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Abstract

This paper derives asymptotic properties of the least squares estimator of the autore-

gressive parameter in local to unity processes with errors being fractional Gaussian

noises with the Hurst parameter H. It is shown that the estimator is consistent when

H ∈ (0, 1). Moreover, the rate of convergence is n when H ∈ [0.5, 1). The rate of

convergence is n2H when H ∈ (0, 0.5). Furthermore, the limit distribution of the cen-

tered least squares estimator depends on H. When H = 0.5, the limit distribution is

the same as that obtained in Phillips (1987a) for the local to unity model with errors

for which the standard functional central theorem is applicable. When H > 0.5 or

when H < 0.5, the limit distributions are new to the literature. Simulation studies are

performed to check the reliability of the asymptotic approximation for different values

of sample size.

JEL classification: C22

Keywords: Least squares, Local to unity, Fractional Brownian motion, Fractional

Ornstein-Uhlenbeck process.



1 Introduction

In this paper, we consider the following model:

Xt = ρnXt−1 + εt, ρn = exp(−c/n), t = 1, ..., n, (1)

where εt = σut, ut is a fractional Gaussian noise (FGN) with mean zero, variance one,

and covariance function being

γu (k) := E (utus) =
1

2

[
(k + 1)2H + (k − 1)2H − 2k2H

]
with k = |t− s| , (2)

and H ∈ (0, 1) is called the Hurst parameter. When H = 0.5, γu (k) = 0 for any

k 6= 0. Given that ut is normally distributed, {ut} form a sequence of independent and
identically distributed (i.i.d.) variables with the standard normal distribution N(0, 1).

Whereas, when H 6= 0.5, γu (k) 6= 0 for any k and

γu (k) ∼ H(2H − 1)k2H−2, for large k. (3)

That is, γu (k) decays at a hyperbolic rate as k goes to infinity. When H > 0.5,

γu (k) > 0 and
∑∞

k=−∞ γu (k) = ∞, giving rise to the terminology of ‘long-range-
dependent’errors. When H < 0.5, it has γu (k) < 0 for k 6= 0 and

∑∞
k=−∞ γu (k) =

0, giving rise to the terminology of ‘anti-persistent’errors. An FGN is obtained as

the increments of the fractional Brownian motion (fBm) BH(t) that is a zero-mean

Gaussian process with the covariance function

Cov
(
BH(t), BH(s)

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
∀t, s ≥ 0. (4)

That is, ut = BH(t)−BH(t− 1).

Model (1) is related to the local to unity model of Phillips (1987a) and Chan and

Wei (1988) by replacing the noises where the classical central limit theorem is applicable

with fractional Gaussian noises. Model (1) is also related to the fractional unit root

model of Sowell (1990) by replacing the AR coeffi cient of unity with the AR coeffi cient

of local to unity. Although we replace the I (d) noises of Sowell (1990) with the FGN,

the results in this paper also apply to I (d) errors as it will become clear later. Model

(1) is also related to the model of Park (2003) where ρn = 1−m/n if we assume m is

fixed in his model.

Let ρ̂n denote the least squares (LS) estimator of ρn that takes the form of

ρ̂n =

n∑
t=1

Xt−1Xt/

n∑
t=1

X2
t−1.

1



Hence, the centered least squares estimator is

ρ̂n − ρn =
n∑
t=1

Xt−1εt/
n∑
t=1

X2
t−1. (5)

The goal of this paper is to derive the asymptotic properties of ρ̂n and ρ̂n − ρn

under n → ∞. As it is well expected for local to unity model, the initial value of Xt

significantly affects the finite sample distribution of ρ̂n − ρn. To capture the impact of
the initial value on asymptotics, we set the initial value of Xt to be X0 = Op

(
nH
)
and

n−H
X0

σ

p→ Jc (0) ,

where Jc (0) is a constant (such as zero) or Op (1).

The rest of the paper is organized as follows. Section 2 reviews the results in the

literature. The asymptotic properties of the normalized ρ̂n−ρn are developed in Section
3. Section 4 obtains the finite sample properties of the normalized ρ̂n − ρn. Section 5
concludes. The Appendix collects proofs of the main results.

Throughout the paper, we use
p→, d→, ⇒, ∼ to denote convergence in probability,

convergence in distribution, convergence in functional space, and equivalent in distrib-

ution. We use [nr] to denote the integral part of nr.

2 A Literature Review

Phillips (1987a) considers the following local to unit root model

Xt = ρnXt−1 + vt, ρn = exp(−c/n), X0 = Op(1), (6)

where {vt} is a strong mixing sequence with mixing coeffi cients αm satisfying
∑∞

m=1 α
1−2/β
m <

∞ and supt |vt|
β+δ < ∞ for some β > 2 and δ > 0. There are two important features

in Model (6). First, since ρn = 1−c/n+O(n−2), the autoregressive coeffi cient depends

on n and converges to unity as n → ∞. Second, the functional central limit theorem
is applied to {vt}. An interesting special case of Model (6) is when {vt} are i.i.d. with
E |vt|β <∞ for some β > 2. In this case, according to Phillips (1987a), as n→∞,

n (ρ̂n − ρn)
d→
∫ 1

0
Jc(r)dW (r)∫ 1

0
Jc(r)2dr

=

{
Jc(1)2 + 2c

∫ 1

0
Jc(r)

2dr − 1
}
/2∫ 1

0
Jc(r)2dr

. (7)
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where Jc(r) denotes an Ornstein-Uhlenbeck (OU) process defined by the stochastic

differential equation

dJc(r) = −cJc(r)dr + dW (r), Jc(0) = 0, (8)

with W (r) being a standard Brownian motion.

Sowell (1990) considers the following unit root model with ρ = 1:

Xt = ρXt−1 + σvt, vt = (1− L)−dεt, εt
i.i.d.∼ (0, 1), X0 = Op(1), (9)

where L is the lag operator with (1− L)−d defined as

(1− L)−d =

∞∑
j=0

Γ(j + d)

Γ(d)Γ(j + 1)
Lj for d ∈ (−0.5, 0.5).

In this model, the error term vt is assumed to follow a fractional integrated process of

order d, or an I(d) process. With ρ̂ being the LS estimator of ρ, Sowell (1990) and

Marinucci and Robinson (1999) show that, as n→∞,

n (ρ̂− 1)
d→
∫ 1

0
W (r)dW (r)∫ 1

0
W (r)2dr

, if d = 0, (10)

n (ρ̂− 1)
d→

1
2
BH(1)2∫ 1

0
BH(r)2dr

, if d > 0, (11)

n2H (ρ̂− 1)
d→ −

H Γ(0.5+H)
Γ(1.5−H)∫ 1

0
BH(r)2dr

, if d < 0, (12)

where H = d+ 0.5.1

Setting c = 0 in (7) or setting d = 0 in (10) can lead to the well-known result for

the unit root model obtained in Phillips (1987b) as

n (ρ̂− 1)
d→
∫ 1

0
W (r)dW (r)∫ 1

0
W (r)2dr

=
1
2

(W (1)2 − 1)∫ 1

0
W (r)2dr

.

1Equations (10)-(12) are different from those reported in Theorem 3 in Sowell (1990). This is

because, as remarked in Section 3 of Marinucci and Robinson (1999), the partial sum of an I (d)

process, adjusted an appropriate normalizing term, should converge to the Type I fBm denoted by

BH (t) in the present paper, not to the Type II fBm adopted in Sowell (1990).
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3 Asymptotic Properties

To develop the asymptotic properties of the centered LS estimator ρ̂n − ρn defined in
(5), we first introduce the limit behavior of the partial sum process

∑[nr]
t=1 ut for any

r ∈ [0, 1]. As ut = BH(t)−BH(t− 1), we have

n−H
[nr]∑
t=1

ut = n−H
[nr]∑
t=1

{
BH(t)−BH(t− 1)

}
= n−HBH([nr])

∼ BH

(
[nr]

n

)
⇒ BH(r), as n→∞, (13)

where equivalent in distribution comes from the self-similarity property of the fBm

BH(t).

The convergence result in (13) is the source of the asymptotic theory developed

in the present paper. Sowell (1990) gives a similar weak convergence result for the

partial sum process
∑[nr]

t=1 ut when ut ∼ I (d); see also Marinucci and Robinson (1999).

Therefore, all the results in our paper applies to the case where ut ∼ I (d). It is

important to note that Sowell uses the result of Davydov (1970) to establish the weak

convergence while we do not need to resort to Davydov (1970) as our errors are normally

distributed.

The result in (13) compares with Donsker’s functional central limit theorem, which

states that,

n−0.5

[nr]∑
t=1

εt ⇒ W (r) = B0.5(r), as n→∞, (14)

where εt is a sequence of i.i.d. random variables with mean zero and variance one.

Define a fractional OU (fOU) process through the following stochastic differential

equation

dJHc (t) = −cJHc (t)dt+ dBH(t), JHc (0) = Op (1) . (15)

Cheridito et al. (2003) proved that, for t > 0, the differential equation (15) has a

unique solution and takes the form of

JHc (t) = e−ctJHc (0) +

∫ t

0

e−c(t−s)dBH(s),

where the integral is a path-wise Riemann-Stieltjes integral. It is worthwhile to mention

that, when H = 0.5, JHc (t) becomes the traditional OU process studied in Phillips

(1987a). If in addition, c = 0, the process JHc (t) is a standard Brownian motion.
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Lemma 1 Let {Xt} be the time series generated by (1) and (2). Then, as n→∞,

1. n−HX[nr] ⇒ σJHc (r), for any r ∈ [0, 1];

2. n−1−H∑n
t=1Xt ⇒ σ

∫ 1

0
JHc (r)dr;

3. n−1−2H
∑n

t=1 X
2
t ⇒ σ2

∫ 1

0
JHc (r)2dr;

4. n−2H
∑n

t=1Xt−1εt ⇒

 σ2
(
JHc (1)2 − JHc (0)2 + 2c

∫ 1

0
JHc (r)2dr − 1

)
/2, if H = 0.5

σ2
(
JHc (1)2 − JHc (0)2 + 2c

∫ 1

0
JHc (r)2dr

)
/2, if H > 0.5

;

5. n−1
∑n

t=1 Xt−1εt
p→ −σ2/2, if H < 0.5.

Remark 1 This lemma is related to Lemma 1 in Phillips (1987a) with several differ-
ence. First, compared with Lemma 1.a-1.c of Phillips (1987a), Jc(r) is replaced with

JHc (r) in Lemma 1, and the rate of convergence for X[nr],
∑n

t=1Xt,
∑n

t=1 X
2
t is n

−H ,

n1−H , n−1−2H respectively. Second, the rate and the limit of
∑n

t=1 Xt−1εt depend on H.

When H ≥ 0.5, the rate of
∑n

t=1 Xt−1εt is n−2H . The limit has one additional term

(i.e., −σ2/2) when H = 0.5 than when H > 0.5. This difference reflects in the limit

of n−2H
∑n

t=1 ε
2
t . When H = 0.5, the limit of n−2H

∑n
t=1 ε

2
t is σ

2. When H > 0.5,

the limit of n−2H
∑n

t=1 ε
2
t is zero. Third, the initial value J

H
c (0), which is the limit of

n−HX0/σ, plays an explicit role in the limit of n−2H
∑n

t=1Xt−1εt when H ≥ 0.5.

Remark 2 When H = 0.5, JHc (r) = Jc(r) and Part 5 of Lemma 1 becomes irrelevant.

In this case, the results in Parts 1-3 of Lemma 1 are exactly the same as those in

Lemma 1.a-1.c in Phillips (1987a). If we further let JHc (0) = 0, the result in Part 4 of

1 becomes

n−1

n∑
t=1

Xt−1εt ⇒ σ2

(
Jc(1)2 + 2c

∫ 1

0

Jc(r)
2dr − 1

)
/2 = σ2

∫ 1

0

Jc(r)dW (r),

which is the same as that in Lemma 1.d of Phillips (1987a).

Remark 3 The convergence result in Part 1 of Lemma 1 is the key to the development
of the results in the rest of the Lemma. With slight adjustments, the result in Part 1

can be extended to the case where ut becomes an I(d) process. When ut ∼ I(d), Davydov

(1970) has established the weak convergence result as n−H
(

Γ(1−2d)
(1+2d)Γ(1+d)Γ(1−d)

)−1/2∑[nr]
t=1 ut ⇒

BH(r) when n → ∞. Consequently, with the use of the continuous mapping theorem,
it can be proved easily that n−H

(
Γ(1−2d)

(1+2d)Γ(1+d)Γ(1−d)

)−1/2

X[nr] ⇒ σJHc (r).

5



Theorem 2 Let {Xt} be the time series generated by (1) and (2). Then, as n→∞,
if H = 0.5,

n (ρ̂n − ρn)⇒

(
JHc (1)2 − JHc (0)2 + 2c

∫ 1

0
JHc (r)2dr − 1

)
/2∫ 1

0
JHc (r)2dr

; (16)

if H > 0.5

n (ρ̂n − ρn)⇒

(
JHc (1)2 − JHc (0)2 + 2c

∫ 1

0
JHc (r)2dr

)
/2∫ 1

0
JHc (r)2dr

; (17)

if H < 0.5,

n2H (ρ̂n − ρn)⇒ −1/2∫ 1

0
JHc (r)2dr

. (18)

Remark 4 When we compare Theorem 2 to Theorem 1 in Phillips (1987a), we have

a few observations. First, when H = 0.5, ρ̂n − ρn has the same convergence rate and
the same limiting distribution as those in Phillips (1987a). Second, when H > 0.5, the

convergence rate of ρ̂n − ρn is n, which is the same as that when H = 0.5. However,

the limit has one less term in the numerator comparing to the case of H = 0.5. When

H < 0.5, the rate of convergence in ρ̂n − ρn is n
2H , which is slower than that when

H ≥ 0.5. The numerator in the limit has two less terms than that when H = 0.5.

Remark 5 If c = 0, then ρn = exp(−c/n) = 1. In this case, the model in (1) becomes

a unit root process with FGNs. With the further assumption that JHc (0) = 0, the results

in Theorem 2 becomes

n (ρ̂n − ρn)⇒
1
2
BH(1)2∫ 1

0
BH(r)2dr

when H > 0.5, (19)

n2H (ρ̂n − ρn)⇒ −1/2∫ 1

0
BH(r)2dr

when H < 0.5, (20)

The result in (19) is the same as that developed in Sowell (1990) and Marinucci and

Robinson (1999) for the unit root process with I(d) errors when d = H − 1/2 > 0.

However, when H < 0.5 our limiting result in (20) is slightly different with that obtained

in Sowell (1990) and Marinucci and Robinson (1999) when d = H−1/2 < 0; see (12) in

the present paper. The difference arises because the I(d) process used in Sowell (1990)

has different variance and long-run variance from those of the FGN. The variance

6



and the long-run variance of an I(d) process is Γ(1−2d)
Γ(1−d)2

and O(n2H) Γ(1−2d)
(1+2d)Γ(1+d)Γ(1−d)

,

respectively. The ratio of Γ(1−2d)
Γ(1−d)2

and Γ(1−2d)
(1+2d)Γ(1+d)Γ(1−d)

, divided by 2, gives

(1 + 2d)Γ(1 + d)

2Γ(1− d)
=
HΓ(0.5 +H)

Γ(1.5−H)
,

which is the numerator of the limit in (11) that has been derived by Marinucci and

Robinson (1999).

Remark 6 There is a discontinuity in the limit theory when H passes 0.5. When H

increases to 0.5, the rate of convergence moves from n2H to n. The limit involves two

additional terms in the numerator, [Jc(1)2 − Jc(0)2] /2 and c
∫ 1

0
JHc (r)2dr. When H

further increases from 0.5, the rate of convergence stays at n. The limit involves one

less term in the numerator as the term −1/2 is gone when H > 0.5.

4 Monte Carlo Studies

To check how well the limit distribution perform in finite sample, we carry out several

Monte Carlo studies. In all studies, we simulate data from Model (1) and (2). For

each time series simulated, we estimate ρn and calculate n (ρ̂n − ρn) when H ≥ 0.5

and n2H (ρ̂n − ρn) when H < 0.5. Four different sample sizes are considered, namely,

n = 32, 512, 2048, 8192. Three values are considered for H, namely H = 0.5, 0.9, 0.1.2

Two values are considered for c, namely, c = 10, 5. The 200, 000 replications are used

to obtain density of n (ρ̂n − ρn) or n2H (ρ̂n − ρn).

Figures 1-2 display the density of n (ρ̂n − ρn) when H = 0.5 and c = 10, 5. When

c = 10, the densities are almost identical when n ≥ 512. The density when n = 32

is close to that when n is larger, suggesting the limit distribution provides accurate

approximations to the finite sample distribution when the sample size is as small as

32. In all cases, the density is left-skewed.

Figures 3-4 display the density of n (ρ̂n − ρn) when H = 0.9 and c = 10, 5. For

both values of c, the density when n = 32 is very different from that when n = 8192.

The density for n = 2048 is very close to that for n = 8192. For small values of n,

the density is left-skewed. Interestingly, the density becomes right-skewed when n is

2The choice of H = 0.1 is empirically relevant for modeling logarithmic realized volatility, as found

in Gatheral et al. (2018) and Wang et al. (2019).
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larger. Although the same rate applies to H = 0.5 and to H > 0.5, the convergence

of the density is much slower when H > 0.5 than that when H = 0.5. This study

indicates that the asymptotic distribution approximates the finite sample distribution

less accurately when H > 0.5 than when H = 0.5 if n is small.

Figures 5-6 display the density of n2H (ρ̂n − ρn) when H = 0.1 and c = 10, 5. For

both values of c, the density when n = 32 is hugely different from those for other values

of n, suggesting one would make a terrible mistake by using the limit distribution to

approximate the finite sample distribution when n = 32. However, the densities for

n = 512, 2048, 8192 are nearly identical.
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5 Conclusions

In this paper we study the properties of the least squares estimator of the autoregressive

parameter in local to unity processes when errors are assumed to be fractional Gaussian

noises with the Hurst parameter H. It is shown that the estimator is consistent when

H ∈ (0, 1). Moreover, the rate of convergence is n when H ∈ [0.5, 1) whereas the rate

of convergence is n2H when H ∈ (0, 0.5). This result suggests that the estimator has a

slower rate of consistency when H ∈ (0, 0.5) than when H ∈ [0.5, 1).

Furthermore, the limit distribution of the centered least squares estimator depends

on H. When H = 0.5, the limit distribution is the same as that obtained in Phillips

(1987a) for the local to unity model with errors for which the standard functional

central theorem is applicable. When H > 0.5 or when H < 0.5, the limit distributions

are new to the literature. The limit distribution for H > 0.5 has one less term than

that for H = 0.5. The limit distribution for H < 0.5 has two less terms than that for

H = 0.5. Simulation studies are performed to check the reliability of the asymptotic

approximation. When H > 0.5, a large sample size is needed for the limit distribution

to provide an accurate approximation to the finite sample distribution. When H =

0.5, a small sample size is enough for the limit distribution to provide an accurate

approximation to the finite sample distribution. When H < 0.5, a moderate sample

size is needed for the limit distribution to provide an accurate approximation to the

finite sample distribution.

Appendix

Proof of Lemma 1. To prove Lemma 1.1, we first note that

Xt = ρnXt−1 + εt = ρtnX0 +
t−1∑
j=0

ρjnεt−j = ρtnX0 +
t∑

s=1

ρt−sn εs

= ρtnX0 + σ
t∑

s=1

ρt−sn

[
BH(s)−BH(s− 1)

]
= ρtnX0 + nHσ

t∑
s=1

ρt−sn

[
BH

( s
n

)
−BH

(
s− 1

n

)]

= ρtnX0 + nHσ
t∑

s=1

ρt−sn

∫ s/n

(s−1)/n

dBH(r),

11



where the fifth equation is from the similarity property of the fractional Brownian

motion We then have

n−HXt = e−ct/n
X0

nH
+ σ

t∑
s=1

∫ s/n

(s−1)/n

e−c(t−s)/ndBH(r)

= e−ct/n
X0

nH
+ σ

t∑
s=1

∫ s/n

(s−1)/n

e−c(t/n−r)e−c(r−s/n)dBH(r)

= e−ct/n
X0

nH
+ σ

t∑
s=1

∫ s/n

(s−1)/n

e−c(t/n−r) [1 +O (1/n)] dBH(r)

= e−ct/n
X0

nH
+ σ

∫ t/n

0

e−c(t/n−r)dBH(r) +Op (1/n)

= σe−ct/n
[
JHc (0) + op (1)

]
+ σ

∫ t/n

0

e−c(t/n−r)dBH(r) +Op (1/n)

= σJHc (t/n) +Op (1) ,

where the third equation is from the Taylor expansion of e−c(r−s/n) and the last equation

comes from the definition of the fOU process JHc (t/n) given in (15). Therefore, for

r ∈ [0, 1], we have

n−HX[nr] = σJHc

(
[nr]

n

)
+Op (1)⇒ σJHc (r) , as n→∞.

This proves Lemma 1.1.

Then, the convergence results in Lemma 1.2-1.3 can be obtained straightforwardly

by using the continuous mapping theorem (Billingsley, 1968, p. 30).

To prove the results in Lemma 1.4-1.5, we first have

X2
t = (ρnXt−1 + εt)

2 = ρ2
nX

2
t−1 + 2ρnXt−1εt + ε2

t

= X2
t−1 +

(
ρ2
n − 1

)
X2
t−1 + 2ρnXt−1εt + ε2

t ,

and
n∑
t=1

Xt−1εt =
1

2ρn

{
X2
n −X2

0 −
(
ρ2
n − 1

) n∑
t=1

X2
t−1 −

n∑
t=1

ε2
t

}
.

It is crucially important to note that
∑n

t=1 ε
2
t = Op (1/n) for all values of H ∈ (0, 1)

and

1

n

n∑
t=1

ε2
t = n−1σ2

n∑
t=1

[
BH(t)−BH(t− 1)

]2
= n−1+2Hσ2

n∑
t=1

[
BH

(
t

n

)
−BH

(
t− 1

n

)]2
p→ σ2,

12



where the convergence result is from Proposition 4.2 in Vittasaari (2015). As a result,

n−2H

n∑
t=1

ε2
t

p→


0 when H > 0.5

σ2 when H = 0.5

+∞ when H = 0.5

.

This is the reason why
∑n

t=1Xt−1εt having distinct asymptotic behaviors whenH takes

various values.

When H = 0.5, the four items in the decomposition of
∑n

t=1 Xt−1εt have a same

order and, as n→∞,

n−2H

n∑
t=1

Xt−1εt =
1

2ρn

{
X2
n −X2

0

n2H
− n

(
ρ2
n − 1

) 1

n1+2H

n∑
t=1

X2
t−1 − n−2H

n∑
t=1

ε2
t

}

⇒ σ2

2

{
JHc (1)2 − JHc (0)2 + 2c

∫ 1

0

JHc (r)2dr − 1

}
,

where the convergence result comes from Lemma 1.1 and Lemma 1.3, together with

the limit of n−2H
∑n

t=1 ε
2
t obtained above.

Whereas, when H > 0.5,
∑n

t=1 ε
2
t = Op (n) is asymptotically dominated by the

other terms in the decomposition of
∑n

t=1Xt−1εt. Hence, it disappears in the limit of

n−2H
∑n

t=1Xt−1εt that takes the form of

n−2H

n∑
t=1

Xt−1εt =
1

2ρn

{
X2
n −X2

0

n2H
− n

(
ρ2
n − 1

) 1

n1+2H

n∑
t=1

X2
t−1 − n−2H

n∑
t=1

ε2
t

}

⇒ σ2

2

{
JHc (1)2 − JHc (0)2 + 2c

∫ 1

0

JHc (r)2dr

}
.

In contrast, when H < 0.5,
∑n

t=1 ε
2
t = Op (1/n) asymptotically dominates the other

terms in the decomposition of
∑n

t=1Xt−1εt. Hence,

n−1

n∑
t=1

Xt−1εt =
1

2ρn

{
op (1)− n−1

n∑
t=1

ε2
t

}
p→ −σ

2

2
.

The proof of Lemma 1 is complete.

Proof of Theorem 2. The theorem is the direct consequence of Lemma 1.3-1.5.

In particular, (16) and (17) follow from Lemma 1.3-1.4 and (18) follow from Lemma

1.3 and Lemma 1.5.
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