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Abstract
This paper studies the impact of universities on local innovation activity by exploiting a

unique university expansion policy in China as a quasi-experiment. We take a geographic ap-

proach, empowered by geocoded data on patents and new products at the address level, to identify

knowledge spillovers as an important channel. We obtain three main findings. First, university ex-

pansion significantly increases universities’ own innovation capacity, which results in a dramatic

boom of local industry patents. Second, the impact of university expansion on local innovation

activities attenuates sharply within 2 kilometers of the universities. Third, university expansion

boosts nearby firms’ new products and the number of times when nearby industry patents cite

university patents but not the number of times when industry patents cite patents far away from

universities.
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1. Introduction

Economists and policy makers have long stressed the importance of higher education institutions

in fostering economic growth (Acemoglu 1995; Redding 1996; Andersson et al. 2004, 2009; Aghion

et al. 2009). The common belief is that universities not only train high-skill labor, but also dis-

seminate knowledge and promote productivity in local communities (Valero and Van Reenen 2019;

Andersson et al. 2009). Whereas previous research has shown the impacts of universities on the de-

velopment of certain industries and local productivity, we have limited understanding on the causal

role that universities play in facilitating knowledge-based externalities and on the geographic scope

of such externalities (Kantor and Whalley 2014, 2019). The central challenges that have limited

progress in the literature are the endogeneity concerns and the difficulty in distinguishing knowledge

spillovers from other potential channels. This paper takes a geographic approach, combined with a

quasi-experimental setting, to resolve the challenges and identify the role of knowledge spillovers

from universities.

We examine the causal impact of university activity on the creation of local patents and new

products by taking advantage of a unique quasi-experiment in China that has exogenously expanded

higher education institutions since 1999. We exploit a structural break in the university-innovation

relationship induced by the policy shock to uncover the localized nature and striking geographic at-

tenuation of university spillovers at a very refined geographic level (within 2-3 km).1 We achieve this

goal by utilizing novel datasets that contain comprehensive information on patents and new products

of firms geocoded at the address level. The uncovered geographic nature of the impact allows us to

identify knowledge spillovers from universities by building on the general consensus that idea flows

rely heavily on spatial proximity.2 By further merging our core datasets with patent citation infor-

mation, we also reveal direct evidence of knowledge outflows from universities and striking spatial

1While previous studies have documented the localized nature of university spillovers at the scope of cities or counties
(Jaffe 1989; Audretsch and Feldman 1996; Anselin et al. 1997; Andersson et al. 2004, 2009; Kantor and Whalley 2014; Liu
2015; Kantor and Whalley 2019; Hausman 2022), none has studied the spillover effects at the refined geographic level as
we undertake in this paper. The extension to this geographic level is important in identifying knowledge spillovers as one
of the mechanisms that contribute to the impact of universities on local innovation.

2An extensive literature emphasizes that knowledge spillovers decay rapidly within narrowly defined geographic space
(Jaffe et al. 1993; Rosenthal and Strange 2003, 2005, 2008; Arzaghi and Henderson 2008; Combes and Gobillon 2015; Li
et al. 2022; Baum-Snow et al. 2021). This is because gains from exchanging knowledge and information rely heavily on
close-range face-to-face contact. The geographic approach to identify the mechanisms of agglomeration externalities has
been emphasized in Rosenthal and Strange (2020) and validated in Li et al. (2022).
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decay patterns of the citation links. Our findings unanimously point to the importance of knowledge

spillovers in fostering innovation in close proximity to education and research institutions.

The evidence on knowledge spillovers from universities helps researchers better understand the

role of universities in the economic growth process. It is widely acknowledged that research and

development (R&D) played a central role in advancing the world technology frontier and contributed

to continued economic growth over the past 200 years (Acemoglu 2008). However, in innovation-

based growth models, the R&D production function has been taken as a reduced-form representation

and the specific steps leading to practical innovations is not yet clear.3 Presumably, research outputs

from research institutions serve as a key first step leading to innovative ideas that are then converted

into innovative products. By tracing the impact of university activities on patents, patent citations,

and new products, we document the role of knowledge spillovers from universities in the innovation

process. This process of transforming fundamental knowledge into patentable findings and practical

products forms the cornerstone of the R&D production function that is at the center of innovation-

based economic growth theory.

Understanding the presence and the spatial scope of university spillovers in promoting local inno-

vation also has important policy implications. First, it justifies public investments on higher education

that has witnessed enormous growth in recent decades (Schofer and Meyer 2005).4 Second, the extent

to which education investment spills over to benefit surrounding firms provides guidance for creat-

ing technology hubs near education institutions. Evidenced by the salient example of Cambridge’s

Kendall Square near Harvard University and the Massachusetts Institute of Technology, policy mak-

ers have formed a general consensus that proximity to universities is a key condition for a vibrant

high-tech community. Yet, a careful policy design requires a good understanding on how quickly

the positive externalities decay with geographic distance. If university spillovers decay slowly, so-

cial planners may not have to endure high congestion costs in close proximity to research institutions

to exploit the spillover benefits. If, however, the positive externalities decay quickly, policy makers

would need to carefully gauge policy parameters to balance the spillover benefits with rising conges-

3Externalities from human capital and innovation had a scientific revival with the endogenous growth models starting
with Romer (1986, 1990), Lucas (1988), and Grossman and Helpman (1991). Jaffe (1986, 1989) modeled a simple pro-
duction function using industry and university research as inputs. Both studies found significant and positive effects of
university research on outputs.

4For example, in 2017, the Ministry of Education of China spent 1,110.9 billion yuan (about US$170.9 billion using the
exchange rate in December 2017) on higher education (http://www.moe.gov.cn/).
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tion costs.

Empirically, it is challenging to identify the causal impact of university spillovers on local in-

novation activities. One possible endogeneity concern resides in the presence of persistent local

unobserved amenities that attract both premier universities and productive firms. In addition, busi-

ness activities also reversely impact nearby universities and academic research through collaborations

with or donations to universities (Bils and Klenow 2000). We address the concerns by exploiting a

unique national university expansion policy resulted from an unanticipated economic stimulus plan

from the central government in China. The policy introduced an exogenous structural break in city-

specific university capacity that is presumably independent of local economic conditions. We make

use of the kinked relationship created by the shock to identify the impact of the university expansion

in a difference-in-differences framework, drawing on cross-sectional variations in the exposure to the

shock determined by the university capacity prior to the shock.

More important, the core element of our empirical analysis is the focus on within-city variations

to characterize the geographic nature of university spillovers and to identify the role of knowledge

spillovers. This within-city focus allows us to adopt a triple-differences approach in which we control

for a rich set of interacting fixed effects to tighten our identification. Specifically, to capture the

spatial attenuating features at very refined geographical levels, we examine the impact of university

expansion on surrounding industrial innovation activities within 0.5 km, between 0.5 km and 1 km,

between 1 km and 1.5 km, and so on, extending up to 5 km or 10 km, depending on the specific model.

We control for year by ring, year by city, and city by ring fixed effects to absorb unobserved local

demand shocks or factors related to either China’s World Trade Organization (WTO) accession or

reduction in internal migration and trade costs.5 Our focus on the localized geographic nature of the

impact allows us to shed light on the geographic scope and the underlying mechanism of university

spillovers. As existing studies have shown how fast knowledge spillovers decay over space, taking

the analysis to this level of geography is essential.

In the empirical analysis to follow, we document the extent to which proximity to academic uni-

versities in China affects nearby patent generation and cross-patent citations. We utilize detailed

5We address further concerns on the possible presence of city- and location(distance)-specific unobserved time-varying
factors by taking advantage of information on nearby patents that cite university patents. We elaborate on this point in
Section 3.
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patent-level data between 1995 and 2007 from the National Intellectual Property Administration of

China and patent citation links scraped from Google Patents to achieve this focus. Patenting is one

of the best proxies for innovation and is widely used to capture knowledge creations. Since Jaffe

et al. (1993), the literature has taken advantage of patent citation links to trace the paper trails of

knowledge flows.6 We rely on citation links to highlight direct knowledge flows from universities to

nearby industrial firms. Moreover, a comparison between nearby patents that cite university patents

and those that cite patents far away from universities helps address concerns on the possible presence

of city- and location (distance)-specific unobserved time-varying factors that may contaminate our

triple-differences identification.

Despite the benefit of detailed information on patents, patenting represents an intermediate step

rather than the final economic output in the process of converting new ideas to new products. To

mitigate this concern, we take advantage of previously under-explored information on new firm prod-

uct sales reported in the Annual Survey of Industrial Firms (ASIF). According to ASIF, “products

included in the category of new product sales are those that are new in relation to the reporting firm’s

prior product mix.” Hence, new product sales in ASIF better reflect the ultimate outcome of the inno-

vation process: the commercialization of technical ideas. Other firm-level surveys rarely capture this

information on new product.7 It provides a unique opportunity to examine the impact of university

expansion on a direct measure of downstream outputs produced using knowledge and ideas.

We obtain the following results. First, university innovation activities increase nearby patents, and

the impact decays sharply with geographic distance. In particular, we find that the level of patenting

activities reduces by about 80 percent when moving from within 0.5 km to 0.5-1 km of a university.

The impact reduces by another 65 percent when moving from 0.5-1 km to 1-1.5 km of a university.

The sharp decline stops roughly at 2 km away, and the attenuation slope flattens out thereafter. Second,

we find that the spatial attenuation of university spillovers is ubiquitously present in different regions

and industries in China but is more pronounced in the Eastern region and for industries more reliant

on high-skilled labor. Third, we find that university expansion increases nearby industry patents that

6Although the case-control approach in Jaffe et al. (1993) faces challenges and is refined in several follow-up efforts,
the approach of following patent citations to trace knowledge flows is widely recognized (Thompson and Fox-Kean 2005;
Thompson 2006; Murata et al. 2014; Figueiredo et al. 2015).

7A few studies use new product announcement data from the U.S. Small Business Administration to examine innovation
(Acs and Audretsch 1988; Acs et al. 1994; Feldman and Audretsch 1999; Acs et al. 2002). That data, however, are only
available for 1982 and are also limited in scope.
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cite university patents. The knowledge outflows captured by citation links also decay quickly across

space and stabilize beyond the 2 km radius. The spatial attenuation pattern, however, is not present

for the number of times when nearby industry patents cite patents far away from universities. Last,

further analysis suggests that university expansion boosts new products from firms and that the impact

follows a similar spatial decay. This effect is more pronounced for high-skilled intensive industries

and private firms than for low-skilled intensive industries and state firms.

Our study contributes to two sets of literature. First, this paper joins the literature on knowl-

edge spillovers and agglomeration economies. Since Marshall (1890), researchers have attributed the

micro-foundations of agglomeration externalities to the sharing of goods, people, and ideas—otherwise

labeled as intermediate input sharing, labor market pooling, and knowledge spillovers (Duranton and

Puga 2004; Holmes 1999; Glaeser and Maré 2001; Moretti 2004; Ellison et al. 2010). It is also

recognized that different microfoundations are associated with different spatial attenuation of ag-

glomeration externalities (Rosenthal and Strange 2004; Combes and Gobillon 2015; Li et al. 2022).8

Rosenthal and Strange (2020), in particular, emphasizes the convenience of identifying the nature of

agglomeration externalities by relying on the observed attenuation patterns. Baum-Snow et al. (2021)

interprets the micro-geographic level rapid spatial decay in productivity spillovers as explained by

learning or knowledge transfer. Hence, the fast attenuation speed documented in our paper points to

the important role of knowledge spillovers in university spillover benefits.

Second, we contribute to the literature on the impact of research institutions and academic re-

search on local economic outcomes. Previous studies have focused on a range of economic outcomes

in the context of developed countries. For instance, Jaffe (1989) and Anselin et al. (1997) examine

the effects of university research on local innovations in the United States. Andersson et al. (2004,

2009) investigate the impact of educational investment on productivity and innovation in Sweden.

Kantor and Whalley (2019) uses historical establishment of agricultural experiment stations in the

United States to evaluate the impact of proximity to research on agricultural productivity.9 How-

ever, the geographic unit of analysis is mostly at the city, county, municipality, state, or region level,

8For instance, industries that rely heavily on knowledge spillovers as the main agglomeration force often require close-
range face-to-face contact, which implies a rapid spatial decay of agglomeration spillovers; industries that cluster mainly
because of input-output linkages could have agglomeration externalities decay slowly and extend to a larger spatial scale.

9Other studies in this strand of literature include Aghion et al. (2009), Kantor and Whalley (2014), Liu (2015), Andrews
(2019), and Hausman (2022).
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which prohibits researchers from understanding the micro-geographic scope of university spillovers

and drawing conclusions on the channel through which the localized spillovers take place. We extend

the literature by focusing on a developing country context and documenting a sharp spatial attenua-

tion of the impact of university expansion on intermediate innovation outcomes (patents and citation

links) and final output measures (new products).

The rest of the paper is organized as follows. Section 2 introduces the institutional background

of the university expansion in China. Section 3 lays out the empirical framework and identification

strategies. Section 4 describes data and variables. Section 5 presents the empirical results on patents.

Section 6 presents the results on patent citations and new products. We conclude in Section 7.

2. Institutional Background

In this section, we introduce China’s higher education system and discuss the policy background

of the university expansion that started in 1999.

China’s higher education system is under central planning since its establishment in the 1950s.

The Ministry of Education (MOE) in the central government is the sole entity that makes admission

plans for all universities based on the national economic development plan. High school graduates are

admitted to different universities based on their performance on a unified national college entrance ex-

amination. This central planning feature governs that the implementation of higher education policies

follows a top-down approach, and the intensity of the policy is usually not responsive to economic

environment at the local level.10 The radical university expansion that started in 1999 is one such

example and was unanticipated at the time.

Before 1999, the development of China’s higher education institutions was steady and smooth.11

However, the onset of the 1997 Asian financial crisis and the massive layoffs resulted from the state-

owned enterprise (SOE) reforms in the late 1990s raised concerns about a recession and triggered

10China’s higher education system is different from the systems in many Western countries, such as the United States.
or example, almost all prestigious universities in China are public universities, whereas many prestigious universities in the
United States are private. In addition, the financial support for higher education is almost entirely provided by the MOE in
China, whereas fundraising plays a significant role in financing the universities in the United States.

11China’s higher education system went back to normal after the Cultural Revolution ended in 1976. In the 1990s, the
Ministry of Education guided China’s higher education sector under a theme called “steady development.” The number
of enrolled students increased with an average growth rate of 7 percent between 1977 and 1998. From 1990 to 1998,
the number of university students increased from 2.06 million to 3.41 million, and the number of university teachers rose
slightly from 0.395 million to 0.407 million.
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a need to expand the higher education sector to stimulate the domestic demand for educational ser-

vices and other related consumption.12 University expansion was also believed to postpone the entry

of high school graduates into the labor market, which may otherwise exacerbate the already-high

unemployment rate (Che and Zhang 2018).

In June 1999, the MOE and the National Development and Planning Commission jointly an-

nounced a new higher education recruitment plan, with expected new students of 1.53 million in

1999—a 42 percent year-on-year increase. In the meantime, college tuition fees increased by 15-20

percent across different regions. The revenue from tuition became an important financial resource for

universities. The central government also shifted more resources to higher education to accommodate

the huge increase in university scale. From 1998 to 2000, the science and technology funding and na-

tional expenditure on higher education increased from 8.2 billion yuan to 14.3 billion yuan and from

33.6 billion yuan to 49.1 billion yuan, respectively. From 1998 to 2000, the number of university

teachers also rose by 55,519, more than fourfold of the increase from 1990 to 1998.

The expansion was unanticipated by the general public and local governments. The new plan

would impose huge impacts on the college entrance examination in July (one month later) and the

new academic semester starting in September (three months later). The time left for the government

to distribute the enrollment quota was pressing. Official documents suggest that the quota allocation

across cities mainly depended on the national expansion plan and existing universities’ physical and

logistical capacity at the city level. The quota allocation rules also present strong inertia as the radical

expansion continued in the following years. Therefore, the expansion led to an exogenous structural

break in a city’s higher education scale, and the magnitude of the structure break depended on the

city’s university resources prior to the shock.

Figure 1 depicts various aspects of the structural break in China’s higher education sector induced

by the policy shock. Panels A-D present the numbers of university teachers, university students,

university entrants, and university graduates from 1990 to 2010. Before 1999, the growth rate of

those numbers was low and steady. However, a clear trend break exists in the time series of the

12Min Tang, a famous economist in the Development Research Center of the Asian Development Bank, originally pro-
posed the university expansion policy. In November 1998, Mr. Tang, along with his wife Xiaolei Zuo, wrote an open letter
to the central government, in which they appealed for doubling the higher education enrollment in three years. They also
suggested that China stop offering free higher education and require students to pay tuition fees. They believed that those
actions would help generate demands in relevant economic sectors and stimulate the nation’s economy. The letter can be
viewed at http://finance.sina.com.cn/review/20041023/15201102716.shtml.
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numbers of university teachers, university students, and university entrants in 1999 and the number

of university graduates in 2003. The scale of universities in China increased dramatically after 1999.

In particular, the number of university teachers in 2010 was more than three times of the number

in 1998. In Panel E, the national higher education expenditure increased more than threefold from

1998 to 2006. Panel F shows that the science and technology funding for the higher education sector

increased by a factor of over 11 from 1998 to 2010. The expansion dramatically increased the research

resources to universities, at both the aggregate and per teacher level.

In Figure 2, we plot the correlation between the extent of university expansion from 1999 to 2007

and the scale of higher education before the expansion at the city level. Specifically, in Panel A, we

plot the increase in the number of university teachers between 1999 and 2007 in each city against

the number of university teachers in each city in 1990. We do the same for the number of university

students in Panel B. There is a clear positive correlation between the expansion in university scale and

the pre-existing university students and teachers before the expansion at the city level. The pattern

confirms that, during the expansion period, the enrollment quota was allocated to different cities

mainly based on the city-level pre-existing physical and logistical capacity of the higher education

sector. The increase in enrollment quota further induces universities to gain more funding, upscale

the teachers, and eventually expand the research capacity.

In sum, the higher education expansion policy followed a top-down approach and created a pos-

itive exogenous shock to university scale. The extent of the expansion in each city was largely de-

termined by the national expansion plan and existing universities’ capacity before the expansion.

Several studies find support for the exogeneity of this national policy to the local economic environ-

ment (Che and Zhang 2018; Li et al. 2017; Rong and Wu 2020).13 We provide similar evidence in

Appendix Figure A1 that the extent of university expansion in a city is not predicted by the growth

of patents, GDP and firm TFP in the city before the expansion. We use this policy shock to form a

difference-in-differences and a triple-differences research design.

13Che and Zhang (2018) shows that the annual growth rates of gross domestic product and annual admission are uncor-
related at the provincial level for the period of 1995-2011. They also show that the correlations between the growth of new
college graduates in 2001-2003 and the growth of provincial GDP and firm TFP are small and statistically insignificant.
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3. Empirical Framework

We face three empirical challenges. The first challenge pertains to the identification of the impact

of university activity on local economic outcomes. An endogeneity concern arises from that uni-

versity activity does not occur randomly. For instance, there may exist location-specific unobserved

characteristics that attract innovative firms and research-oriented universities simultaneously. Alter-

natively, the nearby presence of innovative firms may reversely affect the activities of universities

through knowledge spillovers from industrial firms to universities, through donations to universities

and collaborations, or through increased local demand for a university-trained labor force.

We address the endogeneity concern by utilizing the university expansion policy in China as a

quasi-experiment. As explained in Section 2, the policy created an unanticipated structural break in

the intertemporal development of universities, which allows us to identify the causal impact of the

university expansion in a difference-in-differences framework. We examine the extent to which the

policy shock induces an expansion in university patenting and the extent to which it spills over to

affect citywide industrial patenting activities. The regression equation is specified as follows:

Outcomec,t = β × (Treatmentc×Postt)+αc + γt + εc,t , (3.1)

where Outcomec,t represents UniversityScalec,t , the numbers of university teachers, university stu-

dents, or university patents in city c and year t, or IndustryInnoc,t , the number of collaboration patents

or industry patents in city c and year t. Treatmentc is the number of university teachers (or students)

in city c in year 1990, a proxy for treatment intensity. Postt is a dummy variable that equals 1 if year

t is 2000 or after. αc and γt are city and year fixed effects, and εc,t is the error term.

This identification strategy draws on cross-sectional variation in the exposure to the shock deter-

mined by the university capacity prior to the shock. The identification assumption is that the evolution

of outcome variables in cities with larger expansions should not vary systematically from cities with

smaller expansions in the absence of the expansion, conditional on included control variables. In

other words, any pre-existing trends should be properly controlled for. We discuss the validity of the

identification assumption in more detail below. Also note that if we are willing to make additional

assumption that the expansion impacts industry innovation only through increasing university scale,
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we can consider the impact of the expansion on UniversityScalec,t as the first-stage effect, and the

impact on IndustryInnoc,t as the reduced-form effect, in a standard Wald difference-in-differences

setup (Duflo 2001; Bhuller et al. 2013).14

The second empirical challenge hinges on the core of the paper—identifying the role of knowl-

edge spillovers as an important channel contributing to the impact of universities. That is, even if the

causal impact of university activity on local economy is convincingly justified, it is not clear whether

the impact is channeled through knowledge spillovers. For example, an increase in university scale

may accompany an increase in the supply of college graduates if graduates prefer to work in the area

where they attend college (Card 1995). Increased high-skilled labor could improve local economic

outcomes directly (Che and Zhang 2018). Hence, the challenge is how to safely disentangle the role

of knowledge spillovers from other mechanisms.

We tackle this challenge by focusing on the extremely localized effects of universities. Previous

studies have shown that knowledge spillovers tend to decay rapidly across space, while other benefits

of agglomeration, such as labor market pooling, operate at a much larger geographic scope (Rosen-

thal and Strange 2003, 2005; Arzaghi and Henderson 2008; Li et al. 2022). In particular, Arzaghi

and Henderson (2008) depict sharply attenuating knowledge spillovers and networking benefits that

deplete at 750 meters away. As noted in Carlino and Kerr (2015), this spatial approach “represents an

important precedent for future research related to innovation more directly.” Indeed, the focus on the

geographic nature of university spillovers is convenient to disentangle the important role of knowl-

edge spillovers. It is difficult to imagine that alternative channels, such as the labor market channel,

would dissipate dramatically at a short distance away from a university.15 In the online appendix,

we present a simple conceptual framework to formalize the identification of knowledge spillovers by

drawing on the localized nature of knowledge spillovers.

We achieve this geographic focus econometrically by specifying a rich set of concentric ring

14The effect of university innovation capacity on industrial innovation activities can be retrieved by taking the ratio of the
reduced-form and the first-stage estimates or by two-stage-least-squares (2SLS) estimation with direct inference. Because
the assumption of exclusion restriction is harder to justify, we focus on the difference-in-differences model, but we also
report the 2SLS estimates in the appendix tables.

15It is possible that highly innovative firms are attracted to the close proximity of research universities to draw on the
spillover benefits. As a result, firms closer to universities may disproportionately hire university graduates. However, we
should be careful and not interpret the increased innovation activities near universities as a mere consequence of dispro-
portionately allocated high-skilled labor since the latter is an equilibrium outcome of knowledge spillovers and serves as a
channel through which knowledge spillovers benefit nearby innovation in a self-reinforcing process.

11



variables that capture innovation activities at various distances from research universities. Each con-

centric ring spans 500 meters. We include 10 or 20 rings to cover places up to 5 km or 10 km away

from a university, depending on the specific model.16 This additional source of within-city variation

allows us to identify the spatial attenuation of university spillovers in a triple-differences framework,

specified as follows:

IndustryInnoc,r,t =
9

∑
r=1

βr× (Treatmentc×Postt ×Ringr)+dc,r +dc,t +dr,t + εc,r,t , (3.2)

where IndustryInnoc,r,t represents the number of industry patents in city c, ring r, and year t; Treatmentc

and Postt are defined the same as before; Ringr is a dummy variable that equals 1 if the patents are in

the concentric ring r and 0 otherwise (ring 10 is set as the reference group and is omitted); dc,r, dc,t ,

and dr,t are city by ring, city by year, and ring by year fixed effects, respectively.

The ability to include all interactive fixed effects is crucial for identifying the geographic nature

of university spillovers. China experienced dramatic economic reforms in the past few decades. For

instance, since the early 2000s, the Chinese government has undertaken policy reforms and infras-

tructure investments that have substantially reduced the costs of internal migration and trade. China

also joined the WTO at the end of 2001, which led to large reductions in international trade costs.

Those reforms contributed to a significant growth in aggregate productivity and may drive increases

in innovation activities (Brandt et al. 2017; Tombe and Zhu 2019). We address those potential con-

founding factors by including city by year, ring by year, and city by ring fixed effects in a gener-

alized triple-differences framework. In particular, city-level time-varying unobservables, the main

confounding factor in the difference-in-differences model, are controlled for by city by year fixed

effects. The remaining unobserved factors conditional on those demanding interacting fixed effects

are unlikely to systematically impact innovation activities at different distances from universities.

Thus, the triple-differences strategy relies on weaker identification assumption than the difference-in-

differences strategy.

The third empirical challenge is the measurement of innovation. Conceptually, innovation should

comprise generation of new ideas and conversion of ideas into commercial products. The new ideas

generated could sometimes result in patents. Therefore, it is natural to use patent as a proxy for inno-

16Section 4.2 provides a detailed explanation on the construction of the rings.
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vation. Plus, patent data are also publicly available and contain rich details. However, two potential

concerns exist: (1) patents do not directly reflect knowledge flows and (2) they are an intermediate

step in the innovation process and do not capture the ultimate economic value of the invention (Acs

et al. 2002).17 Because patents and new products do not necessarily collocate, we need to interpret

the patent-based evidence with caution (Feldman and Kogler 2010).

To mitigate measurement concerns associated with using patent counts as proxies for innova-

tion, we supplement our patent analysis with subsidiary analyses on two additional measures: patent

citation links and new commercial products. We examine the incidences when industry patents cite

university patents as direct evidence of knowledge transfers from universities. We also take advantage

of previously under-explored information on firms’ new commercial products to reveal the impact of

university spillovers on the final products.

We estimate the following triple-differences specification to capture the spatial decay of patent

citations:

Citec,r,t =
9

∑
r=1

βr× (Treatmentc×Postt ×Ringr)+dc,r +dc,t +dr,t + εc,r,t , (3.3)

where Citec,r,t represents the number of cases when industry patents in city c, ring r, and year t cite

university patents. The rest variables are defined in the same way as in Equation (3.2).

To explore the impact of university expansion on nearby new products at the firm level, we esti-

mate the following specification:

NewProducti,c,r,t =
9

∑
r=1

βr× (Treatmentc×Postt ×Ringr)

+dc,r +dc,t +dr,t +XXX i,c,r,tρρρ + εi,c,r,t ,

(3.4)

where NewProducti,c,r,t represents the new commercial product ratio of firm i in city c, ring r, and

year t; XXX i,c,r,t is a set of firm-specific controls, including the age of a firm, fixed assets, a dummy for

whether a firm is an SOE, and the employment size; and εi,c,r,t is a firm-specific error term. We define

the rest variables in the same way as in Equation (3.2).

17Based on Acs and Audretsch (1988), Griliches (1979) and Pakes and Griliches (1980), “patents are a flawed measure (of
innovative output) particularly since not all new innovations are patented and since patents differ greatly in their economic
impact.”
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The set of differencing strategies stated above relies on the identifying assumption that, condi-

tional on included fixed effects and other controls, the evolution of the outcome variables in cities

with larger expansions should not vary systematically from cities with smaller expansions in the ab-

sence of the expansion (difference-in-differences setup), and, in the event that there exist systematic

variations across cities, such counterfactual differences do not vary across rings (triple-differences

setup). A natural check on the validity of such assumption is whether the pre-trends are parallel. We

perform event-study analyses to check on this assumption and also to capture the dynamics of the

treatment effects. The event-study specification for the city-level analysis is as follows:

Outcomec,t =
1998

∑
t=1995

βt × (Treatmentc×Yeart)

+
2007

∑
t=2000

βt × (Treatmentc×Yeart)+αc + γt + εc,t ,

(3.5)

where Outcomec,t represents UniversityScalec,t or IndustryInnoc,t ; Yeart is a set of year dummies

that equals 1 if year equals t and 0 otherwise. Year 1999 is set as the base year and is omitted. We

define the rest variables the same as in Equations (3.1).

We also estimate event-study model for the ring-level analysis as follows:

IndustryInnoc,r,t =
9

∑
r=1

1998

∑
t=1995

βr,t × (Treatmentc×Yeart ×Ringr)

+
9

∑
r=1

2007

∑
t=2000

βr,t × (Treatmentc×Yeart ×Ringr)+dc,r +dc,t +dr,t + εc,r,t ,

(3.6)

where Yeart is a set of year dummies that equals 1 if year equals t and 0 otherwise. We define the rest

variables in the same way as in Equation (3.2).

However, as discussed in detail in Section 5, the event study analysis reveals that the pre-treatment

trends seem to be not sufficiently controlled for by the included fixed effects and controls in both

the city-level and ring-level analyses. This could be explained by that cities experiencing more in-

tensive university expansions may also have been adopting more innovation-promoting and growth-

enhancing policies before the expansion and such efforts could be more directed towards areas close

to existing innovations than far-away areas.

We undertake a collection of efforts to address this concern. First, we examine whether the uni-
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versity expansion induces a slope change in variables of interest by estimating a trend break model,

following Almond et al. (2019). As the policy created an unanticipated structural break in the in-

tertemporal development of universities and the magnitude of the structural break is independent of

unobserved local economic conditions, we rely on a kinked relationship to identify the impact of uni-

versities on local innovation through the channel of knowledge spillovers. The model at the city level

is specified as follows.

IndustryInnoc,t = β × (Treatmentc×Trendt)

+ γ× (Treatmentc×Trendt ×Postt)+αc + γt + εc,t ,

(3.7)

where Trendt is a trend variable defined as the patent application year minus 1999; The rest variables

are defined the same as in Equation (3.1). The coefficient β measures the difference in trends asso-

ciated with cities of different treatment intensity prior to the university expansion. The coefficient γ

measures the post-expansion slope change in the outcome variable relative to the pre-expansion trend.

The trend break model at the ring level is specified as follows.

IndustryInnoc,r,t =
9

∑
r=1

βr× (Treatmentc×Trendt ×Ringr)

+
9

∑
r=1

γr× (Treatmentc×Trendt ×Ringr×Postt)+dc,r +dc,t +dr,t + εc,r,t ,

(3.8)

The variables are defined the same as before. The coefficient βr measures the difference in trends

for ring r associated with cities of different treatment intensity prior to the university expansion. The

coefficient γr measures the post-expansion slope change in the outcome variable relative to the pre-

expansion trend for ring r.

Second, we strip away the city-specific or city-ring-specific pre-expansion linear time trend as a

control strategy before we run difference-in-differences and triple-differences specifications, follow-

ing the approach in Bhuller et al. (2013), Monras (2019) and Garcia-López et al. (2020).18 Specif-

ically, we estimate a city-specific or city-ring-specific linear trend using the pre-expansion sample

(namely, 1995-1999) for our city-level and ring-level regressions, respectively. We then extrapolate

18As stated in Monras (2019), this is a valid identification strategy if in the absence of the treatment the outcome variables
would have evolved following the linear trend implied by the periods preceding the treatment event.
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pre-expansion time trends to the post-expansion sample and subtract out the estimated linear trend

from the observations after treatment. We use the trend-free outcome measures as the dependent vari-

ables in the city-level and the ring-level analyses. We re-estimate a trend-free event study model to

verify that the residualized pre-trends are parallel and also to depict the intertemporal dynamics of the

impact. The event study model further tightens our identification by leveraging on the sharp timing

of the university expansion and high frequency measurement of the outcomes.

Third, we conduct a set of robustness checks to corroborate our main results. In the first robustness

check, we follow Dobkin et al. (2018)’s parametric event study approach to augment our baseline city-

level and ring-level specifications with city-specific and city-ring-specific linear trends, respectively.

This approach is conceptually the same as subtracting out the estimated linear trend elaborated above

(Goodman-Bacon 2018, 2021; Rambachan and Roth 2022). In the second robustness check, we

follow Rambachan and Roth (2022) to obtain robust inference after specifying how different the

post-treatment violations of parallel trends can be from the pre-treatment differences in trends. This

approach also allows us to conduct sensitivity analyses showing whether a causal conclusion can be

drawn under various restrictions on possible violations of the parallel trend assumption. Details are

discussed in Section 5.

Last, we further tighten our identification by drawing on variations in different types of citation

flows. A possible argument against the identification of knowledge spillovers even with our most

sophisticated generalized triple-differences model is that there may exist unobserved city- and loca-

tion (distance)-specific time-varying factors that are correlated with the increase in location-specific

innovation activities after the university expansion. Such a hypothetical scenario is possible but very

unlikely given the rare coincidence of multiple co-evolving factors after controlling for a demanding

set of fixed effects. Despite so, we address this concern by drawing on the information on patent

citation links to show that the spatial pattern persists only for citation links of industry patents citing

university patents but not for citation links of industry patents citing patents far away from universities.

Otherwise, if unobserved co-evolving factors drive the spatial pattern of overall patenting activities

and citation behaviors, we would observe similar patterns for both types.
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4. Data, Variables, and Summary Statistics

4.1. Data

We use four primary datasets. The first dataset is a patent database obtained from the National

Intellectual Property Administration of China (CNIPA). This dataset covers a complete list of patents

granted between 1995 and 2007 in China. The data provide detailed information for each patent, such

as inventor’s name and affiliation, address of the patent, application date, approval date, patent ID,

International Patent Classification (IPC) number, and patent type. There are three types of patents

in the database: invention patent, utility model patent, and design patent.19 We focus on invention

patents because they represent the most innovative type. Overall, there were 553,248 invention patents

granted in China between 1995 and 2007. We use invention patents to measure innovation activities

inside and outside of universities.

The second dataset is extracted and compiled from four different statistical yearbooks of China.

The first source is the China City Statistical Yearbook between 1996 and 2008 from the National

Bureau of Statistics (NBS) of China. This collection provides information on various prefecture-city-

level attributes by year, such as the number of university teachers and students.20 The second source

is the Educational Statistics Yearbook of China. We obtain the number of university entrants and

graduates at the provincial and national level for each year from this yearbook. The third source is the

Educational Finance Statistical Yearbook of China, which reports the higher education expenditures

from 1995 to 2006. The fourth source is the Compilation of Statistical Data on University Science and

Technology Resource, which provides information on the science and technology funding for higher

education from 1991 to 2010. We use the number of university teachers and students from the first

source as proxies for university scale or research capacity. The other three sources help us summarize

aggregate trends for various aspects of the university expansion.

The third dataset is a patent citation database that is scraped from Google Patents. Google Patents

is a search engine from Google that indexes patents and patent applications from all around the world.

19Invention patents require inventive technological improvements or new uses. Thus, invention patents have the highest
standard of novelty. The other two types of patents are related more to the structure (utility model patent), shape (utility
model and design patent), and design (design patent) of an object and have fewer requirements for inventiveness.

20The statistical yearbooks report the statistics for the previous year.
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We searched for all patents granted in China. For each patent, we collect its basic information and

patent citations. Then, we match the data to our patent database from CNIPA. This gives us a patent

citation matrix about whether a patent cites another patent. We treat the patent citation links as the

paper trail of knowledge flows and use them to identify knowledge spillovers from universities.

The final dataset is the ASIF of China from 1998 to 2007. This dataset is also from the NBS

of China. The ASIF is an annual panel that covers all SOEs and the non-SOEs with annual sales

exceeding 5 million yuan.21 The data provide detailed firm-level attributes, including firm name, firm

address, legal unit code, legal representative name, industry classification, opening year, ownership

type, fixed capital, output value, and employment size, among others.22 A unique advantage of the

ASIF is the exact firm addresses provided in the data. We geocode the addresses and pin the firms

into the concentric rings that we create.

We use the previously under-explored information on firm new products in the ASIF to measure

the final commercialized outputs with new knowledge and ideas as inputs. The NBS defines a new

product as a product that is produced for the first time at least within a province (Lu and Tao 2009).

Based on an email correspondence with an officer at the NBS, “products included in the category of

new product sales are those that are new in relation to the reporting firm’s prior product mix. Products

that involve the use of new principles, incorporate design improvements, utilize new materials, or

embody new techniques constitute new products; existing products that are used for new functions or

expand capabilities (e.g., production or speed) also constitute new products. Changes in a product’s

shape or minor changes in functionality do not constitute new products” (Jefferson et al. 2003). Other

firm-level surveys rarely capture this measure of new product. It provides a unique opportunity to

study final outputs from innovation. We use a firm’s new product ratio as a proxy for innovation

output and define it as the ratio of the dollar value of new products to the dollar value of total outputs.

4.2. Variables and Summary Statistics

In this section, we describe how we prepare our data for the empirical analysis and present the

basic summary statistics. For the city-level analysis, we create a city by year panel by matching patent

21The ASIF contains many missing values after 2007. In addition, starting in 2011, the sampling cut-off increased to 20
million yuan of annual sales, which changes the sample composition and makes comparisons across years challenging.

22In the empirical analysis, we adjust all dollar variables using the national Consumer Price Index (CPI) so that they are
comparable across years.
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counts at the city level to city-level attributes from the statistical yearbooks. The year of patenting

refers to the year when the patent application is filed, as opposed to the year when the patent is

granted. Our goal is to trace how the flow of knowledge impacts the creation of new ideas, and the

application year is closer to the timing of new knowledge creation (Moretti 2021). We have 184 cities

in the panel after removing observations with missing information.

Table 1 presents the summary statistics for the numbers of university teachers, university students,

and the total and sub-classifications of patents at the city level in each year. Columns (2) and (3) show

the average number of university teachers and students. The city-average growth trends are similar

to the national trends in Figure 1, showing a dramatic boom in university scale after 1999. Column

(4) reports the average number of patents at the city level in each year. The number of patents also

increased dramatically from 2000, which matches the timing of the university expansion. We further

decompose patents into three mutually exclusive categories. Column (5) shows the average number

of university patents, which we define as patents filed solely by inventors affiliated with universities.

Column (6) reports the average number of collaborative patents between universities and the private

sector. Column (7) reports the average number of patents that are filed solely by inventors from

non-university entities. The three types of patents all experienced a sharp increase from 2000.

For the ring-level analysis, we create a panel at the city-year-ring level. To construct the rings,

we compile a list of university locations as the centers of the rings in three steps. First, we manually

search the locations for an exhaustive list of universities that are classified as “Yiben” universities

in each city.23 Second, we supplement the list with the locations of institutions in CNIPA that are

classified as universities during our sample period.24 Third, we add to the list the locations of other

institutions or companies that have ever filed a joint patent application with a university during our

sample period. This third step allows us to include possible university spin-offs in the university

locations and avoids treating industry-university partnerships as spillovers.25

Then, we define the rings as a set of concentric rings around the universities locations. Specif-

23In China, universities are classified into several tiers. The tier of a university determines whether the university has
priority when recruiting students. In general, “Yiben” (first tier) universities have the highest priority when recruiting
students. “Yiben” universities also conduct the majority of research because they have better research and teaching capacity.

24This procedure may lead to multiple locations within the same university as the address filed in a patent application
points to the exact building.

25Hall et al. (2003) documents industry-university research partnerships and suggests that the involvement of universities
in industrial innovation benefits the outcome. However, we recognize that the patents generated from such partnerships
should not be interpreted as spillovers from universities.
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ically, we define one concentric ring for every 500 meters away from the center locations and have

the rings extend up to 5 km or 10 km, depending on the specific model.26 To identify the innovation

activities within each concentric ring, we geocode the locations of patents and companies in CNIPA

and ASIFs, and pinpoint them to the corresponding ring area. The patents generated at the center

locations are not included in any rings. In the baseline ring-level analysis, variable Innoc,r,t is the

number of patents in city c, ring r, and year t, where ring r refers to the concentric ring between the

buffer zones r−1 and r.

We provide a graphic illustration in Appendix Figure A2 to show how we define the rings. In

this example, the two locations at C belong to university I. The three locations at D and E belong to

university II. Point A stands for a non-university entity that has direct collaboration with university I.

Point B stands for a non-university entity that has direct collaboration with university II. We treat all

these locations as the centers of a set of concentric rings. Each concentric ring spans a distance of 500

meters. The concentric rings, hence, are the outer envelopes that trace the rings of the same distance

away from the center locations.

Table 2 presents the summary statistics for the number of patents within different concentric rings

in each year across cities. First, we notice that the magnitude of the patent counts in the closest ring

dominates that of the outer rings. For all years, the number of patents decays sharply as the distance

to universities increases. This suggests that the overall innovation activities around universities are

more intense than other areas. Second, a positive trend exists for all rings over time with a sharper

increase after 2000. For example, the average growth rate of patent counts in ring 1 was 21.5 percent

from 1995 to 1999, but it increased to 54.6 percent from 2000 to 2007. We also found similar but

more muted patterns for outer rings.

5. Results on New Patents

5.1. City-Level Analysis on Patent Growth

We first examine the impact of universities on citywide innovation activities. In Table 3, we report

the results from estimating Equation (3.1) when we use the number of university teachers in 1990 as

26We include 10 rings which extend up to 5 km in our baseline specifications. We include 20 rings to cover a broader
geographic scope for robustness checks.
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the proxy for treatment intensity. The corresponding results when the number of university students

in 1990 is used as treatment intensity are reported in Appendix Table A1.A. Column (1) of Table 3

suggests that cities with 1,000 more university teachers in 1990 experienced an additional increase

of 341 university teachers after the university expansion. Columns (2) suggests that cities with larger

university capacity in 1990 also experienced a larger increase in the total number of patents after the

expansion.27

Next, we decompose the citywide total patent counts into the numbers of patents filed solely by

inventors affiliated with universities, patents jointly filed by inventors affiliated with universities and

inventors from industrial firms, and patents filed solely by industrial firms. Column (3) of Table 3

shows that cities with 1,000 more university teachers in 1990 experienced an additional increase of

33 university patents on average after the expansion. This suggests the expansion indeed boosted uni-

versity innovation capacity, as represented by the number of university patents. Columns (4) and (5)

show that cities with larger university capacity in 1990 also experienced a larger increase in collabo-

rative patents and industry patents after the expansion. The impact on collaborative patents represents

an important form of universities’ contribution to the local economy by collaborating with other sec-

tors.28 The impact on industry patents implies potential spillovers from universities.

As discussed in the empirical framework, we can form a structural interpretation of the estimated

coefficients in a Wald difference-in-differences setup, with additional assumptions. Specifically, di-

viding the reduced-form effect by the first-stage effect produces the Wald estimator of the impact of

university’s research capacity on industry patents. For example, in Table 3, the impact of university

teachers on industry patents at the city level is 0.30 (101.75/341.02). Alternatively, the impact of

university patents on industry patents at the city level is 3.05 (101.75/33.32). The magnitude of the

effects is economically important: adding 100 more university patents to the average prefecture city

increases the industry patents in the city by 305.29

To check on the parallel trend assumption and also to depict the dynamics of the treatment effects,

27Additional results are presented in Appendix Tables A1.B-A1.C to show robustness when we add city-level control
variables, such as the non-agricultural population, the proportion of employment in the manufacturing industries, and the
proportion of employment in the service industries.

28As illustrated in Hall et al. (2003), research projects with university involvement tend to be in areas involving new
science. The social benefits from the collaborated patents can be large.

29We present the two-stage least squares estimation results in Appendix Tables A4.A and A4.B with corresponding
statistical inference.
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we estimate event study models as in Equations (3.5). Appendix Figures A3 and A4 present the

estimation results. In Panel (a) of Appendix Figure A3, we show the dynamic effects of the university

expansion on the numbers of university teachers and university patents using the number of university

teachers in 1990 as the treatment intensity. Panel (b) shows the corresponding estimates using the

number of university students in 1990 as the treatment intensity. Two patterns emerge. First, the

university scale measured by the numbers of university teachers and patents do not present significant

responses to variation in treatment intensity before the expansion when the number of university

teachers in 1990 is used as the treatment intensity. However, there seems to be a small upward

trend in university scale leading the expansion when the number of university students in 1990 is

used as the treatment intensity. Second, the increases in the numbers of university teachers, university

students, and university patents after 1999 are positively affected by the number of university teachers

or students in 1990.

Appendix Figure A4 shows the dynamic effects of university expansion on collaborative patents

and industry patents. In both panels, the dashed line presents the estimation results using the number

of university teachers in 1990 as the treatment intensity, and the solid line presents the estimation

results using the number of university students in 1990 as the treatment intensity. In both panels, there

seems to exist an upward trend in outcome variables leading the treatment year of 1999. Starting from

2000, the numbers of both types of patents rose more dramatically, with more pronounced effects in

later years.

The deviation in pre-trends across cities with varying treatment intensity raises concerns about

potential estimation bias. We investigate and resolve this issue by the following. First, we detect the

presence of a trend break by estimating the trend-break model in Equation (3.7), and we report the

results in Table 4 using the number of university teachers in 1990 as the treatment intensity.30 Across

all columns in the table, we observe statistically significant evidence of trend breaks. The existence

of a slope change in the variables of interest suggests the presence of a causal impact of the expansion

on university scale and industry patenting activities (Almond et al. 2019).

Next, we strip away city-specific pre-expansion linear time trends following the de-trend approach

in Bhuller et al. (2013), Monras (2019), and Garcia-López et al. (2020). We present the correspond-

30The results using the number of university students in 1990 as the treatment intensity is reported in Appendix Table
A2.
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ing results in Table 5. Compared with Table 3, the point estimates are very similar for the number of

university teachers but reduced a bit for the numbers of different classifications of patents. For exam-

ple, after adjusting for pre-trends, the estimates imply that cities with 1,000 more university teachers

in 1990 experienced an additional increase of 83.89 industry patents on average. Again, the results

suggest strong spillovers to local innovation activities from universities. In general, the results show

strong robustness.

Furthermore, we re-estimate event study models to verify that the parallel trend assumption is

satisfied after we strip away city-specific pre-trends. We report the results in Figures 3 and 4.31 We

do not observe significant pre-trends in the event study estimates for both figures. This suggests that

the extent to which universities expanded at the city level was not predicted by any projected changes

in local economic activities in deviation from city-specific time trends. We also find that the impact of

university expansion on industry patents is increasing over time, suggesting dynamically increasing

spillovers from universities to industry sectors. The increasing effects could be explained by the

continually increasing scale of the higher education sector because the university expansion lasted for

many years. It is also consistent with the idea that agglomeration spillovers tend to self-amplify once

the initial shock takes place.

We conduct two additional sets of robustness checks to further corroborate our findings. First,

we follow the parametric event study approach in Dobkin et al. (2018) and estimate the following

specification:

IndustryInnoc,t = µ×Treatmentc× `+
8

∑
`=1

β`×Treatmentc×1{t = 1999+ `}

+αc + γt + εc,t ,

(5.1)

where ` indicates the year relative to 1999; µ captures the slope of the trend; β` captures year-specific

treatment effect after controlling for city-specific time trend.32 The rest variables are defined the same

as before. We plot the corresponding estimates in Figure 5. The dashed lines capture the estimated

linear trends. The gap between the crosses and red dashed line represents year-specific treatment

31The detailed estimation results that are used to draw Figures 3 and 4, and Appendix Figures A3 and A4 are reported in
Appendix Tables A3.A and A3.B.

32We choose to include linear trends in the model because the non-parametric event study estimates in Figures A3 and
A4 display patterns of a linear pre-trend.
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effects using the number of university teachers in 1990 as the treatment measure. The gap between the

circles and blue dashed line represents year-specific treatment effects using the number of university

students in 1990 as the treatment measure. The evidence suggests a large effect of the expansion on

industry patents. The patterns are consistent with the lower panel of Figure 4. This is not surprising

as the parametric event study approach is analogous to the de-trend approach despite small technical

variations (Goodman-Bacon 2018, 2021; Rambachan and Roth 2022).

Second, we obtain robust inference using the “honest approach” proposed in Rambachan and

Roth (2022) after specifying how different post-treatment violations of parallel trends can be from

the pre-treatment differences in trends. Hence, this approach allows us to address potential estimation

bias arising from not only the presence of linear trends but also potential deviations from linearity.

It also addresses further concerns that pre-trend tests implemented in the event study setup may fail

to detect violations of parallel trends due to low statistical power or potential distortions arising from

selection (Roth 2022). As in Rambachan and Roth (2022), we assume that the differential trends

evolve smoothly over time (smoothness) and that the possible non-linearities in the post-treatment

difference in trends are bounded by observed non-linearities in the pre-treatment difference in trends

(relative magnitude bounds). To be consistent with Rambachan and Roth (2022), we use δt to indicate

the difference in trends between the treated and control groups and specify the restriction as follows:

∆
SDRM(M̄) =

{
δ : ∀t > 0, |(δt+1−δt)− (δt −δt−1)|6 M̄ ·max

s<0
|(δs+1−δs)− (δs−δs−1)|

}
, (5.2)

where ∆ is a set of possible differences in trends, and M̄ governs the amount by which the slope of

δt can change after the treatment period. If M̄ = 0, it requires the trend to be linear, which shares

similar ideas as in Equations (3.7) and (5.1). If M̄ > 0, it means that we further allow a deviation from

a linear trend in the post-treatment period, and the maximum deviation is bounded by M̄ > 0 times

the equivalent maximum in the pre-treatment period.33 We then construct robust confidence intervals

of the treatment effect under the smoothness and relative magnitude bounds assumptions using the R

package provided by Rambachan and Roth (2022).

We report the findings in Figure 6. The figure presents robust confidence sets for the estimated

33Applied researchers usually test the null hypothesis δpre = 0 to assess the existence of the pre-treatment non-parallel
trends. See Section 2.2 in Rambachan and Roth (2022) for a more detailed discussion.
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treatment effect averaged across post-treatment years, under the restrictions of ∆SDRM(M̄). The left

panel uses the number of university teachers in 1990 as the treatment intensity, and the right panel uses

the number of university students in 1990 as the treatment intensity. The blue confidence intervals

are obtained without making adjustments for pre-trends.34 The red confidence sets depict the set of

confidence intervals of the estimated coefficients if we allow for a deviation from a linear trend with

the maximum deviation specified in Equation (5.2). We find that, even when we allow M̄ = 0.25,

the estimated causal impact of university expansion on industry patents is still statistically different

from zero. The breakdown value for a null effect is around M̄ = 0.5. Thus, even if we allow further

deviations from the pre-expansion linear trend, as long as such deviations are not "too big", we are

still able to claim the presence of a causal relationship.

5.2. Ring-level Analysis on Knowledge Spillovers

The key focus of this paper is to infer knowledge spillovers from the geographic nature of uni-

versity spillovers. In this section, we present estimation results from ring-level analyses of the effects

of the university expansion on industry patenting activities in close proximity to universities. Specif-

ically, we extend the difference-in-differences framework by further examining whether the impact

is larger in areas near universities relative to areas farther away. This within-city variation allows for

estimating a triple-differences model, as in Equation (3.2).

Table 6 presents the estimation results when we use the number of university teachers in 1990

as the proxy for treatment intensity. The results using the number of university students in 1990 as

the treatment proxy are reported in Appendix Table A5. We limit our analysis to areas within 5 km

of universities in the baseline regressions. In Columns (1)-(3) of Table 6, we report results without

removing the pre-expansion linear time trend. In Columns (4)-(6), we report results after removing

pre-expansion linear time trend.35 In Columns (1) and (4), we control for city fixed effects, year

by ring fixed effects, in addition to treatment by ring dummy interactions. In Columns (2) and (5),

we control for year by ring, year by city, and city by ring fixed effects. The latter specification is

a standard generalized triple-differences model in which we treat the 4.5-5 km ring as the reference

34The point estimate is the average of year-specific estimates of the treatment effect in the post-treatment period.
35The necessity of addressing potential pre-trends is evident in Appendix Figure A5, which shows a small upward trend

in the number of industry patents in the nearest ring (ring 1).
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group.

The estimation results suggest that the university expansion significantly increases the number

of industry patents in the closest concentric rings and the effects attenuate sharply with geographic

distance. While the results are robust and consistent across all specifications, we focus on the results

in Column (5), which is our preferred specification. The estimates suggest that cities with 1,000 more

university teachers in 1990 experienced an additional increase of 76.5 industry patents in the 0-0.5

km ring relative to the 4.5-5 km ring after the university expansion. This effect reduces to 15.3 in

the 0.5-1 km ring, which is smaller by a factor of 5. The effect further reduces as we move to the

outer rings and becomes statistically insignificant after the 2 km radius.36 In Column (6), we divide

the coefficient estimates in Column (5) by the average number of patents in the corresponding ring

during the pre-expansion period, which provides information on the percentage change of industry

patents in each ring because of the university expansion. Again, the attenuation is quite dramatic in

percentage terms. In the 0-0.5 km ring, industry patents increased by a factor of 3.12, while in 2-2.5

km ring, industry patents only increased by 43 percent. The attenuation is muted after 2-2.5 km ring.

In Figure 7, we plot the dynamic effects of the university expansion on industry patents in different

concentric rings after we remove the pre-expansion linear time trend.37 Panels (a) and (b) use the

number of university teachers in 1990 and the number of university students in 1990 as the treatment

intensity proxy, respectively. Again, the results show that the impact on the number of patents in the

0-0.5 km ring is the largest, followed by the second ring, third ring, and so on. As will be obvious in

this paper, this attenuation pattern is what we consistently find in all specifications. More important,

the sharp increasing trend in the 0-0.5 km ring suggests that the long-run benefit of locating near a

university could be more amplified than the short-run effects. The figure also shows that the pre-trends

are well controlled for, so the parallel trend assumption is not rejected in this case.

Next, we estimate a trend break model to detect the presence of a slope change in the number of

industry patents at different distances (rings) as a result of the university expansion, as in Equation

(3.8). The results are presented in Table 7 when we use the number of university teachers in 1990 as

36To mitigate the concern that many patents are of low quality, we conduct a robustness check in which we restrict our
sample to patents with at least one citation. The results are qualitatively similar. We present the results in Appendix Tables
A6.A and A6.B.

37Appendix Table A7.A and A7.B. present the corresponding regression results.
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the treatment intensity.38 Columns (1)-(10) look at each ring separately, and Column (11) pools all

rings together and uses 4.5-5 km ring as the reference group. When studying each ring separately,

we observe statistically significant evidence of trend breaks in all rings. Column (11) suggests that,

comparing with the 4.5-5 km ring, the estimated slope change is statistically significant for the 0-

0.5 km, 0.5-1 km, 1-1.5 km, and 1.5-2 km rings. More important, we find that the slope change is

much larger in the closer rings. The results suggest that the trajectory of industry patenting activities

experienced a trend break because of the expansion and that the causal impact of the expansion follows

a dramatic attenuation pattern over space. This pattern supports our previous findings in Table 6.

As a robustness check, we present the estimation results from the parametric event study (Dobkin

et al. 2018) in Figure 8. Panels (a) and (b) present results using the numbers of university teachers

and students in 1990 as the proxy for treatment intensity, respectively. To save space, we only present

the results for rings 1, 3, 6, and 9. The dashed lines in the figures represent the estimated linear trends

in the number of industry patents (µ in Equation (5.1)). The gap between the crosses (circles) and

the dashed lines capture the treatment effects of the expansion in deviation from a linear trend. Rings

1 and 6 are represented by crosses; Rings 3 and 9 are represented by circles. The figure shows that

there is a significant effect of the university expansion on nearby industry patents in deviation from a

linear time trend and that the effect is larger in closer rings to universities, a result we repetitively find

in all specifications.

We also obtain robust inference for the ring-level analysis using the “honest approach” proposed

in Rambachan and Roth (2022), as the second robustness check. The results are presented in Figure

9. The procedure is the same as what we described for the city-level analysis, except now we estimate

and present the confidence intervals for each ring separately. The blue confidence intervals are ob-

tained without making adjustments for pre-trends, and the red confidence intervals are obtained when

we allow for a deviation from a linear trend with the maximum deviation specified in Equation (5.2).

The general patterns are similar to the results in city-level analysis. That is, as long as deviations from

a linear trend are not “too big", we continue to find statistically significant evidence of a causal impact

of the university expansion on innovation activities. The values contained in the confidence intervals

across rings also suggest a sharp attenuation of the impact.

38The results using the number of university students in 1990 as the treatment intensity is reported in Appendix Table
A8.
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In sum, we document consistent evidence across various specifications suggesting that spillovers

from universities are very localized and dissipate sharply with geographic distance. We observe that

the largest spillover effects take place within 2 km around the universities, and the impact on the

0-0.5 km ring is more than 30 times larger than that on the 1.5-2 km ring (Column (5) of Table

6). Similar spatial attenuation of agglomeration externalities is also documented in other studies

focusing on different settings. For instance, Andersson et al. (2009) shows that between one-third and

one-half of the total effect on productivity resulted from a university is within 5 km of the university.

Rosenthal and Strange (2008) finds that the effect of urbanization economics on worker productivity

is about half as large at distances over 8 km as it is at closer distances. Arzaghi and Henderson (2008)

shows that the effect of localization economies on the birth of advertising agencies in Manhattan is

mainly within 500 meters. Baum-Snow et al. (2021) finds that revenue and productivity spillovers that

operate between firms are within 75 meter to 250 meter radius. As similarly argued in those studies,

this important geographic decay of university spillovers suggests that knowledge spillovers play an

important role in the effects of universities on local innovation (Arzaghi and Henderson 2008). It

would be hard to reconcile such a sharp attenuation pattern with other explanations, such as improved

local infrastructure or increased supply of high-skilled labor.39

Next, we conduct a set of extension and heterogeneity analyses. In the baseline ring-level analysis,

we restrict our focus to areas within 5 km of universities. This restriction has two implications when

interpreting the estimated coefficients. First, in the triple-differences specification, we use the 4.5-5

km ring as the reference area. Thus, the estimated coefficients capture the impact of the university

expansion on the inner rings relative to the impact on the 4.5-5 km ring. Second, the area restriction

ignores the possible impact of the university expansion outside the area. In Table 8 and Appendix

Table A9, we extend the analysis to 10 km around universities, which usually covers a significant

share of city areas with innovation activities. The quantitative results on spatial decay patterns are

very similar. To better visually reveal the spatial decay pattern of university spillovers, Figures 10 and

11 present the spatial decay of university spillover benefits using the impact on the 0-0.5 km ring as

the reference.40 We can clearly see the strong spatial decay of the impact, especially within the first

39Our results do not exclude the possibility that other mechanisms are present in the neighborhoods of universities. We
only claim that, without knowledge spillovers, the impact of university activities should not display a dramatic spatial decay
pattern.

40The corresponding regression results are presented in Appendix Tables A10.A and A10.B.
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2 km (4 rings) of universities. More important, the spillovers are small and stable beyond this scope,

which suggests that we are not missing much by focusing on the 5 km areas around universities.

We further explore how knowledge spillovers from universities interact with other complementary

factors, such as industrial and skill composition. In Table 9, we explore the heterogeneous effects of

the university expansion across different regions.41 It is well known that the Eastern coastal region

of China is the most developed, followed by the Central region, and then the Western region. The

industry structure across those regions is quite different. The Eastern region is the most successful

in industrial transformation and upgrading, and it comprises high-tech manufacturing concentrations,

such as telecommunications and software. The Western region is heavily concentrated with traditional

manufacturing industries such as the steel industry. Therefore, spillovers from universities could be

different across regions. The estimation results show that the impact of the university expansion is

ubiquitous but most pronounced in the Eastern region.

In Table 10, we explore the heterogeneous effects of the university expansion across industries

with different human capital intensity.42 We define the human capital intensity of an industry in the

following way. We assign each patent to a two-digit industry based on the reference table of Inter-

national Patent Classification and National Industries Classification issued by the State Intellectual

Property Office of China.43 We obtain information on the share of workers with a college educa-

tion and above from the ASIF dataset. Based on this information, we divide industries into high,

medium, and low human capital intensity industries, depending on whether the industry-specific col-

lege employee ratio belongs to the top, middle, or bottom one-third of the distribution.44 Finally, we

separately count the number of patents linked to the high, medium, and low human capital intensity

industries in each concentric ring. The estimation results in Table 10 suggest that the spatial attenu-

ation of university spillovers is more pronounced for industries that are more reliant on high-skilled

labor.
41Table 9 uses the number of university teachers in 1990 as the proxy for treatment intensity. The results using the

number of university students in 1990 as the proxy are reported in Appendix Table A11.
42Table 10 uses the number of university teachers in 1990 as the proxy for treatment intensity. The results using the

number of university students in 1990 as the proxy are reported in Appendix Table A12.
43The reference table can be found at http://www.sipo.gov.cn/gztz/1132609.htm. It is possible that a patent can be

matched with more than one industries, in which case we count this patent in all the industries that it is linked to.
44High human capital industries include, for example, the chemical, electrical, and telecommunications industries;

medium human capital industries include, for example, the food and beverage industries; and low human capital indus-
tries include, for example, the leather and wood industries.
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6. Results on Patent Citations and New Products

6.1. Patent Citations

We now present direct evidence of knowledge flows from universities to nearby areas by examin-

ing the changes in patent citation links because of the university expansion.

In Table 11, we examine the effects of university expansion on patent citation links near universi-

ties. In Column (1), using the number of university teachers in 1990 as the treatment intensity mea-

sure, we examine the impact of university expansion on the number of times when industry patents

in different rings cite university patents. We find that university patents are cited by more industry

patents near universities after the university expansion. For example, after the university expansion,

cities with 1,000 more university teachers in 1990 experienced an additional increase of 0.56 times

when industry patents in the 0-0.5 km ring cite university patents, relative to that in the 4.5-5 km ring.

The effect attenuates fast when we move away from the universities. The corresponding impact is

0.08 in the 0.5-1 km ring relative to the outermost ring, which is smaller than the effect in the 0-0.5

km ring by a factor of 7. The effect decays entirely after the 2 km radius, and the decay speed is as

sharp as what we document for the effects on new patents. It is also consistent with the common per-

ception that knowledge spillovers require close-range communications and interactions and, hence,

decay fast spatially. In Column (3), we use the number of university students in 1990 as the proxy for

treatment intensity, and we find very similar patterns.

A possible argument against the identification of our triple-differences approach is that there may

exist unobserved time-varying city- and location (distance)-specific factors that contribute to the in-

crease in location-specific innovation activities after the university expansion. In this case, the in-

creased number of patents that cite university patents in closer locations could result from the scale

effect proportional to the increase in the number of total new patents driven by the unobservables.

Such a hypothetical scenario is possible but very unlikely given the rare coincidence of multiple co-

evolving factors—those factors must have the same timing as the university expansion and systemat-

ically impact innovation in a similar spatial pattern. Despite being remotely plausible, we conduct a

falsification test to rule out such a possibility.

We examine the impact of university expansion on the spatial nature of the cases where nearby
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industry patents cite patents far away from universities. If the presence of the unobservables, coupled

with the scale effect, forms the underlying mechanism, then we should observe that the impact on the

number of cases where nearby patents cite patents far away from universities follows similar spatial

decay patterns. Specifically, we examine whether patents outside the 5 km radius of universities are

cited more by patents closer to universities after the university expansion. As shown in Columns (2)

and (4) of Table 11, we do not find a clear spatial decay pattern of the impact. The evidence suggests

that our results are not driven by unobserved time-varying city- and ring-specific factors that coincide

with the university expansion and that follow a spatial attenuation pattern.

6.2. New Products

While patents are informative in measuring innovation, patenting only captures an intermediate

step in converting new ideas into economic outputs. In this section, we examine the impact of the

university expansion on creation of new products in nearby manufacturing firms by taking advantage

of previously under-explored information on firm new products reported in the ASIF. We report the

summary statistics of firm characteristics for our final regression sample in Appendix Table A13.

Table 12 reports the estimated impact of university expansion on the new product ratio of manu-

facturing firms in different rings when we use the number of university teachers in 1990 as the proxy

for treatment intensity.45 To capture dynamics, we report the estimated impact separately for the years

after 2000, 2002, 2004, and 2006. That is, we report the average impact of university expansion from

2000 to 2007 in Column (1), the average impact of university expansion from 2002 to 2007 in Column

(2), and so on. Two patterns emerge. First, for any given column, the impact of university expansion

on nearby firms’ new product ratio decays as the distance between firms and universities increases.

The attenuation pattern is clear, but the speed of attenuation is not as fast as that for patents. Second,

the impact gradually increases in later years. This increasing trend is evident when we compare the

impact across different columns.

The results in Table 12 supplement our analyses on patents by showing that the university ex-

pansion also results in an increase in new commercial product sales at nearby firms, which, to some

degree, reflects the economic value of innovations. This effect could be explained by a combination

45The results using the number of university students in 1990 as the treatment intensity are reported in Appendix Table
A14.

31



of nearby existing firms innovating more and more innovative firms sorting into the neighborhood

of universities. Table 12 does not intend to distinguish these two channels as they both indicate that

there must be some advantages to be in the proximity of universities. The fast decay speed of the

impact further suggests that knowledge spillover is a major underlying driving force. We also esti-

mate a specification with firm fixed effects. The results are presented in Appendix Table A15. The

coefficients are in general smaller than those in Table 12 but the attenuation pattern is still evident.

The findings suggest that both the intensive margin and the extensive margin are in effect.

In Table 13, we examine the heterogeneous effects of university expansion on new product ratio

using the number of university teachers in 1990 as the proxy for treatment intensity.46 Columns (1)–

(3) show the heterogeneous impact across industries with different levels of human capital intensity.

The pattern that appears again is the attenuation of the impact over geographic distance. Moreover, we

find that potential knowledge spillovers are larger in industries with higher human capital intensity,

which is consistent with complementarity between human capital and knowledge spillovers. Columns

(4)–(5) explore whether the impact varies for SOEs versus non-SOEs. Evidence suggests that the

impact is more pronounced for non-SOE firms, which may be because non-SOEs are in general

smaller in size and more productive than SOEs.47 Thus, they are more active in the market and

benefit more from learning and exchanging information.

7. Conclusion

Knowledge and innovation play a central role in advancing the technology frontier and promoting

economic growth. Yet, despite being the center of knowledge creation and dissemination, the explicit

role of universities in contributing to the innovation process is still understudied (Akcigit 2017). This

paper exploits a unique quasi-experiment of university expansion in China to study the impact of

university activities on local innovation. In particular, we utilize rich geocoded data on patent gen-

erations, patent citation links, and new products from firms to examine the geographic nature of the

university impact and to identify the role of knowledge spillovers.

We find that the university expansion significantly increases universities’ own innovation capacity,

46Appendix Table A16 reports the results using the number of university students in 1990 as the treatment intensity.
47This result is consistent to Acs et al. (1994). They use new product announcement data from the U.S. Small Business

Administration and show that small firms are the recipients of nearby R&D spillovers.
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which results in a dramatic boom of nearby firms’ patenting activities. More important, the impact

attenuates sharply with spatial distance. For example, the magnitude of the impact on nearby firm

patenting activities reduces by about 80 percent from 0-0.5 km ring to 0.5-1 km ring around a univer-

sity. There is another 65 percent decline of the impact when moving from 0.5-1 km ring to 1-1.5 km

ring around the university. The result implies significant but very localized knowledge spillovers from

universities. Further analysis suggests that the university expansion boosts nearby firms’ new products

and induces more industry patents to cite university patents. Those effects also follow similar spatial

decay patterns. Taken together, these findings unanimously point to the importance of knowledge

spillovers in fostering innovation in close proximity to education and research institutions. Thus,

the evidence justifies the continually increasing support for research universities as a viable policy

instrument for the government to promote long-term economic growth.

While our empirical analysis identifies and highlights the role of knowledge spillovers, future

work would benefit from further explorations on the channels through which knowledge spillovers

take place in a self-reinforcing way, as suggested by the dynamic evidence that we document in

this paper. For instance, to take advantage of increased knowledge spillovers, nearby firms may hire

more high-skilled labor and explore its complementarity with knowledge. Increased human capital in-

creases the benefits of knowledge spillovers, which then leads to a self-reinforcing innovation process.

Alternatively, increased knowledge spillovers could motivate firms to become more innovative and to

enter the proximity of research-oriented universities to better draw on spillover benefits. Their entry

and clustering could make it easier to use the knowledge from universities or to generate externalities

within the clusters. These channels also reinforce the university spillovers. In a way, spillovers from

universities can be viewed as both the “seed” and the “flower” of innovation (Harbison and Myers

1965). Altogether, the specific mechanisms explain the dynamic process through which high-tech

clusters form in close proximity to higher education institutions.
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Figure 1: Various Aspects of the University Expansion

Notes: Numbers are counted in 10,000 from Panels A to D, and in 100,000,000 yuan in Panels E and F. Data for the numbers
of university teachers, university students, university entrants, and university graduates are obtained from the Educational
Statistics Yearbook of China. Data for higher education expenditure are from the Educational Finance Statistical Yearbook
of China. Data for science and technology funding in the higher education sector are from the Compilation of Statistical
Data on University Science and Technology Resource.
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Figure 2: Growth in the University Scale between 1999 and 2007 in Relation to the University Scale in 1990

Notes: The number of university teachers is counted in 1,000. The number of university students is counted in 10,000.
Data are obtained from the China City Statistical Yearbook.
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure 3: The Dynamic Effects of University Expansion on the Numbers of University Teachers, Students,
and University Patents
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(a) Collaborative Patents

(b) Industry Patents

Figure 4: The Dynamic Effects of University Expansion on the Numbers of Collaborative Patents and Industry
Patents
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Figure 5: The Dynamic Effects of University Expansion on Industry Patents
— Parametric Event Study Approach in Dobkin et al. (2018)

Notes: This figure reports the results estimating Equation (5.1), which is a parametric event study approach introduced in
Dobkin et al. (2018). The dashed line in the figure represents the estimated linear trend (the corresponding slope is µ in
Equation (5.1)). The gap between the crosses (circles) and the dashed lines capture the estimated effects of the expansion.
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Figure 6: “Honest" Approach — Confidence Sets for the Effects of University Expansion on Industry Patents

Notes: This figure reports robust confidence sets for the average treatment effect across all post-treatment periods. It is
produced using the R package provided by Rambachan and Roth (2022). The number of university teachers in 1990 is used
as the treatment intensity in the left panel, and the number of university students in 1990 is used as the treatment intensity in
the right panel. The blue confidence intervals are obtained without making adjustments for pre-trends. The red confidence
sets depict the set of confidence intervals of the estimated coefficients if we allow for a deviation from a linear trend as
specified in Equation (5.2).
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure 7: The Dynamic Effects of University Expansion on the Number of Industry Patents at the Ring Level
— Pre-expansion Time Trend Removed
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure 8: The Dynamic Effects of University Expansion on Industry Patents at the Ring Level
— Parametric Event Study Approach in Dobkin et al. (2018)

Notes: The specification used for each ring is specified in Equation (5.1), where ` is the year relative to 1999. We only
present the results for rings 1, 3, 6, and 9 to save space. The dashed lines in the figures represent the estimated linear trends
(the corresponding slope is µ in Equation (5.1)). The gap between the crosses (circles) and the dashed lines capture the
estimated effects of the expansion. Rings 1 and 6 are represented by crosses; Rings 3 and 9 are represented by circles.
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(a) Ring 1 - Ring 5

(b) Ring 6 - Ring 10

Figure 9: “Honest" Approach — Confidence Sets for the Effect of University Expansion on Patents in Ring
1-10

Notes: This figure reports robust confidence sets for the average treatment effect across all post-treatment periods for each
ring. It is produced using the R package provided by Rambachan and Roth (2022). The number of university teachers in
1990 is counted in 1,000, and it is used as the measure of treatment intensity. The blue confidence intervals are obtained
without making adjustments for pre-trends. The red confidence sets depict the set of confidence intervals of the estimated
coefficients if we allow for a deviation from a linear trend as specified in Equation (5.2).
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure 10: Spatial Decay of University Spillovers — Relative to the Effect on Ring 1

Notes: This figure depicts the effect of the university expansion on different rings using the de-trend method, relative to
the effect on ring 1 (0-0.5 km ring). The number of university teachers (students) in 1990 is used as the measure of
treatment intensity in the top (bottom) panel. Both variables are counted in 1,000.
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure 11: Spatial Decay of University Spillovers — Relative to the Effect on Ring 1 (Trend Break Model)

Notes: This figure depicts the effect of the university expansion on different rings using the trend break model, relative to
the effect on ring 1 (0-0.5 km ring). The number of university teachers (students) in 1990 is used as the measure of
treatment intensity in the top (bottom) panel. Both variables are counted in 1,000.
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Table 1: City-Level Summary Statistics

(1) (2) (3) (4) (5) (6) (7)

Year Cities
University
Teachers

University
Students

Total
Patents

University
Patents

Collaborative
Patents

Industry
Patents

1995 184 2066.14 14544.88 44.11 2.56 0.30 41.26

1996 184 2092.56 15274.52 49.84 2.86 0.40 46.58

1997 184 2106.44 15928.52 53.55 2.80 0.54 50.21

1998 184 2092.70 16781.35 59.97 3.80 0.56 55.60

1999 184 2111.27 18066.50 71.42 4.97 1.13 65.32

2000 184 2199.40 21705.90 114.96 8.28 1.74 104.93

2001 184 2376.25 28130.00 139.22 12.48 2.23 124.51

2002 184 2648.45 37005.33 197.61 22.43 2.93 172.24

2003 184 3084.78 46802.86 274.86 38.29 4.01 232.56

2004 184 3653.77 58002.03 308.14 49.88 4.65 253.61

2005 184 4310.27 69309.45 404.68 68.80 6.32 329.57

2006 184 4896.28 81839.51 528.77 85.07 8.46 435.23

2007 184 5403.83 88653.08 644.54 105.72 10.63 528.19

Notes: Column (1) reports the number of cities in each year. Columns (2)–(7) report the mean of the respective city-level variable.
University patents are the patents filed solely by inventors affiliated with higher-education institutions. Collaborative patents are the
patents jointly filed by inventors affiliated with universities and inventors from the private sector. Industry patents are the patents filed
solely by inventors from the private sector.
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Table 2: The Average Number of Patents at the Ring Level

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Year Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8 Ring 9 Ring 10

1995 18.20 6.33 3.40 2.32 1.35 0.80 0.62 0.58 0.46 0.33

1996 20.77 6.64 3.66 2.34 1.64 1.24 0.70 0.66 0.39 0.40

1997 23.45 6.61 3.93 2.23 1.80 1.22 0.85 0.49 0.48 0.46

1998 26.47 7.81 4.25 2.57 2.10 1.44 0.97 0.70 0.43 0.48

1999 33.86 8.82 4.62 2.90 2.42 1.52 1.05 0.77 0.58 0.52

2000 65.55 12.48 6.60 3.89 2.73 1.92 1.37 0.82 0.83 0.77

2001 79.36 14.72 7.93 5.11 3.02 1.97 1.78 1.36 0.88 0.88

2002 107.49 28.36 10.57 6.20 4.92 3.30 2.64 1.71 1.30 1.24

2003 150.23 39.66 13.91 8.51 6.22 4.23 3.51 2.57 2.21 1.61

2004 167.61 44.65 16.84 10.53 6.42 4.56 3.99 3.30 2.39 2.27

2005 211.91 48.41 22.48 13.95 10.19 7.98 6.15 4.27 3.01 3.91

2006 267.29 53.45 32.04 21.36 14.08 11.53 8.41 6.78 4.24 6.33

2007 316.14 65.49 39.30 25.49 17.35 15.03 11.33 8.41 6.40 9.64

Notes: This table reports the average numbers of patents in different concentric rings in each year across cities.
Ring i refers to the concentric ring area between the buffer zones (i−1) and i, and the boundaries of consecutive
buffer zones are 500 meters apart.
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Table 3: Impact of University Expansion on University Scale and Innovation
— City-level Regression

(1) (2) (3) (4) (5)

Dependent Variable: No. of
University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × After 341.02∗∗∗ 138.74∗∗∗ 33.32∗∗∗ 3.67∗∗∗ 101.75∗∗∗

(3.23) (5.20) (7.57) (3.95) (4.52)

Observations 2384 2392 2392 2392 2392

Year FE Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes

Dependent Variable Mean 3006.14 222.44 31.38 3.38 187.68

Adj. R2 0.913 0.585 0.647 0.676 0.539

Notes: This table reports the estimates of the effects of university expansion on the numbers of
university teachers and different classifications of patents. The number of university teachers in
1990 is counted in 1,000, and it is used as the measure of treatment intensity. The number of
university teachers is considered as a proxy for university scale. t statistics based on clustered
standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4: Impact of University Expansion on University Scale and Innovation
— City-level Analysis of Trend Break Model

(1) (2) (3) (4) (5)

Dependent Variable: No. of
University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × Trend 155.40∗∗∗ 32.55∗∗∗ 10.09∗∗∗ 0.647∗∗ 21.81∗∗∗

×After 2000 (4.64) (5.59) (9.15) (2.47) (4.23)

Observations 2384 2392 2392 2392 2392

Year FE Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes

Dependent Variable Mean 3006.14 222.44 31.38 3.38 187.68

Adj. R2 0.949 0.679 0.873 0.783 0.602

Notes: This table reports the estimates of the slope change in the numbers of university
teachers and different classifications patents as a result of the university expansion, using the
specification in Equation (3.7). The number of university teachers in 1990 is counted in 1,000,
and it is used as the measure of treatment intensity. t statistics based on clustered standard
errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: Impact of University Expansion on University Scale and Innovation
— City-level Regression with Pre-expansion Linear Trend Removed

(1) (2) (3) (4) (5)

Dependent Variable: No. of
University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × After 346.06∗∗∗ 116.61∗∗∗ 30.27∗∗∗ 2.44∗∗∗ 83.89∗∗∗

(3.28) (4.37) (6.88) (2.63) (3.73)

Observations 2384 2392 2392 2392 2392

Year FE Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes

Dependent Variable Mean 831.91 138.63 24.12 1.24 113.27

Adj. R2 0.710 0.475 0.589 0.492 0.426

Notes: This table reports the estimates of the effects of university expansion on the numbers of
university teachers and different classifications of patents. The city-specific pre-expansion linear
trend is removed for the dependent variable in the specifications. The number of university teach-
ers in 1990 is counted in 1,000, and it is used as the measure of treatment intensity. The number
of university teachers is considered as a proxy for university scale. t statistics based on clustered
standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Impact of University Expansion on Industry Innovation — Ring-level Regressions

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents

(1) (2) (3) (4) (5) (6)

Treatment × 90.41∗∗∗ 89.70∗∗∗ 3.65 76.93∗∗∗ 76.52∗∗∗ 3.12

After × 0.5km (4.46) (4.44) (3.80) (3.79)

Treatment × 19.03∗∗∗ 18.33∗∗∗ 2.53 15.72∗∗∗ 15.31∗∗∗ 2.11

After × 1km (4.28) (4.27) (3.54) (3.57)

Treatment × 6.98∗∗ 6.28∗∗ 1.58 5.70∗∗ 5.29∗∗ 1.33

After × 1.5km (2.55) (2.42) (2.08) (2.04)

Treatment × 3.48∗∗∗ 2.78∗∗ 1.13 2.71∗∗ 2.30∗ 0.93

After × 2km (2.60) (2.33) (2.03) (1.93)

Treatment × 1.76∗∗ 1.06 0.57 1.21 0.81 0.43

After × 2.5km (1.98) (1.40) (1.36) (1.07)

Treatment × 1.49∗∗∗ 0.79∗ 0.64 1.05∗ 0.65 0.52

After × 3km (2.71) (1.90) (1.91) (1.55)

Treatment × 1.15∗∗ 0.44 0.53 0.75 0.34 0.41

After × 3.5km (2.13) (1.04) (1.39) (0.80)

Treatment × 0.60∗∗∗ -0.11 -0.17 0.24 -0.16 -0.26

After × 4km (2.75) (-0.65) (1.12) (-1.01)

Treatment × 0.49∗∗ -0.22 -0.46 0.18 -0.23 -0.48

After × 4.5km (2.14) (-1.31) (0.79) (-1.38)

Treatment × 0.70∗∗∗ - - 0.41∗ - -

After × 5km (3.12) - (1.81) -

Observations 23920 23920 - 23920 23920 -

Treatment × Ring Dummies Yes No - Yes No -

City FE Yes No - Yes No -

Year × Ring FE Yes Yes - Yes Yes -

Year × City FE No Yes - No Yes -

City × Ring FE No Yes - No Yes -

Dependent Variable Mean 18.21 18.21 - 10.91 10.91 -

Adj. R2 0.387 0.570 - 0.255 0.482 -

Notes: This table reports the estimated effects of university expansion on industry patents at different distances
(rings). The city-ring-specific pre-expansion time trend is removed for the dependent variable in Columns (4)-(5).
Columns (3) and (6) are obtained by dividing the coefficients in Columns (2) and (5) by the average number of patents
in the corresponding ring during the pre-expansion periods, respectively. The number of university teachers in 1990
is counted in 1,000, and it is used as the measure of treatment intensity. t statistics based on clustered standard errors
at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

57



Table 7: Impact of University Expansion on Industry Innovation — Ring-level Regressions of Trend Break Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8 Ring 9 Ring 10 Ring 1 - 10

Treatment × Trend 17.65∗∗∗ 17.33∗∗∗

×After× 0.5km (3.54) (3.47)

Treatment × Trend 4.137∗∗∗ 3.815∗∗∗

×After× 1km (4.66) (4.56)

Treatment × Trend 2.588∗∗ 2.267∗

×After× 1.5km (2.02) (1.85)

Treatment × Trend 1.202∗∗∗ 0.881∗∗

×After× 2km (2.74) (2.29)

Treatment × Trend 0.633∗ 0.311

×After× 2.5km (1.90) (1.10)

Treatment × Trend 0.554∗∗ 0.233

×After× 3km (2.60) (1.41)

Treatment × Trend 0.388∗∗ 0.0670

×After× 3.5km (2.23) (0.50)

Treatment × Trend 0.208∗∗ -0.114

×After× 4km (2.49) (-1.41)

Treatment × Trend 0.150∗ -0.171∗

×After× 4.5km (1.80) (-1.96)

Treatment × Trend 0.321∗∗∗

×After× 5km (3.07)

Observations 2392 2392 2392 2392 2392 2392 2392 2392 2392 2392 23920

City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

Year × Ring FE No No No No No No No No No No Yes

Year × City FE No No No No No No No No No No Yes

City × Ring FE No No No No No No No No No No Yes

Dependent Variable Mean 114.50 26.42 13.04 8.26 5.71 4.37 3.34 2.49 1.82 2.22 18.21

Adj. R2 0.606 0.672 0.561 0.621 0.450 0.455 0.450 0.379 0.430 0.213 0.627

Notes: This table reports the estimates of the slope change in the number of industry patents at different distances (rings) as a result of the university
expansion, using the specification in Equation (3.8). The number of university teachers in 1990 is counted in 1,000, and it is used as the measure of treatment
intensity. The trend-break model is used in all specifications. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 8: Robustness Check — Ring-level Regressions up to 10 km

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents

(1) (2) (3) (4)

Treatment × 90.41∗∗∗ 90.29∗∗∗ 77.06∗∗∗ 77.07∗∗∗

After × 0.5km (4.46) (4.46) (3.80) (3.81)

Treatment × 19.03∗∗∗ 18.92∗∗∗ 15.85∗∗∗ 15.86∗∗∗

After × 1km (4.28) (4.30) (3.57) (3.60)

Treatment × 6.98∗∗ 6.87∗∗ 5.83∗∗ 5.84∗∗

After × 1.5km (2.55) (2.55) (2.13) (2.17)

Treatment × 3.48∗∗∗ 3.37∗∗∗ 2.84∗∗ 2.85∗∗

After × 2km (2.60) (2.61) (2.12) (2.21)

Treatment × 1.76∗∗ 1.65∗ 1.35 1.36

After × 2.5km (1.98) (1.96) (1.51) (1.61)

Treatment × 1.49∗∗∗ 1.38∗∗∗ 1.18∗∗ 1.20∗∗

After × 3km (2.71) (2.74) (2.15) (2.37)

Treatment × 1.15∗∗ 1.03∗∗ 0.88 0.89∗

After × 3.5km (2.13) (2.07) (1.63) (1.78)

Treatment × 0.60∗∗∗ 0.49∗∗∗ 0.37∗ 0.39∗∗

After × 4km (2.75) (2.87) (1.73) (2.29)

Treatment × 0.49∗∗ 0.38∗∗ 0.31 0.32∗

After × 4.5km (2.14) (2.14) (1.37) (1.84)

Treatment × 0.70∗∗∗ 0.59∗∗∗ 0.54∗∗ 0.55∗∗∗

After × 5km (3.12) (3.07) (2.39) (2.86)

Treatment × 0.44∗∗∗ 0.33∗∗∗ 0.28∗∗ 0.30∗∗∗

After × 5.5km (3.25) (3.40) (2.09) (3.05)

Treatment × 0.29∗∗ 0.18∗ 0.14 0.15

After × 6km (2.06) (1.75) (0.97) (1.45)

Treatment × 0.34∗∗∗ 0.23∗∗∗ 0.20∗∗ 0.21∗∗∗

After × 6.5km (3.46) (3.94) (2.04) (3.63)

Treatment × 0.31∗∗ 0.20 0.17 0.18

After × 7km (2.32) (1.59) (1.27) (1.45)

Treatment × 0.24∗ 0.13 0.10 0.11

After × 7.5km (1.68) (0.89) (0.68) (0.75)

Treatment × 0.02 -0.09∗ -0.12∗∗ -0.11∗∗

After × 8km (0.40) (-1.69) (-2.30) (-2.04)

Treatment × 0.14∗∗∗ 0.03 0.01 0.02

After × 8.5km (2.89) (0.43) (0.15) (0.31)

Treatment × 0.68 0.57 0.53 0.55

After × 9km (1.59) (1.28) (1.26) (1.24)

Treatment × 0.11∗∗ -0.00 -0.03 -0.01

After × 9.5km (2.29) (-0.04) (-0.54) (-0.23)

Treatment × 0.11∗∗ - -0.01 -

After × 10km (2.11) - (-0.23) -

Observations 47840 47840 47840 47840

Treatment × Ring Dummies Yes No Yes No

Year × Ring FE Yes Yes Yes Yes

Year × City FE No Yes No Yes

City × Ring FE Yes Yes Yes Yes

Dependent Variable Mean 9.62 9.62 5.86 5.86

Adj. R2 0.375 0.563 0.243 0.475

Notes: This table reports the estimated effects of university expansion on industry patents at different distances
(rings) for up to 10 km. The city-ring-specific pre-expansion time trend is removed for the dependent variables in
Columns (3) and (4). The number of university teachers in 1990 is counted in 1,000, and it is used as the measure
of treatment intensity. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 9: Heterogeneity Analysis — Eastern, Central, and Western Regions

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents

(1) (2) (3) (4) (5) (6)

Eastern Central Western Eastern Central Western

Treatment × 114.89∗∗∗ 31.21∗∗∗ 26.51∗∗∗ 98.54∗∗∗ 25.05∗∗∗ 21.32∗∗∗

After × 0.5km (8.20) (7.42) (5.92) (7.03) (5.96) (4.76)

Treatment × 23.53∗∗∗ 5.74∗∗∗ 6.38∗∗∗ 20.10∗∗∗ 3.61∗∗ 4.39∗∗∗

After × 1km (4.21) (3.56) (5.19) (3.60) (2.24) (3.57)

Treatment × 7.92∗∗ 2.19∗∗∗ 2.46∗∗∗ 7.00∗ 1.05∗∗∗ 1.36∗∗

After × 1.5km (2.09) (7.28) (3.80) (1.85) (3.49) (2.10)

Treatment × 3.09∗ 1.88∗∗∗ 2.15∗ 2.61 1.37∗∗∗ 1.79

After × 2km (1.77) (8.17) (2.02) (1.50) (5.94) (1.68)

Treatment × 1.18 0.84∗∗∗ 0.50∗∗∗ 0.96 0.47∗∗∗ 0.23∗

After × 2.5km (1.07) (7.77) (4.10) (0.88) (4.37) (1.87)

Treatment × 0.91 0.36∗∗∗ 0.71∗∗∗ 0.77 0.17∗∗ 0.56∗∗∗

After × 3km (1.51) (5.25) (6.17) (1.29) (2.58) (4.84)

Treatment × 0.43 0.42∗∗∗ 0.51∗ 0.33 0.31∗∗∗ 0.37

After × 3.5km (0.71) (5.59) (1.83) (0.55) (4.09) (1.33)

Treatment × -0.24 0.18∗∗ 0.27 -0.30 0.18∗∗ 0.09

After × 4km (-1.05) (2.63) (1.52) (-1.29) (2.65) (0.53)

Treatment × -0.32 0.02 0.08 -0.33 0.02 0.03

After × 4.5km (-1.26) (0.27) (0.96) (-1.29) (0.19) (0.33)

Treatment × - - - - - -

After × 5km - - - - - -

Observations 10920 8320 4550 10920 8320 4550

Year × Ring FE Yes Yes Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes Yes Yes

Dependent Variable Mean 30.55 6.41 10.69 20.41 3.071 6.089

Adj. R2 0.589 0.694 0.674 0.493 0.531 0.557

Notes: This table reports the estimated effects of university expansion on industry patents across different regions
in China. The Eastern, Central and Western regions are divided according to the 7th “Five-Year Plan for the
National Economic and Social Development” of China. The city-ring-specific pre-expansion time trend is removed
for the dependent variables in Columns (4)-(6). The number of university teachers in 1990 is counted in 1,000, and
it is used as the measure of treatment intensity. t statistics based on clustered standard errors at the city level are
reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 10: Heterogeneity Analysis — Industries with High, Medium, and Low Human Capital Intensity

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents

(1) (2) (3) (4) (5) (6)

High Medium Low High Medium Low

Treatment × 68.58∗∗∗ 14.61∗∗∗ 3.81∗∗∗ 58.27∗∗∗ 11.65∗∗∗ 2.85∗∗∗

After × 0.5km (3.72) (5.51) (4.73) (3.16) (4.39) (3.54)

Treatment × 14.14∗∗∗ 3.30∗∗∗ 1.01∗∗∗ 11.86∗∗∗ 2.51∗∗ 0.76∗∗∗

After × 1km (4.24) (3.03) (3.83) (3.55) (2.30) (2.88)

Treatment × 4.62∗∗ 1.11∗∗ 0.50∗ 3.91∗ 0.76∗ 0.40

After × 1.5km (2.19) (2.54) (1.96) (1.86) (1.74) (1.57)

Treatment × 1.61∗∗ 0.77∗ 0.26∗∗∗ 1.24∗ 0.61 0.22∗∗∗

After × 2km (2.30) (1.68) (3.44) (1.77) (1.33) (2.97)

Treatment × 0.44 0.21 0.13∗ 0.24 0.10 0.09

After × 2.5km (0.99) (1.01) (1.82) (0.54) (0.49) (1.34)

Treatment × 0.46 0.17 0.10 0.34 0.13 0.08

After × 3km (1.29) (1.28) (1.49) (0.94) (0.97) (1.16)

Treatment × 0.09 0.08 0.10∗ 0.02 0.05 0.10∗

After × 3.5km (0.28) (0.78) (1.85) (0.05) (0.47) (1.72)

Treatment × -0.32 0.06 0.03∗ -0.37∗ 0.04 0.02

After × 4km (-1.46) (0.46) (1.84) (-1.73) (0.34) (1.42)

Treatment × -0.34 -0.05 0.05 -0.35 -0.05 0.05

After × 4.5km (-1.48) (-0.64) (1.24) (-1.54) (-0.70) (1.28)

Treatment × - - - - - -

After × 5km - - - - - -

Observations 23660 23660 23660 23660 23660 23660

Year × Ring FE Yes Yes Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes Yes Yes

Dependent Variable Mean 14.13 3.709 1.191 8.580 2.056 0.643

Adj. R2 0.470 0.732 0.693 0.402 0.614 0.544

Notes: This table reports the estimated effects of university expansion on industry patents across industries with
different human capital intensity. We define high human capital intensity industry as the industries that rank among
the top one-third in the college employee ratio, medium as the middle one-third, and low as the rest. The industry
college employee ratio is calculated as the percentage of workers with a college education and above using the
2004 ASIF. The city-ring-specific pre-expansion time trend is removed for the dependent variables in Columns
(4)-(6). The number of university teachers in 1990 is counted in 1,000, and it is used as the measure of treatment
intensity. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table 11: Effects of University Expansion on Patent Citations — Ring-level Regressions

No. of Teachers in 1990 as Treatment No. of Students in 1990 as Treatment

(1) (2) (3) (4)

Dependent Variable: No. of
Citations to

University Patents
Citations to

Patents beyond 5km
Citations to

University Patents
Citations to

Patents beyond 5km

Treatment × 5.59e-01∗∗∗ 7.29e-02 1.14e-01∗∗ 1.52e-02

After × 0.5km (3.24) (1.15) (2.59) (0.98)

Treatment × 8.23e-02∗∗ 4.81e-03 1.85e-02∗∗ 1.03e-03

After × 1km (2.51) (0.34) (2.49) (0.30)

Treatment × 1.86e-02∗ 2.72e-02∗ 4.49e-03∗∗ 5.38e-03

After × 1.5km (1.99) (1.91) (2.20) (1.55)

Treatment × 3.04e-02∗∗∗ -1.41e-03 6.65e-03∗∗∗ 2.52e-04

After × 2km (4.96) (-0.10) (4.13) (0.08)

Treatment × 7.07e-03 8.19e-03 1.87e-03 2.13e-03

After × 2.5km (1.23) (0.96) (1.44) (1.07)

Treatment × 7.71e-03 1.64e-02 1.82e-03 3.88e-03∗

After × 3km (1.45) (1.65) (1.59) (1.71)

Treatment × 8.03e-03∗ 2.43e-02∗∗∗ 1.86e-03∗ 5.19e-03∗∗

After × 3.5km (1.81) (3.14) (1.71) (2.57)

Treatment × -1.58e-03 7.77e-03 -2.62e-04 1.81e-03

After × 4km (-0.40) (1.16) (-0.27) (1.19)

Treatment × 3.86e-03 8.22e-03 9.78e-04 1.70e-03

After × 4.5km (1.07) (1.28) (1.11) (1.08)

Treatment × - - - -

After × 5km - - - -

Observations 4500 4500 4500 4500

Year × Ring FE Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes

Dependent Variable Mean 0.32 0.46 0.32 0.46

Adj. R2 0.668 0.522 0.653 0.522

Notes: This table reports the estimates of the effects of university expansion on patent citations at different distances
(rings). The dependent variable for Columns (1) and (3) is the ring-specific number of times when industry patents cite
university patents. The dependent variable for Columns (2) and (4) is the ring-specific number of times when industry
patents cite patents beyond 5 km distance from universities. The number of university teachers (students) in 1990 is used
as the measure of treatment intensity in the left (right) panel. Both variables are counted in 1,000. t statistics based on
clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 12: Effects of University Expansion on New Product Ratio — Ring-level
Regressions

Dependent Variable New Product Ratio

(1) (2) (3) (4)

After Dummy 2000 2002 2004 2006

Treatment × 4.16e-03∗∗ 4.84e-03∗∗ 6.35e-03∗∗ 6.68e-03∗∗

After × 0.5km (2.17) (2.15) (2.19) (2.17)

Treatment × 2.74e-03∗∗ 3.32e-03∗∗ 4.26e-03∗∗∗ 4.58e-03∗∗

After × 1km (2.57) (2.59) (2.68) (2.46)

Treatment × 1.76e-03∗∗∗ 2.07e-03∗∗∗ 2.74e-03∗∗∗ 2.89e-03∗∗∗

After × 1.5km (4.98) (5.17) (4.87) (4.60)

Treatment × 1.28e-03∗∗∗ 1.47e-03∗∗∗ 1.75e-03∗∗∗ 1.77e-03∗∗∗

After × 2km (4.91) (4.80) (5.14) (4.78)

Treatment × 1.66e-03∗∗∗ 2.03e-03∗∗∗ 1.73e-03∗∗∗ 1.63e-03∗∗∗

After × 2.5km (3.65) (3.90) (3.62) (3.20)

Treatment × 1.07e-03∗∗∗ 1.31e-03∗∗∗ 1.63e-03∗∗∗ 1.68e-03∗∗∗

After × 3km (4.51) (5.10) (4.69) (4.59)

Treatment × 6.20e-04∗∗∗ 7.28e-04∗∗ 1.04e-03∗∗∗ 1.21e-03∗∗∗

After × 3.5km (2.74) (2.54) (3.12) (3.39)

Treatment × 6.66e-04∗∗∗ 7.85e-04∗∗∗ 1.24e-03∗∗∗ 1.56e-03∗∗∗

After × 4km (2.78) (2.99) (3.97) (4.31)

Treatment × 6.06e-04 6.96e-04 9.91e-04 1.14e-03∗∗

After × 4.5km (1.19) (1.24) (1.61) (2.01)

Treatment × 5.54e-04∗∗ 6.84e-04∗∗ 1.11e-03∗∗∗ 1.38e-03∗∗∗

After × 5km (2.17) (2.13) (2.84) (3.38)

Observations 1196263 996185 759980 589233

Year × Ring FE Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes

Control Variables Yes Yes Yes Yes

Dependent Variable Mean 0.034 0.035 0.037 0.037

Adj. R2 0.091 0.097 0.107 0.106

Notes: This table reports the estimated effects of university expansion on firms’ new prod-
uct ratio using the number of university teachers in 1990 as the proxy for treatment inten-
sity. The dependent variable is firm-level new product ratio. Columns (1)–(4) report the
triple-differences estimates. The after dummy equals 1 if year is 2000 or after, 2002 or
after, 2004 or after, or 2006 or after in Columns (1), (2), (3), and (4), respectively. The
after dummy equals 0 if year is before 2000 for all four columns. Observations in the years
in which the after dummy is not defined are dropped. The reference group is the firms
outside 10 km of universities. Control variables include firm age, fixed assets, SOE status,
and employment size. The number of university teachers in 1990 is counted in 1,000. t
statistics based on clustered standard errors at the city level are reported in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 13: Heterogeneity Analysis — Industries with High, Medium, and Low Human Capital Intensity
and SOE versus Non-SOE

Dependent Variable New Product Ratio

(1) (2) (3) (4) (5)

High Medium Low SOE Non-SOE

Treatment × 4.70e-03∗∗ 2.77e-03∗∗ 1.41e-03 8.92e-04 4.31e-03∗∗

After × 0.5km (2.20) (2.43) (1.13) (1.15) (1.99)

Treatment × 3.88e-03∗∗ 1.41e-03∗∗ 1.08e-03∗∗ 9.88e-04∗ 2.99e-03∗∗∗

After × 1km (2.51) (2.10) (2.53) (1.92) (2.62)

Treatment × 2.79e-03∗∗∗ 1.29e-03∗∗∗ 1.48e-04 7.21e-04∗∗∗ 1.91e-03∗∗∗

After × 1.5km (4.20) (5.00) (0.80) (2.89) (4.91)

Treatment × 1.52e-03∗∗ 8.51e-04∗∗∗ 7.62e-04∗∗∗ 5.37e-04∗ 1.44e-03∗∗∗

After × 2km (2.43) (3.29) (3.79) (1.70) (6.24)

Treatment × 2.99e-03∗∗ 5.98e-04∗∗ 6.66e-04∗∗∗ 1.36e-03∗∗∗ 1.74e-03∗∗∗

After × 2.5km (2.17) (2.30) (3.16) (4.99) (3.52)

Treatment × 1.54e-03∗∗∗ 8.52e-04∗∗ 2.58e-04 8.97e-04∗∗ 1.21e-03∗∗∗

After × 3km (3.73) (2.03) (1.29) (2.08) (5.76)

Treatment × 7.64e-04∗ 4.43e-04 2.49e-04 3.63e-05 8.57e-04∗∗∗

After × 3.5km (1.78) (1.14) (0.80) (0.08) (3.41)

Treatment × 7.00e-04 6.94e-05 6.37e-04∗∗ -1.96e-04 9.36e-04∗∗∗

After × 4km (0.67) (0.24) (2.02) (-0.41) (3.16)

Treatment × 8.83e-04∗ -2.00e-04 9.10e-04∗∗∗ -6.10e-04∗ 9.00e-04∗

After × 4.5km (1.67) (-0.34) (3.78) (-1.78) (1.89)

Treatment × -2.63e-04 5.37e-04 7.76e-04∗∗∗ 1.67e-04 8.22e-04∗∗∗

After × 5km (-0.46) (0.93) (3.12) (0.33) (3.42)

Observations 394427 385023 456632 136171 1060023

Year × Ring FE Yes Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes

Control Variables Yes Yes Yes Yes Yes

Dependent Variable Mean 0.059 0.025 0.020 0.046 0.033

Adj. R2 0.119 0.057 0.049 0.111 0.096

Notes: Columns (1)–(3) report the estimated effects of university expansion on firms’ new product ratio
across industries with different human capital intensity. We define high human capital intensity industry
as the industries that rank among the top one-third in the college employee ratio, medium as the middle
one-third, and low as the rest. The industry college employee ratio is calculated as the percentage of
workers with a college education and above using the 2004 ASIF. Columns (4) and (5) report the estimates
of the effects of university expansion on firms’ new product ratio for SOEs and non-SOEs separately. The
number of university teachers in 1990 is counted in 1,000, and it is used as the treatment intensity. Control
variables include firm age, fixed assets, SOE status, and employment size. The reference group consists of
the firms outside 10 km of universities. t statistics based on clustered standard errors at the city level are
reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

64



Appendix: Figures and Tables

Figure A1: The Extent of University Expansion and Pre-expansion Growth of Patents, GDP and
TFP

Notes: Panel A shows the scatter plot of pre-expansion growth of patents against the extent of university expansion at the
city level. Panel B shows the scatter plot of pre-expansion growth of GDP against the extent of university expansion at
the city level. Panel C shows the scatter plot of pre-expansion growth of average firm TFP against the extent of university
expansion at the city level. The correlation coefficients are -0.10, 0.24 and -0.05 respectively. The number of university
teachers is counted in 1,000.
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Figure A2: Illustrative Graph for the Construction of Concentric Rings

Notes: The centers of the rings comprise the locations of universities and entities that have direct collaborations with
universities. The two locations at C belong to university I. The three locations at D and E belong to university II. One
university can have multiple locations in the dataset because the address filed in a patent application points to the exact
building of the patent applicant. Point A stands for a non-university entity that has direct collaboration with university I.
Point B stands for a non-university entity that has direct collaboration with university II.
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure A3: The Dynamic Effects of University Expansion on the Numbers of University Teachers,
Students, and University Patents – Pre-expansion Time Trend Not Removed
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(a) Collaborative Patents

(b) Industry Patents

Figure A4: The Dynamic Effects of University Expansion on the Numbers of Collaborative Patents
and Industry Patents – Pre-expansion Time Trend Not Removed
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(a) No. of University Teachers in 1990 as Treatment

(b) No. of University Students in 1990 as Treatment

Figure A5: The Dynamic Effects of University Expansion on the Number of Industry Patents at the
Ring Level — Pre-expansion Time Trend Not Removed
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Table A1.A: Impact of University Expansion on University Scale and and Innovation

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable: No. of
University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × After 2509.57∗∗∗ 28.83∗∗∗ 7.08∗∗∗ 0.73∗∗∗ 21.02∗∗∗ 2059.45∗∗∗ 24.31∗∗∗ 6.46∗∗∗ 0.48∗∗ 17.37∗∗∗

(7.25) (4.20) (6.53) (3.20) (3.70) (5.95) (3.54) (5.96) (2.11) (3.06)

Observations 2352 2352 2352 2352 2352 2352 2352 2352 2352 2352

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Control Variables No No No No No No No No No No

Dependent Variable Mean 39387.99 222.44 31.38 3.38 187.68 20274.18 136.63 23.86 1.13 111.64

Adj. R2 0.829 0.575 0.638 0.652 0.530 0.657 0.466 0.579 0.469 0.419

Notes: This table reports the estimated effects of university expansion on the numbers of university students and different classifications of patents. The
number of university students in 1990 is counted in 1,000, and it is used as the measure of treatment intensity. The number of university students is consid-
ered as a proxy for university scale. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p< 0.10, ∗∗ p< 0.05, ∗∗∗ p< 0.01.
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Table A1.B: Impact of University Expansion on University Scale and and Innovation — Robustness

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable: No. of
University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × After 220.99∗∗ 113.88∗∗∗ 28.83∗∗∗ 3.31∗∗∗ 81.75∗∗∗ 232.85∗∗ 93.35∗∗∗ 25.86∗∗∗ 2.11∗∗ 65.38∗∗∗

(2.28) (4.22) (7.68) (3.66) (3.44) (2.40) (3.46) (6.90) (2.34) (2.75)

Observations 2330 2338 2338 2338 2338 2330 2338 2338 2338 2338

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Dependent Variable Mean 3032.32 225.23 31.93 3.43 189.87 802.97 141.56 25.38 1.66 114.52

Adj. R2 0.930 0.604 0.674 0.686 0.556 0.759 0.497 0.620 0.500 0.443

Notes: This table reports the estimated effects of university expansion on the numbers of university teachers and different classifications of patents. The number
of university teachers in 1990 is counted in 1,000, and it is used as the measure of treatment intensity. The number of university teachers is considered as a proxy
for university scale. Control variables include the non-agricultural population, the proportion of employment in the manufacturing industries, and the proportion
of employment in the service industries. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A1.C: Impact of University Expansion on University Scale and and Innovation — Robustness

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable: No. of
University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × After 1991.77∗∗∗ 23.06∗∗∗ 6.05∗∗∗ 0.64∗∗∗ 16.37∗∗∗ 1602.58∗∗∗ 18.87∗∗∗ 5.44∗∗∗ 0.39∗ 13.04∗∗

(5.73) (3.44) (6.35) (2.97) (2.86) (4.73) (2.81) (5.72) (1.82) (2.28)

Observations 2338 2338 2338 2338 2338 2338 2338 2338 2338 2338

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Control Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Dependent Variable Mean 39659.82 225.23 31.93 3.43 189.87 19914.02 140.17 25.17 1.58 113.42

Adj. R2 0.860 0.595 0.663 0.664 0.548 0.714 0.488 0.609 0.478 0.437

Notes: This table reports the estimated effects of university expansion on the numbers of university students and different classifications of patents. The number
of university students in 1990 is counted in 1,000, and it is used as the measure of treatment intensity. The number of university students is considered as a
proxy for university scale. Control variables include the non-agricultural population, the proportion of employment in the manufacturing industries, and the
proportion of employment in the service industries. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A2: Impact of University Expansion on University Scale and Innovation
— City-level Analysis of Trend Break Model

(1) (2) (3) (4) (5)

Dependent Variable: No. of
University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × Trend 609.1∗∗∗ 6.690∗∗∗ 2.153∗∗∗ 0.126∗∗ 4.411∗∗∗

×After 2000 (5.28) (4.33) (8.01) (2.20) (3.41)

Observations 2392 2392 2392 2392 2392

Year FE Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes

Dependent Variable Mean 3006.14 222.44 31.38 3.38 187.68

Adj. R2 0.924 0.660 0.854 0.742 0.586

Notes: This table reports the estimates of the slope change in the numbers of university
students and different classifications patents as a result of the university expansion, using the
specification in Equation (3.7). The number of university students in 1990 is counted in 1,000,
and it is used as the measure of treatment intensity. t statistics based on clustered standard
errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.A: The Dynamic Effects of University Expansion on the Number of Teachers and Innovation

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable: No. of
University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

University
Teachers

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × 1995 3.97 -14.83∗∗∗ -2.04∗∗∗ -0.97∗ -11.83∗∗∗ 1.01 -1.17 -0.16 -0.21 -0.81

(0.26) (-3.73) (-4.03) (-1.80) (-3.84) (0.07) (-0.30) (-0.31) (-0.39) (-0.26)

Treatment × 1996 14.90 -12.98∗∗∗ -1.99∗∗∗ -0.91∗ -10.08∗∗∗ 12.68 -2.74 -0.58 -0.35 -1.81

(1.41) (-3.49) (-4.03) (-1.77) (-3.61) (1.20) (-0.74) (-1.17) (-0.67) (-0.65)

Treatment × 1997 10.22 -10.71∗∗∗ -1.75∗∗∗ -0.66 -8.30∗∗∗ 8.74 -3.89 -0.81∗∗ -0.28 -2.79

(1.37) (-3.14) (-4.35) (-1.16) (-3.25) (1.17) (-1.14) (-2.02) (-0.49) (-1.09)

Treatment × 1998 4.04 -7.99∗∗ -0.96∗∗∗ -0.74 -6.28∗∗ 3.30 -4.57 -0.49 -0.55 -3.53

(1.63) (-2.42) (-2.71) (-1.44) (-2.54) (1.33) (-1.39) (-1.39) (-1.07) (-1.43)

Treatment × 2000 -2.19 34.70∗∗ 3.02∗∗∗ 0.74∗∗∗ 30.95∗∗ -1.45 31.29∗∗ 2.54∗∗∗ 0.55∗∗ 28.20∗

(-0.13) (2.21) (6.58) (3.34) (2.00) (-0.09) (1.99) (5.55) (2.49) (1.83)

Treatment × 2001 21.81 43.06∗∗∗ 6.27∗∗∗ 1.09∗∗ 35.71∗∗∗ 23.29 36.24∗∗∗ 5.32∗∗∗ 0.71 30.20∗∗∗

(0.80) (4.19) (7.08) (2.36) (3.81) (0.86) (3.53) (6.01) (1.55) (3.22)

Treatment × 2002 85.72∗ 66.17∗∗∗ 14.57∗∗∗ 1.72 49.88∗∗∗ 87.94∗ 55.92∗∗∗ 13.15∗∗∗ 1.15 41.61∗∗∗

(1.86) (5.26) (7.66) (1.52) (4.74) (1.90) (4.45) (6.92) (1.02) (3.96)

Treatment × 2003 181.77∗ 99.63∗∗∗ 26.63∗∗∗ 2.37∗∗∗ 70.63∗∗∗ 184.72∗ 85.98∗∗∗ 24.75∗∗∗ 1.61∗∗ 59.61∗∗∗

(1.91) (6.80) (6.08) (3.15) (6.05) (1.94) (5.87) (5.65) (2.15) (5.11)

Treatment × 2004 333.73∗∗∗ 129.62∗∗∗ 34.66∗∗∗ 2.58∗∗∗ 92.37∗∗∗ 337.43∗∗∗ 112.54∗∗∗ 32.31∗∗∗ 1.64∗∗∗ 78.60∗∗∗

(2.67) (5.76) (6.28) (4.46) (5.11) (2.70) (5.00) (5.86) (2.83) (4.35)

Treatment × 2005 549.53∗∗∗ 177.42∗∗∗ 46.31∗∗∗ 3.74∗∗∗ 127.36∗∗∗ 553.96∗∗∗ 156.93∗∗∗ 43.49∗∗∗ 2.61∗∗ 110.83∗∗∗

(3.59) (5.16) (6.58) (3.54) (4.34) (3.62) (4.57) (6.18) (2.47) (3.77)

Treatment × 2006 726.80∗∗∗ 212.83∗∗∗ 53.51∗∗∗ 4.90∗∗∗ 154.42∗∗∗ 731.97∗∗∗ 188.93∗∗∗ 50.22∗∗∗ 3.58∗∗∗ 135.14∗∗∗

(3.93) (5.38) (8.41) (3.59) (4.45) (3.96) (4.78) (7.89) (2.62) (3.90)

Treatment × 2007 875.96∗∗∗ 273.44∗∗∗ 71.41∗∗∗ 7.00∗∗∗ 195.04∗∗∗ 881.87∗∗∗ 246.13∗∗∗ 67.64∗∗∗ 5.49∗∗ 173.00∗∗∗

(4.00) (5.06) (9.52) (3.22) (4.16) (4.03) (4.55) (9.02) (2.52) (3.69)

Observations 2344 2352 2352 2352 2352 2344 2352 2352 2352 2352

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Dependent Variable Mean 3016.79 223.97 31.74 3.41 188.82 832.77 139.57 24.41 1.26 113.91

Adj. R2 0.954 0.682 0.885 0.794 0.604 0.847 0.580 0.856 0.624 0.491

Notes: This table reports the estimates of the dynamic effects of university expansion on the number of university teachers and and different classifications of
patents. The estimates are used to plot Figure 3, Figure 4, Appendix Figure A3, and Appendix Figure A4. The number of university teachers in 1990 is used as
the treatment intensity measure, and it is counted in 1,000. The base year is 1999. t statistics based on clustered standard errors at the city level are reported in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A3.B: The Dynamic Effects of University Expansion on the Number of Students and Innovation

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent Variable: No. of
University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

University
Students

Total
Patents

University
Patents

Collabo-
rative

Patents
Industry
Patents

Treatment × 1995 -275.17∗∗∗ -3.11∗∗∗ -0.43∗∗∗ -0.21∗ -2.47∗∗∗ 1.64 -0.32 -0.05 -0.05 -0.22

(-12.72) (-3.23) (-3.67) (-1.73) (-3.28) (0.08) (-0.33) (-0.43) (-0.43) (-0.29)

Treatment × 1996 -215.85∗∗∗ -2.74∗∗∗ -0.42∗∗∗ -0.19∗ -2.12∗∗∗ -8.25 -0.65 -0.13 -0.08 -0.43

(-13.21) (-3.11) (-3.56) (-1.71) (-3.18) (-0.50) (-0.73) (-1.13) (-0.69) (-0.65)

Treatment × 1997 -152.82∗∗∗ -2.30∗∗∗ -0.38∗∗∗ -0.15 -1.77∗∗∗ -14.41 -0.90 -0.19∗∗ -0.07 -0.64

(-15.09) (-2.95) (-4.29) (-1.25) (-2.97) (-1.42) (-1.16) (-2.13) (-0.60) (-1.08)

Treatment × 1998 -101.87∗∗∗ -1.72∗∗ -0.21∗∗∗ -0.16 -1.35∗∗ -32.67∗∗∗ -1.02 -0.12 -0.12 -0.79

(-12.52) (-2.37) (-2.98) (-1.40) (-2.44) (-4.02) (-1.41) (-1.65) (-1.06) (-1.42)

Treatment × 2000 251.56∗∗∗ 7.36∗∗ 0.62∗∗∗ 0.15∗∗∗ 6.60∗ 182.36∗∗∗ 6.67∗ 0.52∗∗∗ 0.11∗∗ 6.04∗

(6.94) (2.10) (4.81) (2.75) (1.93) (5.03) (1.90) (4.07) (2.03) (1.76)

Treatment × 2001 702.15∗∗∗ 8.74∗∗∗ 1.32∗∗∗ 0.21∗∗ 7.22∗∗∗ 563.75∗∗∗ 7.35∗∗∗ 1.13∗∗∗ 0.13 6.09∗∗∗

(8.77) (3.41) (5.68) (2.03) (3.15) (7.04) (2.87) (4.86) (1.27) (2.66)

Treatment × 2002 1316.18∗∗∗ 13.69∗∗∗ 3.05∗∗∗ 0.31 10.33∗∗∗ 1108.57∗∗∗ 11.60∗∗∗ 2.76∗∗∗ 0.20 8.64∗∗∗

(8.66) (4.18) (5.84) (1.32) (3.84) (7.29) (3.54) (5.29) (0.83) (3.22)

Treatment × 2003 1981.72∗∗∗ 21.16∗∗∗ 5.65∗∗∗ 0.46∗∗∗ 15.04∗∗∗ 1704.92∗∗∗ 18.37∗∗∗ 5.27∗∗∗ 0.31∗ 12.79∗∗∗

(8.16) (5.40) (5.48) (2.69) (4.88) (7.02) (4.69) (5.11) (1.80) (4.15)

Treatment × 2004 2618.09∗∗∗ 27.08∗∗∗ 7.35∗∗∗ 0.52∗∗∗ 19.21∗∗∗ 2272.09∗∗∗ 23.59∗∗∗ 6.87∗∗∗ 0.33∗∗ 16.40∗∗∗

(7.76) (4.60) (5.57) (3.53) (4.13) (6.74) (4.01) (5.21) (2.22) (3.52)

Treatment × 2005 3363.46∗∗∗ 36.56∗∗∗ 9.87∗∗∗ 0.74∗∗∗ 25.95∗∗∗ 2948.25∗∗∗ 32.38∗∗∗ 9.29∗∗∗ 0.51∗∗ 22.58∗∗∗

(6.85) (4.09) (6.04) (2.92) (3.50) (6.00) (3.62) (5.69) (2.00) (3.05)

Treatment × 2006 4123.38∗∗∗ 44.23∗∗∗ 11.47∗∗∗ 0.97∗∗∗ 31.79∗∗∗ 3638.98∗∗∗ 39.35∗∗∗ 10.80∗∗∗ 0.70∗∗ 27.85∗∗∗

(6.19) (4.32) (7.88) (3.00) (3.63) (5.46) (3.84) (7.42) (2.17) (3.18)

Treatment × 2007 4465.99∗∗∗ 56.34∗∗∗ 15.12∗∗∗ 1.38∗∗∗ 39.84∗∗∗ 3912.38∗∗∗ 50.77∗∗∗ 14.35∗∗∗ 1.07∗∗ 35.34∗∗∗

(5.96) (4.03) (7.38) (2.75) (3.40) (5.22) (3.63) (7.01) (2.14) (3.02)

Observations 2352 2352 2352 2352 2352 2352 2352 2352 2352 2352

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Dependent Variable Mean 39448.11 223.97 31.74 3.41 188.82 20221.56 137.52 24.14 1.14 112.24

Adj. R2 0.926 0.662 0.865 0.750 0.587 0.830 0.558 0.834 0.571 0.474

Notes: This table reports the estimates of the dynamic effects of university expansion on the number of university students and different classifications of
patents. The estimates are used to plot Figure 3, Figure 4, Appendix Figure A3, and Appendix Figure A4. The number of university students in 1990 is used as
the treatment intensity measure, and it is counted in 1,000. The base year is 1999. t statistics based on clustered standard errors at the city level are reported in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A4.A: 2SLS Estimates — Effects of University Innovation Capacity on Local Innovation Activities
(Pre-expansion Time Trend Not Removed)

(1) (2) (3) (4)

Panel A: No. of University Teachers in 1990 Interacted with Post-expansion Dummy as the IV

No. of University Teachers as First-Stage Dependent Variable No. of University Patents as First-Stage Dependent Variable

Dependent Variable: No. of Collaborative Patents Industry Patents Collaborative Patents Industry Patents

University Innovation Capacity 10.754∗ 298.337∗∗ 110.039∗∗∗ 3053.193∗∗∗

(1.81) (1.99) (4.40) (6.53)

Observations 2384 2384 2392 2392

First-stage F-statistics 9.616 9.616 52.902 52.902

Dependent Variable Mean 3.389 188.201 3.378 187.677

Adj. R2 0.106 0.255 0.829 0.639

Panel B: No. of University Students in 1990 Interacted with Post-expansion Dummy as the IV

No. of University Students as First-Stage Dependent Variable No. of University Patents as First-Stage Dependent Variable

Dependent Variable: No. of Collaborative Patents Industry Patents Collaborative Patents Industry Patents

University Innovation Capacity 0.292∗∗ 8.375∗∗ 103.5∗∗∗ 2969.6∗∗∗

(2.28) (2.51) (4.55) (6.63)

Observations 2392 2392 2392 2392

First-stage F-statistics 48.453 48.453 39.380 39.380

Dependent Variable Mean 3.378 187.677 3.378 187.677

Adj. R2 0.523 0.463 0.835 0.640

Year FE Yes Yes Yes Yes

City FE Yes Yes Yes Yes

Notes: This table reports the 2SLS estimates of the effects of university innovation capacity on innovation activities at the city level, using the number of university
teachers or students in 1990 interacted with the after dummy as the instrument. All the First-Stage Dependent Variables are counted in 1,000. The F-statistics is
calculated based on Montiel Olea and Pflueger (2013), which is robust to heteroskedasticity, autocorrelation, and clustering. t statistics based on clustered standard
errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A4.B: 2SLS Estimates — Effects of University Innovation Capacity on Local Innovation Activities
(Pre-expansion Time Trend Removed)

(1) (2) (3) (4)

Panel A: No. of University Teachers in 1990 Interacted with Post-expansion Dummy as the IV

No. of University Teachers as First-Stage Dependent Variable No. of University Patents as First-Stage Dependent Variable

Dependent Variable: No. of Collaborative Patents Industry Patents Collaborative Patents Industry Patents

University Innovation Capacity 7.062 242.401∗ 80.706∗∗∗ 2771.068∗∗∗

(1.49) (1.85) (2.94) (5.29)

Observations 2384 2384 2392 2392

First-stage F-statistics 9.903 9.903 43.663 43.663

Dependent Variable Mean 1.246 113.626 1.242 113.270

Adj. R2 0.005 0.181 0.711 0.539

Panel B: No. of University Students in 1990 Interacted with Post-expansion Dummy as the IV

No. of University Students as First-Stage Dependent Variable No. of University Patents as First-Stage Dependent Variable

Dependent Variable: No. of Collaborative Patents Industry Patents Collaborative Patents Industry Patents

University Innovation Capacity 0.234 8.435∗∗ 74.679∗∗∗ 2690.238∗∗∗

(1.59) (2.07) (2.76) (5.19)

Observations 2392 2392 2392 2392

First-stage F-statistics 32.631 32.631 32.787 32.787

Dependent Variable Mean 1.127 111.641 1.127 111.641

Adj. R2 0.283 0.316 0.715 0.544

Year FE Yes Yes Yes Yes

City FE Yes Yes Yes Yes

Notes: This table reports the 2SLS estimates of the effects of university innovation capacity on innovation activities at the city level, using the number of university
teachers or students in 1990 interacted with the after dummy as the instrument. All the First-Stage Dependent Variables are counted in 1,000. The F-statistics is
calculated based on Montiel Olea and Pflueger (2013), which is robust to heteroskedasticity, autocorrelation, and clustering. The city-specific pre-expansion time
trend is removed for the dependent variable in all specifications. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.13



Table A5: Impact of University Expansion on Industry Innovation — Ring-level Regressions

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents

(1) (2) (3) (4) (5) (6)

Treatment × 18.43∗∗∗ 18.28∗∗∗ 0.74 15.72∗∗∗ 15.64∗∗∗ 0.64

After × 0.5km (3.61) (3.60) (3.08) (3.08)

Treatment × 4.02∗∗∗ 3.87∗∗∗ 0.53 3.33∗∗∗ 3.24∗∗∗ 0.45

After × 1km (3.91) (3.89) (3.24) (3.26)

Treatment × 1.53∗∗∗ 1.38∗∗ 0.35 1.25∗∗ 1.17∗∗ 0.29

After × 1.5km (2.71) (2.58) (2.21) (2.18)

Treatment × 0.78∗∗∗ 0.63∗∗∗ 0.25 0.61∗∗ 0.52∗∗ 0.21

After × 2km (2.93) (2.65) (2.28) (2.21)

Treatment × 0.40∗∗ 0.25 0.13 0.28 0.19 0.10

After × 2.5km (2.24) (1.64) (1.53) (1.26)

Treatment × 0.33∗∗∗ 0.18∗∗ 0.14 0.23∗∗ 0.14∗ 0.12

After × 3km (2.89) (2.05) (2.00) (1.67)

Treatment × 0.26∗∗ 0.11 0.13 0.17 0.08 0.10

After × 3.5km (2.42) (1.24) (1.57) (0.99)

Treatment × 0.13∗∗∗ -0.02 -0.03 0.05 -0.03 -0.05

After × 4km (2.97) (-0.48) (1.16) (-0.83)

Treatment × 0.11∗∗ -0.05 -0.10 0.04 -0.05 -0.10

After × 4.5km (2.15) (-1.19) (0.72) (-1.25)

Treatment × 0.15∗∗∗ - - 0.08 - -

After × 5km (3.00) - (1.64) -

Observations 23920 23920 - 23920 23920 -

Treatment × Ring dummies Yes No - Yes No -

City FE Yes No - Yes No -

Year × Ring FE Yes Yes - Yes Yes -

Year × City FE No Yes - No Yes -

City × Ring FE No Yes - No Yes -

Dependent Variable Mean 18.21 18.21 - 10.59 10.59 -

Adjusted R2 0.351 0.560 - 0.228 0.479 -

Notes: This table reports the estimates of the effects of university expansion on industry patents at different distances
(rings). The city-ring-specific pre-expansion time trend is removed for the dependent variable in columns (4)-(5).
Column (3) and (6) are obtained by dividing the coefficients in column (2) and (5) by the average number of patents
in the corresponding ring during the pre-expansion periods. The number of university students in 1990 is counted in
1,000, and it is used as the measure of treatment intensity. t statistics based on clustered standard errors at the city
level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A6.A: Impact of University Expansion on Innovation — Ring Regressions (Robustness)

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents that are Cited at least Once

(1) (2) (3) (4)

Treatment × 22.79∗∗∗ 19.69∗∗ 16.80∗ 16.38∗∗

After × 0.5km (2.67) (2.59) (1.97) (2.15)

Treatment × 4.92∗∗∗ 4.43∗∗∗ 4.12∗∗∗ 3.72∗∗∗

After × 1km (5.74) (5.26) (4.81) (4.42)

Treatment × 1.51∗∗ 1.56∗∗ 1.74∗∗ 1.36∗∗

After × 1.5km (2.10) (2.56) (2.41) (2.24)

Treatment × 0.66 0.80∗∗ 1.07∗∗ 0.69∗

After × 2km (1.24) (2.06) (2.02) (1.79)

Treatment × 0.05 0.26 0.59∗ 0.22

After × 2.5km (0.16) (1.32) (1.75) (1.11)

Treatment × -0.04 0.17 0.51∗ 0.13

After × 3km (-0.14) (1.34) (1.94) (1.04)

Treatment × -0.18 0.05 0.40∗ 0.03

After × 3.5km (-0.80) (0.46) (1.73) (0.27)

Treatment × -0.29 -0.05 0.30 -0.07

After × 4km (-1.50) (-0.61) (1.58) (-0.80)

Treatment × -0.34∗ -0.10 0.26 -0.11

After × 4.5km (-1.83) (-1.31) (1.44) (-1.43)

Treatment × -0.25 - 0.37∗∗ -

After × 5km (-1.40) - (2.07) -

Observations 8600 8600 8600 8600

Treatment × Ring Dummies Yes No Yes No

City FE Yes No Yes No

Year × Ring FE Yes Yes Yes Yes

Year × City FE No Yes No Yes

City × Ring FE No Yes No Yes

Dependent Variable Mean 7.45 7.45 5.14 5.14

Adj. R2 0.246 0.473 0.158 0.410

Notes: This table reports the estimates of the effects of university expansion on industry patents with at least one
citation at different distances (rings). The city-ring-specific pre-expansion time trend is removed for the dependent
variable in columns (3)-(4). The number of university teachers in 1990 is used as the measure of treatment intensity,
and it is counted in 1,000. t statistics based on clustered standard errors at the city level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A6.B: Impact of University Expansion on Innovation — Ring Regressions (Robustness)

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents that are Cited at least Once

(1) (2) (3) (4)

Treatment × 4.49∗∗ 3.87∗∗ 3.31 3.22∗

After × 0.5km (2.25) (2.17) (1.65) (1.80)

Treatment × 1.04∗∗∗ 0.93∗∗∗ 0.87∗∗∗ 0.78∗∗∗

After × 1km (4.54) (4.17) (3.80) (3.51)

Treatment × 0.35∗∗ 0.35∗∗ 0.38∗∗ 0.30∗∗

After × 1.5km (2.32) (2.62) (2.58) (2.28)

Treatment × 0.16 0.18∗∗ 0.24∗∗ 0.16∗

After × 2km (1.50) (2.27) (2.26) (1.98)

Treatment × 0.02 0.06 0.13∗ 0.05

After × 2.5km (0.33) (1.40) (1.86) (1.17)

Treatment × 0.00 0.04 0.11∗∗ 0.03

After × 3km (0.02) (1.34) (2.04) (1.04)

Treatment × -0.03 0.01 0.09∗ 0.01

After × 3.5km (-0.64) (0.56) (1.85) (0.39)

Treatment × -0.05 -0.01 0.07 -0.01

After × 4km (-1.30) (-0.53) (1.56) -0.70)

Treatment × -0.07 -0.02 0.06 -0.02

After × 4.5km (-1.62) (-1.22) (1.39) (-1.33)

Treatment × -0.05 - 0.08∗∗ -

After × 5km (-1.22) - (2.05) -

Observations 8600 8600 8600 8600

Treatment × Ring Dummies Yes No Yes No

City FE Yes No Yes No

Year × Ring FE Yes Yes Yes Yes

Year × City FE No Yes No Yes

City × Ring FE No Yes No Yes

Dependent Variable Mean 7.45 7.45 5.13 5.13

Adj. R2 0.216 0.460 0.138 0.405

Notes: This table reports the estimates of the effects of university expansion on industry patents with at least one
citation at different distances (rings). The city-ring-specific pre-expansion time trend is removed for the dependent
variable in columns (3)-(4). The number of university students in 1990 is used as the measure of treatment intensity,
and it is counted in 1,000. t statistics based on clustered standard errors at the city level are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A7.A: The Dynamic Effects of University Expansion on Industry Innovation — Ring Regressions
(No. of University Teachers in 1990 as Treatment)

Dependent Variable: Number of Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ring i Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8 Ring 9

Treatment × 1995 -3.96 0.32 0.13 0.16 -0.05 -0.04 0.04 0.01 0.08

× Ring i (-1.28) (0.54) (0.60) (1.47) (-0.61) (-0.27) (0.49) (0.08) (0.71)

Treatment × 1996 -4.67 -0.02 0.40∗ 0.17∗ 0.14 0.08 0.01 0.08 0.01

× Ring i (-1.63) (-0.05) (1.95) (1.69) (0.96) (0.78) (0.17) (0.94) (0.09)

Treatment × 1997 -4.46∗ -0.44 0.17 0.08 0.08 0.06 0.26 0.03 0.02

× Ring i (-1.88) (-1.04) (1.04) (1.08) (0.89) (0.64) (1.64) (0.53) (0.43)

Treatment × 1998 -4.17∗ -0.37 -0.08 -0.05 -0.18∗∗∗ -0.08 0.03 -0.03 -0.07

× Ring i (-1.81) (-0.84) (-0.61) (-0.41) (-2.79) (-0.97) (0.55) (-0.55) (-1.57)

Treatment × 2000 27.58∗ 2.39∗∗∗ 0.62∗∗∗ 0.16 0.10 0.22∗∗∗ 0.05 -0.08∗ -0.01

× Ring i (1.72) (3.40) (4.08) (1.12) (1.21) (3.44) (1.27) (-1.74) (-0.28)

Treatment × 2001 29.54∗∗∗ 2.92∗∗∗ 1.32∗∗∗ 0.92 0.05 0.00 0.12 0.07 0.13

× Ring i (2.89) (2.65) (4.67) (1.45) (0.26) (0.09) (1.48) (1.03) (0.69)

Treatment × 2002 36.10∗∗∗ 11.09∗∗∗ 2.24∗∗∗ 0.77∗∗ 0.23 0.32∗∗∗ 0.34 -0.02 0.03

× Ring i (3.40) (3.45) (2.77) (2.00) (1.22) (5.01) (1.06) (-0.19) (0.34)

Treatment × 2003 56.37∗∗∗ 14.37∗∗∗ 3.02∗∗∗ 1.70∗∗ 0.39 0.34∗ 0.53∗∗ 0.18 0.16

× Ring i (4.86) (2.66) (2.86) (2.25) (0.94) (1.85) (2.25) (0.97) (1.11)

Treatment × 2004 75.26∗∗∗ 20.61∗∗ 4.28∗∗∗ 2.35∗∗ 0.74 0.24 0.55∗∗ 0.08 -0.07

× Ring i (4.10) (2.58) (3.35) (2.49) (1.52) (0.99) (2.01) (0.62) (-0.45)

Treatment × 2005 104.91∗∗∗ 22.39∗∗∗ 5.15∗ 2.78∗ 1.59 1.39∗∗ 0.68 -0.26 -0.20

× Ring i (3.67) (3.22) (1.94) (1.78) (1.20) (2.30) (1.00) (-0.62) (-0.50)

Treatment × 2006 117.54∗∗∗ 23.46∗∗∗ 11.62∗∗ 5.27∗∗ 2.17 1.48∗∗ 1.00 -0.05 -0.47

× Ring i (3.86) (4.23) (2.14) (2.24) (1.46) (2.10) (1.31) (-0.10) (-0.92)

Treatment × 2007 146.65∗∗∗ 25.87∗∗∗ 15.10∗ 5.12∗ 1.11 1.17 0.05 -1.10∗ -1.32∗∗

× Ring i (3.65) (4.59) (1.75) (1.91) (0.61) (0.85) (0.05) (-1.77) (-2.58)

Dependent Variable Mean 10.59 Observations 23920 Adj. R2 0.548 Fixed Effects Yes

Notes: This table reports the estimates of the dynamic effects of university expansion on industry patents at different distances (rings). The
estimates are used to plot Panel (a) of Figure 7. Year × Ring, Year × City, and City × Ring fixed effects are included in all regressions. The
city-ring-specific pre-expansion time trend is removed for the dependent variable in all specifications. t statistics based on clustered standard
errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A7.B: The Dynamic Effects of University Expansion on Industry Innovation — Ring Regressions
(No. of University Students in 1990 as Treatment)

Dependent Variable: Number of Patents

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ring i Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8 Ring 9

Treatment × 1995 -0.72 0.08 0.02 0.04∗ -0.01 -0.01 0.01 -0.00 0.01

× Ring i (-1.03) (0.63) (0.51) (1.78) (-0.68) (-0.41) (0.41) (-0.14) (0.61)

Treatment × 1996 -0.89 0.00 0.08∗ 0.03 0.02 0.01 0.00 0.01 0.00

× Ring i (-1.35) (0.04) (1.71) (1.52) (0.78) (0.65) (0.02) (0.64) (0.01)

Treatment × 1997 -0.91∗ -0.08 0.03 0.02 0.01 0.01 0.05 0.00 0.00

× Ring i (-1.66) (-0.89) (0.87) (1.00) (0.69) (0.49) (1.43) (0.21) (0.37)

Treatment × 1998 -0.88∗ -0.06 -0.02 -0.00 -0.04∗∗ -0.02 0.00 -0.01 -0.01

× Ring i (-1.72) (-0.64) (-0.74) (-0.20) (-2.12) (-1.08) (0.43) (-0.66) (-1.37)

Treatment × 2000 5.88∗ 0.47∗∗∗ 0.13∗∗∗ 0.04∗ 0.02 0.05∗∗∗ 0.01 -0.02 -0.00

× Ring i (1.66) (2.82) (3.52) (1.65) (1.02) (3.06) (1.35) (-1.40) (-0.00)

Treatment × 2001 5.81∗∗ 0.62∗∗∗ 0.28∗∗∗ 0.21 0.02 0.00 0.03∗ 0.01 0.02

× Ring i (2.45) (2.65) (4.41) (1.60) (0.42) (0.14) (1.73) (0.74) (0.54)

Treatment × 2002 7.27∗∗∗ 2.32∗∗∗ 0.47∗∗ 0.18∗∗ 0.06∗ 0.07∗∗∗ 0.08 -0.01 0.00

× Ring i (2.90) (3.09) (2.59) (2.34) (1.69) (4.39) (1.17) (-0.35) (0.16)

Treatment × 2003 11.75∗∗∗ 3.15∗∗∗ 0.66∗∗∗ 0.39∗∗∗ 0.11 0.08∗∗ 0.12∗∗ 0.04 0.04

× Ring i (3.97) (2.77) (2.90) (2.73) (1.37) (2.23) (2.56) (1.08) (1.31)

Treatment × 2004 15.30∗∗∗ 4.40∗∗ 0.93∗∗∗ 0.52∗∗∗ 0.17∗ 0.06 0.12∗∗ 0.02 -0.02

× Ring i (3.38) (2.56) (3.52) (2.71) (1.75) (1.09) (2.22) (0.53) (-0.61)

Treatment × 2005 20.93∗∗∗ 4.69∗∗∗ 1.16∗∗ 0.63∗∗ 0.36 0.30∗∗ 0.15 -0.06 -0.04

× Ring i (3.02) (2.96) (2.13) (1.99) (1.26) (2.26) (1.04) (-0.70) (-0.42)

Treatment × 2006 23.54∗∗∗ 4.88∗∗∗ 2.53∗∗ 1.18∗∗ 0.48 0.30∗ 0.21 -0.02 -0.11

× Ring i (3.17) (3.62) (2.25) (2.42) (1.49) (1.82) (1.23) (-0.19) (-1.00)

Treatment × 2007 29.19∗∗∗ 5.34∗∗∗ 3.34∗ 1.19∗∗ 0.30 0.29 0.05 -0.20 -0.26∗∗

× Ring i (3.02) (3.75) (1.83) (2.29) (0.81) (1.01) (0.22) (-1.39) (-2.20)

Dependent Variable Mean 10.59 Observations 23920 Adj. R2 0.526 Fixed Effects Yes

Notes: This table reports the estimates of the dynamic effects of university expansion on industry patents at different distances (rings). The
estimates are used to plot Panel (b) of Figure 7. Year × Ring, Year × City, and City × Ring fixed effects are included in all regressions.
The city-ring-specific pre-expansion time trend is removed for the dependent variable in all specifications. t statistics based on clustered
standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A8: Impact of University Expansion on Industry Innovation — Ring-level Regressions of Trend Break Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8 Ring 9 Ring 10 Ring 1 - 10

Treatment × Trend 3.494∗∗∗ 3.425∗∗∗

×After× 0.5km (2.98) (2.93)

Treatment × Trend 0.861∗∗∗ 0.791∗∗∗

×After× 1km (3.91) (3.81)

Treatment × Trend 0.570∗∗ 0.500∗

×After× 1.5km (2.14) (1.96)

Treatment × Trend 0.269∗∗∗ 0.200∗∗∗

×After× 2km (3.10) (2.62)

Treatment × Trend 0.140∗∗ 0.0710

×After× 2.5km (2.02) (1.18)

Treatment × Trend 0.120∗∗∗ 0.0512

×After× 3km (2.67) (1.43)

Treatment × Trend 0.0862∗∗ 0.0169

×After× 3.5km (2.41) (0.59)

Treatment × Trend 0.0468∗∗∗ -0.0225

×After× 4km (2.70) (-1.18)

Treatment × Trend 0.0334∗ -0.0358∗

×After× 4.5km (1.88) (-1.76)

Treatment × Trend 0.0693∗∗∗

×After× 5km (2.95)

Observations 2392 2392 2392 2392 2392 2392 2392 2392 2392 2392 23920

City FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No

Year × Ring FE No No No No No No No No No No Yes

Year × City FE No No No No No No No No No No Yes

City × Ring FE No No No No No No No No No No Yes

Dependent Variable Mean 114.50 26.42 13.04 8.26 5.71 4.37 3.34 2.49 1.82 2.22 18.21

Adj. R2 0.584 0.660 0.565 0.632 0.457 0.456 0.455 0.383 0.433 0.212 0.607

Notes: This table reports the estimates of the slope change in the number of industry patents at different distances (rings) as a result of the university expansion,
using the specification in Equation (3.8). The number of university students in 1990 is counted in 1,000, and it is used as the measure of treatment intensity. The
trend-break model is used in all specifications. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

19



Table A9: Robustness Check — Ring-level Regressions up to 10 km

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents

(1) (2) (3) (4)

Treatment × 18.43∗∗∗ 18.41∗∗∗ 15.75∗∗∗ 15.76∗∗∗

After × 0.5km (3.61) (3.62) (3.09) (3.09)

Treatment × 4.02∗∗∗ 4.00∗∗∗ 3.36∗∗∗ 3.36∗∗∗

After × 1km (3.91) (3.92) (3.27) (3.30)

Treatment × 1.53∗∗∗ 1.51∗∗∗ 1.28∗∗ 1.28∗∗

After × 1.5km (2.71) (2.72) (2.26) (2.32)

Treatment × 0.78∗∗∗ 0.76∗∗∗ 0.64∗∗ 0.64∗∗

After × 2km (2.93) (2.96) (2.40) (2.52)

Treatment × 0.40∗∗ 0.38∗∗ 0.31∗ 0.31∗

After × 2.5km (2.24) (2.23) (1.71) (1.84)

Treatment × 0.33∗∗∗ 0.30∗∗∗ 0.26∗∗ 0.26∗∗

After × 3km (2.89) (2.96) (2.27) (2.55)

Treatment × 0.26∗∗ 0.23∗∗ 0.20∗ 0.20∗∗

After × 3.5km (2.42) (2.39) (1.86) (2.08)

Treatment × 0.13∗∗∗ 0.11∗∗∗ 0.08∗ 0.09∗∗

After × 4km (2.97) (3.20) (1.84) (2.57)

Treatment × 0.11∗∗ 0.08∗∗ 0.07 0.07∗

After × 4.5km (2.15) (2.17) (1.34) (1.88)

Treatment × 0.15∗∗∗ 0.13∗∗∗ 0.11∗∗ 0.12∗∗∗

After × 5km (3.00) (2.94) (2.25) (2.74)

Treatment × 0.10∗∗∗ 0.07∗∗∗ 0.06∗ 0.07∗∗∗

After × 5.5km (3.15) (3.26) (1.95) (2.93)

Treatment × 0.06∗∗ 0.04∗ 0.03 0.03

After × 6km (2.12) (1.84) (0.95) (1.55)

Treatment × 0.07∗∗∗ 0.05∗∗∗ 0.04 0.04∗∗∗

After × 6.5km (2.97) (3.15) (1.61) (2.91)

Treatment × 0.07∗∗ 0.04 0.03 0.04

After × 7km (2.40) (1.64) (1.22) (1.49)

Treatment × 0.05∗ 0.03 0.02 0.03

After × 7.5km (1.78) (0.95) (0.67) (0.80)

Treatment × 0.01 -0.02 -0.03∗∗ -0.02∗∗

After × 8km (0.53) (-1.65) (-2.56) (-2.03)

Treatment × 0.03∗∗ 0.00 -0.00 0.00

After × 8.5km (2.33) (0.15) (-0.44) (0.03)

Treatment × 0.12 0.10 0.09 0.09

After × 9km (1.37) (1.08) (1.00) (1.04)

Treatment × 0.02∗∗ -0.00 -0.01 -0.00

After × 9.5km (2.22) (-0.06) (-0.76) (-0.23)

Treatment × 0.02∗ - -0.01 -

After × 10km (1.91) - (-0.44) -

Observations 47840 47840 47840 47840

Treatment × Ring Dummies Yes No Yes No

Year × Ring FE Yes Yes Yes Yes

Year × City FE No Yes No Yes

City × Ring FE Yes Yes Yes Yes

Dependent Variable Mean 9.62 9.62 5.70 5.70

Adj. R2 0.338 0.552 0.215 0.473

Notes: This table reports the estimates of the effects of university expansion on industry patents at different distances
(rings) for up to 10 km. The city-ring-specific pre-expansion time trend is removed for the dependent variables in
Columns (3) and (4). The number of university students in 1990 is counted in 1,000, and it is used as the measure
of treatment intensity. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A10.A: Spatial Decay of University Spillovers (Relative to the Effect on Ring 1)

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents

(1) (2) (3) (4)

Treatment × - - - -

After × 0.5km - - - -

Treatment × -71.37∗∗∗ -71.37∗∗∗ -61.21∗∗∗ -61.21∗∗∗

After × 1km (-3.82) (-3.82) (-3.28) (-3.28)

Treatment × -83.43∗∗∗ -83.43∗∗∗ -71.23∗∗∗ -71.23∗∗∗

After × 1.5km (-4.18) (-4.18) (-3.57) (-3.57)

Treatment × -86.92∗∗∗ -86.92∗∗∗ -74.22∗∗∗ -74.22∗∗∗

After × 2km (-4.30) (-4.30) (-3.67) (-3.67)

Treatment × -88.64∗∗∗ -88.64∗∗∗ -75.71∗∗∗ -75.71∗∗∗

After × 2.5km (-4.39) (-4.39) (-3.75) (-3.75)

Treatment × -88.91∗∗∗ -88.91∗∗∗ -75.87∗∗∗ -75.87∗∗∗

After × 3km (-4.41) (-4.41) (-3.76) (-3.76)

Treatment × -89.26∗∗∗ -89.26∗∗∗ -76.18∗∗∗ -76.18∗∗∗

After × 3.5km (-4.40) (-4.40) (-3.75) (-3.75)

Treatment × -89.81∗∗∗ -89.81∗∗∗ -76.68∗∗∗ -76.68∗∗∗

After × 4km (-4.44) (-4.44) (-3.79) (-3.79)

Treatment × -89.92∗∗∗ -89.92∗∗∗ -76.75∗∗∗ -76.75∗∗∗

After × 4.5km (-4.46) (-4.46) (-3.80) (-3.80)

Treatment × -89.70∗∗∗ -89.70∗∗∗ -76.52∗∗∗ -76.52∗∗∗

After × 5km (-4.44) (-4.44) (-3.79) (-3.79)

Treatment × - -89.96∗∗∗ - -76.77∗∗∗

After × 5.5km - (-4.45) - (-3.80)

Treatment × - -90.12∗∗∗ - -76.92∗∗∗

After × 6km - (-4.46) - (-3.80)

Treatment × - -90.06∗∗∗ - -76.86∗∗∗

After × 6.5km - (-4.46) - (-3.81)

Treatment × - -90.09∗∗∗ - -76.89∗∗∗

After × 7km - (-4.44) - (-3.79)

Treatment × - -90.16∗∗∗ - -76.96∗∗∗

After × 7.5km - (-4.44) - (-3.79)

Treatment × - -90.38∗∗∗ - -77.18∗∗∗

After × 8km - (-4.46) - (-3.81)

Treatment × - -90.27∗∗∗ - -77.05∗∗∗

After × 8.5km - (-4.46) - (-3.81)

Treatment × - -89.73∗∗∗ - -76.52∗∗∗

After × 9km - (-4.49) - (-3.83)

Treatment × - -90.30∗∗∗ - -77.08∗∗∗

After × 9.5km - (-4.46) - (-3.80)

Observations 23920 47840 23920 47840

Year × Ring FE Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes

Dependent Variable Mean 18.21 9.62 10.91 5.86

Adj. R2 0.570 0.563 0.482 0.475

Notes: This table reports the estimates of the effects of university expansion on industry patents at different
distances (rings) for up to 5 km or 10 km. The reference group is ring 1. The estimates are used to plot Figure 10.
The number of university teachers in 1990 is counted in 1,000. and it is used as the measure of treatment intensity.
t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table A10.B: Spatial Decay of University Spillovers (Relative to the Effect on Ring 1)

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents

(1) (2) (3) (4)

Treatment × - - - -

After × 0.5km - - - -

Treatment × -14.41∗∗∗ -14.41∗∗∗ -12.39∗∗∗ -12.39∗∗∗

After × 1km (-3.19) (-3.19) (-2.74) (-2.74)

Treatment × -16.90∗∗∗ -16.90∗∗∗ -14.47∗∗∗ -14.47∗∗∗

After × 1.5km (-3.43) (-3.43) (-2.94) (-2.93)

Treatment × -17.65∗∗∗ -17.65∗∗∗ -15.11∗∗∗ -15.11∗∗∗

After × 2km (-3.50) (-3.50) (-3.00) (-3.00)

Treatment × -18.03∗∗∗ -18.03∗∗∗ -15.45∗∗∗ -15.45∗∗∗

After × 2.5km (-3.56) (-3.56) (-3.05) (-3.05)

Treatment × -18.10∗∗∗ -18.10∗∗∗ -15.49∗∗∗ -15.49∗∗∗

After × 3km (-3.58) (-3.58) (-3.06) (-3.06)

Treatment × -18.17∗∗∗ -18.17∗∗∗ -15.55∗∗∗ -15.55∗∗∗

After × 3.5km (-3.57) (-3.57) (-3.06) (-3.06)

Treatment × -18.30∗∗∗ -18.30∗∗∗ -15.67∗∗∗ -15.67∗∗∗

After × 4km (-3.60) (-3.60) (-3.08) (-3.08)

Treatment × -18.33∗∗∗ -18.33∗∗∗ -15.68∗∗∗ -15.68∗∗∗

After × 4.5km (-3.61) (-3.61) (-3.09) (-3.09)

Treatment × -18.28∗∗∗ -18.28∗∗∗ -15.64∗∗∗ -15.64∗∗∗

After × 5km (-3.60) (-3.60) (-3.08) (-3.08)

Treatment × - -18.34∗∗∗ - -15.69∗∗∗

After × 5.5km - (-3.61) - (-3.09)

Treatment × - -18.37∗∗∗ - -15.72∗∗∗

After × 6km - (-3.61) - (-3.09)

Treatment × - -18.36∗∗∗ - -15.71∗∗∗

After × 6.5km - (-3.62) - (-3.09)

Treatment × - -18.36∗∗∗ - -15.72∗∗∗

After × 7km - (-3.60) - (-3.08)

Treatment × - -18.38∗∗∗ - -15.73∗∗∗

After × 7.5km - (-3.60) - (-3.08)

Treatment × - -18.43∗∗∗ - -15.78∗∗∗

After × 8km - (-3.62) - (-3.10)

Treatment × - -18.41∗∗∗ - -15.76∗∗∗

After × 8.5km - (-3.62) - (-3.10)

Treatment × - -18.31∗∗∗ - -15.66∗∗∗

After × 9km - (-3.64) - (-3.11)

Treatment × - -18.41∗∗∗ - -15.76∗∗∗

After × 9.5km - (-3.61) - (-3.09)

Observations 23920 47840 23920 47840

Year × Ring FE Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes

Dependent Variable Mean 18.21 9.62 10.59 5.70

Adj. R2 0.560 0.552 0.479 0.473

Notes: This table reports the estimates of the effects of university expansion on industry patents at different
distances (rings) for up to 5 km or 10 km. The reference group is ring 1. The estimates are used to plot Figure 10.
The number of university students in 1990 is counted in 1,000. and it is used as the measure of treatment intensity.
t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table A11: Heterogeneity Analysis — Eastern, Central, and Western Regions

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents

(1) (2) (3) (4) (5) (6)

Eastern Central Western Eastern Central Western

Treatment × 25.44∗∗∗ 6.38∗∗∗ 5.01∗∗∗ 21.91∗∗∗ 5.14∗∗∗ 4.03∗∗∗

After × 0.5km (5.57) (7.13) (6.01) (4.80) (5.74) (4.83)

Treatment × 5.42∗∗∗ 1.20∗∗∗ 1.20∗∗∗ 4.66∗∗∗ 0.77∗∗ 0.83∗∗∗

After × 1km (4.78) (3.43) (5.12) (4.12) (2.20) (3.54)

Treatment × 1.91∗∗ 0.45∗∗∗ 0.46∗∗∗ 1.70∗∗ 0.21∗∗∗ 0.26∗∗

After × 1.5km (2.51) (7.68) (3.77) (2.23) (3.68) (2.10)

Treatment × 0.76∗∗ 0.39∗∗∗ 0.40∗ 0.65∗ 0.28∗∗∗ 0.33

After × 2km (2.11) (8.60) (2.01) (1.80) (6.29) (1.67)

Treatment × 0.31 0.17∗∗∗ 0.09∗∗∗ 0.26 0.09∗∗∗ 0.04∗

After × 2.5km (1.30) (7.89) (4.33) (1.08) (4.33) (2.03)

Treatment × 0.22∗ 0.07∗∗∗ 0.13∗∗∗ 0.19 0.03∗∗ 0.10∗∗∗

After × 3km (1.69) (4.63) (6.07) (1.45) (2.19) (4.77)

Treatment × 0.11 0.08∗∗∗ 0.10∗ 0.09 0.06∗∗∗ 0.07

After × 3.5km (0.84) (5.13) (1.84) (0.69) (3.69) (1.35)

Treatment × -0.05 0.03∗∗ 0.05 -0.06 0.03∗∗ 0.02

After × 4km (-0.88) (2.42) (1.50) (-1.09) (2.42) (0.53)

Treatment × -0.07 0.00 0.02 -0.08 0.00 0.01

After × 4.5km (-1.17) (0.21) (1.00) (-1.19) (0.15) (0.38)

Treatment × - - - - - -

After × 5km - - - - - -

Observations 10920 8320 4550 10920 8320 4550

Year × Ring FE Yes Yes Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes Yes Yes

Dependent Variable Mean 30.55 6.41 10.69 19.53 2.97 6.09

Adj. R2 0.582 0.697 0.675 0.491 0.533 0.557

Notes: This table reports the estimated effects of university expansion on industry patents across different regions
in China. The Eastern, Central and Western regions are divided according to the 7th “Five-Year Plan for the
National Economic and Social Development” of China. The city-ring-specific pre-expansion time trend is removed
for the dependent variables in Columns (4)-(6). The number of university students in 1990 is counted in 1,000, and
it is used as the measure of treatment intensity. t statistics based on clustered standard errors at the city level are
reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A12: Heterogeneity Analysis — Industries with High, Medium, and Low Human
Capital Intensity

Pre-expansion Time Trend Not Removed Pre-expansion Time Trend Removed

Dependent Variable Number of Patents

(1) (2) (3) (4) (5) (6)

High Medium Low High Medium Low

Treatment × 13.78∗∗∗ 3.03∗∗∗ 0.81∗∗∗ 11.72∗∗∗ 2.44∗∗∗ 0.62∗∗∗

After × 0.5km (3.11) (4.39) (4.36) (2.64) (3.53) (3.33)

Treatment × 2.95∗∗∗ 0.71∗∗∗ 0.22∗∗∗ 2.48∗∗∗ 0.55∗∗ 0.16∗∗∗

After × 1km (3.70) (3.13) (3.67) (3.11) (2.40) (2.78)

Treatment × 1.01∗∗ 0.25∗∗∗ 0.11∗∗ 0.86∗ 0.17∗ 0.09

After × 1.5km (2.30) (2.83) (2.05) (1.94) (1.94) (1.65)

Treatment × 0.36∗∗ 0.18∗ 0.06∗∗∗ 0.28∗∗ 0.14 0.05∗∗∗

After × 2km (2.59) (1.87) (3.82) (2.02) (1.50) (3.31)

Treatment × 0.10 0.05 0.03∗∗ 0.06 0.03 0.02

After × 2.5km (1.13) (1.24) (2.02) (0.65) (0.67) (1.51)

Treatment × 0.10 0.04 0.02∗ 0.07 0.03 0.02

After × 3km (1.24) (1.58) (1.82) (0.89) (1.20) (1.49)

Treatment × 0.03 0.02 0.02∗ 0.01 0.01 0.02∗

After × 3.5km (0.35) (0.94) (1.92) (0.14) (0.58) (1.76)

Treatment × -0.07 0.02 0.01∗ -0.08 0.01 0.00

After × 4km (-1.31) (0.56) (1.69) (-1.55) (0.43) (1.25)

Treatment × -0.07 -0.01 0.01 -0.08 -0.01 0.01

After × 4.5km (-1.40) (-0.55) (1.18) (-1.45) (-0.61) (1.21)

Treatment × - - - - - -

After × 5km - - - - - -

Observations 23660 23660 23660 23660 23660 23660

Year × Ring FE Yes Yes Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes Yes Yes

Dependent Variable Mean 14.13 3.71 1.19 8.37 2.00 0.65

Adj. R2 0.462 0.721 0.689 0.401 0.612 0.555

Notes: This table reports the estimated effects of university expansion on industry patents across industries with
different human capital intensity. We define high human capital intensity industry as the industries that rank among
the top one-third in the college employee ratio, medium as the middle one-third, and low as the rest. The industry
college employee ratio is calculated as the percentage of workers with a college education and above using the
2004 ASIF. The city-ring-specific pre-expansion time trend is removed for the dependent variables in Columns
(4)-(6). The number of university students in 1990 is counted in 1,000, and it is used as the measure of treatment
intensity. t statistics based on clustered standard errors at the city level are reported in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A13: Summary Statistics of Firm Characteristics

(1) (2) (3) (4) (5) (6) (7)

Year No. of Firms New Product Output Fixed Assets SOE Firm Age Employment

1998 125954 3934.99 33653.85 45043.08 0.29 14.55 348.68

1999 126528 4515.49 36260.19 49413.91 0.26 14.71 362.18

2000 125204 5411.33 37641.48 57134.02 0.22 14.34 336.75

2001 134677 6311.51 37539.98 60340.50 0.18 12.73 313.96

2002 146290 7186.15 37347.27 65840.98 0.15 12.06 301.97

2003 159423 8216.19 33295.39 76591.23 0.11 10.91 287.69

2004 231811 – 31756.00 72843.79 0.08 8.64 232.73

2005 224051 9814.97 36728.77 91410.37 0.06 8.78 249.65

2006 247992 11814.78 37504.38 101072.40 0.05 8.64 237.28

2007 276058 12518.99 37743.88 110539.40 0.03 8.38 229.20

Notes: Column (1) reports the number of firms in each year. Columns (2)-(7) report the means of new product value, output, fixed assets, SOE status,
firm age and employment at the firm level. New product, output, and fixed assets are counted in 1,000 yuan in the year 1998 value. Information on new
product value in 2004 is not available.
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Table A14: Effects of University Expansion on New Product Ratio —
Ring-level Regressions

Dependent Variable New Product Ratio

(1) (2) (3) (4)

After Dummy 2000 2002 2004 2006

Treatment × 8.47e-04 9.85e-04 1.30e-03 1.36e-03

After × 0.5km (1.58) (1.57) (1.60) (1.58)

Treatment × 5.77e-04∗ 6.99e-04∗ 9.03e-04∗∗ 9.59e-04∗

After × 1km (1.95) (1.96) (2.03) (1.87)

Treatment × 3.96e-04∗∗∗ 4.67e-04∗∗∗ 6.16e-04∗∗∗ 6.44e-04∗∗∗

After × 1.5km (3.14) (3.21) (3.13) (2.97)

Treatment × 2.91e-04∗∗∗ 3.35e-04∗∗∗ 4.12e-04∗∗∗ 4.10e-04∗∗∗

After × 2km (2.89) (2.87) (3.27) (2.89)

Treatment × 3.60e-04∗∗ 4.41e-04∗∗ 4.13e-04∗∗∗ 3.92e-04∗∗∗

After × 2.5km (2.44) (2.56) (3.33) (3.16)

Treatment × 2.54e-04∗∗∗ 3.10e-04∗∗∗ 3.97e-04∗∗∗ 4.06e-04∗∗∗

After × 3km (3.18) (3.41) (3.99) (3.79)

Treatment × 1.56e-04∗∗ 1.88e-04∗∗ 2.63e-04∗∗∗ 3.02e-04∗∗∗

After × 3.5km (2.34) (2.47) (2.90) (2.91)

Treatment × 1.60e-04∗ 1.92e-04∗ 2.99e-04∗∗ 3.62e-04∗∗

After × 4km (1.74) (1.89) (2.35) (2.42)

Treatment × 1.77e-04∗∗ 2.01e-04∗∗ 2.69e-04∗∗∗ 2.96e-04∗∗∗

After × 4.5km (2.50) (2.48) (2.67) (2.97)

Treatment × 1.45e-04∗ 1.77e-04∗ 2.74e-04∗∗ 3.35e-04∗∗

After × 5km (1.95) (1.94) (2.16) (2.57)

Observations 1196263 996185 759980 589233

Year × Ring FE Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes

Control Variables Yes Yes Yes Yes

Dependent Variable Mean 0.034 0.035 0.035 0.037

Adj. R2 0.091 0.097 0.107 0.105

Notes: This table reports the estimated effects of university expansion on firms’ new prod-
uct ratio using the number of university students in 1990 as the proxy for treatment in-
tensity. Dependent variable is firm-level new product ratio. Columns (1)–(4) report the
triple-differences estimates. The after dummy equals 1 if year is 2000 or after, 2002 or af-
ter, 2004 or after, or 2006 or after in Columns (1), (2), (3), and (4), respectively. The after
dummy equals 0 for years before 2000 for all four columns. Observations in the years in
which the after dummy is not defined are dropped. The reference group is the firms outside
10 km of universities. Control variables include firm age, fixed assets, SOE status, and
employment size. Data on new product in 2004 is not available. The number of university
students in 1990 is counted in 1,000. t statistics based on clustered standard errors at the
city level are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A15: Effects of University Expansion on New Product Ratio —
Ring-level Regressions with Firm Fixed Effects

Dependent Variable New Product Ratio

(1) (2) (3) (4)

After Dummy 2000 2002 2004 2006

Treatment × 8.08e-04∗∗ 9.10e-04∗ 1.82e-03∗∗∗ 2.20e-03∗∗

After × 0.5km (1.98) (1.81) (3.14) (2.32)

Treatment × 4.45e-04∗∗ 7.42e-04∗∗∗ 1.43e-03∗∗∗ 1.79e-03∗∗∗

After × 1km (2.38) (3.25) (6.46) (2.66)

Treatment × 6.44e-04∗∗∗ 9.24e-04∗∗∗ 1.12e-03∗∗∗ 1.15e-03∗∗

After × 1.5km (3.60) (3.63) (2.97) (2.36)

Treatment × 6.24e-04∗∗∗ 5.92e-04∗∗ 8.38e-04∗∗∗ 7.43e-04∗∗

After × 2km (3.01) (2.17) (3.28) (2.46)

Treatment × 5.63e-04∗∗∗ 7.71e-04∗∗ 1.41e-03∗∗∗ 1.04e-03∗∗

After × 2.5km (2.94) (2.39) (3.10) (2.11)

Treatment × 2.11e-04 2.26e-04 4.53e-04 3.28e-04

After × 3km (1.13) (1.22) (1.40) (0.77)

Treatment × 3.45e-04∗ 4.05e-04∗ 3.12e-04 5.03e-04

After × 3.5km (1.93) (1.90) (0.68) (0.96)

Treatment × 1.12e-04 3.08e-04 3.79e-04 -6.87e-05

After × 4km (-0.57) (-1.24) (-1.07) (-0.15)

Treatment × 2.45e-04 5.87e-04 1.07e-03 1.05e-03

After × 4.5km (-0.52) (-0.90) (-1.26) (-1.18)

Treatment × 2.99e-04∗ 2.53e-04 1.50e-04 3.57e-04

After × 5km (1.71) (0.87) (0.34) (0.54)

Observations 1099149 895751 668829 498355

Year × Ring FE Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes

Firm FE Yes Yes Yes Yes

Control Variables Yes Yes Yes Yes

Dependent Variable Mean 0.035 0.036 0.038 0.037

Adj. R2 0.541 0.541 0.572 0.589

Notes: This table reports the estimated effects of university expansion on firms’ new prod-
uct ratio using the number of university teachers in 1990 as the proxy for treatment in-
tensity, with firm fixed effects. The dependent variable is firm-level new product ratio.
Columns (1)–(4) report the triple-differences estimates. The after dummy equals 1 if year
is 2000 or after, 2002 or after, 2004 or after, or 2006 or after in Columns (1), (2), (3), and
(4), respectively. The after dummy equals 0 if year is before 2000 for all four columns. Ob-
servations in the years in which the after dummy is not defined are dropped. The reference
group is the firms outside 10 km of universities. Control variables include firm age, fixed
assets, SOE status, and employment size. The number of university teachers in 1990 is
counted in 1,000 t statistics based on clustered standard errors at the city level are reported
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A16: Heterogeneity Analysis - Industries with High, Medium, and Low Human
Capital Intensity and SOE versus Non-SOE

Dependent Variable New Product Ratio

(1) (2) (3) (4) (5)

High Medium Low SOE Non-SOE

Treatment × 9.49e-04 5.79e-04∗ 2.62e-04 1.49e-04 8.61e-04

After × 0.5km (1.59) (1.75) (0.87) (0.66) (1.52)

Treatment × 8.13e-04∗ 2.93e-04 2.32e-04∗ 2.03e-04 6.31e-04∗∗

After × 1km (1.92) (1.58) (1.95) (1.37) (2.01)

Treatment × 6.16e-04∗∗∗ 2.93e-04∗∗∗ 3.76e-05 1.65e-04∗∗ 4.25e-04∗∗∗

After × 1.5km (2.91) (3.37) (0.73) (2.22) (3.04)

Treatment × 3.30e-04∗ 1.93e-04∗∗ 1.66e-04∗∗∗ 1.12e-04 3.32e-04∗∗∗

After × 2km (1.74) (2.39) (2.70) (1.24) (3.22)

Treatment × 6.04e-04∗ 1.41e-04∗∗ 1.61e-04∗∗∗ 3.14e-04∗∗∗ 3.75e-04∗∗

After × 2.5km (1.68) (2.03) (3.53) (3.60) (2.34)

Treatment × 3.53e-04∗∗ 2.10e-04∗∗ 5.70e-05 2.25e-04∗∗ 2.86e-04∗∗∗

After × 3km (2.43) (2.29) (1.03) (2.32) (3.35)

Treatment × 1.73e-04 1.09e-04 7.19e-05 2.55e-05 2.09e-04∗∗

After × 3.5km (1.23) (1.16) (1.14) (0.23) (2.49)

Treatment × 1.27e-04 3.26e-05 1.62e-04∗∗∗ -4.30e-05 2.19e-04∗

After × 4km (0.47) (0.47) (3.07) (-0.35) (1.88)

Treatment × 2.35e-04∗∗ -1.66e-05 2.13e-04∗∗∗ -1.40e-04 2.43e-04∗∗∗

After × 4.5km (2.52) (-0.13) (3.86) (-1.54) (4.61)

Treatment × -4.94e-05 1.50e-04 1.73e-04∗∗ 5.77e-05 1.98e-04∗∗

Observations 394427 385023 456632 136171 1060023

Year × Ring FE Yes Yes Yes Yes Yes

Year × City FE Yes Yes Yes Yes Yes

City × Ring FE Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes

Control Variables Yes Yes Yes Yes Yes

Dependent Variable Mean 0.059 0.025 0.020 0.046 0.033

Adj. R2 0.119 0.057 0.049 0.111 0.096

Notes: Columns (1)–(3) report the estimated effects of university expansion on firms’ new product ratio
across industries with different human capital intensity. We define high human capital intensity industry
as the industries that rank among the top one-third in the college employee ratio, medium as the middle
one-third, and low as the rest. The industry college employee ratio is calculated as the percentage of
workers with a college education and above using the 2004 ASIF. Columns (4) and (5) report the estimates
of the effects of university expansion on firms’ new product ratio for SOEs and non-SOEs separately. The
number of university students in 1990 is counted in 1,000, and it is used as the treatment intensity. Control
variables include firm age, fixed assets, SOE status, and employment size. The reference group consists of
the firms outside 10 km of universities. t statistics based on clustered standard errors at the city level are
reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Online Appendix: Conceptual Framework

The impact of universities on local innovation can be mediated through a collection of channels,

such as an increased supply of human capital, knowledge spillovers, or a direct demand effect (Valero

and Van Reenen 2019). Most channels, such as the human capital channel and demand effect, operate

at a broad geographic scale. For example, the human capital channel usually operates at the city level

because workers are mobile within a city. The geographic scope of knowledge spillovers, however,

is often limited. We highlight below the specific channels through which the impact of universities is

especially pronounced at close geographic distances (within 2-3 km in general).

First, areas with better access to universities benefit from improved chances of collaborating with

universities to convert university-based knowledge to commercial products. The development of the

Founder Group in Zhongguancun (ZGC) Science Park is a typical example. The Founder Group,

established by Peking University in 1986, is now a major Chinese technology conglomerate. The

company’s take-off benefited tremendously from Professor Xuan Wang at Peking University, who is

known as the “Father of Chinese Character Laser Typesetting.” His laser typesetting system allowed

the Founder Group to earn its first pot of gold in the early 1990s. Between 2000 and 2007, the Founder

Group published 232 invention patents, with 86 percent in collaboration with Peking University.

Second, universities may disproportionately benefit firms in close proximity through knowledge

transfers. Areas close to universities enjoy convenient access to fundamental background knowl-

edge and frontier technologies produced by university-based experts and professionals. Those factors

are key drivers of innovation. Theory-based fundamental knowledge is the essential cornerstone of

applicable innovations. Frontier technologies—grown out from the development of the fundamen-

tals—lead to new commercializable product varieties as in Romer (1990) or upgrading of existing

products through Schumpeterian creative destruction (Aghion and Howitt 1992; Grossman and Help-

man 1991). The tacit part of knowledge and technologies requires lengthy face-to-face communi-

cations to disseminate. Locating close to universities allows nearby inventors to attend university

workshops, seminars, and conferences and offers abundant opportunities for face-to-face interactions.

Third, proximity to universities allows firms to establish and foster strong professional and in-

formational networks. Technology advancement is fast-evolving and subject to uncertain dynamics.
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Maintaining formal and informal operational links with universities and other research institutions to

receive ceaseless updates on new information allows innovative firms to be at the front of technology

development. A salient example is Baidu, Inc. Upon returning from Silicon Valley, the founder and

CEO of Baidu, Yanhong Li, chose ZGC Science Park to develop his Chinese search engine empire.

As he revealed in an interview, the location advantage of ZGC allows the company to maintain strong

ties with experts at nearby universities, including Peking University from which he graduated (Zhao

2018). This idea is closely related to the networking benefits in the advertising industry as emphasized

in Arzaghi and Henderson (2008).

In sum, firms in close proximity to universities benefit from improved collaboration opportunities,

knowledge transfers, and information networks. However, we note a fundamental distinction between

direct collaborations and the latter two channels. Collaboration benefits do not constitute spillovers

because universities would internalize the benefits. We refer to the latter two channels as knowledge

spillovers, which is the main focus of this paper. We also explore the collaboration channel quantita-

tively by treating innovative firms in direct collaboration with universities differently in our empirical

analysis.

Next, we outline a simple conceptual framework to formalize the identification of knowledge

spillovers by drawing on the localized nature of knowledge spillovers documented in the literature.

Note again that we focus on variations within close geographic distances (within 2-3 km in general)

to identify the fast spatial decay of knowledge spillovers. In this framework, the number of new ideas,

NI, is assumed to be a function of the existing knowledge stock, A, and the number of researchers, R,

who spend time producing them:

NI = f (A,R). (1)

Conceptually, we specify the production function for each firm, i, but i is suppressed for simplicity.

The number of new products, NP, is assumed to be a function of new ideas, NI, and the necessary

facility, equipment, and personnel, X , to convert the new ideas into new products:

NP = g(NI,X). (2)

We further assume that the knowledge stock, A, is affected by a nearby university’s scale or its
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innovation capacity, U , through the channel of knowledge spillovers as well as the distance to the

university, D, which captures the sharp spatial attenuation of knowledge spillovers:

A = a(U,D). (3)

If nearby universities experience an increase in innovation capacity and generate more knowledge for

sharing, the knowledge stock for nearby firms will increase. If a firm is closer to universities spatially,

the firm has better access to university knowledge and receives a larger impact when the universities

experience a knowledge boom. Therefore, we have ∂a
∂U > 0, ∂a

∂D < 0, and ∂ 2a
∂U∂D < 0.

Knowledge spillover is not the only channel through which universities affect local innovation.

For instance, the number of researchers, R, could also be a function of local universities’ scale, U :

R = r(U). (4)

On a broad geographic scale, the number of researchers could also be a function of the geographic

distance to the university. For instance, better university access may increase the probability that local

young people attend a university, become researchers, and seek work in the same city (Card 1995).

However, in this paper, we restrict our attention to narrow geographic scopes of 2-3 km, within which

the number of available researchers to firms are unlikely to be subject to spatial attenuation.1 Hence,

we assume away the role of distance in driving the number of available researchers in nearby firms.2

Based on the conceptual setup, it is easy to see that an increase in local university scale impacts

the creation of new ideas and new products through either knowledge spillovers or the labor market

channel. However, a further difference of the university impact along the spatial dimension helps tease

out the labor market mechanism and highlight the role of knowledge spillovers. To see this clearly,

we assume linearity for all functional forms and write the determinants of new ideas at “close” and

1The argument is consistent with the general consensus in the literature that it is easier to “move” labor than to “move”
ideas (Rosenthal and Strange 2001; Ganguli et al. 2020). The chances of meetings and conversations that enable idea
exchanges are significantly reduced even at modest distances (Arzaghi and Henderson 2008). Yet, labor market benefits are
realized at a large geographic scope—usually within the same commuting zones (Combes and Gobillon 2015).

2Essentially, the labor market channel should not operate in such localized geographic scales. However, the assumption
does not preclude that, in equilibrium, firms closer to universities benefit more from knowledge spillovers and dispropor-
tionately hire more university graduates as researchers. This hiring is, in fact, likely if knowledge stock and the number of
researchers are complementary.
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“far” distances as follows:

NID(close) = AD(close)+RD(close) = αD(close)U +βU, (5)

and

NID( f ar) = AD( f ar)+RD( f ar) = αD( f ar)U +βU, (6)

where NID(close) stands for the creations of new ideas at firms located sufficiently close to a univer-

sity and NID( f ar) stands for new ideas at firms located relatively far from the university. They are

determined by the knowledge stock and the number of researchers at respective locations, indexed by

AD(close), AD( f ar), RD(close), and RD( f ar). αD(close), αD( f ar), and β are the corresponding parameters

that link AD(close), AD( f ar), RD(close), and RD( f ar) to U .

Since the number of available researchers to firms are not subject to spatial attenuation, as dis-

cussed earlier, we have RD(close) = RD( f ar) = βU . A comparison of the impact of universities for

locations that are close and far from universities gives us the following.

NID(close)−NID( f ar) = AD(close)−AD( f ar) =
[
αD(close)−αD( f ar)

]
U. (7)

Therefore, any differences in the impact of universities across various close-range spatial distances

can be attributed to the difference in A—the varying degrees of knowledge spillovers in promoting

nearby firms’ innovation activities. We adopt a triple-differences model to highlight this variation in

our empirical analysis.
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