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Abstract

The robust mechanism design literature assumes players’ knowledge about a fixed

payoff environment and investigates the global robustness of optimal mechanisms to

large changes in the information structure. Acknowledging the global robustness as

a demanding requirement, we propose continuous implementation as a local robust-

ness of optimal mechanisms to small changes in the information structure. Keeping

the assumption of the payoff knowledge, we say that a social choice function is con-

tinuously implementable if there exists a mechanism which yields the outcome close

to the desired one for all types close to the planner’s initial model. We show that

when a generic correlation condition is imposed on the class of interdependent-value

environments, any (interim) incentive compatible social choice function is continuously

implementable with arbitrarily small transfers imposed on and off the equilibrium. This

exhibits a stark contrast with Bergemann and Morris (2005) who show that their global

robustness amounts to ex post incentive compatibility as well as Oury and Tercieux

(2012) who show that continuous implementation without payoff knowledge generates

a substantial restriction, tightly connected to full implementation in rationalizable

strategies.
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1 Introduction

While Bayesian mechanism design has been successful in generating many applications, it is

rightly criticized for its sensitivity to the precise information that the agents and the planner

have about the environment. To properly describe an incomplete information environment,

an agent’s private information is summarized by the notion of type. For an agent, a type

specifies (i) his private information about his own preferences (payoff type); (ii) his belief

about the payoff types of others (first-order belief ); (iii) his belief about others’ first-order

beliefs (second-order belief ), and so on, leading to an infinite hierarchy of beliefs. The

set of all coherent belief hierarchies described above is called the universal type space.1

Bayesian mechanism design theory typically works with a type space which is smaller than

the universal type space and incorporates certain common knowledge among the agents, e.g.,

their beliefs are derived from an independent common prior. While the common knowledge

assumptions often enhance the tractability of the model, it is at best an idealization of the

reality.

The literature of robust mechanism design examines the restrictiveness of this kind

of common knowledge assumption by fixing a payoff environment. The payoff environment

specifies a set of outcomes, a set of payoff types, as well as utility functions for each agent,

but makes “no” assumptions about all possible type spaces (including belief types as well as

payoff types) which are constructed from the fixed payoff environment. We call this approach

global robustness, which is pursued by Bergemann and Morris (2005). Bergemann and Morris

(2005) define the planner’s objective as a social choice correspondence (henceforth, SCC) that

maps payoff type profiles into a nonempty subset of outcomes and say that an SCC is interim

(partially) implementable on a type space if there exist a mechanism and one Bayes Nash

equilibrium of that mechanism which yields the outcome in the set specified by the SCC for

every payoff type profile.2 Thus, this paper treats the problem of mechanism design and that

1See Section 3.1 for a formal definition and Mertens and Zamir (1985) or Brandenburger and Dekel (1993)

for a formal construction of the universal type space.
2Following Bergemann and Morris (2005), we adopt partial implementation as the notion of implemen-

tation. Partial implementation requires that there be one equilibrium in the implementing mechanism that

achieves the desirable outcome, whereas full implementation requires that all equilibria in the mechanism

do so. Hereafter, we call partial implementation simply implementation and add the qualifier full only when

we talk about full implementation.
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of implementation interchangeably. In what they call separable environments, Bergemann

and Morris (2005) show that an SCC is interim implementable over all type spaces if and only

if it is ex post implementable, which is, by the revelation principle, equivalent to the existence

of ex post incentive compatible social choice function (henceforth, SCF) which is contained

in the SCC.3 However, this equivalence result carries negative news for robust mechanism

design because Jehiel et al. (2006) show that only constant SCFs are ex post incentive

compatible when payoff types are multi-dimensional and interdependent value functions are

generic.4

To seek positive results, we propose a notion of local robustness which weakens the

notion of global robustness. Formally, we fix a benchmark type space associated with a

given payoff environment and consider an SCF that maps (payoff and belief) type profiles

into outcomes. Our notion of locally robust implementation adapts the notion of continuous

implementation of Oury and Tercieux (2012) (henceforth, OT) to the setup in which the

players always know their own payoff type as in Bergemann and Morris (2005). We say that

an SCF is continuously implementable by a mechanism if there exists a (possibly mixed-

strategy) equilibrium of the mechanism which yields the outcome close to the desired one for

all types “close to” the planner’s benchmark model. Following OT, we consider the closeness

of types in terms of the product topology of weak convergence of infinite belief hierarchies in

the universal type space. We also verify that any ex post incentive compatible SCF is indeed

continuously implementable; hence, locally robust implementation in our sense is weaker

than globally robust implementation in the sense of Bergemann and Morris (2005).

To establish our main result, we further assume that the agents’ utility functions are

quasilinear with respect to monetary transfers. We say that an SCF is continuously imple-

mentable with small transfers if it is continuously implementable by a mechanism in which

arbitrarily small transfers are added to both on and off the equilibrium. Our main result

(Theorem 1) shows that when a generic correlation condition, which we call Assumption

1, is imposed on the class of interdependent values environments, an SCF is continuously

implementable with small transfers if and only if it is (interim) incentive compatible on the

3The reader is referred to Section 4.1 of Bergemann and Morris (2005) for the definition of separable

environments in which they consider SCCs whose multi-valuedness is only permitted over the “private

components,” which correspond to the transfer component in our setup. Therefore, the result of Bergemann

and Morris (2005) holds for such a class of SCCs.
4The reader is referred to Jehiel et al. (2006) for all the qualifications needed for their result.
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benchmark type space. Since interim incentive compatibility is a necessary condition for

interim implementation, our continuous implementation result is as permissive as it can be.

To achieve continuous implementation, we establish instead full implementation of any

incentive compatible SCF under a permissive solution concept denoted as S∞Ŵ∞, which is

the set of message profiles surviving the iterative elimination of weakly dominated messages

followed by the iterative elimination of interim strictly dominated messages.

We expand on the implication of Assumption 1. Assumption 1 is stronger than the BDP

property proposed by Neeman (2004). A type space satisfies the BDP property if different

types of any player have different beliefs. In contrast, Assumption 1 requires that different

types of any player have different beliefs over strategically distinguishable payoff types in the

sense of (Bergemann and Morris, 2009b, Proposition 2). In private-value environments where

different types of a player have different preferences, Assumption 1 is equivalent to imposing

the BDP property on the benchmark model. Since we are aiming for a permissive result to

locally robust implement any interim incentive compatible SCF, it shall come at no surprise

that our results leverage conditions on the benchmark type space such as Assumption 1 or

the BDP property. This differentiates our exercise from the global robust implementation

exercise due to Bergemann and Morris (2005) which aims to relax all common knowledge

assumptions including the BDP property.5

The rest of the paper is organized as follows. Section 2 positions our contribution in

a broader context of the literature and relegates the detailed comparisons with the related

papers to Section 4.4. In Section 3, we introduce (i) the general setup for the paper; (ii)

the notion of continuous implementation with small transfers; (iii) the notions of strategic

distinguishability and the maximally revealing mechanism; and (iv) the generic correlation

condition used in this paper (Assumption 1). In Section 4.1, we state the main result of

this paper (Theorem 1) and discuss two special cases: the case with a complete-information

benchmark model and the case with private-value environments. Section 4.2 describes how

our main result is proved in a heuristic manner. In Sections 4.3, 4.3.1, and 4.3.2, we prepare

all the machineries needed for the proof of our main result. Section 6 concludes the paper.

5Heifetz and Neeman (2006) show that, in auction setups, the BDP property is a necessary condition for

full surplus extraction whose genericity is decisive on validity of the current mechanism design paradigm;

see McAfee and Reny (1992). When all common knowledge assumptions are relaxed, Heifetz and Neeman

(2006) establish the geometric as well as the measure-theoretic non-genericity of the BDP property, whereas

Chen and Xiong (2011) establish the topological genericity of the BDP property.
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In the Appendix, we provide all the proofs omitted from the main body of the paper.

2 A Broader Perspective

There have been several attempts in the literature to propose notions of locally robust im-

plementation. Closest to our exercise are OT , Oury (2015), Jehiel et al. (2012) (henceforth,

JMM, 2012), and Chen, Muller-Frank, Pai (2022). In contrast to the globally robust imple-

mentation exercise due to Bergemann and Morris (2005), these papers only consider some

class of type spaces “nearby” a benchmark type space which the designer is reasonably con-

fident of. We defer a detailed comparison with these papers and other related papers to

Section 5 and provide here a broader perspective to situate our exercise within these existing

contributions on locally robust implementation.

The main distinguishing feature that divides the aforementioned papers is the payoff

knowledge assumption that the players know their own payoff type and their utility functions,

as mappings from the product set of social alternatives and payoff type profiles, are common

knowledge. The payoff knowledge assumption is imposed by Bergemann and Morris (2005)

in their analysis of globally robust implementation and constitutes the basis of other ex

post/globally robust implementation exercises in the literature. JMM and our paper impose

the payoff knowledge assumption, whereas OT, Oury (2015), and Chen, Muller-Frank, Pai

(2022) do not impose this assumption.

Without imposing the payoff knowledge assumption, OT and Oury (2015) allow for

perturbations of the belief hierarchies as well as the payoff knowledge. In contrast, our pa-

per (as well as JMM) maintain the payoff knowledge assumption and only perturb the belief

hierarchies. As a result, OT and Oury’s notions of local robustness are more demanding than

ours. In particular, both OT’s Theorem 4 and Oury (2015) prove that continuous implemen-

tation without payoff knowledge requires full interim rationalizable implementation.6 Hence,

an ex post implementable SCF need not be continuously implementable in the sense of OT or

Oury (2015); see Appendix A.6, even though it must be continuously implementable in our

6More precisely, both equivalence results are proved for finite implementing mechanisms. Moreover, OT

obtain their Theorem 4 with an additional assumption of costly messages. In contrast, Oury (2015) dispenses

with the cost of sending messages but instead introduces “local payoff uncertainty,” which means that the

planner has some doubts on the payoffs of the outcomes and wants his prediction to be robust when these

payoffs are close but not exactly equal to those in the initial model.
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sense/with payoff knowledge. (See also Observation 1). Moreover, with small transfers and

Assumption 1, we show that continuous implementation with payoff knowledge is as permis-

sive as interim incentive compatibility which is substantially weaker than full implementation

in interim rationalizable strategies.7

JMM also impose the payoff knowledge assumption and their notion of locally robust

implementation is also weaker than ex post implementability. JMM prove that no “regular”

allocation function is locally robust implementable in generic settings with quasi-linear util-

ity. Among other differences, JMM prove their impossibility result for truthful equilibrium

in direct mechanisms (defined on a perturbed type space) whereas we prove our result by

constructing an indirect mechanism and invoking a mixed-strategy equilibrium. While our

model setup and implementation notion are not directly comparable to those of JMM, the

contrast points to an essential trade-off between restricting attention to direct mechanisms

and using complex indirect mechanisms to locally robustly implement more (or all) incentive

compatible SCFs.

The literature has also considered intermediate notions of robust implementation be-

tween global robustness and local robustness. In their study of full implementation, Artemov

et al. (2013), Ollár and Penta (2017), and Ollár and Penta (2019) assume that the planner

has partial knowledge about the agents’ first-order beliefs over the payoff type space and

the partial knowledge is always respected across all type spaces.8 In the spirit of how these

papers introduce the planner’s partial knowledge to complement a belief-free approach, our

paper introduces the payoff knowledge to the study of continuous implementation.

3 Preliminaries

In this section, we introduce the setup and concepts used throughout the paper. Section 3.1

introduces the setup for the paper. In Section 3.2, we introduce our notion of continuous

implementation as a notion of locally robust implementation. Section 3.3 elaborates on the

7Bergemann and Morris (2008) show that interim rationalizable monotonicity is a necessary condition for

full interim rationalizable implementation by finite mechanisms; moreover, OT show that interim rationaliz-

able monotonicity implies (semi-strict) interim incentive compatibility and Bayesian monotonicity; see also

Kunimoto et al. (2020).
8Ollár and Penta (2017), and Ollár and Penta (2019) insist on full implementation by direct mechanisms,

while Artemov et al. (2013) study virtual (or approximate) full implementation by indirect mechanisms.
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notion of strategic distinguishability and the maximally revealing mechanism, both of which

are proposed by Bergemann and Morris (2009b).

3.1 The Environment

Let I denote a finite set of players and with abuse of notation, we also denote by I the

cardinality of the set I. The set of pure social alternatives is denoted by A, and ∆ (A)

denotes the set of all probability distributions over A with countable supports. In this

context, a ∈ A denotes a pure social alternative and x ∈ ∆(A) denotes a lottery on A.

The utility index of player i over the set A is denoted by ui : A × Θ → R, where
Θ = Θ1× · · · ×ΘI is the finite set of payoff type profiles. We therefore assume that Θ has a

product structure. We allow for interdependent values and ui(a, θ) specifies the (bounded)

utility of player i from the social alternative a under type profile θ ∈ Θ. We also write

Θ−i = Θ1 × · · · × Θi−1 × Θi+1 × · · · × ΘI .
9 We abuse notation to also denote by ui(x, θ)

player i’s expected utility from a lottery allocation x ∈ ∆(A) under θ. Assume that player

i’s utility is quasilinear in transfers, denoted by ui(x, θ) + τi where τi ∈ R.
We follow the same setup as Bergemann and Morris (2005) and Bergemann and Morris

(2011). Specifically, a model T is a triplet (Ti, θ̂i, πi)i∈I , where T is a countable type space;

θ̂i : Ti → Θi; and πi(ti) ∈ ∆(T−i) denotes the associated interim belief for each ti ∈ Ti.

We assume that the model is common knowledge among all players. We also assume that

each player knows his own type ti (and hence his payoff type (θ̂i(ti)).
10 For each type profile

t = (ti)i∈I , let θ̂(t) denote the payoff type profile at t, i.e., θ̂(t) ≡ (θ̂i(ti))i∈I . If Ti is a finite

set for every player i, then we say that (Ti, θ̂i, πi)i∈I is a finite model. Let πi (ti) [E] denote

the probability that πi (ti) assigns to any set E ⊂ T−i.

Given a model (Ti, θ̂i, πi)i∈I and a type ti ∈ Ti, the first-order belief of ti on Θ is

computed as follows: for any θ ∈ Θ,

h1i (ti) [θ] = πi (ti)
[{
t−i ∈ T−i :

(
θ̂i(ti), θ̂−i(t−i)

)
= θ

}]
. (1)

The second-order belief of ti is his belief about the set of payoff types and first-order beliefs

9Similar notation will be used for other product sets.
10As Oury (2015) argue in footnote 8 (p.659), except a special case of private values environments, OT’s

argument (in proving their Theorems 1-3) cannot be applied to a setup in which each player knows his payoff

type and that the state space can be written as the product space of payoff types. See footnote 18 for further

elaboration.
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of player i’s opponents. Formally, for any measurable set F ⊂ Θ×∆(Θ)I−1, we set

h2i (ti)[F ] = πi(ti)
[{
t−i :

(
θ̂(ti, t−i), h

1
−i(t−i)

)
∈ F

}]
.

An entire hierarchy of beliefs can be computed similarly.
(
h1i (ti), h

2
i (ti), ..., h

ℓ
i(ti), ...

)
is an

infinite hierarchy of beliefs induced by type ti of player i.

The set of all belief hierarchies with “common certainty” that their beliefs are coher-

ent (i.e., each player’s beliefs at different orders are consistent with each other and this is

commonly believed) is the universal type space; see Mertens and Zamir (1985) and Bran-

denburger and Dekel (1993). We denote by T ∗
i the set of player i’s hierarchies of beliefs

in this space and write T ∗ =
∏

i∈I T
∗
i . T

∗
i is endowed with the product topology so that a

sequence of types {tni }
∞
n=0 converges to a type ti (denoted as tni →p ti) if, for every l ∈ N,

hli(t
n
i )→ hli(ti) as n→∞. We write tn →p t if t

n
i →p ti for all i ∈ I.

This notion of convergence of a sequence of types also builds upon our crucial assump-

tion that each agent “knows” his own payoff type and this knowledge is maintained as long as

type tni and ti are close enough to each other. More precisely, by (1), h1i (ti) assigns probabil-

ity one to θ̂i(ti), and likewise, h1i (t
n
i ) assigns probability one to θ̂i(t

n
i ). Hence, h

1
i (t

n
i )→ h1i (ti)

only if θ̂i(t
n
i ) = θ̂i(ti) for every n sufficiently large. As we discussed in the Introduction, this

feature distinguishes our notion of continuous implementation from the notion of OT and is

responsible for our permissive result of continuous implementation.11 We will come back to

this point in Sections 5.1 and 5.2.

Throughout the paper, we consider a fixed environment E which is a triplet (A,Θ, (ui)i∈I)

with a finite benchmark model T̄ =
(
T̄i, θ̄i, π̄i

)
i∈I . We also consider a planner who aims to

implement a social choice function (henceforth, SCF) f : T̄ → ∆(A). Note that unlike

the robust mechanism design literature, we consider a more general class of SCFs whose

11The distinction perhaps manifests itself best in a private-value setup where each agent’s payoff type only

determines his preference but not others’. In this case and with the terminology of Fudenberg et al. (1988),

OT consider elaborations with general types where an agent may be uncertain about his own utility function,

whereas we consider elaborations with personal types where each agent is certain of his own utility function.

Fudenberg et al. (1988) wrote the following on p. 376 of their paper: “General elaborations may seem to

the reader to be too large a class of perturbations, because they allow one player to know more about a

second player’s payoff than second player knows herself. By constraining ourselves to elaborations with the

“type” structure, we suppose that each player has all the information about his own payoffs that any other

player has.” Our motivation to study continuous implementation with payoff knowledge is aligned with these

remarks.

8



domain include agents’ belief types as well payoff types. The following definition of incentive

compatibility is standard.

Definition 1 An SCF f : T̄ → ∆(A) is (interim) incentive compatible if, for all i ∈ I
and all ti, t

′
i ∈ T̄i,∑

t−i∈T̄−i

ui(f(ti, t−i), (θ̂i(ti), θ̂−i(t−i)))π̄i(ti)[t−i] ≥
∑

t−i∈T̄−i

ui(f(t
′
i, t−i), (θ̂i(ti), θ̂−i(t−i)))π̄i(ti)[t−i].

3.2 Mechanisms and Continuous Implementation

We assume that the planner can penalize or reward any player by collecting or making side

payments. A mechanism M is a triplet ((Mi), g, (τi))i∈I where Mi is the nonempty finite

message space for player i; g : M → ∆(A) is an outcome function; and τi : M → R is

a transfer rule which specifies the payment from player i to the planner. For any αi ∈
∆(Mi) and α−i ∈ ∆(M−i), we abuse the notation to denote by g (αi, α−i) the induced

lottery in ∆ (A) and by τi (αi, α−i) the induced expected transfer. In the mechanismM =

((Mi), g, (τi))i∈I , we define τ̂ = maxi∈I maxm∈M |τi(m)| as the bound of transfer rule (τi)i∈I .

We denote byMτ̂ a mechanism whose transfer rule is bounded by τ̂ .

Given a mechanismM and a model T , we write U (M, T ) for the induced incomplete

information game. In the game U (M, T ) , a (behavior) strategy of a player i is σi : Ti →
∆(Mi) . We follow Oury and Tercieux (2012) to write down the following definitions. A

function ν−i : T−i → ∆(M−i) is called a conjecture of player i. We define the interim payoff

for player i of type ti when he chooses (mixed) message αi against conjecture ν−i as:

Vi((αi, ν−i), ti) =
∑
t−i

πi(ti)[t−i]
[
ui(g(αi, ν−i (t−i)), θ̂(t)) + τi(αi, ν−i(t−i))

]
.

Definition 2 A profile of strategies σ = (σ1, ..., σI) is a Bayes Nash equilibrium in

U(M, T ) if, for each player i ∈ I and each type ti ∈ Ti,

mi ∈ supp (σi (ti))⇒ mi ∈ argmaxm′
i∈Mi

Vi ((m
′
i, σ−i) , ti) .

We say that a strategy profile σ is a strict Bayes Nash equilibrium if, for every i ∈ I
and ti ∈ Ti, σi(ti) is the unique solution to maxm′

i∈Mi
Vi ((m

′
i, σ−i) , ti). It is easy to see that

a strict Bayes Nash equilibrium must be a pure-strategy equilibrium.
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We write σ|T̄ for the strategy profile σ restricted to T̄ . For any T = (Ti, θ̂i, πi)i∈I , we

will write T ⊃ T̄ if T ⊃ T̄ and for every ti ∈ T̄i, we have πi (ti) [E] = π̄i (ti)
[
T̄−i ∩ E

]
for

any measurable subset E ⊂ T−i.

Definition 3 Fix a mechanism M and a model T such that T̄ ⊂ T . We say that a Bayes

Nash equilibrium σ in U (M, T ) (strictly) continuously implements the SCF f : T̄ →
∆(A) if the following two conditions hold: (i) σ|T̄ is a (strict) Bayes Nash equilibrium in

U
(
M, T̄

)
; (ii) for any t ∈ T̄ and any sequence tn →p t, whenever t

n ∈ T for each n, we

have (g ◦ σ)(tn)→ f(t).

Remark: In their definition of continuous implementation, Oury and Tercieux (2012) require

in addition that σ|T̄ be a pure strategy Bayes Nash equilibrium. As they mainly focus on

strict continuous implementation in the paper, this restriction is inconsequential. Here we

focus on continuous implementation rather than strict continuous implementation and do

not impose the requirement that σ|T̄ be a pure strategy Bayes Nash equilibrium.

We introduce the notion of continuous implementation with arbitrarily small transfers:

Definition 4 An SCF f : T̄ → ∆(A) is continuously implementable with arbitrarily

small transfers if, for any τ̂ > 0, there exists a mechanismMτ̂ such that for each model T
with T̄ ⊂ T , there is a Bayes Nash equilibrium σ in U (M, T ) that continuously implements

the SCF f .

Recall that Proposition 2 of Bergemann and Morris (2005) proves that an SCF is

(globally) robustly implementable if and only if it is ex post implementable. In our setup,

we say that f : T̄ → ∆(A) is ex post implementable if and only if there exists f ∗ : Θ→ ∆(A)

such that (1) f(t) = f ∗(θ̂(t)) for every t ∈ T̄ ; and (2) for all i ∈ I and θ ∈ Θ,

ui(f
∗(θ), θ) ≥ ui(f

∗(θ′i, θ−i), θ). (2)

The following observation verifies that if f is ex post implementable (i.e., globally robustly

implementation), then it is continuously implementable (i.e., locally robustly implementable

in our sense). The proof follows from the proof of Proposition 1 in Bergemann and Morris

(2005) and relies on the payoff type knowledge in constructing the equilibrium σ.

Observation 1 If f is ex post implementable, then it is continuously implementable.

10



Proof. Since f is ex post implementable, there is f ∗ : Θ → ∆(A) such that (1) and (2)

above hold. Consider an arbitrary type space T = (Ti, θ̂i, πi)i∈I such that T̄ ⊂ T . We claim

that the strategy profile σ with σi(ti) = θ̂i (ti) is a Bayes Nash equilibrium σ in U (f ∗, T )
and σ continuously implements f . Note that in writing U (f ∗, T ), we identify f ∗ with a

mechanism with Mi = Θi. It follows from (2) that, for any i ∈ I and ti ∈ Ti,

θ̂ι(ti) ∈ arg max
θi∈Θi

ui(f
∗(θi, θ−i), (θi, θ−i)),

Thus, σ is a Bayes Nash equilibrium in U (f ∗, T ) . Moreover, for any t ∈ T̄ and any sequence

tn →p t, we know that θ̂i(t
n
i ) = θ̂i(ti); hence, we have (f ∗ ◦ σ)(tn)→ f ∗(θ̂(t)) = f(t).

3.3 Maximally Revealing Mechanism

Given a mechanismM = (M, g), we first define the process of iterative elimination of strictly

dominated messages, which makes no assumptions on each player’s belief about the other

players’ payoff types. We set Ŝ0
i (θi|M) =Mi and for each l ≥ 0, we inductively define

Ŝl+1
i (θi|M)

=

 mi ∈ Ŝli (θi|M)

∣∣∣∣∣∣∣∣
∃αi ∈ ∆(Mi) s.t. ui (g (αi,m−i) , (θi, θ−i)) + τi (αi,m−i)

> ui (g (mi,m−i) , (θi, θ−i)) + τi (mi,m−i)

for any m−i ∈ Ŝl−i (θ−i|M) and any θ−i ∈ Θ−i.

 .

Finally, we let Ŝ∞
i (θi|M) =

⋂
l≥0 Ŝ

l
i (θi|M) and call it the set of message profiles for payoff

type θi which survive the iterative elimination of strictly dominated messages. Following

Bergemann and Morris (2009b), we say that payoff types θi and θ
′
i are strategically indistin-

guishable (we denote it by θi ∼ θ′i) if Ŝ
∞
i (θi|M)∩ Ŝ∞

i (θ′i|M) ̸= ∅ for every mechanismM.

The following definition is also proposed by (Bergemann and Morris, 2009b, Proposition 2).

Definition 5 We say that a mechanism M∗ = ((M∗
i ), g

∗, (τ ∗i ))i∈I is a maximally revealing

mechanism if θi ̸∼ θ′i, then Ŝ
∞
i (θi|M∗)∩ Ŝ∞

i (θ′i|M∗) = ∅.

That is, a maximally revealing mechanism is a mechanism where every pair of strate-

gically distinguishable payoff types can be distinguished according to their messages which

survive iterative strict dominance. (Bergemann and Morris, 2009b, Proposition 2) construct

a maximally revealing mechanism which will be a building block of our implementing mech-

anism in proving the main result (see Section 4 for details).
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Let ∼∗ be the transitive closure of the binary relation ∼. For each player i of payoff type

θi, we define Pi (θi) = {θ′i ∈ Θi|θ′i ∼∗ θi}. Since ∼∗ is transitive, it follows that {Pi (θi)}θi∈Θi

forms a partition over Θi, which we denote by Pi. For any mi ∈ Ŝ∞
i (θi|M∗), we are able to

identify the unique Pi (θi) ∈ Pi.
To formulate our assumption, observe first that Pi induces a partition Ψ0

i over T̄i,

i.e., Ψ0
i = {ψ0

i (ti)}ti∈T̄i such that, for any types ti and t′i in T̄i, t
′
i ∈ ψ0

i (ti) if and only if

θ̂i (t
′
i) ∈ Pi(θ̂i(ti)). Let χ0

i (ti) denote the belief over Ψ0
−i for player i of type ti, that is,

χ0
i (ti)

[
ψ0
−i
]
=

∑
t−i∈ψ0

−i

πi(ti) [t−i] ,

for any ψ0
−i ∈ Ψ0

−i. Moreover, χ0
i (·) and Ψ0

i jointly induce another partition Ψ1
i over T̄i, i.e.,

Ψ1
i = {ψ1

i (ti)}ti∈T̄i in which for any types ti and t
′
i in T̄i, we have t′i ∈ ψ1

i (ti) if and only if

χ0
i (ti) = χ0

i (t
′
i) and t′i belongs to ψ0

i (ti). Let χ1
i (ti) denote the belief of type ti over Ψ1

−i.

We are now ready to state our key assumption.

Assumption 1 For any player i ∈ I, any pair of types ti and t
′
i in T̄i with ti ̸= t′i, we have

χ1
i (ti) ̸= χ1

i (t
′
i) .

Assumption 1 says that each player’s type can fully be identified with their belief

over
∏

j ̸=i
(
Ψ0
j ×∆(Ψ0

−j)
)
, i.e., their belief over the partition Ψ0 (induced by strategically

distinguishable payoff types of their opponents) and over their opponents’ beliefs over Ψ0.

Assumption 1 holds if each player’s distinct types hold different beliefs over Ψ0
−i. Hence,

provided that at least two players have nontrivial partition under P , Assumption 1 generically

holds over the space of probability distributions over T̄ . However, Assumption 1 does not

hold if the players’ types are independently distributed according to a common prior.

To elaborate on Assumption 1 further, we consider a complete-information model,

i.e., a model T CI = (TCIi , θ̂i, πi)i∈I where for each i ∈ I, TCIi =
⋃
θ∈Θ {ti,θ} and for each

θ = (θ)i∈I ∈ Θ, we have θ̂i(ti,θ) = θi and πi(ti,θ) [t−i,θ] = 1. In other words, at any payoff

type profile θ, it is common knowledge among all the players that payoff type profile is θ.

In this case, Assumption 1 holds if Pi is the finest partition {{θi} |θi ∈ Θi}. Then, it follows
that ψ0

i (ti,θ) = ψ0
i (ti,θ′) only if θi = θ′i; moreover, χ0

i (ti,θ) = χ0
i (ti,θ′) only if θ−i = θ′−i.

Hence, ψ1
j (tj,θ) = {tj,θ} for each θ ∈ Θ and each j. It follows that χ1

i (ti,θ) = χ1
i (ti,θ′) only if

ti,θ = ti,θ′ .

We name two prominent situations where Pi is the finest partition. First, if the players’
values are private (i.e., ui : ∆ (A)×Θi → R), then Pi is the finest partition if different payoff
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types induce different preferences over the lottery allocations. This is the assumption made in

Abreu and Matsushima (1994). Second, if the players’ values are interdependent, Bergemann

and Morris (2009a) show that Pi is the finest possible partition when the following three

conditions are all satisfied: (1) there is a strictly ex post incentive compatible SCF; (2)

players have single-crossing preferences; (3) the players’ preferences satisfy a condition called

the contraction property, which demands that value interdependence be not too large. Based

upon the two prominent situations, we will derive Corollaries 1 and 2 from Theorem 1 in the

next section.

It is also straightforward to see how we can generalize Assumption 1. To do so, we

define partition Ψk
i for any k ≥ 2. That is, Ψk

i is the partition over T̄i, which is induced by

χk−1
i (·) and Ψk−1

i . Since {Ψk
i }∞k=1 is a sequence of increasingly finer partitions over T̄i which

is a finite set, Ψk
i becomes a fixed partition Ψi for any k sufficiently large. Then, we can

prove our continuous implementation result by weakening Assumption 1 to the requirement

that the SCF be measurable with respect to Ψ. Here we impose the stronger assumption for

simplicity, as our goal is to include the special case with a complete-information benchmark

model and Pi being the finest partition {{θi} |θi ∈ Θi} so that Corollaries 1 and 2 in the next

section follow from Theorem 1.

In private-value environments where different types of any player have different pref-

erences, it follows that Pi is the finest partition; hence, Assumption 1 is equivalent to the

beliefs-determine-preferences (BDP) property proposed by Neeman (2004) in such environ-

ments. The BDP property says that distinct types must hold distinct beliefs over the oppo-

nents’ types. The generalized version of Assumption 1 discussed in the preceding paragraph

is then translated into a strengthening of the BDP property: any pair of distinct types holds

distinct (higher-order) beliefs over strategically distinguishable payoff types. This is what

we need for our continuous implementation result.

4 Main Result

In this section, we discuss our main result. In Section 4.1, we first state our main result

formally and in Section 4.2, we next illustrate the logic of the proof in a heuristic manner.

Section 4.3 introduces the solution concept of S∞Ŵ∞, i.e., the set of message profiles which

survive the iterative elimination of weakly dominated messages followed by the iterative

13



elimination of interim strictly dominated messages. In Sections 4.3.1 and 4.3.2, we explain

our key augmentation step which “combines” a generic version of the maximally revealing

mechanism and a mechanism akin to the one used in Abreu and Matsushima (1994) into a

single implementing mechanism. Section 4.4 provides the proof of Theorem 1.

4.1 The Theorem

We now state the main result of this paper:

Theorem 1 Suppose that Assumption 1 holds. Then, an SCF f : T̄ → ∆(A) is continuously

implementable with arbitrarily small transfers if and only if it is incentive compatible.

We relegate the proof of this theorem to Section 4.4 and only outline the steps of the

proof in the rest of the section. Observe that the equilibrium which continuously implements

f also implements f in T̄ . Then, a limiting argument taking the transfer bound to zero

shows that incentive compatibility is a necessary condition for continuous implementation

with arbitrarily small transfers. The main task is therefore to prove the “if” part of Theorem

1, which is the focus of our discussion below.

Let f be an SCF which is incentive compatible. We structure the main argument in

two steps: first, we show that under Assumption 1, we can implement the SCF f under

a solution concept denoted by S∞Ŵ∞ (to be defined in Section 4.3) with arbitrarily small

transfers. Second, we show that if the SCF f is implementable in S∞Ŵ∞ with arbitrarily

small transfers, then it must be continuously implementable with arbitrarily small transfers.

To grasp the basic idea, consider a benchmark model with complete information. First,

assume, as in Abreu and Matsushima (1994), that values are private (i.e., ui : ∆ (A) ×
Θi → R) and different payoff types induce different preferences over lottery allocations.

Under this assumption, Abreu and Matsushima (1994) show that any social choice function

can be implemented in one round deletion of interim weakly dominated messages followed

by the iterative deletion of interim strictly dominated messages (i.e., S∞W ) by a finite

mechanism. Thanks to the private-value assumption, interim weak dominance is equivalent

to iterative weak dominance, i.e., S∞Ŵ∞ = S∞W . Hence, we obtain the following corollary.

The corollary can be proved by simply invoking the mechanism constructed in Abreu and

Matsushima (1994) and observing that for any model T , there is a trembling-hand perfect

equilibrium σ which survives S∞W .
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Corollary 1 Consider a complete information model T CI = (TCIi , θ̂i, πi)i∈I in which the

agents’ values are private and different payoff types θi and θ′i induce different preferences

over lottery allocations ∆(A). Then, an SCF f : T̄ → ∆(A) is continuously implementable

with arbitrarily small transfers if and only if it is incentive compatible.

When we consider a complete information model with interdependent values, however,

the approach of Abreu and Matsushima (1994) applies only when different type profiles

induce different preferences over lottery allocations.12 We do not need to make this stronger

assumption. Indeed, as we remark in Section 3.3, to make Assumption 1 satisfied under

a complete-information benchmark, we only need to require that the partition Pi be the

finest possible one. A leading example of such an interdependent-value environment has

been studied by Bergemann and Morris (2009a) which we briefly recap at the end of the

previous section. We document this more permissive special case as another corollary.

Corollary 2 Consider a complete information model T CI = (TCIi , θ̂i, πi)i∈I in which Pi is
the finest possible partition {{θi} |θi ∈ Θi}. Then, an SCF f : T̄ → ∆(A) is continuously

implementable with arbitrarily small transfers if and only if it is incentive compatible.

Note that in this second case, our result is not reduced to that of Abreu and Matsushima

(1994) even though we consider a complete-information benchmark T̄ . In other words,

regardless of whether we deal with complete information or incomplete information, the

mileage of our Proposition 1 over the existing literature lies in our handling the case with

interdependent values.

4.2 Roadmap

In this section, we outline the proof of Theorem 1 according to Figure 1. By “A → B” in

the diagram, we mean that A is used for proving B. There are three propositions used for

proving our Theorem 1. Among them, Proposition 1 is the key step which we will explain

separately in Sections 4.3.1 and 4.3.2.

Proposition 1 shows that under Assumption 1, if an SCF is incentive compatible, then

it is fully implementable with arbitrarily small transfers in S∞Ŵ∞, which is the set of

12More precisely, when we translate the interdependent-value model to a private-value model (by means

of the complete-information assumption and in order to apply Abreu and Matsushima (1994)), a payoff type

in the latter corresponds to a payoff type profile in the former.
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Proposition 3y
Proposition 4 −−−→ Theorem 1x

Proposition 1

Figure 1: The Diagram of the Proof of Theorem 1

message profiles surviving the iterative elimination of weakly dominated messages followed

by the iterative elimination of interim strictly dominated messages.13 Proposition 3 shows

that the solution correspondence S∞Ŵ∞ in a finite mechanism is upper hemicontinuous.

This result is considered an extension of the well known upper hemicontinuity of the interim

correlated rationalizability correspondence (see Dekel et al. (2007)) to the case with payoff

knowledge. Therefore, Proposition 3 establishes the continuity property of the implementing

mechanism which is constructed in proving Proposition 1. Finally, Proposition 4 shows

that any Bayesian game with a finite action/message space and a countable type space

possesses a Bayes Nash equilibrium which survives S∞Ŵ∞. This, together with Proposition

3, establishes the existence of an equilibrium which exhibits the desirable robustness property

for continuous implementation.14

4.3 The Solution Concept of S∞Ŵ∞

In proving Theorem 1, our major step is to show that any incentive compatible SCF is

implementable in S∞Ŵ∞ with arbitrarily small transfers. To formalize the step, we first

define the solution concept of S∞Ŵ∞. Given a mechanismM, we first define the process of

iterative elimination of weakly dominated messages. As the process of iterative elimination of

strictly dominated messages, the iterative elimination of weakly dominated messages makes

13A message mi is weakly dominated by m′
i if against any message profile and payoff type profile of the

other agents, mi yields at least as much payoff for agent i as m′
i; moreover, for some message profile and

some payoff type profile of other agents, mi yields strictly higher payoff than m′
i. The solution concept is

proposed by Chen et al. (2015) but they do not consider the case with Θ = ×i∈IΘi in which players know

their own payoff types (and the knowledge is never perturbed).
14The idea is similar to the result in Kohlberg and Mertens (1986), which shows that each stable set

contains a stable set in the truncated game obtained by eliminating a weakly dominated strategy.
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no assumption on each player’s belief about other players’ payoff types.

We set Ŵ 0
i (θi|M) =Mi and for each integer l ≥ 0, we inductively define

Ŵ l+1
i (θi|M)

=


mi ∈ Ŵ l

i (θi|M)

∣∣∣∣∣∣∣∣∣∣∣

∃αi ∈ ∆(Mi) s.t. ui (g (αi,m−i) , (θi, θ−i)) + τi (αi,m−i)

≥ ui (g (mi,m−i) , (θi, θ−i)) + τi (mi,m−i)

for any m−i ∈ Ŵ l
−i (θ−i|M) and any θ−i ∈ Θ−i and a strict inequality

holds for some m−i ∈ Ŵ l
−i (θ−i|M) and some θ−i ∈ Θ−i


.

Finally, we say that Ŵ∞
i (θi|M) ≡

⋂
l≥0 Ŵ

l
i (θi|M) is the set of messages surviving the

iterative deletion of weakly dominated messages for payoff type θi.

We define a solution concept S∞Ŵ∞ as follows. We set S0
i Ŵ

∞ (ti|M, T ) = Ŵ∞
i (θ̂i(ti)|M)

and for each integer l ≥ 1, we inductively define mi ∈ Sl+1
i Ŵ∞ (ti|M, T ) if and only if there

does not exist αi ∈ ∆(Mi) such that

Vi((αi, ν−i), ti) > Vi((mi, ν−i), ti)

for all conjecture ν−i : T−i →M−i and all t−i ∈ T−i such that ν−i(t−i) ∈ Sl−iŴ∞ (t−i|M, T )
for each t−i ∈ T−i where S

l
−iŴ

∞ (t−i|M, T ) ≡
∏

j ̸=i S
l
jŴ

∞ (tj|M, T ). See Section 3.2 for

the notation Vi((αi, ν−i), ti). Let S
∞Ŵ∞ denote the set of message profiles which survive the

iterative deletion of weakly dominated messages followed by the iterative removal of interim

strictly dominated messages, i.e.,

S∞
i Ŵ

∞ (ti|M, T ) =
∞⋂
l=1

SliŴ
∞ (ti|M, T ) ,

Finally, we define

S∞Ŵ∞ (t|M, T ) =
∏

i∈I
S∞
i Ŵ

∞ (ti|M, T ) .

We do not intend to justify the plausibility of the solution concept S∞Ŵ∞. The solution

concept S∞Ŵ∞ is entirely instrumental in our proof. That is, implementation in S∞Ŵ∞

is only an intermediate step toward achieving our result of continuous implementation. We

now formally define the notion of implementation in S∞Ŵ∞ with arbitrarily small transfers.

Definition 6 An SCF f : T̄ → ∆(A) is (fully) implementable in S∞Ŵ∞ with arbitrarily

small transfers if for any τ̂ > 0, there exists a mechanismMτ̂ such that g(m) = f(t) for

every m ∈ S∞Ŵ∞ (
t|Mτ̂ , T̄

)
and every t ∈ T̄ .
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We can now formally state our first step of the proof of Theorem 1 as follows.

Proposition 1 Suppose that Assumption 1 holds. If an SCF f is incentive compatible, then

it is implementable in S∞Ŵ∞ with arbitrarily small transfers.

Proof. See Appendix A.3.

While we relegate its formal proof to the Appendix, we rather elaborate on its main

idea and key step which we call augmentation in the next two subsections.

4.3.1 The Mechanism

To prove Proposition 1, we construct a mechanism M̄∗ which “connects” two mechanisms,

M∗ and M̄. First, we adopt the maximally revealing mechanism from Bergemann and

Morris (2009b) and modify it into a “generic” maximally revealing mechanismM∗. This is

established in Lemma 3 in the Appendix. Second, the other building block M̄ is what we

call an extended direct mechanism:

Definition 7 We say that M̄ =
(
(M̄i), ḡ, (τ̄i)

)
i∈I is an extended direct mechanism if

for each i ∈ I, M̄i = T̄i× · · · × T̄i consists of finitely many copies of T̄i and ḡ (t, ..., t) = f (t)

for every t ∈ T̄ .

That is, an extended direct mechanism is a mechanism where each player announces his

own type for finitely many times and truth-telling of everyone delivers the socially desirable

outcome.

Third, we construct what we call an augmented mechanism M̄∗ = ((Mi), g, (τi))i∈I

which builds upon and “combines” a maximally revealing mechanismM∗ and an extended

direct mechanism M̄ =
(
(M̄i), ḡ, (τ̄i)

)
i∈I .

15 In describing the construction of M̄∗, we fix

l̄ to be a positive number of iterations, which terminates the iterative deletion of strictly

dominated messages inM∗.16 The augmented mechanism has the following components.

1. The message space:

15We construct the maximally revealing mechanism in Lemma 3 and the extended direct mechanism in

the proof of Proposition 1.
16That is, for any i ∈ I, and θi ∈ Θi, we have Ŝl

i (θi|M∗) = Ŝ∞
i (θi|M∗) ,∀l ≥ l̄.
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Player i’s message space is

Mi =M0
i ×M1

i × · · · ×M l̄+3
i ×M l̄+4

i ×M l̄+5
i =M∗

i × T̄i × · · · × T̄i︸ ︷︷ ︸
l̄+3 copies of T̄i

× M̄i,

where M̄i = M l̄+4
i ×M l̄+5

i ; M l̄+4
i = T̄i; and M

l̄+5
i consists of K copies of T̄i. That is,

each player i simultaneously makes an announcement in M∗
i , l̄ + 3 announcements of

his own type, and finally an announcement in M̄i.

2. The outcome function:

Let ϵ ∈ (0, 1) be a small positive number. Define e :M → R by

e(m) =

 ϵ, if ml
i ̸= m2

i for some i ∈ I and some l ∈ {3, . . . , l̄ + 3},
0, otherwise..

(3)

Based on the outcome function g∗ in the maximally revealing mechanism M∗ and

the outcome function ḡ of the mechanism M̄, the outcome function of the augmented

mechanism g :M → ∆(A) is defined as follows: for each m ∈M ,

g (m) = e(m)× g∗(m0) + (1− e(m))× ḡ(ml̄+4,ml̄+5). (4)

3. The transfer rule:

In addition to τ ∗i (i.e., the transfer rule in M∗) and τ̄i (i.e., the transfer rule in M̄),

player i makes l̄ + 5 number of payments of the three different sorts which we denote by

τ 0i (m
1
i ,m

0
−i), τ

1
i (m

2
i ,m

1
−i,m

0
−i), and τ

2
i (m

l
i,m

l−1
−i )) for any l = 2, . . . , l̄+4, respectively, where

τ 0i , τ
1
i and τ 2i will be defined in Section A.2.1. They are essentially the proper scoring rules

(eliciting the players’ true type) which satisfy a generic condition with a total bound denoted

by τ . Hence, under a message profile m, player i pays a total equal to:

τi(m) = τ ∗i
(
m0

)
+ τ 0i (m

1
i ,m

0
−i) + τ 1i (m

2
i ,m

1
−i,m

0
−i) +

l̄+4∑
l=3

τ 2i (m
l
i,m

l−1
−i ) + τ̄i(m

l̄+4
i ,ml̄+5

i ), (5)

The precise specification of the transfer rule and the choice of parameters of the mechanism

(including the size of transfers) can be found in Appendix A.2.1 in proving Proposition 2.

We will summarize the idea behind the construction of the mechanism M̄∗ as well as the

role played by Proposition 2 in proving Proposition 1 in the next section.
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4.3.2 Augmentation

We now discuss the augmentation step which is at the heart of our technical contribution.

Formally, given any maximally revealing mechanismM∗, Proposition 2 shows that we can

choose the transfer rule and the parameters in the augmented mechanism M̄∗ such that

the transfer rule is bounded by three times of the transfer size of the maximally revealing

mechanism; moreover, each player reports his true type in the “bridge” component up until

the first announcement of the extended direct mechanism M̄. More precisely, for each player

i of type ti we havem
l
i = ti for each l = 2, ..., l+4 as long asmi belongs to S

∞
i Ŵ

∞(ti|M̄∗, T̄ ).

Proposition 2 Suppose that Assumption 1 holds. Let M∗ be a maximally revealing mech-

anism with transfer rule bounded by τ̂ /3 and M̄ be an extended direct mechanism. Then,

there exists an augmented mechanism M̄∗ = ((Mi) , g, (τi))i∈I such that (a) the transfer rule

τi (·) is bounded by τ̂ ; (b) if the transfer size in M̄ is sufficiently small, then for each i ∈ I,
each ti ∈ T̄i, and each mi ∈ S∞

i Ŵ
∞(ti|M̄∗, T̄ ), we have ml

i = ti for l = 2, ..., l + 4.

Proof. See Appendix A.2.

The proof of Proposition 2 boils down to Lemma 1, which allows us to translate the

agents’ choice under Ŝ∞ in the maximally revealing mechanismM∗ into their choice under

Ŵ∞ in the augmented mechanism M̄∗. The main difficulty of this translation lies in showing

that a strictly dominated message inM∗ corresponds to a weakly dominated message in M̄∗

which we will elaborate further below.

Lemma 1 Suppose that Assumption 1 holds. For any player i of type ti ∈ T̄i and any

l = 0, 1, ..., l̄, the following two statements, denoted by P 1(l) and P 2(l), hold:

• P 1(l): for any m̂i ∈Mi, m̂i ∈ Ŵ l
i (θ̂i(ti)|M̄∗) implies m̂0

i ∈ Ŝli(θ̂i(ti)|M∗);

• P 2(l): there is some
(
m0
i , ...,m

l
i,m

l+1
i

)
∈ ×l+1

k=0M
k such that for every t′i ∈ T̄i,(

m0
i , ...,m

l
i,m

l+1
i , t′i, ti, ..., ti

)
∈ Ŵ l

i (θ̂i(ti)|M̄∗).

Proof. See Appendix A.2.2.

In words, P 1(l) says that in each deletion step of weakly dominated messages, announc-

ing m̂0
i which is strictly dominated in the maximally revealing mechanismM∗ must result in

a weakly dominated message in the augmented mechanism M̄∗. P 2(l) ensures that at least
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two inconsistent announcements exist (i.e., there exists some k > 2 such that mk
i ̸= m2

i in

message mi) in a message surviving the previous round of deletion. It follows from P 1(l) of

Lemma 1 that mi ∈ Ŵ∞
i (θi|M̄∗) implies m̂0

i ∈ Ŝ∞
i (θi|M∗). In fact, P 1(l) will be proved via

induction and P 2(l) ensures that the induction argument goes through.

As Lemma 1 establishes the translation of each strictly dominated messages inM∗ into

a weakly dominated message in M̄∗, agent i with two strategically distinguishable payoff

types must be associated with different set of Ŝ∞
i (θi|M) and thereby report distinct mes-

sages in m0
i . Then, Assumption 1 allows us to make use of proper scoring rules to incentivize

each player to report his type truthfully in m1
i and similarly the additional l + 3 announce-

ments in the “bridge” (i.e., (m1
i , . . . ,m

l̄+3
i ) = (ti, . . . , ti)) until the 1st announcement in M̄

(i.e., ml̄+4
i = ti) in proving Proposition 2. Like the maximally revealing mechanism M∗

constructed in Lemma 3, we also require that these proper scoring rules be “generic” and

construct them in the proof of Lemma 4.17

Finally, we explain how we obtain Proposition 1 based on Proposition 2. In particular,

we follow the idea of Abreu and Matsushima (1992) and Abreu and Matsushima (1994) in

constructing the extended direct mechanism to prove Proposition 1; see Appendix A.3. This

extended direct mechanism possesses two important properties. First, like the mechanisms

constructed in Abreu and Matsushima (1992) and Abreu and Matsushima (1994), as long as

the players are truthful in their first announcement in M̄ (which we guarantee by Proposition

2), the iterative deletion of interim strictly dominated messages implies that they will also

truthfully announce their own types “all the way” in each of the subsequent announcements.

As a result, we obtain the desirable social outcome in M̄∗. Second, each of the announce-

ments will only get to determine the social alternative with probability 1/K where K is the

number of announcements which an agent is asked to make in M̄. When K is large, the

construction serves to piecemeal the players’ incentive to misreport their type and thereby a

small transfer suffices to incentivize truth-telling. By Proposition 2, the transfer size in M̄∗

can therefore be made arbitrarily small, as long as we can decrease both the transfer size of

M∗ and M̄ arbitrarily. We achieve the latter property with Lemma 3 and the construction

of M̄ in the proof of Proposition 1 in the Appendix. Figure 2 summarizes how we structure

the proof of Proposition 1.

17The generic property ensures that each player has a strict best response against any pure strategy profile

of his opponents. This property plays a crucial role in our proof that the message in P 2 (l) survives Ŵ l
i .
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Proposition 1 ←−−− Proposition 2x
Lemma 3 −−−→ Lemma 1 ←−−− Lemma 4

Figure 2: The Diagram of the Proof of Proposition 1

We conclude the section by briefly commenting on the difference between the augmen-

tation established via Proposition 2 and the augmentation in Abreu and Matsushima (1992)

and Bergemann and Morris (2009b). First, Abreu and Matsushima (1992) adopt an interim

solution concept in both the maximally revealing mechanism and the augmented mechanism,

whereas Bergemann and Morris (2009b) adopt an ex post/belief-free solution concept in both

the maximally revelation mechanism and the augmented mechanism. Here our augmented

mechanism starts by exploiting a “belief-free” solution concept Ŵ∞ but switches to an in-

terim perspective (S) once we succeed in eliciting the payoff type information from Ŵ∞.

Second, both Abreu and Matsushima (1992) and Bergemann and Morris (2009b) work with

the solution concept of iterated strict dominance in establishing their virtual implementation

results. In contrast, P 1(l) in Lemma 1 shows that each weakly undominated message in the

augmented mechanism M̄∗ must announce a strictly undominated message in the maximally

revealing mechanism M∗. As Abreu and Matsushima (1994), it is crucial for us to adopt

iterative weak dominance because we would like to achieve exact implementation as opposed

to virtual implementation in the social alternatives. Due to the two differences, the proofs of

Lemma 1 and Proposition 2 are also substantially different from the proof of augmentation

in Abreu and Matsushima (1992) or Bergemann and Morris (2009b).

4.4 Proof of Theorem 1

Based on Proposition 1, the proof of Theorem 1 is completed following two further steps.

First, Proposition 3 establishes the upper hemicontinuity of the correspondence S∞Ŵ∞

which is similar to the well known upper hemicontinuity of the interim correlated rational-

izable strategies S∞(see Dekel et al. (2007)).

Proposition 3 Fix any model T such that T̄ ⊂ T and any mechanism M. Then, for

any t ∈ T̄ and any sequence {tn}∞n=0 in T such that tn →p t, we have S∞Ŵ∞(tn|M, T ) ⊂
S∞Ŵ∞(t|M, T ) for any n large enough.

22



Proof. See Appendix A.4.

Second, Proposition 4 states that there exists a Bayes Nash equilibrium of the game

U
(
M̄∗, T

)
which survives the iterative deletion of weakly dominated messages.

Proposition 4 Fix any model T such that T̄ ⊂ T and any mechanism M. Then, there

exists an equilibrium σ in the game U (M, T ) such that for any player i of type ti, we have

σi (ti) ∈ Ŵ∞
i (θ̂i(ti)|M).

Proof. See Appendix A.5.

Now we are ready to prove Theorem 1 which we restate here for the ease of reference:

Theorem 1. Suppose that Assumption 1 holds. Then, an SCF f : T̄ → ∆(A) is continu-

ously implementable with arbitrarily small transfers if and only if it is incentive compatible.

Proof. We first prove the “if” part. For any τ̂ > 0, by Proposition 1, for any t ∈ T̄ , there
is some mechanismMτ̂ such that m ∈ S∞Ŵ∞ (

t|Mτ̂ , T̄
)
implies that g (m) = f (t).

Now pick any model T ⊃ T̄ . We show that there exists an equilibrium which continu-

ously implements f on T̄ . By Proposition 4, there is an equilibrium σ in the game U(Mτ̂ , T )
such that σi(ti) ∈ Ŵ∞

i (θ̂i(ti)|Mτ̂ ) for every type ti of every player i. Since σ is an equi-

librium in U(Mτ̂ , T ), σ|T̄ is an equilibrium in U
(
Mτ̂ , T̄

)
. Now, pick any sequence {tn}∞n=0

such that tn →p t. By Proposition 3, S∞Ŵ∞ (
tn|Mτ̂ , T

)
⊂ S∞Ŵ∞ (

t|Mτ̂ , T̄
)
for any n

large enough. Moreover, σ(tn) ∈ Ŵ∞(θ̂(tn)|Mτ̂ ). Since Θ is finite, for any n large enough,

we have θ̂(tn) = θ̂(t), it follows that σ(t) ∈ S∞Ŵ∞ (
tn|Mτ̂ , T̄

)
. Thus, by Proposition 1, we

have (g ◦ σ)(tn) = f(t) for any n large enough.

The “only-if” part is proved as follows: Assume that the SCF f is continuously imple-

mentable with arbitrarily small transfers. Then, for any τ̂ > 0, there is a mechanism Mτ̂

and a Bayes Nash equilibrium σ in U(Mτ̂ , T̄ ) such that, for any t ∈ T̄ ,

(g ◦ σ)(t) = f(t); (6)

τ(σ(t)) < τ̂ .

Since σ is an equilibrium in U
(
Mτ̂ , T̄

)
, we have that for any ti ∈ T̄i and alternative message

m′
i,

Vi((σi, σ−i) , ti) ≥ Vi((m
′
i, σ−i) , ti). (7)

See Section 3.2 for the notation Vi((σi, σ−i) , ti). Then, by (6) and (7), the truth-telling is a

Bayes Nash equilibrium in the incomplete information game induced by the direct mechanism
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(T̄ , f). That is, for any ti, t
′
i ∈ T̄i,∑

t−i

[
ui(f(ti, t−i), θ̂(ti, t−i)) + τi (σi (ti) , σ−i (t−i))

]
π̄i(ti)[t−i]

≥
∑
t−i

[
ui(f(t

′
i, t−i), θ̂(ti, t−i)) + τi (σi (t

′
i) , σ−i (t−i))

]
π̄i(ti)[t−i].

Since τ(·) is bounded by τ̂ and τ̂ can be arbitrarily small, we have∑
t−i

π̄i(ti)[t−i]ui(f(ti, t−i), θ̂(ti, t−i)) ≥
∑
t−i

π̄i(ti)[t−i]ui(f(t
′
i, t−i), θ̂(ti, t−i)).

That is, the SCF f is incentive compatible.

5 Discussion

We first discuss the implication for one crucial assumption that each player always knows

his own payoff type while we perturb the model slightly (Section 5.1). We next discuss other

works in the literature which also propose different notions of locally robust implementation

as well as the different implications obtained in those related papers (Sections 5.2, 5.3, and

5.4 ).

5.1 No Knowledge about Payoff Types

We motivate our exercise as studying locally robust implementation which parallels the

study of globally robust implementation in Bergemann and Morris (2005). In this vein, we

view our assumption on payoff knowledge as an instrumental one. More precisely, our goal

is to understand what the notion of continuous implementation entails as a locally robust

implementation notion in comparison with its global counterpart, keeping other aspects of

the two notions equal. We also verify the connection through establishing Observation 1

which shows that any ex post implementable SCF is continuously implementable.

In this section, we discuss a contrasting situation in which the agents know nothing

about their own payoff types. Recall that the solution concept S∞Ŵ∞ in Section 4.3 (and

specifically how the definition of Ŵ∞
i (θ̂i(ti)|M)) is based upon the assumption that each

agent knows his own payoff type. If an agent does not know his own payoff type, then he

needs to consider his every possible payoff type in deleting weakly dominated messages. For
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each integer l ≥ 0, we inductively define:

W̃ l+1
i (M)

=


mi ∈ W̃ l

i (M)

∣∣∣∣∣∣∣∣∣∣∣

∃αi ∈ ∆(Mi) s.t. ui (g (αi,m−i) , θ) + τi (αi,m−i)

≥ ui (g (mi,m−i) , θ) + τi (mi,m−i)

for any θ ∈ Θ, any m−i ∈ W̃ l
−i (M) and a strict inequality

holds for some m−i ∈ W̃ l
−i (M) and some θ ∈ Θ


.

Finally, we say that W̃∞
i (M) ≡

⋂l
l≥0 W̃i (M) is the set of messages surviving the iterative

deletion of weakly dominated messages for agent i. S0
i W̃

∞ (ti|M, T ) = W̃∞
i (M) and for

each integer l ≥ 1, we inductively define mi ∈ Sl+1
i W̃∞ (ti|M, T ) if and only if there does

not exist αi ∈ ∆(Mi) such that

Vi((αi, ν−i), ti) > Vi((mi, ν−i), ti)

for all conjecture ν−i : T−i →M−i and all t−i ∈ T−i such that ν−i(t−i) ∈ Sl−iW̃∞ (t−i|M, T )
for each t−i where S

l
−iW̃

∞ (t−i|M, T ) ≡
∏

j ̸=i S
l
jW̃

∞ (tj|M, T ). Let S∞W̃∞ denote the

set of message profiles which survive the iterative deletion of weakly dominated messages

followed by the iterative removal of interim strictly dominated messages, i.e.,

S∞
i W̃

∞ (ti|M, T ) =
∞⋂
l=1

SliW̃
∞ (ti|M, T ) ,

Finally, we define S∞W̃∞ (t|M, T ) =
∏

i∈I S
∞
i W̃

∞ (ti|M, T ). We propose the following

definition of implementation in S∞W̃∞. In contrast to Definition 6, the following definition

allows for transfers of any size to be used on and off the solution concept S∞W̃∞.

Definition 8 An SCF f : T̄ → ∆(A) is fully implementable in S∞W̃∞ with transfers if

there exists a mechanism M such that g(m) = f(t) for every m ∈ S∞W̃∞ (
t|M, T̄

)
and

every t ∈ T̄ .

The following definition is adapted from Bergemann et al. (2011) by allowing for addi-

tional transfers to be made in rationalizable implementation.

Definition 9 An SCF f : T̄ → ∆(A) is fully implementable in rationalizable strategies with

transfers if there exists a mechanism M such that W̃∞
i (M) = Mi for every i ∈ I and f is

fully implementable in S∞W̃∞ by the mechanismM.
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We introduce Maskin monotonicity as a condition for SCFs:

Definition 10 An SCF f satisfies Maskin monotonicity if, for every pair of states t

and t′ with f(t) ̸= f (t′), there exist some agent i ∈ I and some lottery α ∈ ∆(A) such that

ui(f(t), θ̂(t)) ≥ ui(α, θ̂(t);

and

ui(α, θ̂(t
′)) > ui(f(t), θ̂(t

′).

The following result shows that implementation in S∞W̃∞ becomes a demanding re-

quirement, even if we allow for additional transfers of any size to be imposed on and off the

solution S∞W̃∞.

Proposition 5 If an SCF f is fully implementable in S∞W̃∞ with transfers, it satisfies

Maskin-monotonicity.

Proof. We prove this claim by contradiction. Suppose that some mechanismM implements

f in S∞W̃∞ with transfers. DefineM′ to be a restricted mechanism such that for all i ∈ I,
M ′

i ≡ W̃∞
i (M) and g and τi are all restricted to M ′ = ×i∈IM

′
i . Then, thatM implements

f in S∞W̃∞ implies that M′ implements f in rationalizable strategies with transfers. By

Bergemann et al. (2011), f satisfies Maskin-monotonicity.

It follows from Proposition 5 and Corollary 1 that we can construct an SCF which is

implementable in S∞Ŵ∞ with arbitrarily small transfers but not implementable in S∞W̃∞

with transfers. This demonstrates that the situation where players know their own pay-

off types (as formulated in S∞Ŵ∞) drastically differs from the one where the players do

not know their payoff types (as formulated in S∞W̃∞). We construct such an example

in Appendix A.6 to demonstrate this point formally. In particular, the example presents

a complete-information environment with an SCF which is incentive compatible but not

Maskin-monotonic even if we allow for transfers of any size.

In addition, virtual implementation by Abreu and Matsushima (1992) is achieved in

the solution concept of rationalizability. Hence, the “nearby” SCF which Abreu and Mat-

sushima (1992) implements must be Maskin-monotonic. In contrast, we construct an SCF in

Appendix A.6 which is (1) not Maskin-monotonic even if we add transfers (large or small) to

the SCF outcomes; and yet (2) it is implementable in S∞Ŵ∞ with arbitrarily small transfers

by our result. Thus, the “nearby” SCF which we implement with small transfers need not

be Maskin-monotonic.
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5.2 Other papers on continuous implementation

Oury and Tercieux (2012) is the first to propose the notion of continuous implementation as

a strengthening of partial implementation. Theorem 3 of OT (which also implies Theorems 1

and 2 of OT) shows that strict interim rationalizable monotonicity is a necessary condition for

strict continuous implementation. As strict interim rationalizable monotonicity implies strict

Bayesian monotonicity, which is a well-known necessary and “almost sufficient” condition

for full implementation in Bayes Nash equilibrium, a central message of OT is that while

continuous implementation sounds weaker than full implementation, it is strong enough to

obtain full implementation.

There are four differences between our paper and OT. First, as we mentioned in Section

2, our paper maintains the payoff knowledge assumption, whereas OT do not. Specifically,

footnotes 8 and 17 in Oury (2015) remarked that for the main results of OT and Oury (2015)

to hold, it is crucial that the players entertain some doubt about their own payoff type in the

perturbed model nearby the benchmark.18 Here we follow Bergemann and Morris (2005) in

assuming that each player knows his payoff type and this knowledge as well as the common

knowledge of utility functions is maintained even when we perturb their belief hierarchies.

In contrast to OT, we obtain permissive continuous implementation results with the payoff

knowledge assumption and our results cover SCFs which are not (Bayesian) monotonic.

Second, OT focus on “strict” continuous implementation rather than continuous im-

plementation in their Theorems 1-3.19 They show that “strict” continuous implementation

generates its necessary conditions, which are tightly connected to that of full implementation.

To dispense with “strictness” in their result, OT obtain the result of (non-strict) continu-

ous implementation with an additional assumption of costly messages. Without the payoff

18In proving their Theorem 1, OT construct a sequence of types nearby the complete-information bench-

mark with the following property: the sequence of types assigns increasingly more probability on the payoff

type θ′ and vanishing probability on payoff type θ. The belief of these types (of agent i) are constructed so

that they all believe that the opponents have a fixed type profile t−i which has complete information about

state θ, regardless of these types’ belief about Θ. This is to ensure that the opponents of the type profile t−i

play the equilibrium message profile under state θ to start the contagion. When each player knows his own

payoff type, however, it is not possible that player i assigns probability one that t−i has complete information

about θ yet player i also assigns increasingly more probability on θ′ in which his opponents know θ′−i ̸= θ−i.
19A related difference is that a strict Bayes Nash equilibrium constitutes, by definition, a pure strategy

profile in the benchmark model, whereas we do not impose this requirement in part (i) of OT’s Definition 2.
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knowledge assumption, we know of no necessary condition for continuous implementation,

with or without transfer. Moreover, we only know of one sufficient condition for continuous

implementation, which is achieved by rationalizable implementation in a finite mechanism

(if-part of OT’s Theorem 4). In contrast to our result, rationalizable implementation in a

finite mechanism (like implementation in S∞W̃∞) requires that the SCF satisfy Maskin-

monotonicity, and in fact, a stronger condition called Maskin-monotonicity∗ (Bergemann

et al. (2011)). To our knowledge, it was only proved recently in Chen et al. (2021) that

every Maskin-monotonic∗ SCF can be implemented in rationalizable strategies in a finite

mechanism in a complete information environment with lotteries and (off-path) transfers.

Third, OT’s result holds whether the planner can use transfers or not, although their

Theorem 4 builds on the assumption that sending messages incurs a small cost to the players

and their preferences are quasilinear in the cost. In contrast, we follow the classical mech-

anism design literature in assuming that the messages are cheap talk and the planner can

make use of arbitrarily small transfers, on and off the equilibrium. In other words, transfers

are part of the planner’s instrument in our setup whereas the cost of sending messages is

part of the environmental constraint in OT.

Finally, we impose Assumption 1 on the benchmark model T̄ , whereas OT consider an

arbitrary (finite) benchmark model. The notion of continuous implementation builds upon

the planner’s uncertainty about the higher-order beliefs of the players. In this vein, the

planner might also be concerned about having an alternative benchmark model where the

players’ hierarchies of beliefs lie in the neighborhood of the benchmark which she postulates.

Indeed, provided that each player has strategically distinguishable payoff types (e.g., in

Bergemann and Morris (2009a)), Assumption 1 holds for generic beliefs. As a result, for every

benchmark model, there is a “nearby” benchmark model in which Assumption 1 holds and

our result applies. We therefore can always choose a benchmark model satisfying Assumption

1 if the planner cannot distinguish these two nearby benchmark models due to the lack of

full knowledge about the players’ higher-order beliefs.

Oury (2015) also obtain a full characterization of continuous implementation in finite

mechanisms in terms of rationalizable implementation in finite mechanisms. Instead of

assuming that sending message is slightly costly as in Theorem 4 of OT, Oury (2015) assumes

that the planner has some doubt on the payoffs of the outcomes and wants his prediction to

be robust when these payoffs are close but not exactly equal to those in the initial model.
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In our paper, on the contrary, we obtain a permissive result for continuous implementation

in the setting of Bergemann and Morris (2005) where agents know their payoff type, the

utility functions are common knowledge, and the planner maintains this payoff knowledge

throughout.

Chen, Muller-Frank, Pai (2022, hereafter CMP) characterize when a social choice func-

tion is truthfully continuously implementable, i.e., continuously implementable using game

forms corresponding to direct revelation mechanisms for the benchmark model. CMP show

that whether the restriction to direct revelation mechanisms entails a loss of generality hinges

on the formalization of the notion of “nearby types”. In particular, when “nearby types”

can have different higher-order beliefs (as in the case with the product topology), truthful

continuous implementation is equivalent to requiring that the social choice function is im-

plementable in unique rationalizable strategies in the initial model; moreover, some SCF is

continuously implementable only with indirect mechanisms. Unlike OT and Oury (2015),

CMP assume that the players’ utility functions are common knowledge; however, unlike our

paper, CMP do not assume that each player knows his own payoff type.

5.3 Comparisons with JMM

Jehiel et al. (2012) (hereafter, JMM) also define the notion of locally robust implementation

which captures the idea that the planner may know the players’ beliefs well, though not

perfectly. Both JMM and our paper weaken the notion of global robust implementation

due to Bergemann and Morris (2005) to a notion of locally robust implementation and both

papers maintain the payoff knowledge assumption. JMM also allow transfers to be used

in equilibrium and their impossibility result holds regardless of the size of the equilibrium

transfers.

To focus on the most essential differences, we adapt JMM’s notion of locally robust

implementation to our setting. The benchmark model in JMM is a tuple (Θi, π
∗
i )i∈I where

π∗
i : Θi → ∆(Θ−i). In our terminology, their benchmark model is a model (T̄i, θ̄i, π̄i)i∈I

where θ̄i is the identity mapping from T̄i to Θi, and π̄i = π∗
i . Let Bε (π

∗
i (θi)) denote the

open ε-balls in ∆(Θ−i) which is endowed with the Euclidean topology.20 To model the

local uncertainty, they consider a larger (uncountably infinite) model T ε=(T εi , θ̂
ε
i , π

ε
i ) which

includes all ε-perturbed beliefs, i.e., T εi ⊂ Θi×∆(Θ−i) and θi×Bε(π
∗
i (θi)) ⊂ T εi for every θi.

20JMM allow for an infinite set of types, Θi = [0, 1]
di and endow ∆(Θ−i) with the total variation norm.
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Moreover, for ti = (θi, pi) with pi ∈ ∆(Θ−i), πi (ti) ∈ ∆
(
T ε−i

)
is the unique measure with the

marginal distribution on Θ−i equal to pi and πi (ti) ({(θ−i, π∗
i (θ−i)) : θ−i ∈ Θ−i}) = 1. That

is, agent i could have different beliefs about −i’s payoff types, but i believes with probability

one that −i’s beliefs are specified by π∗
−i. Clearly, T ε ⊃ T̄ .

JMM consider a problem where there are only two agents and two social alternatives

(i.e., we can set ∆(A) = [0, 1]). The planner wants to implement an allocation function

q : Θ→ [0, 1]. Let vi : Θ×{0, 1} → R denote agent i’s smooth interdependent value function.

An allocation function q is said to be locally robust implementable if there exist ε > 0, a

model T ε which includes all ε-perturbed beliefs, and a payment function p : T ε → RI , such

that the direct revelation mechanism (q, p) is incentive compatible on T ε, i.e.

Eπi [vi(θ)q(θ)− pi(t)] ≥ Eπi [vi(θ)q(θ
′)− pi(t′)]

for all ti = (θi, πi), t
′
i = (θ′i, π

′
i) ∈ T εi , where θ = (θi, θ−i), θ

′ = (θ′i, θ−i), t = (θi, πi, θ−i, π−i),

and t′ = (θ′i, π
′
i, θ−i, π−i). JMM show that no “regular” allocation function is locally ro-

bust implementable in generic settings with quasi-linear utility, interdependent and bilinear

values, and multi-dimensional payoff types.21

There are three basic differences between JMM’s notion of locally robust implementa-

tion and our notion of continuous implementation with payoff knowledge. First, the notion of

continuous implementation allows us to make use of one particular (possibly mixed-strategy)

equilibrium in an indirect implementing mechanism, while JMM’s notion of locally robust

implementation invokes the truthful equilibrium in a direct revelation mechanism (q, p). Sec-

ond, in order to construct a finite implementing mechanism, we work with a finite benchmark

model and invoke Proposition 4 to obtain a desirable equilibrium which continuously imple-

ments the SCF. Proposition 4 requires (1) the existence of a Bayesian Nash equilibrium for

which we, like OT, work with a countable nearby model; and (2) a finite payoff type space so

that the process Ŵ∞ terminates in finitely many steps. In contrast, JMM consider a partic-

ular uncountably infinite benchmark model T ε which includes all ε-perturbed beliefs. It is

unclear whether our argument can be extended to this case. Third, JMM’s notion of locally

robust implementation is stated with respect to the direct revelation mechanism, which is

defined with respect to the specific model T ε. In contrast, the notion of continuous imple-

mentation requires that our indirect implementing mechanism possess a good equilibrium for

21We refer the readers to JMM’s paper for the formal definitions of regularity of allocation functions and

bi-linearity of value functions.
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every nearby model T ⊃ T̄ . For instance, while a countable nearby model T cannot include

all ε-perturbed beliefs, it can include a countable dense subset of ε-perturbed beliefs. In

any such nearby model T , our implementing mechanism possesses a good equilibrium which

continuously implement the SCF.

5.4 Other Related Papers

Meyer-ter-Vehn and Morris (2011) (hereafter, MM) also propose a notion of locally robust

implementation but focus on robust full (as opposed to partial) implementation. MM prove

that a mechanism that robustly implements optimal outcomes in a one-dimensional super-

modular environment continues to robustly implement ε-optimal outcomes in all close-by

environments. They adopt the notion of robust full implementation due to Bergemann and

Morris (2009a) which necessitates ex post incentive compatibility as a requirement. It fol-

lows from Observation 1 that their notion is strictly stronger than our notion of continuous

implementation with payoff knowledge. Moreover, although our Assumption 1 can be (gener-

ically) satisfied as long as the maximally revealing mechanism induces a non-trivial partition

over the payoff type space, MM’s Theorem 1 builds upon on the three assumptions which,

according to Theorem 1 of Bergemann and Morris (2009a), imply that the partition induced

by the maximally revealing mechanism is the finest one.

The current paper is developed from our earlier unpublished paper, Chen et al. (2016),

although they differ in two important ways. First, Chen et al. (2016) focused on full imple-

mentation in the iterated deletion of interim weakly dominated messages. The current paper

studies continuous implementation. Second, Chen et al. (2016) also prove a result on con-

tinuous implementation. However, this earlier result focuses on private-value environments,

whereas our current result covers interdependent-value environments. In interdependent-

value environments, we adopt the novel solution concept S∞Ŵ∞ and our argument is built

crucially on the maximally revealing mechanism due to Bergemann and Morris (2009a) and

the augmentation step in Section 4.3.2. In contrast, the continuous implementation result in

Chen et al. (2016) focuses on private-value environments and require none of these compo-

nents. Indeed, when the benchmark model is the one with complete information, the main

result of Chen et al. (2016) amounts to Corollary 1 in the current paper and can readily

be proved by invoking the mechanism constructed in Abreu and Matsushima (1994). For

a more delicate case with complete information which we document in Corollary 2, we can
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only establish continuous implementation using our current implementing mechanism.

6 Conclusion

We show that continuous implementation with payoff knowledge is as permissive as it can

be when small transfers are allowed and Assumption 1 is satisfied. In such situations, all we

need is (interim) incentive compatibility, which is, by the revelation principle, a necessary

condition for interim implementation. This exhibits a stark contrast with Bergemann and

Morris (2005) who show that their global robustness amounts to ex post implementability as

well as Oury and Tercieux (2012) who show that (strict) continuous implementation (without

payoff knowledge) is tightly connected to full implementation in rationalizable strategies. We

also compare our result with other existing results which are based on different notions of

locally robust implementation. The contrasts exemplify the substantive difference between

local robustness exercises which also involve payoff perturbations (Oury and Tercieux (2012)

and Oury (2015)), and those which do not perturb common knowledge of the utility functions

(this paper).

Our permissive result is based on constructing a complex indirect mechanism which

leverages on the insight of Bergemann and Morris (2009a) and Abreu and Matsushima (1992).

We view the result as a step toward understanding the subtleties of continuous implemen-

tation as a notion of locally robust implementation. In this regard, we focus on studying

the scope of implementability and proving our result in a general quasilinear social choice

environment. Can we find “simpler/more practical” mechanisms which continuously imple-

ment specific incentive compatible SCFs in specific settings?22 Or, should we be concerned,

if the formal framework with which we work necessitates the use of a complicated/unrealistic

mechanism to prove the result? Last but not least, is it possible to obtain permissive re-

sults under an intermediate robustness notion, between the belief-free and local robustness

22Indeed, it is known that ex post implementability can be achieved with “simpler mechanisms” in specific

setups such as the efficient allocation rule in auction settings; see Dasgupta and Maskin (2000), Bergemann

and Morris (2009a), and Chung and Ely (2019). Here, what we mean by simpler mechanisms are direct mech-

anisms. More specifically, Chung and Ely (2019) consider the generalized VCG mechanism and Dasgupta

and Maskin (2000) consider a version of the VCG mechanism in which each bidder announces a bidding

“function,” which does depend on the payoff type profile of other players. On the contrary, Bergemann and

Morris (2009a) consider general direct mechanisms.
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approach of this paper, which does not rely on properties like Assumption 1? These are

important questions for future research.

A Appendix

In this Appendix, we provide all the proofs omitted from the main body of the paper.

A.1 Maximally Revealing Mechanism and Scoring Rules

In this section, we construct a generic maximally revealing mechanism and generic scoring

rules which will be the building blocks of our augmented mechanism. We first prove a lemma

which will be used to prove Lemmas 3 and 4.

A.1.1 A Preliminary Lemma

Let r̄ > 0 andM = ((Mi), g)i∈I denote a mechanism with zero transfer (i.e., τi (m) = 0 for

every m ∈ M and i ∈ I). Fix a player i. For any ti ∈ T̄i, any σ−i : T−i → M−i, and any

messages mi and m
′
i in Mi with mi ̸= m′

i, we define the set

CM,r
ti,σ−i

(mi,m
′
i) ≡

{
τi ∈ [−r̄, r̄]|M | : Vi((mi, σ−i) , ti) ̸= Vi((m

′
i, σ−i) , ti)

}
where we recall that

Vi((mi, σ−i) , ti) =
∑
t−i

πi(ti)[t−i] [ui(g(mi, σ−i(t−i)), θ(t)) + τi(mi, σ−i(t−i))] .

In words, CM,r
ti,σ−i

(mi,m
′
i) is the set of transfer rules defined on M which is bounded by r̄

and type ti is not indifferent between the pair of messages mi and m
′
i under conjecture σ−i.

Define CM,r̄
i ≡

⋂
ti,σ−i

⋂
mi ̸=m′

i
CM,r̄
ti,σ−i

(mi,m
′
i).

Lemma 2 LetM = ((Mi), g)i∈I denote a mechanism with zero transfer. Then, the comple-

ment of CM,r
i has measure zero in R|M |.

Proof. Observe that the complement of CM,r
ti,σ−i

(mi,m
′
i) is the set of solutions of a linear

equation in R|M |. Hence, the complement of CM,r
ti,σ−i

(mi,m
′
i) is a hyperplane of R|M | with

dimension lower than |M | and thus has measure zero (see p. 52 of Rudin (1987)). Since

there are only finitely many types in T̄i, functions σ−i : T̄−i → M−i, and messages in Mi, it

follows that CM,r
i also has measure zero.
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A.1.2 A Generic Maximally Revealing Mechanism

First, Lemma 3 shows that we can add (arbitrarily) small transfers to the maximally re-

vealing mechanism MBM in Bergemann and Morris (2009b) so that it satisfies a generic

condition, namely, for any type and against any degenerate belief over the other players’

announcements (i.e., a mapping σ∗
−i : T̄−i →M∗

−i), any two distinct messages must result in

distinct payoffs. We call such a mechanism M∗ a generic maximally revealing mechanism

which we fix hereafter.

Lemma 3 For any τ̃ > 0, there exists a maximally revealing mechanismM∗ = ((M∗
i ) , g

∗, (τ ∗i ))i∈I

with the following properties: for each player i,

(a) |τ ∗i (·)| is bounded by τ̃ ;

(b) for any ti ∈ T̄i, any mi,m
′
i ∈ M∗

i with mi ̸= m′
i, and any σ∗

−i : T̄−i → M∗
−i, we have

Vi(
(
mi, σ

∗
−i
)
, ti) ̸= Vi(

(
m′
i, σ

∗
−i
)
, ti);

(c) Ŝ∞
i (θi|M∗)∩ Ŝ∞

i (θ′i|M∗) = ∅ if θi ̸∼ θ′i.

Proof. Recall that MBM = (M∗, g∗) is the maximally revealing mechanism proposed by

Bergemann and Morris (2009b). Pick some r̄ < τ̃ . By Lemma 2, the complement of CMBM,r̄
i

has measure zero in R|M∗|. For any transfer rule (τi)i∈I with τi : M∗ → R, denote by

MBM (τ) =
(
(M∗

i )i∈I , g
∗, (τi)i∈I

)
the mechanism which has the same sets of messages and

outcome function as the maximally revealing mechanism MBM but is augmented by the

transfer rule (τi)i∈I . Fix any player i. Define

Ci =
{
τi ∈ R|M∗| : Ŝ∞ (

θi|MBM (τ)
)
∩ Ŝ∞ (

θ′i|MBM (τ)
)
= ∅ whenever θi ̸∼ θ′i

}
.

It follows that Ci is a nonempty open set in R|M∗|. Therefore, Ci ∩ CMBM,r̄
i has positive

measure in R|M∗|. Thus, we can find a transfer rule τ ∗i ∈ Ci ∩ CMBM,r̄
i . Then, M∗ =

((M∗
i )i∈I , g

∗, (τi)i∈I) is the desired maximally revealing mechanism.

A.1.3 Generic Scoring Rules

Second, the transfer rule in the augmented mechanism consists of a number of proper scoring

rules. We prove Lemma 4 below to construct these proper scoring rules. For ease of stating

the lemma, denote by Ψ2
i the partition over T̄i jointly induced by χ1

i (·) and Ψ1
i , i.e., Ψ

2
i =
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{
ψ2
i (ti) : ti ∈ T̄i

}
in which for any types ti and t′i in T̄i, we have t′i ∈ ψ2

i (ti) if and only if

χ1
i (ti) = χ1

i (t
′
i) and t

′
i belongs to ψ

1
i (ti). It follows from Assumption 1 that Ψ2

i is the finest

partition over T̄i, namely that Ψ2
i =

{
{ti} : ti ∈ T̄i

}
. Hence, π̄i (ti) can be identified with the

belief over Ψ2
−i which we denote by χ2

i (ti).

Indeed, Condition (c) in Lemma 4 says that for k = 0, 1, 2, if player i’s opponents

report the atom in Ψk
−i which contains their true types, by the transfer rule dki , each player

i must report truthfully his belief over Ψk
−i. As in Lemma 3, Condition (b) in Lemma 4

says that the proper scoring rules are generic so that against any σ−i : T̄−i → T̄−i, there is a

unique best response.

Lemma 4 Suppose that Assumption 1 holds. For any τ̃ > 0, any player i ∈ I, and any

k = 0, 1, 2, there exist γ > 0 and a function dki : T̄i × Ψk
−i → R, satisfying the following

properties:

(a) |dki | is bounded by τ̃ /
(
l̄ + 5

)
;

(b) for any ti ∈ T̄i, t′i and t′′i in T̄i with t
′
i ̸= t′′i , and σ−i : T̄−i → T̄−i, we have∣∣∣∣∣∣

∑
t−i∈T̄−i

[
dki (t

′
i, σ−i (t−i))− dki (t′′i , σ−i (t−i))

]
π̄i (ti) [t−i]

∣∣∣∣∣∣ > γ; (8)

(c) for every pair of types t′i and ti in T̄i with χ
k
i (t

′
i) ̸= χki (ti), we have∑

t−i∈T̄−i

[
dki

(
ti, ψ

k
−i (t−i)

)
− dki

(
t′i, ψ

k
−i (t−i)

)]
π̄i(ti)[t−i] > γ. (9)

Proof. Fix any player i and k = 0, 1, 2. We first prove the existence of transfer rules dki

which satisfies Condition (c). Consider a mechanism M = ((Mj)j∈I , g) with zero transfer

such that Mi = T̄i and Mj = Ψk
j for every j ̸= i and moreover, for some fixed outcome a,

we set g (m) = a for every m ∈ M . Pick some r̄ < τ̃/
(
l̄ + 5

)
. By Lemma 2, we note that

R|M |\CM,r̄
i has measure zero in R|M |. Define

Dk
i =

di ∈ [−r̄, r̄]|M | :

∑
t−i∈T̄−i

[
di
(
ti, ψ

k
−i (t−i)

)
− di

(
t′i, ψ

k
−i (t−i)

)]
π̄i(ti)[t−i] > 0

whenever χki (t
′
i) ̸= χki (ti)

 .

Since each proper scoring rule defined on T̄i × Ψk
−i belongs to Dk

i , it follows that Dk
i is

nonempty (and open in R|M |).23 Therefore, Dk
i ∩ C

M,r̄
i has positive measure in R|T̄ |. Thus,

23For example, a proper quadratic scoring rule for k = 2 can be defined as 2π̄i(ti) [t−i] − π̄i(ti) · π̄i(ti)

where “·” stands for the inner product of two vectors.
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we can find a transfer rule dki ∈ Dk
i ∩C

M,r̄
i which satisfies (9). Then, dki satisfies Conditions

(a) and (b) since dki ∈ C
M,r̄
i and dki satisfies Condition (c) since dki ∈ Dk

i .

A.2 Proof of Proposition 2

Proposition 2: Suppose that Assumption 1 holds. Let M∗ be a maximally revealing

mechanism with transfer rule bounded by τ̂ /3 and M̄ an extended direct mechanism. Then,

there exists an augmented mechanism M̄∗ = ((Mi) , g, (τi))i∈I such that (a) the transfer rule

τi (·) is bounded by τ̂ ; (b) if the transfer size in M̄ is sufficiently small, then for each i ∈ I,
each ti ∈ T̄i, and each mi ∈ S∞

i Ŵ
∞(ti|M̄∗, T̄ ), we have ml

i = ti for l = 2, ..., l̄ + 4.

The proof of Proposition 2 is divided into three main steps. First, we specify the

transfer rule and parameters in M̄∗ which make use of Lemma 4. We then turn to prove

Lemma 1 in Section 4.3.2. Finally, we make use of Lemma 1 to prove Proposition 2.

A.2.1 Choice of Parameters for the Augmented Mechanism

Equipped with the functions constructed in Lemma 4, we are now ready to define the transfer

rules in our mechanism of Section 4.3.1.

First, recall that each m0
−i which survives iterative elimination of strictly dominated

messages (Ŝ∞
−i) uniquely identifies an atom in Pi and hence an element in Ψ0

−i. We denote

this atom in Ψ0
−i by ψ

0
−i

(
m0

−i
)
. Then, we define

τ 0i (m
1
i ,m

0
−i) =

 d0i (m
1
i , ψ

0
−i (t−i)),

0,

if m0
−i ∈ Ŝ∞

−i(θ̂−i(t−i)|M∗) for some t−i ∈ T̄−i;
otherwise.

Second, we define

τ 1i (m
2
i ,m

1
−i,m

0
−i) = d1i (m

2
i , ψ

1
−i

(
m0

−i,m
1
−i
)
),

where ψ1
−i

(
m0

−i,m
1
−i
)
denotes the unique atom ψ1

−i in Ψ1
−i such that ψ1

−i ⊂ ψ0
−i

(
m0

−i
)
and

χ0
−i (t−i) = χ0

−i
(
m1

−i
)
for every t−i ∈ ψ1

−i.

Finally, let

τ 2i (m
l
i,m

l−1
−i ) = d2i (m

l
i,m

l−1
−i ), ∀l ≥ 3.

Now given τ̃ = τ̂ /3, we set γ as the minimum of the γ given by Lemmas 3 and 4. We

denote by E the maximal payoff difference between an outcome resulted from the maximally
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revealing mechanismM∗ and that resulted from the extended direct mechanism M̄, i.e.,

E ≡ max
m∗∈M∗,m̄∈M̄,θ∈Θ,i∈I

|ui (g∗(m∗), θ)− ui (ḡ (m̄) , θ)| . (10)

We choose ϵ > 0 small enough so that γ > ϵE. Moreover, let τ̄ > 0 be the bound of

the transfer rule in the extended direct mechanism M̄. In the proof of Property (b) of

Proposition 2, we set τ̄ sufficiently small so that

γ > ϵE + τ̄ ; (11)

furthermore, τ < τ̂/3. Then, Property (a) of Proposition 2 holds, since

|τi(m)| ≤
∣∣τ ∗i (m0

)∣∣+ ∣∣τ 0i (m1
i ,m

0
−i)

∣∣+ ∣∣τ 1i (m2
i ,m

1
−i,m

0
−i)

∣∣+ l̄+4∑
l=3

∣∣τ 2i (ml
i,m

l−1
−i )

∣∣+ |τ̄i(m̄)|

≤ τ̂

3
+

τ̃

l̄ + 5
+

τ̃

l̄ + 5
+
l̄ + 3

l̄ + 5
τ̃ +

τ̂

3

≤ 2

3
τ̂ + τ̃ ≤ τ̂ . (12)

We then proceed to prove Property (b) of Proposition 2 in the next two steps.

A.2.2 Proof of Lemma 1

The proof of Lemma 1 will make use of Lemmas 3 and 4 as well as the following lemma

as the building blocks. Specifically, the lemma below shows that under the transfer rule τ 2i

which we identify in Lemma 4, for each misreported type t′i, there always exists a conjecture

σ−i which rationalizes this misreported t′i as the unique maximizer of transfers for the true

type ti.

Lemma 5 For any ti, t
′
i ∈ T̄i, there exists σ−i : T̄−i → ∆

(
T̄−i

)
such that∑

t−i∈T̄−i

π̄i (ti) [t−i]
∑

t̃−i∈T̄−i

[
τ 2i

(
t′i, t̃−i

)
− τ 2i

(
t̃i, t̃−i

)]
σ−i (t−i)

[
t̃−i

]
> γ, ∀t̃i ̸= t′i.

Proof. By Lemma 4, for type t′i, we have∑
t̃−i∈T̄−i

[
τ 2i

(
t′i, t̃−i

)
− τ 2i

(
t̃i, t̃−i

)]
π̄i (t

′
i)
[
t̃−i

]
> γ, ∀t̃i ̸= t′i. (13)

We construct type ti’s conjecture denoted by σ−i : T̄−i → ∆
(
T̄−i

)
such that

σ−i (t−i)
[
t̃−i

]
= π̄i (t

′
i)
[
t̃−i

]
, ∀t−i, t̃−i ∈ T̄−i. (14)
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Thus, we have ∑
t−i∈T̄−i

π̄i (ti) [t−i]σ−i (t−i)
[
t̃−i

]
= π̄i (t

′
i)
[
t̃−i

]
where the equality follows from (14). Thus, the lemma follows from (13).

We now turn to the proof of Lemma 1, which is restated below.

Lemma 1: Suppose that Assumption 1 holds. For any player i of type ti ∈ T̄i and any

l = 0, 1, ..., l̄, the following two statements, denoted by P 1(l) and P 2(l), hold:

• P 1(l): for any m̂i ∈Mi, m̂i ∈ Ŵ l
i (θ̂i(ti)|M̄∗) implies m̂0

i ∈ Ŝli(θ̂i(ti)|M∗);

• P 2(l): there is some
(
m0
i , ...,m

l
i,m

l+1
i

)
∈ ×l+1

k=0M
k such that for every t′i ∈ T̄i,(

m0
i , ...,m

l
i,m

l+1
i , t′i, ti, ..., ti

)
∈ Ŵ l

i (θ̂i(ti)|M̄∗).

Proof of Lemma 1. We prove Lemma 1 by induction. We observe that P 1(0) and

P 2(0) hold trivially, since for any i ∈ I, we have Ŝ0
i (θi|M∗) = M∗

i for any θi ∈ Θi and

Ŵ 0
i (θ̂i(ti)|M̄∗) = Mi for any ti ∈ T̄i. Next, for each l ≥ 0, we assume that P 1(l) and P 2(l)

hold and prove that P 1(l + 1) and P 2(l + 1) also hold.

Consider player i of type ti and a message m0
i ̸∈ Ŝl+1

i (θ̂i(ti)|M∗).24 This implies that

there exists some α∗
i ∈ ∆(M∗

i ) such that

ui(g
∗(α∗

i ,m
∗
−i), (θi, θ−i)) > ui(g

∗(m0
i ,m

∗
−i), (θi, θ−i)) (15)

for all θ−i ∈ Θ−i and m
∗
−i ∈ Ŝl−i (θ−i|M∗).

Fix mi = (m0
i ,m

1
i , . . . ,m

l̄+5
i ) ∈ Mi such that m0

i ̸∈ Ŝl+1
i (θi|M∗). Let αi ∈ ∆(Mi) be a

mixed message that induces the same marginal distribution on M0
i as α∗

i and is identical to

mi otherwise. Thus, for any m−i ∈ Ŵ l
−i (θ−i|M) and θ−i, we have

ui(g(αi,m−i), (θi, θ−i)) + τi (αi,m−i))

−ui(g(mi,m−i), (θi, θ−i)) + τi(mi,m−i)

= e(mi,m−i)
[
ui(g

∗(α∗
i ,m

0
−i), (θi, θ−i))− ui(g∗(m0

i ,m
0
−i)), (θi, θ−i))

]
≥ 0 (16)

where the equality follows because αi differs from mi only in the 0th round announcement

and the inequality follows from (15) and the induction hypothesis P 1 (l). Indeed, by P 1 (l),

24Throughout this section, we use m∗
i to denote a generic element in M∗

i .
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if m−i ∈ Ŵ l
−i

(
θ−i|M̄∗), then we must have m0

−i ∈ Ŝl−i (θ−i|M∗). Thus, the inequality in

(16) follows from (15).

In addition, by P 2 (l), for each t−i ∈ T̄−i, there exists some m̃−i ∈ Ŵ l
−i(θ̂−i (t−i) |M̄∗)

such that m̃2
−i ̸= m̃k

−i for some k ∈ {3, . . . , l̄+ 3}. Thus, e(mi, m̃−i) = ϵ (by the definition of

e (·) in Section 4.3.1). Against m̃−i together with an arbitrary θ−i, the inequality in (16) be-

comes strict. Thus, the messagemi is weakly dominated by αi so thatmi /∈ Ŵ l+1
i (θ̂i (ti) |M̄∗).

Therefore, P 1(l + 1) holds.

Second, we shall prove P 2 (l + 1). By the induction hypothesis P 2 (l), we can define a

mapping ν−i : T̄−i → ×l+1
k=0M

k
−i such that for any types t−i and t

′
−i in T̄−i, we have

m̃−i(t−i, t
′
−i) ≡ (ν0−i(t−i), ..., ν

l+1
−i (t−i), t

′
−i, t−i, ..., t−i) ∈ Ŵ l

−i(θ̂−i (t−i) |M̄∗). (17)

Moreover, for each ti ∈ T̄i, we define the “coordinate-wise” best reply as follows:{
b0i (ν−i, ti)

}
= arg max

m∗
i∈M∗

i

∑
t−i

ui(g
∗ (m∗

i , ν
0
−i(t−i)

)
, θ̂(ti, t−i))π̄i (ti) [t−i] . (18)

{
b1i (ν−i, ti)

}
= argmax

t′i∈T̄i

∑
t−i

τ 0i
(
t′i, ν

0
−i(t−i)

)
π̄i (ti) [t−i] ; (19)

{
b2i (ν−i, ti)

}
= argmax

t′i∈T̄i

∑
t−i

τ 1i
(
t′i, ν

1
−i(t−i), ν

0
−i(t−i)

)
π̄i (ti) [t−i] ; (20)

{
bk+1
i (ν−i, ti)

}
= argmax

t′i∈T̄i

∑
t−i

τ 2i
(
t′i, ν

k
−i (t−i)

)
π̄i (ti) [t−i] , ∀k = 2, ..., l + 1 (21)

where the uniqueness of the best reply {bki } for k ̸= 1, 2 follows from Lemmas 3 and 4. We

now prove P 2 (l + 1) by establishing the following claim: for each ti ∈ T̄i,

m̄i ≡
(
b0i (ν−i, ti), b

1
i (ν−i, ti), . . . , b

l+2
i (ν−i, ti) , t

′
i, ti, ..., ti

)
∈ Ŵ l+1

i (θ̂i(ti)|M̄∗). (22)

First, by Lemma 5, for any t′i ∈ T̄i, there exists a mapping σ−i : T̄−i → ∆
(
T̄−i

)
such that∑

t−i∈T̄−i

π̄i (ti) [t−i]
∑

t̃−i∈T̄−i

[
τ 2i

(
t′i, t̃−i

)
− τ 2i

(
t̃i, t̃−i

)]
σ−i (t−i)

[
t̃−i

]
> γ, ∀t̃i ̸= t′i. (23)

For each t−i ∈ T̄−i, pick st−i

−i ∈ T̄−i such that

s
t−i

−i ̸= t−i, if l = 0;

s
t−i

−i ̸= ν1−i(t−i), if l ≥ 1.

We construct a conjecture σ̄ς−i : T̄−i → ∆
(
T̄−i

)
as:

σ̄ς−i (t−i)
[
t′−i

]
≡ (1− ς)σ−i (t−i)

[
t′−i

]
+ ςδ

s
t−i
−i

[
t′−i

]
,∀t−i, t′−i ∈ T̄−i
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where ς ∈ (0, 1) and δ
s
t−i
−i

stands for the Dirac measure which assigns probability one to the

type profile s
t−i

−i . In words, σ̄ς−i modifies σ−i such that σ̄ς−i(t−i) is identical to σ−i(t−i) with

probability 1 − ς; moreover, σ̄ς−i (t−i) assigns probability ς to some type profile s
t−i

−i which

is either distinct from t−i (if l = 0) or ν1−i(t−i) (if l ≥ 1). It follows from (23) that for ς

sufficiently small, we still have∑
t−i∈T̄−i

π̄i (ti) [t−i]
∑

t̃−i∈T̄−i

[
τ 2i

(
t′i, t̃−i

)
− τ 2i

(
t̃i, t̃−i

)]
σ̄ς−i (t−i)

[
t̃−i

]
> γ, ∀t̃i ̸= t′i. (24)

Second, let νς−i : T̄−i → ∆(M−i) be type ti’s conjecture defined as

νς−i (t−i)
[
m̃−i(t−i, t

′
−i)

]
≡ σ̄ς−i (t−i)

[
t′−i

]
,∀t−i, t′−i ∈ T̄−i (25)

where m̃−i(t−i, t
′
−i) is defined in (17). By (24), we have bl+1

i (ν−i, ti) = t′i. Now define

µςi ∈ ∆(Θ−i ×M−i) which is induced from ν−i and π̄i (ti) as follows: for any (θ−i,m−i),

µςi (θ−i,m−i) =
∑

t−i∈T̄−i:θ̂−i(t−i)=θ−i

νς−i (t−i) [m−i] π̄i (ti) [t−i] .

By (17) and (25), µςi (θ−i,m−i) > 0 implies m−i ∈ Ŵ l
−i (θ−i|M).

Third, we show that against the belief µςi , message m̄i defined in (22) is a strictly better

reply for θ̂i (ti) than any other message m̃i with m̃
k
i ̸= m̄k

i for some k. This together with the

fact that µςi (θ−i,m−i) > 0 implies m−i ∈ Ŵ l
−i (θ−i|M) implies that m̄i ∈ Ŵ l+1

i (θ̂i(ti)|M̄∗).

It remains to show that m̄i is a strict best response against µςi . We show this by considering

the following two cases:

Case A: m̃0
i ̸= m̄0

i and m̃
k
i = m̄k

i for any k ≥ 1.

In this case, we have m̄2
i ̸= m̃2

i . Then,∑
θ−i,m−i

[
ui(g(m̄i,m−i), θ̂i (ti) , θ−i) + τi (m̄,m−i))

]
µςi (θ−i,m−i)

−
∑

θ−i,m−i

[
ui(g(m̃i,m−i), θ̂i (ti) , θ−i) + τi(m̃i,m−i)

]
µςi (θ−i,m−i)

=
∑

θ−i,m−i

e((m̄i,m−i))µ
ς
i (θ−i,m−i)

×
[
ui(g

∗(m̄0
i ,m

0
−i), θ̂i (ti) , θ−i)− ui(g∗(m̃0

i ,m
0
−i)), θ̂i (ti) , θ−i)

]
(26)

where the equality follows because m̃k
i = m̄k

i for any k ≥ 1. Moreover, since the belief µςi is
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induced from νς−i and π̄i (ti), it follows that

µςi (θ−i,m−i) > 0⇒ (27)

there exist t−i, t
′
−i ∈ T̄−i such that m−i = m̃−i(t−i, t

′
−i), θ̂−i(t−i) = θ−i,

and either t′−i ̸= ν1−i(t−i) or t
′
−i ̸= t−i.

Observe that by (18),

ui(g
∗(m̄0

i ,m
0
−i), θ̂i (ti) , θ−i)− ui(g∗(m̃0

i ,m
0
−i)), θ̂i (ti) , θ−i)

= ui(g
∗(b0i (ν

0
−i, ti),m

0
−i), θ̂i (ti) , θ−i)− ui(g∗(m̃0

i ,m
0
−i)), θ̂i (ti) , θ−i)

> 0.

It follows from (27) that there exist k ∈ {3, . . . , l̄+3} andm−i ∈M−i such that µςi(θi ,m−i) >

0 and m2
−i ̸= mk

−i. Hence, e (m̄i,m−i) = ϵ for some m−i with µςi -positive probability. We

thus conclude that the payoff difference in (26) is positive. Thus, m̄i is a strictly better reply

than m̃i against the belief µςi for θ̂i(ti) so that m̄i ∈ Ŵ l+1
i (θ̂i(ti)|M̄∗).

Case B: m̃k
i ̸= m̄k

i for some k ≥ 1. We consider the following two subcases:

Case B1: m̃k
i ̸= m̄k

i for some k with 1 ≤ k ≤ l̄ + 3.

We argue that for each such k, if m̃k
i ̸= m̄k

i , then against νk−i, m̄
k
i ensures a gain more

than γ over m̃1
i . For k = 1, the claim follows from (19) and Property (b) of Lemma 4

for transfer τ 0i (·). For k = 2, the claim follows from (20), Property (b) of Lemma 4 for

the transfer rule τ 1i (·). For 3 ≤ k ≤ l, the claim follows from (21) and Property (b) of

Lemma 4 for the transfer rule τ 2i (·). For k = l + 1, the claim follows from (24). Finally, for

l+2 ≤ k ≤ l̄+3, the claim follows from Property (c) of Lemma 4 for the transfer rule τ 2i (·).
Since µςi is induced from νς−i and π̄i(ti), for ς > 0 sufficiently small, the gain from

changing m̃k
i to m̄k

i is at least γ, while the potential loss is at most ϵE + τ̄ . Since γ >

ϵE + τ̄ by (11), m̄i is strictly better than m̃i against the belief µςi for θ̂i (ti). Hence, m̄i ∈
Ŵ l+1
i (θ̂i(ti)|M̄∗).

Case B2: m̃h
i = m̄h

i for any h with 1 ≤ h ≤ l̄+3 and m̃k
i ̸= m̄k

i for some k ≥ l̄+4. It follows

from (17) that every message m̃−i(t−i, t
′
−i) on the support of νς−i (t−i) truthfully reports the

type t−i in the
(
l̄ + 3

)
th coordinate as well as all announcements in M̄ (from the

(
l̄ + 4

)
th

coordinate onwards). Since (c) of Lemma 4 holds (for k = l̄+ 3) and truth-telling is a strict

Bayes Nash equilibrium in the game U
(
M̄, T̄

)
induced by the extended direct mechanism

M̄, it follows that m̄i is a strictly better reply than m̃i against any such m̃−i(t−i, t
′
−i). Hence,
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m̄i is a strictly better reply than m̃i against the belief µ
ς
i for θ̂i(ti). This completes the proof

of Lemma 1.

A.2.3 Proof of Proposition 2

We prove this claim by induction. Consider any i ∈ I, ti ∈ T̄i with θ̂i(ti) = θi, and

mi ∈ S0Ŵ∞(ti|M̄∗, T̄ ). For each l ≥ 0, we denote by {ψli(ti)}ti∈T̄i the partition over T̄i

induced by {ml
i}ml

i∈T̄i where ml
i ∈ SlŴ∞(ti|M̄∗, T̄ ) for some ti ∈ T̄i. First, we show that

mi /∈ S1Ŵ∞ (
ti|M̄∗, T̄

)
if ψ1

i (m
1
i ) ̸= ψ1

i (ti). Indeed, consider an alternative message:

m̄i = (m0
i , ti,m

2
i , ...,m

l̄+5
i ),

which is identical tomi except that m̄
1
i ̸= m1

i . By Lemma 1, we have that m̂0
j ∈ Ŝ∞

j (θ̂j(tj)|M∗)

for any m̂j ∈ S0Ŵ∞(tj|M̄∗, T̄ ) and any player j ∈ I. Against any conjecture ν−i : T̄−i →
M−i satisfying ν−i(t−i) ∈ S0Ŵ∞

−i
(
t−i|M̄∗, T̄

)
for every t−i ∈ T̄−i, by Property (c) of Lemma

4, choosing mi rather than m̄i induces the loss of at least γ and no gain. Hence, mi is strictly

dominated by m̄i.

Now define ψli (ti) = ψ2
i (ti) for any l ≥ 3. Also recall that by Assumption 1, ψli (ti) =

{ti} for any l ≥ 2. Now suppose that any l such that 1 ≤ l ≤ l̄+3 , we have ψli(m
l
i) = ψli (ti)

for every mi ∈ SliŴ
∞(ti|M̄∗, T̄ ). Then, we show that ψl+1

i (ml+1
i ) = ψl+1

i (ti) for every

mi ∈ Sl+1
i Ŵ∞(ti|M̄∗, T̄ ). Suppose to the contrary that ψl+1

i (ml+1
i ) ̸= ψl+1

i (ti) for some

mi ∈ Sl+1
i Ŵ∞(ti|M̄∗, T̄ ). We choose m̄i to be identical to mi except that m̄

l+1
i = ti ̸= ml+1

i .

By (c) of Lemma 4, choosing mi rather than m̄i induces the loss of at least γ; while the

possible gain incurred results from outcome changes due to alternating different values of

function e(·), which is bounded by ϵE, and possibly different transfers (when l = l̄ + 3) in

the extended direct mechanism M̄ whose difference is bounded by τ̄ . Hence, the total gain

is bounded by ϵE + τ̄ . Since we have γ > ϵE + τ̄ by (11), mi is still strictly dominated by

m̄i. This completes the proof of Proposition 2.

A.3 Proof of Proposition 1

Proposition 1: Suppose that Assumption 1 holds. If an SCF f is incentive compatible,

then it is implementable in S∞Ŵ∞ with arbitrarily small transfers.

We prove this proposition by the following steps. In the first step, we construct an

extended direct mechanism M̄ = (M̄i, ḡ, τ̄i)i∈I such that |τ̄i (m)| < τ̄ for any m ∈ M
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and τ̄ satisfies (11). In the second step, we show that the augmented mechanism M̄∗,

which connects the maximally revealing mechanism M∗ to M̄ and implements the SCF f

in S∞Ŵ∞ with arbitrarily small transfers, if the SCF f is incentive compatible. Let τ̂ be an

arbitrary positive number.

A.3.1 The Construction of Mechanism M̄

Recall that we need to construct a mechanism M̄ = (
(
M̄i

)
, ḡ, (τ̄i))i∈I . We define the mech-

anism as follows.

1. The message space:

Each player i makes K + 1 simultaneous announcements of his own type. We index

each announcement by 1, . . . , K + 1. That is, player i’s message space is

M̄i = M̄0
i × · · · × M̄K

i = T̄i × · · · × T̄i︸ ︷︷ ︸
K+1 times

,

where K is an integer to be specified later. Denote

m̄i =
(
m̄0, ..., m̄K

i

)
∈ M̄i, m̄

k
i ∈Mk

i , k ∈ {0, 1, ..., K} ,

and

m̄ =
(
m̄0, ..., m̄K

)
∈ M̄, m̄k =

(
m̄k
i

)
i∈I ∈ M̄

k = ×ki∈IM̄k
i .

2. The outcome function:

The outcome function ḡ : M̄ → ∆(A) is defined as follows: for each m̄ ∈M ,

ḡ (m̄) =
1

K

K∑
k=1

f
(
m̄k

)
. (28)

The outcome function consists ofK equally weighted lotteries the kth of which depends

only on the I-tuple of the kth announcements.

3. The transfer rule:

Let ξ and η be positive numbers. Player i is to pay:
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• ξ if he is the first player whose kth announcement (k ≥ 1) differs from his own

0th announcement (all players who are the first to deviate are fined).

ci
(
m̄0, ..., m̄K

)
=


ξ if there exists k ∈ {1, ..., K} s.t. m̄k

i ̸= m̄0
i ,

and m̄k′
j = m̄0

j for all k
′ ∈ {1, ..., k − 1} for all j ∈ I;

0 otherwise.

(29)

• η if his kth announcement (k ≥ 1) differs from his own 0th announcement.

cki
(
m̄0
i , m̄

k
i

)
=

 η if m̄k
i ̸= m̄0

i ;

0 otherwise.
(30)

In total,

τ̄i (m̄) = −ci
(
m̄0, ..., m̄K

)
−

K∑
k=1

cki
(
m̄0
i , m̄

k
i

)
. (31)

4. We provide a summary of conditions which we impose on transfers:

Let D be the maximum gain for player i from altering the kth announcement

D ≡ max
ti,t′i∈T̄i,t−i∈T̄−i,θ∈Θ,i∈I

{ui(f(t′i, t−i), θ)− ui(f(ti, t−i), θ)} . (32)

Given the transfer bound τ̄ , we choose K large enough so that there are positive

numbers η and ξ satisfying the following conditions:

τ̄

2K
> η > 0; (33)

τ̄

2
> ξ >

D

K
. (34)

It then follows from (31), (33), and (34) that

|τ̄i (m)| < τ̄. (35)

A.3.2 Implementation in S∞Ŵ∞

Recall that in defining our main implementing mechanism M̄∗ in Section 4.3.1, we write

M̄i = M l̄+4
i ×M l̄+5

i where M l̄+4
i = T̄i and M

l̄+5
i =

(
T̄i
)K

, which consists of K copies of T̄i.

For each mi ∈ M̄∗
i , we denote by m̄i the projection of mi in M̄i. By Proposition 2, it follows

that mi ∈ S∞
i Ŵ

∞(ti|M̄∗, T̄ ) only if ml̄+4
i (= m̄0

i )= ti. We now establish implementation in

S∞Ŵ∞ via mechanism M̄∗ by the following claim.
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Claim 1 In the game U
(
M̄∗, T̄

)
, for every nonnegative integer k ≤ K, player i ∈ I, and

type ti ∈ T̄i, if mi ∈ S∞
i Ŵ

∞ (
ti|M̄∗, T̄

)
, then m̄k

i = ti.

Proof. When k = 0, the result follows from Proposition 2. Fix k ≥ 0. The induction

hypothesis is that for every i ∈ I and ti ∈ T̄i, if mi ∈ S∞
i Ŵ

∞ (
ti|M̄∗, T̄

)
, then m̄k′

i = ti for

any nonnegative integer k′ ≤ k.

Then, we show that if mi ∈ S∞
i Ŵ

∞(ti|M̄∗, T̄ ), then m̄k′
i = ti for any nonnegative

integer k′ ≤ k + 1. By the induction hypothesis, it suffices to prove that m̄k+1
i = ti. The

basic idea is similar to Abreu and Matsushima (1994). Suppose instead that m̄k+1
i ̸= ti.

Let m̃i be a message in M̄∗
i which is identical to mi except that m̃i reports the truth in the

(k + 1)st announcement in M̄i. We hereby slightly abuse the notation by writing m̃k+1
i (as

opposed to the heavier notation m̃
k+1

i ) for the (k + 1)th announcement of m̃i in M̄i. We let

M̂−i = {m−i ∈ M−i : m̄
k+1
−i = m̄0

−i}. Fix a conjecture ν−i : T̄−i → M−i such that for each

t−i ∈ T̄−i,
ν−i(t−i) ∈ S∞

i Ŵ
∞(ti|M̄∗, T̄ ).

We will show that

Vi((m̃i, ν−i), ti)− Vi((mi, ν−i), ti) > 0. (36)

We decompose the left-hand side of this inequality into the following two parts:

∑
t−i:ν−i(t−i )̸∈M̂−i

 {ui(g(m̃i, ν−i(t−i)), θ̂(ti, t−i)) + τi(m̃i, ν−i(t−i))}−
{ui(g(mi, ν−i(t−i)), θ̂(ti, t−i)) + τi(mi, ν−i(t−i))}

 π̄i(ti)[t−i] (37)

+
∑

t−i:ν−i(t−i)∈M̂−i

 {ui(g(m̃i, ν−i(t−i)), θ̂(ti, t−i)) + τi(m̃i, ν−i(t−i))}−
{ui(g(mi, ν−i(t−i)), θ̂(ti, t−i)) + τi(mi, ν−i(t−i))}

 π̄i(ti)[t−i].

Then, we prove the inequality in (36) in the following two steps.

Step 1:

∑
t−i:ν−i(t−i )̸∈M̂−i

 {ui(g(m̃i, ν−i(t−i)), θ̂(ti, t−i)) + τi(m̃i, ν−i(t−i))}−
{ui(g(mi, ν−i(t−i)), θ̂(ti, t−i)) + τi(mi, ν−i(t−i))}

 π̄i(ti)[t−i] > 0.

From the induction hypothesis, for every i ∈ I and ti ∈ T̄i, if mi ∈ S∞
i Ŵ

∞(ti|M̄∗, T̄ ), then
m̄k′
i = ti for any nonnegative integer k′ ≤ k. When m−i ̸∈ M̂−i, there exists some j ̸= i such
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that m̄k+1
j ̸= m̄0

j . We compute the expected loss in terms of payments for player i of type ti

when playing mi rather than m̃i:∑
t−i:ν−i(t−i )̸∈M̂−i

{τi (m̃i, ν−i(t−i))− τi (mi, ν−i(t−i))} π̄i(ti)[t−i].

By choosing m̃i rather than mi, player i will avoid the fine, η according to the transfer rule

ck+1
i (see (30)) and ξ according to the transfer rule ci (see (29)). That is, for any t−i ∈ T̄−i
such that ν−i(t−i) /∈ M̂−i,

τi (m̃i, ν−i(t−i))− τi (mi, ν−i(t−i)) = η + ξ.

In terms of outcome function ḡ(·) of the mechanism M̄, we have∑
t−i:ν−i(t−i )̸∈M̂−i

1

K

{
ui(f(m

k+1
i , νk+1

−i (t−i)), θ̂(ti, t−i))
}
π̄i(ti)[t−i]

−
∑

t−i:ν−i(t−i )̸∈M̂−i

1

K

{
ui(f(m̃

k+1
i , νk+1

−i (t−i)), θ̂(ti, t−i))
}
π̄i(ti)[t−i] ≤

D

K
(38)

This means that the possible gain from playing mi rather than m̃i is bounded by D/K.

Since ξ > D/K by (34), we have

η + ξ >
D

K
. (39)

This completes Step 1.

Step 2:

∑
t−i:ν−i(t−i)∈M̂−i


{
ui(g(m̃i, ν

k+1
−i (t−i)), θ̂(ti, t−i)) + τi(m̃i, ν

k+1
−i (t−i))

}
−{

ui(g(mi, ν
k+1
−i (t−i)), θ̂(ti, t−i)) + τi(mi, ν

k+1
−i (t−i))

}
 π̄i(ti)[t−i] > 0

When m−i ∈ M̂−i, for any j ̸= i, we have m̄k+1
j = m̄0

j . From the induction hypothesis, for

every j ∈ I and tj ∈ T̄j, if mj ∈ Skj Ŵ
∞(ti|M̄∗, T̄ ), then m̄k′

j = tj, for any nonnegative

integer k′ ≤ k. We compute the expected loss in terms of payments for player i of type ti

when playing mi rather than m̃i:∑
t−i:ν−i(t−i)∈M̂−i

{τi (m̃i, ν−i(t−i))− τi (mi, ν−i(t−i))} π̄i(ti)[t−i]

Consider ν−i : T̄−i →M−i such that ν−i(t−i) ∈ M̂−i for any t−i ∈ T̄−i. By choosing m̃i rather

than mi, player i will avoid the fine, η according to the transfer rule ck−1
i . Note that the
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message m̃i triggers the fine ξ for player i only if the message mi also triggers ξ. Hence, the

expected loss in terms of payments from choosing mi rather than m̃i in terms of the transfer

rule τ(·) is
τi (m̃i,m−i)− τi (mi,m−i) ≥ η

for any m−i ∈ M̂−i. Therefore, when playing mi rather than m̃i, the expected loss in terms

of payments is bounded below by η.

In terms of outcome function ḡ(·) of the mechanism M̄, the possible gain for player i

of type ti to report mi rather than m̃i is

1

K

∑
t−i:ν−i(t−i)∈M̂−i

{
ui(f(m̄

k+1
i , νk+1

−i (t−i)), θ̂(ti, t−i))− ui(f(m̃k+1
i , νk+1

−i (t−i)), θ̂(ti, t−i))
}
π̄i(ti)[t−i],

because m̃i differs from mi only in the (k+1)st announcement. That is, by playing mi rather

than m̃i, the possible gain for player i of type ti is bounded above by 0 because the SCF f

is incentive compatible and νk+1
−i (t−i) = m̄0

−i is truthful. This completes Step 2.

Note that the argument of Claim 1 also shows that the truth-telling strategy profile

(σi)i∈I with σi (ti) = (ti, ..., ti) indeed constitutes a strict Bayes Nash equilibrium in the game

U(M̄, T̄ ). Let m be a message profile in S∞Ŵ∞(t|M̄∗, T̄ ). To sum up, Claim 1 shows that

m̄k = t for any nonnegative integer k ≤ K. Moreover, ml = t for every l = 1, 2, ..., l + 3 and

hence e (m) = 0. It follows that g (m) = f (t). Finally, since |τ̄i (m)| < τ̄ by (35) and τ̄

satisfies (11), it follows from Proposition 2 that |τi (m)| ≤ τ̂ . Moreover, as τ̂ /3 in Proposition

2 is the bound of transfer rule ofM∗, we can make τ̂ arbitrarily small by Lemma 3. Hence,

we complete the proof of Proposition 1.

A.4 Proof of Proposition 3

Proposition 3: Fix any model T such that T̄ ⊂ T and a mechanism M. Then, for any

t ∈ T̄ and any sequence {tn}∞n=0 in T such that tn →p t, we have S∞Ŵ∞(tn|M, T ) ⊂
S∞Ŵ∞(t|M, T ) for any n large enough.

Proof. Since M is finite, there is a nonnegative integer k∗ such that SkŴ∞(t|M, T ) =

S∞Ŵ∞(t|M, T ) for every k ≥ k∗ and t ∈ T̄ . Thus, it suffices to show that for each

nonnegative integer k, type profile t ∈ T̄ , and sequence {tn}∞n=0 in T such that tn →p

t as n → ∞, there exists a natural number Nk ∈ N such that, for any n ≥ Nk, we

have SkŴ∞ (tn|M, T ) ⊂ SkŴ∞(t|M, T ). We prove this by induction. We observe that
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Ŵ∞
i (θ̂i (ti) |M) = Ŵ∞

i (θ̂i (t
′
i) |M) whenever θ̂i (ti) = θ̂i(t

′
i) and θ̂i (ti,n) = θ̂i(ti) for any n

sufficiently large. Hence, the claim is true for k = 0. Now suppose that the claim holds for

k ≥ 0 and we will show that the claim is also valid for k + 1.

Fix mi /∈ Sk+1
i Ŵ∞ (ti|M, T ). Let Σ̄−i be the set of conjectures ν̄−i : T̄−i → ∆(M−i)

such that ν̄−i (t−i) ∈ Sk−iŴ∞(t−i|M, T ) for every t−i ∈ T̄−i. Then, there is αi ∈ ∆(Mi) such

that

β ≡ min
ν̄−i∈Σ̄−i

{Vi((αi, ν̄−i), ti)− Vi((mi, ν̄−i), ti)} > 0. (40)

where the minimum is attained since Σ̄−i is compact. Let (t−i)
ε denotes an open ball

consisting of the set of types t′−i whose (k − 1)st order beliefs are ε-close to those of types

t−i. Since T̄−i is a finite set, by the induction hypothesis, there is some ε1 > 0 such that

SkŴ∞
−i(t

′
−i|M, T ) ⊂ SkŴ∞

−i(t−i|M, T ) for every t′−i ∈
⋃
t−i∈T̄−i

(t−i)
ε1 and every t−i ∈ T̄−i.

Moreover, since T̄−i is a finite set, for all t−i, s−i ∈ T̄−i with s−i ̸= t−i, we can also choose

ε2 > 0 so that we have (1) (t−i)
ε2 ∩ (s−i)

ε2 = ∅ ; and (2)

ε2 < min

{
β

3D
∣∣T̄−i∣∣ , min

t−i∈supp(π̄i(ti))

π̄i (ti) [t−i]

2

}
. (41)

Since tn →p t, for any ε > 0, there is n sufficiently large such that for any positive ε <

min {ε1, ε2}, we have25

|πi (ti,n) [(t−i)ε]− π̄i (ti) [t−i]| < ε,∀t−i ∈ T̄−i. (42)

Now consider an arbitrary conjecture ν−i : T−i →M−i with ν−i
(
t′−i

)
∈ SkŴ∞

−i(t
′
−i|M, T )

for every t′−i ∈ T−i. Based on ν−i, if t−i ∈ T̄−i with π̄i (ti) [t−i] > 0, we define

ν̄−i (t−i) [m−i] =
πi (ti,n)

[{
t′−i ∈ (t−i)

ε : ν−i
(
t′−i

)
= m−i

}]
πi (ti,n) [(t−i)

ε]
; (43)

and if π̄i (ti) [t−i] = 0, let ν̄−i (t−i) assign probability one to some m−i ∈ Sk−iŴ∞(t−i|M, T ).
It follows from the choice of ε and n that

|Vi((αi, ν−i), ti,n)− Vi((αi, ν̄−i), ti)| < β/3; (44)

|Vi((mi, ν−i), ti,n)− Vi((mi, ν̄−i), ti)| < β/3. (45)

25This follows from the fact that the Prohorov distance between ti,n and ti converges to 0. See (Dudley,

2002, pp. 398, 411).
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Hence, it follows from (40), (44), and (45) that

Vi((αi, ν−i), ti,n)− Vi((mi, ν−i), ti,n)

= Vi((αi, ν̄−i), ti)− Vi((mi, ν̄−i), ti) + [Vi((αi, ν−i), ti,n)− Vi((αi, n̄u−i), ti)]

+ [Vi((mi, ν̄−i), ti)− Vi((mi, ν−i), ti,n)]

> β − β

3
− β

3
=
β

3
> 0.

Since ν−i is chosen arbitrarily, we conclude that mi /∈ Sk+1
i Ŵ∞ (ti,n|M, T ).

A.5 Proof of Proposition 4

Proposition 4: Fix any model T such that T̄ ⊂ T and any mechanism M. Then, there

exists an equilibrium σ in the game U (M, T ) such that for any player i of type ti, we have

σi (ti) ∈ Ŵ∞
i (θ̂i(ti)|M).

We start from providing two definitions which we use in Lemma 6 below. We then

invoke Lemma 6 to prove Proposition 4. Here, we identify U (M, T ) with an agent-normal

form game where each ti ∈ Ti is a player and Mi the set of actions of ti; moreover, given any

σ−i : T−i →M−i, the payoff of ti of playing a message mi is denoted by Vi ((mi, σ−i) , ti).

Definition 11 A ζ-perturbation of U (M, T ), which we denote by U ζ (M, T ), is another
agent-normal form game with |V ζ

i ((mi, σ−i) , ti)− Vi ((mi, σ−i) , ti) | ≤ ζ for every mi ∈ Mi,

every σ−i : T−i →M−i, and every ti ∈ Ti.

The following definition is a restatement of Property (10.3.1) of Van Damme (1991) in

the agent-normal form game U (M, T ).

Definition 12 Let U(M, T ) be an incomplete information game induced from mechanism

M and model T . We say that a set of (Nash) equilibria F of game U(M, T ) is quasi-

stable if, for every ε > 0, there exists ζ > 0 such that for every ζ-perturbation U ζ (M, T ) of
U (M, T ), there is an equilibrium of U ζ (M, T ) which is within ε-distance from the set F .

Proposition 4 follows from Lemma 6 below. The lemma below essentially restates

a well known result that each Kohlberg-Mertens stable set contains a stable set of any

truncated game obtained by eliminating a weakly dominated strategy. Indeed, the argument

in Kohlberg and Mertens (1986) remains valid in the agent normal-form of any game such
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that there are countably many players (where each player corresponds to a type) and each

player has finitely many pure messages. We reproduce the proof to make the argument

self-contained.

Lemma 6 Let F be a quasi-stable set of equilibria in the game U(M, T ). Assume that

m′
i /∈ Ŵ 1

i (θi|M). Then, there is a quasi-stable set of equilibria F ′ ⊂ F such that σi (m
′
i) = 0

for every equilibrium σ in F ′.

Proof. Let F ′ = {σ ∈ F : σi (ti) [m
′
i] = 0}. We shall show that F ′ is a quasi-stable set of

equilibria in U(M, T ). Sincem′
i /∈ Ŵ 1

i (θi|M), there is some αi ∈ ∆(Mi) such that αi weakly

dominates m′
i in the game U(M, T ).

Fix ε > 0. Let U ζ (M, T ) be a ζ-perturbation of the game U (M, T ) for some ζ > 0.

In addition, we add ζ ′ > 0 to the corresponding payoff from player i’s messages other than

m′
i. That is, for any conjecture σ−i : T−i →M−i, we satisfy the following two properties: (1)

V ζ,ζ′

i ((mi, σ−i) , ti) = V ζ
i ((mi, σ−i) , ti) + ζ ′, for all mi ̸= m′

i; and (2) V ζ,ζ′

i ((m′
i, σ−i), ti) =

V ζ
i ((m′

i, σ−i), ti). Thus, we obtain U
ζ,ζ′ (M, T ) as a ζ ′

-perturbation of the game U ζ (M, T ).
Since F is quasi-stable in U(M, T ), there exist ζ > 0 and ζ ′ > 0 small enough so that the

game U ζ,ζ′ (M, T ) has a Bayes Nash equilibrium σζ,ζ
′
which is within ε-distance from F .

Moreover, in the game U ζ,ζ′ (M, T ), for any type ti with conjecture σ : T−i →M−i, we have

V ζ,ζ′

i ((αi, σ−i) , ti) > V ζ,ζ′

i ((m′
i, σ−i) , ti) .

Therefore, m′
i cannot be a best response to σζ,ζ

′

−i for player i of type ti, i.e., σ
ζ,ζ′

i (ti) [m
′
i] = 0.

For any ζ ′ > 0, σζ,ζ
′
is within ε-distance from F . Thus, we have that σζ,0 is a Bayes Nash

equilibrium in the game U ζ (M, T ) such that σζ,0 is within ε-distance from F ′. In other

words, F ′ is also quasi-stable.

We now turn to prove Proposition 4.

Proof of Proposition 4. It follows from the closed graph property of the Nash equilibrium

correspondence that the set of Nash equilibria in the agent normal-form game of U (M, T )
is quasi-stable (see Van Damme (1991)). Hence, the proposition is proved by repeatedly

applying Lemma 6 after we remove each of the (finitely many) weakly dominated message

in deriving Ŵ l for each l (where within round l, the order of removal does not matter).
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A.6 Example for Section 5.1

Example 1 Suppose that there are two agents: {1, 2}; two states {α, β}; and three pure

alternatives: {a, b, c}. Define an SCF such that f (α) = a and f (β) = b. Agents’ utilities

across different states are described in the following table:

v1 α β

a 2 1

b 2 1

c −1 2

d −1 −1

v2 α β

a 1 1

b 1 1

c 2 2

d −1 −1

The information is complete, namely that the agents have common knowledge about the

state, whether it is α or β. We identify agent 1’s payoff type with the states and omit agent

2’s payoff type since agent 2 has state-independent preference.

Claim 2 f is incentive compatible.

Proof. To see f is incentive compatible, consider a direct revelation mechanism, f̃ : Θ2 →
{a, b, c, d} such that f̃(α, α) = a, f̃(β, β) = b, and f̃(α, β) = f̃(β, α) = d. By construction,

f̃(α, α) = a and the message profile (α, α) is an equilibrium at state α, and likewise, f̃(β, β) =

b and the message profile (β, β) is an equilibrium at state β.

Claim 3 f is not Maskin-monotonic.

Proof. Consider f(β) ̸= f(α). Since agent 2’s preference is state-independent, the only

possible whistle blower is agent 1. For agent 1, however, at state β the outcomes which are

worse than f(β) = b are a and d. However, a and d are both worse than b for agent 1 at state

α. In addition, with the reference to outcome f(β) = b, the utility difference for agent 1 at

state β is getting larger than at state α. Specifically, u1(b, β) = u1(a, β), u1(b, β)−u1(c, β) =
−1,and u1(b, β) − u1(d, β) = 1; while u1(a, α) = u1(b, α), u1(c, α) − u1(b, α) = −3, and
u1(b, β) − u1(d, β) = 3. Hence, any outcome with transfer which is weakly worse than b at

state β remains weakly worse than b at state α. Hence, Maskin-monotonicity fails.

Claim 4 f is not implementable in S∞W̃∞ with transfers.

Proof. This follows from Proposition 5 and Claim 4.
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Claim 5 f is implementable in S∞Ŵ∞ with arbitrarily small transfers and also continuously

implementable with arbitrarily small transfers.

Proof. Since f is incentive compatible and the agents’ values are private and different payoff

types θi and θ
′
i induce different preferences over lottery allocations ∆ (A), by Corollary 1, f

is implementable in S∞Ŵ∞ with arbitrarily small transfers and continuously implementable

with arbitrarily small transfers.
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