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Abstract

This paper introduces a novel method for accurately approximating the spectral density of the

discretely-sampled fractional Ornstein-Uhlenbeck (fOU) process. We utilize this approximated spec-

tral density to develop an estimation method called the approximated Whittle maximum likelihood

method (AWML) for fOU. Additionally, we develop a likelihood-ratio (LR) test using the approxi-

mated spectral densities to distinguish between the fractional Brownian motion (fBm) and fOU pro-

cesses, two popular models in the volatility literature. Simulation studies demonstrate that the AWML

method improves the estimation speed and accuracy compared to existing ones and that the LR test is

effective in distinguishing between the two processes when deviations are moderate. We then apply

the AWML method and the LR test to the log realized volatility of 40 financial assets. Our findings

reveal that the estimated Hurst parameters for these assets fall within the range of 0.10 to 0.23, in-

dicating a rough volatility dynamic. Moreover, our LR test results suggest that both fBm and fOU

are empirically relevant, with some financial assets favoring fBm and others leaning towards fOU.

The proposed LR test can provide valuable guidance for selecting an appropriate model in empirical

applications.
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1 Introduction

The fractional Ornstein-Uhlenbeck (fOU) process is a stochastic process widely employed in finance,
physics, biology, and other fields to model diverse phenomena. An essential parameter of the fOU process
is the Hurst exponent (H), which determines the degree of memory in the process. When H = 0.5,
the fOU process becomes the standard Ornstein-Uhlenbeck (OU) process. For H > 0.5, the process is
characterized by long memory, while for H < 0.5, the process exhibits rough dynamics. In finance, the
fOU process is commonly used to model the volatility of financial assets. (See, e.g., Gatheral et al., 2018,
Wang et al., 2023, Fukasawa et al., 2022, Bennedsen et al., 2022).

The spectral density is a powerful tool for analyzing the frequency characteristics of a time series. It
has been utilized extensively to identify the presence of periodic patterns, trends, and cycles in the data1

Moreover, the spectral density has proven valuable in parameter estimation (Whittle, 1954, Christiano and
Vigfusson, 2003) as well as in hypothesis testing (McElroy, 2016). Unfortunately, obtaining the spectral
density of discretely sampled fOU processes involves an infinite summation, which poses numerical
challenges in practical applications. The commonly used truncation method can have poor accuracy when
H is small (e.g., 0.1), even with a high threshold. To address this issue, we propose a novel approach to
approximate the spectral density of fOU processes, inspired by the method of Paxson (1997) for fractional
Gaussian noise (fGn). The proposed method, which is referred to as the Paxson approximation, leverages
the monotonicity of the summand to obtain both the lower and upper bounds of the spectral density and
takes the average of these bounds as an estimate of the spectral density. Compared to the truncation
method, the Paxson method offers greater accuracy and computational efficiency, making it suitable for
various applications.

We demonstrate the practical value of the Paxson approximate spectral density for both model esti-
mation and hypothesis testing. Specifically, we introduce the approximate Whittle maximum likelihood
(AWML) method for estimating fOU processes. This method involves replacing the spectral density of
fOU with its Paxson approximation in the frequency-domain maximum likelihood (ML) approach. The
asymptotic properties of AWML are identical to those of the standard Whittle ML method. Through a
simulation study, we compare the finite sample performance of the AWML method with two existing
methods: the maximum composite likelihood (MCL) method (Bennedsen et al., 2022) and the change-
of-frequency (CoF) approach (Wang et al., 2023). The AWML method proves to be the most accurate of
the three, with CoF being the least accurate. Furthermore, the AWML method is computationally more

1See, e.g., Burnside (1998), Messina et al. (2009), McElroy and Roy (2017), Angeletos et al. (2020).
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efficient than MCL.
Next, we illustrate how the Paxson approximate spectral density can be utilized to create a likelihood

ratio (LR) test that distinguishes between fOU and fractional Brownian motion (fBm) processes. Finan-
cial volatility has been modeled using both fBm and fOU processes in various studies. For instance,
Gatheral et al. (2018), Wang et al. (2022), Chong et al. (2022) and Shi et al. (2022) model log volatility
as an fBm process, while Bayer et al. (2016), Gatheral et al. (2018), Wang et al. (2023) and Bolko et al.
(2022) utilize the fOU specification for volatility. The likelihood ratio test can shed light on the empiri-
cal relevance of these two model specifications and offer essential guidance for selecting an appropriate
model in empirical applications. The LR statistic is constructed from the Paxson approximated spectral
densities of the two models and the periodogram. A bootstrapping procedure is employed to obtain criti-
cal values of the LR statistic. Our simulation study reveals that the LR test has satisfactory finite sample
performance.

In the empirical application, we apply the proposed estimation method for fOU and the LR test (H0 :
fBm versus H1 : fOU) to the log realized volatility of 40 financial assets. Our estimation results suggest
that volatility always exhibits rough dynamics, with the Hurst parameter ranging from 0.1 to 0.25. Our
LR test results are mixed, with about half of them favoring fBm while the other half favoring fOU.

The rest of the paper is organized as follows. In Section 2, we introduce the fOU process and the
spectral density of discretely sampled fOU. Section 3 derives the Paxson approximate spectral density
and evaluates the approximation accuracy. Section 4 discusses how to implement the AWML method
based on the Paxson approximate spectral density, its asymptotic theory, and its finite sample perfor-
mance (relative to alternative estimation methods). Section 5 demonstrates the usefulness of the Paxson
approximate spectral density for conducting the LR test. We present the empirical results in Section 6.
The proofs are provided in the Appendix.

2 Fractional OU Process

The fOU process {yt : t ∈ R} is the stochastic process given by

dyt = κ (µ− yt)dt +σdBH
t with y0 = Op (1) ,

where σ > 0, µ is a constant, and BH
s is a fractional Brownian motion process with the Hurst parameter

H ∈ (0,1). The fBm is a Gaussian process with mean zero and autocovariance given by

Cov
(
BH

t ,B
H
s
)
=

1
2

(
|t|2H + |s|2H−|t− s|2H

)
, ∀t,s ∈ (−∞,+∞) , (1)
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It includes the standard Brownian motion (Bm) process as a special case with H = 0.5. Just like the Bm,
the fBm is nonstationary for all H ∈ (0,1). However, the first difference or increment of fBm, which
is fGn, is always stationary. The fBm has sample paths smoother (rougher) than the standard Bm when
H > 0.5 (H < 0.5). The autocovariances of fGn are not summable when H > 0.5 (i.e. exhibiting long
memory) but sum to zero when H < 0.5 (i.e. exhibiting anti-persistence).

The fOU process reduces to the traditional OU process when H = 0.5 and to the fBm when κ = 0.
When κ > 0, fOU is stationary. When κ < 0, fOU is explosive. In this paper, we assume that κ > 0.
The fOU process is (locally) Hölder continuous of order H− ε (Gatheral et al., 2018, Gehringer and Li,
2020). The fOU process has a unique path-wise solution:

yt = e−κty0 +
(
1− e−κt)

µ +
∫ t

−∞

σe−κ(t−u)dBH
u , (2)

where E (yt) = µ and Var (yt) = σ2κ−2HHΓ(2H) with Γ(.) being the Gamma function. See Hu and
Nualart (2010). When κ > 0, the autocovariance of fOU is given by

γk =
σ2

2κ2H

(
1
2

∫
∞

−∞

e−|s| |κk+ s|2H ds−|κk|2H
)

. (3)

and its spectral density is

fy (λ ) =
σ2

2π
C (H) |λ |1−2H(κ2 +λ

2)−1 for λ ∈ (−∞,∞), (4)

where C (H)=Γ(2H +1)sin(πH). See Garnier and Sølna (2018) for the autocovariance and Hult (2003)
for the spectral density.

Empirical observations are often sampled at a fixed sampling interval (denoted by ∆). The discrete-
time observations from the fOU process are denoted by

{
y j∆
}n

j=1, where n is the total number of obser-
vations. Hence, T = n∆ is the time span. The spectral density of discretely-sampled fOU is provided by
Hult (2003) and takes the form of

f ∆
y (λ ) =

σ2

2π
C (H)∆

2H
∞

∑
k=−∞

|λ +2πk|1−2H

(κ∆)2 +(λ +2πk)2 for λ ∈ [−π,π] . (5)
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3 Paxson Approximation of Spectral Density

We now derive the Paxson approximate spectral density for discretely-sampled fOU. The discretely-
sampled spectral density of fOU (5) involves the infinite sum

S (λ )≡
∞

∑
k=−∞

|λ +2πk|1−2H

(κ∆)2 +(λ +2πk)2 ,

which can be rewritten as

S (λ ) =
−1

∑
k=−∞

(−λ −2πk)1−2H

(∆κ)2 +(λ +2πk)2 +
λ 1−2H

(∆κ)2 +λ 2 +
∞

∑
k=1

(λ +2πk)1−2H

(∆κ)2 +(λ +2πk)2

=
∞

∑
k=1

(2πk−λ )1−2H

(∆κ)2 +(2πk−λ )2 +
λ 1−2H

(∆κ)2 +λ 2 +
∞

∑
k=1

(λ +2πk)1−2H

(∆κ)2 +(λ +2πk)2

≡
∞

∑
k=1

Q(k)+Q0 +
∞

∑
k=1

Q̃(k) ,

where Q(k)≡ (2πk−λ )1−2H

(∆κ)2+(2πk−λ )2 and Q̃(k)≡ (λ+2πk)1−2H

(∆κ)2+(λ+2πk)2 . Some theoretical properties of Q(k) and Q̃(k)

are provided in Lemma 3.1.

Lemma 3.1 (1) The quantity Q(k) is monotonically decreasing when k > ∆κ+λ

2π
; (2) The quantity Q̃(k)

is monotonically decreasing when k > ∆κ−λ

2π
; (3) For K > ∆κ+λ

2π
,

a(K,H,λ ) ≤
∞

∑
x=K+1

Q(k)≤ 1
4πH

(2πK−λ )−2H ,

b(K,H,λ ) ≤
∞

∑
x=K+1

Q̃(k)≤ 1
4πH

(2πK +λ )−2H ,

where

a(K,H,λ ) ≡ 1
4π

[2π (K +1)−λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}
, (6)

b(K,H,λ ) ≡ 1
4π

[2π (K +1)+λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}
. (7)

Lemma 3.1 implies that both Q(k) and Q̃(k) are monotonically decreasing when k > (∆κ +λ )/(2π).
This requirement is not at all restrictive. For example, if we assume that λ = π (upper bound) and
κ∆ = 10 (a very large value in the empirical sense), the threshold is only 2.09. The monotonicity of Q(k)

and Q̃(k) is crucial to the derivation of the results in Lemma 3.1(3). See Appendix A for details.
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By applying Lemma 3.1(3), we can derive both the lower and upper bounds for the spectral densities,
which are presented in (17) in the Appendix. The Paxson approximation is then obtained as the average
of these two bounds. The analytical expressions for the Paxson approximation are given in Theorem 3.1,
with its proof in Appendix A.

Theorem 3.1 The Paxson approximation of the spectral density of discretely-sampled fOU is

f ∆
y (λ ) ≈ f̂ ∆

y (λ )≡ σ2

2π
C (H)∆

2H

[
K

∑
k=1

Q(k)+
K

∑
k=1

Q̃(k)+
λ 1−2H

(∆κ)2 +λ 2 (8)

+
1
2

a(K,H,λ )+
1
2

b(K,H,λ )+ c(K,H,λ )

]
,

where K > ∆κ+λ

2π
, C (H) = Γ(2H +1)sin(πH), and

c(K,H,λ )≡ 1
8πH

(2πK−λ )−2H +
1

8πH
(2πK +λ )−2H .

Approximation Accuracy

We evaluate the accuracy of two methods for approximating the spectral density (5): the truncation
method and the Paxson method. The truncation method is commonly used in practice, where the infinite
sum ∑

∞
k=−∞

is replaced by ∑
K
k=−K . We consider various settings of the model parameters with a con-

stant sampling interval of ∆ = 1/250, which corresponds to daily observations over a one-year period.
Specifically, we consider three values of the Hurst parameter (H = 0.1,0.2,0.7) and two values of the
mean-reverting parameter (κ = 25,250). Based on the path-wise solution (2), we may obtain the exact
discrete time representation of fOU as:

y j∆ = e−κ∆y( j−1)∆ +
(

1− e−κ∆

)
µ + ε j∆ with ε j∆ = σ

∫ j∆

( j−1)∆
e−κ( j∆−u)dBH

u .

The values of κ and ∆ imply that the autoregressive coefficient is approximately 0.90 and 0.37 for κ = 25
and κ = 250, respectively.

Figure 1 corresponds to the case where κ = 25, while Figure 2 corresponds to κ = 250. The first
row of both figures displays the Paxson approximation (9) (with K = 200) and the lower and upper
bounds of the spectral densities obtained from (17). The x-axis is the spectral frequency λ ranging
from 0 to π . The y-axis corresponds to the spectral density f ∆

y (λ ). It is evident that the three lines are
nearly indistinguishable under all parameter settings, suggesting that the Paxson approximation errors
are negligible.

The second row of the figures compares the accuracy of the Paxson approximation with that of the
truncation method, which uses thresholds of K = 2000,5000,20000. We observe that the truncation

6



Figure 1: Approximation spectral densities: κ = 25 and ∆ = 1/250 (i.e. e−κ∆ ≈ 0.90))

(a) Paxson: H = 0.1 (b) Paxson: H = 0.2 (c) Paxson: H = 0.7

(d) Paxson v.s. truncation: H = 0.1 (e) Paxson v.s. truncation: H = 0.2 (f) Paxson v.s truncation: H = 0.7

Note: The x-axis is the spectral frequency λ ranging from zero to π and the y-axis is the approximate spectral
density, which is computed from (9) for Paxson and (5) for the truncation method. The lower and upper
bounds of f ∆

y (λ ) are computed from (17) in the Appendix.

method performs well for some parameter settings but not all. Specifically, the approximation accuracy
is poor when H is close to zero or when e−κ∆ is small. This observation is consistent with equation (5).
When the value of K is sufficiently large so that the summand in (5) monotonically decreases for k > K,
the summand itself declines more slowly as H approaches zero. Furthermore, for a given value of H, a
larger κ∆ is associated with a slower rate of decline in the summand. Therefore, to achieve an accurate
approximation, a larger truncation order K is required when H is smaller or when κ∆ is larger. As we can
see from the graphs, the spectral density of the truncation method approaches the Paxson approximation
as the truncation order K increases. However, even with K = 20000, the approximation error remains
significant for H = 0.1 and κ∆ = 1 in Figure 2. It is important to note that the truncation method becomes
computationally intensive when the truncation order K is large.

4 Application I: Model Estimation

In this section, we introduce the approximate Whittle maximum likelihood (AWML) method for esti-
mating the Hurst parameter of the fOU process, based on the Paxson approximate spectral density. We
compare the performance of AWML with two existing methods: the MCL approach and the CoF ap-

7



Figure 2: Approximate spectral densities: κ = 250 and ∆ = 1/250 (i.e. e−κ∆ ≈ 0.37)

(a) Paxson: H = 0.1 (b) Paxson: H = 0.2 (c) Paxson: H = 0.7

(d) Paxson v.s. truncation: H = 0.1 (e) Paxson v.s. truncation: H = 0.2 (f) Paxson v.s. truncation: H = 0.7

Note: The x-axis is the spectral frequency λ ranging from zero to π and the y-axis is the approximate spectral
density, which is computed from (9) for Paxson and (5) for the truncation method. The lower and upper
bounds of f ∆

x (λ ) are computed from (17) in the Appendix.

proach. Our main focus is on the Hurst parameter, which is a key parameter in the fOU process. We
demonstrate that AWML provides an effective and efficient alternative to existing methods for estimating
this parameter. Note that Fukasawa and Takabatake (2019) use the Paxson approximate spectral density
to construct the AWML estimate of H in fGn.

4.1 Approximate Whittle ML method

Let
{

y j∆
}n

j=1 be the data series of interest and f ∆
y (λ )= σ2η (λ ;β ) be its spectral density with β con-

taining all parameters except σ . Let Z = exp
(
− 1

2π

∫
π

−π
logη(λ ;β )dλ

)
and f̃ ∆

y (λ ) = σ2η̃ (λ ;β ) be the
normalized spectral density with η̃ (λ ;β )=η(λ ;β )Z. The normalized spectral density satisfies the prop-
erty that ∫

π

−π

log η̃ (λ ;β )dλ = 0. (9)

The log Whittle likelihood function (Whittle, 1951) is specified as

logLW (β ) =
1
m

m

∑
s=1

I(λs)

η̃(λs;β )
, (10)
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where m = bn/2c, λs = 2πs/n with s = 1, ...,m and I (λs) is the periodogram at the sth Fourier frequency
λs defined as

I (λs) =
1

2πn

∣∣∣∣∣ n

∑
j=1

z j exp(−i jλs)

∣∣∣∣∣
2

. (11)

The objective function of the Whittle method (10) is derived from the time-domain ML with the approx-
imations Σ−1

z ≈
[
a jk
]T

j,k=1, where

a jk ≈ (2π)−2
∫

π

−π

f (λ ;θ)−1 ei( j−k)λ dλ and log |Σz| ≈ T (2π)−1
∫

π

−π

log f (λ ;θ)dλ .

For the latter, replacing f ∆
y (λ ) with σ2η̃ (λ ;β )/Z and using the properties of η̃ (λ ;β ) in (9),

log |Σz| ≈ T logσ
2/Z +T (2π)−1

∫
π

−π

log η̃ (λ ;β )dλ = T logσ
2/Z,

which is independent of β and hence removed from the objective function, leading to (10).
The Whittle ML estimator is denoted by β̂W and defined as

β̂W = argmin
β

logLW (β )

and the parameter σ2 is estimated separately as the sample average of the ratio between I(λs) and the
original spectral density η(λs; β̂W ), i.e.,

σ̂
2
W =

1
m

m

∑
s=1

I(λs)

η(λs; β̂W )
.

The approximate Whittle ML method is expected to much more computational efficient, comparing
with the time-domain ML (TDML) method, especially when the dimension n is large. This is because
the implementation of the TDML method requires computing the variance covariance matrix Σz and its
determinant and inverse (i.e., |Σz| and Σ−1

z ), which do not have closed-form expressions.
Like the TDML method, the Whittle ML estimator is shown to be consistent, asymptotic normal and

efficient in the sense of Fisher by Fox and Taqqu (1986) for strongly dependent processes whose spectral
density satisfies the condition fy (λ ) ∼ |λ |−2d Lβ (λ ) as λ → 0, where d ∈ (0,1/2) and Lβ (λ ) varies
slowly at 0. The asymptotic results are extended to a model specification including not only rough but
also non-stationary processes, i.e., d ∈ (−1/2,0) and d ∈ [0.5,1), by Velasco and Robinson (2000).2

Note that the spectral density of fOU is |λ |1−2H Lβ (λ ) when λ → 0 with H = d +1/2. Since H ∈ (0,1)
is equivalent to d ∈ (−1/2,1/2), the asymptotic theory of Velasco and Robinson (2000) is applicable to

2In the case of non-stationarity, tapering should be employed.
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fOU, which is stated below.
Under Assumptions A.1-A.5 and A.7-A.9 in Velasco and Robinson (2000), the standard Whittle ML

estimator for fOU is consistent and has asymptotic normality:

√
m
(

β̂ −β0

)
→d N

(
0,4πΣ

−1
0
)
,

where β0 is the true model parameter and

Σ0 =
∫

π

−π

{
∂

∂β
logη (λ ;β0)

}{
∂

∂β ′
logη (λ ;β )

}
dλ .

Moreover, σ̂2
W →p σ̂2.

Calculating the spectral density is a crucial component in implementing Whittle ML methods, but
the spectral densities of fGn and fOU involve infinite summations, making the computation of the ex-
act spectral density challenging. As mentioned in Section 3, the truncation method is computationally
demanding and inaccurate in some cases. Therefore, we propose using the Paxson approximate spec-
tral density f̂ ∆

y (λ ) to replace the actual spectral density f ∆
y (λ ), resulting in an approximate Whittle ML

method. The AWML estimator is denoted by θ̂AW =
(

β̂AW , σ̂AW

)
.

4.2 Other estimation methods

We introduce the MCL method of Bennedsen et al. (2022) and the CoF method Wang et al. (2023) for
fOU. Both methods are designed to improve the computational speed of TDML.

4.2.1 TDML and MCL

Let y = (y1∆,y2∆, · · · ,yn∆)
′, θ = (H,κ,σ), and Σy be the covariance matrix of y. Since y∼ N(0,Σy), the

log likelihood function of fOU is

logL(θ) ∝−1
2

log |Σy|−
1
2

y′Σ−1
y y. (12)

The TDML estimator is defined as
θ̂ML = argmax

θ

logL(θ).

The asymptotic theory of θ̂ML was studied in Dahlhaus (1989) when H ∈ (0.5,1) and Lieberman et al.
(2012) when H ∈ (0,0.5). Under both settings, the TDML estimator is consistent, asymptotically normal,
and efficient in the sense of Fisher.

However, the TDML method can be computationally intensive, which makes it unsuitable for a sam-
ple with a large sample size. To address this issue, Bennedsen et al. (2022) propose the maximum

10



composite likelihood method, which aims to improve the computational speed. The objective function of
the MCL is given by:

logLc(θ) =
K

∑
k=1

n−k

∑
i=1

logω
(
y(i+k)∆,yi∆;θ

)
,

where K ∈ N+ is fixed, ω
(
y(i+k)∆,yi∆;θ

)
is the pairwise joint probability density function (pdf) of(

y(i+k)∆,yi∆
)
. Since

(
y(i+k)∆,yi∆

)
follows a bivariate normal distribution with correlation coefficient ρk,

the pdf of
(
y(i+k)∆,yi∆

)
takes the form of

ω
(
y(i+k)∆,yi∆;θ

)
=

1

2πσ2
√

1−ρ2
k

exp

[
− 1

2σ2
(
1−ρ2

k

) (y2
(i+k)∆ + y2

i∆−2yi∆y(i+k)∆ρk

)]
.

The computation of the correlation coefficient ρk is based on formula (3) in which the indefinite integral
is computed using the numerical integral evaluation function quadgk in Matlab. The composite maximum
likelihood estimator is defined as

θ̂MCL = argmax
θ∈Θ

logLc(θ).

When H ≤ 0.5, the MCL method is shown to be consistent and asymptotically normal, with its variance
depending on the range of H (Bennedsen et al., 2022).

4.2.2 CoF method

The CoF approach only relies on the first two moments of yi∆ which makes it very easy to implement.
The Hurst parameter H is estimated as

ĤCoF =
1
2

log2

∑
n−4
j=1
(
y( j+4)∆−2y( j+2)∆ + y j∆

)2

∑
n−2
j=1
(
y( j+2)∆−2y( j+1)∆ + y j∆

)2

 ,

where log2 is 2-based logarithm. The numerator and the denominator are the second order difference of
y j∆ at different frequencies and hence the name of the method. The remaining two parameters σ and κ

are estimated in a second stage such that

σ̂ =

√√√√√∑
n−2
j=1
(
y( j+2)∆−2y( j+1)∆ + y j∆

)2

n
(

4−22Ĥ
)

∆2Ĥ
and κ̂ =

n∑
n
j=1 y2

j∆−
(

∑
n
j=1 y j∆

)2

n2σ̂2ĤΓ
(
2Ĥ
)


− 1

2Ĥ

.

Both Ĥ and σ̂ are consistent and asymptotically normal when T ∆→ 0 and n = T/∆→ ∞. While Ĥ is
√

n-consistent, the convergent rate of σ̂ is slower (i.e.,
√

n/(log(1/∆))). The consistent of κ̂ requires
T → ∞ and ∆→ 0. The rate of convergence is

√
T and the estimator is asymptotically normal.
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4.3 Simulation study

The data generating process is fOU (2) with two parameter settings:
{

H,κ,σ2} = {0.1,1,0.2} and{
H,κ,σ2}= {0.2,5,1}, which are close to the estimated coefficients in the empirical application. We set

the sample size to n = 2,000,4,000 and conduct 1,000 replications to compare the estimation accuracy
of AWML, MCL, and CoF. For AWML, we use K = 200 for the Paxson’s approximation of the spectral
density as in Figures 1 and 2. We use the CoF estimate as an initial value for the numerical optimization
conducted with the fminsearch function in Matlab.

Figure 3: Kernel densities of the estimated model parameters: H = 0.1,κ = 1,σ2 = 0.2

(a) Ĥ : n = 2000 (b) κ̂ : n = 2000 (c) σ̂2 : n = 2000

(d) Ĥ : n = 4000 (e) κ̂ : n = 4000 (f) σ̂2 : n = 4000

Note: The kernel densities are computed from the 1000 estimates of the model parameters. The x-axis is the
estimated coefficients and y-axis displays the kernel density.

Figures 3 and 4 depict kernel density estimates of the parameter estimates from the three estimation
methods for the two sets of model parameters. The top row corresponds to a sample size of n = 2000,
while the bottom row corresponds to n = 4000. In terms of both bias and variance, the AWML method
provides the most accurate estimation results, followed by MCL. The advantage of AWML is more
pronounced in Figure 3 (with a smaller value of H) than in Figure 4. While the CoF method is compu-
tationally efficient, the estimation accuracy comes at a cost, and the distributions of CoF estimates are
the most dispersed. Furthermore, the AWML method is computationally less expensive than MCL. On a
standard laptop computer, it takes AWML and MCL, respectively, approximately 1.19 and 4.32 seconds

12



Figure 4: Kernel densities of the model parameter estimates: H = 0.2,κ = 5,σ2 = 1

(a) n = 2000,H = 0.2 (b) n = 2000,κ = 5 (c) n = 2000,σ2 = 1

(d) n = 4000,H = 0.2 (e) n = 4000,κ = 5 (f) n = 4000,σ2 = 1

Note: The kernel densities are computed from the 1000 estimates of the model parameters. The x-axis is the
estimated coefficients and y-axis displays the kernel density.

to complete one iteration.3

5 Application II: Hypothesis Testing

In this section, we demonstrate how the Paxson approximate spectral density facilitates the implementa-
tion of a likelihood ratio test that compares fBm (the null) with fOU (the alternative). The fBm and fOU
models have gained popularity in recent volatility literature due to their ability to fit volatility surface,
capture volatility dynamics, and provide accurate forecasts (see, e.g., Gatheral et al., 2018, Wang et al.,
2023). The fOU process nests fBm as a special case with κ = 0.4 Despite their widespread use, it remains
an open question as to which of these models holds greater empirically relevance. The proposed likeli-
hood ratio test can offer insight into this intriguing empirical question and provide guidance for further
theoretical and empirical research.

3The CPU time is based on MacBook Pro M2 chip, 8-core CPU and 10-core GPU.
4Proposition 3.1 in Gatheral et al. (2018) gives a condition on κ under which fOU behaves locally as fBm. This condition

can be easily tested using our approach.
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Since fBm is a non-stationary process and LR tests are only applicable to stationary processes, we
apply to the LR test on first differenced data and compare fGn (increment of fBm) against dfOU (incre-
ment of fOU) instead. Define the first difference of the process as x j∆ = y j∆− y( j−1)∆, which is a fGn
when κ = 0 and dfOU when κ 6= 0. The following theorem gives the expression of the spectral density
of the dfOU process.

Theorem 5.1 The spectral density of the dfOU process is

f ∆
x (λ ) = 2(1− cosλ ) f ∆

y (λ ) , for λ ∈ [−π,π] (13)

and the Paxson approximation of the spectral density of discretely-sampled dfOU is

f ∆
x (λ )≈ f̂ ∆

x ≡ (λ )2(1− cosλ ) f̂ ∆
y (λ ) . (14)

The proof of Theorem 5.1 can be found in the Appendix. It is worth noting that the dfOU process reduces
to fGn when κ = 0. The spectral density and Paxson approximate spectral density of fGn can be obtained
by substituting κ = 0 into (13) and (14), respectively. The spectral density of fGn is also presented
in Proposition 2.1 of Beran (1994). With this information in hand, we can now introduce the spectral
density-based likelihood ratio test.

5.1 Likelihood ratio test

Consider two models of interest: F0=
{

fφ : φ ∈Θ1
}

and F1={ fθ : θ ∈Θ2} with φ = (H,σ) for fGn
and θ = (H,κ,σ) for dfOU. These two models are nested, i.e., F0⊂F 1. We define the ‘distance’
between a given model spectral density fϑ and a target or true spectral f ∗ by

D ( fϑ , f ∗) =
1
m

m

∑
s=1

log fϑ (λs)+
1
m

m

∑
s=1

f ∗ (λs)

fϑ (λs)
.

The Whittle ML estimators of the two models are, respectively,

φ̂ (I) = argmax
φ

D
(

fφ , I
)

and θ̂ (I) = argmax
θ

D ( fθ , I) ,

where I is the periodogram specified in (11).5 Again, we use the Paxson approximate spectral densities
to replace the true ones for dfOU and fGn since the true spectral densities involve an infinite sum. The
Paxson approximate spectral density of dfOU is provided in Theorem 5.1 with that of fGn being a special
case of dfOU with κ = 0.

5This objective function formulation is equivalent to the one presented in Section 4.1 that utilizes a normalized spectral
density. For estimation of these two models, we will be following the procedure described in Section 4.1.
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Under the null hypothesis, κ = 0 such that the two models F0 and F1 are equidistant to the true
model with respect to D (a.k.a divergence equivalence) given by

H0 : D
(

f
φ̂( f ∗), f ∗

)
= D

(
f
θ̂( f ∗), f ∗

)
. (15)

The likelihood ratio statistic is constructed as the difference between model distances to the periodogram:

LR = D
(

f
φ̂(I), I

)
−D

(
f
θ̂(I), I

)
. (16)

The definition of divergence equivalence and the LR statistic are discrete-time correspondence of the
continuous-time version provided by McElroy (2016). Since 1

ny′Σ−1
y y ≈ 1

2π

∫
π

−π
I (λ ) fθ (λ )

−1 dλ and
1
n log |Σy| ≈ 1

2π

∫
π

−π
log fθ (λ )dλ , we have

logL(θ) =−1
2

log |Σy|−
1
2

y′Σ−1
y y≈−n

2
D ( fθ , I)

and the time domain likelihood ratio statistic L̃R equals nLR, i.e.,

L̃R =−2 [logL(φ)− logL(θ)] = nLR.

According to McElroy (2016), the nLR statistic approaches a Chi-square distribution as n tends towards
infinity under some regularity conditions. However, it requires the spectral density to be Lipschitz of
degree α > 1/2. This condition is, unfortunately, not satisfied by dfOU.6 Therefore, the limiting dis-
tribution of L̃R in the current setting remains unknown. To perform statistical inference, we employ a
bootstrapping procedure, the implementation of which is detailed below. We reject the null model F0 in
favor of F1 if nLR exceeds the bootstrapped critical value.

Step 1: Estimate Ĥ and σ̂ under the null hypothesis that x j∆ = y j∆− y( j−1)∆ follows a fractional Gaussian
process using the approximate Whittle ML method.

Step 2: Simulate data x(b)j∆ ∼ f Gn
(
Ĥ, σ̂

)
with j = 1, . . . , n.

Step 3: Compute the likelihood ratio statistic L̃R
(b)

from
{

x(b)j∆

}n

j=1
.

Step 4: Repeat Step 2-3 for B = 999 times and obtain
{

L̃R
(b)}B

b=1
.

Step 5: The 95th percentile is taken as the bootstrapped critical value of the L̃R statistic.
6As λ → 0, the spectral density of the dfOU process is approximately |λ |−2d Lβ (λ ), where d = H−3/2 ∈ (−3/2,−1/2).

Note that the TDML estimator for non-invertible processes (d ≤ −1/2) has been shown to be asymptotically normal and
efficient in Lieberman et al. (2012), but the asymptotic properties of the Whittle ML estimator for these processes have not
yet been established in the literature.
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5.2 Simulation study: fBm versus fOU

In this section, we evaluate the finite sample performance of the likelihood ratio test in distinguishing
between fBm and fOU processes. To generate the data, we use the fOU process (2), with the fractional
parameter H set to 0.1, 0.2, or 0.3. The fBm process is generated from (2) with κ = 0. Under the
alternative hypothesis of fOU, we set κ to 1, 5, or 10, representing different levels of local deviations
between the fBm and fOU models, where larger values of κ indicate greater dissimilarities. The critical
value of the LR test is obtained by bootstrapping, and we set the nominal size of the test to 5%. We
perform 1,000 replications and vary the sample size from 1,000 to 3,000 to evaluate the size and power
of the LR test.

Table 1: Sizes and powers of the likelihood ratio test: fBm (H0) versus HA (fOU). The number of repli-
cation is 1000 and the nominal size is 5%.

H κ = 0 κ = 1 κ = 5 κ = 10
T = 2000

0.1 0.051 0.10 0.55 0.60
0.2 0.051 0.12 0.75 0.85
0.3 0.049 0.15 0.87 0.96

H = 0.2
T = 1000 0.051 0.09 0.49 0.77
T = 2000 0.051 0.12 0.75 0.85
T = 3000 0.051 0.22 0.88 0.94

Table 1 shows the results of the LR test under various parameter configurations. Overall, the LR test
performs well in finite samples, with empirical sizes that are close to the nominal size across all settings.
As expected, when the difference between the fBm and fOU models is small (i.e., κ = 1), the test’s power
is low, reaching only 12% when T = 2000 and H = 0.2. However, the power increases substantially as
the gap between the two models widens. For instance, when T = 2000 and H = 0.2, the power increases
from 12% to 85% as κ increases from 1 to 10. Additionally, we observe that the empirical power of the
test increases with larger sample sizes.

6 Financial Volatility Dynamics

Volatility is a critical factor in many financial decisions, and the availability of intraday data allows for the
construction of realized volatility measures. In this study, we obtain the daily realized volatility (RV) of
several assets, including the S&P 500 index exchange-traded fund (ETF), ETFs tracking various industry
indices, and 30 Dow Jones industrial average stocks, from the Risk Lab.7 The sample period runs from

7https://dachxiu.chicagobooth.edu/#risklab.
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2012 to 2019. We avoid the subprime mortgage crisis period and the stock turbulence in March 2020 at
the onset of Covid-19, as in Shi et al. (2022).

6.1 Model estimation

The logarithm of RV is modeled as the more general process fOU. To estimate the model parameters, we
employ three different approaches: AWML, MCL, and CoF. The sampling interval ∆ is set to 1/252 and
the parameter µ is taken as the average of the log RV. We use the estimates from CoF as initial values
for AWML and MCL. As in our simulations, we set K = 200 for AWML. The computing times for MCL
and AWML are approximately 20 and 8 seconds, respectively.

Table 2 reports the estimation results of the fOU model for the ten index ETFs (top panel) and the
30 Dow Jones industrial average stocks (bottom panel). The results indicate that AWML and MCL
provide very similar estimates for all three model parameters, with the estimated Hurst parameter ranging
between 0.12 and 0.23. In contrast, the CoF estimates of H are consistently higher than those of AWML
and MCL. The estimated κ of the two maximum likelihood methods falls between 1.5 and 13.23, which
implies a very persistent process with the autoregressive coefficient e−κ∆ between 0.95 and 0.994. The
CoF estimates of κ and σ2 are significantly higher than those of the ML methods, suggesting that the
former may overestimate the volatility and the degree of mean reversion.

6.2 Likelihood ratio test: fBm versus fOU

While the fOU model is more general, the fBm model is a parsimonious alternative with only one pa-
rameter and has been shown to exhibit good forecasting performance (Gatheral et al., 2018). We aim to
determine which model is more appropriate for modeling log RV by applying the likelihood ratio tests on
the log RVs of the 40 financial assets. We set the null hypothesis of the test to be fBm, and the alternative
hypothesis to be fOU.

Figure 5 presents the results of likelihood ratio tests applied to the log RVs of 40 financial assets.
The LR test statistics L̃R are plotted against their 5% bootstrapped critical values. If the dot is above the
horizontal line, it indicates rejection of the null hypothesis of fBm against fOU at a 5% significance level.
Evidently, fBm is a suitable model for 21 out of 40 financial assets, while 19 assets are better modeled by
fOU. Among the ten ETFs considered, six prefer the fOU model, while four are better modeled by fBm.
For the 30 Dow Jones stocks, 13 assets (43%) favor the fOU model, while the fBm null cannot be rejected
for the remaining 57% of assets. Overall, the rejection rate across the 40 assets is 47.5%. Interestingly,
fBm seems to be a more popular model for individual stocks, while fOU is a preferred choice for index
ETFs.
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Table 2: Estimation results of fOU for the index ETFs and the 30 Dow Jones Industrial Average stocks

CoF MCL AWML
H κ σ2 H κ σ2 H κ σ2

Index ETFs
SPY 0.29 11.85 1.64 0.23 5.79 0.91 0.23 4.79 0.90
XLB 0.25 12.08 0.97 0.16 2.41 0.37 0.16 2.17 0.37
XLE 0.34 15.64 1.72 0.19 1.62 0.33 0.20 1.87 0.37
XLF 0.24 15.36 0.97 0.19 7.18 0.54 0.19 5.51 0.53
XLI 0.24 10.73 0.91 0.19 5.32 0.56 0.19 3.67 0.52
XLK 0.26 14.79 1.38 0.21 7.51 0.79 0.20 4.57 0.71
XLP 0.17 4.56 0.42 0.16 4.06 0.40 0.15 2.78 0.36
XLU 0.17 5.22 0.34 0.16 3.56 0.28 0.14 1.56 0.23
XLV 0.22 7.11 0.74 0.19 3.67 0.5 0.18 2.59 0.47
XLY 0.23 9.77 0.93 0.19 4.41 0.56 0.18 3.55 0.55

Dow Jones 30 stocks
AAPL 0.36 34.44 3.72 0.21 7.81 0.71 0.21 5.05 0.66
ALD 0.24 18.27 1.04 0.18 7.41 0.52 0.17 4.47 0.46
AMGN 0.22 10.89 0.71 0.15 2.80 0.34 0.15 2.08 0.34
AXP 0.23 23.13 0.96 0.16 7.95 0.42 0.15 5.44 0.38
BA 0.31 32.66 2.23 0.17 6.46 0.50 0.16 2.90 0.43
BEL 0.19 15.70 0.50 0.15 7.84 0.32 0.14 4.62 0.28
CAT 0.26 16.88 1.08 0.14 1.80 0.29 0.13 1.30 0.27
CHV 0.22 4.30 0.52 0.20 2.84 0.41 0.19 1.98 0.37
CRM 0.31 25.50 2.11 0.19 6.06 0.57 0.18 2.68 0.49
CSCO 0.28 21.86 1.16 0.19 6.93 0.44 0.18 3.95 0.39
DIS 0.25 22.61 1.03 0.18 9.08 0.48 0.17 5.52 0.43
GS 0.30 22.57 1.27 0.22 9.59 0.54 0.21 5.90 0.49
HD 0.25 21.32 1.00 0.17 5.93 0.39 0.16 4.45 0.37
IBM 0.29 31.91 1.56 0.17 7.01 0.40 0.16 4.90 0.37
INTC 0.26 17.18 0.91 0.21 9.05 0.53 0.18 3.90 0.40
JNJ 0.12 1.54 0.26 0.14 2.78 0.31 0.13 2.13 0.29
JPM 0.26 15.65 0.98 0.22 8.86 0.60 0.20 5.34 0.52
KO 0.21 12.73 0.58 0.17 6.10 0.36 0.15 3.08 0.29
MCD 0.29 37.41 1.58 0.14 4.75 0.30 0.13 2.62 0.27
MMM 0.26 15.73 1.17 0.17 4.26 0.47 0.16 1.77 0.39
MRK 0.21 15.81 0.66 0.15 5.83 0.35 0.14 3.78 0.32
MSFT 0.29 19.13 1.31 0.21 7.19 0.54 0.21 5.03 0.51
NIKE 0.27 30.84 1.17 0.17 9.78 0.41 0.16 5.47 0.34
PG 0.18 8.02 0.42 0.16 4.99 0.32 0.15 3.54 0.29
SPC 0.17 13.04 0.49 0.12 4.47 0.28 0.12 2.29 0.26
UNH 0.21 14.82 0.68 0.14 4.91 0.35 0.13 2.26 0.29
V 0.23 15.12 0.79 0.16 4.89 0.38 0.15 3.05 0.36
WAG 0.27 37.57 1.67 0.18 13.23 0.57 0.15 5.30 0.43
WMT 0.26 33.99 1.26 0.14 6.32 0.33 0.13 3.53 0.30
XOM 0.25 9.81 0.73 0.19 3.14 0.35 0.18 2.43 0.34

18



Figure 5: Likelihood ratio tests (H0 : fBm and HA : fOU) for log RV of 40 financial assets: 2012 - 2019.
The horizon line represents the 5% bootstrapped critical values.

(a) Index ETFs (b) DJ30 stocks

7 Conclusion

Computing the spectral density of the fOU process can be challenging due to an infinite summation
in the formula, making it impractical for a widespread use. The commonly used truncation method is
inadequate when the Hurst parameter is small, such as 0.1. In this paper, we propose an alternative
approach based on the Paxson approximation for the computation of the spectral density. The Paxson
approximate spectral density is shown to be not only more accurate but also computationally efficient as
compared to the truncation method.

Furthermore, we demonstrate how the Paxson approximate spectral density of fOU can be employed
for estimation and hypothesis testing. Specifically, we propose a new approach to estimate parameters of
the fOU process using the Paxson approximate spectral density and the Whittle maximum likelihood esti-
mation. Simulation results show that our proposed method outperforms other commonly used methods in
the literature. Additionally, we employ the Paxson approximate spectral density to construct a likelihood
ratio test to distinguish between the fBm and fOU processes. Simulation results indicate that this test can
accurately differentiate between the two processes, particularly when the deviation is moderately large.

We applied both estimation methods and likelihood ratio tests to analyze the log realized volatility of
the S&P 500 index ETF, nine industry index ETFs, and 30 Dow Jones industrial average stocks from 2012
to 2019. Our estimated Hurst parameters range from 0.1 to 0.23, indicating rough volatility dynamics.
Our testing results are mixed regarding which model, fBm or fOU, is a better fit for the data series. Some
data series favor fBm, while others lean towards fOU. Our study adds to the ongoing research on fOU
processes and provides new insights into the use of the Paxson approximate spectral density in estimation
and hypothesis testing. Additionally, it sheds light on the empirical relevance of fBm and fOU and adds
to the literature on rough volatility.
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A Proofs
Proof of Lemma 3.1. (1) Take derivative of Q(k) with respect to k,

∂Q(k)
∂k

=
2π (1−2H)(2πk−λ )−2H [(∆κ)2 +(2πk−λ )2]−2π(2πk−λ )1−2H2(2πk−λ )

[(∆κ)2 +(2πk−λ )2]
2 .

To check the sign of ∂Q(k)/∂k, we can drop the denominator as it is always positive. The numerator of
the partial derivative is

2π (1−2H)(2πk−λ )−2H [(∆κ)2 +(2πk−λ )2]−2π(2πk−λ )1−2H2(2πk−λ )

=2π(2πk−λ )−2H [(1−2H)(∆κ)2− (1+2H)(2πk−λ )2]
<2π(2πk−λ )−2H [(∆κ)2− (2πk−λ )2] since H > 0.

When k > ∆κ+λ

2π
, the first order derivative ∂Q(k)/∂k < 0. For any given value of ∆κ , we can always find

a K such that for any k > K, the function Q(k) is monotone decreasing.
(2) Similarly, the first order derivative of Q̃(k) is

∂ Q̃(k)
∂k

=
(−2H +1)(λ +2πk)−2H2π[(∆κ)2 +(λ +2πk)2]− (λ +2πk)−2H+12(λ +2πk)2π

[(∆κ)2 +(λ +2πk)2]
2 .
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The numerator can be simplified as

2π(λ +2πk)−2H [(1−2H)(∆κ)2− (1+2H)(λ +2πk)2],

<2π(λ +2πk)−2H [(∆κ)2− (λ +2πk)2], since H > 0.

It follows that when k > ∆κ−λ

2π
, the first order derivative ∂ Q̃(k)/∂k < 0. That is, for any given value of

∆κ , we can always find a K such that for any k > K, the function Q(k) is monotonically decreasing.
(3) From (1) and (2), when k > ∆κ+λ

2π
, both Q(k) and Q̃(k) are monotonically decreasing. Using the

properties of harmonic sum, we have

∫
∞

K+1
Q(k)dk ≤

∞

∑
k=K+1

Q(k)≤
∫

∞

K
Q(k)dk,

∫
∞

K+1
Q̃(k)dk ≤

∞

∑
k=K+1

Q̃(k)≤
∫

∞

K
Q̃(k)dk,

in which left Riemann integrals are the lower bounds and right Riemann integrals are the upper bounds.
The upper bounds can be further simplified as

∫
∞

K
Q(k)dk =

∫
∞

K

(2πk−λ )1−2H

(∆κ)2 +(2πk−λ )2 dk

≤
∫

∞

K
(2πk−λ )−1−2Hdk =

1
4πH

(2πK−λ )−2H

and ∫
∞

K
Q̃(k)dk =

∫
∞

K

(2πk+λ )1−2H

(∆κ)2 +(2πk+λ )2 dk

≤
∫

∞

K
(2πk+λ )−1−2Hdk =

1
4πH

(2πK +λ )−2H .

The lower bounds can be further simplified as

∫
∞

K+1
Q(k)dk =

∫
∞

K+1

(2πk−λ )1−2H

(∆κ)2 +(2πk−λ )2 dk

=
∫

∞

K+1

(2πk−λ )2

(∆κ)2 +(2πk−λ )2
(2πk−λ )1−2H

(2πk−λ )2 dk

=
∫

∞

K+1

[
1− (∆κ)2

(∆κ)2 +(2πk−λ )2

]
(2πk−λ )1−2H

(2πk−λ )2 dk

=
∫

∞

K+1

(2πk−λ )1−2H

(2πk−λ )2 dk−
∫

∞

K+1

(∆κ)2

(∆κ)2 +(2πk−λ )2
(2πk−λ )1−2H

(2πk−λ )2 dk

≥
∫

∞

K+1
(2πk−λ )−1−2Hdk− (∆κ)2

∫
∞

K+1
(2πk−λ )−3−2Hdk
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=
1

4πH
[2π (K +1)−λ ]−2H− (∆κ)2 1

4π (1+H)
[2π (K +1)−λ ]−2−2H

=
1

4π
[2π (K +1)−λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}

and ∫
∞

K+1
Q̃(k)dk =

∫
∞

K+1

(2πk+λ )1−2H

(∆κ)2 +(2πk+λ )2 dk

=
∫

∞

K+1

(2πk+λ )2

(∆κ)2 +(2πk+λ )2
(2πk+λ )1−2H

(2πk+λ )2 dk

=
∫

∞

K+1

[
1− (∆κ)2

(∆κ)2 +(2πk+λ )2

]
(2πk+λ )1−2H

(2πk+λ )2 dk

≥ 1
4πH

[2π (K +1)+λ ]−2H− (∆κ)2 1
4π (1+H)

[2π (K +1)+λ ]−2−2H

=
1

4π
[2π (K +1)+λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}

Therefore,

1
4π

[2π (K +1)−λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}
≤

∞

∑
x=K+1

Q(k)≤ 1
4πH

(2πK−λ )−2H ,

1
4π

[2π (K +1)+λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}
≤

∞

∑
x=K+1

Q̃(k)≤ 1
4πH

(2πK +λ )−2H .

Proof of Theorem 3.1. The discrete time spectral densities of fOU is

f ∆
y (λ ) =

σ2

2π
C (H)∆

2HS (λ ) .

The quantity S (λ ) can be rewritten as

S (λ ) =
K

∑
k=1

Q(k)+
∞

∑
k=K+1

Q(k)+Q0 +
K

∑
k=1

Q̃(k)+
∞

∑
k=K+1

Q̃(k) .

It follows directly from Lemma 3.1(3) ,

S (λ ) > SL (λ )≡
K

∑
k=1

Q(k)+
K

∑
k=1

Q̃(k)+
λ 1−2H

(∆κ)2 +λ 2
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+
1

4π
[2π (K +1)−λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}
1

4π
[2π (K +1)+λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}

and

S (λ ) ≤ SU (λ )≡
K

∑
k=1

Q(k)+
K

∑
k=1

Q̃(k)+
λ 1−2H

(∆κ)2 +λ 2

+
1

4πH
(2πK−λ )−2H +

1
4πH

(2πK +λ )−2H

Therefore, the spectral density f ∆
y (λ ) satisfies the following inequality:

σ2

2π
C (H)∆

2HSL (λ )< f ∆
y (λ )≤ σ2

2π
C (H)∆

2HSU (λ ) . (17)

The Paxson approximation of the fOU spectral density is defined as the average of the lower and upper
bounds such that

f ∆
y (λ ) ≈ σ2

2π
C (H)∆

2H 1
2
[SL (λ )+SU (λ )]

=
σ2

2π
C (H)∆

2H

{
K

∑
k=1

Q(k)+
K

∑
k=1

Q̃(k)+
λ 1−2H

(∆κ)2 +λ 2

+
1

8π
[2π (K +1)−λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}

+
1

8π
[2π (K +1)+λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}

+
1

8πH
(2πK−λ )−2H +

1
8πH

(2πK +λ )−2H
}
.

Proof of Theorem 5.1. Without loss of generality, we assume µ = 0 and y0 = 0. Rewrite the fOU
process as

yt =
∫

∞

−∞

gt (u)dBH
u with gt (u) = σe−κ(t−u)1{u≤t},

which is the integral on the real line of g with respect to fBm. The first order differenced fOU process
(dfOU) is

x j∆ = y j∆− y( j−1)∆ =
∫

∞

−∞

[
g j∆ (u)−g( j−1)∆ (u)

]
dBH

u .
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The Fourier transformation of g j∆ (u)−g( j−1)∆ (u) is denoted by ω̂ j∆ (λ ) and takes the form of

ω̂ j∆ (λ ) =
∫

∞

−∞

eiuλ
[
g j∆ (u)−g( j−1)∆ (u)

]
du

=
∫ j∆

−∞

eiuλ
σe−κ( j∆−u)du−

∫ ( j−1)∆

−∞

eiuλ
σe−κ(( j−1)∆−u)du

= σ
ei j∆λ

κ + iλ

(
1− e−i∆λ

)
,

where λ is the spectral frequency. Since g j∆ (u)−g( j−1)∆ (u) belongs to the space of integrands

ξ
H =

{
η (u) : η (u) ∈ L2 (R) ,

∫
∞

−∞

|η̂ (λ )|2 |λ |1−2H dλ < ∞

}
where η̂ (λ ) is the Fourier transformation of η (u), from Samorodnitsky and Taqqu (1994),

E
(
x( j+s)∆x j∆

)
=

C (H)

2π

∫
∞

−∞

ω̂( j+s)∆ (λ ) ω̂ j∆ (λ ) |λ |1−2H dλ

= σ
2C (H)

2π

∫
∞

−∞

ei( j+s)∆λ

κ + iλ
e−i j∆λ

κ− iλ

∣∣∣1− e−i∆λ

∣∣∣2 |λ |1−2H dλ

= σ
2C (H)

2π

∫
∞

−∞

eis∆λ

∣∣∣1− e−i∆λ

∣∣∣2 |λ |1−2H

κ2 +λ 2 dλ

= σ
2C (H)

2π

∞

∑
k=−∞

∫ (π+2πk)/∆

(−π+2πk)/∆

eis∆λ

∣∣∣1− e−i∆λ

∣∣∣2 |λ |1−2H

κ2 +λ 2 dλ

= σ
2C (H)

2π
∆

2H+1
∞

∑
k=−∞

∫
π

−π

eis(λ+2πk)
∣∣∣1− e−i(λ+2πk)

∣∣∣2 |λ +2πk|1−2H

(κ∆)2 +(λ +2πk)2 dλ

= σ
2C (H)

2π
∆

2H
∞

∑
k=−∞

∫
π

−π

eisλ

∣∣∣1− e−iλ
∣∣∣2 |λ +2πk|1−2H

(κ∆)2 +(λ +2πk)2 dλ

=
∫

π

−π

eisλ σ2

π
C (H)(1− cosλ )∆2H

∞

∑
k=−∞

|λ +2πk|1−2H

(κ∆)2 +(λ +2πk)2 dλ

since eis2πk = 1 for any integer s, where C (H) = Γ(2H +1)sin(πH). Therefore, the spectral density of
x j∆ is

f ∆
x (λ ) =

σ2

π
C (H)(1− cosλ )∆2H

∞

∑
k=−∞

|λ +2πk|1−2H

(κ∆)2 +(λ +2πk)2

=
σ2

π
C (H)(1− cosλ )∆2HS (λ ) .
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Using results from (17), the lower and upper bounds of f ∆
x (λ ) are

σ2

π
C (H)(1− cosλ )∆2HSL (λ )< f ∆

x (λ )≤ σ2

π
C (H)(1− cosλ )∆2HSU (λ ) . (18)

The Paxson approximation of the dfOU spectral density is

f ∆
x (λ ) ≈ σ2

π
C (H)(1− cosλ )∆2H 1

2
[SL (λ )+SU (λ )]

=
σ2

π
C (H)(1− cosλ )∆2H

{
K

∑
k=1

Q(k)+
K

∑
k=1

Q̃(k)+
λ 1−2H

(∆κ)2 +λ 2

+
1

8π
[2π (K +1)−λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}

+
1

8π
[2π (K +1)+λ ]−2H

{
1
H
− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}

+
1

8πH
(2πK−λ )−2H +

1
8πH

(2πK +λ )−2H
}
.
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