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Summary This paper develops the asymptotic theory of the least squares estimator
of the autoregressive (AR) coefficient in an AR(1) regression with intercept when data
is generated from a polynomial trend model in different forms. It is shown that the
commonly used right-tailed unit root tests tend to favor the explosive alternative. A
new procedure, which implements the right-tailed unit root tests in an AR(2) regression,
is proposed. It is shown that when the data generating process has a polynomial trend,
the test statistics based on the new procedure cannot find evidence of explosiveness.
Whereas, when the data generating process is mildly explosive, the new procedure finds
evidence of explosiveness. Hence, it enables robust bubble testing under polynomial
trends. Empirical application of the proposed procedure using data from the U.S. real
estate market reveals some interesting findings. In particular, all the negative bubble
episodes flagged by the traditional method are no longer regarded as bubbles by the
new procedure.

Keywords: Autoregressive regressions, right-tailed unit root test, mildly explosive
processes, polynomial trends, coefficient-based statistic, t statistic.

1. INTRODUCTION

Often a financial bubble precedes immediately a financial crisis. It is widely acknowledged
that a financial crisis can have catastrophic effects on financial markets and severe neg-
ative impacts on real economy. Not surprisingly, many econometric methods have been
developed to test for the presence of bubbles in financial markets and to timestamp the
origination date and the termination date of each bubble in real-time. Well-known meth-
ods include the recursive right-tailed unit root testing procedures proposed in Phillips,
Wu and Yu (2011, PWY hereafter), Phillips and Yu (2009, 2011), and Phillips, Shi,
and Yu (2015a, 2015b, PSY hereafter). Harvey et al. (2016), and Harvey, Leybourne,
and Zu (2019, 2020) extended the procedures to deal with the case with heteroscedas-
ticity. Excellent surveys and comparisons of alternative methods in bubble testing and
time-stamping can be found in Homm and Breitung (2012) and Phillips and Shi (2021).
The testing and date-stamping methods for bubbles rely on a technique of fitting to

time series data (i.e., prices adjusted by fundamentals, denoted by pt) the following AR(1)
model where the autoregressive root (denoted by β) takes a value greater than unity (i.e.
an explosive model) during a bubble period but take a unit value (i.e. a unit root model)
during a normal period:

pt = α+ βpt−1 + εt. (1.1)

1We would like to thank Dennis Kristensen (co-editor) and two referees for helpful comments that lead
to an improved version of the paper.
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To test H0 : β = 1 against H1 : β > 1, both the Dickey-Fuller (DF) t test and the DF
coefficient-based test (Dickey and Fuller, 1979), based on the least squares (LS) estimate
of β, have been used.1 When these tests are implemented recursively, they can detect
when a time series switches from a unit root model to an explosive model followed by a
crash, and vice versa, as shown in Phillips and Yu (2009) and PWY (2011) in the context
of single bubble and PSY (2015a, 2015b) in the context of multiple bubbles.
The trajectory generated by a unit root model is different from that generated by an

explosive AR model. While the sample path of a unit root process may display a linear-
trend-type behavior, the sample path of an explosive AR process evolves as an explosive
trend and hence exhibits a nonlinear curvature. That is the reason why right-tailed unit
root tests can distinguish a unit root process from the explosive AR process.
In a recent study, Phillips and Shi (2019) show how the DF t test can spuriously lead to

the identification of a bubble when the data is generated from a unit root model followed
by a linear trend model. Intuitively, the sample path from the structural break model
has a curvature similar to that from an explosive AR model. Consequently, the DF t test
has difficulties in distinguishing between the two models.
The trending behavior in stock prices, at least in the short to medium run, is not new

to the literature as there is a large volume of studies on momentum. See, for example,
Hong and Stein (1999) and Daniel et al. (1998) for alternative theories that can generate
momentum, and Jegadeesh and Titman (1993) for empirical evidence for the profitability
of momentum strategies. However, momentum may correspond to a nonlinear trend in
prices, as shown in Hong and Stein (1999). Moreover, existence of momentum does not
necessarily require a structural break.
In this paper, we provide an alternative explanation for the false identification of

bubble episodes, even in the absence of structural breaks. We show that if the data
generating process (DGP) has a polynomial trend, the right-tailed unit root tests (DF
t and coefficient-based tests) tend to reject the unit root null hypothesis in favor of the
explosive alternative. The intuition why the right-tailed unit root tests have difficulties
distinguishing between the polynomial trend model and the explosive AR model is that
the sample path from these two models have a similar nonlinear curvature.
We then propose a robust testing approach that can successfully distinguish the explo-

sive AR model from the polynomial trend model. The proposal is to apply the right-tailed
unit root testing procedure based on the following AR(2) model

pt = α+ βpt−1 + ψ∆pt−1 + εt. (1.2)

It is shown that when the DGP is a polynomial trend model or a model that switches
from a unit root to a polynomial trend, the estimated β in (1.2) converges to unity at
a rate faster than Op(1/n), as the sample size n goes to infinity. As a result, both the
DF t and DF coefficient-based tests tend not to reject the unit root null hypothesis.
Moreover, when the data is generated from a mildly explosive AR process, both test
statistics diverge to positive infinity as n increases. Thus, the two unit root tests tend to
reject the unit root null hypothesis in favor of the explosive alternative.
In the empirical study, we apply the robust testing procedure based on (1.2) to the

price-rent ratio of the U.S. housing market. Two new empirical results emerge. First,
the robust procedure detects only two bubble episodes. Compared to the testing results

1Some recent studies have proposed methods based on the weighted LS estimate to deal with het-
eroscedasticity; see, for example, Harvey et al. (2019).
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based on Model (1.1), the termination dates of both bubbles estimated by our robust
method are much earlier and match better with the turning points in the data. Second,
the robust testing procedure no longer flags the two collapsing periods as bubble episodes.
This result suggests that the data in the two collapsing periods could be better fitted by
the polynomial trend model.
The rest of the paper is organized as follows. Section 2 proves that the existing right-

tailed unit root tests based on the AR(1) regression cannot distinguish the explosive AR
model from the polynomial trend model. Section 3 advocates the usage of the AR(2)
regression given by (1.2) and proves that the new testing approach can successfully
distinguish the mildly explosive AR model from the polynomial trend model. Section 4
presents simulation evidence to support the theoretical results. The proposed procedure
is used to analyze a real time series in Section 5. Section 6 concludes. The proofs of the
main theoretical results are given in the Appendix. The Online Supplement contains the
proof of Theorem 3.1.3, the extension of some theories to the general AR(k) model with
k > 2, and additional simulation results.

2. RIGHT-TAILED UNIT ROOT TESTS UNDER POLYNOMIAL TRENDS

In this section, we study the asymptotic properties of the existing right-tailed unit root
tests based on the AR(1) regression (1.1) when the data is actually generated from the
following structural break model:

pt =

{
pt−1 + εt if t ∈ N ≡ [1, nc]

pnc + δ (t− nc)
m
+ εt if t ∈ T ≡ (nc, n]

, (2.3)

where δ ̸= 0, m ≥ 2, {εt} an independent and identically distributed (iid) sequence with
mean zero and finite variance (denoted σ2), and E

(
ε4t
)
< ∞.2 The first regime (called

regime N) is the normal period where pt evolves as a pure random walk. The second
regime (called regime T ) is the abnormal period where pt evolves as a polynomial trend,
as we assume m ≥ 2. Let β̃r2

r1 denote the LS estimate of β in the AR(1) regression (1.1)
based on the sample from n1 to n2 where ni = ⌊nri⌋ represents the integer part of nri

with ri ∈ [0, 1] for i = 1, 2, se
(
β̃r2
r1

)
be the standard error of β̃r2

r1 , and t
(
β̃r2
r1

)
be the

corresponding t statistic.
The empirical usefulness of the right-tailed unit root tests has been made clear in PSY

(2015a) for testing for the presence of bubbles and date-stamping each bubble when there
are multiple bubbles. The PSY procedure relies on repeated calculations of the t statistic
in autoregression in a recursive manner where the ending point r2 (fraction) of each
sample takes a value between r0 to 1, and the starting point r1 (fraction) of the sample
takes a value between 0 to r2 − r0 with r0 (fraction) being the smallest sample window.
Thus, ⌊nr0⌋ is the minimum window size in the calculations. PSY (2015a) proposed the
GSADF t statistic to be the largest t statistic in the double recursion over all possible
combinations of r1 and r2, namely

GSADFt = sup
r2∈[r0,1],r1∈[0,r2−r0]

{
t
(
β̃r2
r1

)}
. (2.4)

2As shown in an earlier version of the present paper (Wang and Yu, 2017), many results reported in
this paper continue to hold when εt is replaced with ut where ut = C(L)εt =

∑∞
j=0 cjεt−j with c0 = 1

and
∑∞

j=0 j|cj | < ∞.
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The asymptotic distribution of GSADFt was also given in PSY (2015a) when the null
hypothesis is a unit root process, from which the asymptotic right-tailed critical values
can be obtained.
After a bubble is detected, one can timestamp it. For example, the origination date

and the termination date of the first bubble can be estimated by

r̂e = inf
r2∈[r0,1]

{r2 : BSADFt (r2) > cv} , (2.5)

r̂f = inf
r2∈[r̂e,1]

{r2 : BSADFt (r2) < cv} , (2.6)

where

BSADFt (r2) = sup
r1∈[0,r2−r0]

{
t
(
β̃r2
r1

)}
, (2.7)

and cv is the critical value of the sup t statistic. PWY (2011) developed the asymptotic

distribution of the sup t statistic as supr∈[r0,1]

∫ r

0
W̃rdW/

(∫ r

0
W̃ 2

r

)1/2
, where W (·) de-

notes a standard Brownian motion and W̃r (s) = W (s)− 1
r

∫ r

0
W (t) dt is the demeaned

Brownian motion. The 90%, 95%, 99% asymptotic and finite-sample critical values of the
sup t statistic were reported in Table 1 of PSY.
The t statistics in (2.4) and (2.7) can be replaced with the coefficient-based statistics,

(n2 − n1)
(
β̃r2
r1 − 1

)
. The corresponding double supremum and backward supremum of

the coefficient-based statistics are denoted as GSADFc and BSADFc (r2), respectively.
Phillips and Yu (2011) obtained the asymptotic distribution of the sup coefficient-based

statistic as supr∈[r0,1] r
∫ r

0
W̃rdW/

∫ r

0
W̃ 2

r .
The main results of this section are in the following theorem when the AR(1) model

(1.1) is estimated by LS.3

Theorem 2.1. Assume {pt} is generated from Model (2.3). Let β̃r2
r1 be the LS estimate

of β in the AR(1) regression (1.1) based on the sample from n1 to n2 where ni = ⌊nri⌋
with ri ∈ 0, 1for i = 1, 2.

1 Let n1 = nc and nc < n2 ≤ n, such that {pt}n2
t=n1

comes entirely from a polynomial
trend model. Define ns := n2 − n1. When n→ ∞, it has

ns

(
β̃r2
rc − 1

)
p→

(2m+ 1)
(
m2 − 1

)
2m2

and n−1/2
s t

(
β̃r2
rc

)
p→
√
4m2 − 1.

2 As n→ ∞,

GSADFt
p→ +∞.

3 For any r2 such that r0 + rc < r2 ≤ 1, as n→ ∞,

BSADFt (r2)
p→ +∞.

Remark 2.1. Theorem 2.1.1 shows that when the data comes entirely from a polynomial
trend model, the unit root tests based on the AR(1) regression (1.1) tend to reject the unit

3All the results in this theorem continue to hold when the DGP in the abnormal period is replaced
with the alternative processes, such as pt = pt−1 + δ (t− nc)

m−1 + εt with δ ̸= 0 and m ≥ 2, and
pt = θ + δ1 (t− nc) + · · ·+ δm (t− nc)

m + ϵt with δm ̸= 0.
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root null hypothesis in favor of explosiveness. To clearly explain this argument, we take
the case of m = 2 as an example, in which a quadratic trend model generates the data {pt}
in the abnormal period. When m = 2, Theorem 2.1.1 shows that (n2 − n1)

(
β̃r2
r1 − 1

)
p→

15/8 and t
(
β̃r2
r1

)
p→ +∞ as n increases. Whereas for the AR(1) model (1.1), the 99%

asymptotic critical value of the DF coefficient-based test and the DF t test is 1.04 and
0.6 (see Tables B.5-B.6 in Hamilton (1994)). Therefore, both tests based on the AR(1)
regression would reject the unit root null hypothesis in favor of explosiveness. In other
words, the unit root tests based on the AR(1) regression could not distinguish the explosive
AR model from the polynomial trend model. The reason behind this result is that the
sample path of a quadratic trend model has a curvature similar to that generated by an
explosive AR model. This result complements Phillips and Shi (2019), where a structural
break is needed for the standard unit root test to identify explosiveness falsely.

Remark 2.2. Theorem 2.1.2-2.1.3 follows immediately from Theorem 2.1.1 as the supre-
mum of the t statistics in subsamples cannot be smaller than the t statistic when the data
comes entirely from a polynomial trend model. According to Theorem 2.1.2, the GSADFt
test spuriously leads to the identification of explosiveness when the data is generated from
model (2.3). According to Theorem 2.1.3, the BSADFt test provides an estimate of the
origination date of the spurious bubble. Similar spurious results can also be found for the
GSADFc and BSADFc tests.

3. NEW RIGHT-TAILED UNIT ROOT TESTS

To obtain tests that are robust to polynomial trends, a simple solution is to construct
right-tailed unit root tests based on the AR(2) model given by (1.2).4 Let β̌r2

r1 denote the
LS estimate of β in the AR(2) regression (1.2) based on the sample from ⌊nr1⌋ to ⌊nr2⌋,
se
(
β̌r2
r1

)
be the standard error of β̌r2

r1 , and t
(
β̌r2
r1

)
be the corresponding t statistic.

If {pt} is generated from pt = pt−1 + εt in the whole sample period, it is easy to get
that, for any r1, r2 ∈ [0, 1] as n→ ∞,

ns
(
β̌r2
r1 − 1

)
⇒
∫ r2
r1
W̃r1,r2 (s) dW (s)∫ r2

r1

[
W̃r1,r2 (s)

]2
ds

and t
(
β̌r2
r1

)
⇒

∫ r2
r1
W̃r1,r2 (s) dW (s){∫ r2

r1

[
W̃r1,r2 (s)

]2
ds

}1/2
(3.8)

where

W̃r1,r2 (s) :=W (s)− 1

r2 − r1

∫ r2

r1

W (t) dt

W (·) is a standard Brownian motion and ⇒ denotes weak convergence. The asymptotic
distributions given in (3.8) are the same as those developed in PSY(2015a,b) for the
test statistics based on AR(1) regression. Hence, under the unit-root null hypothesis, the
supremum test statistics GSADF and BSADF still applies to the AR(2) regression with
the same asymptotic critical values suggested in PSY(2015a,b).
When the data is generated from the model of (2.3), Theorem 3.1 below shows that

the probability of GSADFc or GSADFt rejecting the null hypothesis of unit root is very
low. Hence, it is difficult for these two tests to lead to a spurious bubble detection. Also

4We can extend the results for Model (1.2) to the AR(k) model with k > 2, as shown in the Online
Supplement.
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proved in Theorem 3.1 is that, when the data is generated from a process that switches
from a unit root model to a mildly explosive AR model as

pt =

{
pt−1 + εt if t ∈ N ≡ [1, nc](
1 + γ

nθ
e

)
pt−1 + εt, with γ > 0, θ ∈ (0, 1), if t ∈ T ≡ (nc, n]

, (3.9)

where ne = n−nc, the GSADFc or GSADFt tests can detect explosiveness and identify
the bubble period successfully. Hence, the GSADFc or GSADFt tests based on the
AR(2) regression are robust to polynomial trends.

Theorem 3.1. Let β̌r2
r1 be the LS estimate of β in the AR(2) regression (1.2) based on the

sample from n1 = ⌊nr1⌋ to n2 = ⌊nr2⌋, t
(
β̌r2
r1

)
be the corresponding t statistic, ri ∈ [0, 1].

1 If {pt} is generated from Model (2.3), for any n1, n2 ∈ T , as n→ ∞, it has

(n2 − n1)
(
β̌r2
r1 − 1

) p→ 0 and t
(
β̌r2
r1

) p→
{

0, when m = 2
−∞, when m > 2

.

2 If {pt} is generated from Model (2.3), for any n1 ∈ N and n2 ∈ T , as n → ∞, it
has

(n2 − n1)
(
β̌r2
r1 − 1

) p→ 0 and tr2r1
p→ −∞.

3 If {pt} is generated from Model (3.9), then as n→ ∞,

GSADFc
p→ +∞, GSADFt

p→ +∞,

Moreover, for any r2 > rc + r0, as n→ ∞,

BSADFc (r2)
p→ +∞, BSADFt (r2)

p→ +∞.

Remark 3.1. If pt = pnc + δ (t− nc)
m
+ εt with m = 2, the DGP can also be expressed

as pt = 2δ + pt−1 + ∆pt−1 + ∆2εt, where ∆ and ∆2 are operators for the first- and
second-order difference, respectively. This alternative representation is covered by the
suggested AR(2) regression (1.2) and explains why both DF statistics converge to zero.
When m > 2, the DGP of pt is not covered by the suggested regression model (1.2)
anymore. For example, when m = 3, it has pt = −6δ+pt−1+∆pt−1+6δ (t− nc)+∆2εt,
which is not covered by the regression model (1.2). This difference is the reason why the
asymptotics of the test statistics obtained in Theorem 3.1.1 when m = 2 are different
from that when m > 2.

Remark 3.2. As discussed earlier and well-known in the literature, when the data comes
entirely from a unit root model, both the DF coefficient-based statistic and t statistic
converge to well-defined distributions whose 99% critical values are positive. According to
Theorem 3.1.1-3.1.2, if GSADFc or GSADFt rejects the null hypothesis, the supremum
of the coefficient-based statistics or the supremum of the t statistics cannot correspond
to a subsample whose ending point is in regime T . In other words, the probability that
GSADFc or GSADFt rejects the null hypothesis is 1%. This is in sharp contrast with the
probability of false detecting explosiveness approaching one in the case when GSADFc
and GSADFt are obtained from the AR(1) regression of (1.1).

Remark 3.3. According to Theorem 3.1.3, if the DGP is Model (3.9) that switches from
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Table 1. 99% CVs of DF coefficient-based, DF t, GSADFc, and GSADFt statistics based
on Model (1.1) or Model (1.2).
n 20 50 40 100
r0 - - - - 0.3 0.2
Regression AR(1) AR(2) AR(1) AR(2) AR(1) AR(2) AR(1) AR(2)
DF c-stat 1.3727 2.2381 1.2320 1.4401 - - - -
DF t-stat 0.8004 0.9153 0.7083 0.7641 - - - -
GSADFc - - - - 5.8972 10.154 5.5287 8.5815
GSADFt - - - - 2.8485 2.9212 2.5077 2.7497

Note: Calculations are based on 10,000 replications for the DF coefficient-based and t tests

and 2,000 for the GSADFc and GSADFt tests. For the DF coefficient-based and DF t

statistics, we set n = 20, 50. For the GSADFc and GSADFt statistics, we set n = 40, r0 = 0.3

and n = 100, r0 = 0.2.

a unit root model to a mildly explosive root AR model at the point nc, the supremum tests
GSADF and BSADF can successfully detect the explosiveness and consistently estimate
the bubble origination date. Therefore, Theorem 3.1 proves that the recursive bubble tests
based on the AR(2) regression is robust to polynomial trends.

4. SIMULATION STUDIES

We first obtain 99% finite sample critical values (CVs) of DF coefficient-based, DF t,
GSADFc, and GSADFt test statistics obtained from AR(1) and AR(2) via simulations.
In particular, data are simulated from a random walk model and then fitted to either
Model (1.1) or Model (1.2) to calculate the DF coefficient-based, DF t, GSADFc, and
GSADFt test statistics. The number of replications is set to 10,000 for the DF coefficient-
based and DF t statistics. The number of replications is set to 2,000 for the GSADFc
and GSADFt statistics. Table 1 reports the 99% CVs of the four statistics. For the DF
coefficient-based and DF t statistics, we set n = 20, 50. For the GSADFc and GSADFt
statistics, we set n = 40, r0 = 0.3 and n = 100, r0 = 0.2. Comparing results in Table 1
with those reported in Table 1 of PSY (2015a), the CVs for the GSADFt statistic are
similar to each other. The CVs for the GSADFc statistic are new to the literature.

4.1. Quadratic trend model

We then simulate data from Model (2.3) withm = 2, δ = 10 or 20, rc = 0.5, εt
iid∼ N(0, 1),

that is, the first half of the sample comes from the random walk model and the second
half from a quadratic trend model. We consider two sample sizes, n = 40 or 100. Hence,
either 20 or 50 observations are obtained from a quadratic trend model, which are used to
examine the finite sample property of the DF coefficient-based and DF t tests. The entire
40 or 100 observations are used to examine the finite sample property of the GSADFc
and GSADFt tests.
Tables 2-3 report the simulation results based on 1,000 replications when Model (1.1)

or Model (1.2) is fitted to the simulated data, respectively. Each table reports the average
value (across all 1,000 replications) of estimated β, the average value of DF coefficient-
based statistic, the percentage of replications where the unit root null hypothesis is
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Table 2. Statistical results when Model (1.1) is fitted to the data simulated from Model
(2.3) with m = 2 and rc = 0.5.

δ 10 20 10 20
Effective sample size 20 20 50 50
Mean of estimated β 1.0944 1.0944 1.0376 1.0376
Mean of c-stat 1.7933 1.7933 1.8422 1.8422
% rejection of H0 by c-stat 1.0000 1.0000 1.0000 1.0000
Mean of t-stat 17.8470 17.8653 27.6803 27.6853
% rejection of H0 by t-stat 1.0000 1.0000 1.0000 1.0000
Effective sample size 40 40 100 100
Mean of GSADFc 39.9456 53.1392 59.6868 88.9255
% rejection of H0 by GSADFc 1.0000 1.0000 1.0000 1.0000
Mean of GSADFt 30.2003 30.5064 67.8973 68.5116
% rejection of H0 by GSADFt 1.0000 1.0000 1.0000 1.0000

Note: Calculations are based on 1,000 replications when Model (1.1) is fitted to the simulated

sample path. For the DF coefficient-based and DF t statistics, the simulated sample is from

the polynomial trend model with n = 20, 50. For the GSADFc and GSADFt statistics, the

simulated sample is from the model that switches from the random walk to the polynomial

trend with n = 40, r0 = 0.3 and n = 100, r0 = 0.2.

rejected by the DF coefficient-based statistic, the average value of DF t statistic, the
percentage of replications where the unit root null hypothesis is rejected by the DF t
statistic. Here, only the second half of the sample is used and the structural break is irrel-
evant. Moreover, each table also reports the average value of GSADFc, the percentage
of replications where the unit root null hypothesis is rejected by the GSADFc statistic,
the average value of GSADFt, the percentage of replications where the unit root null hy-
pothesis is rejected by the GSADFc statistic. Here the full sample that covers the break
is used. In all cases, the 99% CVs from Table 1 are used to calculate the percentage of
the rejection of the unit root null hypothesis.
Table 2 reports the simulation results when Model (1.1) is fitted to the simulated data.

Some conclusions can be made from Table 2. First, the average value of β̃ is greater
than 1 in all four cases, although it gets closer to 1 as n increases. Second, consistent
with the asymptotic theory given in Theorem 2.1.1, the DF coefficient-based statistics
take values around 15/8 ≈ 1.8750 and are always larger than the respective 99% finite
sample critical values. Hence, the DF coefficient-based test always spuriously suggests
explosiveness in the unit root test. Third, as suggested by the asymptotic theory, the DF
t statistics take values around

√
15n and are always larger than the respective 99% finite

sample critical values. Hence, just as the DF coefficient-based test, the DF t test always
spuriously suggests explosiveness in the unit root test. Fourth, both the GSADFc and
the GSADFt statistics are always larger than the respective 99% finite sample critical
values. They become larger when the sample size increases. Hence, both tests always
spuriously suggests explosiveness, as predicted by Theorem 2.1.2.
The findings from Table 2 have important empirical implications as the implementation

of the right-tailed unit root testing in the literature has been often based on Model (1.1).
When Model (1.1) is fitted, all four tests cannot distinguish between the quadratic trend
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Table 3. Statistical results when Model (1.2) is fitted to the data simulated from Model
(2.3) with m = 2 and rc = 0.5.

δ 10 20 10 20
Effective sample size 20 20 50 50
Mean of estimated β 1.0005 1.0001 1.0000 1.0000
Mean of c-stat 0.0093 0.0024 0.0018 0.0002
% rejection of H0 by c-stat 0.0000 0.0000 0.0000 0.0000
Mean of t-stat 0.1963 0.1012 0.1008 0.0417
% rejection of H0 by t-stat 0.0400 0.0240 0.0080 0.0060
Effective sample size 40 40 100 100
Mean of GSADFc 17.3568 23.1654 17.2030 22.9204
% rejection of H0 by GSADFc 0.6050 0.6090 0.6600 0.6930
Mean of GSADFt 1.9319 1.7130 1.9910 1.8293
% rejection of H0 by GSADFt 0.1090 0.0800 0.1440 0.1278

Note: Calculations are based on 1,000 replications when Model (1.2) is fitted to the simulated

sample path. For the DF coefficient-based and DF t statistics, the simulated sample is from

the polynomial trend model with n = 20, 50. For the GSADFc and GSADFt statistics, the

simulated sample is from the model that switches from the random walk to the polynomial

trend with n = 40, r0 = 0.3 and n = 100, r0 = 0.2.

model and the explosive AR model. They always spuriously suggest explosiveness when
data come from either a quadratic trend model or a model that switches from unit root
to quadratic trend.
Table 3 reports the simulation results when Model (1.2) is fitted to the simulated

data. Several conclusions are made from Table 3. First, β̌ converges to 1 very quickly so
that the DF coefficient-based statistics take values very close to 0, as suggested by the
asymptotic theory given in Theorem 3.1.1. For all replications, they are smaller than the
99% finite sample critical values. Hence, the right-tailed DF coefficient-based test from
the AR regression model (1.2) does not reject the null hypothesis of unit root. Second,
the DF t statistic goes to zero when n increases, as suggested by the asymptotic theory
given in Theorem 3.1.1. For almost all replications, the average value of the t statistic
is smaller than the 99% critical value, indicating that the DF t test has a great chance
not to reject the unit root hypothesis. Hence, we can conclude that both DF tests can
distinguish the explosive AR model and the quadratic trend model if they are calculated
from Model (1.2) although the DF coefficient-based test is slightly more powerful. Third,
the GSADFc statistic from Model (1.2) takes values much smaller than that from Model
(1.1). As a result, for a significant proportion of replications (ranging between 30% to
40%), we cannot reject the unit root null hypothesis. Fourth, just like the GSADFc
statistic, the GSADFt statistic from Model (1.2) also takes values much smaller than
that from Model (1.1). For a significant proportion of replications (ranging between 85%
to 92%), we cannot reject the unit root null hypothesis. Hence, we can conclude that
both the GSADFc and GSADFt tests have some power in distinguishing the explosive
AR model and the quadratic trend model when they are calculated from Model (1.2).
Moreover, the GSADFt test is more powerful than the GSADFc test.
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Table 4. Proportion of replications where the null hypothesis of unit root is rejected in
favor of explosiveness for the DF coefficient-based and the DF t tests based on Model
(1.2)

quadratic trend explosive (β = 1.03) explosive (β = 1.05)
n c-stat t-stat c-stat t-stat c-stat t-stat
50 0 0.0071 0.2933 0.6897 0.9875 0.9950
100 0 0.0020 0.9873 0.9873 1.000 1.000
250 0 0 1.000 1.000 1.000 1.000

Note: Calculations are based on 10,000 replications when Model (1.2) is fitted to the simulated

sample from either a quadratic trend model or an explosive AR model.

4.2. Explosive AR model

We now carry out a simulation study based on 10,000 replications for Model (1.2) when

the true DGP is pt = βyt−1 + εt with y0 = 10 and εt
iid∼ N(0, 1). To find the power

of the DF coefficient-based and DF t tests, we first find the 99% critical values for

n = 50, 100, 500 when the true DGP is pt = pt−1 + ut with y0 = 10 and εt
iid∼ N(0, 1).5

These critical values are used to test the null hypothesis of unit root against the explosive
alternative in the AR regression model (1.2). When the test statistics take values larger
than the corresponding critical values, the evidence of explosiveness is found.
Table 4 reports the proportions of replications, out of 10,000 replications, where the

DF coefficient-based test and the DF t test reject the unit root null hypothesis in favor
of explosiveness, when the true DGP is explosive with β = 1.03 or β = 1.05. These two
values of β for the explosive process are empirically reasonable. For the purpose compar-
ison, we also report the proportions of replications when the true DGP is a quadratic
trend model (i.e. no structural break in the DGP) in Table 4. The overall conclusion from
this simulation study is that our proposed procedure can effectively distinguish the poly-
nomial trend processes from the explosive process. In particular, when data is generated
from the polynomial trend model, in no replication the DF coefficient-based test based
on Model (1.2) finds evidence of explosiveness in all three sample sizes considered. In a
small number of replications, the DF t test based on Model (1.2) finds the evidence of
explosiveness in unit root testing. The proportion becomes smaller when the sample size
increases. When data is generated from an explosive process with a stronger explosive
behavior (β = 1.05), the two tests almost always find evidence of explosiveness. When
the explosive behavior is not so strong (β = 1.03) and the sample size is small (n = 50),
the two statistics, especially the coefficient-based statistic, has difficulty in rejecting the
unit root hypothesis. When n = 100 or 200, the two unit root tests almost always find the
evidence of explosiveness regardless of β = 1.03 or 1.05. All these results are consistent
with what Theorem 3.1.3 predicts.
From the above simulations, it is clear that there is a trade-off between the DF

coefficient-based test and the DF t test. While the DF coefficient-based statistic is more
robust against polynomial trends in data, it is less powerful in identifying a mildly ex-
plosive behavior in small samples. For conservative users whose primary concern is on

5To save space, these critical values are not reported and may be requested from the authors.
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the robustness property of the right-tailed unit root testing against the trend stationary
behavior, our recommendation is to use the DF coefficient-based test.

5. AN EMPIRICAL STUDY

In the empirical study, we analyze the data of the U.S. real estate market, which contains
the monthly S&P/Case-Shiller U.S. National Home Price Index and the monthly rent of
primary residence, both over the period from January 1981 to June 2017 (438 monthly
observations in the full sample).6 The price-rent ratio is calculated for the sample period.
Since the simulation study suggests that the DF coefficient-based statistic is more robust
against polynomial trends in data than the DF t statistic in the context of the AR
regression model (1.2), in the empirical study reported below, we only calculate the
coefficient-based statistic.
For the purpose of comparison, we first apply the PSY method (based on the sup

coefficient-based statistic obtained from AR regression model (1.1)) to the price-rent
ratio. Figure 1 plots the price-rent ratio, the sequence of PSY coefficient-based statistics
that are calculated in a recursive backward manner with the minimum window size
chosen as 0.01 + 1.8/

√
438 ≈ 42, and the sequence of the 95% finite sample critical

values of the sup coefficient-based statistic obtained from Monte Carlo simulations. It
can be seen that four bubble episodes are identified by the PSY method, namely, May
1986 to April 1990, March 1991 to June 1993, April 1998 to January 2008, and April
2008 to June 2011. The first and third episodes correspond to the well-known periods
of U.S. real estate market expansions. However, some post-peak periods are included as
a part of bubble expansion. The price-rent ratio reached a peak in May 1989, whereas
the estimated termination date of the first bubble by PSY method is April 1990. The
price-rent ratio reached another peak in March 2006, whereas the PSY method estimates
January 2008 to be the termination date of the third bubble. During the second and last
detected bubble periods, the real estate market experienced market downturns. Hence,
according to PSY, these two periods must have negative bubbles.
We then apply the proposed procedure (i.e., fit the AR regression model (1.2)) to the

price-rent ratio of the U.S. real estate market. Figure 2 plots the price-rent ratio, the
sequence of the coefficient-based statistics from the proposed procedure calculated in a
recursive backward manner with the same minimum window size as in PSY method,
and the sequence of the 95% finite sample critical values obtained from Monte Carlo
simulations. Only two bubble periods have been identified by the proposed method,
namely, May 1986 to May 1989 and July 1998 to March 2006. Although these two bubble
periods correspond to the first and third bubble periods identified by the PSY method,
they are shorter in the sense that both bubbles ended much earlier. The first bubble
ended in May 1989 according to the proposed method, eleven months earlier than that
identified by the PSY method. The second bubble ended in March 2006 according to the
proposed method, twenty-two months earlier than that identified by the PSY method. As
noted earlier, both May 1989 and March 2006 are two peaks of the time series. Clearly, the
estimated termination dates synchronize the turning points by the proposed procedure.
Moreover, the third and the last bubble periods identified by PSY method are not flagged
as negative bubble episodes by the proposed method. This observation indicates that the

6The data is downloaded from Federal Reserve Bank of St. Louis. The series code for the home price
index is CSUSHPISA while the code for the rent is CUSR0000SEHA.
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Figure 1. Date-stamping bubble periods in the US home price rent ratio based on the
proposed regression method.

market downturns in 1991-1993 and 2008-2011 may be better explained by deterministic
trend models than pure AR models.

6. CONCLUSION

This paper concerns the robustness of the right-tailed unit root tests against the explosive
alternative when the true DGP is not an explosive process. In a recent interesting study,
Phillips and Shi (2019) introduced a model with a structural break. Before the break,
data is generated from a unit root model. After the break, a linear trend model generates
the data. While there is no explosiveness in this DGP, they show that the right-tailed DF
t statistic, obtained from a sample covering both data before and after the break, tends
to find explosive behavior. As a result, the DF t and GSADFt tests cannot distinguish
between the structural break model and the explosive AR model.
In this paper, we provide an alternative explanation for the spurious identification of

bubbles without the help of structural break. Our idea is to use polynomial trend models.
We show that when there is a polynomial trend in DGP, the conventional right-tailed unit
root tests based on the AR(1) regression also tend to reject the null hypothesis of unit
root in favor of the explosive alternative. As a result, the GSADFc and the GSADFt
tests based on the AR(1) regression cannot distinguish between the explosive AR model
and the polynomial trend model. The intuition is that the polynomial trend model can
generate a curvature similar to the explosive AR model. Extensive simulation studies
reinforce the asymptotic properties of the test statistics.
For the right-tailed unit root tests to be able to distinguish the polynomial trend

model from the explosive AR model, we propose a new autoregressive procedure by
including the lagged first difference as an additional regressor. Asymptotic properties for
the test statistics under the null hypothesis of unit root and several different alternatives
are studied. When data is generated from a model that switches from a random walk
to a polynomial trend, we show that the GSADFc and GSADFt tests often cannot
reject the unit root null hypothesis. Whereas, when data is generated from an explosive
autoregressive process, we show that both the tests reject the null hypothesis of unit root.
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Hence, the two tests have power in distinguishing between the explosive AR model and
the polynomial trend model. Interestingly, our proposed procedure is nearly identical to
the augmented DF procedure discussed in PSY (2015a, Equation (4)) with an important
distinction. Our method requires k to be one, whereas, in Equation (4) of PSY, k is set
to zero (i.e., no augmented term) in the empirical implementation.
We have applied our proposed method to real data. For the price-rent ratio of the U.S.

real estate market from January 1981 to June 2017, our testing results are different from
those obtained by using the PSY method with k = 0. Two negative bubbles identified by
the PSY method are not flagged as bubbles anymore. In addition, the termination dates
of two identified positive bubble periods are estimated to be much earlier than those
estimated by the PSY method.
The asymptotic results obtained in this paper continue to hold when the DGP in the

abnormal period of Model (2.3) is replaced with the following non-explosive AR process,7

pt = pt−1 + δ (t− nc)
m−1

+ εt, t = nc + 1, . . . , n, (6.10)

where δ ̸= 0 and m ≥ 2. This alternative DGP (6.10) has a deterministic trend of a lower
order m− 1 as well as pt−1. It is easy to rewrite the DGP in (6.10) as

pt = pnc
+δ

t∑
s=nc+1

(s− nc)
m−1

+

t∑
s=nc+1

εs = pnc
+
δ

m
(t− nc)

m
+O((t− nc)

m−1
)+

t∑
s=nc+1

εs.

The leading term is δ (t− nc)
m
/m and has the same order as that of pt under the DGP

(2.3). If we start from the DGP in (2.3), the first difference gives

pt = pt−1 + δm (t− 1− nc)
m−1

+O((t− 1− nc)
m−2

) + εt − εt−1.

This is similar to the alternative process in (6.10). From the proofs, we note that the
asymptotic results are fully determined by the leading terms of pt and ∆pt = pt − pt−1.
By the same argument, it is easy to see that the asymptotic results continue to hold
when the DGP of the abnormal period in Model (2.3) is replaced with the alternative
process

pt = pnc
+ δ1 (t− nc) + · · ·+ δm (t− nc)

m
+ εt, with δm ̸= 0.
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APPENDIX: PROOF OF THEOREMS

Proof of Theorem 2.1: We here prove the asymptotics of the statistics with the sample
from nc +2 to n2, which is the same as that with the sample from nc to n2. Define

∑
=∑n2

nc+2, ∆εt = εt − εt−1, g (t) = δ (t− nc)
m
, and ∆g (t) = δ (t− nc)

m − δ (t− nc − 1)
m
.

For any t > nc + 1, it has

pt = pnc + δ (t− nc)
m
+ εt = pt−1 +∆g (t) + ∆εt.

Thus, the centered LS estimators of the parameters in the AR(1) model (1.1) can be
expressed as (

α̃r2
rc − 0

β̃r2
rc − 1

)
=

( ∑
1

∑
pt−1∑

pt−1

∑
p2t−1

)−1( ∑
[∆g (t) + ∆εt]∑

pt−1 [∆g (t) + ∆εt]

)
.

Considering that m ≥ 2 and ∆g (t) = δm (t− nc − 1)
m−1

+ O
(
(t− nc − 1)

m−2
)
, we

then have, as n→ ∞,(
n−m
s

∑
[∆g (t) + ∆εt]

n−2m
s

∑
pt−1 [∆g (t) + ∆εt]

)
=

(
n−m
s

∑
δm (t− nc − 1)

m−1
+ op (1)

n−2m
s

∑
δ2m (t− nc − 1)

2m−1
+ op (1)

)
p→
(

δ
δ2/2

)
,

where the limits are from the fact of n
−(j+1)
s

∑
(t− nc)

j → 1/ (j + 1).
Note that, as n→ ∞, it has

n−(m+1)
s

∑
pt−1 = n−(m+1)

s

∑
δ (t− nc − 1)

m
+ op (1)

p→ δ

m+ 1
,

n−(2m+1)
s

∑
p2t−1 = n−(2m+1)

s

∑
δ2 (t− nc − 1)

2m
+ op (1)

p→ δ2

2m+ 1
.

Hence,(
n−m+1
s 0
0 ns

)( ∑
1

∑
pt−1∑

pt−1

∑
p2t−1

)−1(
nms 0
0 n2ms

)
=

 ∑
1

ns

∑
pt−1

nm+1
s∑

pt−1

nm+1
s

∑
p2
t−1

n2m+1
s

−1

p→

(
1 δ

m+1
δ

m+1
δ2

2m+1

)−1

.

We then get that, as n→ ∞,(
n−m+1
s α̃r2

rc

ns

(
β̃r2
rc − 1

)) p→

(
1 δ

m+1
δ

m+1
δ2

2m+1

)−1(
δ

δ2/2

)
=

(
(m+1)2

m2 − (2m+1)(m+1)
δm2

− (2m+1)(m+1)
δm2

(2m+1)(m+1)2

δ2m2

)(
δ

δ2/2

)
,

which gives the limit of ns

(
β̃r2
rc − 1

)
as presented in the first part of Theorem 2.1.1.

The standard error of β̃r2
rc , denoted by se

(
β̃r2
rc

)
, takes the form of

se
(
β̃r2
rc

)
=

(0 1
)( ∑

1
∑
pt−1∑

pt−1

∑
p2t−1

)−1(
0
1

)
∑(

pt − α̃r2
rc − β̃r2

rc pt−1

)2
ns − 3



1/2

.

From the results in the above proof, it has, as n→ ∞,(
0 ns

)( ∑
1

∑
pt−1∑

pt−1

∑
p2t−1

)−1(
0
n2ms

)
=
(
0 1

)(n−m+1
s 0
0 n

)( ∑
1

∑
pt−1∑

pt−1

∑
p2t−1

)−1(
nms 0
0 n2ms

)(
0
1

)
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p→
(
0 1

)( 1 δ
m+1

δ
m+1

δ2

2m+1

)−1(
0
1

)
=

(2m+ 1) (m+ 1)
2

δ2m2
.

Given that pt = pt−1 +∆g (t) + ∆εt, we have∑(
pt − α̃r2

rc − β̃r2
rc pt−1

)2
=
∑(

∆g (t) + ∆εt − α̃r2
rc −

(
β̃r2
rc − 1

)
pt−1

)2
=
∑(

∆g (t) + ∆εt − α̃r2
rc −

(
β̃r2
rc − 1

)
pt−1

)
(∆g (t) + ∆εt) ,

where the second equation comes from the first-order condition of the LS regression. As

m ≥ 2 and ∆g (t) = δm (t− nc − 1)
m−1

+O
(
(t− nc − 1)

m−2
)
, we further get

n−2m+1
s

∑
(∆g (t) + ∆εt)

2
= n−2m+1

s

∑
(∆g (t))

2 p→ δ2
m2

2m− 1
.

From the earlier proof, we have got n−m+1
s α̃r2

rc

p→ δ
2
(m+1)
m2 and ns

(
β̃r2
rc − 1

)
p→ (2m+1)(m2−1)

2m2 .

Thus, we can prove that

n−2m+1
s α̃r2

rc

∑
(∆g (t) + ∆εt) =

(
n−m+1
s α̃r2

rc

) (
n−m
s

∑
∆g (t)

)
p→ δ2

2

(m+ 1)

m2
,

and

n−2m+1
s

(
β̃r2
rc − 1

)∑
pt−1 (∆g (t) + ∆εt)

= δ2mns

(
β̃r2
rc − 1

)
n−2m
s

∑
(t− nc − 1)

2m−1
+ op (1)

p→ δ2
(2m+ 1)

(
m2 − 1

)
4m2

.

Consequently, it is obtained that

n−2m+1
s

∑(
pt − α̃r2

rc − β̃r2
rc pt−1

)2 p→ δ2
(m− 1)

2

4m2 (2m− 1)
.

Therefore,

n3s

[
se
(
β̃r2
rc

)]2 p→
(2m+ 1)

(
m2 − 1

)2
4m4 (2m− 1)

.

Finally, we get

n−1/2
s t

(
β̃r2
rc

)
=
ns

(
β̃r2
rc − 1

)
n
3/2
s se

(
β̃r2
rc

) p→
(2m+1)(m2−1)

2m2[
(2m+1)(m2−1)2

4m4(2m−1)

]1/2 =
(
4m2 − 1

)1/2
.

This proves the second part of Theorem 2.1.1.
The proof of Theorem 2.1.2-2.1.3 is straightforward. If we choose n1 and n2 such

that n1 = ⌊nrc⌋ = nc and n2 = ⌊nr2⌋ ∈ T , according to Theorem 2.1.1, we have

t
(
β̃r2
r1

)
→ +∞ as n→ ∞. Consequently,

GSADFt (r0) = sup
r2∈[r0,1],r1∈[0,r2−r0]

t
(
β̃r2
r1

)
→ +∞,

BSADFt (r2) = sup
r1∈[0,r2−r0]

t
(
β̃r2
r1

)
→ +∞, if r0 + rc < r2 < 1.
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Proof of Theorem 3.1.1: In any subsample period where n1 ∈ T and n2 ∈ T , {pt}
is generated by a polynomial trend model. Without loss of generality, we give the proof
for the case where n1 = nc + 3. The same approach can be applied to the case where
n1 > nc + 3. Let ns = n2 − n1 and

∑
=
∑n2

n1+3.

When t > nc, it has pt = pnc + δ (t− nc)
m

+ εt. In the following we prove the case
where m = 2. The proof for the case m > 2 will be given in the Online Supplement.
When m = 2, for any t ≥ nc +3, the second-order difference of pt has the representation
of ∆2pt = 2δ +∆2εt, which leads to

pt = 2δ + pt−1 +∆pt−1 +∆2εt.

Hence, for the regression model (1.2), it hasα̌r2
r1 − 2δ

β̌r2
r1 − 1

ψ̌r2
r1 − 1

 =

∑ 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

−1  ∑
∆2εt∑

pt−1∆
2εt∑

∆pt−1∆
2εt

 .
Let j = t− nc. It is easy to get that as n→ ∞,

n−2
s

∑
pt−1∆

2εt = n−2
s

∑[
pnc + δ (t− 1− nc)

2
+ εt−1

]
∆2εt

= n−2
s

∑[
δ (t− 1− nc)

2
]
∆2εt +Op

(
n−1
s

)
= δn−2

s

(ns − 1)
2
∆εn2

− 2

ns−1∑
j=2

j∆εnc+j +

ns−1∑
j=3

∆εnc+j

+Op

(
n−1
s

)
= δ∆εn2

+Op

(
n−1
s

)
,

and

n−1
s

∑
∆pt−1∆

2εt = n−1
s

∑
(2δ (t− nc)− 3δ +∆εt−1)∆

2εt

= 2δn−1
s (n2 − nc)∆εn2

+ n−1
s

∑
∆εt−1∆

2εt +Op

(
n−1
s

)
= 2δ∆εn2

− 3σ2 + op (1) .

We then have1 0 0
0 n−2

s 0
0 0 n−1

s

 ∑
∆2εt∑

pt−1∆
2εt∑

∆pt−1∆
2εt

 =

∆εn2 −∆εnc+2

δ∆εn2

2δ∆εn2
− 3σ2

+ op (1) .

Next, note that, as n→ ∞,

n−2
s

∑
∆pt−1 = n−2

s (pn2−1 − pn1+1) = δ +Op

(
n−1
s

)
,

n−4
s

∑
pt−1∆pt−1 = n−4

s

∑[
pnc

+ δ (t− nc − 1)
2
+ εt−1

]
[2δ (t− nc)− 3δ +∆εt−1]

= 2δ2n−4
s

∑
(t− nc)

3
+Op

(
n−1
s

)
= δ2/2 +Op

(
n−1
s

)
,

n−3
s

∑
(∆pt−1)

2
= n−3

s

∑
(2δ (t− nc)− 3δ +∆εt−1)

2

=
4δ2

n3s

∑
(t− nc)

2
+Op

(
n−1
s

)
=

4δ2

3
+Op

(
n−1
s

)
.
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Together with the following limits

n−3
s

∑
pt−1 = n−3

s

∑(
pnc + δ (t− nc − 1)

2
+ εt−1

)
= δ/3 +Op

(
n−1
s

)
,

n−5
s

∑
p2t−1 = n−5

s

∑(
pnc + δ (t− nc − 1)

2
+ εt−1

)2
= δ2/5 +Op

(
n−1
s

)
,

we can getns 0 0
0 n3s 0
0 0 n2s

∑ 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

−11 0 0
0 n2s 0
0 0 ns


=

 1 δ/3 δ
δ/3 δ2/5 δ2/2
δ δ2/2 4δ2/3

−1

+Op

(
n−1
s

)
.

As a result, we havens 0 0
0 n3s 0
0 0 n2s

α̌r2
r1 − 2δ

β̌r2
r1 − 1

ψ̌r2
r1 − 1

 =

 1 δ/3 δ
δ/3 δ2/5 δ2/2
δ δ2/2 4δ2/3

−1 ∆εn2
−∆εnc+2

δ∆εn2

2δ∆εn2
− 3σ2

+ op (1) ,

which leads to

ns
(
β̌r2
r1 − 1

)
= Op

(
n−2
s

) p→ 0, as n→ ∞.

To get the limit of the DF t statistic, we first study the large sample theory of se
(
β̌r2
r1

)
in Model (1.2). Note that pt = 2δ + pt−1 + ∆pt−1 + ∆2εt. Together with the fact that
α̌r2
r1 , β̌

r2
r1 , and ψ̌

r2
r1 are all consistent as proved above, it is straightforward to get that∑

ě2t
ns

=
1

ns

∑(
pt − α̌r2

r1 − β̌r2
r1 pt−1 − ψ̌r2

r1∆pt−1

)2
=

∑(
∆2εt

)2
ns

+ op (1) = 6σ2 + op (1) .

Consequently, it has

n5s
[
se
(
β̌r2
r1

)]2
= n5s

(
0 1 0

)∑ 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

−10
1
0

 ∑
ě2t

ns − 5

=
(
0 1 0

) 1 δ/3 δ
δ/3 δ2/5 δ2/2
δ δ2/2 4δ2/3

−10
1
0

 6σ2 + op (1) .

Finally, the limit of the DF t statistic is obtained as

t
(
β̌r2
r1

)
= n−1/2

s

n3s
(
β̌r2
r1 − 1

)
n
5/2
s se

(
β̌r2
r1

) = Op

(
n−1/2
s

)
.

Proof of Theorem 3.1.2: We give the proof for the case where m = 2. The same
approach applies directly to the case where m > 2, but with tedious details. As n1 ∈ N
and n2 ∈ T , it has n1 < nc < n2. With the subsample from n1 to n2, the AR(2) regression
(1.2) leads to the following LS estimators:α̌r2

r1

β̌r2
r1

ψ̌r2
r1

 = Q−1
n2∑

t=n1

 1
pt−1

∆pt−1

 pt with Q =

n2∑
t=n1

 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

 .



Bubble Testing under Polynomial Trends 19

When n1 ≤ t < nc, the DGP is pt = pt−1 + εt. Whereas, when nc < t ≤ n2, pt follows a
quadratic trend model that is

pt = pc + δ (t− nc)
2
+ εt = 2δ + pt−1 +∆pt−1 +∆2εt.

Hence, it has

Q =

nc∑
t=n1

 1 pt−1 εt−1

pt−1 p2t−1 pt−1εt−1

εt−1 pt−1εt−1 ε2t−1

+

n2∑
t=nc+1

 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2


nc∑

t=n1

 1
pt−1

∆pt−1

 pt = nc∑
t=n1

 1 pt−1 εt−1

pt−1 p2t−1 pt−1εt−1

εt−1 pt−1εt−1 ε2t−1

01
0

+

nc∑
t=n1

 1
pt−1

εt−1

 εt,
n2∑

t=nc+1

 1
pt−1

∆pt−1

 pt = n2∑
t=nc+1

 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

2δ1
1

+ n2∑
t=nc+1

 1
pt−1

∆pt−1

∆2εt.

Consequently, we haveα̌r2
r1 − 2δ

β̌r2
r1 − 1

ψ̌r2
r1 − 1

 = Q−1


nc∑

t=n1

 1 pt−1 εt−1

pt−1 p2t−1 pt−1εt−1

εt−1 pt−1εt−1 ε2t−1

−2δ
0
−1

+

nc∑
t=n1

 1
pt−1

εt−1

 εt + n2∑
t=nc+1

 1
pt−1

∆pt−1

∆2εt

 .

Note that, as n→ ∞, it hasn−1

n−3

n−2

 nc∑
t=n1

 1 pt−1 εt−1

pt−1 p2t−1 pt−1εt−1

εt−1 pt−1εt−1 ε2t−1

1
n−2

n−1

⇒

rc − r1 0 0
0 0 0
0 0 0

 ,

n−1

n−3

n−2

 n2∑
t=nc+1

 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

1
n−2

n−1


⇒

 r2 − rc δ (r2 − rc)
3
/3 δ (r2 − rc)

2

δ (r2 − rc)
3
/3 δ2 (r2 − rc)

5
/5 δ2 (r2 − rc)

4
/2

δ (r2 − rc)
2

δ2 (r2 − rc)
4
/2 4δ2 (r2 − rc)

3
/3

 ,

where the first limit comes from the large sample properties of the unit root process and
the second limit is obtained directly from the large sample properties of the quadratic
trend process that have been explored in the proof of Theorem 3.1.1. Therefore, we get1

n2

n1

Q−1

n n3

n2

⇒

 r2 − r1 δ (r2 − rc)
3
/3 δ (r2 − rc)

2

δ (r2 − rc)
3
/3 δ2 (r2 − rc)

5
/5 δ2 (r2 − rc)

4
/2

δ (r2 − rc)
2

δ2 (r2 − rc)
4
/2 4δ2 (r2 − rc)

3
/3

−1

.

Moreover, from the large sample properties of the unit root process, we can haven−1

n−3

n−2

 nc∑
t=n1

 1 pt−1 εt−1

pt−1 p2t−1 pt−1εt−1

εt−1 pt−1εt−1 ε2t−1

−2δ
0
−1


=

n−1

n−3

n−2

 nc∑
t=n1

 −2δ − εt−1

−2δpt−1 − pt−1εt−1

−2δεt−1 − ε2t−1

⇒

−2δ (rc − r1)
0
0

 ,
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n−3

n−2

 nc∑
t=n1

 1
pt−1

εt−1

 εt ⇒
00
0

 .
As proved in Theorem 3.1.1, it hasn−1

n−3

n−2

 n2∑
t=nc+1

 1
pt−1

∆pt−1

∆2εt = n−1

Op (1)
Op (1)
Op (1)

⇒

00
0

 .
Finally, we have1

n2

n

α̌r2
r1 − 2δ

β̌r2
r1 − 1

ψ̌r2
r1 − 1

⇒

 r2 − r1 δ (r2 − rc)
3
/3 δ (r2 − rc)

2

δ (r2 − rc)
3
/3 δ2 (r2 − rc)

5
/5 δ2 (r2 − rc)

4
/2

δ (r2 − rc)
2

δ2 (r2 − rc)
4
/2 4δ2 (r2 − rc)

3
/3

−1 −2δ (rc − r1)
0
0

 ,
which leads to

n2
(
β̌r2
r1 − 1

)
⇒ − 60 (rc − r1)

(r2 − rc)
2
[9 (r2 − r1)− 8 (r2 − rc)]

,

and

(n2 − n1)
2 (
β̌r2
r1 − 1

)
⇒ − 60 (rc − r1) (r2 − r1)

2

(r2 − rc)
2
[9 (r2 − r1)− 8 (r2 − rc)]

.

To derive the large sample theory of t
(
β̌r2
r1

)
, we first study the limit of

∑n2

t=n1
ě2t =∑nc

t=n1
(ět)

2
+
∑n2

t=nc+1 (ět)
2
, where ět = pt− α̌r2

r1 − β̌
r2
r1 pt−1−ψ̌r2

r1∆pt−1. From the asymp-
totic properties of the unit root process, it can be proved that, as n→ ∞,

n−1
nc∑

t=n1

ě2t = n−1

[
nc∑

t=n1

ε2t +

nc∑
t=n1

(
α̌r2
r1

)2
+ ψ̌r2

r1

nc∑
t=n1

ε2t−1 − 2ψ̌r2
r1

nc∑
t=n1

εtεt−1

]
+op (1) = Op (1) ,

where the last two equalities come from the facts that α̌r2
r1 − 2δ = Op (1) , n

2
(
β̌r2
r1 − 1

)
=

Op (1), and n
(
ψ̌r2
r1 − 1

)
= Op (1). Moreover, from the asymptotic properties of the

quadratic trend model, we can get

n−1
n2∑

t=nc+1

ě2t = n−1
n2∑

t=nc+1

{(
∆2εt

)2
+
(
α̌r2
r1 − 2δ

)2
+
(
β̌r2
r1 − 1

)2
p2t−1 +

(
ψ̌r2
r1 − 1

)2
(∆pt−1)

2

−2
(
ψ̌r2
r1 − 1

)
∆pt−1∆

2εt + 2
(
α̌r2
r1 − 2δ

) (
β̌r2
r1 − 1

)
pt−1

+2
(
α̌r2
r1 − 2δ

) (
ψ̌r2
r1 − 1

)
∆pt−1 + 2

(
β̌r2
r1 − 1

) (
ψ̌r2
r1 − 1

)
pt−1∆pt−1

}
+ op (1)

= Op (1) .

Hence, n−1
∑n2

t=n1
(ět)

2
= Op (1). We then have

n5
[
se
(
β̌r2
r1

)]2
=
(
0 1 0

)1
n2

n

Q−1

n n3

n2

0
1
0

∑n2

t=n1
ě2t

n2 − n1
= Op (1) .

Therefore, it has

t
(
β̌r2
r1

)
=

β̌r2
r1 − 1

se
(
β̌r2
r1

) = n1/2
n2
(
β̌r2
r1 − 1

)
n5/2se

(
β̌r2
r1

) → −∞,

where the last limit comes from the fact that limn→∞ n2
(
β̌r2
r1 − 1

)
< 0, as proved above.
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