where

γint−pfe = (E[Var[ψi|Xi]])
−1E[Cov[ψi, Yi(1)− Yi(0)|Xi]]

ηint−pfe = (E[Var[ψi|Xi]])
−1E[Cov[ψi, Yi(1)|Xi]]

Because 2ηint−pfe − γint−pfe = 2βpfe, it follows from Remark 4.3 that the limiting variance of ∆̂int−pfe
n is

identical to the limiting variance of ∆̂pfe
n .
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5 High-Dimensional Adjustments

In this section, we study covariate adjustments based on high-dimensional regressors. Such settings can arise

if the covariates Wi are high-dimensional or if the regressors include many transformations of Xi and Wi.

To accommodate situations where the dimension of Wi increases with n, we add a subscript and denote

it by Wn,i instead. Let kw,n denote the dimension of Wn,i. For n ≥ 1, let ψn,i = ψn(Xi,Wn,i), where

ψn : Rkx ×Rkw,n → Rpn and pn will be permitted below to be possibly much larger than n.

In what follows, we propose two distinct LASSO-based high-dimensional counterparts to ∆̂pfe
n studied in

Section 4.2. The first method is motivated by the observation in Section 4.2 that ∆̂pfe
n satisfies (4)–(5) with

m̂d,n(Xi,Wi) = ψ′iβ̂
pfe
n ,

where β̂pfe
n can be obtained, as described in Remark 4.2, through OLS regression of the pairwise differences in

the outcomes on a constant and the pairwise differences in the covariates. For our first method, we therefore

consider a LASSO-penalized version of this same procedure. As explained further below in Theorem 5.1,

when, for d ∈ {0, 1}, md,n(Xi,Wi) is sufficiently well approximated by a sparse linear function of ψn,i, the

resulting estimator, ∆̂hd−pd
n , is optimal in the sense that it minimizes the limiting variance in Theorem 3.1.

Moreover, when this is not the case, its limiting variance is still weakly smaller than the limiting variance of

the unadjusted difference-in-means estimator.

The second method is a two-step method in the spirit of Fogarty (2018). In the first step, an intermediate

estimator, ∆̂hd
n , is obtained using (4) with a “working model” obtained through a LASSO-based approxi-

mation to md,n(Xi,Wi). As explained further below in Theorem 5.2, when, for d ∈ {0, 1}, md,n(Xi,Wi) is

sufficiently well approximated by a sparse linear function of ψn,i, such an estimator is also optimal in the

sense that it minimizes the limiting variance in Theorem 3.1. When this is not the case, however, for reasons

analogous to those put forward in Remark 4.2, it need not have a limiting variance weakly smaller than the

unadjusted difference-in-means estimator. In a second step, we therefore consider an estimator based on

OLS estimation of a version of (12) in which the covariates ψi are replaced by the LASSO-based estimates of

md,n(Xi,Wi) for d ∈ {0, 1}. The resulting estimator, ∆̂hd−f
n , has limiting variance weakly smaller than that

of the intermediate estimator and thus remains optimal in the same sense. Moreover, like ∆̂hd−pd
n , it too

has limiting variance weakly smaller than the unadjusted difference-in-means estimator. Some comparisons

between ∆̂hd−pd
n and ∆̂hd−f

n are described in Remark 5.5.

Before proceeding, we introduce some additional notation that will be required in our formal description

of the methods. To this end, define

µd(Xi) = E[Yi(d)|Xi]

Ψ(Xi) = E[ψn,i|Xi]

ψ̃n,i = ψn,i −Ψ(Xi) .

We denote by ψn,i,l and ψ̃n,i,l the lthe components of ψn,i and ψ̃n,i, respectively. For a vector a ∈ Rk and
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0 ≤ p ≤ ∞, recall that

‖a‖p =
( ∑

1≤l≤k

|al|p
)1/p

,

where it is understood that ‖a‖0 =
∑

1≤l≤k I{ak 6= 0} and ‖a‖∞ = sup1≤l≤k |al|. Using this notation, we

further define

Ξn = sup
(x,w)×supp(Xi)×supp(Wi)

‖ψn,i(x,w)‖∞ .

5.1 First LASSO-based Adjustment

Define

(α̂hd−pd
n , β̂hd−pd

n ) ∈ argmin
a∈R,b∈Rpn

1

n

∑
1≤j≤n

(δY,j − a− δ′ψ,jb)2 + λhd−pd
n ‖Ω̂nb‖1 , (15)

where

δY,j = (Dπ(2j−1) −Dπ(2j))(Yπ(2j−1) − Yπ(2j))

δψ,j = (Dπ(2j−1) −Dπ(2j))(ψn,π(2j−1) − ψn,π(2j)) ,

λhd−pd
n is a penalty parameter that will be disciplined by the assumptions below, Ω̂n = diag(ω̂n,1, · · · , ω̂n,pn)

is a diagonal matrix, and ω̂n,l is the penalty loading for the lth regressor. For some c and c̄, we require that

0 < c ≤ lim inf
n→∞

min
1≤l≤pn

ω̂n,l ≤ lim sup
n→∞

max
1≤l≤pn

ω̂n,l ≤ c̄ <∞ (16)

with probability one. Let ∆̂hd−pd
n denote the estimator in (4) with m̂1,n(Xi,Wn,i) = m̂0,n(Xi,Wn,i) =

α̂hd−pd
n + ψ′n,iβ̂

hd−pd
n . Because there is no penalty term for a in (15), ∆̂hd−pd

n = α̂hd−pd
n .

Our analysis of this estimator will require the following assumptions. In our statement of the assumptions,

we will make use of the quantity (αhd−pd
d,n , βhd−pd

d,n ), which will be assumed to satisfy

shd−pd
n = max

d∈{0,1}
‖βhd−pd

d,n ‖0 (17)

and

‖E[(1, ψ̃′n,i)
′εhd−pd
n,i (d)]‖∞ = o(λhd−pd

n ) , (18)

where

εhd−pd
n,i (d) = Yi(d)− αhd−pd

d,n − ψ̃′n,iβ
hd−pd
d,n .

It is instructive to note that (17) requires βhd−pd
d,n to be sparse and (18) is the subgradient condition for a `1-

penalized regression of the outcome Yi(d) on ψ̃n,i when the penalty is of order o(λhd−pd
n ). If pn = o(n), then

both conditions are satisfied for the βhd−pd
d,n equal to the coefficients of a linear projection of Yi(d) onto ψ̃n,i.

When pn � n, but E[Yi(d)|Xi,Wi] is approximately sparse in the sense that there exists some sparse β∗d,n

with maxd∈{0,1} ||β∗d,n||0 � n such that the approximation error |E[Yi(d)|Xi,Wi] − ψ̃′n,iβ∗d,n| is sufficiently

small, then (17) and (18) are satisfied for βhd−pd
d,n = β∗d,n. We emphasize, however, these conditions can still
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hold when E[Yi(d)|Xi,Wi] is neither approximately sparse nor linear in ψ̃n,i. We additionally require that

lim sup
n→∞

max
d∈{0,1}

||βhd−pd
d,n ||∞ <∞ . (19)

Further restrictions on βhd−pd
d,n and λhd−pd

n will be imposed through a combination of the assumptions below.

We now proceed with the statement of our assumptions. The first assumption collects a variety of moment

conditions that will be used in our formal analysis:

Assumption 5.1. (a) For some q > 2 and constant C1,

sup
n≥1

max
1≤l≤pn

E[|ψqn,i,l||Xi] ≤ C1

sup
n≥1
|ψ′n,iβ

hd−pd
d,n | ≤ C1

sup
n≥1
|E[Yi(a)|Xi,Wn,i]| ≤ C1

with probability one.

(b) For some c0,
¯
σ, σ̄, the following statements hold with probability one:

max
d∈{0,1},1≤l≤pn

1

2n

∑
1≤i≤2n

E[ε4n,i(d)|Xi] ≤ c0 <∞

sup
n≥1

max
d∈{0,1}

E[ε4n,i(d)] ≤ c0 <∞

min
d∈{0,1}

Var[Yi(d)− ψ′n,i(β
hd−pd
1,n + βhd−pd

0,n )/2] ≥
¯
σ2 > 0

min
1≤l≤pn

1

n

∑
1≤i≤2n

I{Di = d}Var[ψ̃n,i,lεn,i(d)|Xi] ≥
¯
σ2 > 0

min
1≤l≤pn

1

n

∑
1≤j≤n

E[ψ̃2
n,π(2j),l|D

(n), X(n)]E[ε2n,π(2j−1)Dπ(2j−1)|D(n), X(n)] ≥
¯
σ2 > 0

min
1≤l≤pn

1

n

∑
1≤j≤n

E[ψ̃2
n,π(2j−1),l|D

(n), X(n)]E[ε2n,π(2j)Dπ(2j)|D(n), X(n)] ≥
¯
σ2 > 0

min
1≤l≤pn,d∈{0,1}

Var[E[ψ̃n,i,lεn,i(d)|Xi]] ≥
¯
σ2 > 0 .

Assumption 5.1(a)–(b) are standard in the high-dimensional estimation literature; see, for instance, Belloni

et al. (2017). The last four inequalities in Assumption 5.1(b), in particular, permit us to apply the high-

dimensional central limit theorem in Chernozhukov et al. (2017, Theorem 2.1).

As in the preceding sections, we will additionally require some discipline on the way in which pairs are

formed. As before, we will require that units in each pair are “close” in the sense described by the first

part of the following assumption, but we will additionally require a Lipschitz-like condition that will play

the role of Assumption 2.1(c). Bai et al. (2021) provide algorithms ensuring that part (a) is satisfied with

ζn = O(n−1/(2kx)) under weak assumptions on the distribution of Xi.
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Assumption 5.2. (a) For some ζn,

 1

n

∑
1≤j≤n

∥∥Xπ(2j) −Xπ(2j−1)

∥∥2

2

1/2

≤
√

Var[||Xi||2]ζn with probability one .

(b) For some L > 0 and any x1 and x2 in the support of Xi, we have

|(Ψ(x1)−Ψ(x2))′βhd−pd
d,n | ≤ L||x1 − x2||2 .

We next specify our restrictions on the penalty parameter λhd−pd
n .

Assumption 5.3. (a) For some ``n →∞,

λhd−pd
n = ``n

(
1√
n

Φ−1

(
1− 0.1

2 log(n)pn

)
+ ζn

)
,

where ζn is as in Assumption 5.2(a).

(b) Ξ2
n(log(pn ∨ n))7/n→ 0, ``ns

hd−pd
n log(pn ∨ n)/

√
n→ 0, and shd−pd

n log1/2(pn ∨ n)``nζn → 0.

We note that the first three requirements in Assumption 5.3(b) allow pn to be much greater than n. If

ζn = O(n−1/(2kx)), then the last requirement in Assumption 5.3(b) implies shd−pd
n = o(n1/(2kx)).

Finally, as is common in the analysis of `1-penalized regression, we require a “restricted eigenvalue”

condition. See, for instance, Belloni et al. (2017). This assumption permits us to apply Bickel et al. (2009,

Lemma 4.1) and establish the error bounds for

|α̂hd−pd
n − αhd−pd

n |+ ||β̂hd−pd
n − βhd−pd

n ||1 and
1

n

∑
1≤j≤n

(
α̂hd−pd
n − αhd−pd

n + δ′ψ,j(β̂
hd−pd
n − βhd−pd

n )
)2

,

where αhd−pd
n = αhd−pd

1,n − αhd−pd
0,n and βhd−pd

n = (βhd−pd
1,n + βhd−pd

0,n )/2.

Assumption 5.4. For some κ1 > 0, κ2 and `n → ∞, the following statements hold with probability

approaching one:

inf
d∈{0,1},v∈Rpn+1:‖v‖0≤(shd−pd

n +1)`n

(‖v‖22)−1v′

(
1

n

∑
1≤j≤n

δ̆ψ,j δ̆
′
ψ,j

)
v ≥ κ1

sup
d∈{0,1},v∈Rpn+1:‖v‖0≤(shd−pd

n +1)`n

(‖v‖22)−1v′

(
1

n

∑
1≤j≤n

δ̆ψ,j δ̆
′
ψ,j

)
v ≤ κ2 ,

where δ̆ψ,j = (1, δ′ψ,j)
′.

Using these assumptions, the following theorem characterizes the behavior of ∆̂hd−pd
n :

Theorem 5.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Further suppose Assumptions 5.1–5.4 and (16) – (19) hold. Then, (6), (9), and As-

sumption 3.1 are satisfied with m̂d,n = α̂hd−pd
n +ψ′n,iβ̂

hd−pd
n and md,n(Xi,Wn,i) = αhd−pd

n +ψ′n,iβ
hd−pd
n for
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d ∈ {0, 1} and n ≥ 1. Moreover, the variance of ∆̂hd−pd
n , denoted by σhd−pd,2

n , satisfies

lim sup
n→∞

(σhd−pd,2
n − σna,2

n ) ≤ 0.

If we further assume the true specification is approximately sparse, i.e., there exists β∗d,n such that ||β∗d,n||1 =

O(sn), E[Yi(d)|Xi,Wi] = α∗d,n + ψ′n,iβ
∗
d,n + Rn,i and E[R2

n,i] = o(1), then σhd−pd,2
n achieves the minimum

variance, i.e.,

lim
n→∞

σhd−pd,2
n = σ2

2(Q) + σ2
3(Q) .

Remark 5.1. If the additional covariates Wn,i are fixed-dimensional, and ψn,i contains sieve bases of

(Wn,i, Xi), then approximate sparsity holds under appropriate smoothness conditions on the conditional ex-

pectation. Under these circumstances, Theorem 5.1 implies the LASSO-based adjustment achieves minimum

variance derived in Remark 3.1, which achieves the semiparametric efficiency bound derived by Armstrong

(2022).

Remark 5.2. In practice, we choose

``n =
√

log log n/5

and replace ζn by (
1

n

∑
1≤j≤n

∥∥Xπ(2j) −Xπ(2j−1)

∥∥2

2

)1/2

/σ̂X ,

where σ̂X is the sample standard deviation of {||Xi||2}1≤i≤n.

Remark 5.3. While our theory only requires that ω̂n,`, ` = 1, . . . , pn satisfy (16), we recommend employing

an iterative estimation procedure outlined by Belloni et al. (2017) to estimate (α̂
hd−pd,(m)
n , β̂hd−pd

d,n ), in which

the m-th step’s penalty loadings are estimated based the (m− 1)-th step’s LASSO estimates. Formally, this

iterative procedure is described by the following algorithm:

Algorithm 5.1.

Step 0: Set ε̂
hd−pd,(0)
n,j = δY,j .

...

Step m: Compute ω̂
(m)
n,l =

√
1
n

∑
1≤j≤n δ

2
ψ,j,l(ε̂

hd−pd,(m−1)
n,j )2 and compute (α̂

hd−pd,(m)
n , β̂

hd−pd,(m)
n ) fol-

lowing (15) with ω̂
hd−pd,(m)
n,l as the penalty loadings, and ε̂

hd−pd,(m)
n,j = δY,j−α̂hd−pd,(m)

n −δ′ψ,j β̂
hd−pd,(m)
n .

...

Step M : . . .

Step M + 1: Set β̂hd−pd
n = β̂

hd−pd,(M)
n .

As suggested by Belloni et al. (2017), we set M to be 15. We note that R package hdm has a built-in option

for this iterative procedure. For this choice of penalty loadings, arguments similar to those in Belloni et al.

(2017) can be used to verify (16) under “matched pairs” designs.
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5.2 Second LASSO-based Adjustment

For d ∈ {0, 1}, define

(α̂hd
d,n, β̂

hd
d,n) ∈ argmin

a∈R,b∈Rpn

1

n

∑
1≤i≤2n:Di=d

(Yi − a− ψ′n,ib)2 + λhd
d,n‖Ω̂n(d)b‖1 , (20)

where λhd
d,n is a penalty parameter that will be disciplined by the assumptions below, Ω̂n(d) = diag(ω̂1(d), · · · ,

ω̂pn(d)) is a diagonal matrix, and ω̂n,l(d) is the penalty loading for the lth regressor. Define Ω∗n(d) =

diag(ω∗n,1(d), · · · , ω∗n,pn(d)), where ω∗,2n,l (d) = Var[ψn,i,lvi] and vi = Yi − E[Yi|Xi,Wi]. For some
¯
c and c̄, we

require that

0 < c ≤ lim inf
n→∞

min
1≤l≤pn

ω̂n,l(d)/ω∗n,l(d) ≤ lim sup
n→∞

max
1≤l≤pn

ω̂n,l(d)/ω∗n,l(d) ≤ c̄ <∞ (21)

with probability one. Let ∆̂hd
n denote the estimator in (4) with m̂d,n = ψ′n,iβ̂

hd
d,n for d ∈ {0, 1}.

Our analysis of this estimator will require the following assumptions. In our statement of the assumptions,

we will make use of the quantity βhd
d,n, which will be assumed to satisfy

shd
n = max

d∈{0,1}
‖βhd

d,n‖0 (22)

and

‖Ω∗n(d)−1E[ψn,iε
hd
n,i(d)]‖∞ + |Eεhd

n,i(d)| = o
(
λhd
d,n

)
, (23)

where

εhd
n,i(d) = Yi(d)− αhd

d,n − ψ′n,iβhd
d,n .

Here, it is useful to recall the discussion after equations (17)–(18).

We now proceed with the statement of our assumptions. The first assumption collects a variety of moment

conditions that will be used in our formal analysis:

Assumption 5.5. (a) For some q > 2 and constant C1,

sup
n≥1

max
1≤l≤pn

E[|ψqn,i,l||Xi] ≤ C1

sup
n≥1
|ψ′n,iβ

hd−pd
d,n | ≤ C1

sup
n≥1
|E[Yi(a)|Xi,Wn,i]| ≤ C1

with probability one.

(b) For some c0,
¯
σ, σ̄,

0 <
¯
σ2 ≤ lim inf

n→∞
min

d∈{0,1},1≤l≤pn
ω2
n,l(d) ≤ lim sup

n→∞
max

d∈{0,1},1≤l≤pn
ω2
n,l(d) ≤ σ̄2 <∞ .
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Moreover, the following statements hold with probability one:

sup
n≥1

max
d∈{0,1}

E[(ψ′n,iβ
hd
d,n)2] ≤ c0 <∞

max
d∈{0,1},1≤l≤pn

1

2n

∑
1≤i≤2n

E[ε4n,i(d)|Xi] ≤ c0 <∞

sup
n≥1

max
d∈{0,1}

E[ε4n,i(d)] ≤ c0 <∞

min
d∈{0,1}

Var[Yi(d)− ψ′n,i(βhd
1,n + βhd

0,n)/2] ≥
¯
σ2 > 0

min
1≤l≤pn

1

n

∑
1≤i≤2n

I{Di = d}Var[ψn,i,lεn,i(d)|Xi] ≥
¯
σ2 > 0

min
1≤l≤pn

Var[E[ψn,i,lεn,i(d)|Xi]] ≥
¯
σ2 > 0 .

The discussion after Assumption 5.1 applies to the preceding assumption as well. Our analysis will, as before,

also require some discipline on the way in which pairs are formed. For this purpose, Assumption 2.3 will

suffice, but we will need an additional Lipshitz-like condition, similar to Assumption 5.2(b):

Assumption 5.6. For some L > 0 and any x1 and x2 in the support of Xi, we have

|(Ψ(x1)−Ψ(x2))′βhd
d,n| ≤ L||x1 − x2||2 .

We next specify our restrictions on the penalty parameter λhd
n .

Assumption 5.7. (a) For some ``n →∞,

λhd
d,n =

``n√
n

Φ−1

(
1− 0.1

2 log(n)pn

)
.

(b) Ξ2
n(log pn)7/n→ 0 and (``ns

hd
n log pn)/

√
n→ 0.

We note that Assumption 5.7(b) permits pn to be much greater than n.

Finally, as is common in the analysis of `1-penalized regression, we require a “restricted eigenvalue”

condition. This assumption permits us to apply Bickel et al. (2009, Lemma 4.1) and establish the error

bounds for |α̂hd
d,n − αhd

d,n|+ ||β̂hd
d,n − βhd

d,n||1 and 1
n

∑
1≤i≤2n I{Di = d}

(
α̂hd
d,n − αhd

d,n + ψ′n,i(β̂
hd
d,n − βhd

d,n)
)2

.

Assumption 5.8. For some κ1 > 0, κ2 and `n → ∞, the following statements hold with probability

approaching one:

inf
d∈{0,1},v∈Rpn+1:‖v‖0≤(shd

n +1)`n
(‖v‖22)−1v′

(
1

n

∑
1≤i≤2n

I{Di = d}ψ̆n,iψ̆′n,i

)
v ≥ κ1

sup
d∈{0,1},v∈Rpn+1:‖v‖0≤(shd

n +1)`n

(‖v‖22)−1v′

(
1

n

∑
1≤i≤2n

I{Di = d}ψ̆n,iψ̆′n,i

)
v ≤ κ2

inf
d∈{0,1},v∈Rpn+1:‖v‖0≤(shd

n +1)`n
(‖v‖22)−1v′

(
1

n

∑
1≤i≤2n

I{Di = d}E[ψ̆n,iψ̆
′
n,i|Xi]

)
v ≥ κ1
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sup
d∈{0,1},v∈Rpn+1:‖v‖0≤(shd

n +1)`n

(‖v‖22)−1v′

(
1

n

∑
1≤i≤2n

I{Di = d}E[ψ̆n,iψ̆
′
n,i|Xi]

)
v ≤ κ2 ,

where ψ̆n,i = (1, ψ′n,i)
′.

Using these assumptions, the following theorem characterizes the behavior of ∆̂hd
n :

Theorem 5.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Further suppose Assumptions 5.5–5.8 and (21) hold. Then, (6), (9), and Assumption

3.1 are satisfied with m̂d,n = α̂hd
d,n + ψ′n,iβ̂

hd
d,n and

md,n(Xi,Wn,i) = αhd
d,n + ψ′n,iβ

hd
d,n

for d ∈ {0, 1} and n ≥ 1. Denote the variance of ∆̂hd
n by σhd,2

n . If the LASSO adjustment is approximately

correctly specified, i.e., E[Yi(d)|Xi,Wi] = αhd
d,n + ψ′n,iβ

hd
d,n + Rn,i(d) and maxd∈{0,1}E[R2

n,i(d)] = o(1), then

σhd,2
n achieves the minimum variance, i.e.,

lim
n→∞

σhd,2
n = σ2

2(Q) + σ2
3(Q).

Remark 5.4. As in Remark 5.3, we recommend employing an iterative estimation procedure outlined by

Belloni et al. (2017) to estimate β̂hd
d,n, in which the m-th step’s penalty loadings are estimated based the

(m−1)-th step’s LASSO estimates. Formally, this iterative procedure is described by the following algorithm:

Algorithm 5.2.

Step 0: Set ε̂
hd,(0)
n,i (d) = Yi if Di = d.

...

Step m: Compute ω̂
(m)
n,l (d) =

√
1
n

∑
1≤i≤2n I{Di = d}ψ2

n,i,l(ε̂
hd,(m−1)
n,i (d))2 and compute (α̂

hd,(m)
d,n , β̂

hd,(m)
d,n )

following (20) with ω̂
(m)
n,l as the penalty loadings, and ε̂

hd,(m)
n,i (d) = Yi − α̂hd,(m)

d,n − ψ′iβ̂
hd,(m)
d,n if Di = d.

...

Step M : . . .

Step M + 1: Set β̂hd
d,n = β̂

hd,(M)
d,n .

As suggested by Belloni et al. (2017), we set M to be 15. We note that R package hdm has a built-in

option for this iterative procedure. For this choice of penalty loadings, arguments similar to those in Belloni

et al. (2017) can be used to verify (21) under “matched pairs” designs.

When the LASSO adjustment is approximately correctly specified, Theorem 5.1 shows ∆̂hd
n derived in

Remark 3.1, and thus, is guaranteed to be weakly more efficient than the ATE estimator without any

adjustments. On the other hand, when the LASSO adjustment is not approximately correctly specified,

∆̂hd
n suffers from Freedman (2008)’s critique that it may be less efficient than ∆̂unadj

n . To overcome this
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problem, we consider an additional step in which we treat the LASSO adjustments (ψ′n,iβ̂
hd
1,n, ψ

′
n,iβ̂

hd
0,n) as

linear covariates and rerun a linear regression with pair fixed effects. Such a procedure has also been studied

by Cohen and Fogarty (2020) in the setting with low-dimensional covariates and complete randomization.

Theorem 5.3 below shows the new estimator for the ATE is weakly more efficient than both ∆̂unadj
n and

∆̂hd
n . To state the results, define Γn,i = (ψ′n,iβ

hd
1,n, ψ

′
n,iβ

hd
0,n)′, Γ̂n,i = (ψ′n,iβ̂

hd
1,n, ψ

′
n,iβ̂

hd
0,n), and ∆̂hd−f

n as the

estimator in (12) with ψi replaced by Γ̂n,i. Note that ∆̂hd−f
n remains numerically the same if we include the

intercept α̂hd
d,n in the definition of Γ̂n,i. Following Remark 4.2, ∆̂hd−f

n is the intercept in the linear regression

of (Dπ(2j−1) − Dπ(2j−1))(Yπ(2j−1) − Yπ(2j)) on constant and (Dπ(2j−1) − Dπ(2j−1))(Γ̂n,π(2j−1) − Γ̂n,π(2j)).

Replacing Γ̂n,i by Γ̂n,i + (α̂hd
1,n, α̂

hd
0,n)′ will not change the regression estimators.

The following assumption will be employed to control Γn,i in our subsequent analysis:

Assumption 5.9. For some κ1 > 0 and κ2,

inf
n≥1

inf
v∈R2

||v||−2
2 v′E[Var[Γn,i|Xi]]v ≥ κ1

sup
n≥1

sup
v∈R2

||v||−2
2 v′E[Var[Γn,i|Xi]]v ≤ κ2 .

The following theorem characterizes the behavior of ∆̂hd−f
n :

Theorem 5.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Further suppose Assumptions 5.5–5.8 and (21) hold. In addition, suppose Assumption

5.9 holds. Then, (6), (9), and Assumption 3.1 are satisfied with m̂d,n(Xi,Wn,i) = Γ̂′n,iβ̂
hd−f
n and

md,n(Xi,Wn,i) = Γ′n,iβ
hd−f
n

for d ∈ {0, 1} and n ≥ 1, where βhd−f
n = (2E[Var[Γn,i|Xi]])

−1E[Cov[Γn,i, Yi(1) + Yi(0)|Xi]]. In addition,

denote the variance of ∆̂hd−f
n as σhd−f,2

n . Then, σna,2
n ≥ σhd−f,2

n and σhd,2
n ≥ σhd−f,2

n .

Remark 5.5. We briefly comment on the comparison between the two LASSO-based adjustment methods.

First, when the LASSO adjustment is approximately correctly specified, then both methods produce the same

adjustment asymptotically, which achieves the minimum variance. Second, when the pseudo-true values in

the two methods are different, it is unclear which adjustment is more efficient. However, it is possible to

use the regression adjustments obtained from both LASSO estimations as regressors in the refitting step in

the second method and produce one regression-adjusted ATE estimator which is more efficient than both

∆̂hd−pd
n and ∆̂hd−f

n , provided that the full rank condition in Assumption 5.9 holds. Third, the first method

tends to select less regressors when the dimension of Xi is large, as its `1 penalty depends on ζn. Fourth,

the `1 penalty of the second method is well studied in the literature. See, for example, Belloni et al. (2012),

Belloni et al. (2014), and Belloni et al. (2017). Finally, it is possible to relax the full rank condition in

Assumption 5.9 by running a ridge regression or truncating the minimum eigenvalue of the gram matrix in

the refitting step in the second method, which is left for future work.
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6 Simulations

In this section, we conduct Monte Carlo experiments to assess the finite-sample performance of the inference

methods proposed in the paper. In all cases, we follow Bai et al. (2021) to consider tests of the hypothesis

that

H0 : ∆(Q) = ∆0 versus H1 : ∆(Q) 6= ∆0.

with ∆0 = 0 at nominal level α = 0.05.

6.1 Data Generating Processes

We generate potential outcomes for d ∈ {0, 1} and 1 ≤ i ≤ 2n by the equation

Yi(d) = µd +md(Xi,Wi) + σd(Xi,Wi)εd,i, a = 0, 1, (24)

where µd,md (Xi,Wi) , σd (Xi,Wi), and εd,i are specified in each model as follows. In each of the specifica-

tions, (Xi,Wi, ε0,i, ε1,i) are i.i.d. across i. The number of pairs n is equal to 100 and 200 respectively. The

number of replications is 10,000.

Model 1 (Xi,Wi)
>

= (Φ (Vi1) ,Φ (Vi2))
>

, where Φ(·) is the standard normal distribution function and

Vi ∼ N

((
0

0

)
,

(
1 ρ

ρ 1

))
,

m0 (Xi,Wi) = γ
(
Wi − 1

2

)
; m1 (Xi,Wi) = m0 (Xi,Wi); εd,i ∼ N(0, 1) for a = 0, 1; σ0 (Xi,Wi) = σ0 = 1

and σ1 (Xi,Wi) = σ1. We set γ = 4, σ1 = 1, ρ = 0.2.

Model 2 (Xi,Wi)
>

= (Φ (Vi1) , V1iVi2)
>

, where Vi is the same as in Model 1. m0 (Xi,Wi) = m1 (Xi,Wi) =

γ1 (Wi − ρ) + γ2

(
Φ−1 (Xi)

2 − 1
)

. εd,i ∼ N(0, 1) for a = 0, 1; σ0 (Xi,Wi) = σ0 = 1 and σ1 (Xi,Wi) =

σ1. (γ1, γ2)
>

= (1, 2)
>

, σ1 = 1, ρ = 0.2.

Model 3 The same as in Model 2, except that m0 (Xi,Wi) = m1 (Xi,Wi) = γ1 (Wi − ρ)+γ2

(
Φ (Wi)− 1

2

)
+

γ3

(
Φ−1 (Xi)

2 − 1
)

with (γ1, γ2, γ3)
>

=
(

1
4 , 1, 2

)>
.

Model 4 (Xi,Wi)
>

= (Vi1, V1iVi2)
>

, where Vi is the same as in Model 1. m0 (Xi,Wi) = m1 (Xi,Wi) =

γ1 (Wi − ρ) + γ2

(
Φ (Wi)− 1

2

)
+ γ3

(
X2
i − 1

)
. εd,i ∼ N(0, 1) for a = 0, 1; σ0 (Xi,Wi) = σ0 = 1 and

σ1 (Xi,Wi) = σ1. (γ1, γ2, γ3)
>

= (2, 1, 2)
>

.

Model 5 The same as in Model 4, except that m1 (Xi,Wi) = m0 (Xi,Wi) +
(
Φ (Xi)− 1

2

)
.

Model 6 The same as in Model 5, except that σ0 (Xi,Wi) = (Φ (Xi) + 0.5) and σ1 (Xi,Wi) = (Φ (Xi) + 0.5)σ1.

Model 7 Xi = (Vi1, Vi2)
>

and Wi = (Vi1Vi3, Vi2Vi4)
>

, where Vi ∼ N(0,Σ) with dim(Vi) = 4 and Σ

consisting of 1 on the diagonal and ρ on all other elements. m0 (Xi,Wi) = m1 (Xi,Wi) = γ′1 (Wi − ρ)+
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γ′2
(
Φ (Wi)− 1

2

)
+ γ3

(
X2
i1 − 1

)
with γ1 = (2, 2)

>
, γ2 = (1, 1)

>
, γ3 = 1. εd,i ∼ N(0, 1) for a = 0, 1;

σ0 (Xi,Wi) = σ0 = 1 and σ1 (Xi,Wi) = σ1. σ1 = 1, ρ = 0.2.

Model 8 The same as in Model 7, except that m1 (Xi,Wi) = m0 (Xi,Wi) +
(
Φ (Xi1)− 1

2

)
.

Model 9 The same as in Model 8, except that σ0 (Xi,Wi) = (Φ (Xi1) + 0.5) and σ1 (Xi,Wi) = (Φ (Xi1) + 0.5)σ1.

Model 10 Xi = (Φ (Vi1) , · · · ,Φ (Vi4))
>

and Wi = (Vi1Vi5, Vi2Vi6)
>

, where Vi ∼ N(0,Σ) with dim(Vi) = 6

and Σ consisting of 1 on the diagonal and ρ on all other elements. m0 (Xi,Wi) = m1 (Xi,Wi) =

γ′1 (Wi − ρ)+γ′2
(
Φ (Wi)− 1

2

)
+γ′3

((
Φ−1 (Xi1)

2
,Φ−1 (Xi2)

2
)>
− 1

)
with γ1 = (1, 1)

>
, γ2 =

(
1
2 ,

1
2

)>
, γ3 =(

1
2 ,

1
2

)>
. εd,i ∼ N(0, 1) for a = 0, 1; σ0 (Xi,Wi) = σ0 = 1 and σ1 (Xi,Wi) = σ1. σ1 = 1, ρ = 0.2.

Model 11 The same as in Model 10, except that m1 (Xi,Wi) = m0 (Xi,Wi) + 1
4

∑4
j=1

(
Xij − 1

2

)
.

Model 12 Xi = (Φ (Vi1) , · · · ,Φ (Vi4))
>

and Wi = (Vi1Vi41, · · · , Vi40Vi80)
>

, where Vi ∼ N(0,Σ) with

dim(Vi) = 80. Σ is the Toeplitz matrix

Σ =



1 0.5 0.52 · · · 0.579

0.5 1 0.5 · · · 0.578

0.52 0.5 1 · · · 0.577

...
...

...
. . .

...

0.579 0.578 0.577 · · · 1


.

m0 (Xi,Wi) = m1 (Xi,Wi) = γ′1
(
Wi − 1

2

)
+γ′2

(
Φ−1 (Xi)

2 − 1
)

, γ1 =
(

1
12 ,

1
22 , · · · , 1

402

)>
with dim(γ1) =

40, and γ2 =
(

1
8 ,

1
8 ,

1
8 ,

1
8

)>
with dim(γ2) = 4. εd,i ∼ N(0, 1) for a = 0, 1; σ0 (Xi,Wi) = σ0 = 1 and

σ1 (Xi,Wi) = σ1 with σ1 = 1

Model 13 The same as in Model 12, except thatm0 (Xi,Wi) = m1 (Xi,Wi) = γ′1 (Wi − ρ)+γ′2
(
Φ (Wi)− 1

2

)
+

γ′3

(
Φ−1 (Xi)

2 − 1
)

, γ1 =
(

1
12 , · · · , 1

402

)>
, γ2 = 1

8

(
1
12 , · · · , 1

402

)>
, and γ3 =

(
1
8 ,

1
8 ,

1
8 ,

1
8

)>
with dim(γ1) =

dim(γ2) = 40 and dim(γ3) = 4.

Model 14 The same as in Model 13, except that m1 (Xi,Wi) = m0 (Xi,Wi) +
∑4
j=1

1
j2

(
Xij − 1

2

)
.

Model 15 The same as in Model 14, except that σ0 (Xi,Wi) = (Xi1 + 0.5) and σ1 (Xi,Wi) = (Xi1 + 0.5)σ1.

It is worth noting that Models 1, 2, 3, 4, 7, 10, 12, and 13 imply homogeneous treatment effects because

m1 (Xi,Wi) = m0 (Xi,Wi). Among them, E[Yi(a)|Xi,Wi]−E[Yi(a)|Xi] is linear in Wi in Models 1, 2, and

12. Models 5, 8, 11, and 14 have heterogeneous but homoscedastic treatment effects. In Models 6, 9, and 15,

however, the implied treatment effects are both heterogeneous and heteroscedastic. Models 12-15 contain

high-dimensional covariates.

We follow Bai et al. (2021) to match pairs. Specifically, if dim (Xi) = 1, we match pairs by sorting

Xi, i = 1, . . . , 2n. If dim (Xi) > 1, we match pairs by the permutation π calculated using the R package

nbpMatching. For more details, see Bai et al. (2021, Section 4). After matching the pairs, we flip coins to

randomly select one unit within each pair for treatment and another for control.
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6.2 Estimation and Inference

We set µ0 = 0 and µ1 = ∆, where ∆ = 0 and 1/4 are used to illustrate the size and power, respectively.

Rejection probabilities in percentage points are presented. To further illustrate the efficiency gains obtained

by regression adjustments, in Figure 1, we plot the average standard error reduction in percentage relative

to the standard error of the estimator without adjustments for various estimation methods.

Specifically, we consider the following adjusted estimators.

(i) NA: the estimator with no adjustments. In this case, our standard error is identical to the adjusted

standard error proposed by Bai et al. (2021).

(ii) LA: the linear adjustments with regressors Wi but without pair dummies.

(iii) LA2: the linear adjustments with Xi and Wi regressors but without pair dummies.

(iv) LDA: the linear adjustments with regressors Wi and pair dummies.

(v) HD-PD: the first LASSO-based adjustment.

(vi) HD-F: the second LASSO-based adjustment.

See Section C for the regressors used in the LASSO adjustments.

For Models 1-11, we examine the performance of estimators (i)-(v). For Models 12-15, we assess the

performance between estimators (i) and (v) in high-dimensional settings. Note that the adjustments are

misspecified for almost all the models. The only exception is Model 1, for which the linear adjustment in

Wi is correctly specified because md(Xi,Wi) is just a linear function of Wi.

6.3 Simulation Results

Tables 1 and 3 report size at the 0.05 level and power of the different methods for Models 1–11 when n is

100 and 200, respectively. Several patterns emerge. First, for all the estimators, the rejection rates under H0

are close to the nominal level even when n = 100 and with misspecified adjustments. This result is expected

because all the estimators take into account the dependence structure arising in MPDs, consistent with the

findings in Bai et al. (2021).

Second, in terms of power, “LDA” is higher than “NA”, “LA”, and “LA2” for all eleven models, as

predicted by our theory. This finding confirms that “LDA” is the optimal linear adjustment and will not

degrade the precision of the ATE estimator. In contrast, we observe that “LA” and “LA2” in Model 3 are

even less powerful than the unadjusted estimator “NA.” Figure 1 further confirms that these two methods

inflate the estimation standard error. This result echos Freedman’s critique (Freedman, 2008) that careless

regression adjustments may degrade the estimation precision. Our “LDA” addresses this issue because it

has been proven to be weakly more efficient than the unadjusted estimator.

Third, the improvement of power for “LDA” is mainly due to the reduction of estimation standard

errors, which can be more than 50% as shown in Figure 1 for Models 4–9. This means that the length
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of the confidence interval of the “LDA” estimator is just half of that for the “NA” estimator. Note the

standard error of the “NA” estimator is the one proposed by Bai et al. (2021), which has already been

adjusted to account for the cross-sectional dependence created in pair matching. The extra 50% reduction is

therefore produced purely by the regression adjustment. For Models 10-11, the reduction of standard error

achieved by “LDA” is more than 40% as well. For Model 1, the correct specification in the adjustments

leads to all three methods achieving the global minimum asymptotic variance and maximum power. For

Model 2, md(Xi,Wi) − E[md(Xi,Wi)|Xi] = γ(Wi − E[Wi|Xi]) so that the linear adjustment γWi satisfies

the conditions in Theorem 3.1. Therefore, “LDA”, as the best linear adjustment, is also the best adjustment

globally, achieving the global minimum asymptotic variance and maximum power. In contrast, “LA” and

“LA2” are not the best linear adjustment and therefore less powerful than “LDA” because of the omitted

pair dummies.

Finally, the LASSO-based adjustments have the best power for most models as they automatically achieve

the global minimum asymptotic variance. Compared to “HD-PD”, “HD-F” has slightly better power.

Tables 2 and 4 report the size and power for LASSO-based adjustments when both Wi and Xi are high-

dimensional. We see that the size under the null is close to the nominal 5% while the power for the adjusted

estimator is higher than the unadjusted one. Figure 1 further illustrates the reduction of the standard error

is more than 30% for all high-dimensional models.

Table 1: Rejection probabilities for Models 1-11 when n = 100

H0: ∆ = 0 H1: ∆ = 1/4

Model NA LA LA2 LDA HD-PD HD-F NA LA LA2 LDA HD-PD HD-F

1 5.47 5.57 5.63 5.76 6.12 5.84 22.48 43.89 43.95 43.91 44.69 43.92
2 4.96 5.26 5.30 5.47 5.74 5.32 23.32 28.02 27.96 37.21 39.00 33.12
3 4.99 5.28 5.24 5.48 5.78 5.27 32.19 27.88 27.96 37.34 38.59 36.29
4 5.31 5.28 5.28 5.48 5.93 5.79 11.78 27.88 28.03 37.34 42.21 43.28
5 5.43 5.09 5.08 5.49 5.84 5.78 11.87 27.72 27.88 36.69 41.24 43.08
6 5.28 5.43 5.41 5.58 5.90 5.79 11.78 26.67 26.72 34.71 38.76 40.29
7 5.64 5.63 5.62 5.98 6.45 6.04 9.24 34.55 34.65 37.96 37.72 42.08
8 5.63 5.54 5.51 6.03 6.26 6.17 9.28 34.11 34.42 37.22 36.78 41.29
9 5.74 5.69 5.76 6.19 6.32 5.89 8.99 32.39 32.30 35.42 34.66 38.75
10 5.24 5.78 5.73 6.05 6.07 6.04 14.27 30.80 30.75 32.02 28.37 32.51
11 5.19 5.78 5.72 6.07 6.01 5.95 14.36 30.60 30.49 32.21 27.92 32.81

Table 2: Rejection probabilities for Models 12-15 when n = 100

H0: ∆ = 0 H1: ∆ = 1/4

NA HD-PD HD-F NA HD-PD HD-F

12 5.35 6.15 6.12 22.01 39.59 42.56
13 5.31 6.21 6.11 21.47 39.62 42.47
14 5.24 6.04 6.07 21.39 38.11 41.14
15 5.31 6.05 6.23 20.73 35.90 38.67
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Table 3: Rejection probabilities for Models 1-11 when n = 200

H0: ∆ = 0 H1: ∆ = 1/4

Model NA LA LA2 LDA HD-PD HD-F NA LA LA2 LDA HD-PD HD-F

1 5.08 5.04 5.10 5.21 5.38 5.31 38.94 70.35 70.36 70.32 70.53 70.30
2 5.69 5.28 5.28 5.24 5.42 5.40 40.31 49.25 49.32 65.36 65.71 57.87
3 5.44 5.29 5.30 5.35 5.60 5.41 56.89 49.43 49.51 64.96 65.34 62.42
4 5.45 5.29 5.29 5.35 5.42 5.20 18.55 49.43 49.67 64.96 67.93 69.96
5 5.45 5.24 5.18 5.19 5.44 5.29 18.41 48.65 48.80 64.11 66.83 69.09
6 5.62 5.32 5.31 5.35 5.50 5.43 18.19 46.71 46.67 61.09 63.95 65.98
7 5.24 5.51 5.46 5.34 5.78 5.49 11.86 60.73 60.63 65.14 64.88 69.24
8 5.23 5.49 5.47 5.35 6.00 5.65 11.84 60.00 60.10 64.93 64.02 68.02
9 5.30 5.58 5.57 5.66 5.73 5.81 11.90 57.25 57.28 61.61 60.98 64.88
10 5.34 5.19 5.15 5.25 5.33 5.31 23.95 55.49 55.44 56.64 52.05 56.43
11 5.41 5.36 5.32 5.34 5.53 5.41 23.88 55.01 55.05 56.31 51.87 56.18

Table 4: Rejection probabilities for Models 12-15 when n = 200

H0: ∆ = 0 H1: ∆ = 1/4

NA HD-PD HD-F NA HD-PD HD-F

12 4.97 5.22 5.22 38.91 65.28 68.10
13 4.95 5.24 5.19 38.04 65.29 68.06
14 5.01 5.20 5.24 37.65 63.92 66.69
15 5.15 5.27 5.40 36.61 61.11 63.79

7 Empirical Illustration

In this section, we revisit the randomized experiment with a matched pairs design conducted in Groh and

McKenzie (2016). In the paper, they examined the impact of macroinsurance on microenterprises. Here, we

apply the covariate adjustment methods developed in this paper to their data and investigate the average

effect of macroinsurance on three outcome variables: the microenterprise owners’ loan renewal, their firms’

monthly profits, and revenues.

The subjects in the experiment are microenterprise owners, who were the clients of the largest micro-

finance institution in Egypt. In the randomization, after an exact match of gender and the institution’s

branch code, those clients were grouped into pairs by applying an optimal greedy algorithm to additional 13

matching variables. Within each pair, a macroinsurance product was then offered to one randomly assigned

client, and the other acted as a control. Based on the pair identities and all the matching variables, we

re-order the pairs in our sample according to the procedure described in Section 5.1 of Jiang et al. (2022).

The resulting sample contains 2824 microenterprise owners, that’s, 1412 pairs of them.1

Table 5 reports the ATEs with the standard errors (in parentheses) estimated by different methods.

Among them, “GM” corresponds to the method used in Groh and McKenzie (2016).2 The description

1See Groh and McKenzie (2016) and Jiang et al. (2022) for more details.
2Groh and McKenzie (2016) estimated the effect by regression with regressors including some baseline covariates and dummies

for the pairs. Specifically, for loan renewal, the regressors include a variable “high chance of renewing loan” and its interaction
with treatment status. For the other two outcome variables, the regressor is the baseline value for the outcome of interest.
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Figure 1: Average Standard Error Reduction in Percentage under H1 when n = 200

Notes: The figure plots average standard error reduction in percentage achieved by regression adjustments
relative to “NA” under H1 for Models 1-15 when n = 200.

of other methods is similar to that in Section 6.2.3 The results in this table prompt the following four

observations.

First, in line with the theoretical and simulation results, the standard errors for the covariate-adjusted

The standard errors for the “GM” ATE estimate are calculated by the usual heteroskedastity-consistent estimator. The “GM”
results in Table 5 were obtained by applying the Stata code provided by Groh and McKenzie (2016).

3To maintain comparability, we keep Xi and Wi the same in all the adjustments for each outcome variable. Specifically,

(i) Xi include gender and 13 additional matching variables for all the adjustments. Three of the matching variables are
continuous and others are dummies.

(ii) For loan renewal, Wi include baseline value of loan amount, high chance of renewing loan, the interaction between the
high chance of renewing loan and treatment status, and the interaction of these three variables with three continuous
variables and the first three discrete variables in Xi. For the other two outcome variables, Wi only includes the baseline
value for the outcome of interest and its interaction with three continuous variables and the first three discrete variables
in Xi. All the continuous variables in Xi, the baseline values of loan amount, and the baseline value for the other three
outcome variables are standardized at first when the regression-adjusted estimators are used.
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ATEs are generally lower than those for the ATE estimate without adjustment. This observation holds

for almost all the outcome variables and adjustment methods. For example, when the outcome variable is

revenue, the standard errors for the covariate-adjusted ATE estimates are at least 9.7% less than that for

the ATE estimate without adjustment.

Second, the standard errors for the ATE estimates obtained by the “GM” method are mostly higher than

those for the ATE estimates obtained by the covariate adjustments. Especially, when the outcome variable

is loan renewal, the standard errors for the “GM” ATE estimates are at least 16.7% higher than those for

all other estimates. This observation may imply that the “GM” method is not the most efficient way to

estimate the ATE of macrofinance on loan renewal.

Third, the size of the standard errors is mostly similar for all the covariate-adjustment ATEs. Among

them, the standard errors for the “LA2” and “LDA” estimates are slightly less than those for the other

regression-adjusted estimates.

Finally, between the two LASSO-based adjustments, “HD-F” achieves the smaller size of the standard

errors. Surprisingly, “HD-PD” has the same estimates as “NA”, which means it selects none of the variables

in the adjustments. This result is caused by using a large rule-of-thumb penalty. There are more than 10

matching variables in this application, which leads to low matching quality and then produces a large penalty

for the adjustments.

Table 5: Impacts of Macronsurance for Microenterprises

Y n NA GM LA LA2 LDA HD-PD HD-F

Loan 1350 -0.007 0.004 -0.004 -0.006 0.006 -0.007 -0.003

renewal (0.0180) (0.0212) (0.0178) (0.0177) (0.0177) (0.0180) (0.0177)

Profits 1322 -85.6 -50.9 -35.6 -46.8 -40.6 -85.6 -55.1

(49.4) (46.4) (45.7) (45.3) (45.6) (49.4) (45.7)

Revenue 1318 -838.6 -657.6 -666.8 -664.7 -671.3 -838.6 -590.1

(319.0) (283.4) (283.5) (279.8) (281.4) (319.0) (285.2)

Notes: The table reports the ATE estimates of the effect of macroinsurance for microenterprises. Standard

errors are in parentheses.
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A Proofs of Main Results

In the appendix, we use an . bn to denote there exists c > 0 such that an ≤ cbn.

A.1 Proof of Theorem 3.1

To begin, note

µ̂n(1) =
1

2n

∑
1≤i≤2n

(2Di(Yi(1)− m̂1,n(Xi,Wi)) + m̂1,n(Xi,Wi))

=
1

2n

∑
1≤i≤2n

(2DiYi(1)− (2Di − 1)m̂1,n(Xi,Wi))

=
1

2n

∑
1≤i≤2n

(2DiYi(1)− (2Di − 1)m1,n(Xi,Wi)) + oP (n−1/2)

=
1

2n

∑
1≤i≤2n

(2DiYi(1)−Dim1,n(Xi,Wi)− (1−Di)m1,n(Xi,Wi)) + oP (n−1/2) , (25)

where the third equality follows from (6). Similarly,

µ̂n(0) =
1

2n

∑
1≤i≤2n

(2(1−Di)Yi(0)−Dim0,n(Xi,Wi)− (1−Di)m0,n(Xi,Wi)) + oP (n−1/2) . (26)

It follows from (25)–(26) that

∆̂n =
1

n

∑
1≤i≤2n

Diφ1,n,i −
1

n

∑
1≤i≤2n

(1−Di)φ0,n,i + oP (n−1/2) , (27)

where

φ1,n,i = Yi(1)− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi))

φ0,n,i = Yi(0)− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi)) .

Next, consider

Ln =
1

2
√
n

∑
1≤i≤2n

(2Di − 1)E[m1,n(Xi,Wi) +m0,n(Xi,Wi)|Xi] .

For simplicity, define Md,n(Xi) = E[md,n(Xi,Wi)|Xi] for d ∈ {0, 1}. It follows from Assumption 2.2 that

E[Ln|X(n)] = 0. On the other hand,

Var[Ln|X(n)] =
1

4n

∑
1≤j≤n

(
M1,n(Xπ(2j−1)) +M0,n(Xπ(2j−1))− (M1,n(Xπ(2j)) +M0,n(Xπ(2j)))

)2
.

1

n

∑
1≤j≤n

|M1,n(Xπ(2j−1))−M1,n(Xπ(2j))|2 +
1

n

∑
1≤j≤n

|M0,n(Xπ(2j−1))−M0,n(Xπ(2j))|2

P→ 0 ,
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where the inequality follows from (a + b)2 ≤ 2(a2 + b2) and the convergence follows from Assumptions 2.3

and 3.1(c). By Markov’s inequality and the fact that E[Ln|X(n)] = 0, for any ε > 0,

P{|Ln| > ε|X(n)} ≤ Var[Ln|X(n)]

ε2
P→ 0 .

Since probabilities are bounded, we have Ln = oP (1). This fact, together with (27), imply

√
n(∆̂n −∆(Q)) = An −Bn + Cn −Dn ,

where

An =
1√
n

∑
1≤i≤2n

(
Diφ1,n,i − E[Diφ1,n,i|X(n), D(n)]

)
Bn =

1√
n

∑
1≤i≤2n

(
(1−Di)φ0,n,i − E[(1−Di)φ0,n,i|X(n), D(n)]

)
Cn =

1√
n

∑
1≤i≤2n

Di(E[Yi(1)|Xi]− E[Yi(1)])

Dn =
1√
n

∑
1≤i≤2n

(1−Di)(E[Yi(0)|Xi]− E[Yi(0)]) .

Note that conditional on X(n) and D(n), An and Bn are independent while Cn and Dn are constants.

We first analyze the limiting behavior of An. Define

s2
n =

∑
1≤i≤2n

Di Var[φ1,n,i|Xi] .

Note by Assumption 2.2 that s2
n = nVar[An|X(n), D(n)]. We proceed verify the Lindeberg condition for An

conditional on X(n) and D(n), i.e., we show that for every ε > 0,

1

s2
n

∑
1≤i≤2n

E[|Di(φ1,n,i − E[φ1,n,i|Xi])|2I{|Di(φ1,n,i − E[φ1,n,i|Xi])| > εsn}|X(n), D(n)]
P→ 0 . (28)

To that end, first note Lemma B.2 implies

s2
n

nE[Var[φ1,n,i|Xi]]

P→ 1 . (29)

(29) and Assumption 3.1(a) imply that for all λ > 0,

P{εsn > λ} P→ 1 . (30)

Furthermore, for some c > 0,

P

{
s2
n

n
> c

}
→ 1 . (31)
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Next, note for any λ > 0 and δ1 > 0, the left-hand side of (28) can be written as

1

s2
n/n

1

n

∑
1≤i≤2n:Di=1

E[|φ1,n,i − E[φ1,n,i|Xi]|2I{|φ1,n,i − E[φ1,n,i|Xi]| > εsn}|X(n), D(n)]

≤ 1

s2
n/n

1

n

∑
1≤i≤2n

E[|φ1,n,i − E[φ1,n,i|Xi]|2I{|φ1,n,i − E[φ1,n,i|Xi]| > εsn}|X(n), D(n)]

≤ 1

c

1

n

∑
1≤i≤2n

E[|φ1,n,i − E[φ1,n,i|Xi]|2I{|φ1,n,i − E[φ1,n,i|Xi]| > λ}|X(n), D(n)] + oP (1)

≤ 2

c

1

2n

∑
1≤i≤2n

E[|φ1,n,i − E[φ1,n,i|Xi]|2I{|φ1,n,i − E[φ1,n,i|Xi]| > λ}|Xi] + oP (1) , (32)

where the first inequality follows by inspection, the second follows from (30)–(31), and the last follows from

Assumption 2.2. We then argue

1

2n

∑
1≤i≤2n

E[|φ1,n,i − E[φ1,n,i|Xi]|2I{|φ1,n,i − E[φ1,n,i|Xi]| > λ}|Xi]

= E[|φ1,n,i − E[φ1,n,i|Xi]|2I{|φ1,n,i − E[φ1,n,i|Xi]| > λ}] + oP (1) . (33)

To this end, we once again verify the Lindeberg condition in Lemma 11.4.2 of Lehmann and Romano (2005).

Note

|φ1,n,i − E[φ1,n,i|Xi]|2I{|φ1,n,i − E[φ1,n,i|Xi]| > λ} ≤ |φ1,n,i − E[φ1,n,i|Xi]|2 .

Therefore, in light of Lemma B.1, we only need to verify

lim
γ→∞

lim sup
n→∞

E[|φ1,n,i − E[φ1,n,i|Xi]|2I{|φ1,n,i − E[φ1,n,i|Xi]|2 > γ}] = 0 , (34)

which follows immediately from Lemma B.3.

Another application of (34) implies (28). Lindeberg’s central limit theorem and (29) then imply that

sup
t∈R
|P{An/

√
E[Var[φ1,n,i|Xi]] ≤ t|X(n), D(n)} − Φ(t)| P→ 0 .

Similar arguments lead to

sup
t∈R
|P{Bn/

√
E[Var[φ0,n,i|Xi]] ≤ t|X(n), D(n)} − Φ(t)| P→ 0 .

Meanwhile, it follows from the same arguments as those in (S.22)–(S.25) of Bai et al. (2021) that

Cn −Dn
d→ N

(
0,

1

2
E
[
(E[Yi(1)|Xi]− E[Yi(1)]− (E[Yi(0)|Xi]− E[Yi(0)]))2

])
.

To establish (7), define ν2
n = ν2

1,n + ν2
0,n + ν2

2 , where

ν2
1,n = E[Var[φ1,n,i|Xi]]

ν2
0,n = E[Var[φ0,n,i|Xi]]
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ν2 =
1

2
E
[
(E[Yi(1)|Xi]− E[Yi(1)]− (E[Yi(0)|Xi]− E[Yi(0)]))2

]
Note √

n(∆̂n −∆(Q))

νn
=

An
ν1,n

ν1,n

νn
− Bn
ν0,n

ν0,n

νn
+
Cn −Dn

ν2

ν2

νn
.

Further note νn, ν1,n, ν0,n, ν2 are all constants conditional on X(n) and D(n). Suppose by contradiction that
√
n(∆̂n−∆(Q))

νn
does not converge in distribution to N(0, 1). Then, there exists ε > 0 and a subsequence {nk}

such that

sup
t∈R
|P{
√
nk(∆̂nk −∆(Q))/νnk ≤ t} − Φ(t)| → ε . (35)

Because the sequence ν1,nk and ν0,nk are bounded by Assumptions 3.1(b), there is a further subsequence,

which with some abuse of notation we still denote by {nk}, along which ν1,nk → ν∗1 and ν0,nk → ν∗0 for some

ν∗1 , ν
∗
0 ≥ 0. Then, ν1,nk/νnk , ν0,nk/νnk , ν2/νnk all converge to constants. Therefore, it follows from Lemma

S.1.2 of Bai et al. (2021) that
√
nk(∆̂nk −∆(Q))/νnk

d→ N(0, 1) ,

a contradiction to (35). Therefore, the desired convergence in Theorem 3.1 follows. The form of the variance

formula as stated in the theorem can be obtained using the arguments in the proof of Theorem 3.1 almost

verbatim.

It then follows from Assumption 3.1(a) and similar arguments to those in the proof of Lemma S.1.4 of

Bai et al. (2021) that

sup
t∈R
|P{An ≤ t|X(n), D(n)} − Φ(t/

√
Var[φ1,n,i|Xi])|

P→ 0 , (36)

where Φ is the distribution function of the standard normal distribution. Similarly,

sup
t∈R
|P{An ≤ t|X(n), D(n)} − Φ(t/

√
Var[φ0,n,i|Xi])|

P→ 0 , (37)

Meanwhile, it follows from the same arguments as those in (S.22)–(S.25) of Bai et al. (2021) that

Cn −Dn
d→ N

(
0,

1

2
E
[
(E[Yi(1)|Xi]− E[Yi(1)]− (E[Yi(0)|Xi]− E[Yi(0)]))2

])
.

A subsequencing argument similar to the one in the proof of Lemma S.1.4 of Bai et al. (2021) implies
√
n(∆̂n −∆(Q))

d→ N(0, σ2
n(Q)), where

σ2
n(Q) = E[Var[φ1,n,i|Xi]] + E[Var[φ0,n,i|Xi]] +

1

2
E
[
(E[Yi(1)|Xi]− E[Yi(1)]− (E[Yi(0)|Xi]− E[Yi(0)]))2

]
.

To conclude the proof with the the variance formula as stated in the theorem, note

Var
[
Yi(0)− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi))

∣∣∣Xi

]
= Var

[
E
[
Yi(0)− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi))

∣∣∣Xi,Wi

]∣∣∣Xi

]
+ E

[
Var

[
Yi(0)− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi))

∣∣∣Xi,Wi

]∣∣∣Xi

]
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= Var
[
E
[Yi(1) + Yi(0)

2

∣∣∣Xi,Wi

]
− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi))− E

[Yi(1)− Yi(0)

2

∣∣∣Xi,Wi

]∣∣∣Xi

]
+ E[Var[Yi(0)|Xi,Wi]|Xi]

= Var
[
E
[Yi(1) + Yi(0)

2

∣∣∣Xi,Wi

]
− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi))

∣∣∣Xi

]
+ Var

[
E
[Yi(1)− Yi(0)

2

∣∣∣Xi,Wi

]∣∣∣Xi

]
− 2Cov

[
E
[Yi(1) + Yi(0)

2

∣∣∣Xi,Wi

]
− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi)), E

[Yi(1)− Yi(0)

2

∣∣∣Xi,Wi

]∣∣∣Xi

]
+ E[Var[Yi(0)|Xi,Wi]|Xi] , (38)

where the first equality follows from the law of total variance, the second one follows by direct calculation,

and the last one follows by expanding the variance of the sum. Similarly,

Var
[
Yi(1)− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi))

∣∣∣Xi

]
= Var

[
E
[Yi(1) + Yi(0)

2

∣∣∣Xi,Wi

]
− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi))

∣∣∣Xi

]
+ Var

[
E
[Yi(1)− Yi(0)

2

∣∣∣Xi,Wi

]∣∣∣Xi

]
+ 2Cov

[
E
[Yi(1) + Yi(0)

2

∣∣∣Xi,Wi

]
− 1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi)), E

[Yi(1)− Yi(0)

2

∣∣∣Xi,Wi

]∣∣∣Xi

]
+ E[Var[Yi(1)|Xi,Wi]|Xi] . (39)

It follows that

σ2
n(Q) =

1

2
E[Var[E[Yi(1) + Yi(0)|Xi,Wi]− (m1,n(Xi,Wi) +m0,n(Xi,Wi))|Xi]]

+
1

2
E[Var[E[Yi(1)− Yi(0)|Xi,Wi]|Xi]] +

1

2
Var[E[Yi(1)− Yi(0)|Xi]]

+ E[Var[Yi(0)|Xi,Wi]|Xi] + E[Var[Yi(1)|Xi,Wi]|Xi]

=
1

2
E[Var[E[Yi(1) + Yi(0)|Xi,Wi]− (m1,n(Xi,Wi) +m0,n(Xi,Wi))|Xi]]

+
1

2
E[(E[Yi(1)− Yi(0)|Xi,Wi]− E[Yi(1)− Yi(0)|Xi])

2]

+
1

2
E[(E[Yi(1)− Yi(0)|Xi]− E[Yi(1)− Yi(0)])2]

+ E[(Yi(0)− E[Yi(0)|Xi,Wi])
2] + E[(Yi(1)− E[Yi(1)|Xi,Wi])

2]

=
1

2
E[Var[E[Yi(1) + Yi(0)|Xi,Wi]− (m1,n(Xi,Wi) +m0,n(Xi,Wi))|Xi]]

+
1

2
Var[E[Yi(1)− Yi(0)|Xi,Wi]] + E[Var[Yi(0)|Xi,Wi]] + E[Var[Yi(1)|Xi,Wi]] ,

where the first equality follows by definition, the second one follows from (38)–(39), the third one again

follows by definition, and the last one follows because by the law of iterated expectations,

E[(E[Yi(1)− Yi(0)|Xi,Wi]− E[Yi(1)− Yi(0)|Xi])(E[Yi(1)− Yi(0)|Xi]− E[Yi(1)− Yi(0)])] = 0 .

The conclusion then follows.
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A.2 Proof of Theorem 3.2

Theorem 3.1 implies ∆̂n
P→ ∆(Q). Next, we show

τ̂2
n − E[Var[φ1,n,i|Xi]] + E[Var[φ0,n,i|Xi]] + E[(E[Yi(1)|Xi]− E[Yi(0)|Xi])

2]
P→ 0 . (40)

To that end, define

Y̊i = Yi −
1

2
(m1,n(Xi,Wi) +m0,n(Xi,Wi)) .

Note

τ̂2
n =

1

n

∑
1≤j≤n

(
Y̊π(2j−1) − Y̊π(2j) + (Ỹπ(2j−1) − Ỹπ(2j) − (Y̊π(2j−1) − Y̊π(2j)))

)2

=
1

n

∑
1≤j≤n

(Y̊π(2j−1) − Y̊π(2j))
2 +

1

n

∑
1≤j≤n

(Ỹπ(2j−1) − Ỹπ(2j) − (Y̊π(2j−1) − Y̊π(2j)))
2

+
2

n

∑
1≤j≤n

(Ỹπ(2j−1) − Ỹπ(2j) − (Y̊π(2j−1) − Y̊π(2j)))(Y̊π(2j−1) − Y̊π(2j)) .

Therefore, to establish (40), we first show

1

n

∑
1≤j≤n

(Y̊π(2j−1)−Y̊π(2j))
2−E[Var[φ1,n,i|Xi]]+E[Var[φ0,n,i|Xi]]+E[(E[Yi(1)|Xi]−E[Yi(0)|Xi])

2]
P→ 0 (41)

and
1

n

∑
1≤j≤n

(Ỹπ(2j−1) − Ỹπ(2j) − (Y̊π(2j−1) − Y̊π(2j)))
2 P→ 0 . (42)

(42) immediately follows from repeated applications of the inequality (a− b)2 ≤ 2(a2 + b2) and (9). To verify

(41), note
1

n

∑
1≤j≤n

(Y̊π(2j−1) − Y̊π(2j))
2 =

1

n

∑
1≤i≤2n

Y̊ 2
i −

2

n

∑
1≤j≤n

Y̊π(2j−1)Y̊π(2j) .

It follows from similar arguments to those in the proof of Lemma B.2 below that

1

n

∑
1≤i≤2n

Y̊ 2
i − E[φ2

1,n,i] + E[φ2
0,n,i]

P→ 0 .

Similarly, it follows from the proof of the same lemma that

2

n

∑
1≤j≤n

Y̊π(2j−1)Y̊π(2j) − 2E[E[φ1,n,i|Xi]E[φ0,n,i|Xi]]
P→ 0 .

To establish (41), note

E[φ2
1,n,i] + E[φ2

0,n,i]− 2E[E[φ1,n,i|Xi]E[φ0,n,i|Xi]]

= E[Var[φ1,n,i|Xi]] + E[Var[φ0,n,i|Xi]] + E[E[φ1,n,i|Xi]
2] + E[E[φ0,n,i|Xi]

2]− 2E[E[φ1,n,i|Xi]E[φ0,n,i|Xi]]

= E[Var[φ1,n,i|Xi]] + E[Var[φ0,n,i|Xi]] + E[(E[φ1,n,i|Xi]− E[φ0,n,i|Xi])
2]

= E[Var[φ1,n,i|Xi]] + E[Var[φ0,n,i|Xi]] + E[(E[Yi(1)|Xi]− E[Yi(0)|Xi])
2] ,
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where the last equality follows from the definition of φ1,n,i and φ0,n,i. It then follows from the Cauchy-

Schwarz inequality that

∣∣∣∣∣∣ 1n
∑

1≤j≤n

(Ỹπ(2j−1) − Ỹπ(2j) − (Y̊π(2j−1) − Y̊π(2j)))(Y̊π(2j−1) − Y̊π(2j))

∣∣∣∣∣∣
≤

 1

n

∑
1≤j≤n

(Y̊π(2j−1) − Y̊π(2j))
2

 1

n

∑
1≤j≤n

(Ỹπ(2j−1) − Ỹπ(2j) − (Y̊π(2j−1) − Y̊π(2j)))
2

 P→ 0 ,

which, together with (41)–(42) as well as Assumptions 2.1(b) and 3.1(b), imply (40).

Next, we show

λ̂n
P→ E[(E[Yi(1)|Xi]− E[Yi(0)|Xi])

2] . (43)

Note

λ̂n −
2

n

∑
1≤j≤bn2 c

(Y̊π(4j−3) − Y̊π(4j−2))(Y̊π(4j−1) − Y̊π(4j))(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j)) (44)

=
2

n

∑
1≤j≤bn2 c

(Ỹπ(4j−3) − Y̊π(4j−3) − (Ỹπ(4j−2) − Y̊π(4j−2)))(Y̊π(4j−1) − Y̊π(4j))

× (Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j))

+
2

n

∑
1≤j≤bn2 c

(Y̊π(4j−3) − Y̊π(4j−2))(Ỹπ(4j−1) − Y̊π(4j−1))− (Ỹπ(4j) − Y̊π(4j)))

× (Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j))

+
2

n

∑
1≤j≤bn2 c

(Ỹπ(4j−3) − Y̊π(4j−3) − (Ỹπ(4j−2) − Y̊π(4j−2)))

× (Ỹπ(4j−1) − Y̊π(4j−1))− (Ỹπ(4j) − Y̊π(4j)))(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j)) .

In what follows, we show

2

n

∑
1≤j≤bn2 c

(Y̊π(4j−3) − Y̊π(4j−2))
2 = OP (1) (45)

2

n

∑
1≤j≤bn2 c

(Y̊π(4j−1) − Y̊π(4j))
2 = OP (1) (46)

2

n

∑
1≤j≤bn2 c

(Ỹπ(4j−3) − Y̊π(4j−3) − (Ỹπ(4j−2) − Y̊π(4j−2)))
2 = oP (1) (47)

2

n

∑
1≤j≤bn2 c

(Ỹπ(4j−1) − Y̊π(4j−1))− (Ỹπ(4j) − Y̊π(4j)))
2 = oP (1) (48)

2

n

∑
1≤j≤bn2 c

(Y̊π(4j−3) − Y̊π(4j−2))(Y̊π(4j−1) − Y̊π(4j))(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j))

P→ E[(E[Yi(1)|Xi]− E[Yi(0)|Xi])
2] . (49)

To establish (45)–(46), note they follow directly from (41) and Assumptions 2.1(b) and 3.1(b). Next, note
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(47) follows from repeated applications of the inequality (a+b)2 ≤ 2(a2 +b2) and (9). (48) can be established

by similar arguments. (49) follows from similar arguments to those in the proof of Lemma S.1.7 of Bai et al.

(2021), with the uniform integrability arguments replaced by arguments similar to those in the proof of

Lemma B.2, together with Assumptions 2.1–2.4 and 3.1. (44)–(49) imply (43) immediately.

Finally, note we have shown

σ̂2
n − σ2

n
P→ 0 .

Assumption 3.1(a) implies σ2
n is bounded away from zero, so

σ̂n
σn

P→ 1 .

The conclusion of the theorem then follows.

A.3 Proof of Theorem 4.1

We will apply the Frisch-Waugh-Lovell theorem to obtain an expression for β̂naive
n . Consider the linear

regression of ψi on 1 and Di. Define

µ̂ψ,n(d) =
1

n

∑
1≤i≤2n

ψiI{Di = d}

for d ∈ {0, 1} and

∆̂ψ,n = µ̂ψ,n(1)− µ̂ψ,n(0) .

The ith residual based on the OLS estimation of this linear regression model is given by

ψ̃i = ψi − µ̂ψ,n(0)− ∆̂ψ,nDi .

β̂naive
n is then given by the OLS estimator of the coefficient in the linear regression of Yi on ψ̃i. Note

1

2n

∑
1≤i≤2n

ψ̃iψ̃
′
i =

1

2n

∑
1≤i≤2n

(ψi − µ̂ψ,n(1))(ψi − µ̂ψ,n(1))′Di +
1

2n

∑
1≤i≤2n

(ψi − µ̂ψ,n(0))(ψi − µ̂ψ,n(0))′(1−Di)

=
1

2n

∑
1≤i≤2n

ψiψ
′
i −

1

2
µ̂ψ,n(1)µ̂ψ,n(1)′ − 1

2
µ̂ψ,n(0)µ̂ψ,n(0)′ .

It follows from Assumption 4.1(b) and the weak law of large number that

1

2n

∑
1≤i≤2n

ψiψ
′
i
P→ E[ψiψ

′
i] .

On the other hand, it follows from Assumptions 2.2–2.3 and 4.1(b)–(c) as well as similar arguments to those

in the proof of Lemma S.1.5 of Bai et al. (2021) that

µ̂ψ,n(d)
P→ E[ψi]
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for d ∈ {0, 1}. Therefore,
1

2n

∑
1≤i≤2n

ψ̃iψ̃
′
i
P→ Var[ψi] .

Next,

1

2n

∑
1≤i≤2n

ψ̃iYi =
1

2n

∑
1≤i≤2n

(ψi − µ̂ψ,n(1))Yi(1)Di +
1

2n

∑
1≤i≤2n

(ψi − µ̂ψ,n(0))Yi(0)(1−Di)

It follows from similar arguments as above as well as Assumptions 2.1(b), 2.2–2.3, and 4.1(b)–(c) that

1

2n

∑
1≤i≤2n

ψ̃iYi
P→ Cov[ψi, Yi(1) + Yi(0)] .

The convergence of β̂naive
n therefore follows from the continuous mapping theorem and Assumption 4.1(a).

To see (9) is satisfied, note

1

2n

∑
1≤i≤2n

(m̂d,n(Xi,Wi)−md,n(Xi,Wi))
2 = (β̂naive

n − βnaive)′

 1

2n

∑
1≤i≤2n

ψiψ
′
i

 (β̂naive
n − βnaive) .

(9) then follows from the fact that β̂naive
n

P→ β, Assumption 4.1(b), and the weak law of large numbers. To

establish (6), first note

1√
2n

∑
1≤i≤2n

(2Di − 1)(m̂d,n(Xi,Wi)−md,n(Xi,Wi)) =
1√
2

√
n∆̂′ψ,n(β̂naive

n − βnaive) .

In what follows, we establish
√
n∆̂ψ,n = OP (1) , (50)

from which (6) follows immediately because β̂naive
n −βnaive = oP (1). Note by Assumption 2.2 that E[

√
n∆̂ψ,n|X(n)] =

0. Also note
√
n∆̂ψ,n = Fn −Gn +Hn ,

where

Fn =
1√
n

∑
1≤i≤2n

(ψi − E[ψi|Xi])Di ,

Gn =
1√
n

∑
1≤i≤2n

(ψi − E[ψi|Xi])(1−Di) , and

Hn =
1√
n

∑
1≤j≤n

(E[ψπ(2j−1)|Xπ(2j−1)]− E[ψπ(2j)|Xπ(2j)])(Dπ(2j−1) −Dπ(2j)) .

We will argue Fn, Gn, Hn are all OP (1). Since this could be carried out separately for each entry of Fn and

Gn, we assume without loss of generality that kψ = 1. First, it follows from Assumptions 2.2–2.3 and 4.1(c)
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as well as similar arguments to those in the proof of Lemma S.1.4 of Bai et al. (2021) that

Var[Fn|X(n), D(n)] =
1

n

∑
1≤i≤2n

Var[ψi|Xi]Di
P→ E[Var[ψi|Xi]] > 0 .

It then follows from similar arguments using the Lindeberg central limit theorem as in the proof of Lemma

S.1.4 of Bai et al. (2021) that Fn = OP (1). Similar arguments establish Gn = OP (1). Finally, we show

Hn = OP (1). Note that E[Hn|X(n)] = 0 and by Assumptions 2.2–2.3 and 4.1(c),

Var[Hn|X(n)] =
1

n

∑
1≤j≤n

(E[ψπ(2j−1)|Xπ(2j−1)]− E[ψπ(2j)|Xπ(2j)])
2 P→ 0 .

Therefore, for any fixed ε > 0, Markov’s inequality implies

P{|Hn − E[Hn|X(n)]| > ε|X(n)} ≤ Var[Hn|X(n)]

ε2
P→ 0 .

Since probabilities are bounded and therefore uniformly integrable, we have that

P{|Hn − E[Hn|X(n)]| > ε} → 0 .

Therefore, (50) follows. Finally, it is straightforward to see Assumption 3.1 is implied by Assumption 4.1.

A.4 Proof of Theorem 4.2

By the Frisch-Waugh-Lovell theorem, β̂pfe
n is equal to the OLS estimator in the linear regression of {(Yπ(2j−1)−

Yπ(2j), Yπ(2j) − Yπ(2j−1)) : 1 ≤ j ≤ n} on {(2Dπ(2j−1) − 1, 2Dπ(2j) − 1) : 1 ≤ j ≤ n} and {(ψπ(2j−1) −
ψπ(2j), ψπ(2j)−ψπ(2j−1)) : 1 ≤ j ≤ n}. To apply the Frisch-Waugh-Lovell theorem again, we study the linear

regression of {(ψπ(2j−1)−ψπ(2j), ψπ(2j)−ψπ(2j−1)) : 1 ≤ j ≤ n} on {(2Dπ(2j−1)−1, 2Dπ(2j)−1) : 1 ≤ j ≤ n}.
The OLS estimator of the regression coefficient in such a regression equals

∆̂ψ,n =
1

n

∑
1≤j≤n

(Dπ(2j−1) −Dπ(2j))(ψπ(2j−1) − ψπ(2j)) .

The residual is therefore {(ψπ(2j−1)−ψπ(2j)−(2Dπ(2j−1)−1)∆̂ψ,n, ψπ(2j)−ψπ(2j−1)−(2Dπ(2j)−1)∆̂ψ,n) : 1 ≤
j ≤ n}. β̂pfe

n equals the OLS estimator of the coefficient in the linear regression of {(Yπ(2j−1)−Yπ(2j), Yπ(2j)−
Yπ(2j−1)) : 1 ≤ j ≤ n} on those residuals. Define

δY,j = (Dπ(2j−1) −Dπ(2j))(Yπ(2j−1) − Yπ(2j)) and

δψ,j = (Dπ(2j−1) −Dπ(2j))(ψπ(2j−1) − ψπ(2j))

Apparently ∆̂ψ,n = 1
n

∑
1≤j≤n δψ,j . A moment’s thought reveals that β̂pfe

n further equals the coefficient

estimate using least squares in the linear regression of δY,j on δψ,j − ∆̂ψ,n for 1 ≤ j ≤ n. It follows from

Assumptions 2.1(b)–(c), 2.2–2.3, and 4.1(b)–(c) as well as similar arguments to those in the proof of Lemma
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S.1.5 of Bai et al. (2021) that

∆̂ψ,n
P→ 0 and (51)

1

n

∑
1≤j≤n

δY,j
P→ ∆(Q) .

Next, note that

1

n

∑
1≤j≤n

δψ,jδ
′
ψ,j

=
1

n

∑
1≤j≤n

(ψπ(2j−1) − ψπ(2j))(ψπ(2j−1) − ψπ(2j))
′

=
1

n

∑
1≤i≤2n

ψiψ
′
i −

1

n

∑
1≤j≤n

(ψπ(2j−1)ψ
′
π(2j) + ψπ(2j)ψ

′
π(2j−1)) . (52)

For convenience, we introduce the following notation:

µd(Xi) = E[Yi(d)|Xi]

Ψ(Xi) = E[ψi|Xi]

ξd(Xi) = E[ψiYi(d)|Xi] .

The first term in (52) converges in probability to 2E[ψiψ
′
i] by the weak law of large numbers. For the second

term, we have that

E
[ 1

n

∑
1≤j≤n

(ψπ(2j−1)ψ
′
π(2j) + ψπ(2j)ψ

′
π(2j−1))

∣∣∣X(n)
]

=
1

n

∑
1≤i≤2n

Ψ(Xi)Ψ(Xi)
′ − 1

n

∑
1≤j≤n

(Ψ(Xπ(2j−1))−Ψ(Xπ(2j)))(Ψ(Xπ(2j−1))−Ψ(Xπ(2j)))
′

P→ 2E[Ψ(Xi)Ψ(Xi)
′] ,

where the convergence in probability holds because of Assumptions 2.2–2.3 and 4.1(c). It follows from

Assumptions 2.2–2.3 and 4.1(b)–(c) as well as similar arguments to those in the proof of Lemma S.1.6 of Bai

et al. (2021) that∣∣∣ 1
n

∑
1≤j≤n

(ψπ(2j−1)ψ
′
π(2j) + ψπ(2j)ψ

′
π(2j−1))− E

[ 1

n

∑
1≤j≤n

(ψπ(2j−1)ψ
′
π(2j) + ψπ(2j)ψ

′
π(2j−1))

∣∣∣X(n)
]∣∣∣ P→ 0 .

Therefore,
1

n

∑
1≤j≤n

δψ,jδ
′
ψ,j

P→ 2E[Var[ψi|Xi]] .

We now turn to
1

n

∑
1≤j≤n

δψ,jδY,j =
1

n

∑
1≤j≤n

(ψπ(2j−1) − ψπ(2j))(Yπ(2j−1) − Yπ(2j)) .
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Note that

E[ψπ(2j−1)Yπ(2j−1)|X(n)] =
1

2
ξ1(Xπ(2j−1)) +

1

2
ξ0(Xπ(2j−1))

E[ψπ(2j−1)Yπ(2j)|X(n)] =
1

2
Ψ(Xπ(2j−1))(µ1(Xπ(2j)) + µ0(Xπ(2j))) .

It follows from Assumptions 2.1(b)–(c), 2.2–2.3, 4.1(b)–(c) as well as similar arguments to those in the proof

of Lemma S.1.6 of Bai et al. (2021) that

1

n

∑
1≤j≤n

δψ,jδY,j
P→ E[ψi(Yi(1) + Yi(0))]− E[Ψ(Xi)(µ1(Xi) + µ0(Xi))] .

The convergence in probability of β̂pfe
n now follows from Assumption 4.1(a) and the continuous mapping

theorem. (6)–(9) can be established using similar arguments to those in the proof of Theorem 4.1. Finally,

it is straightforward to see Assumption 3.1 is implied by Assumption 4.1.

A.5 Proof of Theorem 5.1

We first show

|α̂hd−pd
n − αhd−pd

n |+ ‖β̂hd−pd
n − βhd−pd

n ‖1 = OP
(
shd−pd
n λhd−pd

n

)
. (53)

Note that

1

n

∑
1≤j≤n

(δY,j − α̂hd−pd
n − δ′ψ,j β̂hd−pd

n )2 + λhd−pd
n ‖Ω̂nβ̂hd−pd

n ‖1

≤ 1

n

∑
1≤j≤n

(δY,j − αhd−pd
n − δ′ψ,jβhd−pd

n )2 + λhd−pd
n ‖Ω̂nβhd−pd

n ‖1 .

Rearranging the terms, we then have

1

n

∑
1≤j≤n

(α̂hd−pd
n − αhd−pd

n + δ′ψ,j(β̂
hd−pd
n − βhd−pd

n ))2 + λhd−pd
n ‖Ω̂nβ̂hd−pd

n ‖1

≤

 2

n

∑
1≤j≤n

δε,j

 (α̂hd−pd
n − αhd−pd

n ) +

 2

n

∑
1≤j≤n

δε,jδ
′
ψ,j

 (β̂hd−pd
n − βhd−pd

n ) + λhd−pd
n ‖Ω̂nβhd−pd

n ‖1 ,

(54)

where αhd−pd
n = αhd−pd

n,1 − αhd−pd
n,0 and

δε,j = (Dπ(2j) −Dπ(2j−1))(Yπ(2j) − Yπ(2j−1) − (ψn,π(2j) − ψn,π(2j−1))β
hd−pd
n )− αhd−pd

n

Next, define

Un = Ω̂−1
n

1

n

∑
1≤j≤n

δε,jδψ,j
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and

En(d) =

‖Un‖∞ ≤ ``1/2n

(√
log(2npn)

n
+ ζn

)
,

∣∣∣∣∣∣ 1n
∑

1≤j≤n

δε,j

∣∣∣∣∣∣ ≤ ``1/2n

(√
log(2npn)

n
+ ζn

) .

Lemma B.4 implies P{En(d)} → 1 for d ∈ {0, 1}.

On the event En(d), we have∣∣∣∣∣∣
 2

n

∑
1≤j≤n

δε,jδ
′
ψ,j

 (β̂hd−pd
n − βhd−pd

n )

∣∣∣∣∣∣
≤

∥∥∥∥∥∥Ω̂−1
n

2

n

∑
1≤j≤n

δε,jδ
′
ψ,j

∥∥∥∥∥∥
∞

‖Ω̂n(β̂hd−pd
n − βhd−pd

n )‖1

≤ 2‖Un‖∞‖Ω̂n(β̂hd−pd
n − βhd−pd

n )‖1

≤ 2``−1/2
n λhd−pd

n ‖Ω̂n(β̂hd−pd
n − βhd−pd

n )‖1 ,

where the last inequality follows the fact that

λhd−pd
n ≥ ``n

(√
log(2npn)

n
+ ζn

)
.

Next, define

δ̂d,n = β̂hd−pd
n − βhd−pd

n

and let Sd,n be the support of βhd−pd
n . Then, we have

2``−1/2
n ‖Ω̂nδ̂d,n‖1 + ‖Ω̂nβhd−pd

n ‖1 − ‖Ω̂nβ̂hd−pd
n ‖1

= 2``−1/2
n ‖(Ω̂nδ̂d,n)Sd,n‖1 + 2``−1/2

n ‖(Ω̂nδ̂d,n)Scd,n‖1 + ‖Ω̂nβhd−pd
n ‖1 − ‖Ω̂nβ̂hd−pd

n ‖1 ,

‖Ω̂nβ̂hd−pd
n ‖1 = ‖(Ω̂nβ̂hd−pd

n )Sd,n‖1 + ‖(Ω̂nβ̂hd−pd
n )Scd,n‖1 = ‖(Ω̂nβ̂hd−pd

n )Sd,n‖1 + ‖(Ω̂nδ̂d,n)Scd,n‖1 ,

and

‖Ω̂nβhd−pd
n ‖1 = ‖(Ω̂nβhd−pd

n )Sd,n‖1 ≤ ‖(Ω̂nβ̂hd−pd
n )Sd,n‖1 + ‖(Ω̂nδ̂hd−pd

d,n )Sd,n‖1 .

Denote δ̆d,n = (α̂hd−pd
n − αhd−pd

n , δ̂′d,n)′, δ̆ψ,j = (1, δ′ψ,j)
′, and S̆d,n = {1, Sd,n + 1}.4 Together with (54), we

have

0 ≤ 1

n

∑
1≤j≤n

(δ̆′ψ,j δ̆d,n)2

≤ λhd−pd
n

[(
1 + 2``−1/2

n

)
‖(Ω̂nδ̂d,n)Sd,n‖1 −

(
1− 2``−1/2

n

)
‖(Ω̂nδ̂d,n)Scd,n‖1

]
+ ``−1/2

n

(
λhd−pd
n

)
|α̂hd−pd
n − αhd−pd

n |

4Suppose Sd,n = {1, 4, 10}, then S̆d,n = {1, 2, 5, 10}.
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≤ λhd−pd
n

[(
1 + 2``−1/2

n

)
c̄‖(δ̆d,n)S̆d,n‖1 −

(
1− 2``−1/2

n

)
c‖(δ̆d,n)S̆cd,n

‖1
]
. (55)

Define

Cn =

{
u ∈ Rpn+1 : ‖uS̆cd,n‖1 ≤

2c̄

c
‖uS̆d,n‖1

}
.

Then, we have δ̆d,n ∈ Cn. It follows from Bickel et al. (2009, Lemma 4.1) and Assumption 5.4 that

inf
u∈Cn

(‖uS̆d,n‖1)−2(shd−pd
n + 1)u′

 1

n

∑
1≤j≤n

δ̆ψ,j δ̆
′
ψ,j

u ≥ 0.25κ2
1 .

Therefore, we have

0.25κ2
1‖(δ̆d,n)S̆d,n‖

2
1 ≤

(
1 + 2``−1/2

n

)
c̄λhd−pd
n (shd−pd

n + 1)‖(δ̆d,n)S̆d,n‖1 ,

which implies

‖(δ̆d,n)S̆d,n‖1 ≤ 4
(

1 + 2``−1/2
n

)
(shd−pd
n + 1)λhd−pd

n c̄/κ2
1 .

We then have

|α̂hd−pd
n − αhd−pd

n |+ ‖β̂hd−pd
n − βhd−pd

n ‖1

= ‖(δ̆d,n)S̆d,n‖1 + ‖(δ̆d,n)S̆cd,n
‖1

≤ (1 + 2c/c)‖(δ̆d,n)S̆d,n‖1 ≤ 4(1 + 2c/c)
(

1 + 2``−1/2
n

)
(shd−pd
n + 1)λhd−pd

n c̄/κ2
1.

Then, (53) holds because P{En(d)} → 1. (9) also follows follows (55) because

1

n

∑
1≤i≤2n

I{Di = d}(α̂hd−pd
n − αhd−pd

n + ψ′n,i(β̂d,n − βd,n))2

≤ λhd−pd
n

(
1 + 2``−1/2

n

)
c̄‖(δ̆d,n)S̆d,n‖1

≤ λhd−pd
n

(
1 + 2``−1/2

n

)
c̄‖(δ̆d,n)‖1

= OP
(
shd−pd
n (λhd−pd

n )2
)

= oP (1) .

Next, we show (6) for β̂hd−pd
n . First note∣∣∣∣∣∣ 1√
2n

∑
1≤i≤2n

(2Di − 1)(m̂d,n(Xi,Wn,i)−md,n(Xi,Wn,i))

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1√
2n

∑
1≤i≤2n

(2Di − 1)ψ′n,i(β̂
hd−pd
n − βhd−pd

n )

∣∣∣∣∣∣
≤

∥∥∥∥∥∥ 1√
2n

∑
1≤i≤n

(2Di − 1)ψn,i

∥∥∥∥∥∥
∞

‖β̂hd−pd
n − βhd−pd

n ‖1 .
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Note that it follows from Assumption 2.2 that conditional on X(n) and W
(n)
n ,

{Dπ(2j−1) −Dπ(2j) : 1 ≤ j ≤ n}

is a sequence of independent Rademacher random variables. Therefore, Hoeffding’s inequality implies

P


∥∥∥∥∥∥ 1√

2n

∑
1≤i≤2n

(2Di − 1)ψn,i

∥∥∥∥∥∥
∞

> t

∣∣∣∣∣X(n),W (n)
n


≤

∑
1≤l≤pn

P


∣∣∣∣∣∣ 1√

2n

∑
1≤j≤n

(ψn,π(2j−1) − ψn,π(2j))(Dπ(2j−1) −Dπ(2j))

∣∣∣∣∣∣ > t

∣∣∣∣∣X(n),W (n)
n


≤

∑
1≤l≤pn

2 exp

(
− t2

1
n

∑
1≤j≤n(ψn,π(2j−1) − ψn,π(2j))2

)
.

Define

ν2
n = max

1≤l≤pn

1

n

∑
1≤i≤2n

ψ2
n,i,l .

We then have

P


∥∥∥∥∥∥ 1√

2n

∑
1≤i≤2n

(2Di − 1)ψn,i

∥∥∥∥∥∥
∞

> νn
√

2 log(pn ∨ n)

∣∣∣∣∣X(n),W (n)
n

 ≤ (pn ∨ n)−1 . (56)

Next, we determine the order of ν2
n. Note

E[ν2
n] ≤ max

1≤l≤pn
2E[ψ2

n,i,l] + 2E

 1

2n

∑
1≤i≤2n

(ψ2
n,i,l − E[ψ2

n,i,l])


. 1 + E

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

eiψ
2
n,i,l

∣∣∣∣∣∣


. 1 + ΞnE

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

eiψn,i,l

∣∣∣∣∣∣


. 1 + ΞnE

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

ei(ψn,i,l − E[ψn,i,l])

∣∣∣∣∣∣
+ max

1≤l≤pn
|E[ψn,i,l]|

. 1 + ΞnE

 sup
f∈Fn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

f(ei, ψn,i,l)

∣∣∣∣∣∣


where {ei : 1 ≤ i ≤ n} is an i.i.d. sequence of Rademacher random variables,

Fn = {f : R×Rpn 7→ R, f(e, ψ) = eψl, 1 ≤ l ≤ pn} ,

and ψl is the lth element of ψ. Note the second inequality follows from Lemma 2.3.1 of van der Vaart and

Wellner (1996), the third inequality follows from Theorem 4.12 of Ledoux and Talagrand (1991) and the
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definition of Ξn, and the last follows from Assumption 5.1. Note also Fn has an envelope F = Ξn and

sup
n≥1

sup
f∈Fn

E[f2] <∞

because of Assumption 5.1. Because the cardinality of Fn is pn, for any ε < 1 we have that

sup
Q:Q is a discrete distribution with finite support

N (ε‖F‖Q,2,F , L2(Q)) ≤ pn
ε
,

where N (ε,F , L2(Q)) is the covering number for class F under the metric L2(Q) using balls of radius ε.

Therefore, Corollary 5.1 of Chernozhukov et al. (2014) implies

E

 sup
f∈Fn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

ei(ψn,i,l − E[ψn,i,l])

∣∣∣∣∣∣
 .

√
log pn
n

+
Ξn log pn

n
= o(Ξ−1

n ) .

Therefore, νn = OP (1). Together with (56), they imply∥∥∥∥∥∥ 1√
2n

∑
1≤i≤2n

(2Di − 1)ψn,i

∥∥∥∥∥∥
∞

= OP

(√
log(pn ∨ n)

)
.

In light of (53) and Assumption 5.3, we have∥∥∥∥∥∥ 1√
2n

∑
1≤i≤2n

(2Di − 1)ψn,i

∥∥∥∥∥∥
∞

‖β̂hd−pd
n − βhd−pd

n ‖1 = OP

(
shd−pd
n log1/2(pn ∨ n)λhd−pd

n

)
= oP (1) .

Next, we turn to the variance σhd−pd,2
n . Let Ỹi(d) = Yi(d)− µd(Xi) for d ∈ {0, 1}. By Theorem 3.1, we

have

σhd−pd,2
n − σna,2

n =
1

2
E
[
Var

[
E[Yi(1) + Yi(0)|Xi,Wn,i]− (m1,n(Xi,Wn,i) +m0,n(Xi,Wn,i))

∣∣∣Xi

]]
− 1

2
E
[
Var

[
E[Yi(1) + Yi(0)|Xi,Wn,i]

∣∣∣Xi

]]
=

1

2
E
[
E[Ỹi(1) + Ỹi(0)|Wn,i, Xi]− ψ̃′n,i(β

hd−pd
1,n + βhd−pd

0,n )
]2

− 1

2
E
[
E[Ỹi(1) + Ỹi(0)|Wn,i, Xi]

]2
= −E

[
(εn,i(1) + εn,i(0))(ψ̃′n,i(β

hd−pd
1,n + βhd−pd

0,n ))
]
− 1

2
E
[
(ψ̃′n,i(β

hd−pd
1,n + βhd−pd

0,n ))2
]

≤ −E
[
(εn,i(1) + εn,i(0))(ψ̃′n,i(β

hd−pd
1,n + βhd−pd

0,n ))
]
.

It suffices to show E
[
(εn,i(1) + εn,i(0))(ψ̃′n,i(β

hd−pd
1,n + βhd−pd

0,n ))
]

= o(1). We have

∣∣∣E [(εn,i(1) + εn,i(0))(ψ̃′n,i(β
hd−pd
1,n + βhd−pd

0,n ))
]∣∣∣ ≤ ∥∥∥E [(εn,i(1) + εn,i(0))ψ̃n,i

]∥∥∥
∞
||βhd−pd

1,n + βhd−pd
0,n ||1

= o(λhd−pd
n shd−pd

n ) = o(1) ,
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where the second last equality is by (18) and (19) and the last equality is by Assumption 5.3(f). This leads

to the desired result that

lim sup
n≥1

(σhd−pd,2
n − σna,2

n ) ≤ 0.

Last, we assume the true specification is approximately sparse as specified in Theorem 5.1. Then, it

suffices to show

E
[
(E[Ỹi(1) + Ỹi(0)|Wn,i, Xi]− ψ̃′n,i(β

hd−pd
1,n + βhd−pd

0,n ))2
]

= o(1).

Note that

E
[
(E[Ỹi(1) + Ỹi(0)|Wn,i, Xi]− ψ̃′n,i(β

hd−pd
1,n + βhd−pd

0,n ))2
]

. E
[
(ψ̃′n,i(β

∗
1,n + β∗1,n − (βhd−pd

1,n + βhd−pd
0,n )))2

]
+ o(1)

. E
[
(ψ̃′n,i(β

∗
1,n − β

hd−pd
1,n ))2

]
+ E

[
(ψ̃′n,i(β

∗
0,n − β

hd−pd
0,n ))2

]
+ o(1)

In addition, we have

Eψ̃n,iψ̃
′
n,i(β

∗
1,n − β

hd−pd
1,n ) = E

{
ψ̃n,i

[
E[Yi(1)|Wn,i, Xi]−Ri −Ψ(Xi)

′β∗1,n − α∗1,n − ψ̃′n,iβ
hd−pd
1,n

]}
= Eψ̃n,i(E[Yi(1)|Wn,i, Xi]− Yi(1))− Eψ̃n,iRi + Eψ̃n,iεn,i(1)

= −Eψ̃n,iRi + Eψ̃n,iεn,i(1).

Therefore, we have

E
[
(ψ̃′n,i(β

∗
1,n − β

hd−pd
1,n ))2

]
≤ {E[(ψ̃n,i(β

∗
1,n − β

hd−pd
1,n ))2]}1/2{ER2

n,i}1/2 + ||β∗1,n − β
hd−pd
1,n ||1

∥∥∥Eψ̃n,iεn,i(1)
∥∥∥
∞

= {E[(ψ̃n,i(β
∗
1,n − β

hd−pd
1,n ))2]}1/2o(1) + o(1) ,

where we use the facts that {ER2
n,i}1/2 = o(1) and

||β∗1,n − β
hd−pd
1,n ||1

∥∥∥Eψ̃n,iεn,i(1)
∥∥∥
∞

= o(shd−pd
n λn) = o(1).

This implies E
(
ψ̃′n,i(β

∗
1,n − β

hd−pd
1,n ))2

]
= o(1). Similarly, we can show E

[
(ψ̃′n,i(β

∗
0,n − β

hd−pd
0,n ))2

]
= o(1),

which implies

E
[
(E[Ỹi(1) + Ỹi(0)|Wn,i, Xi]− ψ̃′n,i(β

hd−pd
1,n + βhd−pd

0,n ))2
]

= o(1).

Last, we note that Assumption 3.1(a) and 3.1(b) follow Assumption 5.1. Assumption 3.1(c) follows

Assumptions 5.1 and 5.2. This concludes the proof.
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A.6 Proof of Theorem 5.2

We first show

|α̂hd
d,n − αhd

d,n|+ ‖β̂hd
d,n − βhd

d,n‖1 = OP
(
shd
n λ

hd
n

)
(57)

To that end, note

1

n

∑
1≤i≤2n

I{Di = d}(Yi(d)− α̂hd
d,n − ψ′n,iβ̂hd

d,n)2 + λhd
d,n‖Ω̂n(d)β̂hd

d,n‖1

≤ 1

n

∑
1≤i≤2n

I{Di = d}(Yi(d)− αhd
d,n − ψ′n,iβhd

d,n)2 + λhd
d,n‖Ω̂n(d)βhd

d,n‖1 .

Rearranging the terms, we then have

1

n

∑
1≤i≤2n

I{Di = d}(α̂hd
d,n − αhd

d,n + ψ′n,i(β̂
hd
d,n − βhd

d,n))2 + λhd
d,n‖Ω̂n(d)β̂hd

d,n‖1

≤

 2

n

∑
1≤i≤2n

I{Di = d}εn,i(d)ψ′n,i

 (β̂hd
d,n − βhd

d,n) +

 2

n

∑
1≤i≤2n

I{Di = d}εn,i(d)

 (α̂hd
d,n − αhd

d,n)

+ λhd
d,n‖Ω̂n(d)βhd

d,n‖1 (58)

Next, define

Un = Ω−1
n (d)

1

n

∑
1≤i≤2n

I{Di = d}(ψn,iεn,i(d)− E[ψn,iεn,i(d)])

and

En(d) =

‖Un‖∞ ≤ 6σ̄

¯
σ

√
log(2npn)

n
,

∣∣∣∣∣∣ 1n
∑
i∈[2n]

I{Di = d}εn,i(d)− E[εn,i(d)]

∣∣∣∣∣∣ ≤
√

log(2npn)

n

 .

Lemma B.6 implies P{En(d)} → 1 for d ∈ {0, 1}.

On the event En(d), we have∣∣∣∣∣∣
 2

n

∑
1≤i≤2n

I{Di = d}εn,i(d)ψ′n,i

 (β̂hd
d,n − βhd

d,n)

∣∣∣∣∣∣
≤

∥∥∥∥∥∥Ω−1
n (d)

2

n

∑
1≤i≤2n

I{Di = d}εn,i(d)ψn,i

∥∥∥∥∥∥
∞

‖Ωn(d)(β̂hd
d,n − βhd

d,n)‖1

≤ 2‖Un‖∞‖Ωn(d)(β̂hd
d,n − βhd

d,n)‖1 +

∥∥∥∥∥∥Ω−1
n (d)

2

n

∑
1≤i≤2n

I{Di = d}E[εn,i(d)ψn,i]

∥∥∥∥∥∥
∞

‖Ωn(d)(β̂hd
d,n − βhd

d,n)‖1

≤ 2‖Un‖∞‖Ωn(d)(β̂hd
d,n − βhd

d,n)‖1 +
∥∥Ω∗,−1

n (d)2E[εn,i(d)ψn,i]
∥∥
∞ ‖Ωn(d)(β̂hd

d,n − βhd
d,n)‖1

≤
(

12σ̄

¯
σ``n

+ dn

)
λhd
d,n‖Ωn(d)(β̂hd

d,n − βhd
d,n)‖1 ,

where the second last inequality is by ω∗n,l(d) ≤ ωn,l(d), dn = o(1), and the last inequality follows from (23)
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and the fact that

λhd
d,n ≥ ``n

√
log(2npn)

n
.

Next, define

δ̂d,n = β̂hd
d,n − βhd

d,n

and let Sd,n be the support of βhd
d,n. Then, we have(

12σ̄

¯
σ``n

+ dn

)
‖Ωn(d)δ̂d,n‖1 + ‖Ω̂n(d)βhd

d,n‖1 − ‖Ω̂n(d)β̂hd
d,n‖1

=

(
12σ̄

¯
σ``n

+ dn

)
‖(Ωn(d)δ̂d,n)Sd,n‖1 +

(
12σ̄

¯
σ``n

+ dn

)
‖(Ωn(d)δ̂d,n)Scd,n‖1 + ‖Ω̂n(d)βhd

d,n‖1 − ‖Ω̂n(d)β̂hd
d,n‖1

and

‖Ω̂n(d)β̂hd
d,n‖1 = ‖(Ω̂n(d)β̂hd

d,n)Sd,n‖1 + ‖(Ω̂n(d)β̂hd
d,n)Scd,n‖1 = ‖(Ω̂n(d)β̂hd

d,n)Sd,n‖1 + ‖(Ω̂n(d)δ̂d,n)Scd,n‖1

‖Ω̂n(d)βhd
d,n‖1 = ‖(Ω̂n(d)βhd

d,n)Sd,n‖1 ≤ ‖(Ω̂n(d)β̂hd
d,n)Sd,n‖1 + ‖(Ω̂n(d)δ̂hd

d,n)Sd,n‖1

Further define δ̆d,n = (α̂hd
d,n − αhd

d,n, δ̂
′
d,n)′ and S̆d,n = {1, Sd,n + 1} as illustrated in the proof of Theorem

5.1 above and recall ψ̆n,i = (1, ψ′n,i)
′. Then, together with (58), we have

0 ≤ 1

n

∑
1≤i≤2n

I{Di = d}(ψ̆′n,iδ̆d,n)2

≤ λhd
d,n

[(
12σ̄

¯
σ``n

+ dn + c̄

)
‖(Ωn(d)δ̂d,n)Sd,n‖1 −

(
c− 12σ̄

¯
σ``n

− dn
)
‖(Ωn(d)δ̂d,n)Scd,n‖1

]
+ (1/`n + dn)|α̂hd

d,n − αhd
d,n|

≤ λhd
d,n

[(
12σ̄

¯
σ``n

+ dn + c̄

)
σ̄‖(δ̂d,n)Sd,n‖1 −

(
c− 12σ̄

¯
σ``n

− dn
)

¯
σ‖(δ̂d,n)Scd,n‖1

]
+ (1/`n + dn)|α̂hd

d,n − αhd
d,n|

≤ λhd
d,n

[(
12σ̄

¯
σ``n

+ dn + c̄

)
σ̄‖(δ̆d,n)S̆d,n‖1 −

(
c− 12σ̄

¯
σ``n

− dn
)

¯
σ‖(δ̆d,n)S̆cd,n

‖1
]
.

Define

Cn =

{
u ∈ Rpn+1 : ‖uS̆cd,n‖1 ≤

2σ̄c̄

¯
σc
‖uS̆d,n‖1

}
.

For sufficiently large n, we have δ̆d,n ∈ Cn. It follows from Bickel et al. (2009) and Assumption 5.8 that

inf
u∈Cn

(‖uS̆d,n‖1)−2(shd
n + 1)u′

 1

n

∑
1≤i≤2n

I{Di = d}ψ̆n,iψ̆′n,i

u ≥ 0.25κ2
1 .

Therefore, we have

0.25κ2
1‖(δ̆d,n)S̆d,n‖

2
1 ≤

(
12σ̄

¯
σ``n

+ dn + c̄

)
λhd
d,n(shd

n + 1)‖(δ̆d,n)Sd,n‖1 ,
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which implies

‖(δ̆d,n)Sd,n‖1 ≤ 4

(
12σ̄

¯
σ``n

+ dn + c̄

)
(shd
n + 1)λhd

d,n/κ
2
1 .

We then have

|α̂hd
d,n − αhd

d,n|+ ‖β̂hd
d,n − βhd

d,n‖1 ≤ ‖(δ̆d,n)S̆d,n‖1 + ‖(δ̆d,n)S̆cd,n
‖1 ≤ 4‖(δ̆d,n)S̆d,n‖1

≤ 16

(
12σ̄

¯
σ``n

+ dn + c̄

)
(shd
n + 1)λhd

d,n/κ
2
1

and
1

n

∑
1≤i≤2n

I{Di = d}(α̂hd
d,n − αhd

d,n + ψ′n,iδ̂d,n)2 ≤ 6

(
12σ̄

¯
σ``n

+ dn + c̄

)
shd
n (λhd

d,n)2/κ2
1 .

(57) follows because P{En(d)} → 1. (9) also follows because

1

n

∑
1≤i≤2n

I{Di = d}(α̂hd
d,n − αhd

d,n + ψ′n,i(β̂d,n − βd,n))2 = OP
(
shd
n (λhd

n )2
)

= oP (1) .

Next, we show (6) for β̂hd
d,n. First note∣∣∣∣∣∣ 1√
2n

∑
1≤i≤2n

(2Di − 1)(m̂d,n(Xi,Wn,i)−md,n(Xi,Wn,i))

∣∣∣∣∣∣∣∣∣∣∣∣ 1√
2n

∑
1≤i≤2n

(2Di − 1)ψ′n,i(β̂
hd
d,n − βhd

d,n)

∣∣∣∣∣∣
≤

∥∥∥∥∥∥ 1√
2n

∑
1≤i≤n

(2Di − 1)ψn,i

∥∥∥∥∥∥
∞

‖β̂hd
d,n − βhd

d,n‖1 .

Next, note that it follows from Assumption 2.2 that conditional on X(n) and W
(n)
n ,

{Dπ(2j−1) −Dπ(2j) : 1 ≤ j ≤ n}

is a sequence of independent Rademacher random variables. Therefore, Hoeffding’s inequality implies

P


∥∥∥∥∥∥ 1√

2n

∑
1≤i≤2n

(2Di − 1)ψn,i

∥∥∥∥∥∥
∞

> t

∣∣∣∣∣X(n),W (n)
n


≤

∑
1≤l≤pn

P


∣∣∣∣∣∣ 1√

2n

∑
1≤j≤n

(ψn,π(2j−1) − ψn,π(2j))(Dπ(2j−1) −Dπ(2j))

∣∣∣∣∣∣ > t

∣∣∣∣∣X(n),W (n)
n


≤

∑
1≤l≤pn

2 exp

(
− t2

1
n

∑
1≤j≤n(ψn,π(2j−1) − ψn,π(2j))2

)
.

Define

ν2
n = max

1≤l≤pn

1

n

∑
1≤i≤2n

ψ2
n,i,l .
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We then have

P


∥∥∥∥∥∥ 1√

2n

∑
1≤i≤2n

(2Di − 1)ψn,i

∥∥∥∥∥∥
∞

> νn
√

2 log(pn ∨ n)

∣∣∣∣∣X(n),W (n)
n

 ≤ (pn ∨ n)−1 . (59)

Next, we determine the order of ν2
n. Note

E[ν2
n] ≤ max

1≤l≤pn
2E[ψ2

n,i,l] + 2E

 1

2n

∑
1≤i≤2n

(ψ2
n,i,l − E[ψ2

n,i,l])


. 1 + E

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

eiψ
2
n,i,l

∣∣∣∣∣∣


. 1 + ΞnE

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

eiψn,i,l

∣∣∣∣∣∣


. 1 + ΞnE

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

ei(ψn,i,l − E[ψn,i,l])

∣∣∣∣∣∣
+ max

1≤l≤pn
|E[ψn,i,l]|

. 1 + ΞnE

 sup
f∈Fn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

f(ei, ψn,i,l)

∣∣∣∣∣∣


where {ei : 1 ≤ i ≤ n} is an i.i.d. sequence of Rademacher random variables,

Fn = {f : R×Rpn 7→ R, f(e, ψ) = eψl, 1 ≤ l ≤ pn} ,

and ψl is the lth element of ψ. Note the second inequality follows from Lemma 2.3.1 of van der Vaart and

Wellner (1996), the third inequality follows from Theorem 4.12 of ? and the definition of Ξn, and the last

follows from Assumption 5.5. Note also Fn has an envelope F = Ξn and

sup
n≥1

sup
f∈Fn

E[f2] <∞

because of Assumption 5.5. Because the cardinality of Fn is pn, for any ε < 1 we have that

sup
Q:Q is a discrete distribution with finite support

N (ε‖F‖Q,2,F , L2(Q)) ≤ pn
ε
,

where N (ε,F , L2(Q)) is the covering number for class F under the metric L2(Q) using balls of radius ε.

Therefore, Corollary 5.1 of Chernozhukov et al. (2014) implies

E

 sup
f∈Fn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

ei(ψn,i,l − E[ψn,i,l])

∣∣∣∣∣∣
 .

√
log pn
n

+
Ξn log pn

n
= o(Ξ−1

n ) .
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Therefore, νn = Op(1). Together with (59), they imply∥∥∥∥∥∥ 1√
2n

∑
1≤i≤2n

(2Di − 1)ψn,i

∥∥∥∥∥∥
∞

= OP

(√
log(pn ∨ n)

)
.

In light of (57) and Assumption 5.7, we have∥∥∥∥∥∥ 1√
2n

∑
1≤i≤2n

(2Di − 1)ψn,i

∥∥∥∥∥∥
∞

‖β̂hd
d,n − βhd

d,n‖1 = OP

(
shd
n ``n log(pn ∨ n)√

n

)
= oP (1) .

Next, note that Assumption 3.1(a) and 3.1(b) follow Assumption 5.5, and Assumption 3.1(c) follows

Assumptions 5.5 and 5.6.

Last, suppose the true specification is approximately sparse as specified in Theorem 5.2. Let Ỹi(d) =

Yi(d)− µd(Xi), ψ̃n,i = ψn,i − E[ψn,i|Xi], and R̃n,i(d) = Rn,i(d)− E[Rn,i(d)|Xi]. Then, we have

E
[
(E[Ỹi(1) + Ỹi(0)|Wn,i, Xi]− ψ̃′n,i(βhd

1,n + βhd
0,n))2

]
= E[(R̃n,i(1) + R̃n,i(0))2] = o(1) .

This concludes the proof.

A.7 Proof of Theorem 5.3

Further denote ∆̃hd
n as the estimator in (12) with ψi replaced by Γn,i. We first show

β̂hd−f
n − βhd−f

n = oP (1) . (60)

Let

∆̂Γ,n =
1

n

∑
1≤j≤n

(Dπ(2j−1) −Dπ(2j))(Γn,π(2j−1) − Γn,π(2j)) ,

∆̂Γ̂,n =
1

n

∑
1≤j≤n

(Dπ(2j−1) −Dπ(2j))(Γ̂n,π(2j−1) − Γ̂n,π(2j)) ,

δΓ,j = (Dπ(2j−1) −Dπ(2j))(Γn,π(2j−1) − Γn,π(2j)) ,

δΓ̂,j = (Dπ(2j−1) −Dπ(2j))(Γ̂n,π(2j−1) − Γ̂n,π(2j)) .

Then, by the proof of Theorem 4.2, we have β̂hd−f
n equals the coefficient estimate using least squares in the

linear regression of δY,j on δΓ̂,j − ∆̂Γ̂,n. Then, for any u ∈ R2 such that ||u||2 = 1, we have∣∣∣∣∣∣∣
 1

n

∑
1≤j≤n

((δΓ̂,j − ∆̂Γ̂,n)′u)2

1/2

−

 1

n

∑
1≤j≤n

((δΓ,j − ∆̂Γ,n)′u)2

1/2
∣∣∣∣∣∣∣

≤

 1

n

∑
1≤j≤n

((δΓ̂,j − δΓ,j)
′u)2 − ((∆̂Γ̂,n − ∆̂Γ,n)′u)2

1/2
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≤

 2

n

∑
1≤i≤2n

∥∥∥Γ̂n,i + (α̂hd
1,n, α̂

hd
0,n)′ − Γn,i − (αhd

1,n, α
hd
0,n)′

∥∥∥2

2

1/2

.
∑

d∈{0,1}

1

2n

∑
1≤i≤2n

(α̂hd
d,n − αhd

d,n + ψ′n,i(β̂
hd
d,n − βhd

d,n))2 = oP (1) ,

where the second inequality is by the fact that

δΓ,j = (Dπ(2j−1) −Dπ(2j))(Γn,π(2j−1) + (αhd
1,n, α

hd
0,n)′ − Γn,π(2j) − (αhd

1,n, α
hd
0,n)′) ,

δΓ̂,j = (Dπ(2j−1) −Dπ(2j))(Γ̂n,π(2j−1) + (α̂hd
1,n, α̂

hd
0,n)′ − Γ̂n,π(2j) − (α̂hd

1,n, α̂
hd
0,n)′) ,

and the last equality is by the proof of Theorem 5.2. This implies

1

n

∑
1≤j≤n

(δΓ̂,j − ∆̂Γ̂,n)(δΓ̂,j − ∆̂Γ̂,n)′ − 2E[Var[Γn,i|Xi]]

=
1

n

∑
1≤j≤n

(δΓ̂,j − ∆̂Γ̂,n)(δΓ̂,j − ∆̂Γ̂,n)′ − 1

n

∑
1≤j≤n

(δΓ,j − ∆̂Γ,n)(δΓ,j − ∆̂Γ,n)′

+
1

n

∑
1≤j≤n

(δΓ,j − ∆̂Γ,n)(δΓ,j − ∆̂Γ,n)′ − 2E[Var[Γn,i|Xi]] = oP (1) ,

where the last equality holds due to the same argument as used in the proof of Theorem 4.2. Similarly, we

can show that

1

n

∑
1≤j≤n

δY,j(δΓ̂,j − ∆̂Γ̂,n)− E[Cov[Γn,i, Yi(1) + Yi(0)|Xi]] = oP (1) ,

which leads to (60).

Next, we show (6). We have

1√
2n

∑
1≤i≤2n

(2Di − 1)(m̂d,n(Xi,Wn,i)−md,n(Xi,Wn,i))

=
1√
2n

∑
1≤i≤2n

(2Di − 1)(Γ̂n,i − Γn,i)
′β̂hd−f
n +

1√
2n

∑
1≤i≤2n

(2Di − 1)Γ′n,i(β̂
hd−f
n − βhd−f

n )

=
(

1√
2n

∑
1≤i≤2n(2Di − 1)ψ′n,i(β̂

hd
1,n − βhd

1,n), 1√
2n

∑
1≤i≤2n(2Di − 1)ψ′n,i(β̂

hd
0,n − βhd

0,n)
)
β̂hd−f
n

+
(

1√
2n

∑
1≤i≤2n(2Di − 1)ψ′n,iβ

hd
1,n,

1√
2n

∑
1≤i≤2n(2Di − 1)ψ′n,iβ

hd
0,n

)
(β̂hd−f

1,n − βhd−f
1,n )

= oP (1) ,

where the last equality holds by (60) and the facts that(
1√
2n

∑
1≤i≤2n(2Di − 1)ψ′n,i(β̂

hd
1,n − βhd

1,n), 1√
2n

∑
1≤i≤2n(2Di − 1)ψ′n,i(β̂

hd
0,n − βhd

0,n)
)

= oP (1)

as shown in Theorem 5.2 and(
1√
2n

∑
1≤i≤2n(2Di − 1)ψ′n,iβ

hd
1,n,

1√
2n

∑
1≤i≤2n(2Di − 1)ψ′n,iβ

hd
0,n

)
= OP (1) .
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For (9), we note that

1

2n

∑
1≤i≤2n

(m̂d,n(Xi,Wn,i)−md,n(Xi,Wn,i))
2

.
1

2n

∑
1≤i≤2n

((Γ̂n,i − Γn,i)
′β̂hd−f
n )2 +

1

2n

∑
1≤i≤2n

(Γ′n,i(β̂
hd−f
n − βhd−f

n ))2

.
1

2n

∑
1≤i≤2n

((ψ′n,i(β
hd
1,n − β̂hd

1,n))2 + (ψ′n,i(β
hd
0,n − β̂hd

0,n))2)||β̂hd−f
n ||22

+
1

2n

∑
1≤i≤2n

[(ψ′n,iβ
hd
1,n)2 + (ψ′n,iβ

hd
0,n)2]||β̂hd−f

n − βhd−f
n ||22

.
∑
d=0,1

1

2n

∑
1≤i≤2n

[
(αhd
d,n − α̂hd

d,n + ψ′n,i(β
hd
d,n − β̂hd

d,n))2 + (αhd
d,n − α̂hd

d,n)2
]
||β̂hd−f

n ||22 + oP (1)

= oP (1) .

Assumption 3.1 can be verified in the same manner as we did in the proof of Theorem 5.2.

Last, we compare σna,2
n , σhd,2

n , σhd−f,2
n . Recall σ2

2(Q) and σ2
3(Q) defined in Theorem 3.1. As we have

already verified (6) for m̂d,n(Xi,Wn,i) = Γ̂n,iβ̂
hd−f
n and md,n(Xi,Wn,i) = Γn,iβ

hd−f
n , we have, for b ∈

{na,hd, (pfe,hd)}, that

σb,2
n − σ2

2(Q)− σ2
3(Q) =

1

2
E
[
Var[E[Yi(1) + Yi(0)|Xi,Wn,i]− Γ′n,iγ

b|Xi]
]

with

γunadj = (0, 0)′ , γhd = (1, 1)′ , and γhd−f = βhd−f
n .

In addition, we note that

1

2
E
[
Var[E[Yi(1) + Yi(0)|Xi,Wn,i]− Γ′n,iγ|Xi]

]
is minimized at γ = βhd−f

n , which leads to the desired result.

B Auxiliary Lemmas

Lemma B.1. Suppose φn, n ≥ 1 is a sequence of random variables satisfying

lim
λ→∞

lim sup
n→∞

E[|φn|I{|φn| > λ}] = 0 . (61)

Suppose X is another random variable defined on the same probability space with φn, n ≥ 1. Then,

lim
γ→∞

lim sup
n→∞

E[E[|φn||X]I{E[|φn||X] > γ}] = 0 . (62)

50



Proof. Fix ε > 0. We will show there exists γ > 0 so that

lim sup
n→∞

E[E[|φn||X]I{E[|φn||X] > γ}] < ε . (63)

First note the event {E[|φn||X] > γ} is measurable with respect to the σ-algebra generated by X, and

therefore

E[E[|φn||X]I{E[|φn||X] > γ}] = E[|φn|I{E[|φn||X] > γ}] . (64)

Next, by Theorem 10.3.5 of Dudley (1989), (61) implies that there exists a δ > 0 such that for any sequence

of events An such that lim supn→∞ P{An} < δ, we have

lim sup
n→∞

E[|φn|I{An}] < ε . (65)

In light of the previous result, note

P{E[|φn||X] > γ} ≤ E[E[|φn||X]]

γ
=
E[|φn|]
γ

By Theorem 10.3.5 of Dudley (1989) again, (61) implies lim supn→∞E[|φn|] < ∞, so by choosing γ large

enough, we can make sure

lim sup
n→∞

P{E[|φn||X] > γ} < δ for all n .

(63) then follows from (64)–(65).

Lemma B.2. Suppose Assumptions 2.1–2.3 and 3.1 hold. Then,

s2
n

nE[Var[φ1,n,i|Xi]]

P→ 1 .

Proof. To begin, note it follows from Assumption 2.2 and Qn = Q2n that

1

n

∑
1≤i≤2n

Di Var[φ1,n,i|Xi] =
1

2n

∑
1≤i≤2n

Var[φ1,n,i|Xi]

+
1

2n

∑
1≤i≤2n:Di=1

Var[φ1,n,i|Xi]−
1

2n

∑
1≤i≤2n:Di=0

Var[φ1,n,i|Xi] . (66)

Next,

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n:Di=1

Var[φ1,n,i|Xi]−
1

2n

∑
1≤i≤2n:Di=0

Var[φ1,n,i|Xi]

∣∣∣∣∣∣
≤ 1

2n

∑
1≤j≤n

|Var[φ1,n,π(2j−1)|Xπ(2j−1)]−Var[φ1,n,π(2j)|Xπ(2j)]| . (67)

In what follows, we will show

1

n

∑
1≤j≤n

|Cov[Yπ(2j−1)(1),m1,n(Xπ(2j−1),Wπ(2j−1))|Xπ(2j−1)]]
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− Cov[Yπ(2j)(1),m1,n(Xπ(2j),Wπ(2j))|Xπ(2j)]]|
P→ 0 .

To that end, first note from Assumptions 2.3 and 3.1(c) that

1

n

∑
1≤j≤n

|E[Yπ(2j−1)(1)m1,n(Xπ(2j−1),Wπ(2j−1))|Xπ(2j−1)]− E[Yπ(2j)(1)m1,n(Xπ(2j),Wπ(2j))|Xπ(2j)]|

.
1

n

∑
1≤j≤n

|Xπ(2j−1) −Xπ(2j)|
P→ 0 .

Next, note

1

n

∑
1≤j≤n

|E[Yπ(2j−1)(1)|Xπ(2j−1)]E[m1,n(Xπ(2j−1),Wπ(2j−1))|Xπ(2j−1)]

− E[Yπ(2j)(1)|Xπ(2j)]E[m1,n(Xπ(2j),Wπ(2j))|Xπ(2j)]|

≤ 1

n

∑
1≤j≤n

|E[Yπ(2j−1)(1)|Xπ(2j−1)]||E[m1,n(Xπ(2j−1),Wπ(2j−1))|Xπ(2j−1)]− E[m1,n(Xπ(2j),Wπ(2j))|Xπ(2j)]|

+
1

n

∑
1≤j≤n

|E[Yπ(2j−1)(1)|Xπ(2j−1)]− E[Yπ(2j)(1)|Xπ(2j)]||E[m1,n(Xπ(2j),Wπ(2j))|Xπ(2j)]|

≤

 1

n

∑
1≤j≤n

|E[Yπ(2j−1)(1)|Xπ(2j−1)]|2
1/2

×

 1

n

∑
1≤j≤n

|E[m1,n(Xπ(2j−1),Wπ(2j−1))|Xπ(2j−1)]− E[m1,n(Xπ(2j),Wπ(2j))|Xπ(2j)]|2
1/2

+

 1

n

∑
1≤j≤n

|E[m1,n(Xπ(2j),Wπ(2j))|Xπ(2j)]|2
1/2

×

 1

n

∑
1≤j≤n

|E[Yπ(2j−1)(1)|Xπ(2j−1)]− E[Yπ(2j)(1)|Xπ(2j)]|2
1/2

.

 1

n

∑
1≤i≤2n

|E[Yi(1)|Xi]|2
1/2 1

n

∑
1≤j≤n

|Xπ(2j−1) −Xπ(2j)|2
1/2

+

 1

n

∑
1≤i≤2n

|E[m1,n(Xi,Wi)|Xi]|2
1/2 1

n

∑
1≤j≤n

|Xπ(2j−1) −Xπ(2j)|2
1/2

P→ 0 ,

where the first inequality follows from the triangle inequality, the second follows from the Cauchy-Schwarz

inequality, the last follows from Assumptions 2.1(c) and 3.1(c). To see the convergence holds, first note

because

E[|E[Yi(1)|Xi]|2] ≤ E[E[Y 2
i (1)|Xi]] = E[Y 2

i (1)] <∞ ,

the weak law of large numbers implies

1

n

∑
1≤i≤2n

|E[Yi(1)|Xi]|2
P→ 2E[|E[Yi(1)|Xi]|2] <∞ .
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On the other hand,

1

2n

∑
1≤i≤2n

|E[m1,n(Xi,Wi)|Xi]|2 ≤
1

2n

∑
1≤i≤2n

E[m2
1,n(Xi,Wi)|Xi] .

Assumption 3.1(b) and Lemma B.1 imply

lim
λ→∞

lim sup
n→∞

E[E[m2
1,n(Xi,Wi)|Xi]I{E[m2

1,n(Xi,Wi)|Xi] > λ}] = 0 .

Therefore, Lemma 11.4.2 of Lehmann and Romano (2005) implies

1

2n

∑
1≤i≤2n

E[m2
1,n(Xi,Wi)|Xi]− E[E[m2

1,n(Xi,Wi)|Xi]]
P→ 0 .

Finally, note E[E[m2
1,n(Xi,Wi)|Xi]] = E[m2

1,n(Xi,Wi)] is bounded for n ≥ 1 by Assumption 3.1(b), so

1

n

∑
1≤i≤2n

|E[m1,n(Xi,Wi)|Xi]|2 = OP (1) .

The desired convergence therefore follows.

Similar arguments applied termwise imply the right-hand side of (67) is oP (1). (66)–(67) then imply

s2
n

n
− 1

2n

∑
1≤i≤2n

Var[φ1,n,i|Xi]→ 0 . (68)

Next, we argue
1

2n

∑
1≤i≤2n

Var[φ1,n,i|Xi]− E[Var[φ1,n,i|Xi]]→ 0 . (69)

To establish (69), we verify the uniform integrability condition in Lemma 11.4.2 of Lehmann and Romano

(2005). To that end, we will repeatedly use the inequality∣∣∣∣∣∣
∑

1≤j≤k

aj

∣∣∣∣∣∣ I

∣∣∣∣∣∣
∑

1≤j≤k

aj

∣∣∣∣∣∣ > λ

 ≤ ∑
1≤j≤k

k|aj |I
{
|aj | >

λ

k

}
(70)

|ab|I{|ab| > λ} ≤ |a|2I{|a| >
√
λ}+ |b|2I{|b| >

√
λ} . (71)

Note

E[|Var[φ1,n,i|Xi]− E[Var[φ1,n,i|Xi]]|I{|Var[φ1,n,i|Xi]− E[Var[φ1,n,i|Xi]]| > λ}]

. E

[
|Var[φ1,n,i|Xi]|I

{
|Var[φ1,n,i|Xi]| >

λ

2

}]
+ E[Var[φ1,n,i|Xi]]I

{
E[Var[φ1,n,i|Xi]] >

λ

2

}
≤ E

[
E[φ2

1,n,i|Xi]I

{
E[φ2

1,n,i|Xi] >
λ

2

}]
+ E[φ2

1,n,i]I

{
E[φ2

1,n,i] >
λ

2

}
,

where in the second inequality we use the fact that the variance of a random variable is bounded by its
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second moment. Note Assumption 3.1 implies E[φ2
1,n,i] is bounded for n ≥ 1, and therefore

lim
λ→∞

lim sup
n→∞

E[φ2
1,n,i]I

{
E[φ2

1,n,i] >
λ

2

}
= 0 .

On the other hand

E

[
E[φ2

1,n,i|Xi]I

{
E[φ2

1,n,i|Xi] >
λ

2

}]
(72)

. E

[
E[Y 2

i (1)|Xi]I

{
E[Y 2

i (1)|Xi] >
λ

12

}]
+ E

[
E[m2

1,n(Xi,Wi)|Xi]I

{
E[m2

1,n(Xi,Wi)|Xi] >
λ

3

}]
+ E

[
E[m2

0,n(Xi,Wi)|Xi]I

{
E[m2

0,n(Xi,Wi)|Xi] >
λ

3

}]
+ E

[
|E[Yi(1)m1,n(Xi,Wi)|Xi]|I

{
|E[Yi(1)m1,n(Xi,Wi)|Xi]| >

λ

12

}]
+ E

[
|E[Yi(1)m0,n(Xi,Wi)|Xi]|I

{
|E[Yi(1)m0,n(Xi,Wi)|Xi]| >

λ

12

}]
+ E

[
|E[m1,n(Xi,Wi)m0,n(Xi,Wi)|Xi]|I

{
|E[m1,n(Xi,Wi)m0,n(Xi,Wi)|Xi]| >

λ

6

}]
.

It follows from Assumptions 2.1(b) and 3.1(b) together with Lemma B.1 that

lim
λ→∞

lim sup
n→∞

E

[
E[Y 2

i (1)|Xi]I

{
E[Y 2

i (1)|Xi] >
λ

12

}]
= 0

lim
λ→∞

lim sup
n→∞

E

[
E[m2

1,n(Xi,Wi)|Xi]I

{
E[m2

1,n(Xi,Wi)|Xi] >
λ

3

}]
= 0

lim
λ→∞

lim sup
n→∞

E

[
E[m2

0,n(Xi,Wi)|Xi]I

{
E[m2

0,n(Xi,Wi)|Xi] >
λ

3

}]
= 0 .

For the last term in (72), note

E

[
|E[m1,n(Xi,Wi)m0,n(Xi,Wi)|Xi]|I

{
|E[m1,n(Xi,Wi)m0,n(Xi,Wi)|Xi]| >

λ

6

}]
≤ E

[
E[|m1,n(Xi,Wi)m0,n(Xi,Wi)||Xi]I

{
E[|m1,n(Xi,Wi)m0,n(Xi,Wi)||Xi] >

λ

6

}]
.

Meanwhile,

E [E[|m1,n(Xi,Wi)m0,n(Xi,Wi)|I {|m1,n(Xi,Wi)m0,n(Xi,Wi)| > λ}]

≤ E[m2
1,n(Xi,Wi)I{|m1,n(Xi,Wi)| >

√
λ}] + E[m2

0,n(Xi,Wi)I{|m0,n(Xi,Wi)| >
√
λ}] .

It then follows from the previous two inqualities, Assumption 3.1(b), and Lemma B.1 that

lim
λ→∞

lim sup
n→∞

E

[
|E[m1,n(Xi,Wi)m0,n(Xi,Wi)|Xi]|I

{
|E[m1,n(Xi,Wi)m0,n(Xi,Wi)|Xi]| >

λ

6

}]
= 0 .
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Similar arguments establish

lim
λ→∞

lim sup
n→∞

E

[
|E[Yi(1)m1,n(Xi,Wi)|Xi]|I

{
|E[Yi(1)m1,n(Xi,Wi)|Xi]| >

λ

12

}]
= 0

lim
λ→∞

lim sup
n→∞

E

[
|E[Yi(1)m0,n(Xi,Wi)|Xi]|I

{
|E[Yi(1)m0,n(Xi,Wi)|Xi]| >

λ

12

}]
= 0 .

Therefore, (69) follows. The conclusion then follows from (68)–(69) and Assumption 3.1(a).

Lemma B.3. Suppose Assumptions 2.1–2.3 and 3.1 hold. Then,

lim
γ→∞

lim sup
n→∞

E[|φ1,n,i − E[φ1,n,i|Xi]|2I{|φ1,n,i − E[φ1,n,i|Xi]|2 > γ}] = 0 .

Proof. Note

E[|φ1,n,i − E[φ1,n,i|Xi]|2I{|φ1,n,i − E[φ1,n,i|Xi]|2 > γ}]

. E
[
(φ2

1,n,i + E[φ1,n,i|Xi]
2)I
{
φ2

1,n,i + E[φ1,n,i|Xi]
2 >

γ

2

}]
. E

[
φ2

1,n,iI
{
φ2

1,n,i >
γ

4

}]
+ E

[
E[φ1,n,i|Xi]

2I
{
E[φ1,n,i|Xi]

2 >
γ

4

}]
.

where the first inequality follows from (a + b)2 ≤ 2(a2 + b2) and the second inequality follows from (70).

Next, note

E
[
E[φ1,n,i|Xi]

2I
{
E[φ1,n,i|Xi]

2 >
γ

4

}]
. E

[
E[Yi(1)|Xi]

2I
{
E[Yi(1)|Xi]

2 >
γ

24

}]
+ E

[
E[m1,n(Xi,Wi)|Xi]

2I
{
E[m1,n(Xi,Wi)|Xi]

2 >
γ

6

}]
+ E

[
E[m0,n(Xi,Wi)|Xi]

2I
{
E[m0,n(Xi,Wi)|Xi]

2 >
γ

6

}]
+ E

[
|E[Yi(1)|Xi]E[m1,n(Xi,Wi)|Xi]|I

{
|E[Yi(1)|Xi]E[m1,n(Xi,Wi)|Xi]| >

γ

24

}]
+ E

[
|E[Yi(1)|Xi]E[m0,n(Xi,Wi)|Xi]|I

{
|E[Yi(1)|Xi]E[m0,n(Xi,Wi)|Xi]| >

γ

24

}]
+ E

[
|E[m1,n(Xi,Wi)|Xi]E[m0,n(Xi,Wi)|Xi]|I

{
|E[m1,n(Xi,Wi)|Xi]E[m0,n(Xi,Wi)|Xi]| >

γ

12

}]
. E

[
E[Y 2

i (1)|Xi]I
{
E[Y 2

i (1)|Xi] >
γ

24

}]
+ E

[
E[m2

1,n(Xi,Wi)|Xi]I
{
E[m2

1,n(Xi,Wi)|Xi] >
γ

6

}]
+ E

[
E[m2

0,n(Xi,Wi)|Xi]I
{
E[m2

0,n(Xi,Wi)|Xi] >
γ

6

}]
+ E

[
|E[Yi(1)|Xi]|I

{
|E[Yi(1)|Xi]| >

√
γ

24

}]
+ E

[
|E[m1,n(Xi,Wi)|Xi]|I

{
|E[m1,n(Xi,Wi)|Xi]| >

√
γ

24

}]
+ E

[
|E[m0,n(Xi,Wi)|Xi]|I

{
|E[m0,n(Xi,Wi)|Xi]| >

√
γ

24

}]
+ E

[
|E[m1,n(Xi,Wi)|Xi]|I

{
|E[m1,n(Xi,Wi)|Xi]| >

√
γ

12

}]
+ E

[
|E[m0,n(Xi,Wi)|Xi]|I

{
|E[m0,n(Xi,Wi)|Xi]| >

√
γ

12

}]
≤ E

[
E[Y 2

i (1)|Xi]I
{
E[Y 2

i (1)|Xi] >
γ

24

}]
+ E

[
E[m2

1,n(Xi,Wi)|Xi]I
{
E[m2

1,n(Xi,Wi)|Xi] >
γ

6

}]
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+ E
[
E[m2

0,n(Xi,Wi)|Xi]I
{
E[m2

0,n(Xi,Wi)|Xi] >
γ

6

}]
+ E

[
E[Y 2

i (1)|Xi]I
{
E[Y 2

i (1)|Xi] >
γ

24

}]
+ E

[
E[m2

1,n(Xi,Wi)|Xi]I
{
E[m2

1,n(Xi,Wi)|Xi] >
γ

24

}]
+ E

[
E[m2

0,n(Xi,Wi)|Xi]I

{
E[m2

0,n(Xi,Wi)|Xi] >

√
γ

24

}]
+ E

[
E[m2

1,n(Xi,Wi)|Xi]I

{
E[m2

1,n(Xi,Wi)|Xi] >

√
γ

12

}]
+ E

[
E[m2

0,n(Xi,Wi)|Xi]I

{
E[m2

0,n(Xi,Wi)|Xi] >

√
γ

12

}]
,

where the first inequality follows from (70), the second one follows from the conditional Jensen’s inequality

and (71), and the third one follows again from the conditional Jensen’s inequality. It then follows from

Lemma B.1 together with Assumptions 2.1(b) and 3.1(b) that

lim
γ→∞

lim sup
n→∞

E
[
E[φ1,n,i|Xi]

2I
{
E[φ1,n,i|Xi]

2 >
γ

4

}]
= 0 .

Similar arguments lead to

lim
γ→∞

lim sup
n→∞

E
[
φ2

1,n,iI
{
φ2

1,n,i >
γ

4

}]
= 0 .

The conclusion then follows.

Lemma B.4. Suppose Assumptions in Theorem 5.1 hold. Then,∥∥∥∥∥∥ 1

n

∑
1≤j≤n

δε,j

∥∥∥∥∥∥
∞

= OP

(√
log(2npn)

n
+ ζn

)
and

∥∥∥∥∥∥Ω−1
n

1

n

∑
1≤j≤n

δε,jδψ,j

∥∥∥∥∥∥
∞

= OP

(√
log(2npn)

n
+ ζn

)
.

Proof. Note ωn,l ≥
¯
σ > 0. It suffices to bound 1

n

∑
1≤j≤n δε,jδψ,j . We have

δε,j = δY,j − δ′ψ,jβhd−pd
n − αhd−pd

n

= (Dπ(2j−1) −Dπ(2j))((Yπ(2j−1) − Yπ(2j))− (ψn,π(2j−1) − ψn,π(2j))
′βhd−pd
n )− αhd−pd

n

= (Dπ(2j−1) −Dπ(2j))((Yπ(2j−1) − Yπ(2j))− (ψ̃n,π(2j−1) − ψ̃n,π(2j))
′βhd−pd
n )− αhd−pd

n

− (Dπ(2j−1) −Dπ(2j))(Ψ(Xπ(2j−1))−Ψ(Xπ(2j)))
′βhd−pd
n − αhd−pd

n

= (Dπ(2j−1) −Dπ(2j))(εn,π(2j)(Dπ(2j−1))− εn,π(2j−1)(Dπ(2j)))

− (Dπ(2j−1) −Dπ(2j))(Ψ(Xπ(2j−1))−Ψ(Xπ(2j)))
′βhd−pd
n

+ (Dπ(2j−1) −Dπ(2j))(ψ̃n,π(2j−1) + ψ̃n,π(2j))
′

(
βhd−pd
Dπ(2j−1),n

− βhd−pd
Dπ(2j),n

2

)
+ (Dπ(2j−1) −Dπ(2j))(α

hd−pd
Dπ(2j−1),n

− αhd−pd
Dπ(2j),n

)− αhd−pd
n

= (Dπ(2j−1) −Dπ(2j))(εn,π(2j−1)(Dπ(2j−1))− εn,π(2j)(Dπ(2j)))

− (Dπ(2j−1) −Dπ(2j))(Ψ(Xπ(2j−1))−Ψ(Xπ(2j)))
′βhd−pd
n

+ (Dπ(2j−1) −Dπ(2j))(ψ̃n,π(2j−1) + ψ̃n,π(2j))
′

(
βhd−pd
Dπ(2j−1),n

− βhd−pd
Dπ(2j),n

2

)
, (73)
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where we use the fact that

(Dπ(2j−1) −Dπ(2j))(α
hd−pd
Dπ(2j−1),n

− αhd−pd
Dπ(2j),n

) = αhd−pd
1,n − αhd−pd

0,n = αhd−pd
n .

To see the first result in Lemma B.4, we note that that

1

n

∑
j∈[n]

(Dπ(2j−1) −Dπ(2j))(εn,π(2j−1)(Dπ(2j−1))− εn,π(2j)(Dπ(2j)))

=
1

2n

∑
i∈[2n]

I(Di = 1)εn,i(1)− 1

2n

∑
i∈[2n]

I(Di = 0)εn,i(0)

=
1

2n

∑
i∈[2n]

I(Di = 1)(εn,i(1)− E(εn,i(1)|Xi))−
1

2n

∑
i∈[2n]

I(Di = 0)(εn,i(0)− E(εn,i(0)|Xi))

+
1

2n

∑
i∈[2n]

I(Di = 1)E(εn,i(1)|Xi)− E(εn,i(1)) +
1

2n

∑
i∈[2n]

I(Di = 0)E(εn,i(0)|Xi)− E(εn,i(0))

+ (E(εn,i(1))− E(εn,i(0))).

Following the same arguments used in the proof of En,1(d) and En,2(d) below, we can show that

1

2n

∑
i∈[2n]

I(Di = 1)(εn,i(1)− E(εn,i(1)|Xi))−
1

2n

∑
i∈[2n]

I(Di = 0)(εn,i(0)− E(εn,i(0)|Xi)) = OP

(
1√
n

)
1

2n

∑
i∈[2n]

I(Di = 1)E(εn,i(1)|Xi)− E(εn,i(1)) +
1

2n

∑
i∈[2n]

I(Di = 0)E(εn,i(0)|Xi)− E(εn,i(0)) = OP

(
1√
n

)
.

Then, Assumption 5.1 implies

1

n

∑
j∈[n]

(Dπ(2j−1) −Dπ(2j))(εn,π(2j−1)(Dπ(2j−1))− εn,π(2j)(Dπ(2j))) = OP

(√
log(2npn)

n

)
.

In addition, by Lemma B.5, we have∣∣∣∣∣∣ 1n
∑

1≤j≤n

(Dπ(2j) −Dπ(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n

∣∣∣∣∣∣ = OP (ζn) ,

∣∣∣∣∣∣ 1n
∑

1≤j≤n

(Dπ(2j) −Dπ(2j−1))(ψ̃n,π(2j) + ψ̃n,π(2j−1))
′

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∣∣∣∣∣∣ = OP

(
1√
n

)
,

which leads to the first result in Lemma B.4.

In addition, (73) implies

1

n

∑
1≤j≤n

δε,jδψ,j

=
1

n

∑
1≤j≤n

(ψn,π(2j) − ψn,π(2j−1))(εn,π(2j)(Dπ(2j))− εn,π(2j−1)(Dπ(2j−1)))
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− 1

n

∑
1≤j≤n

(ψn,π(2j) − ψn,π(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n

+
1

n

∑
1≤j≤n

(ψn,π(2j) − ψn,π(2j−1))(ψ̃n,π(2j) + ψ̃n,π(2j−1))
′

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)
.

Lemma B.5 below shows∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψn,π(2j) − ψn,π(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n

∥∥∥∥∥∥
∞

= oP

(√
log(2npn)

n
+ ζn

)

and∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψn,π(2j) − ψn,π(2j−1))(ψ̃n,π(2j) + ψ̃n,π(2j−1))
′

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∥∥∥∥∥∥
∞

= OP

(√
log(2npn)

n
+ ζn

)
.

It remains to bound 1
n

∑
1≤j≤n(ψn,π(2j) − ψn,π(2j−1))(εn,π(2j)(Dπ(2j))− εn,π(2j−1)(Dπ(2j−1))). We have∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψn,π(2j) − ψn,π(2j−1))(εn,π(2j)(Dπ(2j))− εn,π(2j−1)(Dπ(2j−1)))

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψ̃n,π(2j) − ψ̃n,π(2j−1))(εn,π(2j)(Dπ(2j))− εn,π(2j−1)(Dπ(2j−1)))

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))(εn,π(2j)(Dπ(2j))− εn,π(2j−1)(Dπ(2j−1)))

∥∥∥∥∥∥
∞

≡ I + II.

Let p = q/(q − 1) < 2. For II, we have

II .
1

n

∑
1≤j≤n

||Xπ(2j) −Xπ(2j−1)||2|εn,π(2j)(Dπ(2j))− εn,π(2j−1)(Dπ(2j−1))|

≤

 1

n

∑
1≤j≤n

||Xπ(2j) −Xπ(2j−1)||p2

1/p 1

n

∑
1≤j≤n

|εn,π(2j)(Dπ(2j))− εn,π(2j−1)(Dπ(2j−1))|q
1/q

.

 1

n

∑
1≤j≤n

||Xπ(2j) −Xπ(2j−1)||p2

1/p 1

n

∑
1≤i≤2n

(|εn,i(1)|q + |εn,i(0)|q)

1/q

= OP (ζn).

For I, we have ∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψ̃n,π(2j) − ψ̃n,π(2j−1))(εn,π(2j)(Dπ(2j))− εn,π(2j−1)(Dπ(2j−1)))

∥∥∥∥∥∥
∞
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≤
∑
d=0,1

∥∥∥∥∥∥ 1

n

∑
1≤i≤2n

I(Di = d)ψ̃n,iεn,i(d)

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

[
ψ̃n,π(2j)εn,π(2j−1)(Dπ(2j−1)) + ψ̃n,π(2j−1)εn,π(2j)(Dπ(2j))

]∥∥∥∥∥∥
∞

≤
∑
d=0,1

∥∥∥∥∥∥ 1

n

∑
1≤i≤2n

I(Di = d)ψ̃n,iεn,i(d)

∥∥∥∥∥∥
∞

+OP

(√
log(2npn)

n

)
,

where the last inequality is by Lemma B.5. To bound the first term on the RHS of the above display, we

further define

En,0(d) =

(
1

2n

∑
1≤i≤2nE[ε4n,i(d)|Xi] ≤ c0 <∞ ,

min1≤l≤pn
1
n

∑
1≤i≤2n I{Di = d}Var[ψ̃n,i,lεn,i(d)|Xi] ≥

¯
σ2 > 0 ,

)

En,1(d) =


∥∥∥∥∥∥ 1

n

∑
1≤i≤2n

I{Di = d}(ψ̃n,iεn,i(d)− E[ψ̃n,iεn,i(d)|Xi])

∥∥∥∥∥∥
∞

≤ C
√

log(2npn)/n

 ,

En,2(d) =


∥∥∥∥∥∥ 1

n

∑
1≤i≤2n

I{Di = d}(E[ψ̃n,iεn,i(d)|Xi]− E[ψ̃n,iεn,i(d)])

∥∥∥∥∥∥
∞

≤ C
√

log(2npn)/n

 ,

En,3(d) =

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

(E[ψ̃2
n,i,lε

2
n,i(d)|Xi]− E[ψ̃2

n,i,lε
2
n,i(d)])

∣∣∣∣∣∣
1/2

≤ C

 ,

and

En,4(d) =

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

(2I{Di = d} − 1)(E[ε2n,i(d)ψ̃2
n,i,l|Xi]− E[ε2n,i(d)ψ̃2

n,i,l])

∣∣∣∣∣∣
1/2

≤ C

 .

We aim to show that P{En,1(d)} → 1 and P{En,2(d)} → 1 for some sufficiently large constant C, which

implies

P


∥∥∥∥∥∥ 1

n

∑
1≤i≤2n

I(Di = d)ψ̃n,iεn,i(d)

∥∥∥∥∥∥
∞

≥ C

(√
log(2npn)

n
+ ζn

)
≤ P


∥∥∥∥∥∥ 1

n

∑
1≤i≤2n

I(Di = d)(ψ̃n,iεn,i(d)− Eψ̃n,iεn,i(d))

∥∥∥∥∥∥
∞

≥ 0.5C

(√
log(2npn)

n
+ ζn

)
≤ P{Ecn,1(d)}+ P{Ecn,2(d)} → 0 ,
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where the first inequality is by (23).

First, we show P{En,3(d)} → 1. Let

tn = C

√
log(npn)Ξ2

n

n

for some sufficiently large constant C and {ei}1≤i≤2n be a sequence of i.i.d. Rademacher random variables

independent of everything else. Then, we have

(
1−

4 max1≤l≤pn Var[E[ψ̃2
n,i,lε

2
n,i(d)|Xi]]

2nt2n

)
P

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

[
E[ψ̃2

n,i,lε
2
n,i(d)|Xi]− E[ψ̃2

n,i,lε
2
n,i(d)]

]∣∣∣∣∣∣ ≥ tn


≤ 2P

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

4eiE[ψ̃2
n,i,lε

2
n,i(d)|Xi]

∣∣∣∣∣∣ ≥ tn


= o(1) + 2E

P
 max

1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

4eiE[ψ̃2
n,i,lε

2
n,i(d)|Xi]

∣∣∣∣∣∣ ≥ tn
∣∣∣∣X(n)

 I{En,0(d)}


. o(1) + pn exp

(
− nt

2
n

Ξ2
nc

)
= o(1),

where the first inequality is by van der Vaart and Wellner (1996, Lemma 2.3.7), the second inequality is by

the Hoeffding’s inequality conditional on X(n) and the fact that, on En,0(d),

1

2n

∑
1≤i≤2n

(E[ψ̃2
n,i,lε

2
n,i(d)|Xi])

2 ≤ 1

2n

∑
1≤i≤2n

E[ψ̃4
n,i,l|Xi]E[ε4n,i(d)|Xi]

≤ 2Ξ2
n

n

∑
1≤i≤2n

E[ψ̃2
n,i,l|Xi]E[ε4n,i(d)|Xi] ≤ Ξ2

nCc0 .

To see the above inequality, note that C is a fixed constant, the second last inequality is by |ψ̃n,i,l| ≤ 2Ξn,

and the last inequality is by the fact that log(pn)Ξ2
n = o(n). Furthermore, we note that

4 max1≤l≤pn Var[E[ψ̃2
n,i,lε

2
n,i(d)|Xi]]

2nt2n

.
max1≤l≤pn E

[
E[ψ̃4

n,i,l|Xi]E[ε4n,i(d)|Xi]
]

nt2n

.
Ξ2
n max1≤l≤pn E

[
E[ψ̃2

n,i,l|Xi]E[ε4n,i(d)|Xi]
]

n

.
Ξ2
nE[ε4n,i(d)]

nt2n

= o(1).

Therefore, we have P{En,3(d)} → 1.
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Next, we show P{En,4(d)} → 1. Define an,i,l = E[ε2n,i(d)ψ̃2
n,i,l|Xi]− E[ε2n,i(d)ψ̃2

n,i,l]. Then, we have

P

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

(2I{Di = d} − 1)(E[ε2n,i(d)ψ̃2
n,i,l|Xi]− E[ε2n,i(d)ψ̃2

n,i,l])

∣∣∣∣∣∣ > tn

∣∣∣∣X(n)

 I{En,0(d)}

≤
∑

1≤l≤pn

P


∣∣∣∣∣∣ 1

2n

∑
1≤j≤n

(I{Dπ(2j−1) = d} − I{Dπ(2j) = d})(an,π(2j−1),l − an,π(2j),l)

∣∣∣∣∣∣ > tn

∣∣∣∣X(n)

 I{En,0(d)}

≤
∑

1≤l≤pn

exp

(
− 2nt2n

1
n

∑
1≤j≤n(an,π(2j−1),l − an,π(2j),l)2

)
I{En,0(d)}

≤ exp

(
log(pn)− 2nt2n

Ξ2
nc

2

)
,

where, conditional on X(n), {I{Dπ(2j−1) = d} − I{Dπ(2j) = d}}1≤j≤n is a sequence of i.i.d. Rademacher

random variables, the second last inequality is by Hoeffding’s inequality, and the last inequality is by that,

on En,0(d),

 1

n

∑
1≤j≤n

(an,π(2j−1),l − an,π(2j),l)
2

1/2

≤

 1

n

∑
1≤j≤n

(E[ψ̃2
n,π(2j−1),lε

2
n,i(d)|X(n)])2

1/2

+

 1

n

∑
1≤j≤n

(E[ψ̃2
n,π(2j),lε

2
n,i(d)|X(n)])2

1/2

≤

 2

n

∑
1≤i≤2n

(E[ψ̃2
n,i,lε

2
n,i(d)|Xi])

2

1/2

≤ Ξnc .

Recall tn = C

√
log(npn)Ξ2

n

n for some sufficiently large C and note that P{En,0(d)} → 1. We have

max
1≤l≤pn

∣∣∣∣∣∣
∑

1≤i≤2n

(2I{Di = d} − 1)(E[ε2n,i(d)ψ̃2
n,i,l|Xi]− E[ε2n,i(d)ψ̃2

n,i,l])

2n

∣∣∣∣∣∣ = OP

(√
log(npn)Ξ2

n

n

)
,

and thus, P{En,4(d)} → 1.

Next, we show P{En,1(d)} → 1. We note that, for d ∈ {0, 1}, conditional on (D(n), X(n)), {ψ̃n,iεn,i(d)}1≤i≤2n

are independent. In what follows, we couple

Un =
1

n

∑
1≤i≤2n

I{Di = d}(ψ̃n,iεn,i(d)− E[ψ̃n,iεn,i(d)|Xi])

with a centered Gaussian random vector as in Theorem 2.1 in Chernozhukov et al. (2017). Let Z =

(Z1, . . . , Zpn) be a Gaussian random vector with E[Zl] = 0 for 1 ≤ l ≤ pn and Var[Z] = Var[Un|X(n), D(n)]

that additionally satisfies the conditions of that theorem. Specifically, Z = (Z1, · · · , Zpn) is a centered
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Gaussian random vector in Rpn such that on En,0(d) ∩ En,3(d) ∩ En,4(d),

E[ZZ ′] =
1

n2

∑
1≤i≤2n

I{Di = d}E[ε2n,i(d)ψ̃n,iψ̃
′
n,i|Xi]

− 1

n

 1

n

∑
1≤i≤2n

I{Di = d}E[εn,i(d)ψ̃n,i|Xi]

 1

n

∑
1≤i≤2n

I{Di = d}E[εn,i(d)ψ̃n,i|Xi]

′

and by the definitions of En,3(d) and En,4(d),

max
1≤l≤pn

E[Z2
l ] ≤

max1≤l≤pn
∑

1≤i≤2n I{Di = d}E[ε2n,i(d)ψ̃2
n,i,l|Xi]

n2

≤ Cσ2

n
+

max1≤l≤pn
∑

1≤i≤2n I{Di = d}(E[ε2n,i(d)ψ̃2
n,i,l|Xi]− E[ε2n,i(d)ψ̃2

n,i,l])

n2

≤ Cσ2

n
+

max1≤l≤pn
∑

1≤i≤2n(2I{Di = d} − 1)(E[ε2n,i(d)ψ̃2
n,i,l|Xi]− E[ε2n,i(d)ψ̃2

n,i,l])

2n2

+
max1≤l≤pn

∑
1≤i≤2n(E[ε2n,i(d)ψ̃2

n,i,l|Xi]− E[ε2n,i(d)ψ̃2
n,i,l])

2n2

≤ Cσ2

n
.

Further define q(1− α) as the (1− α) quantile of ||Z||∞. Then, we have

q(1− 1/n) ≤
Cσ(

√
2 log(2pn) +

√
2 log(n))√

n
≤ 2Cσ

√
log(2npn)/n ,

where the first inequality is by the last display in the proof of Lemma E.2 in Chetverikov and Sørensen

(2022) and the second inequality is by the fact that
√
a+
√
b ≤

√
2(a+ b) for a, b > 0. Therefore, we have

P{Ecn,1(d)) ≤ P{Ecn,1(d), En,0(d), En,3(d), En,4(d)}+ o(1)

= EP{Ecn,1(d)|D(n), X(n)}I{En,0(d), En,3(d), En,4(d)}+ o(1)

≤ E[P{||Z||∞ ≥ 2Cσ
√

log(2npn)/n|D(n), X(n)}I{En,0(d), En,3(d), En,4(d)}] + o(1)

≤ E[P{||Z||∞ ≥ q(1− 1/n)|D(n), X(n)}I{En,0(d), En,3(d), En,4(d)}] + o(1) = o(1) ,

where the second inequality is by Theorem 2.1 in Chernozhukov et al. (2017).

Finally, we turn to En,2(d) with d = 1. We have

1

n

∑
1≤i≤2n

I{Di = 1}(E[ψ̃n,iεn,i(1)|Xi]− E[ψ̃n,iεn,i(1)])

=
1

2n

∑
1≤i≤2n

(E[ψ̃n,iεn,i(1)|Xi]− E[ψ̃n,iεn,i(1)]) +
1

2n

∑
1≤i≤2n

(2Di − 1)(E[ψ̃n,iεn,i(1)|Xi]− E[ψ̃n,iεn,i(1)]).

(74)
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Note {E[ψ̃n,iεn,i(1)|Xi]−E[ψn,iεn,i(1)]}1≤i≤2n is a sequence of independent centered random variables and

max
1≤l≤pn

E[(E[ψ̃n,i,lεn,i(1)|Xi]− E[ψ̃n,i,lεn,i(1)])2] ≤ Cσ2.

Following Theorem 2.1 in Chernozhukov et al. (2017), Lemma E.2 in Chetverikov and Sørensen (2022), and

similar arguments to the coupling argument above, we have

P


∥∥∥∥∥∥ 1

2n

∑
1≤i≤2n

(E[ψ̃n,iεn,i(1)|Xi]− E[ψ̃n,iεn,i(1)])

∥∥∥∥∥∥
∞

≤ Cσ
√

log(2npn)/n

→ 1. (75)

For the second term on the RHS of (74), we define gn,i,l = E[ψ̃n,i,lεn,i(1)|Xi]− E[ψ̃n,i,lεn,i(1)]. We have

P


∥∥∥∥∥∥ 1

2n

∑
1≤i≤2n

(2Di − 1)E[ψ̃n,iεn,i(1)|Xi]− E[ψ̃n,iεn,i(1)]

∥∥∥∥∥∥
∞

> t

∣∣∣∣X(n)


≤

∑
1≤l≤pn

P


∣∣∣∣∣∣ 1

2n

∑
1≤j≤n

(Dπ(2j−1) −Dπ(2j))(gn,π(2j−1),l − gn,π(2j),l)

∣∣∣∣∣∣ > t

∣∣∣∣X(n)


≤

∑
1≤l≤pn

exp

(
− 2nt2

1
n

∑
1≤j≤n(gn,π(2j−1),l − gn,π(2j),l)2

)
,

where, conditional on X(n), {(Dπ(2j−1)−Dπ(2j))}1≤j≤n is a sequence of i.i.d. Rademacher random variables

and the last inequality is by Hoeffding’s inequality. In addition, on En,3(1), we have

 1

n

∑
1≤j≤n

(gn,π(2j−1),l − gn,π(2j),l)
2

1/2

≤

 1

n

∑
1≤j≤n

(E[ψ̃n,π(2j−1),lεn,π(2j−1)(1)|Xπ(2j−1)])
2

1/2

+

 1

n

∑
1≤j≤n

(E[ψ̃n,π(2j),lεn,π(2j)(1)|Xπ(2j)])
2

1/2

≤

 2

n

∑
1≤i≤2n

(E[ψ̃n,i,lεn,i(1)|Xi])
2

1/2

≤

 2

n

∑
1≤i≤2n

E[ψ̃2
n,i,lε

2
n,i(1)|Xi]

1/2

≤

 2

n

∑
1≤i≤2n

[
E[ψ̃2

n,i,lε
2
n,i(1)|Xi]− E[ψ̃2

n,i,lε
2
n,i(1)]

]1/2

+ 2σ

≤ Cσ.

Therefore, we have

P


∥∥∥∥∥∥ 1

2n

∑
1≤i≤2n

(2Di − 1)E[ψ̃n,iεn,i(1)|Xi]− E[ψ̃n,iεn,i(1)]

∥∥∥∥∥∥
∞

> C

√
log(npn)σ2

n
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≤ P


∥∥∥∥∥∥ 1

2n

∑
1≤i≤2n

(2Di − 1)E[ψ̃n,iεn,i(1)|Xi]− E[ψ̃n,iεn,i(1)]

∥∥∥∥∥∥
∞

> C

√
log(npn)σ2

n
, En,3(1)

+ o(1)

≤ E

P

∥∥∥∥∥∥ 1

2n

∑
1≤i≤2n

(2Di − 1)E[ψ̃n,iεn,i(1)|Xi]− E[ψ̃n,iεn,i(1)]

∥∥∥∥∥∥
∞

> C

√
log(npn)σ2

n

∣∣∣∣X(n)

 I{En,3(1)}

+ o(1)

= o(1) . (76)

Combining (74), (75), and (76), we have P{En,2(1)} → 1. The same result holds for En,2(0).

Lemma B.5. Supposes Assumptions in Theorem 5.1 hold. Then, we have∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψn,π(2j) − ψn,π(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n

∥∥∥∥∥∥
∞

= oP (ζn) ,

∣∣∣∣∣∣ 1n
∑

1≤j≤n

(Dπ(2j) −Dπ(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n

∣∣∣∣∣∣ = OP (ζn) ,

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψn,π(2j) − ψn,π(2j−1))(ψ̃n,π(2j) + ψ̃n,π(2j−1))
′

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∥∥∥∥∥∥
∞

= OP

(√
log(pn)

n
+ ζn

)
,

∣∣∣∣∣∣ 1n
∑

1≤j≤n

(Dπ(2j) −Dπ(2j−1))(ψ̃n,π(2j) + ψ̃n,π(2j−1))
′

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∣∣∣∣∣∣ = OP

(
1√
n

)
,

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

ψ̃n,π(2j)εn,π(2j−1)(Dπ(2j−1))

∥∥∥∥∥∥
∞

= OP

(√
log(pn)

n

)
, and

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

ψ̃n,π(2j−1)εn,π(2j)(Dπ(2j))

∥∥∥∥∥∥
∞

= OP

(√
log(pn)

n

)
.

Proof. Recall ψ̃n,i = ψn,i −Ψ(Xi). For the first result, we note that∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψn,π(2j) − ψn,π(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψ̃n,π(2j) − ψ̃n,π(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψ̃n,π(2j) − ψ̃n,π(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n

∥∥∥∥∥∥
∞

+
C

n

∑
1≤j≤n

(Xπ(2j) −Xπ(2j−1))
2
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=

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψ̃n,π(2j) − ψ̃n,π(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n

∥∥∥∥∥∥
∞

+OP (ζ2
n). (77)

For the First term on the RHS of the above display, we note that, conditional on (D(n), X(n)), {Un,j =

(ψ̃n,π(2j) − ψ̃n,π(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd−pd
n }1≤j≤n are independent and mean zero. We have

max
1≤l≤pn

1

n

∑
1≤j≤n

U2
n,j,l ≤

CΞ2
n

n

∑
1≤j≤n

(Xπ(2j) −Xπ(2j−1))
2 = OP (Ξ2

nζ
2
n).

For an arbitrary ε > 0, let An,1 = {max1≤l≤pn
1
n

∑
1≤j≤n U

2
n,j,l ≤ C1Ξ2

nζ
2
n} for some large C1 so that

P{An,1} ≥ 1 − ε, where Un,j,l is the lth element of Un,j . Further denote {ej}1≤j≤n as a sequence of

independent Rademacher random variables. Then, for tn = M log1/2(pn)ζnΞnn
−1/2 with some sufficiently

large M , we have

(
1−

4 max1≤l≤pn
∑

1≤j≤n Var[Un,j,l|D(n), X(n)]

n2t2n

)
P

 max
1≤l≤pn

∣∣∣∣∣∣ 1n
∑

1≤j≤n

Un,j,l

∣∣∣∣∣∣ ≥ tn
∣∣∣∣D(n), X(n)


≤ 2P

 max
1≤l≤pn

∣∣∣∣∣∣ 1n
∑

1≤j≤n

4eiUn,j,l

∣∣∣∣∣∣ ≥ tn
∣∣∣∣D(n), X(n)


≤ ε+ 2E

P
 max

1≤l≤pn

∣∣∣∣∣∣ 1n
∑

1≤j≤n

4eiUn,j,l

∣∣∣∣∣∣ ≥ t
∣∣∣∣D(n), X(n),W (n)

n

 I{An,1}
∣∣∣∣D(n), X(n)


≤ ε+ Cpn exp

(
− nt2n

Ξ2
nC1Ξ2

n

)
≤ Cε,

where the first inequality is by van der Vaart and Wellner (1996, Lemma 2.3.7) and the second last inequality

is by the Hoeffding’s inequality. In addition, for a sufficiently large M and by Assumption 5.2, we have

4 max1≤l≤pn
∑

1≤j≤n Var[Un,j,l|D(n), X(n)]

n2t2n
≤ Cζ2

n

Ξ2
nζ

2
nM

2 log(pn)
< 1,

where the first inequality is because, by Assumption 5.1,

max
1≤l≤pn

E
[
(ψ̃n,π(2j),l − ψ̃n,π(2j−1),l)

2|D(n), X(n)
]
≤ max

1≤i≤n
max

1≤l≤pn
CE[ψ2

n,i,l|Xi] ≤ C

for some constant C. This implies∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψ̃n,π(2j) − ψ̃n,π(2j−1))(Ψ(Xπ(2j))−Ψ(Xπ(2j−1)))
′βhd
n

∥∥∥∥∥∥
∞

= OP (log1/2(pn)ζnΞnn
−1/2) = oP (ζn).

The second result in Lemma B.5 is a direct consequence of the Cauchy Schwartz inequality and Assump-

tion 5.2(a).
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For the third result in Lemma B.5, we have∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψn,π(2j) − ψn,π(2j−1))(ψ̃n,π(2j) + ψ̃n,π(2j−1))
′

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψ̃n,π(2j) − ψ̃n,π(2j−1))(ψ̃n,π(2j) + ψ̃n,π(2j−1))
′

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∥∥∥∥∥∥
∞

+
1

n

∑
1≤j≤n

||Xπ(2j) −Xπ(2j−1)||2

∣∣∣∣∣(ψ̃n,π(2j) + ψ̃n,π(2j−1))
′

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∣∣∣∣∣
≤

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψ̃n,π(2j) − ψ̃n,π(2j−1))(ψ̃n,π(2j) + ψ̃n,π(2j−1))
′

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∥∥∥∥∥∥
∞

+

 1

n

∑
1≤j≤n

||Xπ(2j) −Xπ(2j−1)||22

1/2  1

n

∑
1≤j≤n

∣∣∣∣∣(ψ̃n,π(2j) + ψ̃n,π(2j−1))
′

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∣∣∣∣∣
2

≤

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψ̃n,π(2j)ψ̃
′
n,π(2j) − ψ̃n,π(2j−1)ψ̃

′
n,π(2j−1))

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

ψ̃n,π(2j)ψ̃
′
n,π(2j−1)

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

n

∑
1≤j≤n

ψ̃n,π(2j−1)ψ̃
′
n,π(2j)

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∥∥∥∥∥∥
∞

+OP (ζn)

≡ Rn,1 +Rn,2 +Rn,3 +OP (ζn).

For Rn,1, we note that, conditional on (D(n), X(n)),

{
(ψ̃n,π(2j)ψ̃

′
n,π(2j) − ψ̃n,π(2j−1)ψ̃

′
n,π(2j−1))

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)}
1≤j≤n

are independent and mean zero. In addition, we have

max
1≤l≤pn

1

n

∑
1≤j≤n

(
(ψ̃n,π(2j),lψ̃

′
n,π(2j) − ψ̃n,π(2j−1),lψ̃

′
n,π(2j−1))

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

))2

. max
1≤l≤pn

 1

2n

∑
1≤i≤2n

ψ̃qn,i,l

2/q  1

2n

∑
1≤i≤2n

|ψ̃′n,i,lβ
hd−pd
1,n |2q/(q−2) + |ψ̃′n,i,lβ

hd−pd
0,n |2q/(q−2)

q/(q−2)

= OP (1)

and

max
1≤l≤pn

E

 1

n

∑
1≤j≤n

(
(ψ̃n,π(2j),lψ̃

′
n,π(2j) − ψ̃n,π(2j−1),lψ̃

′
n,π(2j−1))

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

))2 ∣∣∣∣D(n), X(n)
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. max
1≤l≤pn

E
 1

n

∑
1≤i≤2n

ψ̃qn,i,l

∣∣∣∣Xi


2/q  1

2n

∑
1≤i≤2n

E

{
|ψ̃′n,i,lβ

hd−pd
1,n |2q/(q−2) + |ψ̃′n,i,lβ

hd−pd
0,n |2q/(q−2)

∣∣∣∣Xi

}q/(q−2)

= O(1).

Therefore, by the same argument as that used to bound the first term on the RHS of (77), we have

max
1≤l≤pn

1

n

∑
1≤j≤n

[
(ψ̃n,π(2j),lψ̃

′
n,π(2j) − ψ̃n,π(2j−1),lψ̃

′
n,π(2j−1))

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)]
= OP

(√
log(pn)

n

)
.

Also note that, conditional on (D(n), X(n)),{
ψ̃n,π(2j)ψ̃

′
n,π(2j−1)

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)}
1≤j≤n

and

{
ψ̃n,π(2j−1)ψ̃

′
n,π(2j)

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)}
1≤j≤n

are independent cross j and mean zero. By the same argument as that used to bound the first term on the

RHS of (77), we can show∥∥∥∥∥∥ 1

n

∑
1≤j≤n

ψ̃n,π(2j)ψ̃
′
n,π(2j−1)

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∥∥∥∥∥∥
∞

= OP

(√
log(pn)

n

)

and ∥∥∥∥∥∥ 1

n

∑
1≤j≤n

ψ̃n,π(2j−1)ψ̃
′
n,π(2j)

(
βhd−pd
Dπ(2j),n

− βhd−pd
Dπ(2j−1),n

2

)∥∥∥∥∥∥
∞

= OP

(√
log(pn)

n

)
.

This leads to the desired result.

The fourth result holds because conditionally on (Dn, Xn), {ψ̃n,π(2j−1) + ψ̃n,π(2j)}j∈[n] are mean zero

and independent.

For the fifth result in Lemma B.5, we note that, conditional on (D(n), X(n)),

{ψn,π(2j) −Ψ(Xπ(2j))εn,π(2j−1)(Dπ(2j−1))}1≤j≤n

are independent and mean zero. In addition, there exist constants (b, C) such that

0 < b ≤ min
1≤l≤pn

1

n

∑
1≤j≤n

E

{
(ψn,π(2j),l −Ψ(Xπ(2j),l)εn,π(2j−1)(Dπ(2j−1)))

2

∣∣∣∣D(n), X(n)

}

≤ max
1≤l≤pn

1

n

∑
1≤j≤n

E

{
(ψn,π(2j),l −Ψ(Xπ(2j),l)εn,π(2j−1)(Dπ(2j−1)))

2

∣∣∣∣D(n), X(n)

}

≤ max
1≤l≤pn

C

n

∑
1≤i≤2n

(
E

{
ε2n,i(1) + ε2n,i(0)

∣∣∣∣Xi

})
≤ C <∞.
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Therefore, following Theorem 2.1 in Chernozhukov et al. (2017), Lemma E.2 in Chetverikov and Sørensen

(2022), and the coupling argument used to bound En,1(d) in the proof of Lemma B.4, we have∥∥∥∥∥∥ 1

n

∑
1≤j≤n

(ψn,π(2j) −Ψ(Xπ(2j)))εn,π(2j−1)(Dπ(2j−1))

∥∥∥∥∥∥
∞

= OP

(√
log(pn)

n

)
. (78)

The last result of Lemma B.5 can be established in the same manner.

Lemma B.6. Suppose Assumptions in Theorem 5.2 hold. Then,

P


∣∣∣∣∣∣ 1n

∑
i∈[2n]

I{Di = d}εn,i(d)− E[εn,i(d)]

∣∣∣∣∣∣ ≤
√

log(2npn)

n

→ 1

and

P


∥∥∥∥∥∥Ω−1

n (d)
1

n

∑
1≤i≤2n

I{Di = d}(ψn,iεn,i(d)− E[ψn,iεn,i(d)])

∥∥∥∥∥∥
∞

≤ 6σ̄

¯
σ

√
log(2npn)

n

→ 1 .

Proof. For the first result, we note that∣∣∣∣∣∣ 1n
∑
i∈[2n]

I{Di = d}εn,i(d)− E[εn,i(d)]

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1n

∑
i∈[2n]

I{Di = d}(εn,i(d)− E[εn,i(d)|Xi])

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1n
∑
i∈[2n]

(I{Di = d} − 1/2)(E[εn,i(d)|Xi]− E[εn,i(d)])

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

2n

∑
i∈[2n]

(E[εn,i(d)|Xi]− E[εn,i(d)])

∣∣∣∣∣∣ .
The first two terms on the RHS of the above display are OP (1/

√
n) following the proof of En,1(d) and En,2(d)

in Lemma B.4. The last term on the RHS is also OP (1/
√
n) by Chebyshev’s inequality. This implies the

desired result.

For the second result, define

En,0(d) =

(
maxd∈{0,1}

1
2n

∑
1≤i≤2nE[ε4n,i(d)|Xi] ≤ c0 <∞ ,

min1≤l≤pn
1
n

∑
1≤i≤2n I{Di = d}Var[ψn,i,lεn,i(d)|Xi] ≥

¯
σ2 > 0 ,

)

En,1(d) =


∥∥∥∥∥∥ 1

n

∑
1≤i≤2n

I{Di = d}(ψn,iεn,i(d)− E[ψn,iεn,i(d)|Xi])

∥∥∥∥∥∥
∞

≤ 2.04σ
√

log(2npn)/n

 ,

68



En,2(d) =


∥∥∥∥∥∥ 1

n

∑
1≤i≤2n

I{Di = d}(E[ψn,iεn,i(d)|Xi]− E[ψn,iεn,i(d)])

∥∥∥∥∥∥
∞

≤ 3.96σ
√

log(2npn)/n

 ,

En,3(d) =

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

(E[ψ2
n,i,lε

2
n,i(d)|Xi]− E[ψ2

n,i,lε
2
n,i(d)])

∣∣∣∣∣∣
1/2

≤ 0.01σ

 ,

and

En,4(d) =

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

(2I{Di = d} − 1)(E[ε2n,i(d)ψ2
n,i,l|Xi]− E[ε2n,i(d)ψ2

n,i,l])

∣∣∣∣∣∣
1/2

≤ 0.01σ

 .

We aim to show that P{En,1(d)} → 1 and P{En,2(d)} → 1. Then, by letting C = 6σ̄/
¯
σ which implies

P{En(d)} = 1− P{Ecn(d)}

≥ 1− P


∥∥∥∥∥∥ 1

n

∑
1≤i≤2n

I{Di = d}(ψn,iεn,i(d)− E[ψn,iεn,i(d)])

∥∥∥∥∥∥
∞

≥ C
¯
σ

√
log(2npn)

n


= 1− P


∥∥∥∥∥∥ 1

n

∑
1≤i≤2n

I{Di = d}(ψn,iεn,i(d)− E[ψn,iεn,i(d)])

∥∥∥∥∥∥
∞

≥ 6σ̄

√
log(2npn)

n


≥ 1− P{Ecn,1(d)} − P{Ecn,2(d)} → 1 .

First, we show P{En,3(d)} → 1. Let

tn = C

√
log(npn)Ξ2

n

n
→ 0

for some sufficiently large constant C > 0 and {ei}1≤i≤2n be a sequence of i.i.d. Rademacher random variables

independent of everything else. Then, for any fixed t > 0, we have

(
1−

4 max1≤l≤pn Var[E[ψ2
n,i,lε

2
n,i(d)|Xi]]

2nt2

)
P

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

[
E[ψ2

n,i,lε
2
n,i(d)|Xi]− E[ψ2

n,i,lε
2
n,i(d)]

]∣∣∣∣∣∣ ≥ t


≤ 2P

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

4eiE[ψ2
n,i,lε

2
n,i(d)|Xi]

∣∣∣∣∣∣ ≥ t


= o(1) + 2E

P
 max

1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

4eiE[ψ2
n,i,lε

2
n,i(d)|Xi]

∣∣∣∣∣∣ ≥ t
∣∣∣∣X(n)

 I{En,0(d)}


. o(1) + pn exp

(
− nt

2

Ξ2
nc

)
= o(1),

where the first inequality is by van der Vaart and Wellner (1996, Lemma 2.3.7), the second inequality is by
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the Hoeffding’s inequality conditional on X(n) and the fact that, on En,0(d),

1

2n

∑
1≤i≤2n

(E[ψ2
n,i,lε

2
n,i(d)|Xi])

2 ≤ 1

2n

∑
1≤i≤2n

E[ψ4
n,i,l|Xi]E[ε4n,i(d)|Xi]

≤ Ξ2
n

2n

∑
1≤i≤2n

E[ψ2
n,i,l|Xi]E[ε4n,i(d)|Xi] ≤ Ξ2

nCc0,

where C is a fixed constant, and the last equality is by the fact that log(pn)Ξ2
n = o(n). Furthermore, we

note that

4 max1≤l≤pn Var[E[ψ2
n,i,lε

2
n,i(d)|Xi]]

2n

.
max1≤l≤pn E

[
E[ψ4

n,i,l|Xi]E[ε4n,i(d)|Xi]
]

n

.
Ξ2
n max1≤l≤pn E

[
E[ψ2

n,i,l|Xi]E[ε4n,i(d)|Xi]
]

n

.
Ξ2
nE[ε4n,i(d)]

n

= o(1).

Therefore, we have

P

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

[
E[ψ2

n,i,lε
2
n,i(d)|Xi]− E[ψ2

n,i,lε
2
n,i(d)]

]∣∣∣∣∣∣ ≥ t
 = o(1)

for any fixed t > 0, which is the desired result.

Next, we show P{En,4(d)} → 1. Define an,i,l = E[ε2n,i(d)ψ2
n,i,l|Xi]− E[ε2n,i(d)ψ2

n,i,l]. Then, we have

P

 max
1≤l≤pn

∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n

(2I{Di = d} − 1)(E[ε2n,i(d)ψ2
n,i,l|Xi]− E[ε2n,i(d)ψ2

n,i,l])

∣∣∣∣∣∣ > t

∣∣∣∣X(n)

 I{En,0(d)}

≤
∑

1≤l≤pn

P


∣∣∣∣∣∣ 1

2n

∑
1≤j≤n

(I{Dπ(2j−1) = d} − I{Dπ(2j) = d})(an,π(2j−1),l − an,π(2j),l)

∣∣∣∣∣∣ > t

∣∣∣∣X(n)

 I{En,0(d)}

≤
∑

1≤l≤pn

exp

(
− 2nt2

1
n

∑
1≤j≤n(an,π(2j−1),l − an,π(2j),l)2

)
I{En,0(d)}

≤ exp

(
log(pn)− 2nt2

Ξ2
nc

2

)
,

where, conditional on X(n), {I{Dπ(2j−1) = d} − I{Dπ(2j) = d}}1≤j≤n is a sequence of i.i.d. Rademacher

random variables, the second last inequality is by Hoeffding’s inequality, and the last inequality is by that,
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on En,0(d),

 1

n

∑
1≤j≤n

(an,π(2j−1),l − an,π(2j),l)
2

1/2

≤

 1

n

∑
1≤j≤n

(E[ψ2
n,π(2j−1),lε

2
n,i(d)|Xπ(2j−1)])

2

1/2

+

 1

n

∑
1≤j≤n

(E[ψ2
n,π(2j),lε

2
n,i(d)|Xπ(2j)])

2

1/2

≤

 2

n

∑
1≤i≤2n

(E[ψ2
n,i,lε

2
n,i(d)|Xi])

2

1/2

≤ Ξnc .

By letting t = C

√
log(pn)Ξ2

n

n for some sufficiently large C and noting that P{En,0(d)} → 1, we have

max
1≤l≤pn

∣∣∣∣∣∣
∑

1≤i≤2n

(2I{Di = d} − 1)(E[ε2n,i(d)ψ2
n,i,l|Xi]− E[ε2n,i(d)ψ2

n,i,l])

2n

∣∣∣∣∣∣ = Op

(√
log(pn)Ξ2

n

n

)
,

and thus, P{En,4(d)} → 1.

Next, we show P{En,1(d)} → 1. We note that, for d ∈ {0, 1}, conditional on (D(n), X(n)), {ψn,iεn,i(d)}1≤i≤2n

are independent. In what follows, we couple

Un =
1

n

∑
1≤i≤2n

I{Di = d}(ψn,iεn,i(d)− E[ψn,iεn,i(d)|Xi])

with a centered Gaussian random vector as in Theorem 2.1 in Chernozhukov et al. (2017). Let Z =

(Z1, . . . , Zpn) be a Gaussian random vector with E[Zl] = 0 for 1 ≤ l ≤ pn and Var[Z] = Var[Un|X(n), D(n)]

that additionally satisfies the conditions of that theorem. Specifically, Z = (Z1, · · · , Zpn) is a centered

Gaussian random vector in Rpn such that on En,0(d) ∩ En,3(d) ∩ En,4(d),

E[ZZ ′] =
1

n2

∑
1≤i≤2n

I{Di = d}E[ε2n,i(d)ψn,iψ
′
n,i|Xi]

− 1

n

 1

n

∑
1≤i≤2n

I{Di = d}E[εn,i(d)ψn,i|Xi]

 1

n

∑
1≤i≤2n

I{Di = d}E[εn,i(d)ψn,i|Xi]

′

and

max
1≤l≤pn

E[Z2
l ] ≤

max1≤l≤pn
∑

1≤i≤2n I{Di = d}E[ε2n,i(d)ψ2
n,i,l|Xi]

n2

≤ σ2

n
+

max1≤l≤pn
∑

1≤i≤2n I{Di = d}(E[ε2n,i(d)ψ2
n,i,l|Xi]− E[ε2n,i(d)ψ2

n,i,l])

n2

≤ σ2

n
+

max1≤l≤pn
∑

1≤i≤2n(2I{Di = d} − 1)(E[ε2n,i(d)ψ2
n,i,l|Xi]− E[ε2n,i(d)ψ2

n,i,l])

2n2

+
max1≤l≤pn

∑
1≤i≤2n(E[ε2n,i(d)ψ2

n,i,l|Xi]− E[ε2n,i(d)ψ2
n,i,l])

2n2
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≤ 1.02σ2

n
.

Further define q(1− α) as the (1− α) quantile of ||Z||∞. Then, we have

q(1− 1/n) ≤
1.02σ(

√
2 log(2pn) +

√
2 log(n))√

n
≤ 2.04σ

√
log(2npn)/n,

where the first inequality is by the last display in the proof of Lemma E.2 in Chetverikov and Sørensen

(2022) and the second inequality is by the fact that
√
a+
√
b ≤

√
2(a+ b) for a, b > 0. Therefore, we have

P{Ecn,1(d)) ≤ P{Ecn,1(d), En,0(d), En,3(d), En,4(d)}+ o(1)

= EP{Ecn,1(d)|D(n), X(n)}I{En,0(d), En,3(d), En,4(d)}+ o(1)

≤ E[P{||Z||∞ ≥ 2.04σ
√

log(2npn)/n|D(n), X(n))}I{En,0(d), En,3(d), En,4(d)}] + o(1)

≤ E[P{||Z||∞ ≥ q(1− 1/n)|D(n), X(n)}] = o(1),

where the second inequality is by Theorem 2.1 in Chernozhukov et al. (2017).

Finally, we turn to En,2(d) with d = 1. We have

1

n

∑
1≤i≤2n

I{Di = 1}(E[ψn,iεn,i(1)|Xi]− E[ψn,iεn,i(1)])

=
1

2n

∑
1≤i≤2n

(E[ψn,iεn,i(1)|Xi]− E[ψn,iεn,i(1)]) +
1

2n

∑
1≤i≤2n

(2Di − 1)(E[ψn,iεn,i(1)|Xi]− E[ψn,iεn,i(1)]).

(79)

Note {E[ψn,iεn,i(1)|Xi]−E[ψn,iεn,i(1)]}1≤i≤2n is a sequence of independent centered random variables and

max
1≤l≤pn

E[(E[ψn,i,lεn,i(1)|Xi]− E[ψn,i,lεn,i(1)])2] ≤ σ2.

Following Theorem 2.1 in Chernozhukov et al. (2017), Lemma E.2 in Chetverikov and Sørensen (2022), and

similar arguments to the ones above, we have

P


∥∥∥∥∥∥ 1

2n

∑
1≤i≤2n

(E[ψn,iεn,i(1)|Xi]− E[ψn,iεn,i(1)])

∥∥∥∥∥∥
∞

≤ σ
√

2 log(2npn)/n

→ 1. (80)

For the second term on the RHS of (79), we define gn,i,l = E[ψn,i,lεn,i(1)|Xi]− E[ψn,i,lεn,i(1)]. We have

P


∥∥∥∥∥∥ 1

2n

∑
1≤i≤2n

(2Di − 1)E[ψn,iεn,i(1)|Xi]− E[ψn,iεn,i(1)]

∥∥∥∥∥∥
∞

> t

∣∣∣∣X(n)


≤

∑
1≤l≤pn

P


∣∣∣∣∣∣ 1

2n

∑
1≤j≤n

(Dπ(2j−1) −Dπ(2j))(gn,π(2j−1),l − gn,π(2j),l)

∣∣∣∣∣∣ > t

∣∣∣∣X(n)


≤

∑
1≤l≤pn

exp

(
− 2nt2

1
n

∑
1≤j≤n(gn,π(2j−1),l − gn,π(2j),l)2

)
,
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where, conditional on X(n), {(Dπ(2j−1)−Dπ(2j))}1≤j≤n is a sequence of i.i.d. Rademacher random variables

and the last inequality is by Hoeffding’s inequality. In addition, on En,3(1), we have

 1

n

∑
1≤j≤n

(gn,π(2j−1),l − gn,π(2j),l)
2

1/2

≤

 1

n

∑
1≤j≤n

(E[ψn,π(2j−1),lεn,i(1)|Xπ(2j−1)])
2

1/2

+

 1

n

∑
1≤j≤n

(E[ψn,π(2j),lεn,i(1)|Xπ(2j)])
2

1/2

≤

 2

n

∑
1≤i≤2n

(E[ψn,i,lεn,i(1)|Xi])
2

1/2

≤

 2

n

∑
1≤i≤2n

E[ψ2
n,i,lε

2
n,i(1)|Xi]

1/2

≤

 2

n

∑
1≤i≤2n

[
E[ψ2

n,i,lε
2
n,i(1)|Xi]− E[ψ2

n,i,lε
2
n,i(1)]

]1/2

+ 2σ

≤ 2.02σ.

Therefore, we have

P


∥∥∥∥∥∥ 1

2n

∑
1≤i≤2n

(2Di − 1)E[ψn,iεn,i(1)|Xi]− E[ψn,iεn,i(1)]

∥∥∥∥∥∥
∞

> 2.02

√
log(npn)σ2

n


≤ P


∥∥∥∥∥∥ 1

2n

∑
1≤i≤2n

(2Di − 1)E[ψn,iεn,i(1)|Xi]− E[ψn,iεn,i(1)]

∥∥∥∥∥∥
∞

> 2.02

√
log(npn)σ2

n
, En,3(1)

+ o(1)

≤ E

P

∥∥∥∥∥∥ 1

2n

∑
1≤i≤2n

(2Di − 1)E[ψn,iεn,i(1)|Xi]− E[ψn,iεn,i(1)]

∥∥∥∥∥∥
∞

> 2.02

√
log(npn)σ2

n

∣∣∣∣X(n)

 I{En,3(1)}

+ o(1)

= o(1) . (81)

Combining (79), (80), (81), and the fact that
√

2 + 2.02 ≤ 3.98, we have P{En,2(1)} → 1. The same result

holds for En,2(0).

C Details for Simulations

The regressors in both the first and second LASSO-based adjustments are as follows.

(i) For Models 1-6, we use {1, Xi,Wi, X
2
i ,W

2
i , XiWi, (Xi − X̃)I{Xi > X̃}, (Wi − W̃ )I{Wi > W̃}, (Xi −

X̃)2I{Xi > X̃}, (Wi − W̃ )2I{Wi > W̃}} where X̃ and W̃ are the sample medians of {Xi}i∈[2n] and

{Wi}i∈[2n], respectively.

(ii) For Models 7-9, we use {1, Xi,Wi, X
2
i ,W

2
i , XiWi, (Xij−X̃j)I{Xij > X̃j}, (Xij−X̃j)

2I{Xij > X̃j}, (Wij−
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W̃1)I{Wij > W̃j}, (Wij − W̃j)
2I{Wij > W̃j}} where X̃j and W̃j , for j = 1, 2, are the sample medians

of {Xij}i∈[2n] and {Wij}i∈[2n], respectively.

(iii) For Models 9-11, we use {1, Xi,Wi, X
2
i ,W

2
i , Xi1Wi1, Xi2Wi2, Xi3Wi1, Xi4Wi2, (Xij−X̃j)I{Xij > X̃j}, (Xij−

X̃j)
2I{Xij > X̃j}, (Wij − W̃j)I{Wij > W̃j}, (Wij − W̃j)

2I{Wij > W̃j}} where X̃j ,for j = 1, 2, 3, 4, and

W̃j , for j = 1, 2, are the sample medians of {Xij}i∈[2n] and {Wij}i∈[2n], respectively.

(iv) Models 12-15 already contain high-dimensional covariates. We just use Xi and Wi as the LASSO

regressors.
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