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Abstract—The amount of data in our society has been
exploding in the era of big data today. In this paper, we ad-
dress several open challenges of big data stream classification,
including high volume, high velocity, high dimensionality, and
high sparsity. Many existing studies in data mining literature
solve data stream classification tasks in a batch learning
setting, which suffers from poor efficiency and scalability
when dealing with big data. To overcome the limitations, this
paper investigates an online learning framework for big data
stream classification tasks. Unlike some existing online data
stream classification techniques that are often based on first-
order online learning, we propose a framework of Sparse
Online Classification (SOC) for data stream classification,
which includes some state-of-the-art first-order sparse online
learning algorithms as special cases and allows us to derive
a new effective second-order online learning algorithm for
data stream classification. We conduct an extensive set of
experiments, in which encouraging results validate the efficacy
of the proposed algorithms in comparison to a family of state-
of-the-art techniques on a variety of data stream classification
tasks.

Keywords-data stream classification; sparse; online learning;

I. INTRODUCTION

In the era of big data today, the amount of data in

our society has been exploding, which has raised many

opportunities and challenges for data analytic research in

data mining community. In this work, we aim to address the

challenging real-world big data stream classification task,

such as web-scale spam email classification. In general, big

data stream classification has several characteristics:

• high volume: one has to deal with huge amount of

existing training data, in million or even billion scale;

• high velocity: new data often arrives sequentially and

very rapidly, e.g., about 182.9 billion emails are sen-

t/received worldwide every day according to an email

statistic report by the Radicati Group [1];

• high dimensionality: there are a large number of

features, e.g., for some spam email classification tasks,

the length of the vocabulary list can go up from 10, 000
to 50, 000 or even to million scale;

• high sparsity: many feature elements are zero, and

the faction of active features is often small, e.g., the

spam email classification study in [2] showed that

accuracy saturates with dozens of features out of tens

of thousands of features.

The above characteristics present huge challenges for big

data stream classification tasks when using conventional data

stream classification techniques that are often restricted to

batch learning setting. To tackle the above challenges, a

promising approach is to explore online learning method-

ology that performs incremental training over streaming

data in a sequential manner. In contrast to batch learning

algorithms, online algorithms are not only more efficient and

scalable, but also able to avoid expensive re-training cost

when handling new training data. However, the traditional

online-learning algorithms suffer from critical limitation for

high-dimensional data. This is because they assume at least

one weight for every feature and most of the learned weights

are often nonzero, making them of low efficiency not only in

computational time but also in memory cost for both training

and test phases. Sparse online learning [3] aims to overcome

this limitation by inducing sparsity in the weights learned

by an online-learning algorithm.

In this paper, we introduce a framework of Sparse On-

line Learning for solving large-scale high-dimensional data

stream classification tasks. We show that the proposed

framework covers some existing first-order sparse online

classification algorithm, and is able to further derive new

algorithms by exploiting the second order information. The

proposed sparse online classification scheme is far more

efficient and scalable than the traditional batch learning al-

gorithms for data stream classification tasks. We further give

theoretical analysis of the proposed algorithm and conduct

an extensive set of experiments. The empirical evaluation

shows that the proposed algorithm could achieve state-of-

the-art performance. The rest of this paper is organized as

follows. Section 2 reviews related work. Section 3 presents

our problem formulation. Section 4 proposes our novel

framework . Section 5 discusses our experimental results,

and section 6 concludes this work.

II. RELATED WORK

A. Sparse Online Learning

Online learning represents a family of efficient and scal-

able machine learning algorithms [4]. The general online



learning algorithms have solid theoretical guarantees and

perform well on many applications. However, they exploit

the full features, which is not suitable for large-scale high-

dimensional problem. To tackle this limitation, the sparse

online learning [5, 3, 6] has been extensively studied re-

cently. Sparse online learning aims to learn a sparse linear

classifier, which only contains limited size of active features.

It has been actively studied [5, 7, 8, 9]. There are two

group of solutions for sparse online learning. The first

group study on sparse online learning follows the general

idea of subgradient descent with truncation. For example,

Duchi and Singer propose the FOBOS algorithm [5], which

extends the Forward-Backward Splitting method to solve

the sparse online learning problem in two phases: (i) an

unconstrained subgradient descent step with respect to the

loss function, and (ii) an instantaneous optimization for a

trade-off between minimizing ℓ1 norm regularization and

keeping close to the result obtained in the first phase. The

optimization problem in the second phase can be efficiently

solved by adopting simple soft-thresholding operations that

perform some truncation on the weight vectors. Following

the similar scheme, Langford et al. [3] argue that truncation

on every iteration is too aggressive as each step modifies the

coefficients by only a small amount, and propose the Trun-

cated Gradient (TG) method which truncates coefficients

every K steps when they are less than a predefined threshold

θ. The second group study on sparse online learning mainly

follows the dual averaging method of [10], can explicitly

exploit the regularization structure in an online setting.

For example, One representative work is Regularized Dual

Averaging(RDA) [7], which learns the variables by solving

a simple optimization problem that involves the running

average of all past subgradients of the lost functions, not

just the subgradient in each iteration. Lee et al. [11] further

extends the RDA algorithm by using a more aggressive

truncation threshold and generates significantly more sparse

solutions.

B. Second-order Online Learning

The general online learning algorithms only exploit the

first order information and all features are adopted the

same learning rate. This problem can be addressed by

second order online learning algorithms [12], which aims

to dynamically incorporate knowledge of observed data in

earlier iteration to perform more informative gradient-based

learning. Unlike first order algorithms that often adopt the

same learning rate for all coordinates, the second order

online learning algorithms adopt different distills to the step

size employed for each coordinate. A variety of second order

online learning algorithms have been proposed recently.

Some technique attempts to incorporates knowledge of the

geometry of the data observed in earlier iterations to perform

more effective online updates. For example, Balakrishnan et

al. [13] propose algorithms for sparse linear classifiers in the

massive data setting, which requires O(d2) time and O(d2)
space in the worst case. Another state-of-the-art technique

for second order online learning is the family of confidence-

weighted (CW) learning algorithms [14, 15, 16, 17, 18],

which exploit confidence of weights when making updates

in online learning processes. In general, the second order

algorithms are more accurate, converge faster, but fall short

in two aspects (i) they incur higher computational cost

especially when dealing with high-dimensional data; and

(ii) the weight vectors learned are often not sparse, making

them unsuitable for high-dimensional data. Recently, Duchi

et al. address the sparsity and second order update in the

same framework, and proposed the Adaptive Subgradient

method [19] (Ada-RDA), which adaptively modifies the

proximal function at each iteration to incorporate knowledge

about geometry of the data.

III. SPARSE ONLINE LEARNING FOR DATA STREAM

CLASSIFICATION

A. General Sparse Online Learning

Without loss of generality, we consider the sparse online

learning algorithm for the binary classification problem,

which is also mentioned as sparse online classification prob-

lem in this paper. The sparse online classification algorithm

generally works in rounds. Specifically, at the round t, the

algorithm is presented one instance xt ∈ R
d, then the

algorithm predicts its label as

ŷt = sign(w⊤

t xt),

where wt ∈ R
d is linear classifier maintained by the

algorithm. After the prediction, the algorithm will receive

the true label yt ∈ {+1,−1}, and suffer a loss ℓt(wt).
Then, the algorithm would update its prediction function

wt based on the newly received (xt, yt). The standard goal

of online learning is to minimize the number of mistakes

suffered by the online algorithm. To facilitate the analysis,

we firstly introduce several functions. Firstly, the hinge loss

ℓt(w; (xt, yt)) = [1 − ytw
⊤
xt]+, where [a]+ = max(a, 0),

is the most popular loss function for binary classification

problem. Let Φt, t = 1, . . . , T be δ-strongly convex func-

tions with respect to the norms ‖ · ‖Φt
and let ‖ · ‖∗Φt

be the

respective dual norms. The proposed general sparse online

classification (SOC) algorithm is shown in Algorithm 1.

For the proposed general sparse online learning (SOL)

algorithm, if ℓ is convex and ηt = η, we can achieve that

the regret RT =
∑T

t=1 ℓt(wt) − minw

∑T

t=1 ℓt(w) of the

proposed framework (1) satisfies the following inequality

RT ≤ ΦT (w)

η
+

T
∑

t=1

[
η

2δ
‖zt‖2Φ∗

t

+ λt‖zt‖1] +
∑T

t=1 ∆
∗

t

η
(1)

where ∆∗
t = Φ∗

t (θt)−Φ∗

t−1(θt). Due to space limitations, we

skip the derivation. Given this framework and these analysis,

we would drive some specific algorithms and their regret

bounds.



Algorithm 1 General Sparse Online Learning (SOL)

INPUT :λ, η

INITIALIZATION : θ1 = 0.

for t = 1, . . . , T do

receive xt ∈ R
n

ut = ∇Φ∗

t (θt)
wt = argminw

1
2‖ut −w‖22 + λt‖w‖1

predict ŷt = sign(w⊤

t xt)
receive yt ∈ {−1, 1} and suffer ℓt(wt) = [1 −
ytw

⊤

t xt]+
θt+1 = θt − ηtzt where zt = ∇ℓt(wt);

end for

IV. DERIVED ALGORITHMS

In this section, we will first recover the RDA [7] algo-

rithm and then derive algorithm utilizing the second order-

information. In this section, we will adopt the hinge loss

function and denote L = {t|ℓt(wt) > 0} and Lt =
I(ℓt(wt)>0), where Iv is indicator function, Iv = 1 if v is

true, otherwise Iv = 0.

A. First Order Algorithm

Set Φt(w) = 1
2‖w‖22, which is 1-strongly convex with

respect to ‖ ·‖2. And it is known that the dual norm of ‖ ·‖2
is ‖ · ‖2 itself, while Φ∗

t = Φt. Under these assumptions, we

get the first order sparse online learning (FSOL) algorithm,

which is the same with Regularized Dual Averaging (RDA)

algorithm with soft 1-norm regularization [7].

Algorithm 2 First Order Sparse Online Learning (FSOL)

INPUT :λ, η

INITIALIZATION : θ1 = 0.

for t = 1, . . . , T do

receive xt ∈ R
n

wt = sign(θt)⊙ [|θt| − λt]+
predict ŷt = sign(w⊤

t xt)
receive yt ∈ {−1, 1} and suffer ℓt(wt) = [1 −
ytw

⊤
t xt]+

θt+1 = θt + ηLtytxt

end for

The regret of the previous first order algorithm is upper

bounded O(
√
T ):

RT ≤ ‖w‖2
√

(X2 + 2λX)T (2)

B. Second Order Algorithm

Set Φt(w) = 1
2w

⊤Atw, where At = At−1+
xtx

⊤

t

r
, r > 0

and A0 = I . It is easy to verify that Φt is 1-strongly

convex with respect to ‖w‖2Φt
= w

⊤Atw. Its dual function

Φ∗

t (w) is 1
2w

⊤A−1
t w, while ‖w‖2Φ∗

t

= w
⊤A−1

t w. Using

the Woodbury identity, we can incrementally update the

inverse of At as A−1
t = A−1

t−1−
A

−1

t−1
xtx

⊤

t
A

−1

t−1

r+x
⊤

t
A

−1

t−1
xt

. Under these

assumptions, we get the second order sparse online learning

(SSOL) algorithm. We can proof that the regret bound of

the second order algorithm in an order of O(log(T )).

Algorithm 3 Second Order Sparse Online Learning (SSOL)

INPUT :λ, η

INITIALIZATION : θ1 = 0.

for t = 1, . . . , T do

receive xt ∈ R
n

A−1
t = A−1

t−1 −
A

−1

t−1
xtx

⊤

t
A

−1

t−1

r+x
⊤

t
A

−1

t−1
xt

ut = A−1
t θt

wt = sign(ut)⊙ [|ut| − λt]+
predict ŷt = sign(w⊤

t xt)
receive yt ∈ {−1, 1} and suffer ℓt(wt) = [1 −
ytw

⊤

t xt]+
θt+1 = θt + ηLtytxt

end for

C. Diagonal Algorithm

Although the previous second order algorithm significant-

ly reduced the regret bound than the first order algorithm,

it will consume O(d2) time, which reduced its application

to real-world high dimension problems. To keep the com-

putational time still O(d) similar with the traditional online

learning, we further explored the diagonal algorithm, which

will only maintains a diagonal matrix. Its details is in the

Algorithm (4). In the following experiment, we mainly adopt

the diagonal second order sparse online learning algorithm

unless otherwise specified, which is also denoted as “SSOL”.

Algorithm 4 Diagonal Second Order Sparse Online Learn-

ing

INPUT :λ, η

INITIALIZATION : θ1 = 0.

for t = 1, . . . , T do

receive xt ∈ R
n

A−1
t = A−1

t−1 −
A

−1

t−1
diag(xtx

⊤

t
)A−1

t−1

r+x
⊤

t
A

−1

t−1
xt

ut = A−1
t θt

wt = sign(ut)⊙ [|ut| − λt]+
predict ŷt = sign(w⊤

t xt)
receive yt ∈ {−1, 1} and suffer ℓt(wt) = [1 −
ytw

⊤
t xt]+

θt+1 = θt + ηLtytxt

end for

V. EXPERIMENTS

A. Experimental Setup

In our experiments, we compare the proposed algorithms

with a set of state-of-the-art algorithms. The methodology



Table I
LIST OF COMPARED ALGORITHMS, “TG” MEANS TRUNCATE

GRADIENT AND “DA” MEANS DUAL AVERAGING.

Algorithm Order Sparsity Description

STG 1st TG Stochastic Gradient Descent [3]
FOBOS 1st TG FOrward Backward Splitting [5]
Ada-FOBOS 2nd TG Adaptive regularized FOBOS [19]
Ada-RDA 2nd DA Adaptive regularized RDA [19]
FSOL 1st DA The proposed Algorithm 2
SSOL 2nd DA The proposed Algorithm 4

details of these algorithms are listed in Table I.

To examine the binary classification performance, we

evaluate all the previous algorithms on a number of bench-

mark datasets from web machine learning repositories. Ta-

ble II shows the details of all the datasets in our exper-

iments. These datasets are selected to allow us evaluate

the algorithms on various characteristics of data, in which

the number of training examples ranges from thousands to

millions, feature dimensionality ranges from hundreds to

about 16-million, and the total number of non-zero features

on some dataset is more than one billion. For the very large-

scale WEBSPAM dataset, we run the algorithms only once.

The sparsity as shown in the last column of the table denotes

the ratio of non-active feature dimensions, as some feature

dimensions are never active in the training process, which is

often the case for some real-world high-dimensional dataset,

such as WEBSPAM. For parameter tuning, we conduct a 5-

fold cross validation to search the parameters with the fixed

sparsity regularization parameter λ = 0 on each dataset.

B. Experiment on Error Rate

In this experiment, we compare the proposed algorithms

(FSOL and SSOL) with the other algorithms on sever-

al real-world datasets. Table II shows the details of six

datasets, which can be roughly grouped into two major

categories: the first two datasets (AUT and PCMAC) are

general binary small-scale datasets and the corresponding

experimental results are shown in Figure 1 (a)-(b); and the

rest four datasets (NEWS, RCV1, URL, and WEBSPAM)

are large-scale high-dimensional sparse datasets and the

corresponding experimental results are shown in Figure 1

(c)-(f). We can draw several observation from these results

as follows.

First of all, we observe that most algorithms can learn an

effective sparse classification model with only marginal or

even no loss of accuracy. For example, in Figure 1 (d), the

performances of all the algorithms are almost stable when

sparsity level is smaller than 80%. It indicates that all the

compared sparse online classification algorithm can effec-

tively explore the low level sparsity information. Second,

for most cases, we observe that there exists some sparsity

threshold for each algorithm, below which test error rate

does not change much; but when sparsity level is greater

than the threshold, test error rate gets worse quickly. Third,

we observe that the dual averaging based second order

algorithms (Ada-RDA and SSOL) consistently outperfor-

m the other algorithms (STG, FOBOS, FSOL, and Ada-

FOBOS), especially for high sparsity level. This indicates

that the dual averaging technique and second order updating

rules are effective to boost the classification performance.

Finally, when the sparsity is high, an essential requirement

for high-dimensional data stream classification tasks, the

proposed SSOL algorithm consistently outperforms the other

algorithms over all the evaluated datasets. For example,

when the sparsity is about 99.8% for the WEBSPAM dataset

(the total feature dimensionality is 16, 609, 143), the test

error rate of SSOL is about 0.3%, while the Ada-RDA is

0.4% and the Ada-FOBOS is 0.55%, as shown in Figure 1

(f).

C. Experiment on Running Time
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Figure 2. Time cost on four large-scale datasets: NEWS, RCV1, URL,
and WEBSPAM

We also examine time costs of different sparse online

classification algorithms, and the experiment results are

shown in Figure 2. In this experiment, we only adopt the four

high-dimensional large-scale dataset. Several observations

can be drawn from the results.

First of all, we observe that when the sparsity level

is low, the time costs are generally stable; on the other

hand, when the sparsity level is high, the time cost of

the second algorithms sometimes will somewhat increase.

For example, the test costs of Ada-FOBOS, Ada-RDA and

FSOL in Figure 2 (b) & (d). One possible reason may be

that when the sparsity level is high, the model might not

be informative enough for prediction and thus may suffer

significant more updates. Since second-order algorithms are
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Figure 1. Test error rate on 6 large real datasets. (a)-(b) are two general datasets, (c)-(f) are four large-scale high-dimensional sparse datasets. The second
and forth rows are the sub-figures of the first and the third rows with high sparsity level, respectively.



Table II
LIST OF REAL-WORLD DATASETS IN OUR EXPERIMENTS.

DataSet #Train #Test #Feature Dimension #Nonzero Features Sparsity(%)

AUT 40,000 22,581 20,707 1,969,407 3.07
PCMAC 1,000 946 7,510 55,470 3.99
NEWS 10,000 9,996 1,355,191 5,513,533 29.88
RCV1 781,265 23,149 47,152 59,155,144 8.80
URL 2,000,000 396,130 3,231,961 231,259,917 7.44
WEBSPAM 300,000 50,000 16,609,143 1,118,443,083 95.82

more complicated than first-order algorithms, they are more

sensitive to the increasing number of updates.

Second, we can see that the proposed SSOL algorithm

runs more efficiently than another second-order based algo-

rithms (Ada-RDA and Ada-FOBOS). It is even sometimes

better than the first order based algorithm (e.g. FOBOS

and STD). However, the first order FSOL algorithm is

consistently faster than the second order SSOL algorithm.

In summary, the proposed SSOL algorithm can achieve

comparable or even better performance than all the com-

pared second-order algorithms with less time cost.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a framework of sparse online

classification (SOC) for large-scale high-dimensional data

stream classification tasks. We first showed that the frame-

work essentially includes an existing first-order sparse online

classification algorithm as a special case, and can be further

extended to derive new sparse online classification algo-

rithms by exploiting second-order information. We analyzed

the performance of the proposed algorithms on several real

word datasets, in which the encouraging experimental results

showed that the proposed algorithms are able to achieve the

state-of-the-art performance in comparison to a large family

of diverse online learning algorithms.
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