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Optimal Inference for Spot Regressions*

Tim Bollerslev� Jia Li� Yuexuan Ren§

May 27, 2023

Abstract

Betas from return regressions are commonly used to measure systematic financial market risks.

“Good” beta measurements are essential for a range of empirical inquiries in finance and macroe-

conomics. We introduce a novel econometric framework for the nonparametric estimation of

time-varying betas with high-frequency data. The “local Gaussian” property of the generic

continuous-time benchmark model enables optimal “finite-sample” inference in a well-defined

sense. It also affords more reliable inference in empirically realistic settings compared to con-

ventional large-sample approaches. Two applications pertaining to the tracking performance

of leveraged ETFs and an intraday event study illustrate the practical usefulness of the new

procedures.
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1 Introduction

Time series return regressions, in which the returns on some financial asset are regressed on some

benchmark factor, are omnipresent in macroeconomics and finance. The regression coefficient

estimates, or betas, derived from such regressions are commonly used in empirical applications as

intrinsic measures for systematic market risks. The practical estimation of said regressions have

traditionally been based on daily or lower-frequency monthly returns over multi-year horizons.

However, macroeconomic and financial market risks are clearly time-varying (e.g., Engle (2004),

Sims and Zha (2006)), and the assumption of constancy over extended timeframes implicit in the

standard regression-based approach for estimating betas, has been called into question by numerous

studies. As a case in point, a number of researchers have allowed the betas to depend parametrically

on other variables (e.g., Ferson and Harvey (1996) and Gagliardini et al. (2016)), while others have

inferred time-varying betas from nonlinear parametric models that explicitly allow for second-order

dynamic dependencies (e.g., Bollerslev et al. (1988) and Braun et al. (1995)).

In response to these concerns, a more recent and rapidly growing literature, starting with

Barndorff-Nielsen and Shephard (2004a) and Andersen et al. (2005, 2006), has sought to nonpara-

metrically estimate so-called realized betas based on higher-frequency intraday data over shorter,

typically daily, time intervals.1 Related, a burgeoning literature in macroeconomics has argued

for the usefulness of high-frequency-based identification procedures and related regressions to as-

sess the effect of policy shocks in changing economic environments (e.g., Cochrane and Piazzesi

(2002), Faust et al. (2004), Nakamura and Steinsson (2018)). Further pushing the estimation

window to even finer within-day time-intervals, a series of newer studies (e.g., Bibinger and Reiß

(2014), Bibinger et al. (2019), Andersen et al. (2021)) have argued that the betas may also vary

non-trivially within the day, so that even daily estimation windows might be too coarse. Mean-

while, the assumption of a “large” number of observations over diminishing, or “local,” intraday

estimation windows underpinning the inference procedures in all of these studies can be difficult

to realistically mimic in practice (see also the introductory discussion in Andersen and Bollerslev

(2018)).

Hence, motivated by the need for more reliable estimation and inference procedures in high-

frequency settings with time-varying betas, we propose a new fixed-k inference method for spot

1Precedent theory pertaining to the consistent filtering of spot betas has been developed by Nelson (1996).
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return regressions that formally treats the window size k, or equivalently the number of obser-

vations underlying the nonparametric estimation, as a fixed constant. As such, our approach

forces the econometrician to directly address the “small-sample” issue head-on without resort-

ing to conventional large-sample asymptotic arguments, and the fictitious notion of an infinitely

growing number of observations, or bandwidth sequence. Our approach builds on recent work by

Bollerslev et al. (2021), and the observation that in a frictionless financial market without any

arbitrage opportunities, the underlying latent continuous-time price process (formally modeled as

an Itô semimartingale) should behave approximately as a scaled Brownian motion over “short”

time intervals, and therefore locally also inherit the Gaussian property of a Brownian motion.2

This local Gaussian approximation in turn allows us to treat the nonparametric spot regression

problem as if it were a finite-sample Gaussian linear regression. Correspondingly, our fixed-k theory

naturally suggests the use of critical values based on the t-distribution, instead of the Gaussian-

based critical values obtained from conventional large-k asymptotic theory. Importantly, going

one step further, we show that the spot beta estimator and related t-test are both asymptotically

optimal, in the sense of achieving uniformly minimum-variance among all unbiased estimators,

and being uniformly most powerful among all unbiased tests, respectively. The former optimality

claim, justifying our fixed-k least-squares estimator as the best unbiased estimator (BUE), in effect

represents a new nonparametric “spot” version of the classic Gauss–Markov theorem.

To address concerns that the theoretically justified local Gaussianity underlying the fixed-k

approach may not provide a sufficiently close approximation for a given “local” sample, we develop

a new diagnostic test based on the spot skewness and kurtosis calculated from the high-frequency

returns. Our Monte Carlo simulation study, geared to various empirically realistic settings, also

further underscores the superior performance of the new fixed-k inference procedures compared

to the conventional large-k methods. Notably, a simple-to-implement “robustified” version of the

approach, which explicitly incorporates the aforementioned diagnostic test for local Gaussianity

as a safe guard, maintains excellent size control across a wide range of estimation window sizes,

including situations with rapidly changing volatility.

Underscoring the practical applicability and insights afforded by the new procedures, we present

two separate empirical applications. In the first application, we investigate the tracking perfor-

2Shephard (2022) has also recently developed a new class of volatility estimators that exploit the quantile proper-

ties of Brownian increments, as an interesting alternative to the conventional high-frequency moment-based approach.
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mance of two leveraged exchange-traded funds (ETFs), namely the popular TQQQ and SQQQ

funds which aim to generate three and negative three times the return on the Nasdaq-100 stock

market index, respectively. Using high-frequency intraday data spanning 2018 to 2022, our analysis

uncovers significant systematic intraday and episodic deviations in the funds’ estimated spot betas

from the funds’ stated tracking objectives, with especially notable deviations occurring during the

COVID-19 pandemic in 2020. As such, our results call into question the efficacy of the two funds

for practical hedging and risk management purposes during tumultuous times, exactly when they

would be needed the most.

In our second application, we showcase the use of the new spot-regression-based inference in

the context of an intraday event study, detailing the price impact of Microsoft’s announcement of

its new AI tool, Copilot, on March 16, 2023. By estimating the spot beta for Microsoft within a

short pre-event estimation window, we are able to reliably assess the performance of Microsoft’s

stock in relation to a benchmark market model at a high intraday frequency. Doing so, our results

reveal economically large and highly statistically significant abnormal positive returns during the

live demonstration of the new AI system, with little evidence of any pre-announcement drift. At a

broader level, this analysis clearly illustrates the rapid speed with which financial markets respond

to certain economic news, and as such the practical usefulness of the new fixed-k inference tools

for properly analyzing the impact of news shocks more generally.

The rest of the paper is organized as follows. Section 2 formally presents the new fixed-k

spot regression inference procedure. Additional theoretical results, including the optimality of

the spot estimators and a uniform functional inference theory, are provided in Section 3. This

section is more technically involved, and it can be skipped by readers primarily interested in

practical applications. Section 4 summarizes the results of our Monte Carlo simulation study. Our

empirical applications related to the tracking performance of leveraged ETFs and the impact of

Microsoft’s AI announcement are presented in Section 5. Section 6 concludes the paper. All proofs

are included in the Online Supplemental Appendix, which also provides additional theoretical

results briefly mentioned in the main text, along with various empirical robustness checks.

4
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2 Fixed-k Inference for Spot Regressions

Section 2.1 details the formal econometric setting. Section 2.2 establishes our new fixed-k inference

theory for nonparametric spot regressions. Section 2.3 presents a diagnostic test that can be used to

guide the choice of spot estimation window and further robustify the inference procedure. Section

2.4 describes a predictive inference procedure for intraday event studies. Below, we use
P→ and

d→

to denote convergence in probability and convergence in distribution, respectively. All limits are

for the number of observations n→∞, along with the sampling interval of the high-frequency data

shrinking to zero ∆n → 0, and the discretely sampled data series approaching their continuous-time

population limit.

2.1 Formal setting and notation

We consider a bivariate jump-diffusion, or Itô semimartingale, price process Zt = (Xt, Yt)
> defined

on a filtered probability space (Ω,F , (Ft)t≥0,P) written as:

Zt = Z0 +

∫ t

0
bsds+

∫ t

0
σsdW s + J t, (2.1)

where the drift process b and the stochastic volatility matrix process σ are both càdlàg adapted,

W = (W1,t,W2,t)t≥0 is a bivariate standard Brownian motion, and J denotes a pure-jump process

with finite activity driven by a homogeneous Poisson random measure on R+ × R. For ease of

notation, we will refer to the Brownian component of Zt (i.e.,
∫ t

0 σsdW s) as Zc
t = (Xc

t , Y
c
t )>, and

the individual elements of the spot covariance matrix process by:

ct ≡ σtσ>t =

 c11,t c12,t

c21,t c22,t

 . (2.2)

The semimartingale model, inspired by the no-arbitrage principle (Delbaen and Schachermayer

(1994)), serves as the cornerstone model in continuous-time finance and economics; comprehensive

textbook treatments are available in Merton (1992), Duffie (2010), and Back (2017). In the broader

realm of stochastic integration theory, the semimartingale process is also recognized as the most

general “reasonable” stochastic differential possible, as detailed in Protter (2005). Due to its

versatility and applicability, the semimartingale model, together with the infill asymptotic setting

that we adopt here, have also emerged as the standard framework for analyzing high-frequency

5
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data and financial asset prices in particular; see, e.g., the discussions in Jacod and Protter (2012)

and Aı̈t-Sahalia and Jacod (2014).3

We further specialize the semimartingale model in the form of the following regression repre-

sentation:

dXc
t = v

1/2
t dW1,t,

dY c
t = βtdX

c
t + ς

1/2
t dW2,t.

(2.3)

Our objective is to draw inferences about βt, or the “spot beta” which represents the instantaneous

regression coefficient that quantifies how Y moves together with X at a specific time t. The spot

regression representation in (2.3) is equivalent to imposing a lower-triangular structure on the σt

matrix:

σt =

 v
1/2
t 0

βtv
1/2
t ς

1/2
t

 . (2.4)

This structure effectively assigns the interpretation of the shock to the regressor process Xc
t to

dW1,t, and dW2,t as the idiosyncratic shock specific to Y c
t . As a result, the spot covariance matrix

can be expressed as:

ct =

 vt βtvt

βtvt β2
t vt + ςt

 . (2.5)

This representation in turn demonstrates how the spot beta βt and the idiosyncratic variance ςt

can be directly identified from ct:

βt =
c12,t

c11,t
, ςt = c22,t −

c2
12,t

c11,t
. (2.6)

The nonparametric “reduced-form” estimation for the spot covariance matrix ct is well-known

under the now standard infill asymptotic setting. To fix ideas, suppose that the price vector process

Z is observed at discrete times i∆n, for i = 0, 1, . . . , n, within the fixed time interval [0, T ], where

T ≡ n ·∆n. Let the ith increment (i.e., return) of Z be denoted by

∆n
i Z ≡ Zi∆n −Z(i−1)∆n

, i ∈ {1, . . . , n}.
3That said, it is important to acknowledge that the semimartingale model is clearly misspecified empirically at

ultra-high frequencies due to a host of difficult to quantify market microstructure frictions; see, e.g., the discussions

in Bandi and Russell (2008) and Diebold and Strasser (2013). Thus, in line with standard practice, we only treat

the Itô semimartingale model as a reasonable approximation to reality for “not too finely” sampled data. As such,

our approach should only be used with data sampled at a “moderate” high frequency, say on a time scale of minutes,

as opposed to ultra-high-frequency data, say on a time scale of seconds.

6
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The nonparametric spot estimation is then based on high-frequency returns from a local window

indexed by i ∈ In,t ≡ {dt/∆ne + 1, . . . , dt/∆ne + kn}, where d·e denotes the ceiling function.

Correspondingly, the spot estimator for ct is simply constructed as

ĉt ≡
1

kn∆n

∑
i∈In,t

(∆n
i Z) (∆n

i Z)> , (2.7)

with the corresponding estimators for the spot quantities of interest naturally defined by:

v̂t ≡ ĉ11,t, β̂t ≡
ĉ12,t

ĉ11,t
, ς̂t ≡ ĉ22,t −

ĉ2
12,t

ĉ11,t
. (2.8)

Since Poisson jumps occur at a vanishing probability, all of these spot estimates are also formally

robust to the presence of Poisson-type jumps.4

The estimator defined in (2.7) represents a natural multivariate extension of the univariate

spot variance estimator considered by Foster and Nelson (1996); see also Comte and Renault

(1998) and Kristensen (2010). It may also be interpreted as a localized version of the realized

covariance matrix estimator and the corresponding realized beta proposed by Barndorff-Nielsen

and Shephard (2004a), as they generate exactly the same estimate over the “short” time interval

[t, t + kn∆n]. The window size kn plays an analogous role to that of the bandwidth parameter

in traditional kernel-based nonparametrics. Under the conventional spot estimation theory, ĉt

consistently estimates ct, provided that the bandwidth sequence satisfies kn →∞ and kn∆n → 0.

The kn → ∞ condition permits the use of a law of large numbers to establish consistency, while

the kn∆n → 0 condition ensures that the local estimation window “collapses” to the time point t

so as to justify the “spot” interpretation. Under an additional “undersmoothing” condition (i.e.,

kn →∞ “sufficiently slowly”), a feasible central limit theorem for ĉt may also be established (see,

e.g., Theorem 13.3.3 in Jacod and Protter (2012)), which combined with the delta method implies

4This phenomenon is well understood in the literature on spot estimation; see, for example, Theorem 13.3.3 in

Jacod and Protter (2012). To further improve the estimator’s robustness against other types of jumps, it would

be possible to rely on alternative multipower (Barndorff-Nielsen and Shephard (2004b) and Barndorff-Nielsen et al.

(2006)) or truncation-type (Mancini (2001)) realized measures. Alternative estimators explicitly designed to accom-

modate “noisy” and irregularly spaced observations have also been developed (see, e.g., Hayashi and Yoshida (2005),

Aı̈t-Sahalia et al. (2010), and Mykland and Zhang (2009)). We purposely do not pursue any of these extensions

here, so as to highlight the main novelty of our new approach with minimal technicalities, particularly as it pertains

to the optimality analysis.

7
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the following feasible asymptotic distributional approximations for the spot quantities of interest:

k
1/2
n (v̂t − vt)√

2v̂t

d→ N (0, 1) ,
k

1/2
n (β̂t − βt)√

ς̂t/v̂t

d→ N (0, 1) ,
k

1/2
n (ς̂t − ςt)√

2ς̂t

d→ N (0, 1) . (2.9)

These conventional asymptotic-Gaussian-based approximations have long served as the leading

approach for spot regression inference, the vast literature on the analysis of high-frequency financial

data included.

That being said, it is evident that the asymptotic Gaussian approximations in (2.9) might

work poorly when the number of observations used in the estimation is not “large enough” (i.e.,

for small values of kn).5 On the other hand, the choice of a longer estimation window (i.e., larger

values of kn) might induce nonparametric biases in the estimation stemming from potentially non-

negligible temporal variation in the true latent continuous-time processes (as a case in point, the

aforementioned recent study by Andersen et al. (2021) points to substantial intraday variation in

the betas for many individual stocks). These considerations directly motivate our development of

new and more reliable inference procedures intended to circumvent this delicate balancing act by

explicitly treating the window size (i.e., kn) as a fixed constant k. Importantly, this framework also

allows for a more detailed “approximate finite-sample” decision-theoretic-based characterization

of the optimal spot estimators.

2.2 Fixed-k inference for spot beta

The fixed-k asymptotic theory that we will develop for spot regressions is based on the simple

idea that the Itô semimartingale model is locally Gaussian. Intuitively, within a narrow estimation

window (i.e., k∆n → 0, as implied by ∆n → 0 and a fixed k), the drift component is of a smaller

order, jumps occur with vanishing probability, and the volatility process is nearly constant. As a

result, the Itô semimartingale behaves approximately as a scaled Brownian motion, and as such

exhibits the aforementioned local Gaussianity.

The local Gaussian approximation that we rely on is directly linked to the Gaussian nature of

Brownian motion. However, that same approximation could in principle also be “micro-founded”

5When kn is small, the sampling uncertainty is of similar order as the signal, and the asymptotic Gaussian

approximation for the “reduced-form” estimator ĉt may be poor. Moreover, since βt and ςt are nonlinear trans-

formations of the spot covariance matrix ct, the additional linear approximation underlying the delta method may

further worsen the asymptotic approximation. A similar phenomenon has been studied extensively in the context of

weak instrumental variables; see, for example, Staiger and Stock (1997) and Andrews et al. (2019).
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in the sense of a functional central limit theorem type argument. Putting this notion into a

broader historical perspective, Bachelier (1900) first suggested using Brownian motion to model

asset prices, considering the continuous-time process as the scaling limit of a microscopic tick-by-

tick random walk. The physical interpretation of the Gaussian property of Brownian motion was

also discussed in Einstein’s (1905) classic work. For additional discussion along these lines and

more general results regarding semimartingales, see also Aı̈t-Sahalia and Jacod (2020) and the

many references therein.

Given the local Gaussianity mentioned above, the nonparametric spot regression described in

(2.3) may similarly be approximated by a “limit” Gaussian linear model. Finite-sample results

for this parametric problem can then be translated into the original nonparametric context. The

requisite regularity conditions are gathered in the following set of assumptions, which are standard

for nonparametric high-frequency econometrics; for a more detailed discussion of these conditions,

see Jacod and Protter (2012), Jacod et al. (2021), Bollerslev et al. (2021), and Li et al. (2023).

Assumption 1. Suppose that the process Z satisfies (2.1) and (2.4), and that there exists a

sequence (Tm)m≥1 of stopping times increasing to infinity and a sequence (Km)m≥1 of constants

such that the following conditions hold for each m ≥ 1: (i) ‖bt‖+‖σt‖+v−1
t +ς−1

t +Ft(R\{0}) ≤ Km

for all t ∈ [0, Tm], where Ft denotes the spot Lévy measure of J ; and (ii) for some constant κ > 0,

E[‖σt∧Tm − σs∧Tm‖
2] ≤ Km|t− s|2κ for all t, s ∈ [0, T ].

Theorem 1, below, shows that under these assumptions the studentized spot beta estimator

may be strongly approximated, or “coupled,” by a student-t variable, defined by the following

quantities:

ξ11 ≡
∑
i∈In,t

(∆n
iW1)2

∆n
, ξ12 ≡

∑
i∈In,t

(∆n
iW1) (∆n

iW2)

∆n
, ξ22 ≡

∑
i∈In,t

(∆n
iW2)2

∆n
. (2.10)

Theorem 1. For k ≥ 2, and under Assumption 1,
√
k − 1

(
β̂t − βt

)√
ς̂t/v̂t

= ξβ + op(1), (2.11)

where ξβ ≡
√
k − 1 ξ12/

√
ξ11ξ22 − ξ2

12 is t-distributed with k − 1 degrees of freedom.

This infill asymptotic coupling result for the nonparametric Itô semimartingale model closely

resembles a classical finite-sample result for Gaussian linear regressions, as in, e.g., Proposition 1.3

9
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in Hayashi (2011).6 The op(1) term in (2.11) accounts for biases arising from the drift and jump

components, as well as biases related to temporal variation in the stochastic volatility process.7

In the limit model without these nonparametric “nuisances,” the op(1) term would be identically

zero.

The fixed-k asymptotic theory can be readily applied to test hypotheses related to the spot

beta. Specifically, to test the null hypothesis H0 : βt = β∗ against the alternative hypothesis

Ha : βt 6= β∗, one would reject the null at significance level α when:

√
k − 1

∣∣β̂t − β∗∣∣√
ς̂t/v̂t

> z1−α/2, (2.12)

where z1−α/2 denotes the 1−α/2 quantile of the tk−1 distribution. In the Supplemental Appendix,

we further extend the coupling-based theory to prove that this test is also optimal, in the sense

of being the asymptotically uniformly most powerful unbiased test. Correspondingly, the optimal

fixed-k confidence interval (CI) at the 1− α asymptotic level is naturally given by:

CI1−α ≡

[
β̂t −

z1−α/2√
k − 1

√
ς̂t
v̂t
, β̂t +

z1−α/2√
k − 1

√
ς̂t
v̂t

]
. (2.13)

With the window size k given, the proposed fixed-k inference procedure simply suggests that

one may treat the problem as a “textbook” Gaussian linear regression and use the student-t

distribution to compute critical values. In practical applications, of course, the window size k

is not given but needs to be chosen somehow. This choice mirrors the familiar “bias-variance”

trade-off omnipresent in nonparametric estimation. Making this choice “optimally” tends to be

impractical, as it necessitates additional strong assumptions on both the data and the form of

the loss function. This challenge, of course, is also not unique to the proposed fixed-k framework,

but applies to the conventional large-k asymptotic framework as well. In that setting, a common

practice has been to perform the inference for a range of “reasonable” choices of k as a way to

check for robustness. To assist in determining which values of k may indeed be reasonable in the

6More generally, the spot covariance matrix estimator ĉt can be coupled by an Ft-conditional Wishart variable.

This result may be useful for making fixed-k inference for other covariance-related quantities, as long as they are

pivotalizable. For instance, it can be shown that ς̂t/ςt admits a coupling by a scaled chi-squared variable with k− 1

degrees of freedom.
7Theorem 1 remains valid with an estimation window centered at t, as the within-window variations in the spot

quantities are of order op(1).
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fixed-k context, the next section introduces a new diagnostic test and discusses how it can be used

to “robustify” the overall inference procedure.8

2.3 Diagnostic test for local Gaussianity and robustified inference

The fixed-k inference relies on the local Gaussianity of observed high-frequency returns. This

feature is more likely to hold if the stochastic volatility process is nearly constant within the

estimation window, which favors the choice of shorter window sizes. For our inferential purpose,

it is therefore natural to determine whether k is in fact “small enough” by assessing the adequacy

of the local Gaussian approximation. To do so, we suggest new diagnostic tests based on the

corresponding “spot” skewness and kurtosis statistics. We present the idea for the regressor process

X, but the same diagnostics are readily applicable for the Y process as well.

The spot skewness and kurtosis for the local sample (∆n
i X)i∈In,t

are formally defined by:

Ŝt ≡
k−1

∑
i∈In,t

(
∆n
i X − k−1

∑
i∈In,t

∆n
i X
)3

(
k−1

∑
i∈In,t

(
∆n
i X − k−1

∑
i∈In,t

∆n
i X
)2
)3/2

, (2.14)

K̂t ≡
k−1

∑
i∈In,t

(
∆n
i X − k−1

∑
i∈In,t

∆n
i X
)4

(
k−1

∑
i∈In,t

(
∆n
i X − k−1

∑
i∈In,t

∆n
i X
)2
)2 . (2.15)

These definitions closely resemble the classical skewness and kurtosis statistics frequently used to

test for Gaussianity in applied work. However, in contrast to the conventional large-k asymptotic

setting, where the skewness and kurtosis statistics are centered at 0 and 3, respectively, and

diagnostic tests for normality may be constructed based on a standard central limit theorem

together with the delta method (see, e.g., the often used tests by Jarque and Bera (1980)), in the

fixed-k setting, the conventional large-sample limit theorems do not apply. Instead, we explicitly

derive the infill asymptotic distributions for Ŝt and K̂t using the coupling argument, thereby

allowing for the determination of critical values to detect “abnormal” spot skewness and/or kurtosis

for a given window size k. The following theorem formalizes the idea.

8Contrasting the fixed-k and conventional large-k approaches, if k is chosen to be numerically “large,” the tk−1-

distribution implied by the fixed-k framework will, of course, be close to the standard normal distribution implied by

the conventional framework. However, for k “small,” the tk−1 and the normal distributions can differ substantially,

and the large-k Gaussian approximation can only introduce additional distortions. Hence, we always recommend

computing critical values using the t-distribution, regardless of whether the numerical value of k seems large or not.
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Figure 1: The figure shows the fixed-k asymptotic probability density functions for the absolute

spot skewness and spot kurtosis for different values of k.

Theorem 2. Under the same setting as Theorem 1, there exist i.i.d. standard normal random

variables (ηi)i∈In,t such that Ŝt = S̃t + op(1) and K̂t = K̃t + op(1), where S̃t and K̃t are the sample

skewness and kurtosis statistics of the coupling variables (ηi)i∈In,t, respectively.

Theorem 2 shows that under the fixed-k asymptotic setting, the distributions of the spot

skewness and kurtosis statistics formed using the high-frequency returns are given by the exact

distributions of the same statistics formed using i.i.d. standard normal random variables. These

distributions are highly nonstandard, but they can be easily computed via Monte Carlo simulations.

To illustrate, Figure 1 plots the probability density functions of |S̃t| and K̃t for k ∈ {5, 10, 15, 30}.9

Under the Itô semimartingale model, these infill asymptotic approximations are theoretically

valid for any fixed k. Throughout our analysis, we adhere to this standard model and do not

interpret abnormal levels of skewness and/or kurtosis as evidence against this well-established

benchmark model. Rather, we recognize that Theorem 2 provides “good” approximations in finite

samples only to the extent that the local Gaussian approximation is in force, corresponding to

9For a finite sample with k observations, sample skewness and kurtosis statistics are bounded by (k− 2)/
√
k − 1

and (k2 − 3k + 3)/(k − 1), respectively; see Wilkins (1944) and Dalén (1987). As a result, when k = 5, the absolute

skewness is bounded by 1.5 and the kurtosis is bounded by 3.25, which explains the bounded supports of the

corresponding distributions seen in Figure 1.
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k being “sufficiently small.” Consistent with this reasoning, we view abnormal skewness and/or

kurtosis as a sign that the local Gaussian approximation appears inadequate for a given local

sample.

For this purpose, it is convenient to combine the spot skewness and kurtosis statistics into a

single diagnostic test statistic

D̂t ≡ max
{
Ak|Ŝt|, K̂t

}
, (2.16)

where the scaling factor Ak ≡ median(K̃t)/median(|S̃t|) ensures that the Ak|Ŝt| and K̂t components

have comparable magnitudes.10 Theorem 2 and the continuous mapping theorem readily imply

that D̂t = D̃t+op(1), where D̃t = max{Ak|S̃t|, K̃t}. The distribution of the D̃t coupling variable is

known in finite samples, and we use its tail quantiles as critical values for the sample D̂t statistic.

With a slight abuse of terminology, we will say that the diagnostic test “rejects local Gaussianity”

for a given local sample at significance level δ, if D̂t exceeds the 1 − δ quantile of D̃t. Such a

rejection by the diagnostic test in turn suggests that it would be inadvisable to proceed with the

t-test for the spot beta estimate, as the underlying asymptotic approximation could be unreliable.

The following algorithm formalizes this decision rule in the form of a “compound” test.

Algorithm 1: Robust t-test for H0 : βt = β∗ with diagnostic correction

Step 1. Conduct the D̂t diagnostic test for local Gaussianity at significance level δ. If the test

rejects, stop the testing procedure without rejecting the H0 : βt = β∗ null hypothesis. Otherwise,

proceed to step 2.

Step 2. Conduct the t-test for the H0 : βt = β∗ null hypothesis at significance level α as outlined

in Section 2.2. Report the test decision accordingly. �

This diagnostic correction obviously exerts a larger influence the larger the value of δ. If a

researcher fully trusts the asymptotic arguments presented in Section 2.2, and by extension the

standard local-Gaussianity heuristic, there would be no need to employ the more conservative

robustification, effectively fixing δ = 0. Employing larger values of δ may in turn be viewed as

expressing less confidence in the accuracy of the asymptotic theory for a given finite sample. In

practice, we recommend employing δ at conventional significance levels, such as 1%, 5%, and

10Given that non-zero centered moments are strictly increasing in their orders, it is easy to show that |Ŝt| < K̂t

whenever the statistics are well-defined. Hence, D̂t would trivially coincide with K̂t if Ak were simply set to unity.
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10%.11

For any δ ∈ (0, 1) this robust approach is inherently more conservative than the “uncorrected”

t-test, as the compound procedure may be stopped in the first step by the local-Gaussianity

diagnostic test. However, since the uncorrected t-test controls asymptotic size, the robust t-test

does so as well. Importantly, by employing the diagnostic test as a “pre-test,” it will not result in

over-rejection, while providing better size control in finite samples compared to the uncorrected

test. As the diagnostic test is likely to reject when the window size k becomes “too large,” the

robust approach will therefore also “automatically” become more conservative than the uncorrected

t-test. Our simulation results, detailed in Section 4, further corroborate these observations and

underscore the practical usefulness of this simple diagnostic correction.

2.4 Predictive inference for spot regressions

The discussion so far pertains to the “in-sample” analysis of spot beta. In many applications,

however, the interest centers on predictive analysis. This section develops the requisite econometric

tools for such analyses. For concreteness, we focus on the situation in which one relies on the spot

beta estimate to form a prediction of Y over some future time period based on the future realization

of X. This type of scenario naturally arises in high-frequency event studies, and applications where

one is interested in assessing whether the intraday returns on some asset observed around the time

of specific news arrivals appear “abnormal.”

To set out the idea, let the high-frequency observations used for the spot regression be indexed

by {1, . . . , k}. To emphasize the timing of the information, let β̂[1:k] and ς̂ [1:k] denote the resulting

estimators for the spot beta and the idiosyncratic variance, respectively. Utilizing these estimates,

we form the spot-regression-model-based prediction of the h-period return Y(k+h)∆n
− Yk∆n , as

(X(k+h)∆n
−Xk∆n)β̂[1:k]. This prediction naturally serves as a benchmark for the “normal” level

of return on Y to expect. Correspondingly, the ex-post cumulative abnormal return (CAR) of

asset Y over the [k∆n, (k + h)∆n] time period may be measured by:

ĈARh = Y(k+h)∆n
− Yk∆n − (X(k+h)∆n

−Xk∆n) · β̂[1:k] . (2.17)

11Examining the test results collectively across such a range may also be used to provide a more comprehensive

set of statistical evidence to evaluate the hypothesis of interest. Should ambiguous conclusions arise, it may be

interpreted as a reflection of the challenges associated with the specific setting.
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To help assess the significance of this return, the standard error of ∆
−1/2
n ĈARh may be estimated

as:

ŝeh =

√√√√(h+
(X(k+h)∆n

−Xk∆n)2∑k
i=1 (∆n

i X)2

)
kς̂ [1:k]

k − 1
, (2.18)

which accounts for both the “in-sample” estimation error in the spot beta and the “out-of-sample”

idiosyncratic shocks. Theorem 3 below further shows that the t-statistic for the CAR can be

coupled by a t-distributed random variable.

Theorem 3. For k ≥ 2 and h ≥ 1, and under Assumption 1, there exists a tk−1-distributed

random variable τh such that

∆
−1/2
n ĈARh

ŝeh
= τh + op(1).

Theorem 3 readily suggests forming a predictive CI for the h-period CAR at the 1−α level as

PCIh,1−α =
[
−∆1/2

n z1−α/2 ŝeh,∆
1/2
n z1−α/2 ŝeh

]
, (2.19)

where z1−α/2 denotes the 1−α/2 quantile of the tk−1 distribution. If the estimated CAR falls out-

side this predictive CI, the abnormal return may be deemed statistically significant at significance

level α.

More concretely, for individual equities, large and seemingly abnormal returns typically arise

from important firm-specific news releases, prompting the company’s stock price to deviate from

what is predicted by a benchmark pricing model. In this situation, the predictive CI at a given

confidence level in essence depicts a range of probable “counterfactuals” that could have happened

in the absence of the news. By design, the predictive CI depends on Y solely through the pre-event

estimation window {1, . . . , k}, ensuring that it is not “contaminated” by post-event information.

This method for determining “abnormal” returns closely resembles the widely used approach

in the event study literature, as discussed in, e.g., Campbell et al. (1997). However, in contrast

to the asymptotic Gaussian approximations traditionally employed in that literature, based on

“large sample” arguments obtained by aggregating across assets, events, and time periods, the

high-frequency method developed here achieves local Gaussianity by concentrating on shorter

time windows, thereby allowing for the construction of formal statistical tests pertaining to the

immediate impact of singular news events. Section 5.2 provides a concrete empirical illustration.
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3 Optimality and Uniform Inference

This section collects some additional theoretical results and discussions. Section 3.1 clarifies a

robustness property of the fixed-k method that is not afforded by the conventional large-k method.

Section 3.2 demonstrates that the spot beta estimator is asymptotically optimal, achieving the

minimum variance among all unbiased estimators, including potential nonlinear ones. Section 3.3

extends the pointwise inference for the spot beta to a uniform version for the entire spot beta

process. The content in this section is somewhat technical in nature. Readers primarily interested

in the finite-sample performance of the estimators or practical applications may choose to proceed

directly to the Monte Carlo simulations in Section 4, or the empirical analysis in Section 5.

3.1 Robustness of the fixed-k method

The conventional large-k theory and the proposed fixed-k theory have their own distinct compar-

ative advantages. On the one hand, the large-k theory implies that the spot beta estimator is

consistent, while consistency can no longer be claimed under the fixed-k framework. On the other

hand, for inference, the fixed-k theory attains a well-defined theoretical sense of robustness that is

not afforded by the large-k theory.

To appreciate this added sense of robustness, it is useful to first recall the bias-variance char-

acterization under the large-k setting with kn → ∞. Under the maintained assumption that the

spot volatility matrix process σt is κ-Hölder continuous, the nonparametric bias of the spot es-

timator is of order (kn∆n)κ and its variance is of order k−1
n . The rate-optimal choice of kn is

obtained by balancing the (squared) bias and variance such that (kn∆n)2κ � k−1
n , corresponding

to kn � ∆
−2κ/(2κ+1)
n . In order to construct Gaussian-based CIs under the large-k framework, the

standard approach is therefore to “undersmooth” by letting kn grow slower than ∆
−2κ/(2κ+1)
n , so

that the nonparametric bias becomes asymptotically negligible. If the Hölder continuity index κ is

known, that undersmoothing choice of kn is feasible, at least in theory. However, if κ is unknown,

the large-k Gaussian-based CI would not be robust due to this lack of knowledge of the appropri-

ate smoothing parameter. To appreciate this, fix a large-k tuning scheme of the form kn � ∆−an

for some a > 0. Given this choice, there always exist data generating processes with sufficiently

rough volatility paths (i.e., κ sufficiently small) such that a > 2κ/ (2κ+ 1). As such, the given

kn sequence would lead to “oversmoothing” for that collection of models. Correspondingly, the
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resulting nonparametric bias will dominate the standard error, and the large-k CI will provide zero

coverage asymptotically.

Meanwhile, the requisite undersmoothing is always in force under the fixed-k framework, no

matter how small the continuity index κ might be (since k � ∆
−2κ/(2κ+1)
n for any κ > 0). The-

oretically, the fixed-k inference is therefore robust with respect to “arbitrarily rough” volatility,

whereas the large-k inference theory is not. In other words, in situations when the stochastic

volatility path may lack smoothness, the fixed-k framework provides a built-in robustness not

afforded by the conventional large-k approach.

These theoretical considerations aside, the fixed-k and large-k methods do suggest their own

distinct approaches for conducting inference. In that regard, as discussed in Section 2.2, the fixed-k

small-sample perspective arguably aligns more closely with the underlying finite-sample problem,

and importantly as demonstrated by the simulations in Section 4 below, it also generally result in

more accurate inference.

3.2 Optimality of the spot beta estimator

In this subsection, we demonstrate that the spot beta estimator, β̂t, is indeed optimal, as it

is asymptotically minimum-variance among a broad class of asymptotically unbiased “regular”

estimators.12 Our approach can be viewed as a limits-of-experiments method specifically tailored to

the infill high-frequency asymptotic setting. Analogous arguments have been successfully employed

in other areas of econometrics, including Jansson (2008), Hirano and Porter (2009), and Andrews

and Mikusheva (2022).

For ease of notation, denote the vectors of observed high-frequency returns in the local estima-

tion window by:

rX ≡
(
∆n
i X/

√
∆n

)
i∈In,t

, rY ≡
(
∆n
i Y/

√
∆n

)
i∈In,t

.

A generic spot estimator for βt may then be expressed as f(rX , rY ) for some measurable function

f : Rk×Rk 7→ R. We will thus identify an estimator with the function f and refer to it as regular if

f is continuous Lebesgue almost everywhere. This regularity requirement appears rather minimal.

However, it is sufficient to ensure that f(rX , rY ) can be coupled by an analogous estimator in the

12Utilizing the same approach, it can be demonstrated that the bias-corrected estimator ς̂∗t ≡ kς̂t/(k − 1) is also

optimal in the same sense for estimating the spot idiosyncratic variance, ςt.
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limit experiment.13 The following lemma formalizes this assertion.

Lemma 1. Under Assumption 1, any regular estimator f (rX , rY ) may be expressed as

f (rX , rY ) = f
(
v

1/2
t η, βtv

1/2
t η + ς

1/2
t ε

)
+ op(1), (3.20)

where η and ε are independent k-dimensional standard Gaussian random vectors independent of

the time-t information set Ft.

Lemma 1 shows that any regular estimator f (rX , rY ) may be decomposed into a generally

nondegenerate leading term f(v
1/2
t η, βtv

1/2
t η+ ς

1/2
t ε) and an asymptotically negligible op(1) term.

The leading coupling variable may be interpreted as an estimator constructed from the limit

experiment with v
1/2
t η and βtv

1/2
t η + ς

1/2
t ε as the random observables. Since (vt, βt, ςt) are Ft-

measurable and (η, ε) is independent of Ft, the limit experiment is de facto an Ft-conditional

Gaussian linear model.

Let L (·, ·) denote any nonnegative continuous loss function. By the continuous mapping the-

orem, Lemma 1 implies that L(βt, f(rX , rY )) = L(βt, f(v
1/2
t η, βtv

1/2
t η + ς

1/2
t ε)) + op(1). The

asymptotic risk of the f (rX , rY ) estimator is naturally defined as the Ft-conditional expectation

of its limit loss,

R (f ; vt, βt, ςt) ≡ E
[
L
(
βt, f

(
v

1/2
t η, βtv

1/2
t η + ς

1/2
t ε

))∣∣∣Ft] . (3.21)

Since (η, ε) is independent of Ft, the asymptotic risk depends on the conditioning information only

through (vt, βt, ςt). As a result, the asymptotic risk function (v, β, ς) 7→ R (f ; v, β, ς) may readily

be computed for any given estimator f and loss function L. However, the exact finite-sample risk

E [L (βt, f (rX , rY )) |Ft] is generally infeasible to compute due to the presence of various infinite-

dimensional nuisance parameters that govern the conditional distribution of the observed data

vectors, rX and rY .

In line with the previously defined asymptotic risk, the asymptotic bias of the f (rX , rY )

estimator for βt is naturally defined by:

B (f ; vt, βt, ςt) ≡ E
[
f
(
v

1/2
t η, βtv

1/2
t η + ς

1/2
t ε

)∣∣∣Ft]− βt. (3.22)

13In asymptotic statistics, as exemplified by Bickel et al. (1998), the notion of regularity involves not only specific

asymptotic approximations for the estimator, typically in the form of weak convergence, but also demands the

estimator to be equivariant, usually with respect to location shifts. However, in our analysis, we refrain from

imposing equivariance restrictions and concentrate on asymptotically unbiased estimators.
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We will focus on asymptotically unbiased regular estimators, that is estimators f for which the

bias function B (f ; v, β, ς) is identically equal to zero for all v > 0, β ∈ R, and ς > 0. An

estimator is considered optimal, or the best unbiased estimator (BUE), if it achieves minimum

asymptotic variance within that class of estimators. For the quadratic loss function L (·, ·), the

optimal estimator f∗ therefore satisfies14

R (f∗; v, β, ς) ≤ R (f ; v, β, ς) , ∀ v > 0, β ∈ R, ς > 0, (3.23)

for every asymptotically unbiased regular estimator f . Following standard terminology, the optimal

estimator defined in this way may be more precisely referred to as the asymptotically uniformly

minimum-variance unbiased estimator.

Theorem 4. Under Assumption 1, β̂t is the asymptotically uniformly minimum-variance unbiased

estimators for βt.

Although the optimality claim for the spot beta estimator is closely related to the Gauss–

Markov theorem for standard linear regressions, there are several key differences. Firstly, while

the limit experiment underlying the optimality of the spot beta estimator corresponds to a para-

metric linear regression model, our original econometric setting is inherently nonparametric, and

as such it differs importantly from the classical Gauss–Markov setting. Secondly, while the clas-

sical Gauss–Markov theorem states that the least-squares estimator is the best linear unbiased

estimator (BLUE), the linearity restriction is not necessary in the present context. In other words,

when conducting spot regressions for Itô semimartingales, the “local” least-squares β̂t estimator

is asymptotically the BUE, not just the BLUE. In a recent paper, Hansen (2022) examines the

equivalence between the notions of BLUE and BUE for conventional linear regressions, mainly

through the lens of alternative definitions of unbiasedness. The β̂t spot beta estimator achieves its

asymptotic superior BUE status for a very different reason, namely the conditional Gaussianity

embedded in the limit experiment (Lehmann and Scheffé, 1950).

Using a similar line of reasoning, it is also possible to demonstrate that the t-test for the spot

beta, based on Theorem 1, is optimal in the sense that it is asymptotically uniformly most powerful

among asymptotically unbiased tests. This additional theoretical result is further detailed in the

Supplemental Appendix.

14Optimality results for other strictly convex loss functions may similarly be obtained by appealing to Theorem

2.1.11 in Lehmann and Casella (1998).
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3.3 Uniform inference for the spot beta process

The fixed-k CI for the spot beta proposed in Section 2.2 pertains to the pointwise inference for βt

at a specific point in time. In this subsection, we develop a uniform functional inference theory

for the path of the spot beta process (βt)t∈[0,T ] under the fixed-k framework.

Compared to the pointwise inference described in Theorem 1, the uniform inference theory

is more challenging to establish for two reasons. First, it needs to be shown that the pointwise

coupling result in Theorem 1 holds uniformly across O (n) many local estimation windows, giving

rise to a high-dimensional non-Gaussian coupling problem. Second, to conduct inference in this

nonstandard setting, we also need to establish an anti-concentration inequality for the maximum

absolute value of a large number of t-distributed coupling variables. To help focus our discussion

on these more novel aspects of the theory, we purposely consider a simplified setting in which X

and Y do not contain any jumps.15

Turning to the details, we begin by constructing our functional estimator for the spot beta

process. To do so, we divide the n high-frequency returns into mn = n/k nonoverlapping blocks.16

Let In,j ≡ {(j − 1) k + 1, . . . , jk} collect the indices of the returns in the jth block. The spot

covariance matrix estimator for the jth block is then given by:

c̃j ≡
1

k∆n

∑
i∈In,j

(∆n
i Z) (∆n

i Z)> .

Analogous to equations (2.8) and (2.10), we further define

ṽj ≡ c̃11,j , β̃j ≡
c̃12,j

c̃11,j
, ς̃j ≡ c̃22,j −

c̃2
12,j

c̃11,j
,

and

ξ11,j ≡
∑
i∈In,j

(∆n
iW1)2

∆n
, ξ12,j ≡

∑
i∈In,j

(∆n
iW1) (∆n

iW2)

∆n
, ξ22,j ≡

∑
i∈In,j

(∆n
iW2)2

∆n
.

The collection of blockwise estimators (β̃j)1≤j≤mn naturally serves as a piecewise constant estima-

tor for the path (βt)t∈[0,T ]. With a slight abuse of notation, we identify (β̃j)1≤j≤mn with (β̃t)t∈[0,T ]

15This is quite unrestrictive, as one could simply apply the standard truncation technique (Mancini, 2001) to

consistently eliminate jumps in a preliminary step without affecting the asymptotics; see, e.g., Proposition 1 in Li

et al. (2017) for a formal justification.
16For ease of exposition, we assume that n/k is an integer.
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through β̃t ≡ β̃j for t ∈ [(j − 1) k∆n, jk∆n) and j ∈ {1, . . . ,mn}, and β̃T ≡ β̃mn
. The functional

estimators (ṽt)t∈[0,T ] and (ς̃t)t∈[0,T ] are defined analogously.

Theorem 1 can be easily modified to show the following pointwise coupling result for a given

time point t ∈ [(j − 1) k∆n, jk∆n],
√
k − 1

(
β̃t − βt

)√
ς̃t/ṽt

= ξβ,j + op(1),

where ξβ,j ≡
√
k − 1 ξ12,j/

√
ξ11,jξ22,j − ξ2

12,j is tk−1-distributed. The main challenge for developing

a uniform inference theory is to show that this approximation holds uniformly across t ∈ [0, T ].

That is, it pertains to all mn = O(n) estimation blocks simultaneously. To achieve this, we need

to strengthen Assumption 1 as follows, where ‖ · ‖p denotes the Lp-norm.

Assumption 2. Suppose that the process Z satisfies (2.1) and (2.4) with J = 0, and that there

exists a sequence (Tm)m≥1 of stopping times increasing to infinity such that the following conditions

hold for each m ≥ 1: (i) there exists a constant Km such that ‖bt‖+ ‖σt‖+ v−1
t + ς−1

t ≤ Km for

all t ∈ [0, Tm]; and (ii) for some constant κ > 0 and any p ≥ 2, there exist constants Km,p such

that ‖ sups,t,|s−t|≤h ‖σt∧Tm − σs∧Tm‖ ‖p ≤ Km,ph
κ for any h > 0.

Assumption 2 explicitly rules out jumps in the price process. As already noted, this is not

overly restrictive as one could apply the standard truncation technique to consistently eliminate

jumps. Meanwhile, condition (ii) in Assumption 2 is substantially more restrictive than condition

(ii) in Assumption 1. In particular, while the previous milder condition only requires the κ-Hölder

continuity to hold under the L2-norm, the more stringent condition requires the volatility process

to be κ-Hölder continuous under all Lp-norms. This stronger condition allows us to apply maximal

inequalities under certain Lp-norms for the derivation of the requisite high-dimensional coupling.

The following theorem formalizes the results.

Theorem 5. Suppose that Assumption 2 holds and k ≥ max {13, 6/κ+ 1}. Then,

sup
t∈[0,T ]

∣∣∣∣∣
√
k − 1

(
β̃t − βt

)√
ς̃t/ṽt

∣∣∣∣∣ = τ∗n + op(1), (3.24)

where τ∗n ≡ max1≤j≤mn |ξβ,j | and (ξβ,j)1≤j≤mn are i.i.d. tk−1-distributed random variables. More-

over, with the 1− α quantile of τ∗n denoted by z∗n,1−α,

P

(
sup
t∈[0,T ]

∣∣∣∣∣
√
k − 1

(
β̃t − βt

)√
ς̃t/ṽt

∣∣∣∣∣ > z∗n,1−α

)
→ α. (3.25)
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The first part of Theorem 5 shows that the sup-t statistic associated with the spot beta process

over the [0, T ] time interval can be coupled by τ∗n, defined as the absolute maximum of mn i.i.d.

tk−1-distributed random variables.17 The second part of the theorem further shows that z∗n,1−α is

a valid critical value for conducting a functional sup-t test for the entire spot beta process. Since

the distribution of the τ∗n coupling variable is known in finite samples, its 1 − α quantile, z∗n,1−α,

can be easily computed. Inverting the resulting sup-t test in turn yields a 1 − α level uniform

confidence band for the spot beta process:

CB1−α ≡

[
β̃t −

z∗n,1−α√
k − 1

√
ς̃t
ṽt
, β̃t +

z∗n,1−α√
k − 1

√
ς̃t
ṽt

]
, t ∈ [0, T ] . (3.26)

This uniform confidence band obviously tends to be wider than the pointwise fixed-k CIs previously

defined in (2.13). We will use these tools to draw across-time inference about the spot beta process

in our empirical analysis in Section 5.1 below.

It is worth noting that the proof for (3.25) underlying the uniform confidence band in (3.26) not

only relies on the uniform coupling given in (3.24), but also requires a so-called anti-concentration

property for the coupling variable τ∗n to ensure that its distribution does not concentrate “too

much” at any given point. This property cannot be taken for granted, as τ∗n is defined as the

maximum of a growing dimensional random vector (i.e., (ξβ,j)1≤j≤mn
) rather than a fixed random

variable. Similar anti-concentration inequalities have also been widely used in the recent literature

on high-dimensional inference. While existing work mainly pertains to Gaussian variables (see,

e.g., Chernozhukov et al. (2015)), our analysis is concerned with t-distributed variables. Corre-

spondingly, in our proof in the Supplemental Appendix, we establish that τ∗n does indeed satisfy

the requisite anti-concentration property. This result is to the best of our knowledge novel and of

independent interest.

17Although the pointwise coupling result in Theorem 1 holds for any fixed k ≥ 2, the uniform version given

by Theorem 5 requires k ≥ 13 or even larger when κ < 1/2. This requirement arises mainly because of the

required uniform coupling of the t-statistic process, which involves the spot idiosyncratic variance estimator ς̃t in the

denominator. When ς̃t is close to zero, the coupling error for the t-statistic will be magnified, and we need to “tame”

this effect uniformly across the “many” estimation blocks. Bounding k from below fulfills this purpose because the

estimation error in ς̃t is approximately χ2
k−1 distributed. That noted, our sufficient condition may not be necessary,

and it is possible that it could be further weakened.

22

Electronic copy available at: https://ssrn.com/abstract=4461117



4 Monte Carlo Simulations

Our Monte Carlo simulations are based on two different data generating processes (DGP). Under

DGP I, the volatility vt for the regressor process Xt is simulated using the setup originally proposed

by Bollerslev and Todorov (2011). This same simulation design has also subsequently been used

by a number of other studies (e.g., Bollerslev et al. (2021) and Li et al. (2023)). In particular, we

rely on a two-factor model for vt = V1,t + V2,t, where V1,t and V2,t are generated according to:

dV1,t = 0.0128(0.4068− V1,t)dt+ 0.0954
√
V1,t

(
ρdW1,t +

√
1− ρ2dB1,t

)
,

dV2,t = 0.6930(0.4068− V2,t)dt+ 0.7023
√
V2,t

(
ρdW1,t +

√
1− ρ2dB2,t

)
,

in which B1 and B2 represent independent standard Brownian motions, which are also independent

of the bivariate Brownian motion W that drives the Zt = (Xt, Yt)
> process (as defined below).

The parameter ρ = −0.7 captures the well-documented negative correlation between price and

volatility shocks. Interpreting the unit time interval as one day, the V1 volatility factor exhibits

high persistence with a half-life of 2.5 months, while the V2 volatility factor is characterized by

quick mean reversion with a half-life of only a day.

Our second DGP II is based on the following one-factor model for the vt process:

dvt = 18.0218(0.8136− vt)dt+ 5.3153
√
vt

(
ρdW1,t +

√
1− ρ2dB1,t

)
,

where the parameters are calibrated such that the simulated rejection frequencies for the diagnostic

test for local Gaussianity align with those for our empirical study discussed in the next section.

Compared to DGP I, the volatility paths observed under DGP II tend to experience much more

rapid changes, with a half-life of just 15 minutes. This higher level of volatility-of-volatility nat-

urally complicates the local Gaussian approximation, and as such DGP II should present a more

challenging scenario for nonparametric spot inference compared to DGP I.

Meanwhile, armed with the two different DGPs for the vt process, the full volatility matrix σt

defined in (2.4) is determined by

βt = 1 + 0.25 sin (t)2 , ςt =
(
1.5 + 0.25 sin (t)2 )vt.

under both DGPs. The formula for βt implies that it changes between 1.0 and 1.25 over the course

of roughly one-and-a-half day. The expression for ςt implies that the idiosyncratic variance comoves
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Table 1: Diagnostic Tests for Local Gaussianity

DGP I DGP II

k 1% 5% 10% 1% 5% 10%

5 0.010 0.050 0.100 0.010 0.052 0.104

10 0.010 0.050 0.100 0.016 0.066 0.124

15 0.010 0.051 0.101 0.023 0.083 0.144

30 0.010 0.051 0.102 0.044 0.123 0.193

60 0.011 0.053 0.104 0.081 0.180 0.260

Note: The table presents the finite-sample rejection rates of the D̂t diagnostic test for

local Gaussianity for the DGP I and II data generating processes, for various window

sizes k, at the 1%, 5%, and 10% significance levels. The rejection rates are calculated

using one million Monte Carlo replications.

with the variance of Xt, with the ratio ςt/vt varying between 1.5 and 1.75. Finally, completing

both DGPs, we generate the bivariate Zt process according to dZt = σtdW t.

We simulate all of the “continuous-time” processes using an Euler scheme on a one-second

mesh. However, the actually observed X and Y processes used for the inference are only sampled

at a coarser one-minute, or ∆n = 1/390, time interval. This again is motivated by applications

involving high-frequency financial data for actively traded assets, where as discussed above a one-

minute sampling scheme is commonly employed as a convenient way to guard against complicated

and difficult-to-specify high-frequency market microstructure noise. It also directly mirrors the

sampling frequency of the data employed in the empirical applications discussed in Section 5

below.

We begin our simulation analysis by examining the accuracy of the local Gaussian approxima-

tion across various window sizes, by implementing the diagnostic test based on D̂t (recall (2.16))

for k ∈ {5, 10, 15, 30, 60}, and significance levels 1%, 5%, and 10%. Finite-sample rejection rates

under the different settings are displayed in Table 1. Focusing on the left panel and the results

obtained under DGP I, it is evident that the rejection rates all closely align with their respective

nominal levels. As such, this supports the prediction from the asymptotic theory, as formalized

in Theorem 2, and suggests that the local Gaussian approximation works quite well under DGP
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I for a broad range of window sizes. The results for DGP II, reported in the right panel, reveals

a markedly different picture. With a narrow window size of k = 5, the rejection rates are again

all close to their nominal levels. However, as the window size k increases, the number of rejec-

tions steadily increase, underscoring the relevance of properly assessing the accuracy of the local

Gaussian approximations underlying the small-sample fixed-k framework.

Table 2 in turn presents the finite-sample rejection rates for different t-tests pertaining to the

spot betas. All of the tests are conducted at the 10% nominal significance level. The table is

divided into two panels corresponding to each of the two DGPs. Each panel contains results for

different estimation window sizes k, and the rejection rates obtained for five different versions of

the spot beta tests: the conventional large-k asymptotic-Gaussian method based on (2.9), the

uncorrected fixed-k method based on (2.12), and the fixed-k method “robustified” with 1%, 5%,

or 10% level diagnostic correction, as outlined in Algorithm 1.

Looking first at the results for DGP I, reported in the top panel, we observe that the con-

ventional asymptotic-Gaussian-based test exhibits significant over-rejections for all window sizes,

particularly when k is small. By comparison, the tests based on the fixed-k critical values all

demonstrate notably better size control. The rejection rates for the uncorrected test are generally

very close to the 10% nominal level, while the robust t-tests tend to be slightly undersized.

Turning to the bottom panel, and the results for the more challenging DGP II, the conventional

asymptotic-Gaussian-based test continues to display considerable size distortion. The fixed-k test

without diagnostic correction maintains reasonable size control for k = 5 and 10, but it starts

to exhibit nontrivial over-rejections as k increases beyond that. This aligns with the previous

observations from Table 1, and the finding that the accuracy of the local Gaussian approximation

deteriorates for larger values of k. Meanwhile, as seen from the last three columns of the table,

this size distortion may be effectively addressed by employing the simple “robustified” version of

the tests outlined in Algorithm 1. The 5% diagnostic correction appears to work especially well,

but a 10% correction also achieves very good, albeit slightly conservative, size control across all

values of k.

In sum, the simulation results demonstrate that the fixed-k method offers more reliable infer-

ence than the conventional large-k asymptotic-Gaussian-based method routinely employed in the

literature, especially when implemented over relatively narrow estimation windows. We turn next

to a pair of applications that naturally call for such empirical design.
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Table 2: Finite-Sample Rejection Rates for Spot Beta t-tests

Fixed-k with Diagnostic Correction

k Gaussian Uncorrected 1% 5% 10%

DGP I

5 0.215 0.100 0.098 0.091 0.083

10 0.154 0.100 0.099 0.091 0.082

15 0.134 0.100 0.098 0.090 0.082

30 0.118 0.101 0.099 0.091 0.082

60 0.122 0.113 0.111 0.102 0.092

DGP II

5 0.225 0.107 0.104 0.096 0.087

10 0.172 0.116 0.112 0.101 0.089

15 0.162 0.125 0.118 0.103 0.090

30 0.159 0.140 0.126 0.106 0.089

60 0.178 0.168 0.141 0.113 0.092

Note: The table reports the finite-sample rejection rates for spot beta t-tests under the

null hypothesis. All of the tests are conducted at the 10% nominal significance level. The

tests are based on the conventional asymptotic-Gaussian method (Gaussian), the fixed-k

method without diagnostic correction (Uncorrected), and the fixed-k method with 1%,

5%, or 10% level diagnostic correction, as described in Algorithm 1. The rejection rates

are calculated using one million Monte Carlo replications.
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5 Empirical Applications

To highlight the practical applicability and usefulness of the new inference procedures, we consider

two separate empirical applications. Section 5.1 examines the tracking performance of leveraged

ETFs as measured by their spot betas, while Section 5.2 showcases the use of the predictive spot

inference in the context of an intraday event study. We base both of the studies on high-frequency

data sampled at one-minute frequency, sourced directly from Tick Data. As discussed above,

following the extant literature, we deliberately rely on a “coarse” one-minute sampling frequency

to mitigate the impact of difficult-to-specify market microstructure noise. The dataset for the

ETF spans the period from January 2, 2018, to December 31, 2022, with stock market holidays

and half-trading days excluded following standard practice. To ensure robustness against price

jumps, we further apply a five-standard-deviation truncation rule, with the truncation threshold

calibrated using the bipower variation estimator of Barndorff-Nielsen and Shephard (2004b) along

with a correction for diurnal patterns in the volatility following Li et al. (2017).18

5.1 Are leveraged ETFs properly leveraged?

The ETF market has witnessed tremendous growth over the past two decades in both size and the

variety of individual ETFs tailored to unique investment goals. Among the most notable innova-

tions are leveraged ETFs, which have considerably expanded the range of investment strategies

available to investors. These financial instruments aim to magnify the returns of an underlying

asset using leverage, thereby offering the potential for greater short-term gains or more effective

hedging. Initially, this burgeoning industry concentrated on market indices and sectors, but in

recent years, it has extended to include many individual stocks as well. Many of these innova-

tive financial instruments also involve the active management and trading of various derivative

contracts.

It remains a fundamental question whether these new funds actually live up to their stated

objectives and achieve their intended leverage? To investigate this issue, we analyze the relationship

between three ETFs directly linked to the Nasdaq-100 stock market index. The Nasdaq-100

includes 100 of the largest companies listed on the Nasdaq Stock Exchange, and it serves as one of

18As shown in a previous working paper version, our main empirical findings remain largely unaffected with respect

to alternative ways of applying this theoretically motivated jump-removal procedure.
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the primary barometers for the tech sector. The index itself is not directly tradable, but the QQQ

index fund passively tracks it as closely as possible, and that fund has now also become one of the

world’s largest ETFs in terms of assets under management. The other two ETFs that we examine

are designed to replicate leveraged positions in the Nasdaq-100 index: the TQQQ fund aims to

generate three times the return on the index, while the inverse SQQQ fund seeks to produce three

times the return on a short position in the index. Both of these funds are now also extensively

used for investment and risk management purposes.19

However, it is important to note that both the TQQQ and SQQQ only aim to track their

specific multiples of the Nasdaq-100 index over a single day, and as such the funds are primarily

recommended to be used over short intraday time frames.20 Thus, rather than questioning whether

the two leveraged funds produce the desired multiples of the return on the QQQ fund over longer

multi-day investment horizons, the empirically more relevant question is whether the fund’s intra-

day tracking performance is in line with the stated objectives. Properly addressing this question

naturally calls for the use of the optimal spot inference procedures. Specifically, treating QQQ as

the regressor process X and TQQQ or SQQQ as the dependent process Y , we want to assess if

the intraday spot betas for the funds do indeed equal their respective target values of 3 and −3.

To do so, we begin by assessing the adequacy of the local Gaussian approximation using

the skewness-kurtosis D̂t diagnostic statistic in (2.16) for k ∈ {5, 10, 15, 30, 60}, corresponding to

estimation windows ranging from five minutes to one hour. Table 3 presents the proportion of

estimation windows for which local Gaussianity is rejected at the 1%, 5%, or 10% significance

level, for each of the three ETFs, over the full 2018–2022 sample period. For k = 5, the empirical

rejection rates are close to the nominal level, indicating that the local Gaussian approximation

appears adequate for such short windows. Meanwhile, as expected, the diagnostic test tends to

reject more often for larger values of k, with the local Gaussian approximation appearing quite

inadequate for k = 30 and 60. Correspondingly, we will focus our main empirical investigation

19For example, an investor with a long position in several technology stocks may buy the SQQQ ETF to help

neutralize her systematic risk exposure to the tech sector. But, if the SQQQ fund deviates from its stated objective

of returning −3 times the QQQ, that investor may find herself exposed to unintended systematic risks.
20Quoting from ProShares’ (the group that manages the funds) descriptions, they explicitly caution that: “due to

the compounding of daily returns, holding periods of greater than one day can result in returns that are significantly

different than the target return, and ProShares’ returns over periods other than one day will likely differ in amount

and possibly direction from the target return for the same period.”
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Table 3: Diagnostic Tests for Local Gaussianity of Nasdaq 100 ETFs

QQQ TQQQ SQQQ

k 1% 5% 10% 1% 5% 10% 1% 5% 10%

5 0.011 0.054 0.106 0.011 0.054 0.105 0.015 0.055 0.105

10 0.017 0.069 0.126 0.017 0.069 0.126 0.015 0.065 0.120

15 0.025 0.085 0.146 0.025 0.084 0.146 0.022 0.078 0.137

30 0.047 0.124 0.193 0.047 0.124 0.193 0.038 0.110 0.177

60 0.081 0.177 0.225 0.082 0.179 0.256 0.065 0.154 0.228

Note: The table presents the average rejection rates of the D̂t diagnostic test across all

estimation blocks over the 2018–2022 sample period, for different window sizes k. The

diagnostic test counts a rejection for local Gaussianity at the 1%, 5%, or 10% significance

level when D̂t statistic exceeds the 99%, 95%, or 90% quantile of D̃t, respectively.

and discussion below on k = 15, or 15-minute spot-estimation windows, with additional supportive

robustness checks for k = 5 and 10 provided in the Supplemental Appendix.

Turning to the evaluation of the intraday tracking performance of the two leveraged funds, we

begin by examining the frequency at which the null hypothesis that their spot betas equal their

target values of 3 and −3, respectively, are rejected. We conduct the t-test at a 10% significance

level, and summarize the results by calculating the average rejection rates across all within-day

15-minute estimation windows for each of the 60 months in our sample. To address potential

size distortions due to “finite-sample breakdowns” of local Gaussianity, we also employ the robust

t-tests outlined in Algorithm 1 in Section 2.3, with the diagnostic tests performed at 1%, 5%, and

10% significance levels.

Figure 2 displays the monthly average rejection rates for both the uncorrected t-test and

the robustified tests based on various degrees of diagnostic corrections. Since all of the tests

are conducted at the 10% nominal level, we would expect average rejection rates not to exceed

10% if the funds’ betas are indeed consistent with their target values. However, as the figure

shows, the empirical rejection rates surpass 10% for most of the months in the sample, and quite

dramatically so for certain months. Also, while the diagnostic correction reduces the rejection

rates as expected, it does not materially affect the main findings. It is noteworthy that, compared
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Figure 2: The figure presents average monthly rejection rates for the fixed-k t-tests for spot beta,

including the uncorrected test, and the three robustified tests with diagnostic correction at the

δ = 1%, 5%, and 10% levels. All of the tests are evaluated at the 10% significance level. The left

panel reports the results for the null hypothesis that the spot betas for the TQQQ with respect

to the QQQ equal 3. The right panel tests that the betas for the SQQQ with respect to the QQQ

equal −3. The averages are computed across all 15-minute estimation windows for each of the

individual months in the 2018–2022 sample.

to TQQQ, the inverse SQQQ was much more frequently “off target” during 2022, highlighting

the unique challenges involved in properly managing short-ETFs during certain time periods and

economic conditions.21

Meanwhile, the month of March 2020 clearly stands out as the month with the most rejections

for both funds. That month, of course, is also coincident with the initial outbreak of the COVID-19

pandemic in the U.S., and it witnessed unusually high levels of stock market volatility. In an effort

to curb some of that volatility, the U.S. stock market was subjected to four separate (and rare)

trading halts, or “circuit breakers,” on March 9, 12, 16, and 18, 2020. Thus, while the deteriorating

performance of the two leveraged funds around that time is not necessarily surprising, it is exactly

during such extreme market events that the funds may be the most useful for risk management

21During that time period, the Federal Reserve raised its target range for the federal funds rate from [0, 0.25%] to

[4.25%, 4.5%], arguably resulting in a bear market, especially for the tech sector.
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purposes.

In an effort to gain further insight into the funds’ performance during this tumultuous time,

Figure 3 plots the estimated spot betas and the associated 90% fixed-k CIs, as described in (2.13),

for all of the 15-minute estimation windows during the two weeks from March 9 to March 20,

2020. In addition, each of the different panels in the figure also reports the p-value for the joint,

or uniform, hypothesis that the spot beta process for the entire day is in line with its target value

based on the functional test described in Theorem 5.

Looking first at the top panel of Figure 3 and the results for the TQQQ fund, it is noteworthy

that on the four circuit-breaker days (i.e., March 9, 12, 16, and 18, as indicated by bold font in

the figure), the estimated spot betas are almost all significantly higher than the target value of

3. In other words, the fund was actually “over-leveraged” on those specific days. By contrast, for

the four days immediately following the circuit-breaker days, the spot betas for the TQQQ fund

are almost all significantly below the target value, indicating that the fund was “under-leveraged”

on those days. The p-values for the functional tests pertaining to the betas over the entire day

further corroborate the significance of these general conclusions.

The results for the SQQQ fund, displayed in the bottom panel, evidence similar and, if anything,

even more pronounced systematic deviations. However, unlike the findings of excessively high betas

for the TQQQ fund on the four circuit-breaker days, the estimated spot betas for the SQQQ fund

are all numerically too low compared to the target value of−3. Put differently, the inverse leveraged

fund was “under-leveraged” on those days and did not provide sufficient negative exposure to

the Nasdaq-100 index. The functional tests again reinforce these same qualitative findings. As

noted above, such systematically “wrong” intraday leverage levels can be quite detrimental from

a practical risk management perspective. Yet, it would be impossible to accurately tell whether

these deviations are actually statistically significant, or merely due to chance, without the new

spot inference procedures developed here.

5.2 An intraday event study: Microsoft’s AI moment

Our second empirical application pertains to the way in which financial markets respond to new

information. Specifically, we seek to characterize the abnormal return on Microsoft (MSFT) stock

around the time of Microsoft’s widely publicized “The Future of Work With AI” event on March

16, 2023.
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Figure 3: The figure presents the spot betas for the TQQQ (top) and SQQQ (bottom) funds

with respect to QQQ estimated over 15-minute windows, together with the corresponding 90%

confidence intervals for the two weeks from March 9 to March 20, 2020. The p-values reported

in each of the panels refer to the uniform, or functional, hypotheses that the spot beta processes

for the different days are in line with their target values. The four days on which the market

circuit-breaker went into effect are highlighted in bold font.
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The event commenced at 11:00 am, with the introduction of Microsoft’s new AI tool named

Copilot designed to integrate large language models into its suite of productivity software, and it

lasted until approximately 11:36 am. Meanwhile, to prevent any “pre-event drift” from confounding

the results, we impose a 15-minute “buffer” between the official start time of the event and the

estimation window for the spot beta used for calculating the abnormal returns.22 Relatedly, even

though the event commenced at 11:00 am, the new information was only revealed gradually, with

the actual demonstration of the new AI tool, which arguably represented the most novel aspect of

the event, starting more than 10 minutes into the presentation.

Accordingly, following the discussion in Section 2.4, we estimate the CARs for the log return

on MSFT (Y ) with respect to the market portfolio (X), as proxied by the SPY ETF for the S&P

500 index, over h-minute horizons after 10:45 am as:

ĈARh = Y10:45+h − Y10:45 − (X10:45+h −X10:45) · β̂[10:30,10:45],

with h spanning up until Noon.23 To assess the statistical significance of the resulting CARs, we

compute the associated 90% level predictive CIs, or PCIh’s as defined in (2.19). As previously

discussed, these are naturally interpreted as the probable counterfactuals in scenarios without any

significant news.

Figure 4 presents the results, along with various annotated news segments, as per Microsoft’s

official announcement. The predictive CIs obviously tend to widen as the horizon h increases,

commensurate with increased uncertainty for predicting the returns over longer horizons. Interest-

ingly, there appears to be a hint of a moderate positive drift in the CARs during the 10:45-11:00

pre-event window, although the estimates remain within the bounds of the predictive CI. The

estimated CARs also stay relatively “flat” and within the CI bounds for the first 15 minutes fol-

lowing the official start of the event, further corroborating the lack of any information leakage.24

22The existence of pre-event drifts, possibly associated with the leakage of information, has been well-documented

in the event study literature; see, e.g., the early analysis in Rendelman et al. (1982) pertaining to earnings an-

nouncements. Perhaps more surprisingly, Lucca and Moench (2015) has also recently found evidence for a FOMC

pre-announcement drift.
23The Supplemental Appendix provides additional robustness checks for k = 5 and 10, yielding very similar, albeit

slightly noisier, results compared to the ones for k = 15 discussed below. Very similar results are also obtained using

the more tech-heavy QQQ ETF in place of the SPY as the regressor X.
24During the first 15 minutes of the event, presenters primarily reiterated the company’s general vision regarding

the adoption of AI technologies. Given that similar information was already known since the debut of ChatGPT-4
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Figure 4: The figure shows the minute-by-minute cumulative abnormal returns on Microsoft stock

from 10:45 am to Noon on March 16, 2023 (dots), together with 90% level predictive confidence

intervals (shaded area). The spot regression used in the calculation of the abnormal returns is

estimated with returns over the 15-minute window spanning 10:30–10:45 am. The timelines for

specific announcements during “The Future of Work With AI” event are explicitly highlighted.

Meanwhile, at approximately 11:15 am there is a marked change in the CARs, and when judged

by the predictive CIs, the CARs observed at the conclusion of the event at around 11:36 am are

all highly significant. This noticeable change in the CARs coincides with the presenter stating

that “the real power of Copilot is in how it unleashes creativity at work,” proceeding to showcase

a series of practical business applications. The scope and potential impact of these applications

apparently went far beyond what the market expected, resulting in a highly significant abnormal

return of close to 2% over just 15 minutes, corresponding to a roughly $45 billion increase in the

market value for Microsoft stock.

Putting these findings further into perspective, the Microsoft event occurred only two days after

a few days earlier, it is not surprising that the corresponding CAR is essentially “flat.”
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OpenAI’s launch of ChatGPT-4 on March 14, 2023. That same time period also coincided with

other generative AI technologies garnering substantial attention. Such clustering of many different

closely related news events would pose a serious challenge to the application of conventional low-

frequency event study methodology, which attempts to achieve asymptotic Gaussianity and assess

statistical significance by pooling across time and news events. Doing so in the present context

would obviously confound different pre- and post-event windows. Instead, by relying on local

Gaussianity over a short event window, the new high-frequency-based fixed-k approach developed

here allows for meaningful inference concerning singular news events without the need for any

pooling or aggregation across days or events.

6 Concluding Remarks

The conventional approach for nonparametric inference on spot regressions relies on asymptotic-

Gaussian-based approximations. The quality of such approximations can be poor when the estima-

tors are constructed from relatively few observations over narrow estimation windows, as often done

in practice to accommodate potentially rapid fluctuations in the true betas and the other latent

state processes. The new optimal estimation theory and fixed-k inference framework developed

here explicitly recognizes this disconnect between conventional asymptotic-Gaussian-based infer-

ence procedures and the small sample sizes typically utilized in practice. Specifically, by exploiting

the local Gaussianity of the underlying workhorse continuous-time model, the fixed-k framework ef-

fectively converts the original nonparametric spot regression problem into a finite-sample Gaussian

linear regression problem. This transformation in turn allows for the use of classical finite-sample

inference techniques and decision-theoretic arguments to establish optimality for both estimation

and testing. Importantly, it also allows for much sharper inference in empirically realistic settings.

Moving forward, the fixed-k approach offers a new avenue for possibly incorporating additional

insights from classical statistics into the high-frequency data setting. In particular, since the limit

model is fully parametric, a Bayesian approach could be adopted. Such an approach may be

particularly beneficial in the context of spot estimation, as it inherently presents a data-scarce

environment making any prior information especially valuable. At a broader level, the strategy

of obtaining an approximate parametric model through localization, and the subsequent use of

finite-sample analysis and inference, is not exclusive to the continuous-time high-frequency data
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setting either. For example, if the observed data distribution is mixture-Gaussian, and the mixing

variable remains nearly constant within specific subsamples, one may similarly localize the problem,

permitting the use of Gaussian-based optimal statistical decision theory from more conventional

settings.25 We leave further explorations of these ideas for future research.
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Äıt-Sahalia, Y., J. Fan, and D. Xiu (2010): “High-Frequency Covariance Estimates With Noisy and

Asynchronous Financial Data,” Journal of the American Statistical Association, 108, 1504–1517.
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