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A Taxonomy of Non-dictatorial

Unidimensional Domains∗

Shurojit Chatterji† and Huaxia Zeng‡

October 25, 2022

Abstract

Non-dictatorial preference domains allow the design of unanimous social choice func-

tions (henceforth, rules) that are non-dictatorial and strategy-proof. On a class of pref-

erence domains called unidimensional domains, we show that the unique seconds prop-

erty (introduced by Aswal, Chatterji, and Sen, 2003) characterizes all non-dictatorial

domains. Subsequently, we provide an exhaustive classification of all non-dictatorial,

unidimensional domains, based on a simple property of two-voter rules called invari-

ance. The domains constituting the classification are semi-single-peaked domains (in-

troduced by Chatterji, Sanver, and Sen, 2013) and semi-hybrid domains (introduced

here) which are two appropriate weakenings of single-peaked domains and shown to

allow strategy-proof rules to depend on non-peak information of voters’ preferences;

the canonical strategy-proof rules for these domains are projection rules and hybrid

rules respectively. As a refinement of the classification, single-peaked domains and

hybrid domains emerge as the only unidimensional domains that force strategy-proof

rules to be determined completely by preference peaks.

Keywords: Strategy-proofness; invariance; unidimensional domains; semi-single-peaked

preference; semi-hybrid preference

JEL Classification: D71.

1 Introduction

An overarching theme in the theory of incentives is that unanimous social choice functions

(henceforth, rules) that are non-manipulable are dictatorial (and hence unsuitable for social
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decisions), unless preferences of voters are restricted in particular ways so as to yield non-

dictatorial domains that allow the design of non-dictatorial, strategy-proof rules. Indeed,

the domain of single-peaked preferences in the classical voting model (Moulin, 1980) and the

domain of quasi-linear preferences in models with monetary compensations (Roberts, 1979)

are leading instances of non-dictatorial domains. In this paper, we restrict attention to the

voting model, where the large literature notwithstanding1, a comprehensive classification of

all non-dictatorial domains in terms of the design opportunities they afford has remained

elusive, and where in particular, not much is known about the structure of preference do-

mains that allow strategy-proof rules to vary with non-peak information on preferences.

Single-peaked domains are the most prominent instance of non-dictatorial domains in

the voting model and are widely applied to models in public good provision, electoral com-

petition, location theory among others. A natural question that recent literature has made

progress on is whether the full force of single-peakedness is needed to guarantee the exis-

tence of strategy-proof rules. It is known that a particular weakening of single-peakedness,

semi-single-peakedness introduced by Chatterji et al. (2013), is compatible with strategy-

proofness and two other attractive axioms. The first of these is anonymity, an axiom that

spreads power evenly across voters and is hence in a sense the polar opposite of dictatorship.

The second is the tops-only property which asserts that the rule is completely determined

by the peaks of the voters preferences.2 But there are presumably other ways of relaxing

single-peakedness than semi-single-peakedness, which may remain compatible with strategy-

proofness but not with anonymity. Moreover, are there other instances of non-dictatorial

domains that are significantly different from single-peaked domains in their underlying de-

scription, but that allow strategy-proof rules to vary with non-peak information on voters’

preferences and consequently afford very different design opportunities? These questions

lie at the heart of the theory of incentives since they follow naturally from the Gibbard-

Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975), and are evidently important

from the practical standpoint of applying the theory to the actual design of mechanisms.

These are the sort of questions this paper is concerned with. We identify three variants of

single-peakedness which along with single-peakedness constitute an exhaustive classification

of non-dictatorial domains (that satisfy a condition called unidimensionality) and specify

properties of canonical strategy-proof rules that they admit.

1.1 Preference domains

We briefly introduce single-peaked preferences and three variants here. These require an

underlying tree on the alternatives. However, for ease of presentation, we assume hence-

forth that all alternatives are exogenously located on a line, i.e., a tree that linearly orders

all alternatives, say LA = (a1, . . . , am).3 A preference is single-peaked on the line LA, if

there exists a top-ranked alternative, called the peak, such that the preference declines on

1The literature is taken up in Section 5.1.
2Rules that possess the tops-only property are easier to describe and operationalize.
3The original definition of single-peaked preferences hypothesized a linear order on alternatives, which

was subsequently generalized to single-peakedness on a tree by Demange (1982). Trees expand the class of

models to which the theory can be applied. More importantly, the versions formulated on trees are the ones

that arise as necessary conditions in our formulation.
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Figure 1: A single-peaked preference (a), two hybrid preferences (b) - (c), a semi-single-

peaked preference (d) and two semi-hybrid preferences (e) - (f) on the line LA

each side of the peak when alternatives moves farther away from the peak (see Figure 1(a)).

A hybrid preference weakens the single-peakedness restriction by letting the relative rank-

ings of alternatives clustered in a fixed interval of the line be more permissive. First, two

distinct alternatives, called dual-thresholds, are exogenously fixed on the line LA, say ap,

aq and 1 ≤ p < q ≤ m, which separate the line LA into the left interval between a1 and

ap, the middle interval between ap and aq, and the right interval between aq and am. In

a hybrid preference, the conventional single-peakedness restriction only prevails on the left

and right intervals (see Figure 1(b) and Figure 1(c)), while all alternatives in the middle

interval are arbitrarily ranked subject to an additional condition: if the preference peak is

located to the left of ap (respectively, the right of aq), then ap (respectively, aq) is the best

alternative within the middle interval (see Figure 1(b)). On the other hand, the notion

of semi-single-peakedness weakens single-peakedness differently. Instead of dual-thresholds,

one alternative ak̄, called a threshold, is exogenously fixed. In a semi-single-peaked prefer-

ence, the conventional single-peakedness restriction only prevails on the “middle” interval

between the peak and the threshold, while any alternative not in this interval is ranked

below its projection on the interval in an arbitrary manner (see Figure 1(d)). Finally, we

generate a semi-hybrid preference by weakening the single-peakedness restriction imposed

on a hybrid preference to semi-single-peakedness. According to the dual-thresholds ap and

aq on the line LA, a semi-hybrid preference whose preference peak is located to the left of

ap, is first semi-single-peaked on the line LA w.r.t. the threshold ap, and moreover ranks aq
above all alternatives in the right interval (see Figure 1(e)). A symmetric condition holds

when the peak is located to the right of aq. A semi-hybrid preference that has the peak

located in the middle interval between ap and aq is significantly less restrictive, as it only

requires the dual-thresholds ap and aq to be top-ranked within the left and right intervals

respectively (see Figure 1(f)).

Single-peaked preferences were initially introduced by Black (1948) towards resolving

the Condorcet paradox and have since become the cornerstone of modern political econ-

omy, aggregation theory, social choice theory and mechanism design theory. Semi-single-

peakedness significantly weakens the restriction of single-peakedness, but suffices for sus-
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taining a strategy-proof rule that satisfies anonymity and the tops-only property in the

aforementioned formulations. Hybrid preferences can naturally arise in a multidimensional

strategic voting model, when a voter aggregates her multidimensional assessments over the

same set of candidates to formulate a one-dimensional preference (see Section 4 of Reffgen,

2015), or when a voter’s multidimensional preference is reduced to a one-dimensional prefer-

ence under voting constraints of Barberà et al. (1997). Hybrid preferences may also emerge

naturally in the public good allocation environment. This paper introduces semi-hybrid

preferences as a significant weakening of the hybridness requirement and thereby expands

the scope of design in these formulations.

We recall and adapt the intuitive introduction of hybrid preferences in the introduction

of Chatterji et al. (2022) to illustrate the relevance of semi-hybrid preferences in the public

good allocation environment. Imagine a region where an urban zone stands in the center

and is surrounded by a large suburban area. A railway connects two towns in the suburban

area, and goes through the central urban zone. Each station represents a possible location

for allocating a good public facility, like a sports complex. Two particular stations (see for

instance ap and aq in Figure 1(e)) in the central urban zone separate the whole railway into

three intervals; all stations lying in the middle interval (e.g., the interval between ap and aq
in Figure 1(e)) are in the central urban zone and hence called urban stations, while each

station in one of the two other intervals (e.g., the interval left to ap and the interval right to

aq in Figure 1(e)) is in the suburban area and hence called a suburban station. The central

urban zone also possesses a modern metro transportation system that fully connects all ur-

ban stations and complements the railway, whereas all suburban stations are only connected

via the railway. Thus, the two particular stations can be viewed as two transportation hubs

that serve as gates to the respective suburban zones. A citizen living nearby a suburban

station formulates her preference over all locations according to the following two principles:

(i) any suburban station beyond the distant transportation hub is not acceptable, and (ii)

all stations between her own location and the distant transportation hub are compared ac-

cording to the distance measured by both the railway and the metro. Thus, the citizen’s

preference must be semi-hybrid on the locations along the railway w.r.t. the two transporta-

tion hubs: single-peakedness prevails on the interval between her location and the proximate

transportation hub, the proximate transportation hub is ranked above any other urban sta-

tions, and the distant transportation hub is better than all suburban stations beyond (see

the preference in Figure 1(e)). Similarly, a citizen living in the central urban zone does not

accept any suburban station, and has arbitrary preferences on all urban stations that differ

from her peak. This indicates that the citizen also has a semi-hybrid preference (see the

preference in Figure 1(f)).

It is well known from the seminal work Moulin (1980) that all anonymous, tops-only

and strategy-proof rules on the domain of all single-peaked preferences are characterized

to be phantom voter rules. The domain of all semi-single-peaked preferences admits an

anonymous, tops-only and strategy-proof rule, called a projection rule (see Definition 7 in

Section 3.3), which is indeed the phantom voter rule that fixes all phantom voters’ ballots

to be the threshold. Recently, Chatterji et al. (2013) showed that semi-single-peakedness

is also necessary for the existence of an anonymous, tops-only and strategy-proof rule on

a class of rich domains. We introduce here a fairness property of two-voter rules called

invariance which is substantially weaker than anonymity in that it pertains to the behavior
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of the rule at exactly two preference profiles - invariance requires the SCF to choose the same

social outcome at two test preference profiles where the two voters are endowed with two

completely reversed preferences. We note that on both the domain of all hybrid preferences

and the domain of all semi-hybrid preferences, invariance is incompatible with any two-voter,

tops-only and strategy-proof rule. Indeed, the relative rankings of alternatives in the middle

part are too permissive, and consequently every two-voter, tops-only and strategy-proof rule

behaves like a dictatorship on the middle interval (see for instance a hybrid rule in Definition

8 of Section 3.3) and is accordingly incompatible with invariance.4 We accordingly conclude

that preserving single-peakedness on the middle region (as is the case with semi-single peaked

preferences) is critical for the existence of invariant, tops-only and strategy-proof rules, and

provide a characterization of all such rules as projection rules.

We now turn to the second theme. Note first that the domain of all single-peaked prefer-

ences is strictly included in the domain of all semi-single-peaked preferences. We introduce a

notion called a critical spot to formally address the flexibility embedded in a domain of semi-

single-peaked preferences, and show that its presence is necessary and sufficient in avoiding

the reduction of a domain of semi-single-peaked preferences to a domain of single-peaked

preferences (see Section 4.3). Now, starting with a domain of single-peaked preferences,

as we add non-single-peaked preferences to move towards a domain of semi-single-peaked

preferences, the set of anonymous, tops-only and strategy-proof rules of course shrinks5,

but more importantly these non-single-peaked preferences create space for the emergence of

strategy-proof rules that utilize non-peak information on voters’ preferences. We show that

critical spots turn out to be sufficient for the existence of non-tops-only and strategy-proof

rules. Analogously, critical spots are also embedded in a domain of semi-hybrid preferences,

distinguish the domain from a domain of hybrid preferences, and support the design of non-

tops-only and strategy-proof rules. Thus, while semi-single-peaked and semi-hybrid prefer-

ences are more permissive (which is desirable for applications of mechanism design), they do

however admit non-tops-only and strategy-proof rules which make the task confronting the

designer, namely that of characterizing and choosing among rules, correspondingly harder,

as a full characterization of strategy-proof rules then depends delicately on how the domain

is expanded.

1.2 An outline of the results

We conclude with an overview of our methodology and results.

We classify all non-dictatorial domains in a class of unidimensional domains. These

domains satisfy path-connectedness6, a condition called diversity which requires the presence

4More specifically, consider the domain of all hyrid/semi-hybrid preferences on the line LA w.r.t. the dual-

thresholds ap and aq in Figure 1(b) or 1(e). It is clear that the domain contains two completely reversed

preferences where a1 and am are respectively top-ranked. Given a two-voter, tops-only and strategy-proof

rule, assume w.l.o.g. that voter 1 dictates on the middle interval. Then, at the test profile where voter 1’s

preference peak is a1 and voter 2’s peak is am, in view of voter 1’s dictatorship on the middle interval and

strategy-proofness, the social outcome must lie in the interval between a1 and ap, while at the other test

profile, the social outcome lies in the interval between aq and am. Therefore, the SCF violates invariance.
5In most cases, only the projection rule in the class of phantom voter rules survives according to the

characterization result of Bonifacio and Massó (2020).
6This is a “richness” condition that is formulated as a connectedness property of a graph on the set
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of two completely reversed preferences, and a technical condition called leaf symmetry.7 We

first show that a unidimensional domain is a non-dictatorial domain if and only if it satisfies

the unique seconds property of Aswal et al. (2003) (see the Auxiliary Proposition in Section

4.1); in particular, for any domain satisfying the unique seconds property, we construct a

strategy-proof rule that is “almost” dictatorial (see Section 4.1).

We subsequently focus on the non-dictatorial domains identified above and explore more

meaningful non-dictatorial strategy-proof rules than almost dictatorships. This indeed re-

quires us to investigate the details of the structure of non-dictatorial domains from a global

perspective that goes well beyond the unique seconds property. We proceed by investigat-

ing the existence and non-existence of an invariant, tops-only and strategy-proof rule on a

non-dictatorial, unidimensional domain. Theorem 1 in Section 4.2 provides the following

classification of non-dictatorial, unidimensional domains: semi-single-peakedness restriction

is necessary and sufficient for the existence of an invariant, tops-only and strategy-proof

rule, and furthermore all such rules are two-voter projection rules, while semi-hybridness is

necessary and sufficient for the non-existence of an invariant, tops-only and strategy-proof

rule, and furthermore every two-voter, tops-only and strategy-proof rule is a hybrid rule that

restricted to the middle interval behaves like a dictatorship. We further use this result to

extend the classification to the case of n-voter SCFs by replacing invariance by anonymity

(see Corollary 1 in Section 4.2). To sum up, the existence of a two-voter, tops-only and

strategy-proof rule satisfying invariance on unidimensional domains leads to a comprehen-

sive classification of the design possibilities for such domains. The resulting classification

may be seen as reinforcing the view that appropriate weakenings of single-peakedness char-

acterize non-dictatorial domains, addressing thereby a long standing conjecture in this field

(see Section 6.5.2 in Barberà, 2011 and Section 4.5 in Barberà et al., 2020).

Finally, we specialize to tops-only domains, i.e., domains where all strategy-proof rules

are endogenously tops-only rules. It is evident that a tops-only domain can never accommo-

date a critical spot (which ensures the existence of a non-tops-only and strategy-proof rule).

Accordingly, we refine the aforementioned classification by showing that on a non-dictatorial,

tops-only, unidimensional domain, the existence of an anonymous and strategy-proof rule

leads us to a classical domain of single-peaked preferences, while its non-existence, to a

domain of hybrid preferences (see Corollary 1 in Section 4.4).

The paper is organized as follows. In Section 2, we specify the model. In Section 3,

we formally introduce all preferences domains. All results are presented in Section 4, while

Section 5 contains a review of the literature and some final remarks. All proofs are gathered

in an Appendix.

2 Preliminaries

Let A = {a, b, c, . . . } be a finite set of alternatives with |A| = m ≥ 3. Let N = {1, . . . , n} be

a finite set of voters with |N | = n ≥ 2. Each voter i has a (strict) preference order Pi over A

which is a linear order. For any a, b ∈ A, a Pi b is interpreted as “a is strictly preferred to b

of alternatives; it is used here and in Chatterji et al. (2013) as a way of incorporating sufficiently many

preferences so as to give bite to the axiom of strategy-proofness.
7This is introduced to handle some preferences whose peaks are the leaves of the graph generated ac-

cording to the condition of path-connectedness.
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according to Pi”.
8 Let rk(Pi) denote the kth ranked alternative in Pi for all k ∈ {1, . . . ,m}.

Given a subset B ⊂ A,9 let maxPi(B) and minPi(B) respectively denote the most and the

least preferred alternatives in B according to Pi. Two preferences Pi and P ′i are completely

reversed if for all a, b ∈ A, [a Pi b] ⇔ [b P ′i a]. Let P denote the set containing all linear

orders over A. The set of all admissible orders is a set D ⊆ P, referred to as the preference

domain. In particular, we call P the universal domain. When D 6= P, D is referred to as a

restricted domain. For notational convenience, let Da = {Pi ∈ D : r1(Pi) = a} denote the

set of preferences with the peak a. Accordingly, a domain D is minimally rich if Da 6= ∅ for

all a ∈ A. A preference profile P = (P1, . . . , Pn) = (Pi, P−i) ∈ Dn is an n-tuple of orders

where P−i represents a collection of n− 1 voters’ preferences without considering voter i.

Fixing a domain D, two alternatives a, b ∈ A are said adjacent, denoted a ∼ b, if there

exist Pi, P
′
i ∈ D such that r1(Pi) = r2(P ′i ) = a, r1(P ′i ) = r2(Pi) = b and rk(Pi) = rk(P

′
i )

for all k ∈ {3, . . . ,m}. Domain D is called a path-connected domain if for all distinct

a, b ∈ A, there exists a sequence of non-repeated alternatives (x1, . . . , xv) such that x1 = a,

xv = b and xk ∼ xk+1 for all k ∈ {1, . . . , v − 1}. It is evident that the universal domain

P is a path-connected domain as any two distinct alternatives are adjacent. Clearly, path-

connectedness implies minimal richness. Moreover, D is said to satisfy diversity if it contains

two completely reversed preferences.10 Throughout the paper, we fix P i and P i as two

completely reversed preferences in a domain satisfying diversity, and moreover let P i and P i

be such that ak P i ak+1 and ak+1 P i ak for all k ∈ {1, . . . ,m−1}, by relabelling alternatives

as necessary.

2.1 Social Choice Functions

A Social Choice Function (or SCF) is a map f : Dn → A. At every profile P ∈ Dn, f(P )

is referred to as the “socially desirable” outcome associated to this preference profile. An

SCF f : Dn → A is unanimous if for all a ∈ A and P ∈ Dn, we have [r1(Pi) = a for all

i ∈ N ] ⇒ [f(P ) = a]. Henceforth, for simplicity, we call a unanimous SCF a rule. An

SCF f : Dn → A is strategy-proof if for all i ∈ N , Pi, P
′
i ∈ D and P−i ∈ Dn−1, we have

either f(Pi, P−i) = f(P ′i , P−i) or f(Pi, P−i) Pi f(P ′i , P−i). A prominent class of SCFs is the

class of tops-only SCFs. The value of these SCFs at every preference profile depends only

on voters’ peaks. Formally, an SCF f : Dn → A satisfies the tops-only property if for

all P, P ′ ∈ Dn, we have [r1(Pi) = r1(P ′i ) for all i ∈ N ] ⇒ [f(P ) = f(P ′)]. Last, an SCF

f : Dn → A is anonymous if for all preference profiles (P1, . . . , Pn) ∈ Dn and permutations

σ : N → N , we have f(P1, . . . , Pn) = f
(
Pσ(1), . . . , Pσ(n)

)
. In addition, we weaken anonymity

to a new axiom called invariance on a two-voter SCF, which requires that on a domain

satisfying diversity, the SCF chooses the same alternative at the two profiles where the

voters are endowed with the two completely reversed preferences. Formally, given the two

completely reversed preferences P i, P i ∈ D, a two-voter SCF f : D2 → A is invariant if we

8In a table, we specify a preference “vertically”. In a sentence, we specify a preference “horizontally”.

For instance, Pi = (a b c · · · ) represents a preference where a is the top, b is the second best, c is the third

ranked alternative while the rest of rankings in Pi are arbitrary.
9Throughout the paper, ⊂ and ⊆ denote the strict and weak inclusions respectively.

10Diversity has been widely presumed in the Condorcet domain literature, e.g., Monjardet (2009) and

Puppe (2018), where it plays a key role in pinning down maximal Condorcet domains.
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have f(P 1, P 2) = f(P 1, P 2).

Dictatorships are rules that are tops-only and strategy-proof on arbitrary domains. For-

mally, an SCF f : Dn → A is a dictatorship if there exists i ∈ N such that f(P ) = r1(Pi)

for all P ∈ Dn. It is clear that anonymity is polar opposite to a dictatorship, and in-

variance contrasts dictatorships as well. Given a nonempty subset B ⊆ A, we say that

an SCF f : Dn → A behaves like a dictatorship on B if there exists i ∈ N such that

f(P1, . . . , Pn) = r1(Pi) for all (P1, . . . , Pn) ∈ Dn with r1(P1), . . . , r1(Pn) ∈ B. The Gibbard-

Satterthewaite Theorem shows that on the universal domain P, an SCF is a strategy-proof

rule if and only if it is a dictatorship. The same dictatorship characterization result also

holds on some restricted domains (see the literature listed in Section 5.1). We call a domain

D a dictatorial domain if every strategy-proof rule f : Dn → A, n ≥ 2, is a dictatorship,

and call any domain that admits a non-dictatorial, strategy-proof rule a non-dictatorial

domain. Clearly, a domain that admits an anonymous/invariant and strategy-proof rule is

a non-dictatorial domain. Conversely, a non-dictatorial domain may not admit an anony-

mous/invariant and strategy-proof rule.

2.2 Graphs

Let GA = 〈A, EA〉 denote an undirected graph where A is the vertex set and EA is the set

of edges.11 Given x, y ∈ A, a path in GA connecting x and y is a sequence of non-repeated

vertices (x1, . . . , xt) such that x1 = x, xt = y and (xk, xk+1) ∈ EA for all k ∈ {1, . . . , t− 1}.
The graph GA is connected if for every pair of distinct vertices, there exists a path connecting

them. In particular, the graph GA is called a complete graph if any two distinct vertices

form an edge, i.e., (a, b) ∈ EA for all distinct a, b ∈ A. Given a ∈ A, let NA(a) = {b ∈ A :

(a, b) ∈ EA} denote the set of alternatives that are neighbor to a in GA. Given a graph GA,

a vertex a ∈ A is called a leaf if it has a unique neighbor, i.e., |NA(a)| = 1. Accordingly,

let Leaf(GA) =
{
x ∈ A : |NA(x)| = 1

}
collect all leaves in GA. Given a subset B ⊂ A,

let GB = 〈B, EB〉 denote the subgraph of GA where the vertex set is B and the edge set is

EB = {(a, b) ∈ EA : a, b ∈ B}.
A tree T A = 〈A, EA〉 is a connected graph where each pair of distinct vertices is connected

by a unique path (see Figure 2). A line is a particular tree which has exactly two leaves.

Throughout the paper, we fix LA = (a1, . . . , am) to be the line where ak and ak+1 form an

edge for all k ∈ {1, . . . ,m − 1}. Fix a tree T A. Given x, y ∈ A, let 〈x, y|T A〉 denote the

unique path connecting x and y in T A.12 Given a subset B ⊂ A such that the path between

any two alternatives of B is also included in B, i.e., [a, b ∈ B] ⇒
[
〈a, b|T A〉 ⊆ B

]
, the

11If (a, b) ∈ EA, then a 6= b and (b, a) ∈ EA.
12For notational convenience, we also use 〈x, y|T A〉 to denote the set of alternatives in the path between

x and y. We also call 〈x, y|T A〉 the interval between x and y in T A.
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subgraph T B = 〈B, EB〉 is also a tree. Furthermore, given a ∈ A, if a ∈ B, it is natural to

let Proj(a, T B) = a denote the projection of a on the subtree T B; otherwise, there exists

a unique a′ ∈ B such that a′ ∈ 〈a, b|T A〉 for all b ∈ B, and then let Proj(a, T B) = a′

denote the projection of a on T B. Given a preference profile P , we construct the set

Γ(P ) =
{
a ∈ A : a ∈ 〈r1(Pi), r1(Pj)|T A〉 for some i, j ∈ N

}
which includes all voters’

preference peaks and alternatives that are located between voters’ preference peaks. Thus,

T Γ(P ) is the minimal subtree nested in T A that covers all voters’ preference peaks. Given

two distinct alternatives x, y ∈ A, we fix the set Ax⇀y =
{
z ∈ A : x ∈ 〈z, y|T A〉

}
to

include every alternative whose path to y always goes through x. Therefore, T Ax⇀y
is a

subtree nested in T A. Given a tree T A, we consider two distinct alternatives a and b that

completely separate T A into the middle interval 〈a, b|T A〉 and the two subtrees T Aa⇀b
and

T Ab⇀a
(see Figure 2). Thus, Proj(c, 〈a, b|T A〉) ∈ {a, b} for all c ∈ A\〈a, b|T A〉. We call a and

b dual-thresholds in T A (see Figure 2).13 According to the vertices x and y in Figure 2, we

have the subtree T Ax⇀y
, the interval 〈x, y|T A〉 and the subtree T Ay⇀x

, which in combination

however does not recover the tree T A as the branch attached to the interior of the interval

〈x, y|T A〉 is not covered. Hence, x and y are not dual-thresholds. Also note that x is a leaf

of the subtree T Ax⇀y
, whereas y is not a leaf of the subtree T Ay⇀x

.

We conclude this section by adopting the terminology of a connected graph to represent

a connected domain. Given a domain D, we construct a graph GA
∼ = 〈A, EA∼〉, called an

adjacency graph, where the vertex set is A, and two alternatives form an edge if and

only if they are adjacent, i.e., EA∼ = {(a, b) ∈ A2 : a ∼ b}. Then, it is clear that D
is a path-connected domain if and only if GA

∼ is a connected graph. Given x ∈ A, let

NA
∼ (x) = {y ∈ A : (x, y) ∈ EA∼} collect all neighbors of x in the adjacency graph GA

∼.

3 Preference Domains and Tops-only Rules

In this section, we introduce preference domains and rules that constitute our classification.

3.1 Single-peaked domain and hybrid domain

We first introduce the classical single-peaked domain and its recently introduced variant

called the hybrid domain.14

Definition 1 (Demange (1982)) Fixing a tree T A, a preference Pi is single-peaked on

T A if for all distinct a, b ∈ A, we have
[
a ∈ 〈r1(Pi), b|T A〉

]
⇒ [a Pi b]. Let DSP(T A) denote

the single-peaked domain of all single-peaked preferences on T A.

The single-peaked domain DSP(T A) is naturally a path-connected domain as its adjacency

graph is identical to T A, and it satisfies diversity if and only if T A is a line.

13In particular, if a and b form an edge in T A, they are naturally dual-thresholds.
14The idea of the hybrid domain originates from the multiple single-peaked domain of Reffgen (2015).

Achuthankutty and Roy (2020) and Chatterji et al. (2022) establish the formal definition of a hybrid pref-

erence on a line, and study strategy-proof rules and random SCFs. We generalize the notion to trees.
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Definition 2 Fixing a tree T A and dual-thresholds a, b ∈ A, a preference Pi is (a, b)-

hybrid on T A if it satisfies the following two conditions:

(i) for all distinct y, z ∈ Aa⇀b or y, z ∈ Ab⇀a,
[
y ∈ 〈r1(Pi), z|T A〉

]
⇒ [y Pi z], and

(ii) [r1(Pi) ∈ Aa⇀b\{a}]⇒ [maxPi(〈a, b|T A〉) = a] and

[r1(Pi) ∈ Ab⇀a\{b}]⇒ [maxPi(〈a, b|T A〉) = b].

Let DH(T A, a, b) denote the hybrid domain of all (a, b)-hybrid preferences on T A.

The hybrid domain DH(T A, a, b) is naturally a path-connected domain as its adjacency

graph includes T A as a subgraph, and it satisfies diversity if and only if T A is a line. Note

that DSP(T A) ⊆ DH(T A, a, b), where the equality holds when the dual-thresholds a and

b form an edge in T A. In another extreme circumstance, when 〈a, b|T A〉 = A, we have

DH(T A, a, b) = P.

Definition 3 A domain D is called a single-peaked domain if there exists a tree T A
such that D ⊆ DSP(T A), and GA

∼ is a connected graph. A domain D is called a hybrid

domain if the following three conditions are satisfied:

(i) there exist a tree T A and dual-thresholds a, b ∈ A such that D ⊆ DH(T A, a, b), and GA
∼

is a connected graph,

(ii) there exist no tree T̂ A and dual-thresholds â, b̂ ∈ A such that D ⊆ DH(T̂ A, â, b̂) and

〈â, b̂
∣∣T̂ A〉 ⊂ 〈a, b|T A〉15, and

(iii)
∣∣〈a, b|T A〉∣∣ ≥ 3.16

We call the interval 〈a, b|T A〉 here the free zone. To highlight the tree T A and the dual-

thresholds a and b, we further call D an (a, b)-hybrid domain on T A. In particular, D
is said to be non-degenerate if Aa⇀b 6= {a} or Ab⇀a 6= {b}, and degenerate otherwise.

3.2 Semi-single-peaked domain and semi-hybrid domain

Next, we weaken single-peakedness and hybridness to the notions of semi-single-peakedness

and semi-hybridness respectively.

We fix an alternative x̄ in a tree T A, and call it a threshold in establishing a semi-single-

peaked preference. In a semi-single-peaked preference, the full force of single-peakedness

only prevails on the relative rankings of alternatives located in the interval between the

preference peak and the threshold x̄, while an alternative elsewhere is only required to be

ranked below its projection on the interval between the preference peak and the threshold

x̄ (e.g., recall Figure 1(d)).

15The notation 〈â, b̂
∣∣T̂ A〉 ⊂ 〈a, b|T A〉 here only concerns the inclusion relation between the two subsets of

alternatives, not the inclusion relation between the two graphs of intervals.
16We impose

∣∣〈a, b|T A〉
∣∣ ≥ 3 to avoid the case that a hybrid domain reduces to a single-peaked domain.
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Definition 4 (Chatterji, Sanver, and Sen (2013)) Fixing a tree T A and a threshold x̄ ∈
A, a preference Pi is semi-single-peaked on T A w.r.t. x̄ if it satisfies the following two

conditions:

(i) for all distinct a, b ∈ 〈r1(Pi), x̄|T A〉,
[
a ∈ 〈r1(Pi), b|T A〉

]
⇒ [a Pi b], and

(ii) for all a /∈ 〈r1(Pi), x̄|T A〉,
[

Proj
(
a, 〈r1(Pi), x̄|T A〉

)
= a′

]
⇒ [a′ Pi a].

Let DSSP(T A, x̄) denote the semi-single-peaked domain of all semi-single-peaked pref-

erences on T A w.r.t. x̄.

The semi-single-peaked domain DSSP(T A, x̄) is path-connected as its adjacency graph

coincides with T A, and it satisfies diversity if and only if |NA(x̄)| ≤ 2 (see Clarification 1 in

Appendix G). Moreover, it is clear that DSP(T A) = ∩x̄∈ADSSP(T A, x̄).

To establish a semi-hybrid preference, we fix dual-thresholds a and b in a tree T A. A

semi-hybrid preference, whose preference peak is located in the subtree T Aa⇀b
, is semi-single-

peaked on T A w.r.t. a, and in addition ranks b above all other alternatives of Ab⇀a (e.g.,

recall Figure 1(e)). Analogous conditions are imposed on a semi-hybrid preference with the

peak located in T Ab⇀a
. Otherwise, the preference peak is located between a and b, and then

a and b are required to be top-ranked within Aa⇀b and Ab⇀a respectively (e.g., recall Figure

1(f)). Thus, a semi-hybrid preference is significantly more permissive than its counterpart

hybrid preference which follows the full restriction of single-peakedness on both subtrees

T Aa⇀b
and T Ab⇀a

.

Definition 5 Fixing a tree T A and dual-thresholds a, b ∈ A, a preference Pi is (a, b)-

semi-hybrid on T A if it satisfies the following three conditions:

(i)
[
r1(Pi) ∈ Aa⇀b\{a}

]
⇒
[
Pi is semi-single-peaked on T A w.r.t. a and

maxPi(Ab⇀a) = b

]
,

(ii)
[
r1(Pi) ∈ Ab⇀a\{b}

]
⇒
[
Pi is semi-single-peaked on T A w.r.t. b and

maxPi(Aa⇀b) = a

]
, and

(iii)
[
r1(Pi) ∈ 〈a, b|T A〉

]
⇒
[

maxPi(Aa⇀b) = a and maxPi(Ab⇀a) = b
]
.

Let DSH(T A, a, b) denote the semi-hybrid domain of all (a, b)-semi-hybrid preferences on

T A.

The semi-hybrid domain DSH(T A, a, b) is a path-connected domain as its adjacency graph

includes T A as a subgraph. More specifically, the adjacency graph of DSH(T A, a, b) is a

combination of the adjacency subgraph GAa⇀b

∼ , which coincides with the subtree T Aa⇀b
, the

adjacency subgraph over the set 〈a, b|T A〉, denoted G〈a,b|T
A〉

∼ , which is a complete subgraph,

and the adjacency subgraph GAb⇀a

∼ , which coincides with the subtree T Ab⇀a
(see Clarification

2 in Appendix G). The semi-hybrid domain DSH(T A, a, b) satisfies diversity if and only if

we have [Aa⇀b 6= {a}] ⇒ [a ∈ Leaf(T Aa⇀b
)] and [Ab⇀a 6= {b}] ⇒ [b ∈ Leaf(T Ab⇀a

)] (see

Clarification 2 in Appendix G). Note that when
∣∣〈a, b|T A〉∣∣ = 2, we have DSH(T A, a, b) =

DSSP(T A, a) ∩ DSSP(T A, b), and when 〈a, b|T A〉 = A, all three conditions in Definition 5
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

a1 a1 a1 a2 a2 a3 a4 a4 a4 a5 a5 a6

a2 a2 a2 a1 a4 a4 a2 a3 a5 a4 a6 a5

a3 a5 a4 a4 a1 a2 a1 a2 a3 a3 a4 a4

a4 a4 a3 a3 a3 a1 a3 a1 a2 a2 a3 a3

a5 a3 a5 a5 a5 a5 a5 a5 a6 a6 a2 a2

a6 a6 a6 a6 a6 a6 a6 a6 a1 a1 a1 a1

Table 1: Domain D1

become ineffective and impose no restriction on the preference, and consequently the semi-

hybrid domain expands to the universal domain, i.e., DSH(T A, a, b) = P.17 Moreover, it is

obvious that DH(T A, a, b) ⊆ DSH(T A, a, b), where the equality holds if and only if |Aa⇀b| ≤ 2

and |Ab⇀a| ≤ 2.

Definition 6 A domain D is called a semi-single-peaked domain if there exist a tree

T A and a threshold x̄ ∈ A such that D ⊆ DSSP(T A, x̄), and GA
∼ is a connected graph. A

domain D is called a semi-hybrid domain if the following three conditions are satisfied:

(i) there exist a tree T A and dual-thresholds a, b ∈ A such that D ⊆ DSH(T A, a, b), and

GA
∼ is a connected graph,18

(ii) there exist no tree T̂ A and dual-thresholds â, b̂ ∈ A such that D ⊆ DSH(T̂ A, â, b̂) and

〈â, b̂
∣∣T̂ A〉 ⊂ 〈a, b|T A〉,19 and

(iii) if GA
∼ is a tree, then for each x ∈ Leaf

(
G〈a,b|T

A〉
∼

)
, there exists a preference Pi ∈ D such

that Pi is not semi-single-peaked on GA
∼ w.r.t. x.20

We call the interval 〈a, b|T A〉 here the free zone. To highlight the tree T A and the dual-

thresholds a and b, we further call D an (a, b)-semi-hybrid domain on T A. In par-

ticular, D is said to be non-degenerate if Aa⇀b 6= {a} or Ab⇀a 6= {b}, and degenerate

otherwise.

We provide an example to illustrate a semi-hybrid domain.

Example 1 Let A = {a1, a2, a3, a4, a5, a6}. We specify a domain D1 of 12 preferences in

Table 1 that are all (a2, a5)-semi-hybrid on the line LA. The line LA, interval 〈a2, a5|LA〉,
adjacency graph GA

∼ and adjacency subgraph G〈a2,a5|LA〉
∼ are all specified in Figure 3, respec-

tively. One can immediately notice the difference between the interval 〈a2, a5|LA〉 and the

adjacency subgraph G〈a2,a5|LA〉
∼ in Figure 3.

17This indicates that not all the semi-hybrid domains are non-dictatorial domains.
18This condition implies that the adjacency graph GA

∼ is a combination of GAa⇀b

∼ that coincides with the

subtree T Aa⇀b

, the connected adjacency subgraph G〈a,b|T
A〉

∼ that may be different from the interval 〈a, b|T A〉
in T A (see Example 1), and GAb⇀a

∼ that coincides with the subtree T Ab⇀a

.
19Note that any arbitrary domain is contained in DSH(LA, a1, am). Condition (ii) is not content with

information delivered by (a1, am)-semi-hybridness on LA, but seeks to push the middle interval to its minimal

form to reveal the key preference restrictions via the notion of semi-hybridness, which in return guides the

design of strategy-proof rules.
20Note that if GA

∼ is a tree, condition (i) implies that the subgraph G〈a,b|T
A〉

∼ is also a tree. This condition

implies |〈a, b|T A〉| ≥ 3. More importantly, it in conjunction with condition (ii) ensures that a semi-hybrid

domain satisfying diversity is never a semi-single-peaked domain (see Lemma 12 in Appendix B).
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Figure 3: Line, interval, adjacency graph and adjacency subgraph

Domain D1 is a path-connected domain as indicated by the adjacency graph GA
∼ of Figure

3, and satisfies diversity according to the preferences P1 and P12 in Table 1. Next, we check

whether D1 is an (a2, a5)-semi-hybrid domain on LA. Clearly, condition (i) of Definition

5 is satisfied: D1 ⊂ DSH(LA, a2, a5), and GA
∼ is a connected graph. We next claim that

condition (ii) of Definition 5 holds. Suppose by contradiction that there exist a tree T̂ A
and dual-thresholds â, b̂ ∈ A such that D1 ⊆ DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a2, a5|LA〉. Let

Ââ⇀b̂ =
{
a ∈ A : â ∈ 〈a, b̂|T̂ A〉

}
and Âb̂⇀â =

{
a ∈ A : b̂ ∈ 〈a, â|T̂ A〉

}
. According to the

connected graph GA
∼ in Figure 3 and the contradictory hypothesis, we know that G〈â,b̂|T̂

A〉
∼

must be a connected graph and strictly nested in G〈a2,a5|LA〉
∼ in Figure 3. Then, one of the

following five cases must occur:

(1) â = a2, b̂ = a4 and G〈â,b̂|T̂
A〉

∼ = (a2, a4, a3),21

(2) â = a4, b̂ = a5 and G〈â,b̂|T̂
A〉

∼ = (a3, a4, a5),

(3) â = a2, b̂ = a4 and G〈â,b̂|T̂
A〉

∼ = (a2, a4),

(4) â = a4, b̂ = a5 and G〈â,b̂|T̂
A〉

∼ = (a4, a5), and

(5) â = a4, b̂ = a3 and G〈â,b̂|T̂
A〉

∼ = (a4, a3).

In each case, note that a1 ∈ Ââ⇀b̂\{â}. Then, by (â, b̂)-semi-hybridness on T̂ A, we know

that in each one of the first four cases, a4 must be ranked above a5 in every preference with

the peak a1, which contradicts P2 in Table 1, while in the fifth case, a4 must be ranked

above a3 in every preference with the peak a1, which contradicts P1 in Table 1. Last, we

notice that condition (iii) of Definition 5 is violated, since GA
∼ is a tree, a2 is a leaf of

G〈a2,a5|LA〉
∼ , and all preferences in Table 1 are semi-single-peaked on GA

∼ w.r.t. a2. Note that

if we add a preference P13 = (a5 a3 a2 a1 a4 a6), which is also (a2, a5)-semi-hybrid on LA, the

new domain D̂1 = D1 ∪ {P13} satisfies condition (iii) of Definition 5, and hence becomes an

(a2, a5)-semi-hybrid domain on LA.22 �

3.3 Projection rule and hybrid rule

In this section, we introduce two specific tops-only rules that are related to our investigation.

The first tops-only rule is called the projection rule. Given a tree T A, we fix an alternative

x̄ ∈ A. Taking an arbitrary preference profile P as an example, we first identify the minimal

subtree T Γ(P ) that covers all preference peaks. Then, the projection of x̄ on T Γ(P ) is selected

by the projection rule as the social outcome.

21The case â = a4, b̂ = a2 and G〈â,b̂|T̂
A〉

∼ = (a2, a4, a3) is symmetric, and therefore is omitted.
22The adjacency graph of D̂1 is also the tree GA

∼ in Figure 3. Conditions (i) and (ii) of Definition 5 continue

to hold for domain D̂1, while condition (iii) becomes valid, i.e., given Leaf(G〈a2,a5|LA〉
∼ ) = {a2, a3, a5}, P13 is

not semi-single-peaked on GA
∼ w.r.t. a2, and P1 is not semi-single-peaked on GA

∼ w.r.t. a3 or a5.
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Definition 7 An SCF f : Dn → A is a projection rule if there exist a tree T A and an

alternative x̄ ∈ A such that for all P ∈ Dn,

f(P ) = Proj(x̄, T Γ(P )).

To highlight the tree T A and the alternative x̄, we further call f the projection rule on

T A w.r.t. x̄.

By the sufficiency part of the Theorem of Chatterji et al. (2013), we know that given a tree

T A and a threshold x̄ ∈ A, the semi-single-peaked domain DSSP(T A, x̄) admits the projection

rule on T A w.r.t. x̄ as an anonymous, tops-only and strategy-proof rule. Furthermore,

Corollary 1 of Bonifacio and Massó (2020) implies that when an additional condition is

imposed on the location of the threshold, that is, x̄ is never a neighbor to a leaf of T A, i.e.,

NA(x̄)∩Leaf(T A) = ∅, the projection rule on T A w.r.t. x̄ is the unique anonymous, tops-only

and strategy-proof SCF admitted by the semi-single-peaked domain DSSP(T A, x̄).23

The second tops-only rule is the hybrid rule, which can be viewed as a variant of the

projection rule. Given a tree T A, we fix some dual-thresholds a, b ∈ A. Moreover, a

particular voter i ∈ N is fixed in advance. Taking an arbitrary preference profile P as an

example, the hybrid rule first detects whether voter i’s preference peak r1(Pi) is located

in the interval 〈a, b|T A〉, or the subtree T Aa⇀b
, or the subtree T Ab⇀a

. Then, in the first

case, r1(Pi) is selected by the hybrid rule as the social outcome, while in the second case

(respectively, the third case), the social outcome changes to the projection of a (respectively,

b) on the minimal subtree T Γ(P ).

Definition 8 An SCF f : Dn → A is a hybrid rule if there exist a tree T A, dual-

thresholds a, b ∈ A with |〈a, b|T A〉| ≥ 3, and a voter i ∈ N such that for all P ∈ Dn,

f(P ) =


r1(Pi) if r1(Pi) ∈ 〈a, b|T A〉,

Proj
(
a, T Γ(P )

)
if r1(Pi) ∈ Aa⇀b\{a}, and

Proj
(
b, T Γ(P )

)
if r1(Pi) ∈ Ab⇀a\{b}.

To highlight the tree T A and the dual-thresholds a and b, we further call f an (a, b)-hybrid

rule on T A.

It is easy to show that given a tree T A and dual-thresholds a, b ∈ A, an (a, b)-hybrid

rule on T A is a tops-only and strategy-proof rule on a domain D ⊆ DSH(T A, a, b) (see

Clarification 3 in Appendix G).24 Clearly, an (a, b)-hybrid rule on a tree T A behaves like

a dictatorship on the interval 〈a, b|T A〉, and it becomes a dictatorship when the interval

〈a, b|T A〉 expands to the whole alternative set. Therefore, an (a, b)-hybrid rule on T A is

never anonymous. Moreover, note that the two peaks of the completely reversed preferences,

by the restriction of (a, b)-semi-hybridness on a tree T A, can never be both in Aa⇀b (or both

in Ab⇀a). Consequently, a two-voter (a, b)-hybrid rule on T A must choose distinct social

outcomes at the two profiles where the two voters are endowed with the two completely

reversed preferences, and hence violates invariance.

23Further investigation on projection rules can be found in Thomson (1993) and Vohra (1999).
24Proposition 3 of Chatterji and Zeng (2020) characterizes all tops-only and strategy-proof rules on the

semi-hybrid domain DSH(T A, a, b), given |Aa⇀b| 6= 2 and |Ab⇀a| 6= 2.
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4 Results

4.1 Non-dictatorial unidimensional domains

In this section, we provide a complete characterization of non-dictatorial domains. We first

introduce some notation and an additional richness condition.

Fix a domain D. Given a ∈ A, let S(Da) = {b ∈ A : b = r2(Pi) for some Pi ∈ Da}
collect all alternatives that are second ranked in the preferences of Da. Given a leaf of the

adjacency graph GA
∼, say x ∈ Leaf(GA

∼), it is evident that |S(Dx)| ≥ 1. More specifically,

we know that either S(Dx) is a singleton set of x’s unique neighbor in GA
∼, which implies

|S(Dx)| = 1, or S(Dx) contains some alternative other than the unique neighbor of x, which

implies |S(Dx)| > 1. We then introduce a technical richness condition called leaf symmetry

to handle each leaf in the second case. Formally, domain D is said to satisfy leaf symmetry

if for each x ∈ Leaf(GA
∼) with |S(Dx)| > 1, there exists z ∈ S(Dx) such that z /∈ NA

∼ (x)

and x ∈ S(Dz).25 Henceforth, we call a domain a unidimensional domain if it satisfies

path-connectedness, diversity and leaf symmetry.

Remark 1 A single-peaked domain satisfies leaf symmetry vacuously.26 A hybrid/semi-

hybrid domain satisfies leaf symmetry vacuously if its adjacency subgraph on the free zone

has no leaf.27 A semi-single-peaked domain D ⊆ DSSP(T A, x̄) satisfies leaf symmetry if and

only if either x̄ /∈ Leaf(T A), or x̄ ∈ Leaf(T A) and D ⊆ DSSP(T A, x̄) ∩ DSSP(T A, x) where

NA(x̄) = {x} (see Clarification 4 in Appendix G).

Remark 2 Many preference domains studied in the literature are unidimensional domains,

e.g., the universal domain, some linked domains of Aswal et al. (2003)28, the single-peaked

25If Leaf(GA
∼) = ∅, or Leaf(GA

∼) 6= ∅ and |S(Dx)| = 1 for all x ∈ Leaf(GA
∼), domain D satisfies leaf

symmetry vacuously. Under leaf symmetry, given x ∈ Leaf(GA
∼), NA

∼ (x) = {y} and |S(Dx)| > 1, we have

some z ∈ A\{x, y} and Pi, P
′
i ∈ D such that r1(Pi) = r2(Pi) = x and r1(P ′i ) = r2(Pi) = z. This indicates

that x and z form an edge analogous to, but weaker than the edge of adjacency. Furthermore, by path-

connectedness, we have a path (x1, . . . , xv) in GA
∼ connecting x and z. Since NA

∼ (x) = {y}, it must be the

case that y = x2. Thus, by combining the path (x1, . . . , xv) and the “weaker edge” between x and z, we

formulate a cycle, which, analogous to a circular domain of Sato (2010), ensures that all strategy-proof rules

behave like dictatorships on the set {x, y, z} (see Lemma 3 in Appendix A).
26Given a single-peaked domain D ⊆ DSP(T A), since GA

∼ = T A, the restriction of single-peakedness

implies |S(Dx)| = 1 for all x ∈ Leaf(GA
∼).

27Given an (a, b)-hybrid/semi-hybrid domain D on a tree T A, let Leaf(GA
∼) 6= ∅ and Leaf

(
G〈a,b|T

A〉
∼

)
= ∅.

Clearly, A 6= 〈a, b|T A〉. Thus, we have one of the following three cases: (i) Aa⇀b 6= {a} and Ab⇀a =

{b} which imply Leaf(GA
∼) = Leaf(T A)\{b}, (ii) Aa⇀b = {a} and Ab⇀a 6= {b} which imply Leaf(GA

∼) =

Leaf(T A)\{a}, or (iii) Aa⇀b 6= {a} and Ab⇀a 6= {b} which imply Leaf(GA
∼) = Leaf(T A). Then, by the

restriction of (a, b)-hybridness/semi-hybridness on T A, we have |S(Dx)| = 1 for all x ∈ Leaf(GA
∼). In

Example 3 behind, we provide an example of a semi-hybrid domain that violates leaf symmetry.
28Aswal et al. (2003) introduced a notion between two alternatives, which we call weak adjacency. For-

mally, two alternatives a and b are said weakly adjacent, denoted a � b, if there exist Pi, P
′
i ∈ D such that

r1(Pi) = r2(P ′i ) = a and r1(P ′i ) = r2(Pi) = b. It is clear that weak adjacency is significantly less demanding

than the notion of adjacency. Accordingly, a domain D is said weakly path-connected, if the weak adjacency

graph GA
� = 〈A, EA�〉, where two alternatives formulate an edge if and only if they are weakly adjacent, is

a connected graph. It is clear that GA
∼ ⊆ GA

�. Aswal et al. (2003) showed that a linked domain, i.e., all

alternatives are able to be relabeled as a1, . . . , am such that a1 � a2 and for each k ∈ {3, . . . ,m}, ak � as
and ak � at for some distinct s, t ∈ {1, . . . , k − 1}, is a dictatorial domain. Indeed, the weak adjacency

graph of a linked domain is a connected graph, has no leaf, and contains at least 2m− 3 edges.
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domain of Black (1948) and Moulin (1980), the single-crossing domain of Saporiti (2009)

and the multiple single-peaked domains of Reffgen (2015). More generally, the class of

no-restoration domains of Sato (2013) that satisfies minimal richness and diversity are uni-

dimensional domains (implied by Theorem 1 of Chatterji et al. (2022)).29 The single-peaked

domain on a tree (not a line) of Demange (1982) satisfies path-connectedness and leaf sym-

metry, but is excluded by the class of unidimensional domains due to the violation of di-

versity. The class of unidimensional domains also excludes multidimensional domains, like

the (inclusion/exclusion) separable domain of Barberà et al. (1991), the multidimensional

single-peaked domain of Barberà et al. (1993), the separable domain of Le Breton and Sen

(1999) and the top-separable domain of Le Breton and Weymark (1999), as they all fail to

satisfy path-connectedness.30

Aswal et al. (2003) introduced the unique seconds property on a domain D, which says

that there exists x ∈ A such that |S(Dx)| = 1, and showed that it is sufficient for D to be a

non-dictatorial domain (also see the inseparable top-pair property of Kalai and Ritz (1980)).

The Auxiliary Proposition shows that the unique seconds property is also necessary, provided

that path-connectedness and leaf symmetry hold. The proof is contained in Appendix A.

AUXILIARY PROPOSITION Let a domain D satisfy path-connectedness and leaf symmetry. Then,

D is a non-dictatorial domain if and only if it satisfies the unique seconds property.

Under the unique seconds property of a domain D, say S(Dx) = {y}, we can construct

the following non-dictatorial, strategy-proof rule that is loosely speaking called an “almost

dictatorship” (it follows a dictatorship almost everywhere and avoids dictatorship at few

particular preference profiles): fixing two distinct voters i, j ∈ N , for all P ∈ Dn, let

f(P ) =

{
r1(Pi) if r1(Pi) 6= x, and

maxPj({x, y}) otherwise.

The unique seconds property only addresses a preference restriction that is locally embedded

in a domain - it only concerns one common second best alternative in preferences with

one common peak, and hence cannot be further utilized for the social planner’s task of

designing meaningful non-dictatorial, strategy-proof rules beyond almost dictatorships. In

29No-restoration is not only concerned with the richness of a domain, but also ensures that all preferences in

a domain are well organized: given two preferences and two alternatives, one given preference is transformed

to the other via a sequence of preferences in the domain that switches two contiguously ranked alternative

across each pair of consecutive preferences, and moreover the relative ranking of the two given alternatives

is switched at most once. Chatterji et al. (2022) show that a domain satisfying minimal richness, no-

restoration and diversity is either a single-peaked domain on LA, or a hybrid domain LA such that the

adjacency subgraph on the free zone has no leaf. Path-connectedness significantly weakens no-restoration,

so as to accommodate more permissive preference restrictions that are the main concern of this paper.
30More specifically, the notion of adjacency is not applicable on each one of these multidimensional do-

mains, since no two alternatives are adjacent. We intensionally adopt the notion of adjacency to introduce

the terminology “unidimensionality” so as to exclude these multidimensional domains from our analysis. In

fact, the notion of weak adjacency is applicable on these multidimensional domains. However, weak adja-

cency is too flexible for us to explore our analysis in trackable way. For instance, give a domain D, if the

adjacency graph GA
∼ is a connected graph and has no leaf, then it is a dictatorial domain (see Observation

1 in Appendix A). However, this important result fails if we replace GA
∼ by GA

�, since each one of these

multidimensional domain has a no-leaf connected weak adjacency graph and is a non-dictatorial domain.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

a a b b c c x x y y z z
b c a c a b y z x z x y
c b c a b a z y z x y x
x x x x x x a a a a a a
y y y y y y b b b b b b
z z z z z z c c c c c c

Table 2: Domain D2

order to explore the scope of designing non-dictatorial, strategy-proof rules on non-dictatorial

domains, we go beyond the unique seconds property, and uncover more information on

preference restrictions that are globally obeyed by the rankings of all alternatives in all

preferences in a domain, like single-peakedness/semi-single-peakedness and hybridness/semi-

hybridness introduced in Section 3.

Remark 3 All single-peaked domains, semi-single-peaked domains, non-degenerate hybrid

domains and non-degenerate semi-hybrid domains satisfy the unique seconds property, and

therefore are non-dictatorial domains. Indeed, a degenerate hybrid/semi-hybrid domain

sometimes violates the unique second property, e.g., the adjacency graph has no leaf, and

hence by the Auxiliary Proposition, is a dictatorial domain; when it satisfies the unique

seconds property (see the example provided in Clarification 5 of Appendix G), it is a non-

dictatorial domain.

Remark 4 Roy and Storcken (2019) provide three other domain richness conditions, and

show that the unique seconds property is necessary and sufficient for non-dictatorial domains.

Path-connectedness strengthens their first condition, and is more transparent and easier to

verify than their third condition, while leaf symmetry significantly weakens their second

condition as it only concerns the leaves of the adjacency graph. This weakening is meaningful

and critical to our analysis because it accommodates semi-single-peaked domains which

however are ruled out by their second condition. See the detailed explanation in Clarification

6 of Appendix G.

We conclude this section by addressing the indispensability of the two richness conditions

in establishing the Auxiliary Proposition. First, all multidimensional domains mentioned

in Remark 2 are non-dictatorial domains, but are not covered by the Auxiliary Proposition

since they all fail to satisfy path-connectedness. We also provide another example to show

the indispensability of path-connectedness, which would provide a better understand on the

role played by path-connectedness in establishing the Auxiliary Proposition.

Example 2 Let A = {a, b, c, x, y, z}. We specify a domain D2 of 12 preferences in Table

2. Let B = {a, b, c}. One can easily observe that GA
∼ consists of two isolated triangles GB

∼
and GA\B

∼ . Therefore, D2 violates path-connectedness and satisfies leaf symmetry vacuously.

Next, we construct the following SCF: for all Pi, Pj ∈ D2,

f(Pi, Pj) =

{
maxPi(B) if r1(Pj) ∈ B, and

r1(Pj) otherwise.
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P1 P2 P3 P4 P5 P6 P7 P8 P9

a b b b c d a c d
b a c d b b d a c
c c d a d a b b b
d d a c a c c d a

Table 3: Domain D3

r rr r
a b c

d

Figure 4: The star-shape tree T A

It is clear that f satisfies unanimity, and is non-dictatorial. The verification of strategy-

proofness is put in Clarification 7 of Appendix G. Note that the SCF f , supported by

the isolation of GB
∼ and GA\B

∼ , accommodates two distinct dictatorships on B and A\B
respectively, i.e., voter i dictates on B, while voter j dictates on A\B. This contrasts the

unified dictatorship established in Lemma 2 of Appendix A. �

Last, we provide a specific example to illustrate the indispensability of leaf symmetry.

Example 3 Let A = {a, b, c, d} be allocated on a star-shape tree T A of Figure 4. We

specify a domain D3 of 9 preferences in Table 3. It is easy to verify GA
∼ = T A. Therefore,

D3 is a path-connected domain. We claim that D3 violates leaf symmetry. Suppose by

contradiction that D3 satisfies leaf symmetry. Given a ∈ Leaf(GA
∼), since S(Da3) = {b, d}

and NA
∼ (a) = {b}, by leaf symmetry, we must induce a contradiction: a ∈ S(Dd3) = {b, c}.

Next, we construct the following SCF to illustrate that D3 is a non-dictatorial domain: for

all Pi, Pj ∈ D3,

f(Pi, Pj) =


d if Pi = P7 and Pj ∈ Dd3, or Pi ∈ Dd3 and Pj = P7,

a if Pi = P8 and Pj ∈ Da3, or Pi ∈ Da3 and Pj = P8,

c if Pi = P9 and Pj ∈ Dc3, or Pi ∈ Dc3 and Pj = P9, and

Proj
(
b, 〈r1(Pi), r1(Pj)|T A〉

)
otherwise.

It is clear that f satisfies unanimity and anonymity, and violates the tops-only property. The

verification of strategy-proofness is put in Clarification 8 of Appendix G. Last, we observe

|S(Dx3)| ≥ 2 for all x ∈ A which suggests the violation of the unique seconds property. �

4.2 A classification of non-dictatorial, unidimensional

domains

In this section, we establish a classification of non-dictatorial, unidimensional domains us-

ing the notions of semi-single-peakedness and semi-hybridness via the existence and non-

existence respectively of an invariant, tops-only and strategy-proof rule. The following is

the main result of the paper.
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Figure 5: A classification of non-dictatorial, unidimensional domains

Theorem 1 Let D be a non-dictatorial, unidimensional domain. Then, the following two

statements hold:

(i) There exists an invariant, tops-only and strategy-proof rule, (a) if and only if D is a

semi-single-peaked domain, and (b) if and only if D admits a two-voter, strategy-proof

projection rule. Furthermore, every invariant, tops-only and strategy-proof rule is a

projection rule.

(ii) There exists no invariant, tops-only and strategy-proof rule if and only if D is a semi-

hybrid domain satisfying the unique seconds property. Furthermore, every two-voter,

tops-only and strategy-proof rule is a hybrid rule that behaves like a dictatorship on a

weak superset of the free zone.

The proof of Theorem 1 is contained in Appendix B.

Remark 5 By Theorem 1 and its proof, we know that on a non-dictatorial, unidimensional

domain D, the set of all two-voter, tops-only and strategy-proof rules consists of a set of

projection rules which can be either an empty set or not, and a set of hybrid rules, which

at least includes a dictatorship (equivalently, the (a1, am)-hybrid rule on the line LA).31

Therefore, by Statement (i) of Theorem 1, whether the domain D is a semi-single-peaked

domain completely depends on the existence of a two-voter, strategy-proof projection rule.

Furthermore, if domain D turns out to be an (a, b)-semi-hybrid domain on a tree T A, among

all two-voter, strategy-proof hybrid rules, by Statement (ii) of Theorem 1, the (a, b)-hybrid

rule on T A is the most desirable one, as it minimizes the set of alternatives on which a

dictatorship inevitably prevails.

By Statement (ii) of Theorem 1, we know that once a unidimensional domain is revealed

to be a semi-hybrid domain, all two-voter, tops-only and strategy-proof rules behave like

dictatorships on the free zone. We then further show via a Ramification Theorem (see the

statement in Appendix C) that every tops-only and strategy-proof rule with an arbitrary

number of voters also behaves like a dictatorship on the free zone. This helps us strengthen

the classification provided in Theorem 1 which concentrates on two-voter rules and the axiom

of invariance, by showing in the following corollary that the same classification emerges when

we expand to n-voter rules and replace invariance by anonymity. This also suggests that for

the purpose of domain classification, there is no loss of generality in restricting attention to

the class of two-voter, strategy-proof rules.

31Even if the domain D turns out to be a semi-single-peaked domain, the proof of Statement (ii) still

implies that every two-voter, tops-only and strategy-proof rule that violates invariance is a hybrid rule.
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Corollary 1 Let D be a non-dictatorial, unidimensional domain. Then, the following two

statements hold:

(i) There exists an anonymous, tops-only and strategy-proof rule, (a) if and only if D is a

semi-single-peaked domain, and (b) if and only if D admits a strategy-proof projection

rule.

(ii) There exists no anonymous, tops-only and strategy-proof rule, if and only if D is a

semi-hybrid domain satisfying the unique seconds property. Furthermore, every tops-

only and strategy-proof rule behaves like a dictatorship on a weak superset of the free

zone.

The proof of Corollary 1 is contained in Appendix C.

Remark 6 Theorem 1 and Corollary 1 refine the characterization of non-dictatorial domains

obtained in the Auxiliary Proposition by showing that all non-dictatorial, unidimensional

domains can be classified into one of the three variants illustrated in Figure 5. First, semi-

single-peaked domains are sorted out as the unique ones that admit an invariant/anonymous,

tops-only and strategy-proof rule (indeed, a strategy-proof projection rule), while every other

non-dictatorial, unidimensional domain is shown to be a semi-hybrid domain, which of course

is either non-degenerate or degenerate. Next, as the free zones of semi-hybrid domains ex-

pand towards the whole alternative set, semi-hybrid domains expand “closer to” dictatorial

domains since every tops-only and strategy-proof rule has to behave like a dictatorship on the

free zone and consequently gradually degenerates to a dictatorship. Furthermore, if a non-

dictatorial, unidimensional domain turns out to be a degenerate semi-hybrid domain (see the

example in Clarification 5 of Appendix G), since all tops-only and strategy-proof rules are

dictatorships, in order to meet the non-dictatorial-domain hypothesis, the Auxiliary Propo-

sition must mandate the imposition of the unique seconds property, and consequently the

corresponding admissible non-dictatorial, strategy-proof rule (recall the almost dictatorship

specified in Section 4.1) must violate the tops-only property.

Remark 7 Chatterji et al. (2013) have shown that semi-single-peakedness on a path-connected

domain is implied by the existence of an anonymous, tops-only and strategy-proof rule with

an even number of voters. By mildly strengthening their richness condition, we obtain a

significantly sharper result: statement (i) of Corollary 1 dispenses with their requirement on

the number of voters, while statement (ii) describes the complementary configuration im-

plied by the non-existence of an anonymous, tops-only and strategy-proof rule. Last, note

that when the number of voters increases more than two in Corollary 1, the set of tops-only

and strategy-proof rules expands significantly beyond projection rules and hybrid rules char-

acterized in Theorem 1 under the two-voter condition. Indeed, the full characterization of

tops-only and strategy-proof rules in the case of more than two voters depends delicately on

the richness of a semi-single-peaked domain (see Theorem 1 of Bonifacio and Massó (2020))

and the richness of a semi-hybrid domain (see Proposition 3 of Chatterji and Zeng (2020))

respectively.
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4.3 Non-tops-only rules

We now introduce a rule that on a semi-single-peaked (respectively, semi-hybrid) domain can

extract non-peak information from some preference profiles while remaining strategy-proof,

and identify “critical spots” as configurations that allow such rules to arise. These critical

spots vanish if and only if the domain is refined to be single-peaked (respectively, hybrid).

We fix a tree T A, an edge (x, y) which separates T A into two subtrees T Ax⇀y
and T Ay⇀x

,

and two distinct voters i, j ∈ N . The construction of a non-tops-only rule consists of three

steps. First, at each preference profile, the social outcome equals voter i’s most preferred

alternative if it belongs to Ay⇀x. Next, if both voters i and j have their preference peaks

in Ax⇀y, the social outcome is the projection of x on the minimal subtree of the preference

profile. Last, when the two most preferred alternatives of voters i and j lie respectively in

Ax⇀y and Ay⇀x, the social outcome varies according to voter j’s preference over x and y.

Definition 9 An SCF f : Dn → A is a Possibly Non-Tops-only (or PNT) SCF on a

tree T A w.r.t. an edge (x, y) if there exist distinct i, j ∈ N such that

f(P ) =


r1(Pi) if r1(Pi) ∈ Ay⇀x,

Proj
(
x, T Γ(P )

)
if r1(Pi) ∈ Ax⇀y and r1(Pj) ∈ Ax⇀y, and

maxPj({x, y}) if r1(Pi) ∈ Ax⇀y and r1(Pj) ∈ Ay⇀x.

By construction, a PNT SCF is unanimous and will henceforth be referred to as a PNT

rule. A PNT rule defined on a minimally rich domain is by definition non-dictatorial.32

Moreover, the following fact pins down the necessary and sufficient condition for PNT rules

to be strategy-proof and non-tops-only. The proof is contained in Appendix D.

Fact 1 Fix a minimally rich domain D, a tree T A and an edge (x, y). For all n ≥ 2, the

PNT rule f : Dn → A on T A w.r.t. (x, y) is strategy-proof if and only if the following two

conditions are satisfied: for all Pi ∈ D,

(i) if r1(Pi) ∈ Ax⇀y, then Pi is semi-single-peaked on T A w.r.t. y, and

(ii) if r1(Pi) ∈ Ay⇀x, then maxPi(Ax⇀y) = x.

Moreover, f violates the tops-only property if and only if an additional condition is satisfied:

(iii) there exist Pi, P
′
i ∈ D such that r1(Pi) = r1(P ′i ) ∈ Ay⇀x, y Pi x and x P ′i y.

Given a domain D and a tree T A, we call an edge (x, y) a critical spot in T A, if all

conditions (i), (ii) and (iii) of Fact 1 are satisfied. Proposition 1 below shows that the

existence of a critical spot is necessary and sufficient for distinguishing a semi-single-peaked

domain from a single-peaked domain (respectively distinguishing a semi-hybrid domain from

a hybrid domain), and therefore by Fact 1 supports a strategy-proof PNT rule that violates

the tops-only property. The proof is contained in Appendix E.

32One can easily observe that the PNT rule generalizes the almost dictatorship specified in Section 4.1.

Indeed, given a line L̂A = (x, y, . . . ), where x is a leaf and y is the unique neighbor of x, the almost

dictatorship is a PNT rule on L̂A w.r.t. the edge (x, y).
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Figure 6: A classification of non-dictatorial, tops-only, unidimensional domains

Proposition 1 The following two statements hold:

(i) Given a semi-single-peaked domain D on a tree T A, we have D * DSP(T A) if and only

if there exists a critical spot (x, y) in T A.

(ii) Given an (a, b)-semi-hybrid domain D on a tree T A, we have D * DH(T A, a, b) if and

only if there exists a critical spot (x, y) in T A such that either x, y ∈ Aa⇀b\{a} or

x, y ∈ Ab⇀a\{b}.

4.4 A refinement of the classification

Last, we further restrict the unidimensional domains in question to be tops-only domains,

where strategy-proof rules are endogenously completely determined by voters’ preference

peaks. Formally, a domain D is a tops-only domain if every strategy-proof rule f : Dn → A,

n ≥ 2, satisfies the tops-only property.

Clearly, as non-tops-only and strategy-proof rules are ruled out, Fact 1 implies that no

critical spot is embedded in a tops-only domain. Therefore, by applying Proposition 1,

our classification result established in Section 4.2 restricted to tops-only domains is refined

in the following three ways: (i) degenerate semi-hybrid domains that exogenously satisfy

the unique seconds property are explicitly excluded from the classification as they admit

a non-tops-only and strategy-proof rule (recall Remark 6), (ii) non-degenerate semi-hybrid

domains are refined to non-degenerate hybrid domains on the line LA (by statement (ii) of

Proposition 1 and diversity), and (iii) semi-single-peaked domains are refined to be single-

peaked on LA (by statement (i) of Proposition 1 and diversity). We use Figure 6 to illustrate

the refined classification.

Corollary 2 Let D be a non-dictatorial, tops-only, unidimensional domain. Then, the

following two statements hold:

(i) There exists an anonymous and strategy-proof rule if and only if D is a single-peaked

domain on LA.

(ii) There exists no anonymous and strategy-proof rule if and only if D is a non-degenerate

hybrid domain on LA.

The proof of Corollary 2 is contained in Appendix F.

Remark 8 By Theorem 2 of Chatterji et al. (2022) and its proof, one can further decode

all strategy-proof rules on a non-dictatorial, tops-only, unidimensional domain D: when D
is a single-peaked domain on LA, an SCF is a strategy-proof rule if and only if it is a fixed
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ballot rule (introduced in Proposition 3 of Moulin, 1980); when D is a non-degenerate hybrid

domain on LA, an SCF is a strategy-proof rule if and only if it is a fixed ballot rule that in

addition behaves like a dictatorship on a weak superset of the free zone.

5 Literature Review and Final Remarks

5.1 A review of the literature

Following the seminal Gibbard-Satterthwaite Theorem, domain restrictions have received

much attention in the literature on strategic voting. One stream of the literature examines

the robustness of the Gibbard-Satterthwaite Theorem by showing that some sparse restricted

domains (see for instance, linked domains of Aswal et al. (2003), circular domains of Sato

(2010), FPT (Free Pair at the Top) domains of Chatterji and Sen (2011), and the β and

γ domains of Pramanik (2015)) are in fact dictatorial domains. These papers use richness

assumptions on the domain variously to construct connectedness relations between alterna-

tives, while the violation of these richness conditions appear, somewhat surprisingly, to lead

to the unique seconds property in the sense that if the unique seconds property holds, all

the aforementioned richness conditions that precipitate dictatorship are violated.33 Recently,

Roy and Storcken (2019) have shown the role of the unique seconds property in character-

izing non-dictatorial domains. The Auxiliary Proposition here is in the same vein but uses

different richness conditions (recall Remark 4). More importantly, our focus on the classifi-

cation of non-dictatorial domains uncovers more meaningful non-dictatorial, strategy-proof

rules - projection rules and hybrid rules, compared to the almost dictatorship associated

with the unique seconds property.

Another stream of the literature starts with a specific restricted domain that not only

helps escape the Gibbard-Satterthwaite impossibility, but also accommodates the design of

various well-behaved strategy-proof rules. Almost all such domains are variants of the notion

of single-peakedness. On the single-peaked domain, the seminal paper Moulin (1980) char-

acterized all anonymous, tops-only and strategy-proof rules as phantom voter rules, and all

tops-only and strategy-proof rules as fixed ballot rules. In the past four decades, several key

variants of single-peakedness have been developed, and non-dictatorial, strategy-proof rules

have been explored. Demange (1982) introduced single-peakedness on a tree and Schummer

and Vohra (2002) extended Moulin’s fixed ballot rules; Barberà et al. (1993) generalized

single-peakedness from a unidimensional underlying line to a multidimensional grid, and

discovered an important class of strategy-proof rules: multidimensional generalized median

voter rules ; Nehring and Puppe (2007) adopted a ternary relation to generally address the

geometric relation among alternatives, invented the notion of generalized single-peakedness,34

and characterized all strategy-proof rules: voting by issues ; and recently, Reffgen (2015) pro-

vided a transition from the single-peaked domain to the universal domain by taking unions of

33This assertion can be made more precise by observing that in the case |A| = 3, any domain other than

the universal domain satisfies the unique seconds property.
34Using the terminology of Nehring and Puppe (2007), the (inclusion/exclusion) separable domain of

Barberà et al. (1991), the multidimensional single-peaked domain of Barberà et al. (1993) and the separable

domain of Le Breton and Sen (1999) can be equivalently translated to generalized single-peaked domains

according to three analogous ternary relations respectively.
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multiple single-peaked domains that are constructed according to different underlying lines,

established the notion of a multiple single-peaked domain and characterized all strategy-

proof rules as a specific subset of fixed ballot rules which simultaneously preserve features

of a dictatorship and of a median voter rule. Two comprehensive survey papers, Sprumont

(1995) and Barberà (2011), provide more detailed discussions on the development of single-

peakedness restrictions and non-dictatorial, strategy-proof rules. All preference domains

considered in this literature are in fact tops-only domains. We depart from this literature

by considering non-tops-only rules; Proposition 1 identifies a critical spot that supports a

non-tops-only and strategy-proof rule.

A third stream of the literature poses the following natural “converse” question: is single-

peakedness a consequence of the existence of a well-behaved strategy-proof rule? Earlier

literature Barberà et al. (1993) showed that if a minimally rich domain admits the median

voter rule as a strategy-proof rule, the domain must be single-peaked. Instead of consid-

ering a specific rule, Chatterji et al. (2013) established that on a path-connected domain,

semi-single-peakedness, rather than single-peakedness, is necessary for the existence of an

anonymous, tops-only and strategy-proof rule, and Chatterji and Massó (2018) showed that

semilattice single-peakedness, a generalization of semi-single-peakedness, arises as a conse-

quence of the existence of an anonymous, tops-only and strategy-proof rule on a rich domain

(where the richness condition is formulated relative to the particular rule that is assumed

to exist). Recently, Barberà et al. (2020) provide an insightful survey that covers these and

other related issues. This literature too restricts attention to the class of strategy-proof

rules that in addition satisfy the tops-only property and anonymity, and is therefore silent

on domains that admit tops-only and strategy-proof rules that violate anonymity but remain

non-dictatorial. Our classification theorem essentially demonstrates that appropriate weak-

enings of single-peakedness35 characterizes all non-dictatorial domains, and in particular

uncovers domains that allow the design of non-tops-only and non-anonymous rules.

Our refinement of the classification of non-dictatorial domains provided in Corollary 2

is also related to the literature on tops-only domains. In this literature, various restricted

domains have been shown to be tops-only domains (see for instance Barberà et al., 1991,

1993; Ching, 1997; Le Breton and Sen, 1999; Le Breton and Weymark, 1999; Nehring and

Puppe, 2007; Weymark, 2008; Reffgen, 2015). Chatterji and Sen (2011) provided two general

sufficient conditions for tops-only domains. Corollary 2, to our knowledge, is the first result

that characterizes necessary conditions for tops-only domains, and therefore reveals the

important role of the full single-peakedness requirement, imposed on either the whole line,

35Barberà and Moreno (2011) introduced another approach of weakening single-peakedness, called top-

monotonicity. We briefly introduce the definition of top-monotonicity using our model here. A preference

profile P is said to satisfy top-monotonicity if there exists a line L̂A such that for each i ∈ N , say r1(Pi) = a,

and for all distinct alternatives b, c ∈ A where b = r1(Pj) for some j ∈ N\{i}, we have
[
b ∈ 〈a, c|L̂A〉

]
⇒

[b Pi c]. It is clear that top-monotonicity allows some flexibility in the ranking of an alternative that is

never top-ranked at any preference in the profile, and hence weakens the single-peakedness restriction. The

restrictions of semi-single-peakedness and semi-hybridness investigated in our paper are independent. For

instance, one can construct a profile of semi-single-peaked preferences that fails to meet top-monotonicity.

The detailed example is available on request.
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or both the left and right parts of the line, in establishing a tops-only domain.36 In a

model with single-peaked preferences on the real line that accommodates indifference rela-

tions, Barberà and Jackson (1994) established that a strategy-proof SCF that has a non-

connected range can violate the tops-only property, while Weymark (2011) showed that the

non-connected range is necessary for the violation of the tops-only property. The non-tops-

only and strategy-proof rules investigated in our paper are independent of this literature as

all strategy-proof rules studied here have a full range.

Lastly, we relate our approach to the literature characterizing Condorcet domains. Given

minimal richness and the presence of two completely reversed preferences, Puppe (2018)

showed that a “connected” domain (i.e., any two distinct preferences of the domain are

connected via a path of preferences in the domain where across each consecutive pair on the

path, exactly two contiguously ranked alternatives are switched) is a maximal Condorcet

domain if and only if it is single-peaked on a line. It is clear that a Condorcet domain is a

non-dictatorial domain as it supports majority voting as a strategy-proof rule. However, non-

dictatorial, strategy-proof rules can obtain in settings where the acyclicity of the majority

relation (that is ensured in a Condorcet domain) does not hold. Our classification theorem

indicates that expanding the search for strategy-proof rules to settings where the acyclicity

of the majority relation need not hold significantly enlarges the class of domains that admit

non-dictatorial, strategy-proof rules.

5.2 Final remarks

To conclude, this paper has introduced a methodology based on the analysis of two-voter

rules and a simple axiom (invariance) on unidimensional domains in the voting model, using

which we exhaustively classify all unidimensional, non-dictatorial domains as either semi-

single-peaked domains or semi-hybrid domains, which are respectively two weakenings of

single-peaked domains that complement each other. This expands the possibilities for de-

sign to models where the restriction of single-peakedness is too demanding (see for instance,

multidimensional voting under constraints and allocation of public goods on a transporta-

tion network). We provide some preliminary observations on multidimensional voting in

Appendix H, and leave its detailed exploration to future work. This methodology may also

be useful beyond the specific issue of classification of non-dictatorial domains that we stud-

ied here; for instance, within the voting model it could be used to explore the structure of

locally strategy-proof rules or ordinally Bayesian incentive compatible rules. It would be

particularly interesting to extend this methodology beyond the voting model to more general

setups that include private goods and/or monetary compensation.

36Though Corollary 2 is concerned with non-dictatorial domains, its proof can also be adopted to show that

a dictatorial, unidimensional domain, which of course is a tops-only domain, is an (a1, am)-hybrid domain

on the line LA. Conversely, Appendix E of Chatterji and Zeng (2020) shows that both single-peakedness

and hybridness in conjunction with an additional technical condition on the free zone called non-trivialness,

are sufficient for a unidimensional domain to be a tops-only domain.
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Appendix

A Proof of the Auxiliary Proposition

By Theorem 5.1 of Aswal et al. (2003), it is clear that if a domain satisfies the unique seconds

property, it is a non-dictatorial domain. We henceforth focus on showing that given a domain D
satisfying path-connectedness and leaf symmetry, if it is a non-dictatorial domain, it satisfies the

unique seconds property. We first provide 4 important independent lemmas (Lemmas 1 - 4). For

Lemmas 1 - 4, we fix N = {1, 2}, a path-connected domain D and a strategy-proof rule f : D2 → A.

For ease of presentation, let
(
(x · · · ), (y · · · )

)
denote a profile where voter 1 reports an arbitrary

preference with the peak x and voter 2 reports an arbitrary preference with the peak y. More

importantly, let f
(
(x · · · ), (y · · · )

)
= a denote “f(P1, P2) = a for all P1 ∈ Dx and P2 ∈ Dy.” For

notational convenience, given distinct x, y ∈ A, let P x,y
i denote a preference in the domain such

that x is top-ranked and y is second ranked.

Lemma 1 Given a path π = (x1, . . . , xv) in GA∼, the following statements hold:

(i) if f
(
(x1 · · · ), (x2 · · · )

)
= x1, f

(
(xk · · · ), (xk′ · · · )

)
= xk for all 1 ≤ k ≤ k′ ≤ v,

(ii) if f
(
(x2 · · · ), (x1 · · · )

)
= x1, f

(
(xk′ · · · ), (xk · · · )

)
= xk for all 1 ≤ k ≤ k′ ≤ v.

(iii) if f
(
(xv · · · ), (xv−1 · · · )

)
= xv, f

(
(xk · · · ), (xk′ · · · )

)
= xk for all 1 ≤ k′ ≤ k ≤ v, and

(iv) if f
(
(xv−1 · · · ), (xv · · · )

)
= xv, f

(
(xk′ · · · ), (xk · · · )

)
= xk for all 1 ≤ k′ ≤ k ≤ v.

Proof: Note that the first two statements are symmetric, and the last two statements are

symmetric. Moreover, the third statement is analogous to the first one: given statement (i), after

relabeling the path π such that yk = xv+1−k for all k ∈ {1, . . . , v}, we modify the hypothesis

of statement (iii) to f
(
(y1 · · · ), (y2 · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv = y1, and then apply

statement (i) on the path (y1, . . . , yv) to obtain f
(
(yk · · · ), (yk′ · · · )

)
= yk for all 1 ≤ k ≤ k′ ≤ v,

which by the relabeling implies f
(
(xk · · · ), (xk′ · · · )

)
= xk for all 1 ≤ k′ ≤ k ≤ v. Therefore, we in

the rest of the proof focus on the verification of the first statement.

Since x2 ∼ x3, by Claims A and B of Sen (2001) and their proofs,37 we know that either

f
(
(x2 · · · ), (x3 · · · )

)
= x2 or f

(
(x2 · · · ), (x3 · · · )

)
= x3 holds. Suppose f

(
(x2 · · · ), (x3 · · · )

)
= x3.

Since x1 ∼ x2 and x3 ∼ x2, we have P x1,x2
1 , P x2,x1

1 ∈ D such that rk(P
x1,x2

1 ) = rk(P
x2,x1

1 )

for all k ∈ {3, . . . ,m}, and P x2,x3
2 , P x3,x2

2 ∈ D such that rk(P
x2,x3

2 ) = rk(P
x3,x2

2 ) for all k ∈
{3, . . . ,m}. Thus, f(P x1,x2

1 , P x2,x3
2 ) = x1 and f(P x2,x1

1 , P x3,x2
2 ) = x3. Then, by strategy-proofness,

f(P x2,x1
1 , P x3,x2

2 ) = x3 implies f(P x1,x2
1 , P x3,x2

2 ) = x3. Consequently, voter 2 will manipulate at

(P x1,x2
1 , P x2,x3

2 ) via P x3,x2
2 . Therefore, f

(
(x2 · · · ), (x3 · · · )

)
= x2. Applying the same argument

from x3 to xv step by step, we eventually have f
(
(xk · · · ), (xk+1 · · · )

)
= xk for all k ∈ {1, . . . , v−1}.

Now, we show statement (i). We pick an arbitrary l ∈ {3, . . . , v} and provide an induction

hypothesis: f
(
(xk · · · ), (xk′ · · · )

)
= xk for all 1 ≤ k ≤ k′ < l. To verify the induction hypoth-

esis, we show f
(
(xk · · · ), (xl · · · )

)
= xk for all k ∈ {1, . . . , l}. Fix arbitrary P2 ∈ Dxl . We first

know f
(
(xk · · · ), P2

)
= xk for both k ∈ {l − 1, l}. We next show f

(
(xl−2 · · · ), P2

)
= xl−2. Since

xl−2 ∼ xl−1, we have P
xl−1,xl−2

1 , P
xl−2,xl−1

1 ∈ D such that rk(P
xl−1,xl−2

1 ) = rk(P
xl−2,xl−1

1 ) for all

37Claim A of Sen (2001) and its proof show that given a, b ∈ A and P a,b
i , P b,a

i ∈ D, we have f(P1, P2) ∈
{a, b} for all P1 ∈ Da and P2 ∈ Db. Claim B of Sen (2001) and its proof show that given a, b ∈ A

and P a,b
i , P b,a

i ∈ D, if f(P̂1, P̂2) = a (respectively, f(P̂1, P̂2) = b) for some P̂1 ∈ Da and P̂2 ∈ Db, then

f
(
(a · · · ), (b · · · )

)
= a (respectively, f

(
(a · · · ), (b · · · )

)
= b). Therefore, given a, b ∈ A with a ∼ b, either

f
(
(a · · · ), (b · · · )

)
= a or f

(
(a · · · ), (b · · · )

)
= b holds.
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k ∈ {3, . . . ,m}. Since f(P
xl−1,xl−2

1 , P2) = xl−1, strategy-proofness implies f(P
xl−2,xl−1

1 , P2) ∈
{xl−1, xl−2}. If f(P

xl−2,xl−1

1 , P2) = xl−1, strategy-proofness implies f
(
P
xl−2,xl−1

1 , (xl−1 · · · )
)

=

xl−1, which contradicts the induced fact f
(
(xl−2 · · · ), (xl−1 · · · )

)
= xl−2. Hence, f(P

xl−2,xl−1

1 , P2) =

xl−2. Then, strategy-proofness implies f
(
(xl−2 · · · ), P2

)
= xl−2. Applying the same argument from

xl−2 to x1 step by step, we eventually have f
(
(xk · · · ), P2) = xk for all k ∈ {1, . . . , l}. This com-

pletes the verification of the induction hypothesis, and hence proves the lemma. �

Lemma 2 Given two subsets Ā, Â ⊆ A with |Ā| > 1 and |Â| > 1, let GĀ∼ and GÂ∼ be two connected

graphs. Given a path π = (x1, . . . , xv) in GA∼, let x1 ∈ Ā and xv ∈ Â. If f behaves like a dictatorship

on Ā and Â respectively, then f behaves like a dictatorship on Ā ∪ π ∪ Â.

Proof: We assume w.l.o.g. that voter 1 dictates on Ā, i.e., f(P1, P2) = r1(P1) for all P1, P2 ∈ D
with r1(P1), r1(P2) ∈ Ā.

Claim 1: Voter 1 also dictates on Â, i.e., [r1(P1), r1(P2) ∈ Â]⇒ [f(P1, P2) = r1(P1)].

We first consider the case Ā ∩ Â 6= ∅. Let x ∈ Ā ∩ Â. Since GĀ∼ is a connected graph and

|Ā| > 1, there exists y ∈ Ā such that y ∼ x. Clearly, f
(
(y · · · ), (x · · · )

)
= y. Symmetrically,

according to GÂ∼, there exists z ∈ Â such that z ∼ x. Clearly, either y = z or y 6= z holds. If y = z,

we have f
(
(z · · · ), (x · · · )

)
= z, which immediately implies that voter 1 dictates on Â, since f is

assumed to behave like a dictatorship on Â. If y 6= z, we consider the path (y, x, z). By statement

(i) of Lemma 1, f
(
(y · · · ), (x · · · )

)
= y implies f

(
(x · · · ), (z · · · )

)
= x. Last, since f behaves like a

dictatorship on Â, we infer that voter 1 dictates on Â.

Next, we assume Ā ∩ Â = ∅. Given x1 ∈ Ā and xv ∈ Â, we can identify 1 ≤ k ≤ k′ ≤ v

such that xk ∈ Ā, xk′ ∈ Â and xl /∈ Ā ∪ Â for all l ∈ {k + 1, . . . , k′ − 1}. Since GĀ∼ is a

connected graph and |Ā| > 1, there exists x ∈ Ā such that x ∼ xk. Symmetrically, there exists

y ∈ Â such that y ∼ xk′ . Thus, we have a path π′ = (x, xk, . . . , xk′ , y). Since voter 1 dictates

on Ā, we have f
(
(x · · · ), (xk · · · )

)
= x. Then, according to π′, statement (i) of Lemma 1 implies

f
(
(xk′ · · · ), (y · · · )

)
= xk′ . Moreover, since f behaves like a dictatorship on Â, we infer that voter

1 dictates on Â. This completes the verification of the claim.

Claim 2: Voter 1 dictates on π, i.e., [r1(P1), r1(P2) ∈ π]⇒ [f(P1, P2) = r1(P1)].

If x2 ∈ Ā, we have f
(
(x1 · · · ), (x2 · · · )

)
= x1 by voter 1’s dictatorship on Ā. If x2 /∈ Ā, we iden-

tify x0 ∈ Ā such that x0 ∼ x1. Clearly, x0 6= x2. Thus, we have f
(
(x0 · · · ), (x1 · · · )

)
= x0 by voter

1’s dictatorship on Ā. Then, according to the path (x0, x1, x2), statement (i) of Lemma 1 implies

f
(
(x1 · · · ), (x2 · · · )

)
= x1. Overall, f

(
(x1 · · · ), (x2 · · · )

)
= x1. Then, according to π, statement (i)

of Lemma 1 implies f
(
(xk · · · ), (xk′ · · · )

)
= xk for all 1 ≤ k ≤ k′ ≤ v. Symmetrically, by voter 1’s

dictatorship on Â and statement (iii) of Lemma 1 on π, we also induce f
(
(xk · · · ), (xk′ · · · )

)
= xk

for all 1 ≤ k′ ≤ k ≤ v. This completes the verification of the claim.

Last, we show that voter 1 dictates on Ā∪π ∪ Â. We first show that voter 1 dictates on Ā∪π.

Given arbitrary preferences P1, P2 ∈ D, let r1(P1) = x ∈ Ā ∪ π and r1(P2) = y ∈ Ā ∪ π. If x = y,

unanimity implies f(P1, P2) = x = r1(P1). Next, assume x 6= y. Evidently, if x, y ∈ Ā or x, y ∈ π,

we have f(P1, P2) = x by voter 1’s dictatorship on Ā and π respectively. Last, we consider two

cases: (i) x ∈ Ā\π and y ∈ π\Ā, and (ii) x ∈ π\Ā and y ∈ Ā\π. The two cases are symmetric, and

we hence focus on the first one. In the first case, x ∈ Ā\{x1} and y = xk for some 1 < k ≤ v. Since

GĀ∼ is a connected graph, we have a path (z1, . . . , zl) in GĀ∼ connecting x and x1. Now, according

to the paths (z1, . . . , zl) and (x1, . . . , xk), since zl = x1, z1 = x ∈ Ā\π and xk = y ∈ π\Ā, we

can identify 1 < s ≤ l and 1 ≤ t < k such that zs = xt and {z1, . . . , zs−1} ∩ {xt+1, . . . , xk} = ∅.
Then, the concatenated path π̂ = (z1, . . . , zs = xt, . . . , xk) connects x and y. First, we have
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f
(
(z1 · · · ), (z2 · · · )

)
= z1 by voter 1’s dictatorship on Ā. Next, according to π̂, statement (i) of

Lemma 1 implies f
(
(z1 · · · ), (xk · · · )

)
= z1, and hence, f(P1, P2) = x, as required. Therefore, voter

1 dictates on Ā ∪ π. Last, note that both GĀ∪π∼ and GÂ∼ are connected graphs, [Ā ∪ π] ∩ Â 6= ∅
and voter 1 dictates on Ā ∪ π and Â respectively. By the same argument, we can infer that voter

1 dictates on
[
Ā ∪ π

]
∪ Â = Ā ∪ π ∪ Â. �

Lemma 3 Given a path π = (x1, . . . , xv), v ≥ 3, in GA∼ and two preferences P x1,xv
i , P xv ,x1

i ∈ D,

SCF f behaves like a dictatorship on π.

Proof: We first show that if f behaves like a dictatorship on {x1, x2}, it behaves like a dicta-

torship on π. We assume w.l.o.g. that voter 1 dictates on {x1, x2}, i.e., f(P1, P2) = r1(P1) for all

P1, P2 ∈ D with r1(P1), r1(P2) ∈ {x1, x2}. Thus, f
(
(x1 · · · ), (x2 · · · )

)
= x1. By Lemma 2, it suffices

to show that f behaves like a dictatorship on {xv−1, xv}. Since xv−1 ∼ xv, one of the following

three cases occurs:

(1) f behaves like a dictatorship on {xv−1, xv},
(2) f

(
(xv−1 · · · ), (xv · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv, and

(3) f
(
(xv−1 · · · ), (xv · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv−1.

To complete the verification, we rule out the last two cases. By statement (i) of Lemma 1 on

the path π, f
(
(x1 · · · ), (x2 · · · )

)
= x1 implies f

(
(xv−1 · · · ), (xv · · · )

)
= xv−1, which rules out case

(2). Suppose that case (3) occurs. Since f
(
(x2 · · · ), (x1 · · · )

)
= x2 and f

(
(xv · · · ), (xv−1 · · · )

)
=

xv−1 6= xv, searching on the path π from x2 towards xv−1, we can identify 1 < k̄ < v such

that f
(
(xk · · · ), (xk−1 · · · )

)
= xk for all k ∈ {2, . . . , k̄} and f

(
(xk̄+1 · · · ), (xk̄ · · · )

)
6= xk̄+1. Thus,

by statement (iii) of Lemma 1 on the subpath (x1, . . . , xk̄), f
(
(xk̄ · · · ), (xk̄−1 · · · )

)
= xk̄ im-

plies f
(
(xk · · · ), (xk′ · · · )

)
= xk for all 1 ≤ k′ ≤ k ≤ k. Meanwhile, since xk̄ ∼ xk̄+1 and

f
(
(xk̄+1 · · · ), (xk̄ · · · )

)
6= xk̄+1, it is easy to show that f

(
(xk̄+1 · · · ), (xk̄ · · · )

)
= xk̄. Consequently,

by statement (ii) of Lemma 1 on the subpath (xk̄, . . . , xv), f
(
(xk̄+1 · · · ), (xk̄ · · · )

)
= xk̄ implies

f
(
(xs · · · ), (xs′ · · · )

)
= xs′ for all k ≤ s′ ≤ s ≤ v. Therefore, we have f

(
P xv ,x1

1 , (xk · · · )
)

= xk.

Consequently, since f
(
(x1 · · · ), (xk · · · )

)
= x1 and x1 P xv ,x1

1 xk̄, voter 1 will manipulate at(
P xv ,x1

1 , (xk · · · )
)

via some P1 ∈ Dx1 . Hence, case (3) is ruled out, as required.

Symmetrically, we can show that if f behaves like a dictatorship on {xv−1, xv}, it behaves like

a dictatorship on π.

Last, to prove the lemma, we show that f behaves like a dictatorship on either {x1, x2} or

{xv−1, xv}. Suppose that it is not true.

Claim 1: We have f
(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x2 and f

(
(xv−1 · · · ), (xv · · · )

)
=

f
(
(xv · · · ), (xv−1 · · · )

)
= xv−1.

Since x1 ∼ x2 and the contradictory hypothesis rules out dictatorships on {x1, x2}, by strategy-

proofness, we have either f
(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x1, or f

(
(x1 · · · ), (x2 · · · )

)
=

f
(
(x2 · · · ), (x1 · · · )

)
= x2. Suppose f

(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x1. Thus, we

know f
(
P x1,xv

1 , (x2 · · · )
)

= x1. Moreover, by statement(ii) of Lemma 1 on π, f
(
(x2 · · · ), (x1 · · · )

)
=

x1 implies f
(
P xv ,x1

1 , (x2 · · · )
)

= x2. Consequently, voter 1 will manipulate at
(
P xv ,x1

1 , (x2 · · · )
)

via

some P x1,xv
1 . Therefore, f

(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x2. Symmetrically, we can

show f
(
(xv−1 · · · ), (xv · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv−1. This proves the claim.

Now, by Claims A and B of Sen (2001), according to preference P x1,xv
i and P xv ,x1

i , we know

that either f
(
(x1 · · · ), (xv · · · )

)
= x1 or f

(
(x1 · · · ), (xv · · · )

)
= xv holds. To complete the proof, we

will induce a contradiction in each case. First, let f
(
(x1 · · · ), (xv · · · )

)
= x1. Since xv ∼ xv−1, we

have P
xv ,xv−1

2 , P
xv−1,xv

2 ∈ D such that rk(P
xv ,xv−1

2 ) = rk(P
xv−1,xv

2 ) for all k ∈ {3, . . . ,m}. Thus,
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f(P x1,xv
1 , P

xv ,xv−1

2 ) = x1, which by strategy-proofness implies f(P x1,xv
1 , P

xv−1,xv
2 ) = x1. Fur-

thermore, by strategy-proofness, f(P x1,xv
1 , P

xv−1,xv
2 ) = x1 implies f(P xv ,x1

1 , P
xv−1,xv

2 ) ∈ {x1, xv}.
Since xv ∼ xv−1, by Claim A of Sen (2001), we have f(P xv ,x1

1 , P
xv−1,xv

2 ) ∈ {xv, xv−1}. There-

fore, f(P xv ,x1
1 , P

xv−1,xv
2 ) ∈ {x1, xv} ∩ {xv, xv−1} = {xv}, which contradicts Claim 1, as required.

Last, let f
(
(x1 · · · ), (xv · · · )

)
= xv. Since x1 ∼ x2, we have P x1,x2

1 , P x2,x1
1 ∈ D such that

rk(P
x1,x2

1 ) = rk(P
x2,x1

1 ) for all k ∈ {3, . . . ,m}. Thus, f(P x1,x2
1 , P xv ,x1

2 ) = xv, which by strategy-

proofness implies f(P x2,x1
1 , P xv ,x1

2 ) = xv. Furthermore, by strategy-proofness, f(P x2,x1
1 , P xv ,x1

2 ) =

xv implies f(P x2,x1
1 , P x1,xv

2 ) ∈ {x1, xv}. Since x1 ∼ x2, by Claim A of Sen (2001), we have

f(P x2,x1
1 , P x1,xv

2 ) ∈ {x1, x2}. Therefore, f(P x2,x1
1 , P x1,xv

2 ) ∈ {x1, xv} ∩ {x1, x2} = {x1}, which

contradicts Claim 1, as required. This proves the lemma. �

Observation 1 According to Lemma 3, one would observe that given a cycle C = (x1, . . . , xv, x1)

in GA∼, i.e., v ≥ 3, x1, . . . , xv are pairwise distinct, and xk ∼ xk+1 for all k ∈ {1, . . . , v}, where

xv+1 = x1, each two-voter, strategy-proof rule f : D2 → A must behave like a dictatorship on C.

Lemma 4 Fixing a subset B ⊆ A with |B| ≥ 3, let GB∼ be a connected graph. Then, the following

two statements hold:

(i) if Leaf(GB∼) = ∅, then f behaves likes a dictatorship on B, and

(ii) given Leaf(GB∼) 6= ∅, if f behaves like a dictatorship on {x, y} for all x ∈ Leaf(GB∼) and

(x, y) ∈ EB∼ , then f behaves like a dictatorship on B.

Proof: First, let Leaf(GB∼) = ∅. Note that for each x ∈ B, x is included in either a cycle or a

path that connects two distinct cycles. Therefore, by Observation 1 and Lemma 2, we infer that f

behaves like a dictatorship on B.

Next, let Leaf(GB∼) 6= ∅ and f behave like a dictatorship on {x, y} for all x ∈ Leaf(GB∼) and

(x, y) ∈ EB∼ . For notational convenience, let Leaf(GB∼) = {x1, . . . , xt} and (xk, yk) ∈ EB∼ for all

k ∈ {1, . . . , t}. Thus, f behaves like a dictatorship on {xk, yk} for all k ∈ {1, . . . , t}. We consider

two cases: GB∼ is not a tree and GB∼ is a tree.

In the first case, GB∼ must include a cycle C. Then, we can identify a subset B̄ ⊂ B such that

GB̄∼ is a connected graph, Leaf(GB̄∼) = ∅ and [B̄ ⊂ B̂ ⊆ B]⇒
[
Leaf(GB̂∼) 6= ∅

]
. Then, by statement

(i), f behaves like a dictatorship on B̄. For each 1 ≤ k ≤ t, since GB∼ is a connected graph, there

exist zk ∈ B̄ and a path πk = (x1, . . . , xv−1, xv) in GB∼ that connects zk and xk. Clearly, xv−1 = yk.

Then, Lemma 2 implies that f behaves like a dictatorship on B̄ ∪ πk. Last, since GB∼ in fact is

a combination of GB̄∼ and paths π1, . . . , πt, by repeatedly applying Lemma 2, we conclude that f

behaves like a dictatorship on B.

Last, we assume that GB∼ is a tree. Evidently, GB∼ has at least two leaves, i.e., t ≥ 2. Note

that for any two distinct xp, xq ∈ Leaf(GB∼), there exists a unique path πp,q = (z1, z2, . . . , zv−1, zv)

in GB∼ connecting xp and xq. Clearly, z2 = yp and zv−1 = yq (it is possible that yp = yq). Then,

Lemma 2 implies that f behaves like a dictatorship on π. Last, since GB∼ in fact is a combination

of all paths {πp,q : 1 ≤ p < q ≤ t}, by repeatedly applying Lemma 2, we conclude that f behaves

like a dictatorship on B. �

Now, we are ready to show that if the domain D satisfying path-connectedness and leaf symme-

try is non-dictatorial domain, then D satisfies the unique seconds property. Suppose by contradic-

tion that D violates the unique seconds property. We show that D is a dictatorial domain. By the

ramification theorem of Aswal et al. (2003), it suffices to show that every two-voter, strategy-proof

rule is a dictatorship. Henceforth, we fix N = {1, 2} and a strategy-proof rule f : D2 → A.
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By statement (i) of Lemma 4, if Leaf(GA∼) = ∅, then f is a dictatorship. Last, we assume

Leaf(GA∼) 6= ∅. By statement (ii) of Lemma 4, it suffices to show that for each x ∈ Leaf(GA∼), f

behaves like a dictatorship on x and its unique neighbor in GA∼. Fix arbitrary x ∈ Leaf(GA∼), let

(x, y) ∈ EA∼ . we show that f behaves like a dictatorship on {x, y}. Clearly, y ∈ S(Dx) and the

violation of the unique seconds property implies |S(Dx)| > 1. Then, by leaf symmetry, we have

z ∈ S(Dx)\{y} such that x ∈ S(Dz). Hence, we have P x,z
i , P z,x

i ∈ D. Since GA∼ is a connected

graph, there exists a path π = (x1, . . . , xv) connecting x and z. Consequently, Lemma 3 implies

that f behaves like a dictatorship on π. Last, since x ∈ Leaf(GA∼) and (x, y) ∈ EA∼ , it must be the

case that x2 = y. Therefore, f behaves like a dictatorship on {x, y}, as required. This proves the

Auxiliary Proposition.

B Proof of Theorem 1

We first introduce two independent lemmas (Lemmas 5 and 6) which will be repeatedly applied in

the proof of both statements of Theorem 1.

For Lemmas 5 and 6, we fix N = {1, 2} and a two-voter, tops-only and strategy-proof rule

f : D2 → A. Since f satisfies the tops-only property, by abuse of notation f(a, b) will represent the

social outcome at a preference profile where voter 1 reports a preference with the peak a and voter

2 reports a preference with the peak b. Also, f(a, P2) represents the social outcome at a profile

where voter 1 reports a preference with the peak a and voter 2 reports preference P2.

Lemma 5 Fixing a path π = (x1, . . . , xv) in GA∼, the following statements hold:

(i) f(xs, xt) ∈ {xs, . . . , xt} and f(xt, xs) ∈ {xs, . . . , xt} for all 1 ≤ s < t ≤ v,

(ii) given i ∈ N , Pi ∈ D and xs ∈ π, if f(Pi, xs) = x /∈ π, then f(Pi, xk) = x for all k ∈
{1, . . . , v}, and

(iii) given i ∈ N , Pi ∈ D and xs ∈ π, if f(Pi, xs) = xs, then f(Pi, xp) ∈ {xp, . . . , xs} for all

p ∈ {1, . . . , s− 1}, and f(Pi, xq) ∈ {xs, . . . , xq} for all q ∈ {s+ 1, . . . , v}.

Proof: Fix 1 ≤ s < t ≤ v. Since xs ∼ xs+1, it is easy to show f(xs, xs+1) ∈ {xs, xs+1}.
Next, we pick an arbitrary integer l ∈ {s + 2, . . . , t}, and provide an induction hypothesis:

f(xs, xl′) ∈ {xs, . . . , xl′} for all l′ ∈ {s + 1, . . . , l − 1}. We show f(xs, xl) ∈ {xs, . . . , xl}. First,

the induction hypothesis implies f(xs, xl−1) ∈ {xs, . . . , xl−1}. Next, since xl−1 ∼ xl, we have

P2, P
′
2 ∈ D such that r1(P2) = r2(P ′2) = xl−1, r1(P ′2) = r2(P2) = xl and rk(P2) = rk(P

′
2)

for all k ∈ {3, . . . ,m}. If f(xs, P2) = f(xs, xl−1) ∈ {xs, . . . , xl−2}, then strategy-proofness im-

plies f(xs, xl) = f(xs, P
′
2) = f(xs, P2) ∈ {xs, . . . , xl−2}. If f(xs, P2) = f(xs, xl−1) = xl−1, then

strategy-proofness implies f(xs, xl) = f(xs, P
′
2) ∈ {xl−1, xl}. Overall, f(xs, xl) ∈ {xs, . . . , xl}.

This completes the verification of the induction hypothesis. Therefore, f(xs, xt) ∈ {xs, . . . , xt}.
Symmetrically, f(xt, xs) ∈ {xs, . . . , xt}. This completes the verification of statement (i).

Next, we show statement (ii). By symmetry, we assume w.l.o.g. that i = 1. Given 1 ≤ k ≤ v,

either 1 ≤ k ≤ s or s < k ≤ v holds. First, given s < k ≤ v, we consider the path (xs, . . . , xk).

Since xs ∼ xs+1, we have P2, P
′
2 ∈ D such that r1(P2) = r2(P ′2) = xs, r1(P ′2) = r2(P2) = xs+1

and rk(P2) = rk(P
′
2) for all k ∈ {3, . . . ,m}. Since x /∈ {xs, xs+1}, strategy-proofness implies

f(P1, xs+1) = f(P1, P
′
2) = f(P1, P2) = f(P1, xs) = x. According to the path (xs, . . . , xk) from xs+1

to xk, by repeatedly applying the same argument step by step, we eventually have f(P1, xk) = x.

Symmetrically, if 1 ≤ k ≤ s, we also induce f(P1, xk) = x. This completes the verification of

statement (ii).
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Last, we prove statement (iii). By symmetry, we assume w.l.o.g. that i = 1. Given p ∈
{1, . . . , s − 1}, suppose f(P1, xp) = x /∈ {xp, . . . , xs}. Then, according to the path (xp, . . . , xs),

statement (ii) implies f(P1, xs) = x 6= xs - a contradiction. Therefore, f(P1, xp) ∈ {xp, . . . , xs}.
Similarly, f(P1, xq) ∈ {xs, . . . , xq} for all q ∈ {s + 1, . . . , v}. This completes the verification of

statement (iii). �

Lemma 6 Fixing a path π = (x1, . . . , xv), v ≥ 3, in GA∼, let f(x1, xv) = xk and f(xv, x1) = xk.

The following three statements hold: given xs, xt ∈ π,

(i)
[
k < k

]
⇒

f(xs, xt) =


xs if k ≤ s ≤ k,
xmed(s, t, k) if s < k, and

xmed(s, t, k) if s > k.

,

(ii)
[
k > k

]
⇒

f(xs, xt) =


xt if k ≤ t ≤ k,
xmed(s, t, k) if t < k, and

xmed(s, t, k) if t > k.

, and

(iii)
[
k = k = k∗

]
⇒
[
f(xs, xt) = xmed(s, t, k∗) for all s, t ∈ {1, . . . , v}

]
.

Proof: First, according to f(x1, xv) = xk, we establish the following claim.

Claim 1: We have f(xk, xk′) =


xk′ if 1 ≤ k ≤ k′ ≤ k,
xk if k ≤ k ≤ k′ ≤ v, and

xk if 1 ≤ k < k < k′ ≤ v.

If k = 1, the first part here follows immediately from unanimity. Next, we assume k > 1

and show the first part. According to statement (iv) of Lemma 1 on the subpath (x1, . . . , xk),

we know that if f(xk−1, xk) = xk, then we have f(xk, xk′) = xk′ for all 1 ≤ k ≤ k′ ≤ k, as

required. Therefore, we focus on showing f(xk−1, xk) = xk. Since xk−1 ∼ xk, it is evident that

f(xk−1, xk) ∈ {xk−1, xk}. Suppose by contradiction that f(xk−1, xk) = xk−1. Then, according to

the subpath (x1, . . . , xk−1), statement (iii) of Lemma 5 implies f(x1, xk) ∈ {x1, . . . , xk−1}. How-

ever, f(x1, xv) = xk implies f(x1, xk) = xk by strategy-proofness - a contradiction. In conclusion,

we have f(xk, xk′) = xk′ for all 1 ≤ k ≤ k′ ≤ k.

Symmetrically, according to the subpath (xk, . . . , xv) (no matter k = v or k < v holds), we can

show f(xk, xk′) = xk for all k ≤ k ≤ k′ ≤ v, as required by the second part.

Last, we show the third part. Given 1 ≤ k < k < k′ ≤ v, according to the subpath (x1, . . . , xk),

by statement (ii) of Lemma 5, f(x1, xv) = xk implies f(xk, xv) = xk. Furthermore, according to

the subpath (xk′ , . . . , xv), by statement (ii) of Lemma 5, f(xk, xv) = xk implies f(xk, xk′) = xk, as

required by the third part. This completes the verification of the claim.

Symmetrically, according to f(xv, x1) = xk, we can establish the claim below.

Claim 2: We have f(xk′ , xk) =


xk′ if 1 ≤ k ≤ k′ ≤ k,
xk if k ≤ k ≤ k′ ≤ v, and

xk if 1 ≤ k < k < k′ ≤ v.

Last, we combine the two claims to prove the lemma. Note that the verifications of the three

statements are symmetric. We focus on the verification of statement (i). Let k < k and fix an

arbitrary profile (xs, xt).

First, let k ≤ s ≤ k. If s ≤ t, we have k ≤ s < t ≤ v and f(xs, xt) = xs by Claim 1. If t < s,

we have 1 ≤ t ≤ s ≤ k and f(xs, xt) = xs by Claim 2.
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Second, let s < k. If t ≤ s, we have 1 ≤ t < s < k < k and f(xs, xt) = xs = xmed(s, t, k) by

Claim 2. If s < t ≤ k, we have 1 ≤ s < t ≤ k and f(xs, xt) = xt = xmed(s, t, k) by Claim 1. If k < t,

we have 1 ≤ s < k < t ≤ v and f(xs, xt) = xk = xmed(s, t, k) by Claim 1.

Last, let s > k. If t < k, we have 1 ≤ t < k < s ≤ v and f(xs, xt) = xk = xmed(s, t, k) by Claim

2. If k ≤ t ≤ s, we have k ≤ t < s ≤ v and f(xs, xt) = xt = xmed(s,t,k) by Claim 2. If s < t, we

have k < k < s < t ≤ v and f(xs, xt) = xs = xmed(s,t,k) by Claim 1. This proves statement (i). �

Now, we are ready to prove the two statements of Theorem 1.

Proof of Statement (i). Let D be a non-dictatorial, unidimensional domain. To prove Statement

(i), we show the equivalence of the following three sub-statements:

(1) there exists an invariant, tops-only and strategy-proof rule,

(2) domain D is a semi-single-peaked domain, and

(3) domain D admits a two-voter, strategy-proof projection rule.

We first show the direction: (2) ⇒ (3) ⇒ (1). By the proof of the sufficiency part of the

Theorem of Chatterji et al. (2013), we know that if D is a semi-single-peaked domain, it admits a

two-voter, strategy-proof projection rule, which of course is an invariant, tops-only and strategy-

proof rule. In the rest of the proof, we focus on showing (1) ⇒ (2). More specifically, we complete

the proof via the following three steps:

Step 1. We show that the existence of invariant, tops-only and strategy-proof rule implies that the

adjacency graph GA∼ is a tree (see Lemmas 7 and 8).

Step 2. Given an invariant, tops-only and strategy-proof rule f : D2 → A admitted by D, we

characterize the SCF f to be a projection rule on the tree GA∼ w.r.t. the threshold which equals the

same social outcome at the two test profiles (P 1, P 2) and (P 1, P 2) (see Lemma 9). This of course

implies that every invariant, tops-only and strategy-proof rule defined on D is a projection rule.

Step 3. By adopting strategy-proofness of the projection rule f characterized in Step 2, we show

that D a semi-single-peaked domain (see Lemma 10). This proves (1) ⇒ (2).

Lemma 7 Recall the two completely reversed preferences P i and P i, and their peaks r1(P i) = a1

and r1(P i) = am. There exists a unique path in GA∼ connecting a1 and am.

Proof: Since GA∼ is a connected graph, there exists a path in GA∼ connecting a1 and am. Suppose

by contradiction that there are two distinct paths π = (x1, . . . , xp) and π′ = (y1, . . . , yq) in GA∼
connecting a1 and am. Then, we can identify 1 ≤ s < t ≤ p and 1 ≤ s′ < t′ ≤ q with either t−s > 1

or t′−s′ > 1 such that xs = ys′ , xt = yt′ and {xs+1, . . . , xt−1}∩{ys′+1, . . . , yt′−1} = ∅. Consequently,

we construct a cycle C = (xs, . . . , xt = yt′ , . . . , ys′+1, ys′ = xs). By Observation 1 in Appendix A,

every two-voter, strategy-proof rule behaves like a dictatorship on C. Fixing an arbitrary two-

voter, tops-only and strategy-proof rule g : D2 → A, we assume w.l.o.g. that voter 1 dictates on

C, i.e., g(P1, P2) = r1(P1) for all P1, P2 ∈ D with r1(P1), r1(P2) ∈ C. Thus, g(xs, xt) = xs and

g(xt, xs) = xt. According to subpaths (xt, . . . , xp) and (xs, . . . , x1), by statements (ii) of Lemma

5, g(xs, xt) = xs implies g(xs, xp) = xs, and g(xt, xs) = xt implies g(xt, x1) = xt. Furthermore,

according to subpaths (xs, . . . , x1) and (xt, . . . , xp), by statements (iii) of Lemma 5, g(xs, xp) = xs
implies g(x1, xp) ∈ {x1, . . . , xs} and g(xt, x1) = xt implies g(xp, x1) ∈ {xt, . . . , xp}. Consequently,

we have g(P 1, P 2) = g(x1, xp) 6= g(xp, x1) = g(P 1, P 2), which implies that g violates invariance.

In conclusion, all two-voter, tops-only and strategy-proof rules violate invariance. This contradicts

the hypothesis that there exists an invariant, tops-only and strategy-proof rule, and hence proves

the lemma. �
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Let π∗ = (x1, . . . , xp) be the unique path connecting a1 and am in GA∼. Note that this path

may not include all alternatives of A (recall the adjacency graph GA∼ in Figure 3).

Lemma 8 The graph GA∼ is a tree.

Proof: Suppose not, i.e., there exists a cycle C = (b1, . . . , bv, b1), v ≥ 3. By Observation 1

in Appendix A, every two-voter, strategy-proof rule behaves like a dictatorship on C. Fixing an

arbitrary two-voter, tops-only and strategy-proof rule g : D2 → A, we assume w.l.o.g. that voter 1

dictates on C, i.e., g(P1, P2) = r1(P1) for all P1, P2 ∈ D with r1(P1), r1(P2) ∈ C.
We know either C ∩ π∗ = ∅ or C ∩ π∗ 6= ∅. If C ∩ π∗ = ∅, we can identify bs ∈ C, xk ∈ π∗ and

a path (y1, . . . , yu) in GA∼ connecting bs and xk such that yp /∈ C ∪ π∗ for all p ∈ {2, . . . , u − 1}
(see the first diagram of Figure 7). If C ∩ π∗ 6= ∅, we must identify a unique alternative of π∗ that

is contained in C, say bs = xk ∈ π∗ (see the second diagram of Figure 7); for otherwise, we can

identify two distinct paths in GA∼ connecting a1 and am, which contradicts Lemma 7. Overall, we

have the cycle C = (b1, . . . , bv, b1), the path π∗ = (x1, . . . , xp) and the path (y1, . . . , yu) which may

be a null path when bs = xk. We consider three cases of xk on π∗: 1 < k < p, k = 1 and k = p. In

each case, we show that g violates invariance.

• • •
•

•

x1 xpxk

bs bt

• • •
•

x1 xpxk

bs
bt

Figure 7: The relation between the cycle C and the path π∗

In the first case 1 < k < p, fixing bt ∈ C\{bs}, we have g(bt, bs) = bt and g(bs, bt) = bs
by voter 1’s dictatorship on C. According to paths (bs = y1, . . . , yu = xk, . . . , x1) and (bs =

y1, . . . , yu = xk, . . . , xp), by statement (ii) of Lemma 5, g(bt, bs) = bt implies g(bt, x1) = bt
and g(bt, xp) = bt. Furthermore, according to paths (bt, . . . , bs = y1, . . . , yu = xk, . . . , xp) and

(bt, . . . , bs = y1, . . . , yu = xk, . . . , x1), by statement (iii) of Lemma 5, g(bt, x1) = bt implies

g(xp, x1) ∈ {bt, . . . , bs = y1, . . . , yu = xk, . . . , xp}, and g(bt, xp) = bt implies g(x1, xp) ∈ {bt, . . . , bs =

y1, . . . , yu = xk, . . . , x1}. Furthermore, according to π∗, statement (i) of Lemma 5 implies g(xp, x1) ∈
{x1, . . . , xp} and g(x1, xp) ∈ {x1, . . . , xp}. Therefore, we have g(xp, x1) ∈ {bt, . . . , bs = y1, . . . , yu =

xk, . . . , xp} ∩ {x1, . . . , xp} = {xk, . . . , xp} and g(x1, xp) ∈ {bt, . . . , bs = y1, . . . , yu = xk, . . . , x1} ∩
{x1, . . . , xp} = {x1, . . . , xk}. Thus, g(xp, x1) = xk for some k ∈ {k, . . . , p} and g(x1, xp) = xk
for some k ∈ {1, . . . , k}. Now, given P 1 = P i and P 1 = P i, according to g(bt, x1) = bt and

g(P 1, x1) = g(xp, x1) = xk, and g(bt, xp) = bt and g(P 1, xp) = g(x1, xp) = xk, strategy-proofness

implies xk P 1 bt and xk P 1 bt. Consequently, by the fact that P 1 and P 1 are complete reversals,

it must be the case that xk 6= xk. Therefore, g(P 1, P 2) = g(x1, xp) 6= g(xp, x1) = g(P 1, P 2), which

indicates that g violates invariance. This completes the verification of the first case.

The second and third cases are symmetric. We focus on the verification of the second case k = 1.

Fixing bt ∈ C\{bs}, we have g(bt, bs) = bt. According to the path (bs = y1, . . . , yu = x1, . . . , xp),

by statement (ii) of Lemma 5, g(bt, bs) = bt implies g(bt, x1) = bt and g(bt, xp) = bt. Furthermore,

according to the path (bt, . . . , bs = y1, . . . , yu = x1), by statement (iii) of Lemma 5, g(bt, xp) = bt
implies g(x1, xp) ∈ {bt, . . . , bs = y1, . . . , yu = x1}. Meanwhile, according to π∗, statement (i)

of Lemma 5 implies g(x1, xp) ∈ {x1, . . . , xp}. Hence, it must be the case that g(x1, xp) = x1.

Similarly, according to π∗, statement (i) of Lemma 5 implies g(xp, x1) ∈ {x1, . . . , xp}. Thus, given

P 1 = P i, we have g(P 1, x1) = g(xp, x1) = xq for some q ∈ {1, . . . , p}. Consequently, according to

g(bt, x1) = bt and g(P 1, x1) = xq, strategy-proofness implies xq P 1 bt, which further implies that

xq is never bottom-ranked in P i. Since P i and P i are complete reversals and r1(P i) = a1 = x1,

x1 must be the bottom-ranked alternative in P i. Therefore, g(P 1, P 2) = g(x1, xp) = x1 6= xq =
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g(xp, x1) = g(P 1, P 2), which indicates that g violates invariance. This completes the verification

of the second case.

In conclusion, all two-voter, tops-only and strategy-proof rules violate invariance. This contra-

dicts the hypothesis that there exists an invariant, tops-only and strategy-proof rule. This proves

the lemma, and completes the verification in Step 1. �

Now, we start the proof in Step 2. We fix an arbitrary invariant, tops-only and strategy-proof

rule f : D2 → A. According to the unique path π∗ = (x1, . . . , xp) in the tree GA∼ connecting a1

and am, by the tops-only property, invariance and statement (i) of Lemma 5, we know f(x1, xp) =

f(P 1, P 2) = f(P 1, P 2) = f(xp, x1) = xk̄ for some k̄ ∈ {1, . . . , p}.

Lemma 9 SCF f is a projection rule on the tree GA∼ w.r.t. xk̄, i.e., f(y, z) = Proj
(
xk̄, 〈y, z|GA∼〉

)
for all y, z ∈ A.

Proof: The proof consists of the following three claims.

Claim 1: Given y ∈ A, we have f(y, xk̄) = f(xk̄, y) = xk̄.

Recall the unique path π∗ = (x1, . . . , xp) connecting a1 and am in GA∼. There are two cases:

y ∈ π∗ and y /∈ π∗. If y ∈ π∗, then y = xk for some k ∈ {1, . . . , p}, and we hence have f(y, xk̄) =

f(xk, xk̄) = Proj
(
xk̄, 〈xk, xk̄|GA∼〉

)
= xk̄ and f(xk̄, y) = f(xk̄, xk) = Proj

(
xk̄, 〈xk̄, xk|GA∼〉

)
= xk̄.

Henceforth, we assume y /∈ π∗. We focus on showing f(y, xk̄) = xk̄. By a symmetric proof, one

would immediately conclude f(xk̄, y) = xk̄. Let 〈xk̄, y|GA∼〉 = (z1, . . . , zv) be the path connecting

xk̄ and y in the tree GA∼. We first show f(z2, z1) = z1. If z2 ∈ π∗, then z2 = xk for some

k ∈ {1, . . . , p} and hence we have f(z2, z1) = f(xk, xk̄) = Proj
(
xk̄, 〈xk, xk̄|GA∼〉

)
= xk̄ = z1. Next,

let z2 /∈ π∗. Since z1 ∼ z2, it is evident that f(z2, z1) ∈ {z1, z2}. Suppose by contradiction that

f(z2, z1) = z2. We have three cases: k̄ = 1, k̄ = p and 1 < k̄ < p. In each case, we show

f(z2, x1) = z2 and f(z2, xp) = z2. Note that the first two cases are symmetric, and we hence omit

the verification in the second case. In the first case k̄ = 1, the contradictory hypothesis immediately

implies f(z2, x1) = f(z2, z1) = z2. Furthermore, according to the path (z1 = xk̄, . . . , xp), by

statement (ii) of Lemma 5, f(z2, z1) = z2 implies f(z2, xp) = z2. In the third case 1 < k̄ < p,

according to paths (z1 = xk̄, . . . , x1) and (z1 = xk̄, . . . , xp), statement (ii) of Lemma 5 implies

f(z2, x1) = z2 and f(z2, xp) = z2. Overall, we have f(z2, x1) = z2 and f(z2, xp) = z2. Given

P 1 = P i and P 1 = P i, we have f(P 1, x1) = f(xp, x1) = xk̄ = z1 and f(P 1, xp) = f(x1, xp) =

xk̄ = z1. Then, strategy-proofness implies z1 P 1 z2 (according to (P 1, x1) and (z2, x1)) and

z1 P 1 z2 (according to (P 1, xp) and (z2, xp)). This contradicts the fact that P 1 and P 1 are

complete reversals. Therefore, f(z2, z1) = z1. Then, according to the path (z2, . . . , zv), statement

(ii) of Lemma 5 implies f(y, xk̄) = f(zv, z1) = z1 = xk̄. This proves the claim.

Henceforth, we fix arbitrary y, z ∈ A and let 〈y, z|GA∼〉 = (y1, . . . , yu). There are three cases:

(1) Proj
(
xk̄, 〈y, z|GA∼〉

)
= y, (2) Proj

(
xk̄, 〈y, z|GA∼〉

)
= z and (3) Proj

(
xk̄, 〈y, z|GA∼〉

)
= yl for some

1 < l < u. In each case, we show f(y, z) = Proj
(
xk̄, 〈y, z|GA∼〉

)
. Note that the first two cases are

symmetric, and we hence omit the verification in case (2).

Claim 2: In case (1), f(y, z) = y = Proj
(
xk̄, 〈y, z|GA∼〉

)
.

If y = xk̄, this claim follows from Claim 1. Next, assume y 6= xk̄. Let (b1, . . . , bv) denote the

path in GA∼ connecting y and xk̄. Since Proj
(
xk̄, 〈y, z|GA∼〉

)
= y, we have a concatenated path

π = (z = yu, . . . , y1 = y = b1, . . . , bv = xk̄). Since f(bv, bv−1) = f(xk̄, bv−1) = xk̄ = bv, according to

the path π, statement (iii) of Lemma 1 in Appendix A implies f(y, z) = y = Proj
(
xk̄, 〈y, z|GA∼〉

)
.

This completes the verification of the claim.
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Claim 3: In case (3), f(y, z) = yl = Proj
(
xk̄, 〈y, z|GA∼〉

)
.

First, let (c1, . . . , cv) denote the path connecting xk̄ and yl in GA∼, which may be a null path

if xk̄ = yl. According to the path 〈y, z|GA∼〉 = (y1, . . . , yu), statement (i) of Lemma 5 implies

f(y, z) = yk for some k ∈ {1, . . . , u}. Suppose k 6= l. Thus, either 1 ≤ k < l or l < k ≤ u

holds. Moreover, since Proj
(
xk̄, 〈y, z|GA∼〉

)
= yl, k 6= l also implies yk 6= xk̄. If 1 ≤ k < l,

according to the concatenated path π′ = (z = yu, . . . , yl = cv, . . . , c1 = xk̄), by statement (ii) of

Lemma 5, f(y, z) = yk /∈ π′ implies f(y, xk̄) = yk 6= xk̄, which contradicts Claim 1. Symmetrically,

if l < k ≤ u, according to the concatenated path π′′ = (y = y1, . . . , yl = cv, . . . , c1 = xk̄), by

statement (ii) of Lemma 5, f(y, z) = yk /∈ π′′ implies f(xk̄, z) = yk 6= xk̄, which contradicts Claim

1. Therefore, f(y, z) = yl = Proj
(
xk̄, 〈y, z|GA∼〉

)
. This completes the verification of the claim, and

hence proves the lemma. This completes the proof in Step 2. �

Last, we move to Step 3 and show that D is a semi-single-peaked domain.

Lemma 10 Domain D is a semi-single-peaked domain.

Proof: Since GA∼ is a tree, it suffices to show D ⊆ DSSP(GA∼, xk̄). Fixing arbitrary P1 ∈ D, let

r1(P1) = x. First, given distinct a, b ∈ 〈x, xk̄|GA∼〉 and a ∈ 〈x, b|GA∼〉, we show a P1 b. By Lemma 9,

we have f(P1, a) = Proj
(
xk̄, 〈x, a|GA∼〉

)
= a and f(b, a) = Proj

(
xk̄, 〈b, a|GA∼〉

)
= b. Then, strategy-

proofness implies a P1 b, as required. Next, given a /∈ 〈x, xk̄|GA∼〉 and Proj
(
a, 〈x, xk̄|GA∼〉

)
= a′, we

show a′ P1 a. By Lemma 9, we have f(P1, a) = Proj
(
xk̄, 〈x, a|GA∼〉

)
= Proj

(
a, 〈x, xk̄|GA∼〉

)
= a′

and f(a, a) = a. Then, strategy-proofness implies a′ P1 a, as required. This completes the proof

in Step 3, and proves Statement (i) of Theorem 1. �

Now, we will focus on the proof of Statement (ii) of Theorem 1.

Proof of Statement (ii): Let D be a non-dictatorial, unidimensional domain. We first show the “if

part” of Statement (ii): “There exists no invariant, tops-only and strategy-proof rule.” ⇐ “Domain

D is a semi-hybrid domain.” More specifically, let D be an (a, b)-semi-hybrid domain on a tree T A.

The proof consists of the following two lemmas. Recall the two completely reversed preferences P i
and P i included in D by diversity, and their peaks r1(P i) = a1 and r1(P i) = am. The following

lemma indicates that we can assume w.l.o.g. that a1 ∈ Aa⇀b and am ∈ Ab⇀a.

Lemma 11 There exist a tree T̂ A and dual-thresholds â, b̂ ∈ A such that D is an (â, b̂)-semi-hybrid

domain on T̂ A, a1 ∈ Ââ⇀b̂ =
{
x ∈ A : â ∈ 〈x, b̂|T̂ A〉

}
and am ∈ Âb̂⇀â =

{
x ∈ A : b̂ ∈ 〈x, â|T̂ A〉

}
.

Proof: There are four situations: (1) Aa⇀b 6= {a} and Ab⇀a 6= {b}, (2) Aa⇀b = {a} and

Ab⇀a = {b}, (3) Aa⇀b = {a} and Ab⇀a 6= {b}, and (4) Aa⇀b 6= {a} and Ab⇀a = {b}. In each case,

we construct a tree T̂ A and identify dual-thresholds â, b̂ ∈ A such that D is an (â, b̂)-semi-hybrid

domain on T̂ A, a1 ∈ Ââ⇀b̂ and am ∈ Âb̂⇀â.

In Situation (1), we have c ∈ Aa⇀b\{a} and d ∈ Ab⇀a\{b}. We first claim a1 /∈ 〈a, b|T A〉.
Suppose not, i.e., a1 ∈ 〈a, b|T A〉. Then, by (a, b)-semi-hybridness on T A, we have b P i d and

a P i c. Note that either am ∈ Aa⇀b\{a}, or am ∈ 〈a, b|T A〉 ∪ Ab⇀a holds, which respectively

by (a, b)-semi-hybridness on T A implies b P i d and a P i c. This contradicts the fact that P i
and P i are complete reversals. Symmetrically, am /∈ 〈a, b|T A〉. Thus, there are four cases: (i)

a1, am ∈ Aa⇀b\{a}, (ii) a1, am ∈ Ab⇀a\{b}, (iii) a1 ∈ Aa⇀b\{a} and am ∈ Ab⇀a\{b}, and (iv)

a1 ∈ Ab⇀a\{b} and am ∈ Aa⇀b\{a}. We first rule out case (i). In case (i), by (a, b)-semi-hybridness

on T A, we have b P i d and b P i d, which contradict the fact that P i and P i are complete reversals.

Symmetrically, we can rule out case (ii). In case (iii), it is evident that D is an (a, b)-semi-hybrid

domain on T A, a1 ∈ Aa⇀b and am ∈ Ab⇀a, as required. In case (iv), let â = b and b̂ = a. Thus,
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a1 ∈ Ab⇀a = Aâ⇀b̂ and am ∈ Aa⇀b = Ab̂⇀â. Evidently, since D is an (a, b)-semi-hybrid domain on

T A, it is true that D is an (â, b̂)-semi-hybrid domain on T A, as required.

In Situation (2), we refer to the line LA = (a1, . . . , am) and the dual-thresholds a1 and am,

and show that D is an (a1, am)-semi-hybrid domain on LA. First, it is clear that D ⊆ P =

DSH(LA, a1, am). Next, since D is an (a, b)-semi-hybrid domain on T A and 〈a, b|T A〉 = A, we know

by condition (ii) of Definition 6 that there exist no tree T̃ A and dual-thresholds ã, b̃ ∈ A such

that D ⊆ DSH(T̃ A, ã, b̃) and 〈ã, b̃|T̃ A〉 ⊂ 〈a, b|T A〉 = A = 〈a1, am|LA〉. Last, by condition (iii)

of Definition 6, we know that if GA∼ is a tree, then for each x ∈ Leaf
(
G
〈a,b|T A〉
∼

)
= Leaf

(
GA∼
)

=

Leaf
(
G
〈a1,am|LA〉
∼

)
, there exists a preference Pi ∈ D such that Pi is not semi-single-peaked on GA∼

w.r.t. x. Therefore, D is an (a1, am)-semi-hybrid domain on LA, as required.

Since Situations (3) and (4) are symmetric, we focus on verifying Situation (2). We have two

cases: (i) a1 ∈ Aa⇀b\{a} and (ii) a1 ∈ 〈a, b|T A〉. In case (i), since P i and P i are complete reversals,

by (a, b)-semi-hybridness on T A, it is easy to show that am ∈ 〈a, b|T b〉\{a}. Now, we construct a

line (x1, . . . , xs) over all alternatives of 〈a, b|T A〉 such that s = |〈a, b|T A〉|, x1 = a, xs = am, and

all alternatives of 〈a, b|T A〉\{a, am} are arbitrarily arranged in the interior of the line. Then, by

combining the subtree T a⇀b and the line (x1, . . . , xs), we generate a tree T̂ A. Clearly, a and am
are dual-thresholds in T̂ A. Let â = a and b̂ = am. Thus, 〈a, b|T A〉 = 〈â, b̂|T̂ A〉, a1 ∈ Ââ⇀b̂ and

am ∈ Âb̂⇀â. We last show that D is an (â, b̂)-semi-hybrid domain on T̂ A. By (a, b)-semi-hybridness

on T A, one can easily show D ⊆ DSH(T̂ A, â, b̂). Furthermore, by condition (ii) of Definition 6, we

know that there exist no tree T̃ A and dual-thresholds ã, b̃ ∈ A such that D ⊆ DSH(T̃ A, ã, b̃) and

〈ã, b̃|T̃ A〉 ⊂ 〈a, b|T̂ A〉 = 〈â, b̂|T A〉. Last, by condition (iii) of Definition 6, we know that if GA∼ is

a tree, then for each x ∈ Leaf
(
G
〈a,b|T A〉
∼

)
= Leaf

(
G
〈â,b̂|T̂ A〉
∼

)
, there exists a preference Pi ∈ D such

that Pi is semi-single-peaked on GA∼ w.r.t. x. Therefore, D is an (â, b̂)-semi-hybrid domain on T̂ A,

as required. In case (ii), fixing an alternative c ∈ Aa⇀b\{a}, (a, b)-semi-hybridness on T A implies

a P i c. Since P i and P i are complete reversals, we have c P i a. Consequently, to meet (a, b)-

semi-hybridness on T A, it must be the case that am ∈ Aa⇀b\{a}. Then, (a, b)-semi-hybridness on

T A implies a P i b. We further claim a1 6= a. Otherwise, r1(P i) = a1 = a 6= b implies a P i b,

which contradicts the fact that P i and P i are complete reversals. Thus, we have am ∈ Aa⇀b\{a}
and a1 ∈ 〈a, b|T A〉\{a}, which are analogous to a1 ∈ Aa⇀b\{a} and am ∈ 〈a, b|T A〉\{a} in the

verification of case (i). Then, by a symmetric argument, we can construct a tree T̂ A and identify

dual-thresholds â, b̂ ∈ A such that D is an (â, b̂)-semi-hybrid domain on T̂ A, a1 ∈ Ââ⇀b̂ and

am ∈ Âb̂⇀â. This proves the lemma. �

Henceforth, let a1 ∈ Aa⇀b and am ∈ Ab⇀a. By Statement (i), to complete the verification, it

suffices to show that D is not a semi-single-peaked domain.

Lemma 12 Domain D is not a semi-single-peaked domain.

Proof: Suppose not, i.e., there exist a tree T̃ A and a threshold x̄ ∈ A such that D ⊆ DSSP(T̃ A, x̄),

and GA∼ is a connected graph. Then, by Clarification 1 and its proof, we know that GA∼ is tree that

coincides to T̃ A, i.e., GA∼ = T̃ A, x̄ has at most two neighbors in GA∼, i.e., |NA
∼ (x̄)| ≤ 2, and x̄ is

included in the path 〈a1, am|T̃ A〉 = 〈a1, am|GA∼〉. Let 〈a1, am|GA∼〉 = (x1, . . . , xv) denote the path

in GA∼ connecting a1 and am. Thus, x̄ = xk̄ for some k̄ ∈ {1, . . . , v}. Meanwhile, by (a, b)-semi-

hybridness on T A, we know that GA∼ is a combination of the subtree GA
a⇀b

∼ = T Aa⇀b
, the connected

subgraph G
〈a,b|T A〉
∼ and the subtree GA

b⇀a

∼ = T Ab⇀a
, denoted by GA∼ = GA

a⇀b

∼ ∪G〈a,b|T
A〉

∼ ∪GAb⇀a

∼ .

Then, GA∼ = T̃ A implies that G
〈a,b|T A〉
∼ is a tree as well, and a1 ∈ Aa⇀b and am ∈ Ab⇀a imply

a = xs and b = xt for some 1 ≤ s < t ≤ v. Thus, we have five cases: (1) 1 ≤ k̄ < s, (2) t < k̄ ≤ v,

(3) k̄ = s, (4) k̄ = t and (5) s < k̄ < t. In each case, we induce a contradiction.
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The first two cases are symmetric. We focus on the verification of case (1). Thus, x̄ ∈ Aa⇀b\{a}.
We show D ⊆ DSSP(GA∼, a). First, given arbitrary Pi ∈ D with r1(Pi) ∈ Aa⇀b\{a}, we show that Pi

is semi-single-peaked on the tree GA∼ = GA
a⇀b

∼ ∪
[
G
〈a,b|T A〉
∼ ∪GAb⇀a

∼
]

w.r.t. a, which consists of two

parts: (i) semi-single-peakedness on GA
a⇀b

∼ = T Ab⇀a
w.r.t. a, and (ii) a Pi x for all x ∈ A\Aa⇀b.

Since r1(Pi) ∈ Aa⇀b\{a}, both parts follow from (a, b)-semi-hybridness on T A. Second, given

Pi ∈ D with r1(Pi) ∈ 〈a, b|T A〉 ∪ Ab⇀a, we show that Pi is semi-single-peaked on the tree GA∼ =

GA
a⇀b

∼ ∪
[
G
〈a,b|T A〉
∼ ∪GAb⇀a

∼
]

w.r.t. a, which consists of two parts: (i) a Pi x for all x ∈ Aa⇀b\{a},
and (ii) semi-single-peakedness on G

〈a,b|T A〉
∼ ∪GAb⇀a

∼ w.r.t. a. Since r1(Pi) ∈ 〈a, b|T A〉∪Ab⇀a, part

(i) follows from (a, b)-semi-hybridness on T A. For part (ii), recall the contradictory hypothesis

that Pi is semi-single-peaked on GA∼ w.r.t. xk̄. Since a ∈ 〈x, xk̄|GA∼〉 for all x ∈ 〈a, b|T A〉 ∪ Ab⇀a,

it is also true that Pi is semi-single-peaked on G
〈a,b|T A〉
∼ ∪ GAb⇀a

∼ w.r.t. a, as required. Therefore,

D ⊆ DSSP(GA∼, a). Now, by statement (ii) of Clarification 1, according to semi-single-peakedness on

GA∼ w.r.t. a and diversity, we know |NA
∼ (a)| ≤ 2, which implies NA

∼ (a) = NA
∼ (xs) = {xs−1, xs+1}.

It is clear that xs−1 ∈ Aa⇀b\{a} and xs+1 ∈ 〈a, b|T A〉. Then, NA
∼ (a) ∩ 〈a, b|T A〉 = {xs+1} implies

a ∈ Leaf
(
G
〈a,b|T A〉
∼

)
. Thus, we know that all preferences of D are semi-single-peaked on the tree

GA∼ w.r.t. a which is a leaf of G
〈a,b|T A〉
∼ . This contradicts condition (iii) of Definition 6.

Cases (3) and (4) are symmetric. We focus on the verification of case (3). Thus, we have

D ⊆ DSSP(GA∼, a). Then, by the verification in case (1), we induce the same contradiction.

Last, let case (5) occur. Recall that xk̄ has at most two neighbors in GA∼, which is mentioned

in the beginning of the proof. Thus, we know NA
∼ (xk̄) = {x ¯k−1, xk̄+1}. We cut the tree GA∼ at

the edge (xk̄−1, xk̄), and obtain the subset B =
{
x ∈ A : xk̄ ∈ 〈x, xk̄−1|GA∼〉

}
and the subtree

GB∼. It is clear that the subtrees GA
a⇀b

∼ and GB∼ are separated, i.e., Aa⇀b ∩ B = ∅. Let B̂ =[
A\[Aa⇀b∪B]

]
∪{a, xk̄}. Clearly, B̂ ⊂ 〈a, b|T A〉. Furthermore, we construct a line π = (z1, . . . , zq)

over all alternatives of B̂ such that q = |B̂|, z1 = a, zq = xk̄, and all alternatives of B̂\{a, xk̄}
are arbitrarily arranged in the interior of the line π. By combining the subtree GA

a⇀b

∼ , the line

π and the subtree GB∼, we generate a tree T̂ A. Clearly, a and xk̄ are dual-thresholds in T̂ A.

Let Âa⇀xk̄ =
{
x ∈ A : a ∈ 〈x, xk̄|T̂ A〉

}
and Âxk̄⇀a =

{
x ∈ A : xk̄ ∈ 〈x, a|T̂ A〉

}
. Note that

Âa⇀xk̄ = Aa⇀b and Âxk̄⇀a = B. We next show D ⊆ DSH(T̂ A, a, xk̄). First, given Pi ∈ D with

r1(Pi) ∈ Âa⇀xk̄\{a}, we show that Pi is semi-single-peaked on T̂ A w.r.t. a, and maxPi
(
Âxk̄⇀a

)
=

xk̄. Since T̂ A = GA
a⇀b

∼ ∪
[
π∪GB∼

]
, the semi-single-peakedness requirement on T̂ A w.r.t. a consists of

the following two parts: (i) semi-single-peakedness on GA
a⇀b

∼ = T Ab⇀a
w.r.t. a, and (ii) a Pi x for all

x ∈ A\Aa⇀b. Since r1(Pi) ∈ Âa⇀xk̄\{a} = Aa⇀b\{a}, both parts follow from (a, b)-semi-hybridness

on T A. Furthermore, since r1(Pi) ∈ Âa⇀xk̄ = Aa⇀b, we know that for all x ∈ Âxk̄⇀a = B,

x /∈ 〈r1(Pi), xk̄|GA∼〉 and Proj
(
x, 〈r1(Pi), xk̄|GA∼〉

)
= xk̄. Then, by the contradictory hypothesis

that Pi is semi-single-peaked on GA∼ w.r.t. xk̄, we have maxPi
(
Âxk̄⇀a

)
= xk̄, as required. Second,

given Pi ∈ D with r1(Pi) ∈ Âxk̄⇀a\{xk̄}, we show that Pi is semi-single-peaked on T̂ A w.r.t. xk̄,

and maxPi
(
Âa⇀xk̄

)
= a. Since T̂ A =

[
GA

a⇀b

∼ ∪π
]
∪GB∼, the semi-single-peakedness requirement on

T̂ A w.r.t. xk̄ consists of the following two parts: (i) semi-single-peakedness on GB∼ w.r.t. xk̄, and (ii)

xk̄ Pi x for all x ∈ A\B. Indeed, both parts follow from the contradictory hypothesis that Pi is semi-

single-peaked on GA∼ w.r.t. xk̄. Furthermore, since r1(Pi) ∈ Âxk̄⇀a\{xk̄} = B\{xk̄} ⊆ A\Aa⇀b,

(a, b)-semi-hybridness on T A implies maxPi(Âa⇀xk̄) = maxPi(Aa⇀b) = a, as required. Last, given

Pi ∈ D with r1(Pi) ∈ 〈a, xk̄|T̂ A〉, we show maxPi
(
Âa⇀xk̄

)
= a and maxPi

(
Âxk̄⇀a

)
= xk̄. Since

r1(Pi) ∈ 〈a, xk̄|T̂ A〉 = B̂ ⊂ 〈a, b|T A〉, (a, b)-semi-hybridness on T A implies maxPi(Âa⇀xk̄) =

maxPi(Aa⇀b) = a, as required. Note that for each x ∈ Âxk̄⇀a\{xk̄} = B\{xk̄}, x /∈ 〈r1(Pi), xk̄|GA∼〉
and Proj

(
x, 〈r1(Pi), xk̄|GA∼〉

)
= xk̄. Then, by the contradictory hypothesis that Pi is semi-single-

peaked on GA∼ w.r.t. xk̄, we have xk̄ Pi x for all x ∈ Âxk̄⇀a\{xk̄}, which implies maxPi
(
Âxk̄⇀a

)
=

xk̄, as required. In conclusion, we have D ⊆ DSH

(
T̂ A, a, xk̄

)
and 〈a, xk̄|T̂ A〉 = B̂ ⊂ 〈a, b|T A〉 which
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contradict condition (ii) of Definition 6. This proves the lemma, and completes the verification of

the “if part” of Statement (ii). �

Henceforth, we show the “only if part” of Statement (ii): “There exists no invariant, tops-only

and strategy-proof rule.” ⇒ “Domain D is a semi-hybrid domain satisfying the unique seconds

property.”, and show that every two-voter, tops-only and strategy-proof rule defined on D is a

hybrid rule and behaves like a dictatorship on the free zone.

First, since D is a non-dictatorial, unidimensional domain, the Auxiliary Proposition implies

that D satisfies the unique seconds property.38

Next, we show that D is a semi-hybrid domain.39 Since D satisfies path-connectedness, it is

clear that GA∼ is a connected graph. First, since D ⊆ P = DSH(LA, a1, am), there must exist a tree

T A and dual-thresholds a, b ∈ A such that D ⊆ DSH(T A, a, b). Hence, condition (i) of Definition

6 is satisfied. Furthermore, since A is finite, we can push that the searching of the tree T A and

the dual-thresholds a, b ∈ A towards the limit that there exist no tree T̂ A and dual-thresholds

â, b̂ ∈ A such that D ⊆ DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a, b|T A〉. Thus, condition (ii) of Definition

6 is met. Last, we show that D satisfies condition (iii) of Definition 6. Let GA∼ be a tree. Since

GA∼ is a combination of the subtree GA
a⇀b

∼ = T Aa⇀b
, the connected subgraph G

〈a,b|T A〉
∼ and the

subtree GA
b⇀a

∼ = T Ab⇀a
, it must be the case that G

〈a,b|T A〉
∼ is a tree as well. Since by hypothesis

there exists no invariant, tops-only and strategy-proof rule, Statement (i) implies that D is not

a semi-single-peaked domain, which immediately implies that for each x ∈ Leaf
(
G
〈a,b|T A〉
∼

)
, there

exists a preference Pi ∈ D such that Pi is not semi-single-peaked on GA∼ w.r.t. x, as required. In

conclusion, D is an (a, b)-semi-hybrid domain on a tree T A. Recall the two completely reversed

preference P i and P i included in D and their peaks r1(P i) = a1 and r1(P i) = am. By Lemma 11,

we henceforth assume w.l.o.g. that a1 ∈ Aa⇀b and am ∈ Ab⇀a.

Last, we fix an arbitrary two-voter, tops-only and strategy-proof rule f : D2 → A,40 and show

that f is a hybrid rule and behaves like a dictatorship on the free zone 〈a, b|T A〉. Since there exists

no invariant, tops-only and strategy-proof rule, we know f(a1, am) = f(P 1, P 2) 6= f(P 1, P 2) =

f(am, a1). The proof consists of the following three steps:

Step 1. We construct a line over all alternatives involved in the path(s) connecting a1 and am in

GA∼ (see all proofs before Lemma 13), and partially characterize f according to the constructed

line (see Lemma 13).

Step 2. We construct a tree T Af where the two social outcomes f(a1, am) and f(am, a1) are dual-

thresholds, using the adjacency graph GA∼ and the partial characterization of f (see Lemmas 14

and 15). Then, we completely characterize f to be a hybrid rule on T Af w.r.t. the dual-thresholds

f(a1, am) and f(am, a1) (see Lemmas 16 and 17), which indicates that f behaves like a dictatorship

on the interval between f(a1, am) and f(am, a1) in T Af . Furthermore, we elicit some preference

restriction embedded in D via strategy-proofness of f (see Lemma 18), which may be different from

the aforementioned preference restriction of (a, b)-semi-hybridness on T A.

Step 3. Note that the preference restriction elicited in Step 2 and the preference restriction of

(a, b)-semi-hybridness on T A must be compatible with each other as they are both embedded in

D. We use the compatibility of these two preference restrictions to show that the interval between

f(a1, am) and f(am, a1) in T Af is a superset of the interval 〈a, b|T A〉, which of course implies that

f behaves like a dictatorship on 〈a, b|T A〉 (see Lemma 20).

Let Π(a1, am) denote the set of paths in GA∼ connecting a1 and am. Clearly, Π(a1, am) 6= ∅. Let

38It is worth mentioning that this is the only place in the proof where leaf symmetry plays a role.
39We are grateful to an anonymous referee for suggesting the proof.
40Such a rule always exists, e.g., a dictatorship.
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B =
{
a ∈ A : a ∈ π for some π ∈ Π(a1, am)

}
. Note that B may not include all alternatives of A,

and all paths of Π(a1, am) are included in GB∼ which hence implies that GB∼ is connected. There

are two cases: |Π(a1, am)| = 1 and |Π(a1, am)| > 1. In the first case, let LB = (x1, . . . , xv) be the

path in GA∼ that connects a1 and am, where v = |B|.
Next, assume |Π(a1, am)| > 1. Fix an arbitrary path π = (z1, . . . , zω) ∈ Π(a1, am). Since

|Π(a1, am)| > 1 and all paths of Π(a1, am) start from a1 and end at am, we can identify x, y ∈ π,

say x = zs and y = zω−p, where 1 ≤ s < ω− p ≤ ω, satisfying the following two conditions: (i) s is

the maximum index agreed by all paths of Π(a1, am) in the direction from a1 to am, i.e., for each

path π′ = (z′1, . . . , z
′
σ) ∈ Π(a1, am)\{π}, zk = z′k for all k ∈ {1, . . . , s}, and for some path π′′ =

(z′′1 , . . . , z
′′
q ) ∈ Π(a1, am)\{π}, zs+1 6= z′′s+1, and (ii) ω−p is the minimum index agreed by all paths

of Π(a1, am) in the direction from am to a1, i.e., for each path π′ = (z′1, . . . , z
′
σ) ∈ Π(a1, am)\{π},

zω−k = z′σ−k for all k ∈ {0, 1, . . . , p}, and for some path π′′ = (z′′1 , . . . , z
′′
q ) ∈ Π(a1, am)\{π},

zω−p−1 6= z′′q−p−1. Thus, we can pin down the adjacency graph GB∼: πL = (z1, . . . , zs) is the unique

path in GB∼ connecting a1 and x, πR = (zω−p, . . . , zω) is the unique path in GB∼ connecting y and

am, the set O = {a ∈ B : a /∈ πL ∪ πR} ∪ {x, y} contains at least three alternatives41, and GO∼ is

a connected graph and has no leaf (see the first diagram of Figure 8). We next construct a line

(x, . . . , y) over all alternatives of O such that x and y are the two leaves, and all alternatives of

O\{x, y} are arbitrarily arranged in the interior of the line. Then, by combining πL, (x, . . . , y)

and πR, we construct a line LB = (x1, . . . , xs, . . . , xt, . . . , xv), where v = |B|, 1 ≤ s < t ≤ v,

t − s > 1, x1 = a1, xs = x, xt = y, xv = am, (x1, . . . , xs) = πL, (xs, . . . , xt) = (x, . . . , y) and

(xt, . . . , xv) = πR (see the second diagram of Figure 8). We intentionally let the notation of the

constructed line LB here be identical to the line LB in the case |Π(a1, am)| = 1. This helps us

unify the henceforth proof for both cases, and does not create any loss of generality.

GO∼• • • •
a1 x y am︸ ︷︷ ︸

πL
︸ ︷︷ ︸

πR
GB∼:

• • • •
a1 = x1 x = xs xt = y xv = am︸ ︷︷ ︸

πL
︸ ︷︷ ︸

(x, . . . , y)
︸ ︷︷ ︸

πR
LB: •

xk
•
xk

Figure 8: Adjacency graph GB
∼ and the constructed line LB

In the case |Π(a1, am)| = 1, statement (i) of Lemma 5 and the violation of invariance imply

f(x1, xv) = xk and f(xv, x1) = xk for some distinct k, k ∈ {1, . . . , v}. We assume w.l.o.g. that

k < k, which by statement (i) of Lemma 6 implies that voter 1 dictates on 〈xk, xk|L
B〉. In the case

|Π(a1, am)| > 1, since GO∼ is a connected graph and has no leaf, statement (i) of Lemma 4 implies

that f behaves like a dictatorship on O = 〈xs, xt|LB〉. We assume w.l.o.g. that voter 1 dictates on

〈xs, xt|LB〉, i.e., f(xk, xk′) = xk for all k, k′ ∈ {s, . . . , t}. This helps us unify the henceforth proof

for both cases. Thus, f(xs, xt) = xs and f(xt, xs) = xt. Then, according to the paths (xt, . . . , xv)

and (x1, . . . , xs), statement (ii) of Lemma 5 implies f(xs, xv) = xs and f(xt, x1) = xt. Furthermore,

according to (x1, . . . , xs) and (xt, . . . , xv), by statement (iii) of Lemma 5, f(xs, xv) = xs implies

f(x1, xv) = xk for some k ∈ {1, . . . , s}, and f(xt, x1) = xt implies f(xv, x1) = xk for some

k ∈ {t, . . . , v}.

The next lemma provide a unified characterization of f on the line LB.

Lemma 13 According to LB = (x1, . . . , xv), we have f(xk, xk′) =


xk if k ≤ k ≤ k,
xmed(k, k′, k) if k < k, and

xmed(k, k′, k) if k > k.

41It is clear that |O| ≥ 2. If |O| = 2, all paths of Π(a1, am) degenerate to an identical path.
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Proof: If |Π(a1, am)| = 1, the lemma follows from statement (i) of Lemma 6. Next, we assume

|Π(a1, am)| > 1. Note that for each path π ∈ Π(a1, am), since f(x1, xv) = xk ∈ 〈a1, x|π〉 and

f(xv, x1) = xk ∈ 〈y, am|π〉, statement (i) of Lemma 6 holds on π. To prove the lemma, we fix an

arbitrary profile (xk, xk′).

First, let k ≤ k ≤ k. If k ≤ k′ ≤ k, then by voter 1’s dictatorship on 〈xk, xk|L
B〉, we

have f(xk, xk′) = xk. If k′ < k or k′ > k, we know that there exists a path π ∈ Π(a1, am)

which includes both xk and xk′ . Clearly, xk ∈ 〈xk, xk|π〉. Then, statement (i) of Lemma 6 on

π implies f(xk, xk′) = xk. Second, let k < k. Then, there exists a path π ∈ Π(a1, am) which

includes both xk and xk′ . Clearly, xk ∈ 〈x1, xk|π〉\{xk}. Then, statement (i) of Lemma 6 on

π implies f(xk, xk′) = xmed(k, k′, k). Symmetrically, if k > k, statement (i) of Lemma 6 implies

f(xk, xk′) = xmed(k, k′, k). This proves the lemma, and completes Step 1 of the proof. �

Lemma 14 Fixing an alternative z ∈ A and a path π = (z1, . . . , zs) in GA∼, where z1 = z and s ≥ 2,

the following two statements hold:

(i) if zs−1 = xk−1 and zs = xk, then π is the unique path in GA∼ connecting z and xk, and

(ii) if zs−1 = xk+1 and zs = xk, then π is the unique path in GA∼ connecting z and xk.

Proof: The two statements are symmetric, and we hence focus on the verification of the first

one. Suppose that there exists another path π′ = (y1, . . . , yt) in GA∼ connecting z and xk. Then, we

can identify a cycle C in GA∼ such that (i) C ⊆ π ∪ π′, (ii) π ∩ C 6= ∅ and (iii) each edge in C belong

to π or π′. Clearly, by Observation 1, f behaves like a dictatorship on C. We further identify the

alternative zk∗ ∈ π ∩ C such that zk /∈ C for all k ∈ {k∗ + 1, . . . , s}. We consider two cases: k∗ = s

and k∗ < s.

In the first case, we show that xk−1 is also included in C. On the one hand, as included

in C, xk has two distinct neighbors in C. On the other hand, xk has a unique neighbor in π,

which is xk−1, and a unique neighbor in π′. Therefore, it must be true that xk−1 is included

in C. Hence, xk−1, xk ∈ C. In the second case, we have the path (zk∗ , . . . , zs), which contains

both xk−1 and xk. Recall by Lemma 13 that voter 1 dictates on 〈xk, xk|L
B〉. In the first case,

C∩〈xk, xk|L
B〉 6= ∅, while in the second case, the cycle C and the adjacency graph over 〈xk, xk|L

B〉,
which both are connected graphs and contain at least two alternatives, are linked via the path

(zk∗ , . . . , zs). Therefore, Lemma 2 implies that voter 1 dictates on {zs−1, zs}. Consequently, we

have f(xk−1, xk) = f(zs−1, zs) = zs−1 = xk−1 6= xmed(k−1, k, k), which contradicts Lemma 13.

Hence, π is the unique path in GA∼ connecting z and xk. �

We construct the following five sets:

B =
{
z ∈ A : there exists a path (z1, . . . , zs) in GA∼ connecting z and xk such that zs−1 = xk−1

}
,

B =
{
z ∈ A : there exists a path (z1, . . . , zs) in GA∼ connecting z and xk such that zs−1 = xk+1

}
,

A = B ∪ {xk}, A = B ∪ {xk}, and M =
{
z ∈ A : z /∈ B ∪B

}
.

The next lemma shows that GA∼ is a combination of three adjacency graphs GA∼, GM∼ and GA∼,

denoted by GA∼ = GA∼ ∪GM∼ ∪GA∼.

Lemma 15 We have GA∼ = GA∼ ∪GM∼ ∪GA∼.

Proof: First, it is clear that A = A∪M∪A and EA∼ ⊇ EA∼∪EM∼ ∪EA∼ . To prove EA∼ = EA∼∪EM∼ ∪EA∼ ,

it suffices to show that in GA∼, no alternative of B is adjacent to any alternative not in A, and no

alternative of B is adjacent to any alternative not in A.
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Given z ∈ B and y /∈ A, suppose by contradiction that (z, y) ∈ EA∼ . Let (z1, . . . , zs) be the

unique path in GA∼ that connects z and xk, where zs−1 = xk−1. It is evident that y /∈ A implies

y 6= xk = zs. Moreover, since z1, . . . , zs−1 ∈ B by definition, it is true that y /∈ {z1, . . . , zs−1}.
Consequently, we have a path (y, z1, . . . , zs) in GA∼ that connects y and xk, which by definition

implies y ∈ B ⊂ A - a contradiction. Therefore, (z, y) /∈ EA∼ . Symmetrically, given z′ ∈ B and

y′ /∈ A, we have (z′, y′) /∈ EA∼ . �

By Lemma 14 and the construction of A and A, one can easily infer that GA∼ and GA∼ are two

trees. Immediately, since GA∼ is a connected graph, Lemma 15 implies that GM∼ is a connected

graph as well. In particular, when A 6= {xk}, we know that xk−1 must be contained in A, and more

importantly, for every z ∈ B, xk−1 is included in the path in GA∼ that connects z and xk. Therefore,

it must be the case that xk−1 is the unique neighbor of xk in GA∼, and hence xk ∈ Leaf(GA∼).

Symmetrically, if A 6= {xk}, xk+1 is the unique neighbor of xk in GA∼ and xk ∈ Leaf(GA∼).

Now, we construct a line LM over all alternatives of M such that xk and xk are the two

leaves of the line, and all alternatives of M\{xk, xk} are arbitrarily arranged in the interior of

the line. By combining GA∼, LM and GA∼, we generate a tree T Af . Clearly, by construction,

T Af = GA∼ and T Af = GA∼. By construction, xk and xk are dual-thresholds in T Af . Thus, according

to T Af and GA∼, we have Axk⇀xk =
{
x ∈ A : xk ∈ 〈x, xk|T

A
f 〉
}

= A, 〈xk, xk|T
A
f 〉 = M , and

Axk⇀xk =
{
x ∈ A : xk ∈ 〈x, xk|T

A
f 〉
}

= A. In the rest of proof, for notational convenience, we use

the notation A, M and A, instead of Axk⇀xk , 〈xk, xk|T
A〉 and Axk⇀xk .

The next lemma shows that voter 1 dictates on M .

Lemma 16 We have f(z, z′) = z for all z, z′ ∈M .

Proof: By the definition of B and B, one can easily notice 〈xk, xk|L
B〉 ⊆ M . According

to the connected graph GM∼ , we know that either Leaf(GM∼ ) = ∅ or Leaf(GM∼ ) 6= ∅ holds. If

Leaf(GM∼ ) = ∅, the lemma follows from statement (i) of Lemma 4 and the hypothesis that voter

1 dictates on 〈xk, xk|L
B〉 ⊆ M . Henceforth, let Leaf(GM∼ ) 6= ∅. To complete the verification, by

statement (ii) of Lemma 4, we show that given an arbitrary x ∈ Leaf(GM∼ ) and (x, y) ∈ EM∼ , f

behaves likes dictatorship on {x, y}. We have two cases: x ∈ {xk, xk} and x ∈M\{xk, xk}. In the

first case, since G
〈xk,xk|L

B〉
∼ is a connected graph nested in GM∼ (implied by 〈xk, xk|L

B〉 ⊆ M), we

know that xk has a neighbor that is in 〈xk, xk|L
B〉 ⊆ M . Then, x ∈ Leaf(GM∼ ) and (x, y) ∈ EM∼

imply y ∈ 〈xk, xk|L
B〉. Consequently, by Lemma 13, f behaves likes dictatorship on {x, y}, as

required. Henceforth, let the second case hold: x ∈M\{xk, xk}.
Since the adjacency graph over 〈xk, xk|L

B〉 is a connected graph, we fix a path π = (y1, . . . , yt)

such that y1, . . . , yt ∈ 〈xk, xk|L
B〉, y1 = xk and yt = xk. Since x /∈ {xk, xx} and x ∈ Leaf(GM∼ ),

it is evident that x /∈ π. Moreover, since GM∼ is a connected graph, we can identify an alternative

ys ∈ π and a path π′ = (z1, . . . , zp) in GM∼ connecting ys and x, such that z2, . . . , zp /∈ π. Clearly,

since x ∈ Leaf(GM∼ ) and (x, y) ∈ EM∼ , we have zp−1 = y and hence p ≥ 2. By Lemma 13, we know

that f behaves likes dictatorship on π. Since z1 = ys ∈ π, f behaves likes dictatorship on the

set π ∪ {z1}. We pick an arbitrary l ∈ {2, . . . , p}, and provide an induction hypothesis: SCF f

behaves like a dictatorship on π ∪ {z1, . . . , zl−1}. We show that f behaves like a dictatorship on

π ∪ {z1, . . . , zl}. Furthermore, by Lemma 2, it suffices to show that voter 1 dictates on {zl−1, zl},
i.e., f(zl−1, zl) = zl−1 and f(zl, zl−1) = zl.

Since zl−1 ∼ zl, it is evident that f(zl−1, zl) ∈ {zl−1, zl} and f(zl, zl−1) ∈ {zl−1, zl}. Suppose

f(zl−1, zl) = zl. Then, according to the path (zl−1, . . . , z1), statement (ii) of Lemma 5 implies

f(z1, zl) = zl. Given P 2 = P i and P 2 = P i, since z1 = ys ∈ 〈xk, xk|L
B〉, Lemma 13 implies

f(z1, P 2) = f(z1, x1) = z1 and f(z1, P 2) = f(z1, xv) = z1. Then, strategy-proofness implies
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z1 P 2 zl and z1 P 2 zl which contradicts the fact that P 2 and P 2 are complete reversals. Therefore,

f(zl−1, zl) = zl−1, as required.

Last, we show f(zl, zl−1) = zl. Suppose not, i.e., f(zl, zl−1) = zl−1. First, since zl−1, . . . , z2 ∈
M\π, we know zl−1, . . . , z2 /∈ A ∪ A. Then, we can construct two concatenated paths π̄ =

(zl−1, . . . , z1 = ys, . . . , y1 = xk, . . . , x1) and π̂ = (zl−1, . . . , z1 = ys, . . . , yt = xk, . . . , xv). Then,

according to π̄ and π̂, statement (iii) of Lemma 5 implies f(zl, x1) ∈ π̄ and f(zl, xv) ∈ π̂. Next, we

show the following claim.

Claim 1: We have f(zl−1, x1) = zl−1 and f(zl−1, xv) = zl−1.

There are two cases: l = 2 and l > 2. In the first case, zl−1 = ys ∈ 〈xk, xk|L
B〉. Then,

Lemma 13 implies f(zl−1, x1) = zl−1 and f(zl−1, xv) = zl−1. In the second case, the induction

hypothesis implies f(zl−1, y1) = zl−1 and f(zl−1, yt) = zl−1. Note that zl−1 /∈ π implies zl−1 6= y1

and zl−1 6= yt. Then, according to the paths (y1 = xk, . . . , x1) and (yt = xk, . . . , xv) which both

clearly exclude zl−1, by statement (ii) of Lemma 5, f(zl−1, y1) = zl−1 implies f(zl−1, x1) = zl−1,

and f(zl−1, yt) = zl−1 implies f(zl−1, xv) = zl−1. This completes the verification of the claim.

Furthermore, since zl ∼ zl−1, by statement (iii) of Lemma 5, Claim 1 implies f(zl, x1) ∈
{zl−1, zl} and f(zl, xv) ∈ {zl−1, zl}. Therefore, we have f(zl, x1) ∈ π̄ ∩ {zl−1, zl} = {zl−1} and

f(zl, xv) ∈ π̂ ∩ {zl−1, zl} = {zl−1}, which respectively imply f(zl, x1) = zl−1 and f(zl, xv) = zl−1.

Thus, given P 2 = P i and P 2 = P i, we have f(zl, P 2) = zl−1 and f(zl, P 2) = zl−1. Consequently,

given f(zl, zl) = zl by unanimity, strategy-proofness implies zl−1 P 2 zl and zl−1 P 2 zl, which

contradicts the fact that P 2 and P 2 are complete reversals. Hence, f(zl, zl−1) = zl, as required.

This completes the verification of the induction hypothesis. Therefore, f behaves like a dictatorship

on {x, y}, as required. This proves the lemma. �

Lemma 17 SCF f is a hybrid rule on T Af w.r.t. xk and xk, i.e., for all x, y ∈ A,

f(x, y) =


x if x ∈M,

Proj
(
xk, 〈x, y|T Af 〉

)
if x ∈ A\{xk}, and

Proj
(
xk, 〈x, y|T

A
f 〉
)

if x ∈ A\{xk}.

Proof: We first know that voter 1 dictates on M by Lemma 16. Next, given x ∈ M and

y ∈ A\{xk}, we show f(x, y) = x. By a symmetric argument, we can show f(x, y) = x for all

x ∈ M and y ∈ A\{xk}. Since y ∈ A\{xk}, we know A 6= {xk} and hence xk−1 ∈ A\{xk}. Then,

we have f(xk, xk−1) = xk by Lemma 13. In GM∼ , there exists a path (z1, . . . , zs) connecting xk
and x. Then, by statement (iii) of Lemma 5, f(xk, xk−1) = xk implies f(x, xk−1) ∈ {z1, . . . , zs}.
Suppose f(x, xk−1) = zk for some k ∈ {1, . . . , s−1}. Then, strategy-proofness implies f(x, zk) = zk
which contradicts Lemma 13. Therefore, f(x, xk−1) = zs = x. Furthermore, in GA∼, we have a path

(y1, . . . , yt) connecting xk−1 and y. Clearly, x is not included in (y1, . . . , yt). Then, by statement

(ii) of Lemma 5, f(x, xk−1) = x implies f(x, y) = x, as required.

Second, given x ∈ A\{xk} and y ∈ A, we show f(x, y) = Proj
(
xk, 〈x, y|T Af 〉

)
. Since x ∈

A\{xk}, we know A 6= {xk} and xk−1 ∈ A\{xk}. Then, Lemma 13 implies f(xk−1, xk) = xk.

We consider two cases: y ∈ 〈xk, xk|T
A
f 〉 ∪ A and y ∈ A\{xk}. In the first case, we have a path

(y1, . . . , ys) in the connected graph GM∼ ∪ GA∼ connecting xk and y. Then, by statement (iii) of

Lemma 5, f(xk−1, xk) = xk implies f(xk−1, y) ∈ {y1, . . . , ys}. Meanwhile, since f(xk, y) = xk and

xk−1 ∼ xk, statement (iii) of Lemma 5 implies f(xk−1, y) ∈ {xk, xk−1}. Therefore, f(xk−1, y) ∈
{y1, . . . , ys} ∩ {xk, xk−1} = {xk}, and hence f(xk−1, y) = xk. Furthermore, in GA∼, we have

the path (z1, . . . , zt) connecting xk−1 and x. Clearly, xk is not included in (z1, . . . , zt). Then,

by statement (ii) of Lemma 5, f(xk−1, y) = xk implies f(x, y) = xk = Proj
(
xk, 〈x, y|T Af 〉

)
, as
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required. In the second case, we have a path π in GA∼ connecting x and y. Then, statement (i)

of Lemma 5 implies f(x, y) ∈ π. Meanwhile, we have f(xk, y) = xk by the verification in the first

paragraph and f(x, xk) = xk by the verification of the first case. Note that in GA∼, there exist

a path π′ connecting xk and x, and a path π′′ connecting xk and y. Then, by statement (iii) of

Lemma 5, f(xk, y) = xk implies f(x, y) ∈ π′, and f(x, xk) = xk implies f(x, y) ∈ π′′. Therefore,

f(x, y) ∈ π ∩ π′ ∩ π′′. Last, since GA∼ is a tree, it is true that π ∩ π′ ∩ π′′ =
{

Proj(xk, 〈x, y|T Af 〉)
}

.

Hence, we have f(x, y) = Proj
(
xk, 〈x, y|T Af 〉

)
, as required. Symmetrically, when x ∈ A\{xk}, we

can show f(x, y) = Proj
(
xk, 〈x, y|T

A
f 〉
)

for all y ∈ A. This proves the lemma. �

Lemma 18 We have D ⊆ DSH

(
T Af , xk, xk

)
.

Proof: First, given Pi ∈ D with r1(Pi) ∈ A\{xk}, we show that Pi is semi-single-peaked on

T Af w.r.t. xk and maxPi(A) = xk. Let P1 = Pi. Given distinct x, y ∈ 〈r1(P1), xk|T Af 〉 such that

x ∈ 〈r1(P1), y|T Af 〉, we by Lemma 17 have f(P1, x) = Proj
(
xk, 〈r1(P1), x|T Af 〉

)
= x and f(y, x) =

Proj
(
xk, 〈y, x|T Af 〉

)
= y. Then, strategy-proofness implies x P1 y, which meets condition (i) of

Definition 4. Given x /∈ 〈r1(P1), xk|T Af 〉 and x̂ = Proj
(
x, 〈r1(P1), xk|T Af 〉

)
, we by Lemma 17 have

f(P1, x) = Proj
(
xk, 〈r1(P1), x|T Af 〉

)
= Proj

(
x, 〈r1(P1), xk|T Af 〉

)
= x̂ and f(x, x) = x. Immediately,

strategy-proofness implies x̂ P1 x, which meets condition (ii) of Definition 4. Therefore, Pi is

semi-single-peaked on T Af w.r.t. xk, as required. Next, to show maxPi(A) = xk, we fix P2 = Pi
and an arbitrary x ∈ A\{xk}, and show xk P2 x. Since f(x, P2) = Proj

(
xk, 〈x, r1(P2)|T Af 〉

)
= xk

by Lemma 17 and f(x, x) = x by unanimity, strategy-proofness implies xk P2 x, as required.

Symmetrically, given Pi ∈ D with r1(Pi) ∈ A\{xk}, we can show that Pi is semi-single-peaked

on T Af w.r.t. xk and maxPi(A) = xk.

Last, given Pi ∈ D with r1(Pi) ∈ 〈xk, xk|T
A
f 〉 = M , we show maxPi(A) = xk and maxPi(A) =

xk. Fixing P2 = Pi, an arbitrary x ∈ A\{xk} and an arbitrary y ∈ A\{xk}, it suffices to show

xk P2 x and xk P2 y. By Lemma 17, we have f(x, P2) = Proj
(
xk, 〈x, r1(P2)|T Af 〉

)
= xk and

f(x, x) = x. Then, strategy-proofness implies xk P2 x, as required. Symmetrically, f(y, P2) =

Proj
(
xk, 〈y, r1(P2)|T Af 〉

)
= xk and f(y, y) = y, which by strategy-proofness imply xk P2 y, as

required. This proves the lemma, and completes Step 2 of the proof. �

Now, we start the verification of Step 3. We first make one observation that henceforth will

be repeatedly applied according to the line LB = (x1, . . . , xv) constructed in Step 1 (note that LB

may not be a path in GA∼) and (xk, xk)-semi-hybridness on T Af established in Lemma 18.

Observation 2 If k > 1, then (x1, . . . , xk) is the unique path in GA∼ (also in GA∼) connecting a1

and a, and NA
∼ (xk) ∩ A = {xk−1}; if k < v, then (xv, . . . , xk) is the unique path in GA∼ (also in

GA∼) connecting am and b, and NA
∼ (xk) ∩A = {xk+1}. Moreover, xk, . . . , xk ∈M .

Recall that D is an (a, b)-semi-hybrid domain on T A. Hence, the adjacency graph GA∼ is

a combination of the subtree GA
a⇀b

∼ = T Aa⇀b
, the connected subgraph G

〈a,b|T A〉
∼ and the subtree

GA
b⇀a

∼ = T Ab⇀a
, i.e., GA∼ = GA

a⇀b

∼ ∪G〈a,b|T
A〉

∼ ∪GAb⇀a

∼ . Moreover, since a1 ∈ Aa⇀b and am ∈ Ab⇀a,

by (a, b)-semi-hybridness on T A, we know that in every path of Π(a1, am), a and b must be included,

and a is located closer to a1 than b. Then, according to the line LB = (x1, . . . , xv) constructed in

Step 1, it must be the case that a = xp and b = xq for some 1 ≤ p < q ≤ v.

Lemma 19 According to the line LB = (x1, . . . , xv) and (a, b)-semi-hybridness on T A, if p > 1, then

(x1, . . . , xp) is the unique path in GA∼ (also in GA
a⇀b

∼ ) connecting a1 and a, and NA
∼ (xp)∩Aa⇀b =

{xp−1}; if q < v, then (xv, . . . , xq) is the unique path in GA∼ (also in GA
b⇀a

∼ ) connecting am and b,

and NA
∼ (xq) ∩Ab⇀a = {xq+1}. Moreover, xp, . . . , xq ∈ 〈a, b|T A〉.
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Proof: First, let p > 1. Note that if (x1, . . . , xp) is a path in GA∼ connecting a1 and a, then by

(a, b)-semi-hybridness on T A, it is true that (x1, . . . , xp) is the unique path in GA∼ (also in GA
a⇀b

∼ )

connecting a1 and a, and a ∈ Leaf(T Aa⇀b
) which by statement (ii) of Clarification 2 implies

NA
∼ (xp) ∩ Aa⇀b = {xp−1}. Henceforth, we focus on showing that (x1, . . . , xp) is a path in GA∼

connecting a1 and a. Recall the set Π(a1, am) specified in Step 1 that contains all paths connecting

a1 and am in GA∼. If |Π(a1, am)| = 1, then the line LB is a path in GA∼ connecting a1 and am, which

immediately implies that (x1, . . . , xp) is a path in GA∼ connecting a1 and a, as required. Next,

let |Π(a1, am)| > 1. By (a, b)-semi-hybridness on T A and Clarification 3, we first know that the

following (a, b)-hybrid rule on T A is tops-only and strategy-proof on D: for all P1, P2 ∈ D,

g(P1, P2) =


r1(P1) if r1(P1) ∈ 〈a, b|T A〉,
Proj

(
a, 〈r1(P1), r1(P2)|T A〉

)
if r1(P1) ∈ Aa⇀b\{a}, and

Proj
(
b, 〈r1(P1), r1(P2)|T A〉

)
if r1(P1) ∈ Ab⇀a\{b}.

Clearly, g behaves like a dictatorship on 〈a, b|T A〉. Meanwhile, recall the adjacency graph GB∼
in Figure 8 and the fact that every two-voter, tops-only and strategy-proof rule behaves like a

dictatorship on the set O. Therefore, it must be the case that O ⊆ 〈a, b|T A〉. Thus, in Figure

8, we have g(xs, xt) = xs. Note that (x1, . . . , xs) and (xt, . . . , xv) are two paths in GA∼ according

to GO∼. Then, according to the paths (xt, . . . , xv), by statement (ii) of Lemma 5, g(xs, xt) = xs
implies g(xs, xv) = xs. Furthermore, according to (x1, . . . , xs), by statement (iii) of Lemma 5,

g(xs, xv) = xs implies xp = g(x1, xv) ∈ {x1, . . . , xs}. Therefore, we have 1 ≤ p ≤ s which

implies that (x1, . . . , xp) is a path in GA∼ connecting a1 and a, as required. Symmetrically, if

q < v, then (xv, . . . , xq) is the unique path in GA∼ (also in GA
b⇀a

∼ ) connecting am and b, and

NA
∼ (xq) ∩Ab⇀a = {xq+1}.

Last, we show xp, . . . , xq ∈ 〈a, b|T A〉. Suppose not, i.e., we have xk /∈ 〈a, b|T A〉 for some

k ∈ {p, . . . , q}. Thus, either xk ∈ Aa⇀b\{a} or xk ∈ Ab⇀a\{b} holds. We assume w.l.o.g. that

xk ∈ Aa⇀b\{a}. Thus, we have 1 ≤ k < p, which implies NA
∼ (xp) ∩ Aa⇀b = {xp−1}. Note that

by (a, b)-semi-hybridness on T A, according to the tree GA
a⇀b

∼ = T Aa⇀b
, since xk ∈ Aa⇀b\{a},

〈xk, a|GA
a⇀b

∼ 〉 is the unique path in GA∼ connecting xk and a. Furthermore, since NA
∼ (xp)∩Aa⇀b =

{xp−1}, xp−1 must be included in 〈xk, a|GA
a⇀b

∼ 〉. However, according to the adjacency graph GB∼
in Figure 8, we have a path in GA∼ that connects xk and a, and excludes xp−1 - a contradiction.

This proves the lemma. �

Lemma 20 We have 〈xk, xk|T
A
f 〉 ⊇ 〈a, b|T A〉.

Proof: Claim 1: We have
[
k ≤ p

]
⇒
[
A ⊆ Aa⇀b

]
and

[
k ≥ q

]
⇒
[
A ⊆ Ab⇀a

]
.

Given k ≤ p, we show A ⊆ Aa⇀b. There are two cases: p = 1 and p > 1.

First, let p = 1. Then, 1 ≤ k ≤ p implies k = 1. Thus, a = xk = a1. We first show Aa⇀b = {a}.
Suppose not, i.e., we have some alternative c ∈ Aa\b\{a}. Then, by (a, b)-semi-hybridness on T A,

r1(P i) = am /∈ Aa⇀b implies a1 P i c, which contradicts the fact that a1 is bottom-ranked in P i.

Hence, Aa⇀b = {a}. Similarly, by (xk, xk)-semi-hybridness on T Af , since r1(P i) = am /∈ A and a1

is bottom-ranked in P i, it is true that A = {x1}. Therefore, we have A = Aa⇀b.

Next, let p > 1. Suppose by contradiction that we have an alternative z ∈ A\Aa⇀b. Since

k ≤ p, Lemma 19 implies xk ∈ Aa⇀b. Thus, z /∈ Aa⇀b implies z 6= xk and hence z ∈ A\{xk}. Note

that π = 〈z, xk|GA∼〉 is the unique path in GA∼ connecting z and xk. Moreover, by (xk, xk)-semi-

hybridness on T Af , r1(P i) = am /∈ A implies xk P i z. Therefore, xk is distinct to the bottom-ranked

alternative in P i which is a1 = x1, and hence k > 1. Then, Observation 2 implies that xk−1 is the

unique neighbor of xk in GA∼, and therefore we have xk−1 ∈ π. Meanwhile, since z /∈ Aa⇀b, we have
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a path (z1, . . . , zs) in GA∼ connecting z and a = xp such that zk /∈ Aa⇀b for all k ∈ {1, . . . , s− 1}.
Since xk, . . . , xp ∈ Aa⇀b by Lemma 19, we have a concatenated path π′ = (z1, . . . , zs = xp, . . . , xk)

in GA∼ connecting z and xk. Clearly, π′ does not include xk−1, and hence is distinct to π - a

contradiction. Therefore, we have A ⊆ Aa⇀b.

Overall, we have
[
k ≤ p

]
⇒
[
A ⊆ Aa⇀b

]
. By a symmetric argument, we can show

[
k ≥ q

]
⇒[

A ⊆ Ab⇀a
]
. This completes the verification of the claim.

Note that if k ≤ p and k ≥ q hold, Claim 1 implies 〈xk, xk|T
A
f 〉 ⊇ 〈a, b|T A〉. Henceforth, to

complete the proof, we show k ≤ p and k ≥ q. By symmetry, we focus on showing k ≤ p. Suppose

not, i.e., k > p. We have two cases: p < k < q and k ≥ q. In each case, we induce a contradiction.

Let p < k < q. Symmetric to Claim 1, p < k implies Aa⇀b ⊆ A.

Claim 2: We have A ∩Ab⇀a = ∅.

Suppose not, i.e., we have some z ∈ A∩Ab⇀a. Since k < q, we know b = xq /∈ A by Observation

2. Therefore, z 6= b and hence z ∈ Ab⇀a\{b}. On the one hand, according to (a, b)-semi-hybridness

on T A and z ∈ Ab⇀a\{b}, we know that every path in GA∼ connecting z and a must include b. On

the other hand, according to (xk, xk)-semi-hybridness on T Af , since z ∈ A and a ∈ A, we know

that 〈z, a|GA∼〉 is the unique path in GA∼ that connects z and a. However, since b /∈ A, the path

〈z, a|GA∼〉 does not include b - a contradiction. This completes the verification of the claim.

Now, let M̂ =
[
A\[A∪Ab⇀a]

]
∪{xk, b}. We construct a line (z1, . . . , zt) over all alternatives of

M̂ such that t = |M̂ |, z1 = xk, zt = b, and all alternatives of M̂\{xk, b} are arbitrarily arranged

in the interior of the line. By combining the subtree T Af , the line (z1, . . . , zt) and the subtree

T Ab⇀a
, we generate a tree T̂ A. Clearly, xk and b are dual-thresholds in T̂ A. Thus, we have

Âxk⇀b =
{
x ∈ A : xk ∈ 〈x, b|T̂ A〉

}
= A and Âb⇀xk =

{
x ∈ A : b ∈ 〈x, xk|T̂ A〉

}
= Ab⇀a.

Claim 3: We have D ⊆ DSH

(
T̂ A, xk, b

)
.

First, given Pi ∈ D with r1(Pi) ∈ Âxk⇀b\{xk}, we show that Pi is semi-single-peaked on

T̂ A w.r.t. xk, and maxPi(Âb⇀xk) = b. More specifically, by the construction of T̂ A, the semi-

single-peakedness requirement on T̂ A w.r.t. xk consists of the following two parts: (i) semi-single-

peakedness on T̂ Â
xk⇀b

= T Af w.r.t. xk, and (ii) xk Pi x for all x ∈ A\Âxk⇀b = A\A. Indeed,

since r1(Pi) ∈ Âxk⇀b\{xk} = A\{xk}, both parts follow from (xk, xk)-semi-hybridness on T Af .

Next, since Pi is (a, b)-semi-hybrid on T A, r1(Pi) ∈ A = Âxk⇀b ⊆ A\Âb⇀xk = A\Ab⇀a implies

maxPi(Âb⇀xk) = maxPi(Ab⇀a) = b, as required.

Second, given Pi ∈ D with r1(Pi) ∈ Âb⇀xk\{b}, we show that Pi is semi-single-peaked on

T̂ A w.r.t. b, and maxPi(Âxk⇀b) = xk. More specifically, by the construction of T̂ A, the semi-

single-peakedness requirement on T̂ A w.r.t. b consists of the following two parts: (i) semi-single-

peakedness on T̂ Â
b⇀xk

= T Ab⇀a
w.r.t. b, and (ii) b Pi x for all x ∈ A\Âb⇀xk = A\Ab⇀a. Indeed,

since r1(Pi) ∈ Âb⇀xk\{b} = Ab⇀a\{b}, both parts follow from (a, b)-semi-hybridness on T A. Next,

since r1(Pi) ∈ Âb⇀xk = Ab⇀a, Claim 2 implies r1(Pi) ∈ A\A. Then, by (xk, xk)-semi-hybridness

on T Af , we have maxPi(Âxk⇀b) = maxPi(A) = xk, as required.

Last, given Pi ∈ D with r1(Pi) ∈ 〈xk, b|T̂ A〉, we show maxPi(Âxk⇀b) = xk and maxPi(Âb⇀xk) =

b. By the construction of T̂ A and r1(Pi) ∈ 〈xk, b|T̂ A〉, we know r1(Pi) ∈ [A\A] ∪ {xk} and

r1(Pi) ∈ [A\Ab⇀a] ∪ {b}, which respectively imply maxPi(Âxk⇀b) = maxPi(A) = xk by (xk, xk)-

semi-hybridness on T Af , and maxPi(Âb⇀xk) = maxPi(Ab⇀a) = b by (a, b)-semi-hybridness on T A,

as required. This completes the verification of the claim.

Thus, we have D ⊆ DSH

(
T̂ A, xk, b

)
and 〈xk, b|T̂ A〉 = M̂ ⊂ 〈a, b|T A〉, which contradict condition

(ii) of Definition 6.
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Last, let k ≥ q. Thus, k > 1 and hence Observation 2 implies that (x1, . . . , xk) is the unique

path in GA∼ (also in GA∼) connecting a1 and xk, and NA
∼ (xk) ∩A = {xk−1}.

Claim 4: We have NA
∼ (b) ∩ 〈a, b|T A〉 = {xq−1}.

Since (x1, . . . , xk) is a path in GA∼, we have xq−1 ∼ xq and hence xq−1 ∈ NA
∼ (xq) = NA

∼ (b).

By Lemma 19, we know xq−1 ∈ 〈a, b|T A〉. Thus, xq−1 ∈ NA
∼ (b) ∩ 〈a, b|T A〉. Suppose that there

exists z ∈ NA
∼ (b) ∩ 〈a, b|T A〉 such that z 6= xq−1. On the one hand, by (a, b)-semi-hybridness on

T A, r1(P i) = am ∈ Ab⇀a and z ∈ 〈a, b|T A〉 imply b P i z. On the other hand, we show b P i z,

which contradicts the fact that P i and P i are complete reversals. There are two cases: q = k and

q < k. We first assume q = k. Since NA
∼ (xk) ∩ A = {xk−1}, z ∈ NA

∼ (b) = NA
∼ (xq) = NA

∼ (xk) and

z 6= xq−1 = xk−1, it is true that z /∈ A. Then, by (xk, xk)-semi-hybridness on T Af , r1(P i) = a1 ∈ A
implies xk P i z (equivalently, b P i z), as required. Last, let q < k. Thus, q < v, and hence

Lemma 19 implies xq+1, . . . , xk ∈ Ab⇀a\{b}. Moreover, since z 6= xq and z ∈ 〈a, b|T A〉, we have

a concatenated path (z, xq, . . . , xk) in GA∼ connecting z and xk, which of course includes xk−1.

Therefore, by definition, we know z ∈ A. Furthermore, since z ∼ xq and z /∈ {xq−1, xq+1},
according to the tree GA∼, it is true that Proj

(
z, (x1, . . . , xk)

)
= xq. Then, by (xk, xk)-semi-

hybridness on T Af , r1(P i) = a1 = x1 ∈ A implies xq P i z (equivalently, b P i z), as required. This

completes the verification of the claim.

Claim 5: We have Aa⇀b ∪ 〈a, b|T A〉 ⊆ A.

We have already known Aa⇀b ⊆ A and b = xq ∈ A. To complete the verification, we show

z ∈ A for all z ∈ 〈a, b|T A〉\{a, b}. Suppose that there exists z ∈ 〈a, b|T A〉\{a, b} such that z /∈ A.

On the one hand, since G
〈a,b|T A〉
∼ is a connected graph and b ∈ Leaf

(
G
〈a,b|T A〉
∼

)
by Claim 4, we

have a path in GA∼ that connects z and a, and excludes b. On the other hand, since z /∈ A and

a ∈ A\{xk}, we know by Lemma 15 that xk must be included in every path in GA∼ that connects

z and a. Moreover, since Observation 2 implies that (xp, . . . , xk), which of course implies b = xq,

is the unique path in GA∼ connecting a and xk, it is true that b must be included in every path in

GA∼ that connects z and a - a contradiction. This completes the verification of the claim.

Claim 5 immediately implies that GA
a⇀b

∼ ∪G〈a,b|T
A〉

∼ is included in GA∼. More importantly, since

GA∼ is a tree, GA
a⇀b

∼ is a tree, and G
〈a,b|T A〉
∼ is a connected graph, it must be the case that G

〈a,b|T A〉
∼

is a tree as well. Consequently, GA∼ = GA
a⇀b

∼ ∪G〈a,b|T
A〉

∼ ∪GAb⇀a

∼ is a tree.

Claim 6: We have D ⊆ DSSP(GA∼, b).

Note that the tree GA
a⇀b

∼ ∪ G〈a,b|T
A〉

∼ is nested in GA∼, xq = b ∈ Leaf
(
G
〈a,b|T A〉
∼

)
by Claim 4

and xk ∈ Leaf
(
GA∼
)

by Observation 2. Then, it must be the case that b ∈ 〈x, xk|GA∼〉 for all x ∈
Aa⇀b∪〈a, b|T A〉. Furthermore, since GA∼ is nested in the tree GA∼, we know 〈x, xk|GA∼〉 = 〈x, xk|GA∼〉
for x ∈ Aa⇀b ∪ 〈a, b|T A〉. Therefore, b ∈ 〈x, xk|GA∼〉 for all x ∈ Aa⇀b ∪ 〈a, b|T A〉.

First, given Pi ∈ D with r1(Pi) ∈ Aa⇀b∪〈a, b|T A〉, we show that Pi is semi-single-peaked on GA∼

w.r.t. b, which consists of the following two parts: (i) semi-single-peakedness on GA
a⇀b

∼ ∪G〈a,b|T
A〉

∼

w.r.t. b, and (ii) maxPi(Ab⇀a) = b. Note that by (xk, xk)-semi-hybridness on T Af , Pi is semi-

single-peaked on T Af w.r.t. xk, which implies that Pi is semi-single-peaked on T Af = GA∼ w.r.t. xk.

Consequently, GA
a⇀b

∼ ∪ G〈a,b|T
A〉

∼ ⊆ GA∼ and the fact b ∈ 〈x, xk|GA∼〉 for all x ∈ Aa⇀b ∪ 〈a, b|T A〉
together imply Pi is semi-single-peaked on GA

a⇀b

∼ ∪G〈a,b|T
A〉

∼ w.r.t. b. This confirms part (i). Next,

since r1(Pi) ∈ Aa⇀b ∪ 〈a, b|T A〉, part (ii) immediately follows from (a, b)-semi-hybridness on T A.

Second, given Pi ∈ D with r1(Pi) ∈ Ab⇀a, we show that Pi is semi-single-peaked on GA∼ w.r.t. b,

which consists of the following two parts: (i) semi-single-peakedness on GA
b⇀a

∼ = T Ab⇀a
w.r.t. b,
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and (ii) maxPi(Aa⇀b ∪ 〈a, b|T A〉) = b. Since r1(Pi) ∈ Ab⇀a, both parts immediately follow from

(a, b)-semi-hybridness on T A. This completes the verification of the claim.

Now, we know that all preferences of D are semi-single-peaked on the tree GA∼ w.r.t. the

threshold b which by Claim 4 is a leaf of G
〈a,b|T A〉
∼ . This contradicts condition (iii) of Definition 6.

In conclusion, we must have k ≤ p, as required. By a symmetric argument, we can also

show k ≥ q. This proves the lemma, and hence completes the verification of the “only if part” of

Statement (ii) of Theorem 1. �

C Proof of Corollary 1

We first introduce a Ramification Theorem that will be repeatedly applied in the verification.

A Ramification Theorem. Let D be an (a, b)-semi-hybrid domain on a tree T A, and satisfy

diversity. The following two statements are equivalent:

(a) every two-voter, tops-only and strategy-proof rule f : D2 → A behaves likes a dictatorship on

〈a, b|T A〉, and

(b) every tops-only and strategy-proof rule f : Dn → A, n ≥ 2, behaves likes a dictatorship on

〈a, b|T A〉.

The proof of the Ramification Theorem is lengthy and is relegated to the Supplementary

Material of Chatterji and Zeng (2022).

Now, we start to prove the Corollary. Let D be a non-dictatorial, unidimensional domain.

To prove statement (i), we show the equivalence of the following three sub-statements:

(1) there exists an anonymous, tops-only and strategy-proof rule,

(2) domain D is a semi-single-peaked domain, and

(3) domain D admits a strategy-proof projection rule.

It is clear that the direction (2) ⇒ (3) ⇒ (1) follows from the proof of the sufficiency part of

the Theorem of Chatterji et al. (2013). We focus on showing (1) ⇒ (2). Now, assume that there

exists an anonymous, tops-only and strategy-proof rule. We show that D is a semi-single-peaked

domain. Suppose by contradiction that D is not a semi-single-peaked domain. Since Theorem 1

exclusively and exhaustively classifies all non-dictatorial, unidimensional domains into the class

of semi-single-peaked domains and the class of semi-hybrid domains, D must be a semi-hybrid

domain, more specifically, say an (a, b)-semi-hybrid domain on a tree T A. Then, by the proof

of Statement (ii) of Theorem 1, we know that every two-voter, tops-only and strategy-proof rule

behaves like a dictatorship on 〈a, b|T A〉. Furthermore, by the Ramification Theorem, we know

that every tops-only and strategy-proof rule with an arbitrary number of voters behaves like a

dictatorship on 〈a, b|T A〉. This contradicts the hypothesis that there exists an anonymous, tops-

only and strategy-proof rule. This completes the verification of the direct (1) ⇒ (2), and hence

proves statement (i).

Next, we show statement (ii). Note that the “if part” of statement (ii) follows exactly from

Lemmas 11 and 12 in Appendix B and statement (i). We focus on showing the “only if part”, and

furthermore showing that every tops-only and strategy-proof rule behaves like a dictatorship on

a weak superset of the free zone. Since there exists no anonymous, tops-only and strategy-proof
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rule, statement (i) immediately implies that D is not a semi-single-peaked domain. Then, by the

proof of Statement (ii) of Theorem 1, we know that D is an (a, b)-semi-hybrid domain on a tree T A

satisfying the unique seconds property, and furthermore every two-voter, tops-only and strategy-

proof rule behaves like a dictatorship on a weak superset of 〈a, b|T A〉. Last, by the Ramification

Theorem, we know that every tops-only and strategy-proof rule with an arbitrary number of voters

also behaves likes a dictatorship on 〈a, b|T A〉. This proves statement (ii).

D Proof of Fact 1

Fix arbitrary n ≥ 2 and the PNT rule f : Dn → A on T A w.r.t. (x, y). For notational convenience,

let i = 1 and j = 2 in Definition 9.

We first show that given n > 2, if the PNT rule f is strategy-proof, then conditions (i) and

(ii) of Fact 1 hold, and furthermore if f violates the tops-only property, then condition (iii) of

Fact 1 holds. We fix P1 ∈ D with r1(P1) = z ∈ Ax⇀y and show condition (i) of Fact 1 in two

steps. In the first step, we show that for all distinct a, b ∈ 〈z, y|T A〉,
[
a ∈ 〈z, b|T A〉

]
⇒ [a Pi b].

Since 〈z, y|T A〉 is a combination of 〈z, x|T A〉 and the edge (x, y), by transitivity of P1, it suffices

to show (i) given distinct a, b ∈ 〈z, x|T A〉, [a ∈ 〈z, b|T A〉] ⇒ [a P1 b] and (ii) x P1 y. We fix two

profiles P = (P1, P−1) and P ′ = (P ′1, P−1), where P ′1 ∈ Db and Pν ∈ Da for all ν ∈ {2, . . . , n}. By

construction, f(P ) = Proj
(
x, 〈z, a|T A〉

)
= a and f(P ′) = Proj(x, 〈b, a|T A〉) = b. Then, strategy-

proofness implies a P1 b, as required. Next, we construct two profiles P = (P1, P2, P−{1,2}) and

P ′ = (P ′1, P2, P−{1,2}), where P ′1 ∈ Dy, P2 ∈ Dx and r1(Pν) ∈ Ax⇀y for all ν ∈ {3, . . . , n}.
By construction, f(P ) = Proj

(
x, T Γ(P )

)
= x and f(P ′) = y. Then, strategy-proofness implies

x P1 y, as required. In the second step, given a /∈ 〈z, y|T A〉 and a′ = Proj(a, 〈z, y|T A〉), we

show a′ P1 a. Clearly, a′ ∈ 〈z, y|T A〉. If a′ = z, a′ P1 a holds immediately. If a′ = y, we know

a ∈ Ay⇀x\{y}. Then, we construct two profiles P = (P1, P2, P−{1,2}) and P ′ = (P ′1, P2, P−{1,2}),

where P ′1 ∈ Da, P2 ∈ Dy and Pν is arbitrary for all ν ∈ {3, . . . , n}. By construction, f(P ) =

maxP2({x, y}) = y = a′ and f(P ′) = a. Then, strategy-proofness implies a′ P1 a, as required.

Last, let a′ ∈ 〈z, y|T A〉\{z, y}. Thus, a ∈ Ax⇀y and a′ = Proj(a, 〈z, y|T A〉) = Proj(a, 〈z, x|T A〉) =

Proj(x, 〈z, a|T A〉). Accordingly, we construct two profiles P = (P1, P−1) and P ′ = (P ′1, P−1), where

P ′1 ∈ Da and Pν ∈ Da for all ν ∈ {2, . . . , n}. We then have f(P ) = Proj
(
x, 〈z, a|T A〉

)
= a′ and

f(P ′) = a by construction, and a′ P1 a by strategy-proofness, as required. This proves condition

(i) of Fact 1.

To verify condition (ii) of Fact 1, we fix arbitrary v ∈ N\{1, 2} and Pv ∈ D with r1(Pv) =

z ∈ Ay⇀x, and show maxPv(Ax⇀y) = x. Given arbitrary a ∈ Ax⇀y\{x}, we construct two profiles

P = (P1, P2, Pv, P−{1,2,v}) and P ′ = (P1, P2, P
′
v, P−{1,2,v}), where P ′v ∈ Da and P` ∈ Da for all

` ∈ N\{v}. By construction, we have f(P ) = Proj
(
x, 〈z, a|T A〉

)
= x and f(P ′) = a. Then,

strategy-proofness implies x Pv a. Hence, we have maxPv(Ax⇀y) = x, as required.

To verify condition (iii) of Fact 1
”

let f violate the tops-only property. By construction,

there must exist P = (P1, P2, P−{1,2}) and P ′ = (P1, P
′
2, P−{1,2}), where r1(P1) ∈ Ax⇀y and

r1(P2) = r1(P ′2) ∈ Ay⇀x such that f(P ) = maxP2({x, y}) = x 6= y = maxP
′
2({x, y}) = f(P ′).

Therefore, we have x P2 y and y P ′2 x, as required.

Conversely, we show that if domain D satisfy conditions (i), (ii) and (iii) of Fact 1, then the

PNT rule f satisfies strategy-proofness and violates the tops-only property.

Clearly, condition (iii) of Fact 1 implies that f violates the tops-only property. In the rest of

proof, we show strategy-proofness of f . We first consider an arbitrary voter i ∈ N\{1, 2} in the case

n > 2. Given profiles P = (P1, P2, Pi, P−{1,2,i}) and P ′ = (P1, P2, P
′
i , P−{1,2,i}), let f(P ) 6= f(P ′).

Then, the construction implies r1(P1) ∈ Ax⇀y, r1(P2) ∈ Ax⇀y, f(P ) = Proj(x, T Γ(P )) and f(P ′) =
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Proj(x, T Γ(P ′)). Furthermore, we can infer r1(Pj) ∈ Ax⇀y for all j ∈ N\{1, 2, i}. Otherwise, both

Γ(P ) and Γ(P ′) contain x, and f(P ) = x = f(P ′). Similarly, we can infer either r1(Pi) /∈ Ay⇀x

or r1(P ′i ) /∈ Ay⇀x. Thus, there are three cases: (1) r1(Pi) ∈ Ax⇀y and r1(P ′i ) ∈ Ax⇀y, (2)

r1(Pi) ∈ Ax⇀y and r1(P ′i ) ∈ Ay⇀x, and (3) r1(Pi) ∈ Ay⇀x and r1(P ′i ) ∈ Ax⇀y. In both cases (1)

and (2), since r1(Pi) ∈ Ax⇀y, condition (i) of Fact 1 implies that Pi is also semi-single-peaked on

T A w.r.t. x. Consequently, given f(P ) = Proj(x, T Γ(P )) 6= Proj(x, T Γ(P ′)) = f(P ′), the proof of

the sufficiency part of the Theorem of Chatterji et al. (2013) implies f(P ) Pi f(P ′). In case (3),

f(P ) = Proj(x, T Γ(P )) = x and f(P ′) = Proj(x, T Γ(P ′)) ∈ Ax⇀y. Then, condition (ii) of Fact 1

implies f(P ) Pi f(P ′). Overall, voter i has no incentive to manipulate. Henceforth, we focus on

the possible manipulations of voters 1 and 2.

First, given two profiles P = (P1, P2, P−{1,2}) and P ′ = (P ′1, P2, P−{1,2}) with f(P ) 6= f(P ′),

there are three possible manipulations of voter 1:

(1) f(P ) = Proj
(
x, T Γ(P )

)
and f(P ′) = Proj

(
x, T Γ(P ′)

)
,

(2) f(P ) = Proj
(
x, T Γ(P )

)
and f(P ′) = r1(P ′1) ∈ Ay⇀x, and

(3) f(P ) = maxP2({x, y}) and f(P ′) = r1(P ′1) ∈ Ay⇀x.

In each case, we show f(P ) P1 f(P ′). In case (1), we know r1(P1) ∈ Ax⇀y. Then, condition (i)

of Fact 1 implies that P1 is also semi-single-peaked on T A w.r.t. x. Consequently, given f(P ) =

Proj(x, T Γ(P )) 6= Proj(x, T Γ(P ′)) = f(P ′), the proof of the sufficiency part of the Theorem of

Chatterji et al. (2013) implies f(P ) P1 f(P ′), as required. In case (2), we know r1(P1) ∈ Ax⇀y,

which implies minP1
(
〈r1(P1), x|T A〉

)
= x, x P1 y and y = maxP1(Ay⇀x) by condition (i) of Fact 1.

Then, f(P ) = Proj
(
x, T Γ(P )

)
∈ 〈r1(P1), x|T A〉 and f(P ′) = r1(P ′1) ∈ Ay⇀x imply f(P ) P1 f(P ′),

as required. In case (3), we know r1(P1) ∈ Ax⇀y which implies x P1 y and y = maxP1(Ay⇀x) by

condition (i) of Fact 1. Then, f(P ) = maxP2({x, y}) ∈ {x, y}, f(P ′) ∈ Ay⇀x and f(P ) 6= f(P ′)

imply f(P ) P1 f(P ′), as required.

Last, given two profiles P = (P1, P2, P−{1,2}) and P ′ = (P1, P
′
2, P−{1,2}) with f(P ) 6= f(P ′),

there are three possible manipulations of voter 2:

(1) f(P ) = Proj
(
x, T Γ(P )

)
and f(P ′) = Proj

(
x, T Γ(P ′)

)
,

(2) f(P ) = Proj
(
x, T Γ(P )

)
and f(P ′) = maxP

′
2({x, y}), and

(3) f(P ) = maxP2({x, y}) and f(P ′) = Proj
(
x, T Γ(P ′)

)
.

In each case, we show f(P ) P2 f(P ′) holds. Clearly, the verification of case (1) is similar to that of

case (1) for voter 1. In case (2), we know r1(P2) ∈ Ax⇀y, which implies minP2
(
〈r1(P2), x|T A〉

)
= x

and x P2 y by condition (i) of Fact 1. Consequently, f(P ) = Proj
(
x, T Γ(P )

)
∈ 〈r1(P2), x|T A〉,

f(P ′) = maxP
′
2({x, y}) ∈ {x, y} and f(P ) 6= f(P ′) imply f(P ) P2 f(P ′), as required. In case

(3), we know r1(P2) ∈ Ay⇀x which implies maxP2(Ax⇀y) = x by condition (ii) of Fact 1, and

r1(P ′2) ∈ Ax⇀y which implies f(P ′) = Proj
(
x, T Γ(P ′)

)
∈ 〈r1(P ′2), x|T A〉 ⊆ Ax⇀y. Then, f(P ) =

maxP2({x, y}), f(P ′) ∈ Ax⇀y and f(P ) 6= f(P ′) imply f(P ) P2 f(P ′), as required. In conclusion,

the PNT rule f is strategy-proof.

E Proof of Proposition 1

We first show statement (i) of Proposition 1. Let D be a semi-single-peaked domain on a tree T A.

Clearly, the existence of a critical spot ensures D * DSP(T A). Henceforth, let D * DSP(T A), and

we show the existence of a critical spot.

Since D is a semi-single-peaked domain on T A, we identify the set Z ⊆ A such that [z ∈
Z] ⇒ [D ⊆ DSSP(T A, z)]. Clearly, either Z is a singleton set, or Z is not a singleton set and

T Z is a subtree nested in T A.42 Since D * DSP(T A), it must be the case that some leaf of

42Given a tree T A and two distinct alternatives a, b ∈ A, if D ⊆ DSSP(T A, a) and D ⊆ DSSP(T A, b), then
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T A and its unique neighbor are not contained in Z. Then, we can identify a threshold x′ ∈ Z
with [Z is not a singleton set] ⇒ [x′ ∈ Leaf(T Z)] and an edge (x, y) ∈ EA with x, y /∈ Z and

y ∈ 〈x, x′|T A〉, such that the following two conditions are satisfied:

(1) every preference Pi ∈ D with r1(Pi) ∈ Ay⇀x is single-peaked on T Ax⇀y
, i.e., for all distinct

a, b ∈ Ax⇀y,
[
a ∈ 〈r1(Pi), b|T A〉

]
⇒ [a Pi b], and

(2) some preference P ∗i ∈ D with r1(P ∗i ) ∈ Ay⇀x is not single-peaked on the subtree T Ax⇀y∪{y}.43

Since condition (1) implies maxPi(Ax⇀y) = x for all Pi ∈ D with r1(Pi) ∈ Ay⇀x, condition (ii) of

Fact 1 is satisfied. We next show condition (i) of Fact 1: given Pi ∈ D with r1(Pi) ∈ Ax⇀y, Pi is

semi-single-peaked on T A w.r.t. y. Since y ∈ 〈r1(Pi), x
′|T A〉, semi-single-peakedness on T A w.r.t. x′

implies that Pi is also semi-single-peaked on T A w.r.t. y, as required. Last, we show condition (iii)

of Fact 1: there exist Pi, P
′
i ∈ D such that r1(Pi) = r1(P ′i ) ∈ Ay⇀x, y Pi x and x P ′i y. First, since

GA∼ = T A, it is true that GA
y⇀x

∼ = T Ay⇀x
is a subtree. Second, recall preference P ∗i in condition

(2) above. Since P ∗i is single-peaked on T Ax⇀y
by condition (1) and violates single-peakedness

on T Ax⇀y∪{y} by condition (2), it must be the case that maxP
∗
i (Ax⇀y) = x and x P ∗i y. Given

subdomains D1 = {Pi ∈ D : r1(Pi) ∈ Ay⇀x and y Pi x} and D2 = {Pi ∈ D : r1(Pi) ∈ Ay⇀x and x Pi
y}, we know D1 6= ∅ by minimal richness and P ∗i ∈ D2. Now, suppose that condition (iii) of Fact

1 is not true. Thus, all Pi, P
′
i ∈ D with r1(Pi) = r1(P ′i ) ∈ Ay⇀x agree on the relative ranking of

x and y. Therefore, for all z ∈ Ay⇀x, either Dz ⊆ D1 or Dz ⊆ D2 holds. Consequently, given

arbitrary distinct z, z′ ∈ Ay⇀x with Dz ⊆ D1 and Dz′ ⊆ D2, we have z Pi z
′ and y Pi x for all

Pi ∈ Dz, and z′ P ′i z and x P ′i y for all P ′i ∈ Dz
′
, which imply that z and z′ are never adjacent.

This contradicts the fact that GA
y⇀x

∼ is a subtree. Therefore, we identify a critical spot (x, y). This

proves statement (i).

Next, we show statement (ii) of Proposition 1. Let D be an (a, b)-semi-hybrid domain on a

tree T A. Clearly, the existence of a critical spot (x, y) in T A such that either x, y ∈ Aa⇀b\{a}
or x, y ∈ Ab⇀a\{b} implies D * DH(T A, a, b). Henceforth, let D * DH(T A, a, b), and we show

that there exists a critical spot (x, y) in T A such that either x, y ∈ Aa⇀b\{a} or x, y ∈ Ab⇀a\{b}.
Since D * DH(T A, a, b), there must exists P̂i ∈ D that is either not single-peaked on T Aa⇀b

or

not single-peaked on T Ab⇀a
. We assume w.l.o.g. that P̂i is not single-peaked on T Aa⇀b

. This

implies |Aa⇀b| ≥ 3. Given arbitrary Pi ∈ D, let Pi|Aa⇀b be the induced preference over Aa⇀b by

removing all alternatives not in Aa⇀b. Accordingly, let D|Aa⇀b = {Pi|Aa⇀b : Pi ∈ D}. We claim

that D|Aa⇀b is semi-single-peaked on T Aa⇀b
w.r.t. a. Given arbitrary Pi ∈ D, either r1(Pi) ∈ Aa⇀b

or r1(Pi) ∈ A\Aa⇀b holds. If r1(Pi) ∈ Aa⇀b, we know that Pi is semi-single-peaked on T A w.r.t. a

by (a, b)-semi-hybridness on T A. Then, it is evident that Pi|Aa⇀b is semi-single-peaked on T Aa⇀b

w.r.t. a, as required. If r1(Pi) ∈ A\Aa⇀b, (a, b)-semi-hybridness on T A implies maxPi(Aa⇀b) = a.

Then, we have r1(Pi|Aa⇀b) = a which implies that Pi|Aa⇀b is semi-single-peaked on T Aa⇀b
w.r.t. a,

we have D ⊆ DSSP(T A, x) for all x ∈ 〈a, b|T A〉.
43The subtree T Ax⇀y∪{y} is a combination of the subtree T Ax⇀y

and the edge (x, y). We adopt the

instance of the line LA to exemplify how conditions (1) and (2) are specified. Fixing a semi-single-peaked

domain D on the line LA, let D * DSP(LA). Then, we have Z = 〈ap, aq|LA〉 for some 2 < p ≤ q ≤ m or

1 ≤ p ≤ q < m−1. We assume w.l.o.g. that p > 2. First, according to a1, it is natural that every preference

with the peak located in 〈a2, am|LA〉 is single-peaked on 〈a1, a1|LA〉. Second, since D ⊆ DSSP(LA, ap) and

D * DSSP(LA, ap−1), some preference with the peak located in 〈ap−1, am|LA〉 must not be single-peaked

on 〈a1, ap−1|LA〉. Searching from a1 to ap−1, we can identify 1 ≤ s < p − 1 such that (i) every preference

with the peak located in 〈as+1, am|LA〉 is single-peaked on 〈a1, as|LA〉, and (ii) some preference with the

peak located in 〈as+1, am|LA〉 is not single-peaked on 〈a1, as+1|LA〉. These two conditions are analogous to

conditions (1) and (2) above respectively.
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as required. Moreover, since P̂i is not single-peaked on T Aa⇀b
, it is clear that P̂i|Aa⇀b is not

single-peaked on T Aa⇀b
. Consequently, D|Aa⇀b is not single-peaked on T Aa⇀b

. Then, according

to D|Aa⇀b , we can adopt the verification of statement (i) to identify a critical spot (x, y) in T Aa⇀b

such that x, y ∈ Aa⇀b\{a}. Last, back to D, by (a, b)-semi-hybridness on T A, it is easy to show

that (x, y) is also a critical spot in T A. This completes the verification of statement (ii).

F Proof of Corollary 2

We first show statement (i). The “if part” holds evidently. We focus on showing the “only if part”.

Fix a non-dictatorial, tops-only, unidimensional domain D, and let D admit an anonymous and

strategy-proof rule. Clearly, the admissible rule also satisfies the tops-only property. Then, by

statement (i) of Corollary 1, D must be a semi-single-peaked domain on a tree T A w.r.t. some

threshold x̄ ∈ A. Furthermore, since D is a tops-only domain, Fact 1 and statement (i) of Propo-

sition 1 together imply that D must be a single-peaked domain on T A. Last, since D includes

the completely reversed preferences P i and P i, according to the labeling of alternatives in them,

it must be the case that T A = LA. Therefore, D is a single-peaked domain on LA. This proves

statement (i) of Corollary 2.

We next show statement (ii). Fix a non-dictatorial, tops-only, unidimensional domain D. To

show the “if part” of statement (ii), let D further be a non-degenerate hybrid domain on LA. Thus,

D ⊆ DH(LA, ap, aq) for some 1 < q−p < m−1. According to statement (i), to show non-existence of

an anonymous and strategy-proof rule, it suffices to show D * DSP(LA). Suppose by contradiction

that D ⊆ DSP(LA). Consequently, we have D ⊆ DSP(LA) ⊆ DH(LA, ap, aq−1), which contradiction

condition (ii) of Definition 3 This proves the “if part” of statement (ii).

To prove the“only if part”of statement (ii), let D be a non-dictatorial, tops-only, unidimensional

domain, and admit no anonymous and strategy-proof rule. Thus, D admits no anonymous, tops-

only and strategy-proof rule. Then, by statement (ii) of Corollary 1, we know that D is an (a, b)-

semi-hybrid domain on a tree T A. By Lemma 11, we can assume w.l.o.g. that a1 ∈ Aa⇀b and

am ∈ Ab⇀a. We show that D is a non-degenerate hybrid domain on LA in the next lemma.

Lemma 21 Domain D is an (ap, aq)-hybrid domain on LA for some 1 < q − p < m− 1.

Proof: Since D ⊆ DSH(T A, a, b) is a tops-only domain, Fact 1 and statement (ii) of Proposition 1

together imply D ⊆ DH(T A, a, b). Furthermore, the presence of the completely reversed preferences

P i and P i implies that T A must be a line. We next show that the two leaves of T A are a1 and

am. Suppose by contradiction that a1 is not a leaf of the line T A. Thus, a1 has two neighbors

in T A. Consequently, we must have some c ∈ NA(a1) such that c 6= am and a1 ∈ 〈c, am|T A〉.
Since a1 ∈ Aa⇀b and am ∈ Ab⇀a, a1 ∈ 〈c, am|T A〉 implies c ∈ Aa⇀b. Then, by (a, b)-hybridness

on T A, r1(P i) = am ∈ Ab⇀a implies c P i a1, which contradicts the fact that a1 is bottom-ranked

in P i. Therefore, a1 is not a leaf of the line T A. Symmetrically, am is the other leaf of the line

T A. Now, let 〈a1, a|T A〉 = (x1, . . . , xp) and 〈b, am|T A〉 = (xq, . . . , xm), where p = |〈a1, a|T A〉|,
q − p+ 1 = |〈a, b|T A〉|, and m− q + 1 = |〈b, am|T A〉|. Since D is an (a, b)-semi-hybrid domain on

T A, we have |〈ap, aq|LA〉| = |〈a, b|T A〉| ≥ 3 and hence q − p > 1. This confirms condition (iii) of

Definition 3. Furthermore, according to the labeling of alternatives in P i and P i, we infer that

xk = ak for all k ∈ {1, . . . , p} ∪ {q, . . . ,m}. Thus, T A is a combination of the line (a1, . . . , ap), the

interval 〈a, b|T A〉 and the line (aq, . . . , am), and hence DH(T A, a, b) = DH(LA, ap, aq). Therefore,

we have D ⊆ DH(T A, a, b) = DH(LA, ap, aq), which, in conjunction with the fact that GA∼ is a

connected graph, confirms condition (i) of Definition 3. Next, since D is an (a, b)-semi-hybrid

domain on T A, by condition (ii) of Definition 6, there exist no tree T̂ A and dual-thresholds â and b̂
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such that D ⊆ DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a, b|T A〉 = 〈ap, aq|LA〉. This implies that there exist

no tree T̂ A and dual-thresholds â and b̂ such that D ⊆ DH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈ap, aq|LA〉.
This confirms condition (ii) of Definition 3. In conclusion, D is an (ap, aq)-hybrid domain on LA.

We last show that D is a non-degenerate hybrid domain, i.e., q − p < m − 1. Suppose by

contradiction q − p = m− 1. Thus, D is an (a1, am)-hybrid domain on LA, which is a degenerate

hybrid domain. Consequently, by the proof of Statement (ii) of Theorem 1, we know that every

two-voter, tops-only and strategy-proof rule behaves like a dictatorship on 〈a1, am|LA〉 = A. Hence,

every two-voter, tops-only and strategy-proof rule is a dictatorship. Consequently, by the tops-only-

domain hypothesis, every strategy-proof rule is a dictatorship, which further by the ramification

theorem of Aswal et al. (2003) implies that D is a dictatorial domain - a contradiction. This proves

the lemma and completes the verification of the “only if part” of statement (ii). �

G Some Clarifications

Clarification 1 Fixing a tree T A, a threshold x̄ ∈ A and the semi-single-peaked domain

DSSP(T A, x̄), the following two statements hold:

(i) the adjacency graph of DSSP(T A, x̄) coincides with T A, and

(ii) if a domain D ⊆ DSSP(T A, x̄) satisfies diversity, then |NA(x̄)| ≤ 2. Conversely, if |NA(x̄)| ≤
2, then DSSP(T A, x̄) satisfies diversity.

It is clear that any two alternatives form an edge in T A are adjacent in the semi-single-peaked

domain DSSP(T A, x̄), and hence form an edge in the corresponding adjacency graph. Therefore,

T A is a subgraph of the adjacency graph of the semi-single-peaked domain DSSP(T A, x̄). To prove

statement (i), it suffices to show that any two alternatives that never form an edge in T A, are not

adjacent. Suppose not, i.e., there exist a, b ∈ A such that (a, b) /∈ EA and a ∼ b. Thus, v ≥ 3 and we

have P̂i, P̃i ∈ DSSP(T A, x̄) such that r1(P̂i) = r2(P̃i) = a and r1(P̃i) = r2(P̂i) = b. Let 〈a, b|T A〉 =

(x1, . . . , xv) denote path in T A that connects a and b. Moreover, let Proj(x̄, 〈a, b|T A〉) = xk̄
for some k̄ ∈ {1, . . . , v}. Note that either 1 < k̄ < v or k̄ ∈ {1, v} holds. If 1 < k̄ < v,

then Proj(b, 〈a, x̄|T A〉) = Proj(x̄, 〈a, b|T A〉) = xk̄ implies xk̄ Pi b for all Pi ∈ DSSP(T A, x̄) with

r1(Pi) = a. This contradicts the presence of the aforementioned preference P̂i. If k̄ = 1, then

a, x2 ∈ 〈b, x̄|T A〉 and x2 ∈ 〈b, a|T A〉, which imply x2 Pi a for all Pi ∈ DSSP(T A, x̄) with r1(Pi) = b.

This contradicts the presence of the aforementioned preference P̃i. Symmetrically, if k̄ = v, we can

induce a contradiction to the presence of the preference P̂i. This proves statement (i).

For statement (ii), we first show that given a domain D ⊆ DSSP(T A, x̄), if it satisfies diversity,

then |NA(x̄)| ≤ 2. Let π = (x1, . . . , xv) denote the path in T A connecting a1 and am. We first

claim x̄ ∈ π. Suppose not, i.e., x̄ /∈ π. Then, we have Proj(x̄, π) = xk for some 1 ≤ k ≤ v.

Furthermore, if k = 1, semi-single-peakedness on T A w.r.t. x̄ implies a1 P i x̄, which contradicts

the fact that a1 is bottom-ranked in P i; if k = v, we have am P i x̄ by semi-single-peakedness on

T A w.r.t. x̄, which contradicts the fact that am is bottom-ranked in P i; if 1 < k < v, we have

xk P i x̄ and xk P i x̄ by by semi-single-peakedness on T A w.r.t. x̄, which contradicts the fact that

P i and P i are complete reversals. Therefore, x̄ ∈ π. Now, we show |NA(x̄)| ≤ 2. Suppose not,

i.e., |NA(x̄)| ≥ 3. Consequently, we have x ∈ NA(x̄) such that x /∈ π. Clearly, x /∈ 〈a1, x̄|T A〉,
Proj(x, 〈a1, x̄|T A〉) = x̄, x /∈ 〈am, x̄|T A〉 and Proj(x, 〈am, x̄|T A〉) = x̄. Consequently, we have

x̄ P i x and x̄ P i x by by semi-single-peakedness on T A w.r.t. x̄, which contradicts the fact that P i
and P i are complete reversals.
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Next, we show that if |NA(x̄)| ≤ 2, then the semi-single-peaked domain DSSP(T A, x̄) satisfies

diversity. Since |NA(x̄)| ≤ 2, we have a path (x1, . . . , xv) in T A such that (i) x̄ = xk̄ for some

1 ≤ k̄ ≤ v, (ii) x1, xv ∈ Leaf(T A) and (iii) [1 < k̄ < v] ⇒ [NA(x̄) = {xk̄−1, xk̄+1}]. First, let

k̄ = 1. Since x̄ = x1 ∈ Leaf(T A), we by definition have a preference Pi ∈ DSSP(T A, x1) such

that r1(Pi) = xv and rm(Pi) = x1. Next, we construct a linear order P ′i that is a complete

reversal of Pi. Clearly, P ′i ∈ DSSP(T A, x1). Symmetrically, if k̄ = v, we also have two completely

reversed preferences in DSSP(T A, x̄). Last, let 1 < k̄ < v. Thus, NA(x̄) = {xk̄−1, xk̄+1}. It

is natural that xk̄−1 and xk̄ are dual-thresholds in T A, and xk̄ and xk̄+1 are dual-thresholds in

T A. Then, we identify the two subsets Axk̄−1⇀xk̄ and Axk̄+1⇀xk̄ . Note that xk̄ /∈ Axk̄−1⇀xk̄ ,

xk̄ /∈ Axk̄+1⇀xk̄ , Axk̄−1⇀xk̄ ∩ Axk̄+1⇀xk̄ = ∅ and Axk̄−1⇀xk̄ ∪ {xk̄} ∪ Axk̄+1⇀xk̄ = A. Now, pick

arbitrary Pi, P
′
i ∈ DSSP(T A, xk̄) such that r1(Pi) = x1 and r1(P ′i ) = xv. Then, we construct two

linear orders: P̂i and P̂ ′i over A such that (i) for all x ∈ Axk̄−1⇀xk̄ and y ∈ Axk̄+1⇀xk̄ , x P̂i xk̄,

xk̄ P̂i y, y P̂ ′i xk̄ and xk̄ P̂
′
i x, (ii) P̂i and Pi agree on the relative rankings over Axk̄−1⇀xk̄ , i.e.,

for all x, y ∈ Axk̄−1⇀xk̄ , [x P̂i y] ⇔ [x Pi y], and P̂i and P ′i completely disagree on the relative

rankings over Axk̄+1⇀xk̄ , i.e., for all x, y ∈ Axk̄+1⇀xk̄ , [x P̂i y]⇔ [y P ′i x], and (iii) P̂ ′i and P ′i agree

on the relative rankings over Axk̄+1⇀xk̄ , i.e., for all x, y ∈ Axk̄+1⇀xk̄ , [x P̂ ′i y] ⇔ [x P ′i y], and P̂ ′i
and Pi completely disagree on the relative rankings over Axk̄−1⇀xk̄ , i.e., for all x, y ∈ Axk̄−1⇀xk̄ ,

[x P̂ ′i y] ⇔ [y Pi x]. It is easy to show that P̂i and P̂ ′i are complete reversals, and both are

semi-single-peaked on T A w.r.t. xk̄. This proves statement (ii).

Clarification 2 Fixing a tree T A, dual-thresholds a, b ∈ A and the semi-hybrid domain

DSH(T A, a, b), the following two statements hold:

(i) the adjacency graph of DSH(T A, a, b) is a combination of the adjacency subgraph GA
a⇀b

∼ ,

which coincides with the subtree T Aa⇀b
, the adjacency subgraph G

〈a,b|T A〉
∼ , which is a complete

subgraph, and the adjacency subgraph GA
b⇀a

∼ , which coincides with T Ab⇀a
, and

(ii) if a domain D ⊆ DSH(T A, a, b) satisfies diversity, then we have [Aa⇀b 6= {a}] ⇒ [a ∈
Leaf(T Aa⇀b

)] and [Ab⇀a 6= {b}] ⇒ [b ∈ Leaf(T Ab⇀a
)]. Conversely, if we have [Aa⇀b 6=

{a}] ⇒ [a ∈ Leaf(T Aa⇀b
)] and [Ab⇀a 6= {b}] ⇒ [b ∈ Leaf(T Ab⇀a

)], the semi-hybrid domain

DSH(T A, a, b) satisfies diversity.

Similar to the verification of statement (i) of Clarification 1, we know that the adjacency

subgraph GA
a⇀b

∼ coincides with the subtree T Aa⇀b
, and the adjacency subgraph GA

b⇀a

∼ coincides

with the subtree T Ab⇀a
. Furthermore, since any two distinct alternatives in the set 〈a, b|T A〉

are adjacent in the the semi-hybrid domain DSH(T A, a, b), the adjacency subgraph G
〈a,b|T A〉
∼ is a

complete subgraph. To complete the verification, we show that the adjacency graph of the semi-

hybrid domain DSH(T A, a, b) is simply a combination of the subtree GA
a⇀b

∼ = T Aa⇀b
, the complete

subgraph G
〈a,b|T A〉
∼ and the subtree GA

b⇀a

∼ = T Ab⇀a
. Since all these three subgraphs are nested in

the adjacency graph of DSH(T A, a, b), it suffices to show that for all x, y ∈ A with x ∼ y, either

(x, y) ∈ EAa⇀b

∼ , or (x, y) ∈ E〈a,b|T
A〉

∼ , or (x, y) ∈ EAb⇀a

∼ holds. Given distinct x, y ∈ A with x ∼ y,

suppose by contradiction that (x, y) /∈ EAa⇀b

∼ ∪E〈a,b|T
A〉

∼ ∪EAb⇀a

∼ . Since x ∼ y, we have a preference

P ∗i ∈ DSH(T A, a, b) such that r1(P ∗i ) = x and r2(P ∗i ) = y. We know that one of the following

five cases must occur: (1) x ∈ Aa⇀b\{a}, (2) x ∈ Ab⇀a\{b}, (3) x ∈ 〈a, b|T A〉\{a, b}, (4) x = a,

or (5) x = b. In case (1), by the contradictory hypothesis, it must be true that y /∈ Aa⇀b.44

Then, by (a, b)-semi-hybridness on T A, we have a Pi y for all Pi ∈ DSH(T A, a, b) with r1(Pi) = x,

44Otherwise, y ∈ Aa⇀b. Thus, x, y ∈ Aa⇀b. Then, x ∼ y implies (x, y) ∈ EAa⇀b

∼ , which contrasts the

contradictory hypothesis.
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which contradicts the presence of the aforementioned preference P ∗i . Similarly, in case (2), we

can show b Pi y for all Pi ∈ DSH(T A, a, b) with r1(Pi) = x, which contradicts the presence of

the aforementioned preference P ∗i as well. In case (3), by the contradictory hypothesis, it must

be true that y /∈ 〈a, b|T A〉,45 which further implies y ∈ Aa⇀b\{a} or y ∈ Ab⇀a\{b}. Then, by

(a, b)-semi-hybridness on T A, we know that if y ∈ Aa⇀b\{a}, then a Pi y for all Pi ∈ DSH(T A, a, b)
with r1(Pi) = x

]
; if y ∈ Ab⇀a\{b}, then b Pi y for all Pi ∈ DSH(T A, a, b) with r1(Pi) = x

]
. This

contradicts the presence of the aforementioned preference P ∗i . In case (4), by the contradictory

hypothesis, it must be true that y ∈ Ab⇀a\{b}.46 Then, by (a, b)-semi-hybridness on T A, we

have b Pi y for all Pi ∈ DSH(T A, a, b) with r1(Pi) = x. This contradicts the presence of the

aforementioned preference P ∗i . Similarly, in case (5), we can show a Pi y for all Pi ∈ DSH(T A, a, b)
with r1(Pi) = x, which contradicts the presence of the preference P ∗i as well. This proves statement

(i).

For statement (ii), we first notice that if |〈a, b|T A〉| = 2, DSH(T A, a, b) = DSSP(T A, a) ∩
DSH(T A, b), and then statement (ii) of Clarification 1 implies the result. Henceforth, we as-

sume |〈a, b|T A〉| ≥ 3. We first show that given a domain D ⊆ DSH(T A, a, b), if D satisfies di-

versity, then we have [Aa⇀b 6= {a}] ⇒ [a ∈ Leaf(T Aa⇀b
)] and [Ab⇀a 6= {b}] ⇒ [b ∈ Leaf(T Ab⇀a

)].

The verifications for both cases Aa⇀b 6= {a} and Ab⇀a 6= {b} are symmetric. We hence assume

w.l.o.g. that Aa⇀b 6= {a}. By diversity, we have P i, P i ∈ D. Furthermore, since Aa⇀b 6= {a},
(a, b)-semi-hybridness on T A implies either a1 ∈ Aa⇀b\{a} and am ∈ A\Aa⇀b, or a1 ∈ A\Aa⇀b

and am ∈ Aa⇀b\{a}. We can assume w.l.o.g. that a1 ∈ Aa⇀b\{a} and am ∈ 〈a, b|T A〉 ∪ Ab⇀a.

Suppose that a /∈ Leaf(T Aa⇀b
). Thus, we have distinct x, y ∈ NAa⇀b

(a). Note that at least one of

{x, y} is not located in 〈a1, a|T A
a⇀b〉. We assume w.l.o.g. x /∈ 〈a1, a|T A

a⇀b〉. Consequently, given

a1 ∈ Aa⇀b\{a} and am ∈ A\Aa⇀b, by (a, b)-semi-hybridness on T A, we have a P i x and a P i x,

which contradict the fact that P i and P i are complete reversals.

Last, we show that if we have [Aa⇀b 6= {a}] ⇒ [a ∈ Leaf(T Aa⇀b
)] and [Ab⇀a 6= {b}] ⇒

[b ∈ Leaf(T Ab⇀a
)], then the semi-hybrid domain DSH(T A, a, b) satisfies diversity. If Aa⇀b = {a}

and Ab⇀a = {b}, then DSH(T A, a, b) = P includes two completely reversed preference. Next, let

Aa⇀b = {a} and Ab⇀a 6= {b}. It is evident that b has a unique neighbor in the line 〈a, b|T A〉, and

the hypothesis implies that b has a unique neighbor in the subtree T Ab⇀a
. Since T A is a union

of the line 〈a, b|T A〉 and the subtree T Ab⇀a
, we have |NA(b)| = 2. Then, Clarification 2 implies

that DSSP(T A, b) contains two completely reversed preferences. Moreover, since Aa⇀b = {a},
it is true that DSSP(T A, b) ⊂ DSH(T A, a, b), which implies that DSH(T A, a, b) satisfies diversity.

Symmetrically, if Aa⇀b 6= {a} and Ab⇀a = {b}, DSH(T A, a, b) satisfies diveristy. Last, we consider

the situation Aa⇀b 6= {a} and Ab⇀a 6= {b}. Thus, the hypothesis implies a ∈ Leaf(T Aa⇀b
) and

b ∈ Leaf(T Ab⇀a
). Let ā be the unique neighbor of a in T Aa⇀b

, and b̄ be the unique neighbor of b in

T Ab⇀a
. Note that DSP(T A) ⊂ DSH(T A, a, b). We fix arbitrary x, y ∈ Leaf(T A) such that x ∈ Aa⇀b

and y ∈ Ab⇀a. Clearly, x /∈ {a, b} and y /∈ {a, b}. According to DSP(T A), we fix two single-peaked

preferences Pi and P ′i such that r1(Pi) = x and r1(P ′i ) = y. Clearly, Pi and P ′i completely disagree

on the relative rankings over 〈a, b|T A〉, i.e., for all z, z′ ∈ 〈a, b|T A〉, [z Pi z
′] ⇔ [z′ P ′i z]. Now, we

construct two linear orders P̂i and P̂ ′i over A satisfying the following three conditions: (i) for all

z ∈ Aa⇀b\{a}, z′ ∈ 〈a, b|T A〉 and z′′ ∈ Ab⇀a\{b}, z P̂i z′, z′ P̂i z′′, z′′ P̂ ′i z′ and z′ P̂ ′i z, (ii) P̂i
and Pi agree on the relative rankings over Aa⇀b ∪ 〈a, b|T A〉, and P̂i and P ′i completely disagree

on the relative rankings over Ab⇀a\{b}, and (iii) P̂ ′i and P ′i agree on the relative rankings over

45Otherwise, y ∈ 〈a, b|T A〉. Thus, x, y ∈ 〈a, b|T A〉. Then, x ∼ y implies (x, y) ∈ E〈a,b|T A〉
∼ , which contrasts

the contradictory hypothesis.
46Otherwise, y ∈ Aa⇀b or y ∈ 〈a, b|T A〉. Then, x ∼ y implies either (x, y) ∈ EAa⇀b

∼ or (x, y) ∈ E〈a,b|T A〉
∼ ,

which contrasts the contradictory hypothesis.
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〈a, b|T A〉 ∪ Ab⇀a, and P̂ ′i and Pi completely disagree on the relative rankings over Aa⇀b\{a}. By

construction, it is easy to show that P̂i and P̂ ′i are complete reversals and (a, b)-semi-hybrid on

T A. This proves statement (ii).

Clarification 3 Given a tree T A and dual-thresholds a, b ∈ A, an (a, b)-hybrid rule on T A is a

tops-only and strategy-proof rule on a domain D ⊆ DSH(T A, a, b).

Fixing a voter i ∈ N , we consider the following (a, b)-hybrid rule on T A: for all P ∈ Dn,

f(P ) =


r1(Pi) if r1(Pi) ∈ 〈a, b|T A〉,
Proj

(
a, T Γ(P )

)
if r1(Pi) ∈ Aa⇀b\{a}, and

Proj
(
b, T Γ(P )

)
if r1(Pi) ∈ Ab⇀a\{b}.

By definition, it is clear that the hybrid rule f satisfies unanimity and the tops-only property. We

hence focus on showing its strategy-proofness.

First, we consider the possible manipulation of a voter other than i, say j ∈ N\{i}. Given

two profiles P = (Pj , P−j) and P ′ = (P ′j , P−j), let f(P ) 6= f(P ′). We show f(P ) Pj f(P ′).

Since f(P ) 6= f(P ′), by the definition of f , it must be true that either r1(Pi) ∈ Aa⇀b\{a} or

r1(Pi) ∈ Ab⇀a\{b} holds. The two situations are symmetric, and we hence focus on verifying

the first one. Let r1(Pi) ∈ Aa⇀b\{a}. Thus, by definition, f(P ) = Proj
(
a, T Γ(P )

)
and f(P ′) =

Proj
(
a, T Γ(P ′)

)
. We consider two cases: r1(Pj) ∈ 〈a, b|T A〉 ∪Ab⇀a and r1(Pj) ∈ Aa⇀b\{a}. In the

first case, we know that a ∈ Γ(P ) and hence f(P ) = a, and moreover (a, b)-semi-hybridness on

T A implies maxPj (Aa⇀b) = a. Meanwhile, since f(P ′) = Proj
(
a, T Γ(P ′)

)
∈ 〈r1(Pi), a|T A〉 ⊆ Aa⇀b

and f(P ) 6= f(P ′), it must be the case that f(P ) Pj f(P ′), as required. In the second case, P2

is semi-single-peaked on T A w.r.t. a. Then, by the proof of the sufficiency part of the Theorem

of Chatterji et al. (2013), we immediately have f(P ) Pj f(P ′), as required. In conclusion, voter

j ∈ N\{i} has no incentive to manipulate.

Next, we consider the possible manipulation of voter i. Given two profiles P = (Pi, P−i) and

P ′ = (P ′i , P−i), let f(P ) 6= f(P ′). We show f(P ) Pi f(P ′). Note that if r1(Pi) ∈ 〈a, b|T A〉, then

f(P ) = r1(Pi), which immediately implies f(P ) Pi f(P ′). Henceforth, we assume that either

r1(Pi) ∈ Aa⇀b\{a} or r1(Pi) ∈ Ab⇀a\{b} holds. There are six cases to consider:

(1) r1(Pi) ∈ Aa⇀b\{a} and r1(P ′i ) ∈ Aa⇀b\{a}, (2) r1(Pi) ∈ Ab⇀a\{b} and r1(P ′i ) ∈ Ab⇀a\{b},
(3) r1(Pi) ∈ Aa⇀b\{a} and r1(P ′i ) ∈ Ab⇀a\{b}, (4) r1(Pi) ∈ Ab⇀a\{b} and r1(P ′i ) ∈ Aa⇀b\{a},
(5) r1(Pi) ∈ Aa⇀b\{a} and r1(P ′i ) ∈ 〈a, b|T A〉, and (6) r1(Pi) ∈ Ab⇀a\{b} and r1(P ′i ) ∈ 〈a, b|T A〉.
The first two cases are symmetric, and we hence focus on the verification of case (1). In case

(1), Pi is semi-single-peaked on T A w.r.t. a, f(P ) = Proj
(
a, T Γ(P )

)
and f(P ′) = Proj

(
a, T Γ(P ′)

)
.

Then, by the proof of the sufficiency part of the Theorem of Chatterji et al. (2013), we imme-

diately have f(P ) Pi f(P ′), as required. Cases (3) and (4) are symmetric, and we hence focus

on the verification of case (3). In case (3), we know f(P ) = Proj
(
a, T Γ(P )

)
∈ 〈r1(Pi), a|T A〉

and f(P ′) = Proj
(
b, T Γ(P ′)

)
∈ 〈r1(P ′i ), b|T A〉 ⊆ Ab⇀a. Moreover, since r1(Pi) ∈ Aa⇀b\{a},

by (a, b)-semi-hybridness on T A, we know Pi is semi-single-peaked on T A w.r.t. a which implies

minPi(〈r1(Pi), a|T A〉) = a and a Pi b, and maxPi(Ab⇀a) = b. Therefore, by transitivity of Pi, it

must be the case that f(P ) Pi f(P ′), as required. Cases (5) and (6) are symmetric, and we hence

focus on the verification of case (5). In case (5), we know f(P ) = Proj
(
a, T Γ(P )

)
∈ 〈r1(Pi), a|T A〉

and f(P ′) = r1(P ′i ) ∈ 〈a, b|T A〉. Moreover, since r1(Pi) ∈ Aa⇀b\{a}, we know Pi is semi-single-

peaked on T A w.r.t. a which implies minPi(〈r1(Pi), a|T A〉) = a and and maxPi(〈a, b|T A〉) = a.

Therefore, by transitivity of Pi, it must be the case that f(P ) Pi f(P ′), as required. In conclusion,

voter i has no incentive to manipulate. Therefore, the hybrid rule f is strategy-proof.
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P1 P2 P3 P4 P5 P6 P7 P8 P9

a1 a1 a1 a2 a2 a3 a3 a3 a4

a2 a2 a3 a1 a3 a1 a2 a4 a3

a3 a4 a2 a3 a1 a3 a1 a2 a2

a4 a3 a4 a4 a4 a4 a4 a1 a1

Table 4: Domain D

r r r r
a1

a2

a3 a4

�
�
@
@

Figure 9: The adjacency graph GA
∼

Clarification 4 Fixing a tree T A and a threshold x̄ ∈ A, a semi-single-peaked domain D on

T A w.r.t. x̄ satisfies leaf symmetry if and only if either x̄ /∈ Leaf(T A), or x̄ ∈ Leaf(T A) and

D ⊆ DSSP(T A, x̄) ∩ DSSP(T A, x), where NA(x̄) = {x}.

First, if x̄ /∈ Leaf(T A), semi-single-peakedness on T A w.r.t. x̄ immediately implies |S(Dz)| =

1 for all z ∈ Leaf(T A) = Leaf(GA∼). Similarly, given x̄ ∈ Leaf(T A) and D ⊆ DSSP(T A, x̄) ∩
DSSP(T A, x), where NA(x̄) = {x}, we know that x /∈ Leaf(T A) and then semi-single-peakedness

on T A w.r.t. x immediately implies |S(Dz)| = 1 for all z ∈ Leaf(T A) = Leaf(GA∼). Conversely, let D
satisfies leaf symmetry. We show that either x̄ /∈ Leaf(T A), or x̄ ∈ Leaf(T A) and D ⊆ DSSP(T A, x̄)∩
DSSP(T A, x), where NA(x̄) = {x}. Suppose not, i.e., x̄ ∈ Leaf(T A) and D * DSSP(T A, x). Since

x̄ ∈ Leaf(T A) and NA(x̄) = {x}, we know that for all z ∈ A\{x̄}, x ∈ 〈z, x̄|T A〉. Then, by semi-

single-peakedness on T A w.r.t. x̄, we know that all preferences with the peak other than x̄ are also

semi-single-peaked on T A w.r.t. x. Consequently, D * DSSP(T A, x) implies that some P ∗i ∈ Dx̄

is not semi-single-peaked on T A w.r.t. x. Note that given x̄ ∈ Leaf(T A) and NA(x̄) = {x},
in any preference with the peak x̄ that is semi-single-peaked on T A w.r.t. x, the alternative x

must be the second best. Therefore, we must have r2(P ∗i ) 6= x. Furthermore, since T A = GA∼,

x̄ ∈ Leaf(T A) = Leaf(GA∼) and NA(x̄) = {x}, we know (x̄, x) ∈ EA∼ . Then, by leaf symmetry, we

have a preference P ′i ∈ D such that r1(P ′i ) /∈ {x̄, x} and r2(P ′i ) = x̄, which contradicts semi-single-

peakedness on T A w.r.t. x̄.

Clarification 5 An example of a degenerate semi-hybrid domain.

Let A = {a1, a2, a3, a4}. All 9 preferences of the domain D and the adjacency graph GA∼
are respectively specified in Table 4 and Figure 9. First, domain D satisfies path-connectedness

according to Figure 9, diversity according to preferences P1 and P9 in Table 4, and leaf symmetry,

i.e., Leaf(GA∼) = {a4} and |S(Da4)| = 1. Second, since |S(Da4)| = 1, the unique seconds property

is also satisfied. Last, we observe that GA∼ contains a cycle, coincides with the adjacency graph

of the semi-hybrid domain DSH(LA, a1, a3), and is strictly included in the adjacency graph of

DSH(LA, a1, a4) which is a complete graph. Moreover, since D ⊂ P = DSH(LA, a1, a4) and P2 in

Table 4 is not (a1, a3)-semi-hybrid on LA, we infer that D is an (a1, a4)-semi-hybrid domain on LA,

and hence a degenerate semi-hybrid domain.

Clarification 6 The relation to Roy and Storcken (2019).

First, recall the notion of weak adjacency introduced in footnote 28. A rich domain D of Roy

and Storcken (2019) satisfies the following three conditions:

1. domain D is weakly path-connected,
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2. [a ∈ S(Db)]⇔ [b ∈ S(Da)] for all a, b ∈ A, and

3. given a, b, c ∈ A with a � b and b � c, there exist Pi ∈ Da and P ′i ∈ Dc such that given d ∈ A
with d Pi c and d P ′i a, we have d P ′′i c or d P ′′i a at some P ′′i ∈ Db.

It is clear that path-connectedness implies the first condition. Next, if we strengthen the

notion of weak adjacency in the hypothesis of the third condition by the notion of adjacency, it

is easy to identify preferences in the domain satisfying the requirement of the third condition.

Given a, b, c ∈ A such that a ∼ b and b ∼ c, we have preferences Pi, P̂i, P
′
i , P̂

′
i ∈ D such that

r1(Pi) = r2(P̂i) = a, r1(P̂i) = r2(Pi) = b and rk(Pi) = rk(P̂i) for all k ∈ {3, . . . ,m}, and

r1(P ′i ) = r2(P̂ ′i ) = c, r1(P̂ ′i ) = r2(P ′i ) = b and rk(P
′
i ) = rk(P̂

′
i ) for all k ∈ {3, . . . ,m}. Thus, we

have Pi ∈ Da, P ′i ∈ Dc and P̂i, P̂
′
i ∈ Db. Furthermore, given d ∈ A with d Pi c and d P ′i a, we have

d P̂i c and d P̂ ′i a, either of which meets the requirement of the third condition.

Compared to leaf symmetry, the second condition is too demanding. For instance, recall the

semi-single-peaked domain DSSP(LA, a3), where |A| = m ≥ 4. Clearly, a preference with the peak

a3 has no restriction on the rankings of other alternatives. Therefore, any alternative other than a3

can be second ranked in a semi-single-peaked preference with the peak a3, i.e., S
(
Da3

SSP(LA, a3)
)

=

{a1, a2, a4, . . . , am}, and hence
∣∣S(Da3

SSP(LA, a3)
)∣∣ > 1. Meanwhile, by semi-single-peakedness on

LA w.r.t. a3, we know a2 Pi a3 for all preference Pi ∈ DSSP(LA, a3) with r1(Pi) = a1, which implies

a3 /∈ S
(
Da1

SSP(LA, a3)
)
. Therefore, the second condition above is violated here. This however does

not contrast leaf symmetry since a3 is not a leaf in the adjacency graph GA∼ = LA.

Clarification 7 Verify strategy-proofness of the SCF f constructed in Example 2.

Fix a profile (Pi, Pj). We first verify all possible manipulations of voter i. First, let r1(Pj) ∈
A\B, Then, by construction, we know f(P ′i , Pj) = r1(Pj) for all P ′i ∈ D2. Hence, no manipulation

of voter i is profitable. Next, let r1(Pj) ∈ B. Then, by construction, we know f(P ′i , Pj) ∈ B for

all P ′i ∈ D2. Hence, f(Pi, Pj) = maxPi(B) implies that no manipulation of voter i is profitable.

Therefore, voter i has no incentive to manipulate. We next verify all possible manipulation of

voter j. First, let r1(Pj) ∈ A\B. Then, f(Pi, Pj) = r1(Pj) implies that no manipulation of voter

j is profitable. Next, let r1(Pj) ∈ B. Thus, f(Pi, Pj) = maxPi(B) ∈ B. Consider a possible

manipulation P ′j ∈ D2. If r1(P ′j) ∈ B, we have f(Pi, P
′
j) = maxPi(B) = f(Pi, Pj), which implies

that the manipulation is not profitable. If r1(P ′j) ∈ A\B, we have f(Pi, P
′
j) = r1(P ′i ) ∈ A\B. Since

r1(Pj) ∈ B, we know that Pj must be one of the first six preferences in Table 2, and hence voter j

prefers each alternative of B to each alternative of A\B. Hence, we have f(Pi, Pj) Pj f(Pi, P
′
j), as

required. Therefore, voter j has no incentive to manipulate. In conclusion, f is strategy-proof.

Clarification 8 Verify strategy-proofness of the SCF f constructed in Example 3.

Since f is anonymous, it suffices to focus on all possible manipulations of voter i. Given two

distinct profiles (Pi, Pj) and (P ′i , Pj), it is clear that if f(Pi, Pj) = r1(Pi) or f(Pi, Pj) = f(P ′i , Pj),

voter i has no incentive to manipulate at (Pi, Pj) via P ′i . We henceforth assume f(Pi, Pj) 6= r1(Pi)

and f(Pi, Pj) 6= f(P ′i , Pj). There are four cases: (1) f(Pi, Pj) = d 6= r1(Pi) and f(P ′i , Pj) 6= d, (2)

f(Pi, Pj) = a 6= r1(Pi) and f(P ′i , Pj) 6= a, (3) f(Pi, Pj) = c 6= r1(Pi) and f(P ′i , Pj) 6= c, and (4)

f(Pi, Pj) = b 6= r1(Pi) and f(P ′i , Pj) 6= b. Note that the first three cases are symmetric. We hence

focus on the verification of cases (1) and (4).

First, we consider case (1). By construction, f(Pi, Pj) = d implies one of the following subcases:

(i) Pi = P7 and Pj ∈ Dd3, or (ii) Pi ∈ Dd3 and Pj = P7, or (iii) f(Pi, Pj) = Proj
(
b, 〈r1(Pi), r1(Pj)|T A〉

)
.

Immediately, we rule out subcase (ii) since r1(Pi) 6= d, and also rule out subcase (iii) since d =
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f(Pi, Pj) = Proj
(
b, 〈r1(Pi), r1(Pj)|T A〉

)
implies r1(Pi) = r1(Pj) = d, which contrasts the hypothe-

sis r1(Pi) 6= d. Therefore, subcase (i) holds. Thus, we have f(Pi, Pj) = d, f(P ′i , Pj) 6= d, Pi = P7

and Pj ∈ Dd3. By the construction of f , we observe that given Pj ∈ Dd3, there exists no P ′i ∈ D3 such

that f(P ′i , Pj) = a. Therefore, r1(Pi) = r1(P7) = a 6= f(P ′i , Pj), r2(Pi) = r2(P7) = d = f(Pi, Pj)

and f(Pi, Pj) 6= f(P ′i , Pj) imply f(Pi, Pj) Pi f(P ′i , Pj). In conclusion, in case (1), voter i has no

incentive to manipulate at (Pi, Pj) via P ′i .

Last, we consider case (4). Since r1(Pi) 6= b, one of the following three situations must occur:

Pi ∈ Da3, or Pi ∈ Dc3, or Pi ∈ Da3. These three situations are symmetric, and we hence assume

w.l.o.g. that Pi ∈ Da3 = {P1, P7}. Since f(Pi, Pj) = b, the construction of f implies b = f(Pi, Pj) =

Proj
(
b, 〈r1(Pi), r1(Pj)|T A〉

)
= Proj

(
b, 〈a, r1(Pj)|T A〉

)
, which further implies r1(Pj) 6= a. Further-

more, if r1(Pj) = b, it is clear that f(P ′i , Pj) = Proj
(
b, 〈r1(Pi), b|T A〉

)
= b by construction, which

contradicts the hypothesis f(P ′i , Pj) 6= b. Therefore, Pj ∈ Dc3 ∪ Dd3 = {P5, P8, P6, P9}. Moreover,

since f(Pi, Pj) = b 6= a and Pi ∈ Da3, the construction of f further implies Pj 6= P8. Therefore,

Pj ∈ {P5, P6, P9}. Now, according to Pi ∈ {P1, P7}, we consider two subcases: (i) Pi = P1 and (ii)

Pi = P7. In subcase (i), suppose by contradiction that f(P ′i , Pj) Pi f(Pi, Pj). This, by f(Pi, Pj) = b

and Pi = P1, implies f(P ′i , Pj) = a. Since Pj /∈ Da3 and Pj 6= P8, by the construction of f , we must

have a = f(P ′i , Pj) = Proj
(
b, 〈r1(P ′i ), r1(Pj)|T A〉

)
= Proj

(
r1(P ′i ), 〈b, r1(Pj)|T A〉

)
∈ 〈b, r1(Pj)|T A〉

This implies r1(Pj) = a, which contradicts the fact Pj /∈ Da3. In subcase (ii), since Pi = P7

and f(Pi, Pj) = b 6= d, the construction of f implies Pj /∈ Dd3 = {P6, P9}. Hence, we have

Pj = P5 ∈ Dc3. Thus, by the construction of f , we know that either P ′i = P9 and f(P ′i , Pj) = c,

or f(P ′i , Pj) = Proj
(
b, 〈r1(P ′i ), r1(Pj)|T A〉

)
= Proj

(
b, 〈r1(P ′i ), c|T A〉

)
= Proj

(
r1(P ′i ), 〈b, c|T A〉

)
∈

〈b, c|T A〉 = {b, c} holds. Furthermore, since f(P ′i , Pj) 6= b, we have f(P ′i , Pj) = c. Consequently,

according to Pi = P7, we have f(Pi, Pj) Pi f(P ′i , Pj). Overall, in both subcases, voter i has no

incentive to manipulate. In conclusion, f is strategy-proof.

H A brief extension to multidimensional models

In this section, we provide an application of Theorem 1 to a multidimensional setting. Let a finite

alternative set A be decomposed as a Cartesian product, i.e., A = ×s∈MAs, where M = {1, . . . , `},
` > 1, and |As| ≥ 2 for each s ∈ M . Thus, an alternative is uniquely assembled by ` elements

of A1, . . . , A`, i.e., x = (x1, . . . , x`) = (xs, x−s). Given a, b ∈ A, let M(a, b) = {s ∈ M : as 6= bs}
denote the set of components on which a and b disagree. Thus, two alternatives a, b ∈ A are

said similar if |M(a, b)| = 1. Fix a domain D of preferences over A. Given a preference Pi ∈ D
and a nonempty subset B ⊂ A, let Pi|B denote the preference over B induced via removing all

alternatives out of B in Pi. Given s ∈M and a−s ∈ A−s, let (As, a−s) = {(as, a−s) ∈ A : as ∈ As}
and D(As,a−s) = {Pi ∈ D : r1(Pi) ∈ (As, a−s)}. In particular, a preference Pi ∈ D is separable if

there exists a marginal preference (or a linear order) P si over As for each s ∈ M such that for all

similar alternatives a, b ∈ A, say M(a, b) = {s}, we have [as P si b
s]⇒ [a Pi b].

As noted earlier, the domain of all separable preferences is excluded from unidimensional do-

mains due to the violation of adjacency. We introduce a new notion between two alternatives

which generalizes the notion of adjacency to cover domains that contain separable preferences.

Fixing a domain D, two alternatives a, b ∈ A are adjacent+, denoted a ∼+ b, if they are similar,

say M(a, b) = {s}, and there exist two separable preferences Pi ∈ Da and P ′i ∈ Db satisfying the

following two conditions:

(i) given x−s ∈ A−s, (as, x−s) = rk(Pi) = rk+1(P ′i ) and (bs, x−s) = rk(P
′
i ) = rk+1(Pi) for some

1 ≤ k < |A|, and

(ii) given c ∈ A,
[
cs /∈ {as, bs}

]
⇒
[
c = rk(Pi) = rk(P

′
i ) for some 2 < k ≤ |A|

]
.
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Accordingly, given s ∈ M and a−s ∈ A−s, we induce a graph G
(As,a−s)
∼+ , where the vertex set

is (As, a−s), and two vertices of (As, a−s) form an edge if and only if they are adjacent+. A

domain D satisfies path-connectedness+ if G
(As, a−s)
∼+ is a connected graph for each s ∈ M and

a−s ∈ A−s. Moreover, a domain D satisfies diversity+ if there exists a pair of separable preferences

P i, P i ∈ D that are complete reversals, and furthermore for each s ∈M , there exist a−s ∈ A−s and

Pi, P
′
i ∈ D(As,a−s) such that Pi|(As,a−s) and P ′i |(As,a−s) are complete reversals. Henceforth, a domain

D is called a multidimensional domain if it satisfies both path-connectedness+ and diversity+.47

Now fix a multidimensional domain D and a two-voter, tops-only and strategy-proof rule f :

D2 → A. As a first step towards characterizing such a rule, we fix an arbitrary component s ∈M .

By diversity+, we have a−s ∈ A−s and preferences Pi, P
′
i ∈ D(As,a−s) such that Pi|(As,a−s) and

P ′i |(As,a−s) are complete reversals. We then restrict attention to f on the subdomain D(As,a−s).

Let D|(As,a−s) =
{
Pi|(As,a−s) : Pi ∈ D(As,a−s)

}
. Note that D|(As,a−s) satisfies path-connectedness

and diversity.48 Also, note that given P1, P2, P
′
1, P

′
2 ∈ D(As,a−s), if P1|(As,a−s) = P ′1|(As,a−s) and

P2|(As,a−s) = P ′2|(As,a−s), then r1(P1) = r1(P ′1), r1(P2) = r1(P ′2), and hence f(P1, P2) = f(P ′1, P
′
2)

by the tops-only property. Similar to statement (i) of Lemma 5, we can easily show f(P1, P2) ∈
(As, a−s) for all P1, P2 ∈ D(As,a−s). Then, we can induce a tops-only and strategy-proof rule

g :
[
D|(As,a−s)

]2 → (As, a−s) such that

g
(
P1|(As,a−s), P2|(As,a−s)

)
= f(P1, P2) for all P1, P2 ∈ D(As,a−s).

According to the two completely reversed preferences in D|(As,a−s), we know that g is either

invariant or not. If g is invariant, then by Statement (i) of Theorem 1, g is a projection rule,

and hence f behaves like a projection rule on (As, a−s)), i.e., there exist a tree T (As,a−s) and an

alternative (x̂s, a−s) ∈ (As, a−s) such that for all a, b ∈ (As, a−s),

f(a, b) = g(a, b) = Proj
(
(x̂s, a−s), 〈a, b|T (As,a−s)〉

)
.

If g is not invariant, then by the proof of Statement (ii) of Theorem 1, g is a hybrid rule, and hence

f behaves like a hybrid rule on (As, a−s)), i.e., there exist a tree T (As,a−s) and dual-thresholds

(xs, a−s) and (xs, a−s) in T (As,a−s), which induce the following three exhaustive subsets of (As, a−s):

(As, a−s) =
{
a ∈ (As, a−s) : (xs, a−s) ∈ 〈a, (xs, a−s)|T (As,a−s)〉

}
,

̂(As, a−s) =
{
a ∈ (As, a−s) : a ∈ 〈(xs, a−s), (xs, a−s)|T (As,a−s)〉

}
, and

(As, a−s) =
{
a ∈ (As, a−s) : (xs, a−s) ∈ 〈a, (xs, a−s)|T (As,a−s)〉

}
,

47The notion of adjacency+ was originally introduced by Chatterji and Zeng (2019). The multidimensional

domains introduced by Chatterji and Zeng (2019) are restricted domains: all preferences are required to

be top-separable (introduced by Le Breton and Weymark, 1999). Moreover, their investigation focuses

on a subclass of multidimensional domains where all preferences are well organized in the manner that is

analogous to no-restoration. The class of multidimensional domains introduced here is significantly less

demanding, as it is only concerned with the richness of separable preferences included in the domain, and

consequentially the universal domain is covered as a special case.
48Given distinct as, bs ∈ As, let Pi ∈ D(as,a−s) and P ′i ∈ D(bs,a−s) be two separable preferences that indicate

(as, a−s) ∼+ (bs, a−s). Then, the induced preferences Pi|(As,a−s) and P ′i |(As,a−s) satisfy the following con-

ditions: (i) r1
(
Pi|(As,a−s)

)
= r2

(
P ′i |(As,a−s)

)
= (as, a−s) and r1

(
P ′i |(As,a−s)

)
= r2

(
Pi|(As,za−s)

)
= (bs, a−s),

and (ii) rk
(
Pi|(As,a−s)

)
= rk

(
P ′i |(As,a−s)

)
for all k ∈ {3, . . . , |As|}. This indicates that in the induced domain

D|(As,a−s), alternatives (as, a−s) and (bs, a−s) are adjacent. Consequently, the adjacency graph G(As,a−s)
∼

induced according to D|(As,a−s) must contain the connected graph G
(As,a−s)
∼+ . Therefore, D|(As,a−s) is a

path-connected domain.

62



such that one of the following two cases must occur: (i) for all a, b ∈ (As, a−s),

f(a, b) = g(a, b) =


a if a ∈ ̂(As, a−s),

Proj
(
(xs, a−s), 〈a, b|T (As,a−s)〉

)
if a ∈ (As, a−s)

∖
{(xs, a−s)}, and

Proj
(
(xs, a−s), 〈a, b|T (As,a−s)〉

)
if a ∈ (As, a−s)

∖
{(xs, a−s)},

or (ii) for all a, b ∈ (As, a−s),

f(a, b) = g(a, b) =


b if b ∈ ̂(As, a−s),

Proj
(
(xs, a−s), 〈a, b|T (As,a−s)〉

)
if b ∈ (As, a−s)

∖
{(xs, a−s)}, and

Proj
(
(xs, a−s), 〈a, b|T (As,a−s)〉

)
if b ∈ (As, a−s)

∖
{(xs, a−s)}.

The characterization of g provided above constitutes an essential ingredient of a full charac-

terization of f . We leave the task of fully characterizing a rule on a multidimensional domain and

extracting the domain implications of the strategy-proofness of such a rule for future work.49

49All our analysis so far is based on strategy-proof SCFs which are only concerned with unilateral de-

viations at a preference profile. The investigation on multidimensional domains can be enriched when we

expand to SCFs that are immune to group deviations. It is known from Barberà et al. (2016) that on a

multidimensional domain, the number of voters and dimensions affect the elicitation of preference restriction

when the SCF is required to satisfy some stronger notion of incentive compatibility that is related to group

deviations, like group-strategy-proofness or immunity to credible deviations.
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