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 

Abstract—This paper presents a hybrid metaheuristic for 

solving the Quadratic Assignment Problem (QAP). The 

proposed algorithm involves using the Greedy Randomized 

Adaptive Search Procedure (GRASP) to construct an initial 

solution, and then using a hybrid Simulated Annealing (SA) and 

Tabu Search (TS) algorithm to further improve the solution. 

Experimental results show that the hybrid metaheuristic is able 

to obtain good quality solutions for QAPLIB test problems 

within reasonable computation time. The proposed algorithm is 

extended to solve the Generalized Quadratic Assignment 

Problem (GQAP), with an emphasis on modelling and solving a 

practical problem, namely an examination timetabling problem. 

We found that the proposed algorithm is able to perform better 

than the standard SA algorithm does. 

I. INTRODUCTION 

The Quadratic Assignment Problem (QAP) is identified 

as the problem of finding a minimum cost for allocating 

facilities into locations, with the costs being the sum of all 

possible distance-flow products (Loiola et al., 2007). This 

problem belongs to the class of NP-hard problems.  

Some of the surveys of the QAP in the literature were 

presented by Drezner et al. (2005) and Loiola et al. (2007). 

There are many practical problems that can be presented as a 

QAP, such as problems dealing with the facility layout design 

problem (Benjaafar, 2002) and the placement of electronic 

components (Duman and Ilhan, 2007). The QAP can be 

formulated in different ways, such as pure integer 

programming formulations (Fedjki and Duffuaa, 2004), 

mixed integer linear programming formulations (Frieze and 

Yadegar, 1983), graph formulations (White, 1995) and 

permutation problems (Lim et al., 2000). 

Both exact and heuristic methods have been used to solve 

the QAP. Exact algorithms, which include the branch-and-

bound, dynamic programming and cutting plane techniques, 

can only be used to solve small-size instances of the problem. 

Thus, many heuristics have been proposed by researchers to 

find optimal or near optimal solutions for the QAP. These 

heuristics range from simple iterative improvement 

procedures to metaheuristic implementations, such as Ant 

Colony Optimization (Puris et al., 2010), Genetic Algorithm 

(Lim et al., 2002), Tabu Search (Drezner, 2005) and 
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Simulated Annealing (Tian et al., 1996). Loiola et al. (2007) 

highlighted the development of hybrid algorithms for solving 

the QAP. These hybrid algorithms for the QAP include a 

combination of Tabu Search with Simulated Annealing as 

presented by Misevicius (2004). 

This paper presents a new hybrid metaheuristic for the 

QAP. It involves three different algorithms: GRASP (Greedy 

Randomized Adaptive Search Procedure), Simulated 

Annealing (SA) and Tabu Search (TS). An extensive 

computational testing of this hybrid metaheuristic has been 

carried out with the benchmark instances in the QAPLIB, a 

well-known library of QAP instance (Burkard et al., 1997).  

We also consider a modification of the proposed hybrid 

metaheuristic to solve the Generalized Quadratic Assignment 

Problem (GQAP), which arises in many applications, such as 

the service allocation problem (Cordeau et al., 2007) and the 

examination timetabling problem (Bullnheimer, 1998). The 

GQAP focuses on assigning all objects to locations so as to 

minimize the overall distance covered by the flow of 

materials moving between different objects subject to the 

resource limitation at each location. Pessoa et al. (2010) 

proposed exact algorithms that combine Lagrangean 

decomposition and the Reformulation-Linearization 

Technique. The performance of the algorithms heavily 

depends on a good initial upper bound for the heuristic. 

GRASP with path-relinking heuristics have been proposed by 

Mateus et al. (2011) to solve some benchmark instances. 

Enhancing the performance by using randomization was also 

implemented.  

Finally, parameter sensitivity analysis for QAP utilizing 

one-at-a-time sensitivity measures and the linear regression 

analysis are conducted to further assess the influences of 

parameters to the quality of the solutions. 

II. PROBLEM DESCRIPTION 

A. Quadratic Assignment Problem (QAP) 

The QAP is the problem of assigning n facilities to n 

different locations. Given two n × n matrices, F = [fij] and D 

= [dkl], where fij is the flow between facilities i and j and dkl is 

the distance between locations k and l, the problem can be 

formulated as follows (Loiola et al., 2007): 

Minimize 
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(1) represents the total cost of assignment of all facilities 

to all locations, which is the product of the flow between 

facilities i and j and the distance between locations k and l. 

The constraints (2) and (3) ensure that exactly n facilities are 

to be assigned to exactly n locations. 

The QAP can also be represented as a permutation 

problem. Let    jπiπd  be the distance between locations  iπ  

and  jπ . The QAP problem then becomes: 

 
     
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where  nΠ  is the set of all permutations of {1, 2, …, n}.  

In this paper, a solution to the QAP is represented by the 

vector:         nπ,,π,π,ππ 321 , where the element   kiπ 
 

denotes that facility i is assigned to location k. 

B. Generalized Quadratic Assignment Problem (GQAP) 

The GQAP is a generalization of the QAP that allows 

multiple facilities to be assigned to a single location subject 

to the resource limitation at each location. In this paper, the 

examination timetabling problem is selected and explained in 

greater detail to illustrate the GQAP (Leong and Yeong, 

1987). The examination timetabling problem is defined as the 

problem of allocating a number of examinations to a certain 

number of time periods in such a way that there would be no 

conflict or clash, i.e., no student are required to attend more 

than one examination at the same time. This conflict is being 

categorized as a hard constraint and it is defined as the first 

order conflict in Bullnheimer (1998). Besides the first-order 

conflict, other order conflicts can also be taken into 

consideration, for instance, the second-order conflict which 

refers to the situation where two consecutive exams have to 

be taken by a student, room capacity constraint and so forth.  
In many real applications, more than one examinations 

may be assigned to a given time period when there are ample 

resources available (rooms and personnel), especially when 

the number of examinations is greater than the number of 

time periods available. Thus, constraint (2) is modified and 

the examination timetabling problem can then be formulated 

as a GQAP. 

Let e and n be the number of examinations and time 

periods respectively and e ≥ n. Given (e × e) and (n × n) 

matrices, F΄ = [ ijf  ] and C΄ = [ klc ], where f’ij is the number 

of students taking examinations i and j and klc  is the cost 

between time periods k and l, the problem can be formulated 

as follows: 

 

[EP Model]  

 Minimize 
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Let Capk be the number of classrooms available in time 

period k  nk 1 . (7) ensures that the maximum number of 

examinations scheduled at any time period is Capk. In this 

paper, it is assumed that Capk = Cap for nk 1 . (8) 

ensures that each examination is assigned to a particular time 

period.  

Since the EP Model assumes that each time period can 

accommodate more than one examination, there is a 

possibility that both the first-order and second-order conflicts 

may occur. In order to minimize both conflicts, different 

values of klc  are introduced: 
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where  

M  = a very large positive number 

η   = a marginal product of time period 

  = a number between 1 and M, and is typically set to 10  

dkl  = the distance between time periods k and l 

dkl is calculated by the actual time differences between 

two periods, for example, the difference between time 

periods 2 and 4 is 2 periods. The parameter η  emphasizes the 

importance of the conflict. Setting η  = 0 means that we only 

concern about the first-order and second-order conflicts and 

we treat other distances kld as equally important. On the 

other hand, the cost between two time periods is decreasing 

for η  = 1. A higher value of kld will result in a lower value 

of klc .  

III. HYBRID METAHEURISTICS 

The hybrid algorithms for solving QAP and GQAP are 
presented and described in detail in the following sub-
sections. 

A.  Hybrid Metaheuristic for QAP 

The hybrid metaheuristic consists of two phases: 

construction and improvement phases. In the construction 

phase, an initial solution is built by implementing the Greedy 

Randomized Adaptive Search Procedure (GRASP) (Yong et 

al., 1994). We construct an initial solution by adding one new 

element at a time (e.g. allocation one facility at a time). This 

process is started by selecting the first 2 assignments based 

on the minimum cost of interaction klijdf , followed by 

assigning the remaining (n-2) facilities based on the cost of 

assigning a particular facility with respect to the already-

made assignments. This process is performed until all the 

remaining (n–2) facilities have been assigned. The details of 

the construction process of GRASP can be referred to Yong 

et al. (1994). 

The initial solution generated by GRASP, initial_sol, is 

then improved in the improvement phase using a 



  

hybridization of SA and TS algorithm (Algorithm SA-TS) 

(Figure 1). While it is mainly based on Simulated Annealing 

(Kirkpatrick et al., 1983), the main difference of the standard 

SA and the proposed SA lies in the additional elements or 

strategies added. Several features from TS, such as the tabu 

length, tabu list and the intensification strategy are 

incorporated in the algorithm for further improvement 

(Glover, 1989).  

In order to improve the solution, a local search algorithm 

involving a partial sequential neighborhood search is also 

augmented. The basic idea of the search is to swap or 

exchange the locations of two facilities such that a better 

solution is derived. Assuming that 0 jjii ff , the objective 

function difference  ji,π,Δ  obtained by exchanging facilities 

 iπ  and  jπ  can be computed in  n
 
operations, using the 

following equation (Taillard and Gambardella, 1997): 

  ji,π,Δ                    iπjπjπiπjijπiπiπjπij ddfddf  

                     
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                       aπjπaπiπjaaπiπaπjπia ddfddf   (11) 

 
Algorithm SA-TS ( ) 

(1) Initialize the parameters 

(2) Set the best solution, best_sol = initial_sol 

(3) Set the current solution, current_sol = initial_sol 

(4) Set the total number of iterations, num_iter = 0 

(5) Set the total number of iterations without improvement, no_improv = 0 

(6) While the total number of iterations, num_iter is less than the preset 

maximum number of iterations, outer_loop do: 

(7)   Repeat inner_loop times: 

(8)    Select a facility i randomly 

(9)    Apply a partial sequential neighborhood search 

(10)    Find the best permutation    with the smallest value of  ji,,πΔ   

(11)   Check whether the best permutation is tabu or not  

(12)    If  ji,,πΔ   < 0 

(13)     Update the current solution, current_sol 

(14)      If current_sol is better than best_sol 

(15)     Update the best solution, best _sol current_sol 

(16)    Update tabu list 

(17)    Else 

(18)    Choose a random number r uniformly from [0,1] 

(19)     no_improv  no_improv + 1 

(20)     If 
 /Tji,,πΔexpr
  and the new solution is not tabu 

(21)      Accept the new solution, new_sol 

(22)     Update the current solution, current_sol 

(23)     Update tabu list 

(24)     Else 

(25)      Return to the current solution, current_sol 

(26)     Update tabu list 

(27)  Update temperature TαT   

(28)    If (no_improv > limit) 

(29)    Apply the intensification strategy 

(30)    Set no_improv  0 

(31)     num_iter  num_iter +1 

(32) End while 

(33) Report the best solution, best_sol 

 

 

Figure 1. SA-TS for QAP 

 

Instead of selecting two facilities randomly as was 

commonly done in SA, we start by selecting one facility i 

randomly followed by examining all other potential pair-

swaps sequentially in the order   ij:ji,  . The selected 

move is the one with the best  ji,π,Δ  value. The new 

permutation is then evaluated by the acceptance-rejection 

procedure in SA. The acceptance of the selected move 

depends on its  ji,π,Δ value. For minimization problem, if 

  0ji,π,Δ  or   0ji,π,Δ , with a probability of 
 /Tji,,Δ

exp


, 

the selected move is accepted. 

The tabu list contains pairs (i, j) that have been visited in 

the last length iterations. For a given iteration, if a pair (i, j) 

belongs to the tabu list, it is not allowed to accept the 

exchange of facilities i and j, unless this exchange gives an 

objective function value strictly better than the previous one 

(aspiration level criteria). At any temperature T, the 

neighborhood search is repeated until a certain number of 

iterations, inner_loop, has been performed.  

If there is no improvement of the solution obtained within 

a certain number of iterations (limit), we apply an 

intensification strategy of Tabu Search. This strategy focuses 

the search once again starting from the best permutation 

obtained. Finally, the entire algorithm will be terminated if 

the total number of iterations of the outer loop reaches the 

preset maximum number of iterations, outer_loop. 

B. Hybrid Metaheuristic for GQAP 

In the previous section, GRASP is implemented to 

construct an initial solution for the QAP. Due to some of the 

general requirements of the examination timetabling problem 

differing from that of QAP, such as more than one 

examination to a time period can be assigned, the GRASP is 

then modified.  

The construction phase is started by selecting the first 2 

assignments based on the minimum cost of interaction klijcf  , 

followed by assigning the remaining (e-2) examinations 

based on the cost of assigning a particular examination with 

respect to the already-made assignments, i.e. we select the 

one that has the minimum cost. This process is made until all 

the remaining (e-2) examinations are assigned. The algorithm 

applied in the improvement phase is adapted from the 

Algorithm SA-TS described in Figure 1.  

The neighborhood is defined by reallocating an 

examination of the current solution   to another different 

time period (single move) such that a better solution    is 

derived. It is also necessary to ensure that the maximum 

number of examinations scheduled at any time period, Cap, 

is not being exceeded. Instead of a random neighborhood 

search, a partial sequential neighborhood search is used, 

which involves examining all other potential moves 

sequentially with respect to time periods for an examination 

of the current solution  .  

The objective function difference  i,ππ,Δ   obtained by 

exchanging the time periods of examination i,  iπ  and  iπ  , 

is shown in (12): 

     i,ππ,Δ        


 
e

iaa
iπaπiπaπai )cc(f

,1

2        (12) 

The selected move is the one with the best  i,ππ,Δ   value. 

The new permutation is then evaluated by the acceptance-



  

rejection procedure in SA. We also incorporate features from 

Tabu Search, such as tabu length, tabu list and intensification 

strategy in the algorithm. 

The tabu list contains examination-time period pairs that 

have been visited in the last length iterations. For a given 

iteration, if a pair   iπi, 
 
belongs to the tabu list, it is not 

allowed to accept the exchange of the time periods  iπ  and 

 iπ , unless this exchange gives a strictly better objective 

function value (aspiration level criteria). At any temperature 

T, the neighborhood search is repeated until a certain number 

of iterations, inner_loop, has been performed. 

IV. COMPUTATIONAL RESULTS 

The computational results and comparisons for the 

proposed hybrid metaheuristics are provided below. The 

values of the parameters used in the computational 

experiments are determined experimentally to ensure a 

compromise between the computation time and the solution 

quality which are summarized in Table I. The algorithms 

were implemented using C++ and executed on a 2.67 GHz 

Intel Core 2 Duo CPU with 3 GB of RAM under the 

Microsoft Windows Vista Operating System.  

TABLE I.  PARAMETER SETTINGS FOR QAP, GQAP  

Parameter 
Value 

(QAP) 

Value 

(GQAP) 

Maximum number of iterations, 

outer_loop 
300n 50e 

Initial temperature, T 5,000 1000 

Number of neighborhood moves 

at each temperature T, inner_loop 
100n 100n 

Cooling factor, α 0.9 0.9 

Number of non-improvement 

iterations prior to intensification, 

Limit 

0.02outer_loop 0.01outer_loop 

Length of tabu list, length n/2 e/2 

A. QAP Results 

In order to evaluate the performance of our proposed 

approach, we have solved some benchmark problems from 

the QAPLIB. For each benchmark problem, the proposed 

algorithm was executed 20 times with different random 

seeds. All are solved within reasonable CPU time. Due to the 

space limitation, we did not report the computation time. 

For all problem instances, the best known/optimal 

solutions are also obtained within reasonable computation 

time. The objective function values of the optimal/best 

known solutions given in Burkard et al. (1997) are also 

presented for comparison purposes. The heading Φ1 refers to 

% deviation between the average objective function value of 

the solutions obtained and the best known/optimal solution, 

while the heading Φ2 refers to % deviation between the best 

objective function value of the solutions obtained and the 

best known/optimal solution.  
Table II summarizes the computational results for the chr 

problem instances. The difficulty level in solving the chr 

problem instances is considered significant (Lim et al., 2002). 

On the whole, the proposed hybrid algorithm is able to find 

solutions with values of Φ1 not exceeding 1.50% from the 

known optimum.  

TABLE II.  SA-TS RESULTS FOR chr PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known Sol. 

Average 

Sol. 

Best 

Sol. 

Φ1 

(%) 

Φ2 

(%) 

chr12a 9552 9552 9552 0.00 0.00 

chr12b 9742 9742 9742 0.00 0.00 

chr12c 11156 11156 11156 0.00 0.00 

chr15a 9896 9896 9896 0.00 0.00 

chr15b 7990 7990 7990 0.00 0.00 

chr15c 9504 9504 9504 0.00 0.00 

chr18a 11098 11098 11098 0.00 0.00 

chr18b 1534 1534 1534 0.00 0.00 

chr20a 2192 2224.9 2192 1.50 0.00 

chr20b 2298 2306.7 2298 0.38 0.00 

chr20c 14142 14142 14142 0.00 0.00 

chr22a 6156 6181.3 6156 0.41 0.00 

chr22b 6194 6265.2 6194 1.15 0.00 

chr25a 3796 3811 3796 0.40 0.00 

 

Tables III and IV summarize the results of testing on had 

and kra problem instances. The average gaps of the solutions 

are less than 0.75%. The hybrid algorithm is again able to 

obtain the best known/optimal solutions. 

TABLE III.  SA-TS RESULTS FOR had PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known Sol. 

Average 

Sol. 
Best Sol. 

Φ1 

(%) 

Φ2 

(%) 

had12 1652 1652 1652 0.00 0.00 

had14 2724 2735 2724 0.40 0.00 

had16 3720 3721 3720 0.03 0.00 

had18 5358 5358 5358 0.00 0.00 

had20 6922 6927.2 6922 0.08 0.00 

TABLE IV.  SA-TS RESULTS FOR kra PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known Sol. 

Average 

Sol. 

Best 

Sol. 

Φ1 

(%) 

Φ2 

(%) 

kra30a 88900 89554.5 88900 0.74 0.00 

kra30b 91420 91420 91420 0.00 0.00 

kra32 88700 88700 88700 0.00 0.00 

 

Table V is a summary of the results for the nug problem 

instances. The results indicate that these problem instances 

do not pose much difficulty for the proposed hybrid 

algorithm to obtain good solutions as the values of Φ1 are not 

more than 0.02%.  

Tables VI, VII and VIII show the results of testing on 

rou, scr and sko problem instances. The values of Φ1 are not 

more than 0.03% for rou and scr problem instances, while 

the maximum value of Φ1 is only 0.18% for sko problem 

instance. For sko49 and sko56, the values of Φ2 are about 

0.1% from the optimal/best known solution.  

While the proposed hybrid algorithm is unable to obtain 

the best known/optimal solutions for the tai and wil problem 

instances when n > 20 as shown in Tables IX and X, the 

values of Φ1 and Φ2 do not exceed 3.72% and 3.58% 

respectively. 

 

 

 



  

TABLE V.  SA-TS RESULTS FOR nug PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known Sol. 

Average 

Sol. 

Best 

Sol. 

Φ1 

(%) 

Φ2 

(%) 

nug12 578 578 578 0.00 0.00 

nug14 1014 1014 1014 0.00 0.00 

nug15 1150 1150 1150 0.00 0.00 

nug20 2570 2570 2570 0.00 0.00 

nug21 2438 2438 2438 0.00 0.00 

nug22 3596 3596 3596 0.00 0.00 

nug24 3488 3488 3488 0.00 0.00 

nug25 3744 3744 3744 0.00 0.00 

nug27 5234 5234 5234 0.00 0.00 

nug28 5166 5166.9 5166 0.02 0.00 

nug30 6124 6124.4 6124 0.01 0.00 

TABLE VI.  SA-TS RESULTS FOR rou PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known Sol. 

Average 

Sol. 
Best Sol. 

Φ1 

(%) 

Φ2 

(%) 

rou12 235528 235528 235528 0.00 0.00 

rou15 354210 354210 354210 0.00 0.00 

rou20 725522 725742.7 725522 0.03 0.00 

TABLE VII.  SA-TS RESULTS FOR scr PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known Sol. 

Average 

Sol. 

Best 

Sol. 

Φ1 

(%) 

Φ2 

(%) 

scr12 31410 31410 31410 0.00 0.00 

scr15 51140 51140 51140 0.00 0.00 

scr20 110030 110030 110030 0.00 0.00 

TABLE VIII.  SA-TS RESULTS FOR sko PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known Sol. 

Average 

Sol. 

Best 

Sol. 

Φ1 

(%) 

Φ2 

(%) 

sko42 15812 15833.8 15812 0.14 0.00 

sko49 23386 23424.5 23410 0.16 0.10 

sko56 34458 34520.4 34494 0.18 0.10 

TABLE IX.  SA-TS RESULTS FOR tai PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known Sol. 
Average Sol. Best Sol. 

Φ1 

(%) 

Φ2 

(%) 

tai10a 135028 135028 135028 0.00 0.00 

tai12a 224416 224416 224416 0.00 0.00 

tai15a 388214 388214 388214 0.00 0.00 

tai17a 491812 491812 491812 0.00 0.00 

tai20a 703482 704610.2 703482 0.16 0.00 

tai25a 1167256 1182462.3 1175490 1.30 0.71 

tai30a 1818146 1845611.7 1833020 1.51 0.82 

tai35a 2422002 2484348.1 2477054 2.57 2.27 

tai40a 3139370 3228315.1 3207852 2.83 2.18 

tai50a 4938796 5122386.6 5115612 3.72 3.58 

tai60a 7205962 7463484.2 7417240 3.57 2.93 

tai80a 13515450 13997867.4 13938662 3.57 3.13 

tai100a 21054656 21788679.9 21689698 3.49 3.02 

TABLE X.  SA-TS RESULTS FOR wil PROBLEM INSTANCES 

Benchmark 

problem 

Optimal/Best 

known Sol. 

Average 

Sol. 
Best Sol. 

Φ1 

(%) 

Φ2 

(%) 

wil50 48816 48867.7 48850 0.11 0.07 

wil100 273038 273406.3 273240 0.13 0.07 

 

In summary, we observe that the proposed hybrid 

algorithm is able to obtain very good or optimal solutions to 

benchmark problem instances drawn from the QAPLIB.  

B. GQAP Results 

For the GQAP, the computational results are focused on 

solving the examination timetabling problem. The random 

data sets have sizes that are comparable to an examination 

timetabling problem arising in a university of Indonesia 

(Table XI). The value of the parameter η  is set to 1.  

The algorithm is also repeated for 20 runs, with the 

average objective function value, the best objective function 

value and the average computation time being tabulated. To 

see if the proposed hybrid algorithm is an improvement over 

a standard SA algorithm, we also applied the standard SA 

algorithm to data sets.  

TABLE XI.  CHARACTERISTICS OF THE EXAMINATION PROBLEM 

Data set 

Number of 

examinations 

e 

Number of 

periods 

n 

Number of 

classrooms 

Cap 

20×20 20 20 3 

40×20 40 20 4 

60×20 60 20 5 

80×20 80 20 6 

100×20 100 20 7 

200×20 200 20 12 

 

Table XII reports the results obtained by both algorithms 

and it indicates that the performance of the hybrid algorithm 

is better than the standard SA in terms of the average and the 

best objective function values obtained. The computation 

times needed by both algorithms are relatively comparable. 

For example, the CPU times for 100×20 instance are 340.90 

seconds (by standard SA) and 350.52 seconds (by SA-TS), 

respectively. 

TABLE XII.  COMPUTATIONAL RESULTS FOR EXAMINATION PROBLEM 

Data 

set 

Algorithm SA SA-TS 

Average 

obj. value 

Best obj. 

value 

Average 

obj. value 

Best obj. 

value 

20×20 123.36 121.68 121.84 121.68 

40×20 642.24 628.48 634.82 627.66 

60×20 2743.22 2657.32 2699.42 2652.08 

80×20 7723.47 7410.62 7620.33 7281.68 

100×20 20275.46 18167.34 19456.78 17583.36 

200×20 32334.50 30127.32 31297.83 29604.61 

C. Sensitivity Analysis 

Hutter et al. (2009) presented the importance of finding 

good parameter settings that affects the performance of an 

algorithm. We conduct a sensitivity analysis utilizing one-at-

a-time sensitivity measures and linear regression analysis. 

Figure 2 shows an example of varying the value of the initial 

temperature T for chr instances of QAP. We observe that the 

higher the value of temperature T, the lower the average 

percentage deviation from the optimal/best known solutions.    

A linear regression function is also built in order to 

provide the comprehensive sensitivity measure of the average 

percentage deviation from the optimal/best known solutions 

(Y). Two parameters, T and α, are selected to build the 

regression, as shown in (14). It shows that the coefficient for 

T is -0.0005, which indicates that for every additional degree 



  

in temperature T, the average percentage deviation Y will 

decrease by an average of 0.0005, by keeping α constant.   

      4.220005.04.20  TY       (14) 

 

 
 

Figure 2. Sensitivity Analysis for chr instances 

V. CONCLUSION 

In this paper, hybrid metaheuristics combining GRASP, 

Simulated Annealing and Tabu Search are proposed to solve 

the QAP and GQAP. The proposed algorithm is able to 

obtain the optimal or best known solutions for problem 

instances drawn from the QAPLIB. A modification of the 

algorithm also performs better than the standard SA 

algorithm in solving the examination timetabling problem. 

The Tabu Search framework has been designed primarily 

with short term memory. As part of future research work, the 

possibility of implementing other Tabu Search strategies, 

such as long term memory and diversification strategy, can be 

considered. Comparison with other metaheuristics, such as 

Tabu Search and Genetic Algorithm can also be performed.  

One-at-a-time sensitivity measures and linear regression 

analysis do not examine the possibility of interaction effects 

between parameters. Mateus et al. (2011) studied the effect 

of changing single parameter values and fixing the values of 

all other parameters. Extending their work using the 

framework proposed by Gunawan et al. (2011) for fine-

tuning algorithm parameters considering the interaction 

effects among parameters is another area of future work. 
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