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Abstract

In this paper, we propose a class of low-rank panel quantile regression models which allow
for unobserved slope heterogeneity over both individuals and time. We estimate the heteroge-
neous intercept and slope matrices via nuclear norm regularization followed by sample splitting,
row- and column-wise quantile regressions and debiasing. We show that the estimators of the
factors and factor loadings associated with the intercept and slope matrices are asymptoti-
cally normally distributed. In addition, we develop two specification tests: one for the null
hypothesis that the slope coefficient is a constant over time and/or individuals under the case
that true rank of slope matrix equals one, and the other for the null hypothesis that the slope
coeflicient exhibits an additive structure under the case that the true rank of slope matrix
equals two. We illustrate the finite sample performance of estimation and inference via Monte

Carlo simulations and real datasets.
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1 Introduction

Panel quantile regressions are widely used to estimate the conditional quantiles, which can cap-
ture the heterogeneous effects that may vary across the distribution of the outcomes. Such effects
are usually assumed to be homogeneous across individuals and over time periods. However, in
empirical analyses, it is usually unknown whether the slope coefficients are homogeneous across
individuals and/or time. Mistakenly forcing slopes to be homogeneous across time and individ-
uals may lead to inconsistent estimation and misleading inferences. This prompts two questions
to be answered: how can we estimate the true model at different quantiles when we allow for
heterogeneous slopes across individuals and time at the same time? How to conduct specification
tests for homogeneous effects over individuals or time and tests for the additive structure of the
slope coefficients?

To answer the first question, we propose an estimation procedure for heterogeneous panel
quantile regression models where we allow the fixed effects to be either additive or interactive, and
the slope coefficients to be heterogeneous over both individuals and time. We impose a low-rank
structure for both the intercept and slope coefficient matrices and estimate them via nuclear norm
regularization (NNR) followed by the sample splitting, row- and column-wise quantile regressions
and debiasing steps. The estimation algorithm is inspired by Chernozhukov et al. (2019), where
the main difference is that we split the full sample into three subsamples rather than two because
we need certain uniform results which require independence of regressors and regressand used in
the debiasing step, and we do not have the closed form for the quantile regression estimates. At
last, we derive the asymptotic distributions for the estimators of the factors and factor loadings
associated with slope coefficient matrices.

To answer the second question, under the case when the rank of slope coefficient matrix equals
one, we conduct sup-type specification tests for homogeneous effects over individuals or time
following the lead of Castagnetti et al. (2015) and Lu and Su (2021). We show that our sup-test
statistics follow the Gumbel distribution under the null, and the tests have non-trivial power
against certain classes of local alternatives. Under the case when the rank of slope matrix equals
two, our sup-type test statistic is also shown to follow the Gumbel distribution under the null
that the slope coefficient exhibits an additive structure.

This paper relates to three bunches of literature. First, we contribute to the large literature
on panel quantile regressions (PQRs). Since Koenker (2004) studied the PQRs with individual
fixed effects, there has been an increasing number of papers on PQRs. Galvao and Montes-Rojas
(2010), Kato et al. (2012), Galvao and Wang (2015), Galvao and Kato (2016), Machado and Silva
(2019), and Galvao et al. (2020) study the asymptotics for PQRs with individual fixed effects.
Chen et al. (2021) study quantile factor models and Chen (2022) considers PQRs with interactive
fixed effects (IFEs). We complement the literature by allowing for unobserved heterogeneity in
the slope coefficients of PQRs.

Second, our paper also pertains to slope heterogeneity in panel data models. Latent group



structures across individuals and structural changes over time are two common types of slope
heterogeneity that have received vast attention in the literature. To recover the unobserved group
structures, various methods have been proposed. For example, Lin and Ng (2012), Bonhomme
and Manresa (2015) and Ando and Bai (2016) use the K-means algorithm; Su et al. (2016)
propose the C-lasso algorithm which is further studied and extended by Su and Ju (2018), Su
et al. (2019) and Wang et al. (2019); Wang et al. (2018) propose an clustering algorithm in
regression via data-driven segmentation called CARDS; Wang and Su (2021) propose a sequential
binary segmentation algorithm to identify the latent group structures in nonlinear panels. Recent
literature on the estimation with structural changes in panel data models includes, but is not
limited to, Chen (2015), Cheng et al. (2016), Ma and Su (2018), Baltagi et al. (2021). In addition,
Galvao et al. (2018) and Zhang et al. (2019) consider individual heterogeneity in PQRs while they
assume homogeneity across time. To allow for both latent groups and structural breaks, Okui and
Wang (2021) study a linear panel data model with individual fixed effects where each latent group
has common breaks and the breaking points can be different across different groups, and they
propose a grouped adaptive group fused lasso (GAGFL) approach to estimate slope coefficients.
Lumsdaine et al. (2021) consider a linear panel data model with a grouped pattern of heterogeneity
where the latent group membership structure and/or the values of slope coefficients can change
at a breaking point, and they propose a K-means-type estimation algorithm and establish the
asymptotic properties of the resulting estimators. Compared with the models studied above,
our model combines both individual and time heterogeneity and only requires certain low-rank
structure in the slope coefficient matrix. So the unobserved heterogeneity takes a more flexible
form in our model than those in the literature such as Okui and Wang (2021) and Lumsdaine
et al. (2021).

Last, our paper also connects with the burgeoning literature on nuclear norm regularization.
Such a method has been widely adopted to study panel and network models. See, Alidaee et al.
(2020), Athey et al. (2021), Bai and Ng (2019), Belloni et al. (2022), Chen et al. (2020), Cher-
nozhukov et al. (2019), Feng (2019), Hong et al. (2022), Miao et al. (2022), among others. In
the least squares panel framework, Moon and Weidner (2018) consider a homogeneous panel with
IFEs by using NNR-based estimator as an initial estimator to construct iterative estimators that
are asymptotically equivalent to the least squares estimators; Chernozhukov et al. (2019) study
a heterogenous panel where both the intercept and slope coefficient matrices exhibit a low-rank
structure and establish the asymptotic distribution theory based on NNR. In the presence of
endogeneity, Hong et al. (2022) proposes a profile GMM method to estimate panel data models
with ITFEs. In the panel quantile regression setting, Feng (2019) develops error bounds for the
low-rank estimates in terms of Frobenius norms under independence assumption; Belloni et al.
(2022) relaxes the independence assumption to the S-mixing condition along the time dimension.
Our paper extends Chernozhukov et al. (2019) from the least squares framework to the PQR

framework, derives the asymptotic distribution theory and develops various specification tests



under some strong mixing conditions along the time dimension that is weaker than the S-mixing
condition. We also rely on the sequential symmetrization technique developed by Rakhlin et al.
(2015) to obtain the convergence rates of the nuclear norm regularized estimators.

The rest of the paper is organized as follows. We first introduce the low-rank structure PQR
model and the estimation algorithm in Section 2. We study the asymptotic properties of our
estimators in Section 3. In Section 4, we propose two specification tests: one for the no-factor
structure and one for the additive structure, and study the asymptotic properties of the test
statistics. In Section 5, we show the finite sample performance of our method via Monte Carlo
simulations. In Section 6, we apply our method to two datasets: one is to study how Tobin’s g
and cash flows affect corporate investment and whether firm’s external investment to its internal
financing exhibits heterogeneity structure, and the other is to study the relationship between
economics growth, foreign direct investment and unemployment. Section 7 concludes. All proofs
are related to the online supplement.

Notation. [|"||l1; -l ops 1'lloos IIllmax [I-[l25 Il [l denote the matrix norm induced by 1-norms,
the matrix norm induced by 2-norms, the matrix norm induced by co-norms, the maximum norm,
the Euclidean norm, the Frobenius norm and the nuclear norm. © is the element-wise product.
|-] and [-] denote the floor and ceiling functions, respectively. a Vb and a A b return the max and
the min of a and b, respectively. The symbol < means “the left is bounded by a positive constant
times the right”. Let A = {Ajt}icjn),1c(r) be a matrix with its (i,t)-th entry denoted as A;;, where
[n] to denote the set {1,---,n} for any positive integer n. Let {A;};_, denote the collection of
matrices A; for all j € {0,---,p}. When A is symmetric, Amax(A) and Amin(A) denote its largest
and smallest eigenvalues, respectively. The operators ~» and 2 denote convergence in distribution
and in probability, respectively. Besides, we use w.p.a.1l and a.s. to abbreviate “with probability

approaching 1”7 and “almost surely”, respectively.

2 Model and Estimation
In this section, we introduce the PQR model and estimation algorithm.

2.1 Model

Consider the PQR model

P
{ijit}je[p],tE[T] ) {@9@5 (1) }jE[p]U{O}ytE[T]> = eg,it(T) + Z Xjﬂt@?,it(T)v (2~1)

J=1

QT (Y;t

where i € [N], t € [T], 7 € (0,1) is the quantile index, Yj; is the dependent variable, X is the
j-th regressor for individual ¢ at time ¢, {@?7it}j€[p] is the corresponding slope coefficient, @87“

is the intercept, and 2, <Yit {vait}jG[p],tG[T] , {@97“ (T)}

> denotes the conditional
JE€p]U{0},te(T]



T-quantile of Yj; given the regressors {X jvit}je[p] te(r] and the parameters {@Qﬁ (7-)} 1

J JE[PIU0,tE[T]
Alternatively, we can rewrite the above model as
P
Y = 05(r) + ZX]- © @?(7) +e(r) and
j=1
0
27 <€it(7) {Xj’it}je[p},te[T] {05 (T)}je[p]u{o},tem> =0, (22)

where €(7) is the idiosyncratic error matrix with the (¢,t)-th entry being €;(7). Similarly, X;
©; (1), and Y are matrices with the (i,t)-th entry being X, ©;4 (7), and Y}, respectively. In
this model, we assume p, the number of regressors, is fixed and both N and 7" pass to infinity. In
Assumption 1 below, we characterize the dependence of the data, under which (2.1) holds.

In the paper, we focus on the panel quantile regression for a fixed 7 and thus suppress the
dependence of @9(7’) and €(7) on 7 for notation simplicity. In addition, we impose low-rank
structures for the intercept and slope matrices, i.e., rank(@?) = K for some positive constant K

and for each j € {0,---,p}. By the singular value decomposition (SVD), we have
0 _ /777,/050Y,0r _ 7707,0/ \/: _

where ) € RV>K5 V9 € RT*K5 530 = diag(o1,- -, 0k, 5), U = VNUSY with each row being
U%a and V}O =T V]Q with each row being U?,/j-

The low-rank structure assumption includes several popular cases. For the intercept term,
one commonly assumes that @87“ to take the forms a?, wd, or a? + uY in classical PQRs. Then
the matrix ©) has rank 1, 1, and 2, respectively. It is also possible to assume @8,“ to take an
interactive form, say, @87” = )\gf +/0.+» where both )\872- and f¢, are Ko-vectors. For the slope matrix
@?, J € [p], the early PQR models frequently assume that 9?7# is a constant across (i,t) to yield
a homogenous PQR model. Obviously, such a model is very restrictive by assuming homogenous
slope coefficients. It is possible to allow the slope coefficients to change over either ¢, or ¢, or both.
See the following examples for different low-rank structures.

Example 1. When @‘?ﬁ = @(}J vVt e [T], or @?ﬁ = @gt Vi € [N], or @9»7# = @? V(it) € [N]x [T,
and this holds for all j € [p], we have the PQR models with only individual heterogeneity, with
only time heterogeneity, and with homogeneity, respectively. We observe that K; = 1 for these

three cases.

"We will assume that both the intercept term @87“ and the slope coefficients {@?,it}je[p] have low-rank struc-
tures, and follow the convention in the panel data literature by treating the factors to be random. Therefore,

{69.::}jemlutoy are random as well.



Example 2. When @9 i = )‘9,1 + fﬁt, we notice that

A

0
1 At
Qv VN VN | [l B
1 = . \? \/1T :A]B;
L T 700 I R N
vN VN

Let X4 ; := A Ajand X = B Bj. Let EAJ (resp 22 ) be the symmetrlc square root of ¥4 ;
(resp. ¥p, ;). By eigendecomposition, we have EAJ 15'] 1P 1 and E = P; QSj,QPjQ. Besides,
we apply singular value decomposition to matrix Sj 1P/ 115,25 2: SjylP Pj2Sj2 = Qj,leQ;Q.
Then it follows that
0
@j
VNT

_1 _1
= A;B} = Aj% % Pj1Sj1P} 1 Pj2Sj 2P} 2% 3% B;

= 4; ZA] ]1Q] 1R Q]Q B?BJ, UOZ?V]O,a

1 _1
where Z/IJQ = AjZAszJQj,l, Z? = R; and VJQ = BjEijPngj,g. Given Pj1, Pj2, @j1 and Q2 are
orthonormal matrices, it’s easy to that L{JQ and V]Q are also orthonormal so that Z/{JQ’ L{]Q = V]Q’ V]Q = Is.

N
When j =0, {)\8 Z} ) and { f(())t}f_ L are usually referred to as the individual and time fixed effects,
k) Z: b =
respectively, so that the intercept term exhibits an additive fixed effects structure.

Example 3. Let GJ it Zke[Kj,t] a;iel{i € Gji}, where {G; 1} forms a partition of [N] for
each specific time ¢ and Kj; is the number of groups at time ¢. Moreover, let

5113, for t=1,...,T,

o), for t=Ty+1,....T,

A5kt =

G;l]g’ fOI' tzl""’Tbak:17--.7K(1)v

J
(2)

Gkt = @)
ij, for t=T+1,...Tk=1,..,K;7,

where K ](1) and K ;2) are the number of groups before and after the break point T;. If K ](-1) =

K ](-2), it is clear that rcmk:(@?) = 1. If the group structure does not change after the break but
agllz = caﬁz for some constant ¢, we also have rank(@?) = 1. Except for these two cases, we can
show that
(1) (1) (2)1 217
> aml{lEGj’k}, > oy {1EGM}
ke[KM)] ke[K ()]

@
O
|

: : ,
st} 2 bnfeaty|[m o on]

J ke[KMW] 7 ke[K@)] Or—1,  tr-m,

> a(1,31:{N ecl}, © af)li{N ccA}

Er. ' ke[K @)
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where v, is a Tj x 1 vector of ones and O7, is a T}, x 1 vector of zeros. In this case, we notice that
rank‘(@?) =2.

Example 4. When G)] it = )\9’2 ]Ot with /\9 ; and fﬁt being two Kj-vectors, we have the IFEs
structure. This is the most general example without further restrictions.

Like Chernozhukov et al. (2019) we assume that for each j € [p], Xj; exhibits a factor
structure: X ;s = pj it + e = l w] T €j,it, where w] , and l ; are the factors and factor loadings

of dimension r;.

2.2 Estimation Algorithm

In this subsection we provide the estimation algorithm by assuming that K; are all known for all
Jj. In the next subsection, we will introduce a rank estimation method to estimate K; consistently.

Define the check function pr(u) = u (7 — 1{u < 0}). The estimation procedure goes as follows:

Step 1: Sample Splitting and Nuclear Norm Regularization. Along the cross-section span,
randomly split the sample into three subsets denoted as I, I» and I3, where I, has Ny
individuals such that Ny ~ Ny ~ N3 ~ N/3. Using the data with (i, t) e I x [T], we run

the nuclear norm regularized quantile regression (QR) and obtain {@ }]6{0 o)y e

{@ }] O_argmlnizZpT it — ZX]zt@gzt ©0,it) +ZV]H@]H*> (2.3)

{e;} ich t=1

(1) u(l)z(l)v(l)’
J

where v; is a tuning parameter. For each j, \/7

where E§. ) is the diagonal matrix with the diagonal elements being the descendlng singular
values of (:)gl). Let f}J( ) consists the first K; columns of V( ) . Let V =TV V and f)sj),
be the ¢-th row of f/j( ) vt e [T).

Step 2: Row- and Column-Wise Quantile Regression. Using the data with (i,t) € Iy x [T,
we first run the row-wise QR of Y;; on <v§0), {U(I)Xj Z-t} [p]> to obtain {u(l) 7.’_ for i €
je

I, and then run the column-wise QR of Yj; on ( U, 0 , {u(l)X it} je[p]) to obtain {Utj }
for t € [T]. That is,

| - .
{u(l)}j _o= argmin — Z pr | Yie — ;Ovilo) Zu”vtj Xt | ,Vi € I, (2.4)
{uijtjepotor © te[r) j=1

p
( .
{Ut ) 1]0 o — argmn ZPT Y Ut Ouzo ZUI»JUZJ Jsit ’Vt < [T] (25)
7j=1

V5 }jE[pJu{O} 2 ich



Similarly, we run the row-wise QR of Yj; on (Q)SO), {vt(lj) Xjjit}jelp)) to obtain {uglj) ?:0 for

1€ ls,ie.,

p
. 1 1 .
{u ] _y = argmin E or | Yie — ;Ovt(o) - E ' o )XJ it |, Vi€ Is.
{uisbiemoy L te[T] j=1

Step 3: Debiasing.

Step 3.1: For each j € [p], we conduct the principle component analysis (PCA) for X ;; with
(i,t) € [N] x [T] to obtain the factor and factor loading estimates as

{Zj’i’wj’t}iE[N},te[T}: arg min *Z > (Xja—Bawie)”. (26)

Wiswiihiemw e i€[N] te[T)

N Ll

1 T ;s .
subject to the normalizations: Z iglij = Ir; and 737 wjpw), is a diagonal

matrix with descending diagonal elements. Then we define fi;;; = lzlet and €;;; =
Xjit = fj,it-
- P .
Step 3.2: For (i,t) € I3 x [T], let Yy = Yy — > ﬂj,itu(1>/®§}j). We run the row-wise QR of Yj;

j:l Z7J
on (1')75710), {@t(}j)éj,it}je[p}) to obtain the final estimates af’j’”, ie.,

{ }p 0= argmm— Z pr | Y — OvtO Zu”vt] &t | \Viels. (2.7)
{uij}jo tE[T]

Updating Yy = Yy — Z] 1 it ugsj ) vt(]), we run the column-wise QR of Y, on
L(3,1) ;~(3,1) 4 3,1
(uz(»70 ), {UEJ )ej’it}je[p]) to obtain Uéj ), ie.,

iS]

(3,1) (3,1) ~
ij }p O—argmln—ZpT Ut()uzO Zv’]uw )e]lt Vit € [T7.
{Ut J}J 0 3 i€l3 7=1

(2.8)

In order to obtain the final estimators for the full sample, we propose to switch the role of
each subsample for the low-rank estimation, row- and column-wise QR and debiasing, then repeat
Steps 1-3 to obtain {&Z(fj’b) }jzo and { g b)}j: for a € [3] and b € [3] \ {a}. Here (a,b) denotes
the final estimates for subsample I, obtained from the first step NNR estimates with subsample
Ip,. Table 1 shows the final estimators we obtain by using different combination of subsamples.

Several remarks are in order. First, we randomly split the full sample into three subsamples,
each playing a significant role in the algorithm. We use the first subsample for the low-rank
estimation to obtain the preliminary NNR estimators of the submatrices of the intercept and

slope matrices. But these estimators are only consistent in terms of Frobenius norm, and one



Table 1: Estimators using different subsamples at different steps in algorithm.

Step 1 (b) Step 2 Step 3 (a) estimators (a, b)

I I, I3 a®h, oY
I I I al?, o)
I Iy Iy il o
Iy I I al>?, o)
I I I i, op
Iy Iy I i, of?)

cannot derive the pointwise or uniform convergence rates for them. With the low-rank estimates,
we use the second subsample to do the row- and column-wise QRs and can now establish the
uniform convergence rates for each row of factor and factor loading estimators. Then we use the
remaining subsample to debias the second-stage estimator and to obtain the final estimators that
have the desirable asymptotic properties.

Second, to reduce the randomness of sample splitting, one can run the estimation algorithm
several times with different splittings in practice. Once one obtains factor and factor loading
estimates, one can construct estimators for @? under different splittings and then choose the one
specific splitting which yields the minimum quantile objective function.

Third, the bias in the second-stage estimator is inherent from the first-stage NNR estimator.
We follow the lead of Chernozhukov et al. (2019) to assume that X ; has a factor structure
with an additive idiosyncratic term, and remove the bias by a QR with the demeaned X ;; as
regressors. In the least squares panel regression framework, the objective function is smooth and
one has closed-form solutions in the last stage so that Chernozhukov et al. (2019) only need to
split the sample into two subsamples. In contrast, in the PQR framework, the objective function
is non-smooth, we do not have closed-form solutions in any stage. In order to remove the bias from
the early stage estimation and to derive the distributional results, we need to split the sample
into three subsamples.

To save space, we relegate the detailed algorithm for the nuclear norm regularization to the

online supplement.

2.3 Rank Estimation

In this subsection we discuss how to estimate the ranks K consistently. To estimate the ranks,

we consider the full sample NNR QR estimation:

N T p p

~ . 1

{0j}j—0 = argmin 7 S (Vi = Xja®ju — Ooa) + Y _vi 641, (2.9)
{&¥ i=1 t=1 j=1 j=0



For j € {0,--- ,p}, we estimate K by the popular singular value thresholding (SVT) as follows
) . . 1/2
Ki=S"14) (®->>0.6 NT -H@- .
! %: { T < o

It is standard to show that P(K; = K;) — 1 as (N,T) — oo under some regularity conditions

given in the next section; see also Proposition D.1 in Chernozhukov et al. (2019) and Theorem
2 in Hong et al. (2022). Since the ranks can be estimated consistently, we assume that they are

known in the asymptotic theory below.

3 Asymptotic Theory

In this section, we study the asymptotic properties of the estimators introduced in the last section.

3.1 First Stage Estimator

Recall that X, = pjie + ejie = l%w?}t + ej for each j € [p|. Let Xy = (Xuit,..., Xpit)

and e;x = (e14t,...,epst) . Define ¢ = (&, - J€it) eji = (ejit, -+ 7€j,iT)/7 WJQ as the T x r;
matrix with each row being U’;‘),,w and Vj0 as the T' x K; matrix with each row being v%. Further
define a;; = 7 — 1{e; <0} with a; = (a1, -- ,a;7) and @ = (a1, -+ ,ay)’. Throughout the
paper, we treat the factors {'U?,j}te[T],je[p]U{o} and {w?,t}te[T],jE[p] as random and their loadings
{u?,j}ie[N],je[p]U{O} and {l?,i}iG[N],jG[p] as deterministic.
Table 2 defines several o-fields. We use Z to denote the minimal o-field generated by
0 0

{V; } U {Wj} ; the superscripts I and [; U Iy are associated with the first sub-
J€plu{o} Jj€lp]

sample and the first two subsamples, respectively. For example, 95 denotes the minimal o-field
generated by 2, {eit}te[T} and {e;, eit}ieh,te[T] )

Let M denote a generic bounded constant that may vary across places. Let ¥;;_1 denote
the minimal o-field generated by 2 U {e;s}i<i—1,se[r) U {€ists<t U {€is hi<im1,seim) U {€isfs<i—1- Let
Fit(-) and f;(-) be the conditional cumulative distribution function (CDF) and probability density
function (PDF) of €;; given % ;_1, respectively. Similarly, let §;:(-) and f;(-) denote the conditional
CDF and PDF of €;; given Z,,; Fi(-) and fi(-) denote the conditional CDF and PDF of €;; given
De. Let 1}, (), {5, (), and f/, (-) denotes the first derivative of the density fi; (), fit (-), and fi (-),
respectively.

We make the following assumptions.

Assumption 1 (i) {e;, eit}te[T] are conditionally independent across i given 2.

2.) =0,

(i) E <a¢t

10



Table 2: Definition of various o-fields

Notation o-fields generated by
2 {Vjo}je[p]u{f)} U {Wjo}je[p}

D, 7Jei

7 7 U{eithiepn

De ZUA€it}iein e

ghvk I U{es eitticr,un tem

@{I;is}sd Z U eists<t U{€ire, €t tieepy peqm

75 DU eiterm Ul imvebieery e

@é}wz 72U {eit}te[T] U A€t €iner }z‘*ehulz,t*e[T]

i 7U {eit}z‘e[N,]te[T} UA{eit 6it}i€11U12,t€[T]

(111) For each i, {ei,t > 1} is strong mizing conditional on Pe,, and {(€it,eit) ,t > 1} is strong
mizing conditional on 9. Both mizing coefficients are upper bounded by o;(-) such that

max;e(y) @i(z) < Ma* for some constant a € (0, 1).

. 3 4
(iv) max;e|n] % Zte[T] [ Xitll < M a.s., maxer) NL2 >icn 1 Xitlly <M as.,

2
931.)} <M a.s., and

9} < Ma.s., max;e|n) % Zte[T] [E (e%t

max(; 1)e[N]x (7] E [HXz'tHg

s<t

max; y)e[N)x[1] E <||Xit|§ Deis) > <M a.s.

(v) For j € [p], there exists a positive sequence {n such that max(; pyenyx (1] | Xjit] < En a.s.

(vi) ming pe()x(r) fir(0) > £ > 0 and max(; pe|n)x(r) Supe [f; ()] < F'.
(vii) ming pe(n)<(r) fie(0) = § > 0 and max »en]x ] supe [ ()] <

(viii) ming pyen)xir) fie(0) > f > 0 and max; pe(njx(r) supe | ff; (€)] < f'.

Vevewiend N.q\1/2 549
(ix) €y log(]]\\[,vA? T _ o(1) and % (log(N Vv T))% Ex0 =o0(1) for any ¥ > 0.
(NAT) 3529

Assumptions 1(i) imposes conditional independence of the error terms and covariates X ;
given the fixed effects. Assumptions 1(ii) imposes the moment condition for QR. Assumptions

1(iii) imposes the weak dependence assumption along the time dimension via the use of the notion
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of conditional strong mixing. See Prakasa Rao (2009) for the definition of conditional strong mixing
and Su and Chen (2013) for an application in the panel setup. Assumptions 1(iv)-(v) essentially
imposes some conditions on the moments and tail behavior of the both covariates and errors. Note
that we allow X ;; to have an infinite support. Assumptions 1(vi)-(viii), which are used in the
proofs of Theorems 3.1, 3.2 and 3.3, respectively, specify conditions on the conditional density of
€;¢ given different o-fields. Assumption 1(ix) imposes some restrictions on N, T and £y in order
to obtain the error bound of NNR estimators and to achieve the unbiasedness. It allows not only
the case that N and T diverge to infinity at the the same rate, but also the case that N diverges

to infinity not too faster than 7', and vice versa.

Assumption 2 @8 1s the fized effect matriz with fived rank Ky and H@8Hmax < M. For each
J € pl, @? is the slope matriz of regressor j with rank being K; such that maxjcpy [0l < M
and max;e, Kj < K for some fized finite K.

Assumption 2 is the low-rank assumption for the intercept and slope matrices, which is the
key assumption for the NNR. The uniform boundedness of elements of these matrices facilitates
the asymptotic analysis, but can be relaxed at the cost of more lengthy argument. See Ma et al.

(2020) for a similar condition.
Assumption 3 There exist some constants C, and c, such that

00 > C, > limsup max oy ; > liminf min OK;j = Co > 0.
N,T j€lplU{0} N.T je[p]u{o}

Assumption 3 imposes some conditions on the singular values of the coefficient matrices. It
implies that we only allow pervasive factors when these matrices are written as a factor structure.
Such an assumption is common in the literature; see, e.g., Assumption 3 in Ma et al. (2020).

To introduce the next assumption, we need some notation. Let @9 = Rj2j5§- be the SVD for
@9. Further decompose R; = (Rj,, R;0) with R;, being the singular vectors corresponding to the
nonzero singular values, ;o being the singular vectors corresponding to the zero singular values.
Decompose S; = (S, Sj0) with Sj, and S;o defined analogously. For any matrix W € RV*T
we define

Pi- (W) = R;joR; ;W S;0S)0. Py (W) =W —P;- (W),

where P; (W) and 77]4- (W) are the linear projection of matrix W onto the low-rank space and its
orthogonal space, respectively. Let Ag, = 0, — @9 for any ©;. With some positive constants C;

and C, we define the following cone-like restricted set:

p p p
R(C1,Co) =1 ({Ae, Y1) : 2 [PF(26)| <O Y [Pi(86)].. Y [1Ae, |7 = CoVNT
j=0 j=0 j=0

12



Assumption 4 Let Co > 0 be a sufficiently large but fized constant. There are constants C3,Cy,
such that, uniformly over ({Ae, }?zo) € R(3,C2), we have

2

p
Ao, + Y Ne, ©X; >032HA@ 5. — C4(N +T) w.p.a.l.
j=1 P 7=0

The same condition holds when @? is replaced by {@%it}ieja7te[’1‘} fora=1,23.
Assumption 4 parallels the restricted strong convexity (RSC) condition in Assumption 3.1 of

Chernozhukov et al. (2019) who also provide some sufficient primitive conditions.

For any j € {0,---,p}, define Aej = (:)j — @? and Ag} = (:)§-1) — @?’(1), where @g’(l) =

{@? it} nserr) The following theorem establishes the convergence rates of the NNR estimators
’ el te

of the coefficient matrices.

Theorem 3.1 If Assumptions 1-4 hold, for ¥j € {0,--- ,p}, we have
log(NVT) log(NVT)
P Op ( gNAT §N> \ﬁ H =0p ( gN/\T §N>
log(NVT ~(1 log(NVT)
s Ul(m)‘ - Uk,j‘ =0p < gN/\T 5N>

(1) maxpe(r;) |0k,j — ok j| = Op < N/\T512v>;
~ log(N (1 1 1)
(i) % |ve-Vios| =0, ( log(rVT) §N> L -7l <o, ( 1 %VJAV%T&"V),

) 3o,

where O; and 051) are some orthogonal rotation matrices defined in the proof.

Remark 1. Theorem 3.1(i) reports the “rough” convergence rates of the NNR estimators of
the coefficient matrices in terms of Frobenius norm for both the full-sample and sub-sample esti-
mators. Unlike the traditional (N A T)_l/ %_rate in the least squares framework, NNR estimators’
convergence rates in the PQR framework usually have an additional \/W term due to
the use of some exponential inequalities. The extra term 512\, in our rate is due to the upper bound
of | X |, and it disappears in case X;;;’s are uniformly bounded. Theorem 3.1(ii)-(iii) report the
convergence rates for the estimators of the factors and factor loadings of @?, which are inherited
from those in Theorem 3.1(i). To derive these results, we establish the symmetrization inequality
and contraction principle for the sequential symmetrization developed by Rakhlin et al. (2015).

See Lemmas B.8 and B.9 in the online supplement for more detail.

3.2 Second Stage Estimator

To study the asymptotic properties of the second-stage estimators, we add some notation. Define

Z(I)?tq)?t/ and ¥, = Ny ezjq’?t‘p?t/a
1<ci2
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o7 / (1 / 0 _ o7 ! _ P
where @Y, (Uto,vaut, c v Xpat) and Ui = (u zO,uz Xy Uy Xpat)' Let K =378 o K

Note that ®; and ¥, are K x K matrices. We add the following two assumptions.
Assumption 5 There exist constants Cy and cy such that a.s.

0o > Cy > lim sup max Apax (V) > liminf min Apin (W) > ¢y > 0,
p = lim Sup e Ao (V) > i inf min Amin(¥7) 2 ¢y

00 > Cy > lim sup max Amax(®;) > lim inf min Apin (®;) > ¢4 > 0.
N i€ls N i€ly

Assumption 5 is similar to Assumption 8 in Ma et al. (2020). To introduce Theorem 3.2, we
define

!
Wit = (Ut(o), t(11)/X1 ity UgQIXp,z’t) ;

=0 = ((o(()%ﬁo)/, (Ogl)vgl)/Xut, .. ,<oé1)vg’p>,Xp7it>l,

/ 1) .(1 !
u? = (uzo,/07 7u9,,p) ) At,j = ]( ) ’U;j) - U?], Atv - ( ;03 aA;p> )
. (1 A !
A%] - O]( / z(',j) - u?,]? Ai# = AiO? 7A;,p) )
1 « 1 «
I 17
Dl = 23 fuOhtl, DI = 23— 1{e < )],
t=1 t=1

5 ({80 ) = 7 [l <0h -1 e < 298]
t=1

Theorem 3.2 below gives the uniform convergence rate and linear expansion of the factor loading

estimators from second stage estimation.

Theorem 3.2 Suppose Assumptions 1-5 hold. Then for each j € {0,--- ,p}, we have

j , (1) (1) _ log(NVT)
(Z) ’Lg[lzau)?; uirj o O] u?:] ‘2 - Op < g]\7/\T §N>
(7i) max o — oWy0 H -0 log(NVT) 5
ter) 1187 i iy P\ V T NAT SN

(iii) Ay = [DZ-I]_I [DZH +Ji <{Am}t€m>] + 0 ((N Y T)_1/2) uniformly over i € Is.

Remark 2. Theorem 3.2(i) reports the uniform convergence rate for the factor loading esti-
mators of @9 for ¢ € Iy U I3; Theorem 3.2(ii) reports the uniform convergence rate for the factor
estimators of @? for t € [T]; Theorem 3.2(iii) reports the linear expansion for the factor loading
estimators of @2 for ¢ € I3. However, the J; ({At,v} T) term is not mean-zero and represents

te

the bias induced by the first stage NNR. In the third stage below, we aim to remove such a bias

from the linear expansion.
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3.3 Third Stage Estimator

In the debiasing stage, we first apply PCA to all independent variables X ;;, and then run the
row- and column-wise QRs to obtain the final estimators. Below we give Assumptions 6-8 for the
PCA procedure and establish the asymptotic linear expansions of PCA estimates in the online
supplement. Theorem 3.3 below gives the asymptotic distribution of our final factor and factor

loading estimates.
Assumption 6 For all j € [p], there exists a constant M > 0 such that
(i) E(ejitlpji) =0,
. 1 N 2
(ii) E [ﬁ 2i=1 [¢iteiis — E(ej,z‘tej,is)]} <M,

(iii) for alli € [N], 73—y Yu_y [Elejivesis)| < M,

/
]7E

! . _ log NVT _ log NVT
ej’tEJHQ = Op< AT ) and for maxc|n T\/» = Op (~FrT )

/ /
where eM = (6j7i1, ey ejJ-T) B ej,t = (6]'7115, . 6],Nt) , and E] = {ejﬂt}zE[N],te[T}’

(’L"U) maXyec [T]

Assumption 7 For all j € [p],

) / o 07,0
(i) recall that Lg = (l?p'“ ,l?jN) and I/V]Q = (qul,"' ,ng) cimy oo 5yt =X, >0 and
010
My o~ t = Sy > 0,

(ii) the r; eigenvalues of ¥, Xw, are distinct.
Assumption 8 For all j € [p], there exists a constant M > 0 such that

g M and maXye (7] NTGJ tE/LO Op (%)’

(7’) ma‘XtE EHsz 1 ]ze] 2

< M and max;e|n NTGJ tE/WO Op (%)

2
. - 1 T 0 ..
(i) maX;e[N] E Hﬁ D i1 W; ¢€4,it )

Assumption 9 For Vj € [p)],

7| o

1) for each i € [N| and j € [p], {fit(0), fit(0)e; it} is stationary strong mizing across t condi-
]7

) B | fulO)es

tional on 9.

Assumptions 6-8 are stronger than those in Bai and Ng (2020) because we strengthen their
Assumptions Al(c) and A3 to hold uniformly. Assumption 9 imposes some moment and mixing

conditions. Even though fi(-) (the PDF of €; given Z,) is a function of {e;, Zt}ge[p LicN]ee[r) W
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can show that Assumption 9 holds under some reasonable conditions. For example, we consider

the location scale model:

i =Boar+ Y XjauBjae + | Y0+ Y Xjarviae | wie,  with X0 = 1%0), + ejur,
Jj€lp] J€lp]

where u; is independent of {w?t,ej it}je pl.tcT) and ZQ 4 and Bjqt are nonrandom. In this case,
Jzt = Bjit + Vit Lr(uit), € = (70 i+ Z]E[p J, zt%,zt) [uit — 27 (uir)], where 2. (uy) is the 7-
quantile of u;. It is clear that fj;(-) is the function of {e; i} i€l ie(N] te[T] and all factors. However,
if u;; is independent of sequence {ejyit}j elpl.eelT)s Ve observe that f;;(0) is the PDF of u;; — 2, (u;)
evaluated at zero point, which is independent of {ejﬂ;t}j clpltelT]" Therefore, Assumption 9(i) holds
under mild conditions that u;; is independent of the sequence {eit}te[T] and E (Q’t’-@) =0.
Define

T
1 N
VUj,i: T g E[fzt( ]zt“@] Ut]UT?,J’ Vuﬂ’l:E(VuJ>

t=1

T
1
Qu; s = Var 7T ;ej,itvgj(T —1{e; <0})

(3) _ _ o (3)
‘/Ujﬂf — AT Z th(O) ?ztu'?ju'?/ja ‘/:Uj =K (‘/vj,t> ) 91()]) (1 - T N3 ZE ]ztuo,ju?/j)
i€l3 1€l3

—1 -1

zug:u Uj

1{ex <0}) and gmt ej, Ztuo ( -1 {ezt < O}) The following theorem establishes the asymptotic

properties of the third-stage estimators.

Theorem 3.3 Suppose that Assumptions 1-9 hold. Suppose that Assumption 13 in Appendiz B.3
of the online supplement hold. Let O(l) be the bounded matriz defined in the appendix that is
related to rotation matriz Oj(-l). Then we have that Vj € [p),

31 1 1) ¢ T 3,1) 1
(i) = (:J) Wij = O( )Vuj,lnl“thl jit ‘|’R] and \F< i} i;u?]> s N(0,3y,,)
VZEIg,

) A(3,1 A 1 -1 (53 1
(”) U)E,j : - (01(1,]),> 19 - O( ) (V( ,)t) LZzelg €j it + Rtv and ( ) Oq()]) tj) ~

N (0,25;?) vt € [T],
Rj

where max;er, |R;,

= 0p ((N \% T)71/2>, and maxe[r) ‘Riv

= o, ((N v T)’%).

Remark 3. Theorem 3.3 reports the linear expansions for the factor and factor loading es-
timators for each slope matrix obtained in Step 3. Compared with Chernozhukov et al. (2019),
Theorem 3.3 obtains the uniform convergence rate rather than the point-wise result for the re-

minder terms R{u and R{v In addition, since the regressors in the debiasing step are obtained
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from Step 2 instead of Step 1, we don’t have independence between the regressors and error terms,
which makes the proof more complex than that in Chernozhukov et al. (2019). See the proof in
the appendix on how to handle the dependence. Assumption 13 in the online supplement is a
regularity condition on the density of €;.

Following Theorem 3.3 and estimators defined in Table 1, we have that Vj € [p], Vi € [IN] and
vt e [T,

~(a,b) ®. 0 _ ~A®-11 0 10 '
7,3 - Ou,]uz,] - Oj uj ’LT Z Ut,jbj,zt + ,R’z,ua
t=1
~(ab) ®N\ L o ® (@)t 1 0 ¢0 j
L (Ou,j) v = 0; (ij,t) N D s T Ri
@ iel,

where V(a) - Sier, Jit(0)e3 yud uds, a € [3] and b € [3]\ {a}.

J7 2% ZJ’

leen the above estimates for the factors and factor loadings, we can estimate G)J i by
SV IRCTL U
a€[3] be[3]\{a} Y
where 1;, = 1{i € I,} for i € [N]. Let :?Zt = %v?;Zu],lvt] + Za 1 N wuo’ x5 u ]. The

following proposition studies the asymptotic properties of @J,zt

Proposition 3.4 Under Assumptions 1-9 and Assumption 13, Vj € [p| we have

-1
LA 3 ~
(i) ©ji — 9?” = Za:l u?”] (VU(;T%) N%L >ier, Siirtliva + U?;Vujlclp Zt* b zt* + 'th, where
((vvr)=72),

_ log NVT
o,

(6 — 6 ) ~ N (0,1).

MaX;e15,te[T]

e 0
jiit — ©

Jsit

(ii) max;e|

1/2
(i) ( g5, zt)
Remark 4. Proposition 3.4 establishes the distribution theory for the slope estimators. Recall
that we remove the principle component from the independent variables Xj; which is the key
point in the debiasing step and why we don’t have the distribution theory result for the intercept
estimates éo,z‘t in the current framework. However, once we have the distribution theory for the
slope estimates, we can follow Chen et al. (2021) and obtain a new estimator for @8’“ from the

smoothed quantile regression and establish its distribution theory. We leave this for the further

research.

To make inference for uZ o7 vt o7 and O 5 it» One needs to estimate their asymptotic variances 3y, ;,
¥y, and = :j,it consistently. Let k(- ) be a PDF-type kernel function and K () be its survival function
such that [k(u)du = 1 and K(u) := [ k(v)dv. Let hy be the bandwidth such that hy — 0
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with N — c0. Define KhN( ) = K( : ), khN(') = ﬁk(f) Let éz‘t = it_é(],it_zj'e[p] Xj,z‘téj,it,
~ ~(a,b) ~(a,b)! A ~(a,b) ~(a,b)!
Visg = § Zae[?)] Zbe B\{a} U,g] )vi J ) cand U5 = 5 Zae 3] Zbe[3 I\{a} u( )UZ(-,]' ) 1;,. Define

§ E khN 6zt _]ztvt,t,]7 vj E § khN ﬁzt ]ufuz,z,ja

zE[N te[T) zG[N] te[T)
T—-T1 t+T1
D IR DILLEEE MATED Dl SR > Y St
1€[N] \ te[T] t=1 s=t+1 t=14T} s=t—T}
~ 1—7’ N ~ A A ~ ~ A A
Q, = Z Zemuw, Su; =V ', V.1, 8, =V, 10, VL
i€[N] te[T

.. Y- . _ €it — &
where Sjits = €;it€},isVt,s,j [7‘ K (hiv)} [7’ K (hlj\j

2 ab)/ 5(@b) 1 Slabs o (ab)
Samg e 2 (s gty Sl )

a€[3 be[3]\{a}

)} . We further define

Let Fjs(-,-) and f4s(-, ) denote the joint CDF and PDF of (e, €;5) given %, respectively. To

justify the consistency of the variance estimators, we add the following assumption.

Assumption 10 (i) [T k(u)du =1, [T k(u)w/du =0 forj € {1,--- ,m—1} and [T2° k(u)u™du #
0 form > 1.

1/4
(ii) hy = 0 and (B5G0) T8 S0,

2T
(iii) Th — oo and 10%&,]7\\7/?) Egz L= 0.
N

() fit(c) is m times continuously differentiable with respect to ¢ and f;s(c1,c2) is m times

continuously differentiable with respect to (c1,c2).
(v) Yi € [N], Vi = Vi, and Qi = Q-

(UZ) Va € [ ] ‘/Uj = Z E flt( ) z] z]] +0p( ) and Qg)?) = T(l ™) Z ]E( ’Lj ?/j) +
zE[N] ie[N]
op(1).

Assumption 10(i)-(iv) are standard for consistent estimation of the asymptotic variance matrix;
see, e.g., Chen (2022) and Galvao and Kato (2016). Assumption 10(v) imposes the homogeneity
moment condition across individuals, and Assumption 10(vi) assumes the moments calculated
from subsamples are close to those from the full sample given the random splitting. Under
Assumption 10, following the idea of Chen (2022), we establish in Lemma B.33 of the online

supplement the consistency of i]uj and i]vj. Similar conclusions hold for the other estimates.
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4 Specification Tests

In this section, we consider two specification tests under different rank conditions.

4.1 Testing for Homogeneity across Individuals or Time

When K; = 1 for some j € [p], it is interesting to test whether the matrix 99’ is homogeneous
across individuals (i.e., row-wise) or across time (i.e., column-wise). For these two cases, we can

write factors and factor loadings as

0o _ U 0o _ v .
u;j =uj+c; and v, =v;+c;, respectively,

0
i?j
and alternative hypotheses can be written as

where u; = % ZZJ\L L u; - and v = % 23:1 vg ;- For the homogeneity across individuals, the null

HE ci;j=0 Vie[N] wvs. HI ci'; # 0 for some i € [N]. (4.1)
Similarly, for the homogeneity across time, the null and alternative hypotheses can be written as
HE ci; =0 Vte[T] wvs. HT cy; # 0 for some t € [T7. (4.2)

Note that we aim to test the two null hypotheses separately. That is, we can test for homogeneous
slope across individuals while allowing for heterogeneous slopes across time and vice versa. This
is different from the majority of the literature which either tests for slope homogeneity across
individuals while assuming the slopes are homogeneous across time or tests for structural breaks
across time while assuming the slopes are homogeneous across individuals.

We first consider testing Hé . Following the lead of Castagnetti et al. (2015), we define®

(a,b)

Sft‘;’b) = max T(&EZ’b) — ﬁga’b))lEu (4, i ﬁga’b)) and
S, = max <S<3 B Sg’?’),sg’?)) , (4.3)
where ﬁg ab) — N%l Yic I, UEZ ) Similarly, to test for HI!, we construct

0, = ma (S0, 29, 519
J ’Uj ? 'Uj Y ’l}j 9

where )
b _ b)) a(@b)ve—1,-(ab)  ~(ab S(ab) b
s g%Nd? VS oG = ), St = S8l —b(T),
f)j th 111” , and b(n) =logn — £ loglogn —logI'(}) for n € {N,T,NT}.
2 Alternatively, we can also define S" = max (S(S 2) 5(2 b S(l 3)> . It is easy to show that this statistic shares

the same asymptotic null distribution as Sy;. But due to the unknown dependence structure between the two, we

cannot take the maximum or the other continuous function of S, y and Sﬁj as a new test statistic.
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To proceed, we introduce some notation. Recall that b?lt = e, zt’Utj( — 1{e; <0}) and
5?,it = ej:itu?,j (1 —1{eir < 0}). Define
1 2 ~(3)) ~1 3 ~ 9y ~1 4 o 1
o) = 7 62 = (V) €0 68 = (V) b and b8 = (70) el

/
Let ) = (6, 6%, ) for £ € [4]. Define

L Se(aWa), ZE( B

t=1 s=1
@ )
Z%:Q]E( ) and % ;E( o8 )

We add the following two assumptions.

Assumption 11 Vj € [p], we assume
5\ Z )\max (Euj) 2 )\min (Euj) Z A > 07 5\ 2 )\max (Evj) Z )\min (Evj) Z A > 0.

Assumption 12 (i) There exists a high dimensional Gaussian vector Zg) ~N (O, Egg) such
(1 1
o | 20y 28] =

(ii) There exists high dimensional Gaussian vectors Zg) ~ N (O E ) for £ =2,3,4 such that
(Zg), Zg), Zg)) are independent,

2 2 3 3
Wi Z%( ) ( ) = 0p(1 ~ ( ) (%) =0p(1), and

zEI max 16[ max

1
- Z %(4) Z(4) _ Op(l).

max

Assumption 11 implies that both ¥, and Ev are well behaved Assumption 12 imposes that

we can approximate high dimensional vectors \F Zte 7] %5 t), TN Yic Is 522, N Y ic I %(3)

and JTT dien %S-ﬂ-) by four Gaussian vectors. Similar conditions have been imposed in the liter-
ature; see, e.g., Assumption SA3 Lu and Su (2021).
The following theorem reports the asymptotic properties of S,; and S,;, under the respective

null and alternative hypotheses.

Theorem 4.1 Suppose that Assumptions 1-12 and Assumptions 13 in the online supplement hold
and (N, T) — oco. Then
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(i) Under H!, we have P (%Su]. <z+b(N)) = e ¢ "; and under H}!, we have P (Sy, <) —

_Q2,—
e3¢ ",

2
c”;fj ’2 — oo, we have P(Suj > ca,l.N) — 1 with co1.n =

(i) Under HY, if ﬁmaXiE[N}

2
2b(N)—log [log (1 — )|? and « is the significance level. Under H{, if% max;ery Hcf’jH2 —

oo, we have P (Svj > C%g) — 1 with cq2 = —log (—% log (1 — a)).

Remark 5. Theorem 4.1 implies that our test statistics follow the Gumbel distributions

asymptotically under the null, are consistent under the global alternatives, and have non-trivial

power against the local alternatives. The power function of S,,; approaches 1 as long as ﬁ max;

diverges to infinity as (N,T) — oc.

4.2 Test for an Additive Structure

When K; = 2 for some j € [p], it is interesting to test whether @?’it exhibits the additive structure
which is widely assumed in a two-way fixed effects model. That is, one may test the following null

hypothesis
mir 0% = Nji + fie, V(i,t) € [N] x [T], (4.4)

The alternative hypothesis HI™ is the negation of Hél I
a Ia _ 1 0 e _ _1 0
Let ©j. = 7 Zte[T @] it @ =N, Ziela ©j it and @j = N.T Ziela Zte[T] O for a € [3].
Define
_ @O

0r =09, -0, @It+® Vi€ It € [T),5 € [p].
Note that 07, = 0V (i,t) € [N] x [T] under HIH . So we can propose a test for HE!! based on

estimates of @"7 it Define

Z @Jﬂt’ @j[‘,a-t A Z ©;it, and @IG =

tE[T i€l, zela te(T)

jzt

for a € [3]. Then, we can define the sample analogue of é);‘zt as

0% =01 — O, @fat + @ Vi€ I,,t € [T),5 € [p].
Its corresponding asymptotic variance can be estimated by I Tt defined as

SoLY Y 4 ( ) 5, (35 - )

aE (3] be [3]\{a}

s < ) (559 - ),

aE (3] be [3]\{a}

where ;""" = N Dicl, uZ(C; Y and v . =7 Zte[T . Then, the final test statistic is

T:ie[}\lflﬁ}é[ﬂ< m) i
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The following theorem studies the asymptotic properties of Sy under the null and alterna-

tives.

Theorem 4.2 Suppose Assumptions 1-13 hold and (N, T) — co. Under H({H,

1 —z
P <2SNT <z+ b(NT)) —e

under H{H, if logNTT max;e(N],e[T ’@jzt — 00, then we have P(Snt > cognt) — 1 with

a3 NT = 2b(NT) — log |log (1 — )|?.

Similar remark after Theorem 4.1 holds here. In particular, Sy7 has the desired asymptotic

Gumbel distribution under the null and is consistent under the global alternative.

5 Monte Carlo Simulations

In this section, we conduct a set of Monte Carlo simulations to show the finite sample performance

of our low-rank quantile regression estimates and specification tests.

5.1 Data Generating Processes

Below we will consider the following data generating process (DGP):
Yii = Oout + X;,0u + (1 + 0.1X7 ;4 + 0.1X02 51 )usy,

where Xy = (X1, X2.it)', ©it = (©1,4it,02.t), Oo.it is the intercept term which will be specified
via the IFEs.

First, we consider four DGPs where the rank of each slope matrix is 1:

DGP 1: Constant slope with i.i.d. error. Let ©g; = \;fi, where \;, ft ~ N(2,5). Then let
Ot = Ogit = 2V (i,t) € [N] x [T, and X3 = 19w}, + U(0,1) for j € {1,2} with 17,
l%i, w%t and wyy ~ U(0,1). thiad t\(})

DGP 2: Factor slope with rank 1 and i.i.d. error. Same as DGP 1 except that the slope
coefficients follow the factor structure with one factor rather than homogeneous across
both individuals and time, i.e., ©1; = a1,91,t, ©2,it = a2;92,¢, where a1, g1+, az; and

g2+ ~ N(0,2). Except these, all other settings remain the same as in DGP 1.

DGP 3: Constant slope With serial correlation. Same as DGP 1 except that we set uy =

0.2u; 1+ €it, €it " % and all other settings remain the same.

DGP 4: Factor slope with rank 1 and serial correlation. Same as DGP 2 except that we

set wir = 0.2u; 41 + €it, €it i t\(/g) and all other settings remain the same.
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For the case that the rank of the slope matrix is 2, we consider two DGPs which have the
additive structure for the slope coefficient of one regressor and the factor structure with two factors

for the slope coeflicient of another regressor. Specifically,

DGP 5: Additive and factor slopes with i.i.d. error. Og; = \;f;, ©1, = a1; + g1+ and
Og,it = ah ;92,4 such that as; = (a2,1,02,,2)", 920 = (92,41, 92,4,2)"s Ny frs a1, g1, ~ N(2,5)
and CLQ’Z‘J, a27i’2,gg7i71,927i72 ~ N(O, 5) MOI‘GOVGI‘, Xl,it = l(l],iw?,t—i_U(O? 4), Xgﬂ't = lg’i’w%tﬁ—

Beta(2,5) with I{ ;,w?, ~ U(0,4) and 13 ;, w9, ~ Beta(2,5). g A8 %

DGP 6: Additive and factor slopes with serial correlation. Same as DGP 5 except that
the error u; follows AR(1) process like in DGPs 3 and 4.

5.2 Estimation Results

For © € RVXT | define RMSE(O) = \/% e - @OHF. Table 3 shows the RMSEs of the full-
sample low rank matrix estimates under different quantiles for each DGP. As Theorem 3.1(i)
predicts, the RMSEs decrease as both N and T increase. Given the fact that N AT = T in the
simulations, the decrease of the RMSEs is largely driven by the increase of T.

Table 4 reports the frequency of correct rank estimation by the singular value thresholding
(SVT) approach based on 1000 replications. Note that the true ranks of the intercept and slope
matrices in DGPs 1-4 and 5-6 are 1 and 2, respectively. The results show that the SVT can
accurately determine the correct rank of the coefficient matrices in all DGPs for all three quantile

indices under investigation.

5.3 Test Results

In Section 4, we define S,,; and .S, as the sup-type test statistics. Table 5 reports the empirical size
and power at the 5% nominal level for the null hypothesis that the slope coefficient is homogeneous
across either ¢ or . The results in DGPs 1 and 3 give the empirical size, and those in DGPs 2
and 4 give the empirical power. As the results in Table 5 indicate, our tests have reasonable size
despite the fact that they are slightly conservative like most extreme-value based sup-tests in the
literature. In terms of power, out tests have superb power in both DGPs across all three quantile
indices.

Table 6 shows the empirical size and power of our test for DGPs 5 and 6. The findings are
similar to those in Table 5. In particular, our tests are a bit conservative under the null. The

empirical power tends to 1 quickly as T' increases.

6 Empirical Study

In this section we consider two empirical applications: the heterogeneous investment equation and

the heterogeneous quantile effect of foreign direct investment on unemployment.
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Table 3: RMSEs of low rank estimates in the full sample

7T=0.25 7 =0.50 T=0.75

bGP N T 5 &5 &, 6 61 6 60 61 62

35 0922 0.324 0329 1.242 0.288 0.297 1.839 0.609 0.658

70 0707 0280 0275 0.819 0220 0203 1266 0519 0.523
1 35 1012 0337 0340 1.099 0258 0262 1.932 0661 0.623
150 70 0745 0272 0265 0825 0205 0.206 1324 0522 0.504
. % 0871 0521 0505 0881 0704 0680 1278 1055 0970

70 0.692 0.401 0.373 0.672 0.553 0.537 1.057 0.744 0.768
2 35 0.877 0.507 0.480 1.022 0.790 0.815 1.334 1.018 1.040
150 70 0.703 0374 0.373 0.689 0.531 0.538 1.059 0.829 0.787

35 0945 0.334 0.329 1.115 0.280 0.265 1.876 0.630 0.627
70 0.682 0.286 0.279 0.809 0.230 0.214 1.244 0.486 0.492
3 35 0973 0.334 0.331 1.211 0.287 0.291 1.771 0.590 0.612
70 0.757 0.274 0.272 0.801 0.208 0.195 1.360 0.494 0.527

35 0.885 0.515 0.519 0915 0.693 0.723 1.382 1.125 1.037
70 0.669 0.393 0.384 0.652 0.511 0.520 1.053 0.812 0.774
4 35 0.889 0.513 0.483 0.905 0.761 0.686 1.409 1.118 1.133

150 70 0.725 0376 0.377 0.717 0.547 0.565 1.058 0.724 0.775

75

35 0.218 0.268 0.450 0.307 0.308 0.606 0.844 0.466 0.936
70 0.174 0.226 0.414 0.213 0.200 0.493 0.610 0.388 0.838
5 35 0.236 0.245 0.458 0.299 0.291 0.634 1.299 0.863 1.778

150 70 0.174 0.214 0.423 0.216 0.203 0.450 0.629 0.377 0.679

75

35 0.253 0.267 0.293 0.382 0.227 0.421 1.293 0.609 0.892

70 0.207 0.239 0.278 0.261 0.192 0.366 0.576 0.287 0.415

6 35 0.225 0.254 0.269 0.363 0.225 0.422 1.486 0.695 0.992
150 70 0.193 0.254 0.263 0.254 0.171 0.379 0.797 0.391 0.551

75

6.1 Investment Equation

In this subsection, we revisit the investment equation. Fazzari et al. (1988) point out that in-
vestment may show sensitivity to movements in cash flow when firms face constraints for external
finance. Since Fazzari et al. (1988), there has been a large literature on the effect of cash flow
on the corporate investment; see Devereux and Schiantarelli (1990), Gilchrist and Himmelberg
(1995), Kaplan and Zingales (1995), Cleary (1999), Rauh (2006), and Almeida and Campello
(2007), among others. Using the panel dataset, we consider the scaled version of the investment
equation as follows:
K,,Iltt_l = Ot + @1,z‘tlgfi + O2,itqit—1 + Wit

where I is the corporate investment, C'F' is the cash flow, ¢ is the Tobin’s q, K is the capital stock
and u is the innovation. ©q ;; refers to the fixed effects (FEs). Rather than the mean estimation,
Galvao and Wang (2015) estimate the effects of the firm’s cash flow and Tobin’s q on investment
at different quantiles. By using the panel quantile regression with individual FEs, they show that
the slope estimates change across 7. However, they do not allow the slope coefficients, ©1 and

O, to change either over ¢ or ¢. Inspired by Galvao and Wang (2015), we estimate the following
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Table 4: Frequency of correct rank estimation via the SVT approach

T=0.25 T =0.50 T=0.75

beb N T R K ke ke K K Ky K K

35 1.00 0.996 0.996 1.00 0.999 1.00 1.00 0.999  0.999

7 70 1.00 0.994 0.996 1.00 1.00 1.00 1.00 1.00 1.00
1 35 1.00 0994 0.995 1.00 1.00 0.999 1.00 1.00 0.999
150 70 1.00 0.995 0.996 1.00 0.999 1.00 1.00 0.999  1.00
75 35 1.00 0.993 0.999 1.00 0.999 1.00 1.00 1.00 1.00

70 1.00 0997 0998 1.00 1.00 100 100 1.00  1.00
2 35 1.00 0995 0996 1.00 0998 1.00 1.00 1.00 1.00
150 76 100 100 100 100 1.00 0998 1.00 1.00  1.00

35 1.00 0990 0.997 1.00 0.997 0.997 1.00 0.999 0.999
70 1.00 0.994 0.994 1.00 0.999 0.999 1.00 0.999 0.998
3 35 1.00 0999 0.992 1.00 1.00 1.00 1.00 1.00 1.00
70 1.00 0.996 0994 1.00 0.998 1.00 1.00 1.00 1.00

35 1.00 0992 0991 1.00 0.999 0.999 1.00 0.999 1.00
70 1.00 0995 0995 1.00 0.999 0.999 1.00 1.00 1.00
4 35 1.00 0.996 0.997 1.00 0.999 1.00 1.00 1.00 1.00

150 70 1.00 0.997 0.999 1.00 0.999 1.00 1.00 1.00 1.00

75

35 100 100 100 100 1.00 100 100 100 1.00
70 1.00 100 100 100 1.00 100 100 100  1.00
5 35 100 100 100 100 1.00 100 100 100  1.00

150 76 100 100 100 100 100 1.00 1.00 1.00  1.00

75

35 100 1.00 1.00 100 100 100 1.00 100  1.00
70 1.00 100 100 1.00 1.00 100 100 1.00  1.00

6 35 1.00 1.00 0999 1.00 1.00 100 100 1.00 1.00
150 70 100 100 100 1.00 1.00 1.00 1.00 1.00  1.00

75

model

2 (IKit} {CFKy, Qi,tfl}tE[T} ; {@j,it}te[T]Je{&l,Q}) = O0,it(7) + 01,1t (7)) CF Ky 4+ O2,44(7)qi 11,
(6.1)

where 1K;; = ﬁ’ and CFK; = 1? lj fl. Here we don’t restrict the specific structure on the

FEs and they can be either additive or interactive.

The data are taken from the China Stock Market & Accounting Research (CSMAR) Database.
We use quarterly data for 195 manufacturing firms in China from 2003 to 2020. Based on the
model (6.1), we define corporate investment as Iy = LI;; — L1I;;—1, where LI is the total value
of long-term corporate investment as the sum of long-term equity investment, long-term bound
investment, fixed assets and immaterial assets. The investment measures the change of firm’s
total investment compared to the last period. All these four variables can be easily obtained from
the balance sheet. We directly use Tobin’s q from the CSMAR database, where by definition
q= % and MV is the market value of the firm. We obtain a balanced panel dataset with 195
firms and 72 time periods. The units of corporate investment, capital and cash flow are measured
by billions of Chinese RMB.

By using the SVT approach, we obtain the estimates of the ranks of ©1 and O, : 7y = 79 = 1 for
each 7 = {0.25,0.5,0.75}. Consequently, we can consider the test that whether ©;; is constant

over ¢ or constant over ¢ for both j = 1,2. Specifically, we want to test whether the effect of
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Table 5: Empirical size and power of testing slope homogeneity across either i or ¢ (nominal level:

0.05)

T =0.25 7=0.5 T=0.75

DGP N T
ul v1 u v2 ui v1 u2 v2 (751 v1 ug v2

35 0.040 0.051 0.049 0.032 0.024 0.054 0.034 0.054 0.036 0.047 0.036 0.048

75 70 0.040 0.055 0.050 0.044 0.020 0.056 0.017 0.068 0.025 0.037 0.029 0.029

DGP 1 35 0.028 0.036 0.058 0.048 0.065 0.054 0.052 0.055 0.074 0.030 0.076 0.024
150 70 0.034 0.025 0.030 0.023 0.035 0.048 0.028 0.040 0.035 0.025 0.039 0.025

35 1.00 100 1.00 100 100 1.00 100 1.00 100 1.00 1.00  1.00

70 100 100 100 100 1.00 100 1.00 100 1.00 1.00 100  1.00

DGP 2 35 1.00 100 1.00 100 1.00 1.00 100 1.00 100 1.00 1.00  1.00
150 29 100 100 100 100 100 100 100 100 100 1.00 1.00  1.00

35 0.045 0.057 0.050 0.041 0.022 0.050 0.038 0.089 0.054 0.047 0.049 0.047
5 70 0.048 0.031 0.031 0.033 0.028 0.086 0.023 0.069 0.041 0.046 0.032 0.038
DGP 3 35 0.065 0.054 0.058 0.034 0.064 0.051 0.068 0.045 0.084 0.018 0.089 0.023

150 70 0.046 0.030 0.044 0.025 0.022 0.037 0.037 0.030 0.046 0.022 0.048 0.015
35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DGP 4 35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
150 70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

cash flow and Tobin’s q on the firm’s investment is homogeneous over i or across t with market

imperfection. That is, for j € {1,2}, we shall test

e H{: ©;; is a constant over 4,
° Hg: ©j it is a constant over ¢.

Figure 1 shows the estimation results for the factor and factor loadings of two slope coefficient
matrices under different quantiles. In each sub-figure, the first and second rows report the results
for ©1 and O3, respectively. Specifically, the first row of Figure 1(a) gives the plot of {ai71}i€[N]
as a catenation of {222(’1172), fcgi’g), ﬂg’l’l)} at the left and as a cantenation of {ﬁg}fg), ﬂg’?l’l),ﬁz(-i’2)} at
the right in the first row, and similarly the plot of {127;72}2.6[1\7] in the second row. Similarly, the
first row of Figure 1(d) shows {@gﬁ’b)}tem for a € [3], b € [3]\ {a} in the first row and {@t(%’b)}te[T]
for a € [3], b € [3] \ {a} in the second row.

Table 7 reports the test statistics, critical values, and p-values. Tobin’s q can measure a firm’s
investment demand. After controlling the Tobin’s q and the intercept FEs, the coefficient of cash
flow captures a firm’s potential for external investment with the variation of internal finance. It
is clear that we can reject the homogeneous hypotheses for both 7 and ¢ at the 1% significance
level for each 7 € {0.25,0.5,0.75}. This indicates that with high probability, the slope coefficient
of both C'FFK and Tobin’s q follow the factor structure with one factor.
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Table 6: Empirical size and power for testing additive slopes (nomial level: 0.05)

7=0.25 7 =0.50 7T=0.75
DGP N . . .
size power size power size power
- 35 0.027 0.807 0.034 1.00 0.026  0.979

70 0.065 1.00 0.061 1.00 0.034 1.00
DGP 5 35 0.018 1.00 0.026 1.00 0.011 1.00
150 29 0012  1.00 0020 100 0010 1.00

35 0.039 0796 0.058 1.00 0.045 0.979
70 0.024 1.00 0.06 1.00 0.032 1.00
DGP 6 35 0.019 1.00 0.025 1.00 0.022 1.00

150 79 001 1.00 0022 100 0014 1.00

75

The above study shows strong evidence that under imperfect market, the sensitivity of corpo-
rate investment to cash flow exhibits both individual heterogeneity and time heterogeneity across
quantiles. It implies that neither the usual homogenous panel QR model nor the panel QR model
with either cross-section or time heterogeneity alone in the slope coefficients fails to fully capture

the unobserved heterogeneity in the investment equation.

Table 7: Test results under different quantiles for the investment equation

T Test S CVU4=0.01 CUa=0.05 CUa=0.1 p-value
ucrg  1.28 x 103 0.00
" 416 % 10% 16.94 13.68 12.24 0.00
; ) )
025 york 13.85 0.00
Vg 870.85 5.70 4.07 3.35 0.00
UCFK 148.28 0.00
g 124 % 105 16.94 13.68 12.24 0.00
050 yopk 49.57 0.00
Vg 138.83 570 el 8.5 0.00
u 9,03 x 104 16.94 13.68 12.24 0.00
. ) .
075 vork 31.50 0.00
. 5529 5.70 4.07 3.35 0.00
’ . )

Notes: S is the test statistics for the factor or factor loadings under different
quantiles, H§ (CFK) and H§(q) refer to the hypotheses that the slope of CFK
and Tobin’q is homogeneous across i, respectively. HS(CFK) and H§(q) refer
to the the hypotheses that the slope of CFK and Tobin’q is homogeneous
across t, respectively. cvqa—q is the critical value under the significance level
a where a=0.1, 0.05, and 0.01.
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der 7 =0.25 der 7 = 0.5 der 7 =0.75
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(d) factor estimates under 7 = (e) factor estimates under 7 = ) factor estimates under T =
0.25 0.5 0.75

Figure 1: Factor loading and factor estimates under different quantiles

6.2 Foreign Direct Investment and Unemployment

Investment is one of the major driving forces for economic growth and employment. Among the
investment, foreign direct investment (FDI) is an important contributor to the employment. See
Craigwell (2006), Aktar et al. (2009), Karlsson et al. (2009), Mucuk and Demirsel (2013), and
Strat et al. (2015), among others. Controversially, Mucuk and Demirsel (2013) argue that FDI
may have both positive and negative effects on employment. On the one hand, FDI adds to the
net capital and creates jobs through forward and backward linkages and multiplier effects in local
economy. On the other hand, acquisitions may rely on imports or displacement of existing firms
which may result in job loss.

To study the relationship of FDI, economic growth rate and unemployment at the country

level, we consider the following panel quantile regression model,

2; (Uit‘ {Git—1, FDILit} ey 7{@j7it}t€[T},j€{0’172}> = 00,it(7) + O1,i(7)Gi—1 + O24(7)F DIy,

where Uj; is the unemployment rate of country i at year ¢, G ;—1 is the economic growth measured
by the growth of real GDP. O ;; is the FEs of country ¢ and year ¢, ©1 is the elasticity of the
economic growth in the previous year to the unemployment this year, and ©3 ;; is the elasticity of
FDI to the unemployment.

We draw the data for 126 countries from 1992-2019. The data for the unemployment rate
are taken from International Labor Organization (ILO) and GDP growth and FDI are from the
World Bank Development Indicators (WDI) historical database. The rank estimation procedure
shows that 71 = 2 and 7o = 1. Consequently, we can test whether the elasticity of FDI to the

unemployment rate is homogeneous across individual countries and over years 1992-2009, and
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whether the elasticity of growth rate to unemployment follows the additive structure, i.e.,

o Hf: O14 =01, + 014,
° Hg: O3, is a constant over 4,

e H§: O is a constant over ¢.

Table 8 reports the test results under quantiles 0.25, 0.5 and 0.75 for the above three null
hypotheses. Figure 2 gives the estimation results for the factor and factor loading estimates of the
slope coefficient ©5. As Table 8 suggests, we can reject all the above three null hypotheses safely
at the conventional 5% significance level. This means that the effect of FDI on the unemployment
rate is different across both countries and time even though the estimated rank of ©9 is one, and
the effect of economic growth rate on the unemployment is heterogeneous across both countries

and time and it does not exhibit an additive structure.

Table 8: Test results under different quantiles

Test T S CVa=0.01 CVa=0.05 CUaq=0.10 p—value
0.25 38.92 35.55 32.29 30.85 0.00

He 050 80.84 22.29 19.03 17.59 0.00
0.75 66.24 35.55 32.29 30.85 0.00
0.25 1.41 x 106 0.00

6

Hd 050 6.39x10 16.15 12.89 11.45 0.00
0.75  3.07 x 107 0.00
0.25 36.36 0.00
0.75 5.44 0.013

7 Conclusion

This paper considers panel QR model with heterogeneous slopes over both ¢ and t. Compared
to Chernozhukov et al. (2019), to remove the bias from the nuclear norm regularization, we
split the full sample into three subsamples. We then use the first subsample to compute initial
estimators via NNR, the second sample to refine the convergence rate of the initial estimator, and
the last subsample to debias the refined estimator. Our asymptotic theory shows that the factor
estimates, factor loading estimates and the slope estimates all follow the normal distributions
asymptotically. By constructing the consistent estimator for the asymptotic variance, we also
conduct two specification tests: (1) the slope coefficient is constant over time or individuals under
the case that true rank of slope matrix equals one and (2) the slope coefficient exhibits the additive

structure under the case that true rank of the slope coefficient matrix equals two. Our test statistics

29



=
T
c 8 8
§ 3 8§ & 8 § & 8§

£ 8 & B
=
=
8 8

(a) factor loading estimates un- (b) factor loading estimates un- (c) factor loading estimates un-
der 7 =0.25 der 7 = 0.5 der 7 =0.75

(d) factor estimates under 7 = (e) factor estimates under 7 = (f) factor estimates under 7 =
0.25 0.5 0.75

Figure 2: Factor loading and factor estimates of @9 under different quantiles

are shown to follow the Gumbel distribution asymptotically under the null, consistent under the
global alternative and have non-trivial power against local alternatives. Monte Carlo simulation

and empirical studies illustrate the finite sample performance of our algorithm and test statistics.

References

Aktar, 1., Demirci, N., and Oztiirk, L. (2009). Can unemployment be cured by economic growth
and foreign direct investment? Sosyal Ekonomik Arastirmalar Dergisi, 9(17):452-467.

Alidaee, H., Auerbach, E., and Leung, M. P. (2020). Recovering network structure from aggregated
relational data using penalized regression. arXiv preprint arXiw:2001.06052.

Almeida, H. and Campello, M. (2007). Financial constraints, asset tangibility, and corporate
investment. The Review of Financial Studies, 20(5):1429-1460.

Ando, T. and Bai, J. (2016). Panel data models with grouped factor structure under unknown

group membership. Journal of Applied Econometrics, 31(1):163-191.

Athey, S., Bayati, M., Doudchenko, N., Imbens, G., and Khosravi, K. (2021). Matrix completion
methods for causal panel data models. Journal of the American Statistical Association, pages
1-15.

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1):135—
171.

30



Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models.
Econometrica, 70(1):191-221.

Bai, J. and Ng, S. (2019). Rank regularized estimation of approximate factor models. Journal of
Econometrics, 212(1):78-96.

Bai, J. and Ng, S. (2020). Simpler proofs for approximate factor models of large dimensions. arXiv
preprint arXiw:2008.00254.

Baltagi, B. H., Kao, C., and Wang, F. (2021). Estimating and testing high dimensional factor
models with multiple structural changes. Journal of Econometrics, 220(2):349-365.

Belloni, A., Chen, M., Padilla, O. H. M., and Wang, Z. (2022). High dimensional latent panel

quantile regression with an application to asset pricing. Annals of statistics, forthcoming.

Bonhomme, S. and Manresa, E. (2015). Grouped patterns of heterogeneity in panel data. Econo-
metrica, 83(3):1147-1184.

Castagnetti, C., Rossi, E., and Trapani, L. (2015). Inference on factor structures in heterogeneous
panels. Journal of Econometrics, 184(1):145-157.

Chen, L. (2015). Estimating the common break date in large factor models. Economics Letters,
131:70-74.

Chen, L. (2022). Two-step estimation of quantile panel data models with interactive fixed effects.

Econometric Theory, forthcoming.

Chen, L., Dolado, J. J., and Gonzalo, J. (2021). Quantile factor models. Econometrica, 89(2):875—
910.

Chen, Y., Chi, Y., Fan, J., Ma, C., and Yan, Y. (2020). Noisy matrix completion: Understand-
ing statistical guarantees for convex relaxation via nonconvex optimization. SIAM journal on
optimization, 30(4):3098-3121.

Cheng, X., Liao, Z., and Schorfheide, F. (2016). Shrinkage estimation of high-dimensional factor
models with structural instabilities. The Review of Economic Studies, 83(4):1511-1543.

Chernozhukov, V., Hansen, C. B., Liao, Y., and Zhu, Y. (2019). Inference for heterogeneous

effects using low-rank estimations. Technical report, CEMMAP working paper.

Cleary, S. (1999). The relationship between firm investment and financial status. The Journal of
Finance, 54(2):673-692.

Craigwell, R. (2006). Foreign direct investment and employment in the english and dutch-speaking
caribbean. ILO Subregional Office for the Caribbean.

31



Devereux, M. and Schiantarelli, F. (1990). Investment, financial factors, and cash row: Evidence
from uk panel data. Asymmetric Information, Corporate Finance, and Investment, pages 279—
306.

Fazzari, S., Hubbard, R. G., and Petersen, B. C. (1988). Financing constraints and corporate
investment. Brookings Papers on Economic Activity, (1):141-206.

Feng, J. (2019). Regularized quantile regression with interactive fixed effects. arXiv preprint
arXiv:1911.00166.

Galvao, A. F., Gu, J., and Volgushev, S. (2020). On the unbiased asymptotic normality of quantile
regression with fixed effects. Journal of Econometrics, 218(1):178-215.

Galvao, A. F., Juhl, T., Montes-Rojas, G., and Olmo, J. (2018). Testing slope homogeneity in
quantile regression panel data with an application to the cross-section of stock returns. Journal
of Financial Econometrics, 16(2):211-243.

Galvao, A. F. and Kato, K. (2016). Smoothed quantile regression for panel data. Journal of
Econometrics, 193(1):92-112.

Galvao, A. F. and Montes-Rojas, G. V. (2010). Penalized quantile regression for dynamic panel
data. Journal of Statistical Planning and Inference, 140(11):3476-3497.

Galvao, A. F. and Wang, L. (2015). Efficient minimum distance estimator for quantile regression

fixed effects panel data. Journal of Multivariate Analysis, 133:1-26.

Gilchrist, S. and Himmelberg, C. P. (1995). Evidence on the role of cash flow for investment.
Journal of Monetary Economics, 36(3):541-572.

Golub, G. H. and Van Loan, C. F. (1996). Matriz Computations. JHU Press.

Hong, S., Su, L., and Jiang, T. (2022). Profile gmm estimation of panel data models with inter-

active fixed effects. Journal of FEconometrics, forthcoming.

Kaplan, S. N. and Zingales, L. (1995). Do financing constraints explain why investment is corre-
lated with cash flow? NBER Working paper, (No. 5267).

Karlsson, S., Lundin, N., Sjéholm, F., and He, P. (2009). Foreign firms and chinese employment.
World Economy, 32(1):178-201.

Kato, K., Galvao Jr, A. F., and Montes-Rojas, G. V. (2012). Asymptotics for panel quantile

regression models with individual effects. Journal of Econometrics, 170(1):76-91.

Knight, K. (1998). Limiting distributions for [; regression estimators under general conditions.
Annals of Statistics, pages 755-770.

32



Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis,
91(1):74-89.

Leadbetter, M. and Rootzen, H. (1988). Extremal theory for stochastic processes. The Annals of
Probability, pages 431-478.

Ledoux, M. and Talagrand, M. (1989). Comparison theorems, random geometry and some limit

theorems for empirical processes. The Annals of Probability, pages 596—-631.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: isoperimetry and processes,

volume 23. Springer Science & Business Media.

Lin, C.-C. and Ng, S. (2012). Estimation of panel data models with parameter heterogeneity when

group membership is unknown. Journal of Econometric Methods, 1(1):42-55.

Lu, X. and Su, L. (2021). Uniform inference in linear panel data models with two-dimensional

heterogeneity. Journal of Econometrics, forthcoming.

Lumsdaine, R. L., Okui, R., and Wang, W. (2021). Estimation of panel group structure mod-
els with structural breaks in group memberships and coefficients. Journal of Econometrics,

forthcoming.

Ma, S. and Su, L. (2018). Estimation of large dimensional factor models with an unknown number
of breaks. Journal of Econometrics, 207(1):1-29.

Ma, S., Su, L., and Zhang, Y. (2020). Detecting latent communities in network formation models.
arXiv preprint arXiw:2005.03226.

Machado, J. A. and Silva, J. S. (2019). Quantiles via moments. Journal of Econometrics,
213(1):145-173.

Merlevede, F., Peligrad, M., and Rio, E. (2009). Bernstein inequality and moderate deviations
under strong mixing conditions. In High dimensional probability V: the Luminy volume, pages
273-292. Institute of Mathematical Statistics.

Miao, K., Phillips, P. C., and Su, L. (2022). High-dimensional vars with common factors. Journal

of Econometrics, forthcoming.

Moon, H. R. and Weidner, M. (2018). Nuclear norm regularized estimation of panel regression
models. arXiv preprint arXiv:1810.10987.

Mucuk, M. and Demirsel, M. T. (2013). The effect of foreign direct investments on unemployment:
Evidence from panel data for seven developing countries. Journal of Business Economics and
Finance, 2(3):53-66.

33



Okui, R. and Wang, W. (2021). Heterogeneous structural breaks in panel data models. Journal
of Econometrics, 220(2):447-473.

Prakasa Rao, B. L. (2009). Conditional independence, conditional mixing and conditional associ-
ation. Annals of the Institute of Statistical Mathematics, 61(2):441-460.

Rakhlin, A., Sridharan, K., and Tewari, A. (2015). Sequential complexities and uniform martingale
laws of large numbers. Probability Theory and Related Fields, 161(1-2):111-153.

Rauh, J. D. (2006). Investment and financing constraints: Evidence from the funding of corporate

pension plans. The Journal of Finance, 61(1):33-71.

Strat, V. A., Davidescu, A., and Paul, A. M. (2015). Fdi and the unemployment-a causality

analysis for the latest eu members. Procedia Economics and Finance, 23:635-643.

Su, L. and Chen, Q. (2013). Testing homogeneity in panel data models with interactive fixed
effects. Econometric Theory, 29(6):1079-1135.

Su, L. and Ju, G. (2018). Identifying latent grouped patterns in panel data models with interactive
fixed effects. Journal of Econometrics, 206(2):554-573.

Su, L., Shi, Z., and Phillips, P. C. (2016). Identifying latent structures in panel data. Econometrica,
84(6):2215-2264.

Su, L., Wang, W., and Zhang, Y. (2020). Strong consistency of spectral clustering for stochastic
block models. IEEE Transactions on Information Theory, 66(1):324-338.

Su, L., Wang, X., and Jin, S. (2019). Sieve estimation of time-varying panel data models with
latent structures. Journal of Business € Economic Statistics, 37(2):334-349.

Tropp, J. A. (2011). User-friendly tail bounds for matrix martingales. Technical report, California
Institute of Technology.

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press.

Wang, W., Phillips, P. C.; and Su, L. (2018). Homogeneity pursuit in panel data models: Theory
and application. Journal of Applied Econometrics, 33(6):797-815.

Wang, W., Phillips, P. C., and Su, L. (2019). The heterogeneous effects of the minimum wage on

employment across states. Economics Letters, 174:179-185.

34



Wang, W. and Su, L. (2021). Identifying latent group structures in nonlinear panels. Journal of
Econometrics, 220(2):272-295.

Yu, Y., Wang, T., and Samworth, R. J. (2015). A useful variant of the davis-kahan theorem for
statisticians. Biometrika, 102(2):315-323.

Zhang, Y., Wang, H. J., and Zhu, Z. (2019). Quantile-regression-based clustering for panel data.
Journal of Econometrics, 213(1):54-67.

35



Online Supplement for
“Low-rank Panel Quantile Regression: Estimation and Inference”

Yiren Wang?, Liangjun Su® and Yichong Zhang®
2School of Economics, Singapore Management University, Singapore

School of Economics and Management, Tsinghua University, China

This supplement contains three sections. Section A contains the proofs of the main results by calling upon
some technical lemmas in Section B. Section B states and proves the technical lemmas used in Section A.

Section C provides detail algorithm for the nuclear norm regularized panel quantile regression.

A  Proofs of the Main Results

A.1 Proof of Theorem 3.1

We focus on the full sample estimators A@j, Ok,j, and f/] in the proof. The results for their subsample

counterparts can be established in the same manner, and we omit the detail for brevity.
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ot i(Cr2) = {max {HVCLT‘ ( I)
te(T]
For any e > 0, we can find a sufficiently large constants C3 such that P(</°(C12)) < e. Therefore, we have

549 (log(NVT) e log( N\/T
249
{m ZW ol (U7r) Ve

processes, and the last equality holds by the fact that E (‘ L

. 39 (log(N VT) logN\/T
< - I 249
—P{?é?? T;W”;C”gfv ( NAT ) V=7 ()
T
1 T 529 (log(N Vv T) logN\/T
re{fa ] - (aem
i€l3 t=1 2
T
1 . 2ty logN\/T logN\/T
<Y P Y W 7 \/ i
3 =

NAT

/10g N\/T

where the second inequality is by the union bound, the third inequality is by @%(Ci2) C 9% ,:(Ci2), and

:ZIE]P’{

i€l3

1A
TZW&
t=1

1 2+z9 <10g(N\/T >

@efsuh} s /(Cr)} + e,

(A.12)

the last equality is owing to the fact that «% ;(Ci2) is 211> measurable. Given 2/'“!2, the randomness
in Wf only comes from {e;; }+c[r), which are strong mixing given @efiluh. Therefore, on <% ;(C12), Lemma
B.12(ii) implies
@11 Uls }
e

1 T
]P){ thzlwzt

1

540 (log(NVT)\ ™2 [log(NVT)
249

> Cuaty ( NAT ) T




T _1
. log(N v T)\ *+2?

= { SOWL| > Cueed (Og](VAT)) Tlog(N v T) @5;“2}

t=1 2

L 10429
c12C35T (%) e log(N V)
<exp{ — )
log(NVT) | T+7 131?;9 T2 oe(NVT) | THED
CrT | —=im— En C€% + CiCis/Tlog(N VTN ( Eir— (log T)?

(A.13)

which further implies

W
s
As e is arbitrary, by Assumption 1(ix), we obtain that

r 29
3wk =o, (c N3 (k’g(NVT)) 10g(NVT)> = o, (W V1)),
t=1 2

10 (og(NVT)\ ™7 [log(NVT
+ Gyl (D) floslY >}:0<1>+e.

max

i€l3 NAT T

For W1/ ({uglj) }jE[p]U{O})a we observe that

.(1 7. (1) (1) - (1
git({ul(',j)}jG[p]U{O}) = golvzgo + E U )/ )XJ it — 'LOUtO E “zg”tg Jyit
J€l[p] J€[p]

. (1) 1) 1 1 1 1
= (“z’,o - O(() U?,o) Ut(o) (O(() )u?,o> (vgo) O( )U?o)

+ 3 (00 s T () (4 - 0t)

J€lp] j€lp]
- A; U zt + A/ \Ijiot’
. . . / . . . / .
where A, ,, = (A;O, . ,A;J,) with Ay = OV al) —uf ;, Ay, = (ALO, . ,A;7p) with A, ; = 0fVs{!)
0

Ut,ja
(1) WY (A1) (1) / 11 (1) ik
o, = |:(OO i)t,O) 7(O t1X17it) S (O( )Uthp7it) :| , and
\I/?t = (u?fo,u?,’lXLit, ...,ua’po,it)/.

Unlike the analysis for W zt, to handle the dependence between ¢;; and Al w, for any constant C14 > 0, we
Ai,u < C’14nN} with P(#£(C14)) < e for any e > 0 by
2

[log N\/T)
lo N\/T
BNV T) %%)

1
— 59 (log(NVT)\*? [log(NVT
WlH (S)H > 013§2+79 <Og]§7/\T)) % +e (A.14)

first define an event set o%(Ch4) = {maxiels
Theorem 3.2(i), then we have

540 (og(NVT)
P (maXHWH ({u i }JG[P]U{O})H > by ( NAT )

5+v (log(N\/T )

17 2470
<P<13é3§ Wi ({“J}JE“’U{O})H > Cuty (TN AT

< P ( sup max
= i€l

10



with S = {5 c R(Ziemowo K;)x1 sy < C’1477N} and

LS (1 e = 0 B0} 1 e <00 [ (4604 40,98 - (0]
t=1

Similarly as in (B.37), we sketch the proof. Divide S into S,, with center s, for m =1,--- ;ng if s € S,,,
then ||s — spll, < & and ng S T>sctrlor K5 Then, Vs € S, we have

[ @), = [ ], [ ) = o, (A5
with
max  sup HWZH (s) — Win (sm)H
i€l3,m€[ns] ses,), 2
e . . .
S o max . Sup |7 Zwit (1 {eit < S + A ‘I’?t} -1 {Qt < s, 0% + A;,U\I/?t})
i€l3,m€(ns] se8,, P ,
1 . 1&) | A7 0 1) | A7 0
4+ max sup ||= Zw” {&»t (s o, + AL U\Ilit) — St ( m<I>lt + A} U\IJ“)}
i€Iz,me(ns] se8s,, T P ’ ) ,
. o ||2 111
< 5 it — A/ \IIO _ (b(l €|| it IZUly W ‘
— ZGIg,mE[ng] T Z ||w t||2 < { €it tov * it Sm it T 961‘ + zelglrg)e([ng] i (m)

+ _max sup Z Iielly 1195112 15 = sl (A.16)

i€l3,meEng
3.m€[ng] s€8,, te 7]

such that an (m) == 7 > telT) Wftn(m) and

5(1)
_ . [P
Wi, (m) i= |[all [(1{ i — Ay b, — s, 0] < Tl })

. 5 (1)
- E (1 { €it — A;,vqjgt {rnq)zt ’ < 5“(1)/113”2} ‘@gilUIz)] .

Like (B.39), we can show that max;e s, mefns] 7 > terr) il E (1 {

N 0 ’
€it — At,vqlit -

5 (1)
ell®; |2 I Ul
S T @67‘,

= 0,(%) because A’ LU+ s »V and &,;,|| are measurable in 271°2 and the conditional density of €;;
p\T it m it e;

given 21191 g bounded. Also we have

1 . D (1 3
ma o= E w; D, == E w; M|, = (—) )
’L€I3,m)€([’n\,] sbeusi T e il || 2 I8 = smlly = T EI T = it |1 Dg ||2 T

In addition, we note that

— 111 £e
Titll, = O Var (W, hol) =0, (2=,
i€Ig,mH€1[2}1§],t€[T] Iiell, p(Ex), ie]s,mrg?z};},te[T] ar ( i (M) 2] P\ T
a c ! 11T GhuI 0. (£33 2/3
max ov m),W,, (m)|Z,}% || = ( ) ) ,
i€ Is,me[ng),te[T)] s;i-l < (m) (m)|Z, )‘ P < N AT

11



and for any positive constant C5 and Cig, define event set

I3 N
_ i€lz,me[ng],te[T) ¢ )
and max ||thH2§C’16£N
i€l3,te[T
R N,i

max {Var (W;H (m)

_ me|[ng],te[T)

@elilub) + 223 41

and  max ||, < Cieén
te[T)

Cov <W”’(m),wfjf(m)‘@g;%>

} < 015555\//3 (%)2/3

)

with P (s ) < e for any positive e. Then we have
8N

111 50 (log(NVT)\ 7 [log(N vV T)
Wi()‘>05+0( NAT T

P < max

i€l3,m€E ng)
v 500 (log(N VT)\ ™7 [log(N VT)

<P W, ‘ Cppez (28 Y2 V) s

= (miﬁi‘}éns] i ()] > Cisy NAT T sy | e

—IIT 349 (log(N VT ey log(N VT
< Z P <‘Wz (m )) > Cisé™ (gjg/./\T)> g(T,)a%,N,i> +e
i6[13],m€[n§]

— 549 (log(N Vv T) e 1 N\/T
= Y E (W) > el (YT BV gron ) 1 g ) e
| | NAT : al

i€[I3],m€E[ns

=o(1) +e, (A.17)

where the last line is by Bernstein’s inequality similar to (A.13). As e is arbitrary, we have

1
—II1 549 (log(N VT)\ % [log(NVT)
i (m)Hg_O < NAT T ’

max
i€l3,me€[ng]

— — 549 T
which implies that max;e 7, meng SUPses,, HW{I (s) — WZU (sm)H =0, < 29 (%) A /bg(fq\f\/T)>'

Following the same argument in (A.17), we can show that

—IT 540 (log(N VT e log(NVT
7 ], = 0 ( () (T)>

max
i€13,m€ns]

which, combined with (A.14) and (A.15), implies that

50 (log(NVT)\ ™7 [log(N V T) _
e [ W17 ({6 Yievmoen ) |, = O ( F (T PR ) <o (v D)) s
: (1) _ ~1/2
max W, ({u” }jE[p]U{O}) H2 =0, ((N vT) ) . (A.18)

Next, we observe that

({O(l) j} ) ({ (€0) p )
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T
an ( Zt) witw;tAi,u +op ((N Vv T)71/2> uniformly over i € I3, (A.19)

t_

where the first equality holds by Taylor expansion and Lemma B.17 and the second equality is by Assump-
tion 1(ix). Combining (A.9), (A.10), (A.18) and (A.19), we have shown that

Aiw = [Dﬂ DI 4, ((N v T)_1/2) uniformly over i € I, (A.20)
where D! .= LS 1 (A;)U\II%) i), and DI .= LS [T -1 {eit < ALU\P%H @7it. Recall that
o = ((080ts) (01 08) X+ (o@v?,p)'xp,it) = £ YL fa(0)@hwy, and DI =
LS I — 1{ew < 0}] @Y. Noting that

o] ot = (i1 B [l (02 - o)+ [(01) - (o) o
w|(01)" - o0 (b i),
we have by (A.20) and Lemma B.18, uniformly

-11
T

[M]=

B = [0 DI+ [0 L3 [t <00~ 1 e = 80,080} 28 4o, (00 ) 1)

t=1

uniformly over i € I3, where we use the fact that 4/ w&wm =o ((N v T)_1/2> by Assumption 1(ix).
]
A.3 Proof of Theorem 3.3

In this section, we extend the distribution theory of the least squares framework in Chernozhukov et al.
(2019) to the quantile regression framework and obtain the uniform error bound. We assume the model

has only one regressor in this section for notation simplicity.

A.3.1 Proof of Statement (i)

For Vi € I3, recall from (2.7) that

(01} = argmin 23", (V- il - i) (1)

{ui, J}JE[IJ] t=1

) G0 _ H),0 - (1)
where Yt =Yy — [ nugll) vt(ll) Let A,y = [A?P’Ol) 0 u”ol and w;; = [.(f)t’o 1 . With generic
u: = U, i

(wi,0, i1, u4,1), define

T

o 1 .

H; (wiy0,wi1, 1) E T — 1 {eir < i (w0, i1, 15,1) , }] wir and
T

13



o (D 07 . (1) 0.0 ~ 7 (1) 0.0
Lit (Wi,0,Ui,1,4,1) = Uz, Ovt 0 — Uy, Ovt o+ i ltuz 1Ut 1 7 M1,itU 1V €1ty 1V 1 — €1¢li 1 Vg 1 - (A.22)

We can see that

[ { — Ovﬁlo) — 1vt(11)el i < OH Wit

IIM%

H; (uanuz 1, U 11) =

is the first order subgradient of (A.21). In addition, we define

N 1
Hi (wi0, i1, 151) = T

E{[T = L{eir < (it (ui,0,u31,15,1)) ] Wit 951“2}

M= 14

[T — Fit (it (wi,0, i1, 05,1))] Wit

Nl =

t=1

and
3,1) ~(3,1 0 ,1 1 0y 1 1 1
W (a5, 6, 8) = B (850,680, a2 - 1, (052, 00l 1Y)
Y 3,1) ~(3,1 1 1 1 1
7{7{(50)’ 51)7 51)) H (O() anO() zlv 51))}

where 211Y%2 is the o-field generated by {eitticnon e ULeithieny ierm U {Vjo}je[p]u{o} U {W]Q}je[p]
Then it is clear that

Hi (,&5’361)’ ’0'5?1,1)’ ug,l1)> = Hi (O((JI)U?O’ Ogl)uglﬁ ug,ll))) + 7'22 (7)53(51)7 125,31’1)’ ugll)) - 7:Li (O Y ?07 O(l 7, 1, U (1))
+ W (af alyt aly). (A.23)
For specific u;,0 and u; 1, let u; = (“2,07 u;’l)/. Following similar arguments as used in the proof of Lemma

B.17, the second order partial derivative of the function H,(-) with respect to u; at the true value can be

shown to be bounded in probability. By Taylor expansion, it yields

A, (0 o, 0y “,uglg)

H ( 5301)7ﬂ§311)7 511)) ~H; (O(l) ?0’0(1) Uy 17“511)) = GV Ai,u + R, (A.24)
R 2
where max;er, |Ri| S maxer, ||Ai | and
2

o (0 o Oy i)
ou

K2

- § fit |t (1) ud O(l)uo all) RX i}’g’lo)l - ztvt(lo)vt(ll) =-DF
it | bit Uj 09 3,15 Wi 1 A (D) (1) a2 (1) (1) - i
1o €1 zt“t 1V

Combing (A.23) and (A.24), we have
N 1 A
Ay = (DF> {H1 (o(Uu?O,o(l)ugh 511)) T W, ( @D gD 4 513) i ( @D gD g 511)) + Ri}

— (Df)fl{ (0(1 o, 00 i 511))+W ( @ 1>,ag?£1>,ug}3)+op ((NvT)*W)}, (A.25)

;0

uniformly over ¢ € I3, where the second line is due to the fact that

H; (ﬂl(-?o’l), 5311)7 Ef)‘max Op (51\7) and max

AV

max

icls T i€ls

14



following similar arguments as in (A.9) and the proof of Theorem 3.2.
Next, we analyze the term H; (O(l) u; o, Ogl)ugl, ugll)) in (A.24), which can be written as

5 (0
= T szt ( {Ezt <l (O( ) 1070(1) Uj1, U 511))}>

- = szt 7 —1{en <0}) + an (1 e <0} = 1 {ew <o (0§l Ol 0l 1)

= — an T—1{e; <0})+ ZT:Wit {Fi (0) — Fiu [Lit (OSI)U?,O,0§1)U?,1’u§,11))} }
T
. E“ 1 {cr < 0} — F(0)]
S {1 e 0 (O, 040, 8V} B [ (O 0 )] (a2
t=1

For the second term after the last equality, we notice that

Il“zi:wit{Fit(O)— it [th (O uzO’O(l ll’ugll))}}

() _ o0 (1) (1) 0§ ud,
= _7sztfzt th [ O( Uy O) (él,iti)t,l —el’itOl ’UtO,l)/:| O(l) 6’
1 Ui
- sztfzt th (Ml ztug 1) 15 1) - Ml,itU%U?J)
. O(l)u? 1 <& . ~ 1.1
= D} O?l)udo +5 Zwitfit (Zit) (m,itug’lvfl fin i f/vif) , (A.27)
1 7,1 t=1

where |7;;| lies between 0 and

vie (0§18, 01Vu2, il )| and

!/ !/
T (1) (O(l) ? 'Ut(,l()) 150) (61 ztO vt L ezt )
Z:: S PR (05748 —5)" et

) 1
€1,itVy 1 vt,o) €1,it 0y { e1,10" v — ey, i1

t,1

The first equality above is due to the mean-value theorem and the definition for ¢;; (O ud 0 O(1 Uj 15 ugll) )

n (A.22). Inserting (A.27) into (A.26), we obtain that

(O(l) 1070(1)’“?1’ 51)> DJ

Zw” 7 —1{e; <0})

1)r.(1
sztfzt th) (Ul ztu lvt 1 :ul 1tu( 1) Ut( 1))
t 1

—I—;iwit{ { {61t<0}_1{61t<bzt (O( 10’0(1 511))”
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- (Fit(o) —Fy [Lit (O(()l)UaOvOg”u?,l?“i’}f)}) }

0(1) O

e + 10+ Ip + I (A.28)
O zl

i

Combining (A.25) and (A.28), we obtain that
A . -1 R
Aiu=(DF) {D{
(A.29)

where the o, ((N Y T)_l/ 2) term holds uniformly over ¢ € I3. To prove Theorem 3.3(i), we analyze each

0(1) 0

O(l)u +H11+H21+H31+W ( (3 1)’115?{1)7“513) +Op ((NVT)71/2> ’
1 i,1

)

term in (A.29) step by step.

Step 1: Uniform Convergence for Df and Dy.

Define
T 1,0
1 Oy 0 0?0 O 0
- - th(O) t,0%t,0 N L ,
T ; 0 e%,z-t()% ") o of
(1 1 (1)’
[ (o) :
Dl =73 ful0) s A0 (M0 Y
t=1 0 e1;+01 "viq (01 Vg1 _Ut,l)

Lemmas B.22 and B.23 show that

no

)

F

max ||Df" — Df'||r = Op(ny) and  max||D{ — D||r =
i€l3 i€l

0, (n%) opmN)]
Op(n%)  Op(nk)

\/1og(NVT) {N

with ny = T
Step 2: Uniform Convergence for ]AIM.
O(l),UO
Letwh = | 7, " |- Then we can see that
O, Vg 1€1,it

T
~ 1 1
L, = T Zw?t (1—1{e;x <0}) + = ; Wit — (1 —1{eix <0}).

Noting that

1 1
o 7wo Ut(o) O( ) tO

it it - (1) 4 O( )
”t 161t — Yy ”t 161 it

P YON)
= L (A.30)
(ng,ll) - O(()l)U?J) (€15t — e1,it) +e1it (v,gll) — oMy ) +0 1)v§11 (610t —e14t) |
we have
max* Z it = wit|, = Op(nw)- (A.31)

2613
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In addition, max;ey,

T
A 1
hi=7 ;w?t (7= 1{ew <0} + 0y (n3) -
uniformly over i € I3.

Step 3: Uniform Convergence for ]T27Z'.

Note that
1z
Iy; = T Zwitfit (Lit) (Ml,itu?,/1vt01 fu, ztugll) ”:gll))
t=1
== sztflt (Ml g vp, — fin 1tu£11)/vt(11))
1z
1
+ = > (@i = why) [fir (Bin) — fr(0)] (Nl,itug,llvgl i i 0 1))
t=1
1 I
+7 Z Wit — wiy) fit(0) (m,z‘tu?,'w?; - Nhtuglflvfuf)
t=1
1 T
~ 7.(1
+tr > Wl [fir (T) = fir(0)] (Ml,itu?,/lvgl i ity 0f 1)>
t=1
where
1z
T > (@i — wl) [fie (@) — £ (0)] (Nl,itu?,/lvgl fi1 ztu(ll)/vt(ll)>
3 t=1 2
T
1 . 1)7.(1
T D (@i —why) fie(0) (Nl,itug,/lvf1 i 0] 1)) = O, (nx),
8 t=1 2
T
1 - 1)
I}éf}f T Z th [fit (Tie) — fie(0)] (Ml,itu%vgl i ztuﬁ 1) Ui 1)) = Op(7712v)-
t=1 2

= Op(n?v),

T 23:1 (it —w) (T = 1{e < O})H2 = O, (n%) by Lemma B.24. It follows that

(A.32)

(A.33)

To see why these three equalities hold, we focus on the third one. By Cauchy’s inequality, Theorem 3.2,

and Lemma B.21, we have

T
1 - 1
T > wi [fin (5ie) = fie(0)] (Ml,itug,/1vg1 i ivins )0y 1))
t=1

max
i€l 5
1 1)/ . (1
S I};%X* Z ||Wn||2 ‘th| I}g&f T = ‘Ml ztu?lvgl fi1 nUEf Ug 1)‘ =0y (7712\/) :

For the first term on the right hand side (RHS) of the second equality of (A.33), we have by Lemma B.25

1
rzréz}z( Z O 'Ut ofzt (Hl,itu(i),/l”?l fi1 ztug 1) “t( 1)) ) = Op(nn),
1 1 1).(1
max |\ 7 ;el,itOg )U?,lfit(o) (Ml,itug,'1?f?1 I} ”ug )] 1)) 2 =0, (ny
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A O
and thus max;er, ||I2,; p(7712\/ )
Op(ny)
Step 4: Uniform Convergence for ﬁgl

Note that

ﬁg,i:;iw{ [14en <0} = 1 {eq < v (0§ ud, 0 i) ]
— (Fiu(0) = Fu [z (0§l Ol 511’”)}
_ ;iwgt{ [1 e <0} = 1 {ein < e (088,000, 0)) }]
(0 (080, )]}
+;§T3 (6 {[ fe <0 = 1 {exe < 1 (0Pul, 01ud, i) ]

Fit(0) — Fiy [th (O( 2070(1) i1, 511))})}

y (B.73), we can show that

I
/N

it (O i, 0’0(1 U1, U 51)) < RL it (lpn,ie) + lexie]) + R with

ey Rl = O, i [ Rl = Oyl

For the second term on the RHS of the second equality in (A.34), we notice that
max

icls ;XT: (e = wit) { [ {en <0} -1 {elt < it (O(l) U, 070(1) Ujq, U 511)> H
’ t=1

_ (Fit(o) Fy [sz (O(l) 1070(1) Ui W Ell))D }
2

o (0480, 0, 2) )

< IE?* Z i = will, 1 {0 < Jeul <

1 . 1 1 1
+max o ; @i — wit]]y | Fit {Lit (O(() )U?,mog )U?p 51))} - Fit(O)‘

<max—Zlet ?tHQI{OS €] <

1613

)

i (05w, 0wl i) [} + 0,0,

where the last line is by (A.30), (A.35) and Assumption 1(iv).
Define the event #y(M) = {maxiela’tE[T]

with P {7y (M)} < e for any e > 0. Then for a large enough constant Ci7, we have

(f}g%f Z i — wip]], 1 {0 < leit| < et (O Uj, 00, 01 uf 1&5?)‘} > 0177712\/)

18

(A.34)

(A.35)

(A.36)

i (0§, Ol i) < M (vl + leael + 1)}



Lit (O( )U?O>O§_1)U?,17u£,1l)) ‘} > 01777]2\[‘%(]\4)) +e

P e

<.
m
~
%)

o~

Il

—

T
1
max — Y ||wi — wl [, 1{0 < lexe| < My (Jpaie] + lex s + 1)} > szv) e
1 _ i Cron
IP’(IZ%E}?T ; ||wit - w?tHQ |:1it - lit] > 1;1\7‘@6{1U12> }

]E{
+E {IF’ <I}é&}§(T ZIE{ |wzt ?tH2 1{0 < e;] < Mnn (Jp1,ie| + lenie] + 1)}

2
%IIU’?} > 0172%) } +e

o (A.37)

where 1;;—1;; := 1{0 < |e;e| < Mnn (|p1,i¢] + |er,ie] +1)}—E <1 {0 < Jei] < Mnn (|paat] + lerae] + 1)} ‘@élUQ)’

the last line holds by the fact that max;ey, % Zthl E {szt - w?tHz 1{0 < lei| < Mnn (Jp1,ie] + ler,ie] + 1)} ’@ellub}

= Op(n3) and
9[1U12>

T2774
Sexp(— 2 2 T )zo(l)

TN +Tnén logT loglog T'

icly T

(max T Z let ?tHQ [1lt - iit] > 0177’]]2\[

by Bernstein’s inequality in Lemma B.12(i). Combining (A.36) and (A.37), we have shown the second term
on the RHS of the second equality in (A.34) is O,(n3;) uniformly over i € I3. This result, in conjunction

with Lemma B.25, (A.34) and Assumption 1(ix), implies that max;cy, ||I3,|| = 0p ((N Vi T)fé) .

Step 5: Uniform Convergence for W, ( 53 1)’a£311)>“1(',11))-

Note that
AR
1 T
T Zw“ (1 {Git S it (O((Jl)u?,mO§1)U?,17u1(‘,11))} -1 {Eit < it ( 5301),112311)7 511)) })
t=1
Wit (Fit [Lit (O(()l 1070(1) ?17 511))} — Fy [th (U(d , 57 1)7 Ell))D
(i = wh) (1 {ei < v (0§ udg, Ol il ) } =1 {ein < v (a5, a5 0l )
(@10 = 8y) (Fie [1e (0670, O, 00) | = o [1a (057 050, i) )
w?t{ (1 {elt < Lit (O( ) Uy 070(1) 017 511)>} -1 {Eit S bit ( (301)’ﬁ§311)5 E}B)})
1
1 1 1 8.1) (31 .01
P (087t 00 i2)] - £ (45575820 2)])

I
S|
NE

5
Il
-

I
N =
M)~

~
Il
_

|
N -
(]~

H_
Il
_

t

+
/\ M| =
M=
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( {eit < Lit (O(()l)u?,mogl)uop 511))} 1 {Q‘t < i (115361)’&1(3{1)7@5}1))})

( L [An (OO ”)70(1) 017 511))} — Fy [Lit (ﬁfdl)7ﬁ§31’l)7ugll))})

where we define

'ﬂ \

ST
Fy { (O(l) 1070(1) 11711511 }
T
t=1
_ {Fit(o) — Fy |:Lit (agi;”,affl)’dg,lfv)} }}

—N

We first observe that

Lit (O(l) U; 070(1) z U 1(11)) Lit ( 5301)7 Avgll)’u ,1 )
= ("A‘z(',gdl) - O(()l)U?,o) "Uglo) + (ﬁz('?fl) O(l) ) t( €1,it
!
= (08 " 5301) U?,o) U?,o + (Ogl)/ﬂ@(‘i’l) - U?,l) Ut(,ll)el,it + Op(n%)
= Riitelﬂt + Riit (A.38)

such that max;er, sepr) | R ;4| = Op(nn) and max;ep, se(7) ’Rﬁit‘ = O,(nn). Asin Step 4, we can show that

T
1 . 1 1 ~(3,1) ~(3,1) .(1
Izrgzi T; (wit —w?t) (1 {Qt < it (O( )u?0,0§ )u?l, 53)} -1 {eit < it (ui’o ),ug’l ),uff)})H = Op(77]2v)
and
T
e 132 o =) (5 (0800 0585)] - [ (557,22 = 0108,
1 3 — ’

Then by Lemma B.26, Lemma B.27 and Assumption 1(ix), we obtain that

max
i€l

W ("ol ald) |, = o (W )7F).
Step 6: Distribution Theory for Ai’u
Combining the above results, we have that uniformly over ¢ € I3,

] o] (o) {2

0(1)
0(1) 0

O((Jl) 0
Ogl)ui 1

it (450,057, 48) o (o7 v )
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1 O(l)uiJ RN 1 O(l)u?
= [+ 00 21] | () 0= 00 e[
a1 <\ L a1 &
HON) 7 E Y- 1a <o)+ (BF) - ()7 F X e - e <0
t=1 t=1
+(DF) Mz + 0y ((N v T)fé) : (A.39)

B log(NVT)
o (T o

2

by similar arguments as (B.57) using Bernstein’s inequality in Lemma B.12(ii) and Lemma B.22, we notice

that
T

. —1 _ 1 1
F F\—1 0 _1
! — ! — : — < = 2.
wx || () - 00| 7 Sttt <op| <o (Vv )
Next, we define
1 T 0 ,,0/
7 . E i 0)|Z| vy v 0
DF _ 0(1) T Zt_l [ft( )’ :| t,0%t,0 0(1)’
0 FELLE [ ufu0)|2] oot
T .1 1 (1))
L |FEAE { fit(o)’@} ol (o(g Vo0 — vg,g) 0
D’ = e
1 1 .(1
0 Og )% ZtT:1E {e%,itfit(o)‘gil U?,1 (05 )U?,l - Ut(,l))

where O = diag (Oél), 051)) . Here D and D7 do not depend on i owing to stationary assumption of
sequence { fi, fit(())ej’it}j €l conditional on all factors in Assumption 9(iii). By Bernstein’s inequality con-

ditional on all factors similarly as in (B.57), we can show that max;ey, ||DZF - DF ||F =0, w&\f

Analogously, by Bernstein’s inequality conditional on 271Y%2 we can show that max;e, HD;’ — Dj|| F=

0, (\/Wmv&v) Then it follows that

(DF) "' D! = (D) 07| = 0p(m}o).

max
i€l3

In addition, uniformly over i € I3,
. -1 . _
(0F) " b7 - (0F) " D!

= [(or) " - o) [pr - o] w0z | (6F) - 00y |+ 00) 7 - 7]

= (D) [D7 - D] + 0, n)
Op (7712\7) Op(nn)
Op (7712\/) Op % ’
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where the upper right block is dominated by = T Zt 1 fit(0)O 01 vt 0Vt 10( (e1,i4 — €1,4) in the analysis of
J?, in (B.62).

- O, 0 _ _
Let Iy 45, +(DF) " D7 = 0% == doé )o%owpﬁﬁmoﬂodecmmmg
u,l
the above arguments, we obtain that
ﬁg@—fOShﬁlfﬁf”KuﬁTE:el”Wl —1{e; <0}) + R, (A.41)

uo,

57 - Ot = O Vil 3~ e <01

(Dyr— E : 0,000
+ O Vuo ZT flt Ut 0, 1U'z 1 (61 it — €1 zt)
t=1

1
+ O(l VuollT Z f’t vt 0 (/J'l Ztuz lvt 1 Ml ztuglflvi 1)) + R?,u (A42)

_1 .
such that max;ey, |RY, | = 0p ((N vT) 2) maxer, |Ri,| = op (%), Vio = = 31 E [£1(0)]| 2] v v
and V,, = %ZtT VE [fi(0)ed ;| 2] v 10y From (A.41), owing to the fact that Vo, is bounded a.s.

* thl er,itvfy (1 —1{e;x <0}) H2 =0, (\/ I%(NTVT)) by Bernstein’s inequality in Lemma

B.12(ii), we obtain that

S(3,1) _ mo“: log(N v T)
i,y O, 1ui 1 , p< T and max i

and max;er,

max
i€l3

il = Olguly|| = Opnn).  (A43)

Last, noting that Ogl) is a rotation matrix and the normal distribution is invariant to rotation, for each

i € I3, we have

VT (a0 = 0ud, ) ~ N (0, 50,0,

where Eulvi = Ogl)v 1Qu1 ‘/1L110(1)I7 ur,i = % ZtT 1 (flt( )61 ztvglvgl) and

Qul,i - -

Zel ztvt 1 T -1 {ezt < 0})

A.3.2 Proof of Statement (ii)

Steps for the proof for statement (ii) are the same as those in the proof of statement (i). Hence, we only

sketch the proof. Recall from (2.8) that Vt € [T]7

{0 (31} A(3,1) 7 ~(8,1)4
v jelp) = argmin pr | Yit — Ut()uzo Va1 €1t )

{oritiem *V3 i€l3

where Yy, = Y, — i ztﬂ£311) Ut(ll) Let

(3,1 ny/ !

o omy e e

At v = ( and Wit = (371’) R .
t T

)



For generic (u;,0,%i,1, V0, vi,1), define

- 1

St (ui,Oaui,hvi,Oan,l) = [7' -1 {Q‘t < 0it (ui,07ui,17vi,07vi,1)}] Wit
N-

i€ls
with
o o 0 ~ 1 (1) 0/ .0 ~ / 0r 0
0it (Wi,0, Ui 1,Vi,0,Vi1) = Uy gVL0 — Wi oVp.0 + fl1,itU 1Dy 1 — H1,iel; 101 + €10t 1Ve1 — €1iel; Vg q-

We also define

S (Wi,05 Ui 15 V50, Vi1) Z E { 7 — e < (0t (w0, i 1,0i0,vi,1)) }] Wit thuh}
1613
72 - ta uz,Oaui,lv'Ui,OaUi,l))]wit
Zelg

)

5 (A(3,1) ~(3,1) ~(3,1) ~(3,1 L (3,1) (3,1 1\t A
{St( )7“51 ) Ut(o )v t(1 )> S (“z(',o )v“z(',l )» (Oz(u))) U?,o» (Oui) U?,l)}'

Then a similar result to that in (A.29) holds:

a2 (3,1) A(3,1) A(3,1) (3, 3,1) ~(3,1) ~(3,1) ~(3,1 a [ ~(31) ~(3.1 D\~ )t
1 (50,457, 651, 5657 = 0 (35,65, 630, 557 =8 (33,24, (0) ™ 8 (02) " )

—1 (O(lg))/71 U?o 1
N al a U, 5 ~ ~ ~ —_ =
Ay = (DtF) D/ (O“))H ) iy, + 150 + 6 + M, ( @ 1)7u§?£1),u§}3,v§?f1)) +o, ((N v T) 2) ,
u,1 Ve
(A.44)
where
~ _ aBDaB 5 BB
3,1) (3,1 )/t )t €1ty o "U;
f - N Zfzt |:ta (UE )7 (, )’ (01(;,%) v?,O’ (Ou,%) v?,l):| él tﬁ(ll)u(?;)l) é% %ta()fl)a(é’l)/] ’
i€l (2200 i, it Y, 7,
I i
D7 Z Ful A(B Y ( ul()Ju?O - Al(',g’l)) ﬁ(-g’l) (el,itoq(},iugl - éitfbl(-?{ ))
t — it / 7|
3 el €1, (01% 20— U§ ’1)) é1 ztuff ) (61,zt0£1}1t?,1 - él,z‘tﬂz('i’l))
ﬁ4,t = - szt T = 1{€zt < 0})7
1613
I, = A Z Git fir (8ir) (,Ul 0y — fin el 1)'11,511))
1€13
. /—1 /—1
]I6,t = Z wzt{ |:1 {Eit < 0} -1 {ezt < 0it ( 5?61)712573171)7 (Oul,())) U?,O? (Oulg) U?,l) }:|
zels

1

- (fit( ) — fit [ta( il ﬁf?’ll), (0 ,

3,1) (3,1 )t ANEE
o (4505, (013) ot (01) )
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e~
o=
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S+O
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and |g;:| lies between 0 and




Then, we derive the linear expansion for At,v by analyzing each term in (A.44). Define

1 1
Z Farl O’l(L ())U?ouz 0012 3)/ W 0 o
T A
3 iels L 0 e%,itou 1“?1“1 1Ou 1
Z f _az(':g’l) (01(},())“?,0 ﬁ’ESOl)) 0
zt /A )
= 0 2, O0ud, (00ul, — V)
such that
AF F J J Op (7712\1) Op(nn)
max HDt — D; H = O,(ny) and maXHD — Dy H 9 )
tel7) F tel7] Op (%) Op (1)
00
by Lemma B.28. Let w}, = “’0(1)1 00 . We can show that
el,itOu,luz‘,l
A 1
H4’t = F OJ” [ -1 {6“ < 0}] + O ( )
3 i€l

uniformly over ¢ € [T] by analogous analysis as in Step 2 in the previous subsection. With Lemma B.29

and by similar arguments as in Step 3 in the previous subsection, we obtain

Op () H
0p ((N v T)*%) ;

I5,¢

max ’ =
2

te(T)

uniformly over ¢ € [T].

Next, for f[ﬁ’t, From (B.87), we first note that

—1 1—1
o (aéf’s”,*i‘” (0%)" e (o) v?,l)sRz,mm,it|+|el,it|>+Rz,it with

Hoaul = i : Ad5
e Ty telT] [Ry.iel = Op), e??g[TJ 2.it| = Op(n) (A.45)

We then observe that, uniformly over ¢ € [T,

A /=1 -1
g S [t or -1 fo o (s657.0827. (002) ™t (02) o)

z€I3
231 231 (AW o n) " o
— | Fie(0) = Fit |oie | W0 57, (O%O) Vg0 (Ou,1> Vg1
1—1 1—1
_ Z OJ { |:1 {62‘15 < 0} -1 {6115 < Oit ( 5301)7736,5?1’1), (O’L(Ll)g)) Ug,O’ (Oul)i) Ug’1> }:|

1613

1 ~ * R =1 1—1
+ A (Wit — wiy) { {1 {eir <0} —1 {Eit < 0i ( 1(301), (3 Y (Ol(tl())) 000, (Ozﬂ) vz?,l) H



/—1 /—1
_ Z (,d { |:1 {Git < 0} -1 {Qt < Oit < 5301)’12,5?111), (Oul,g)) ’Ugo, (Oul,%) ’Ug,l) }:|

1613

-

. [ Op(nn)
- ((N\/T) f)

where the third equality holds by (A.45) and similar arguments as used in (A.36) and (A.37), and the last
equality holds by Lemma B.30.
Similarly, combining Lemma B.30 and Lemma B.31, it yields

[ Op(nn)

max
te[T]

3,1) ~(3,1) ~(3,1) (3,1
( (0 ),Uz(',1 )7Ut(,o )7015,1 ))H2 =

3 1 2 .0 .0
Let Vv1 t = Ny Ziezg fir(0)e ;yuz w7y, and

ot = {1+ (000) 1] | Tt (00t - 2"

1613

Combining arguments above from (A.44), we have

ﬁf’l’l) - Oi()?t”t 1= (Oﬁ/) (val, ) Z vty (T — 1{ey <0} + R,

such that max;c7y ”R%v’ = 0p ((N \Y, T)_%). This, in conjunction with the result in Lemma B.32, i.e.,
-1
1 1)
oy, - (o)

maxXge[T]

=0, ((N v T)fé), implies that

F

/—1 -1 ,.
oy (o) e = (o) (vi,t) Zemuuw—l{en<0}>+Rm

— oV (Vf’l,t) Z erat? | (1 —1{ew < 0}) + R, (A.46)

7.613

where the second line holds by the fact that HOS% — 051) HF = Op(nn), VUII + 1s uniformly bounded and

that
log(N Vv T)
N

max
te[T)

Zel Zt’Ul,Ll T — 1{6“5 < O})

i€ls

2
by similar arguments as in (A.40). Further define

1
=0y, Q0 Vi oWy, = A Z E (fit(0)€f jul uly) , and

Ul Y uqg
i€l

Qu,=7(1-7) Z]E e“tu,lu )

1613

Then we have

/—1
\/N3<£ V- (o) v?,l)wN(o,zle

25



max
te[T)

o ot =00 (S5 - 0t = 0 (0

where the second line holds by Bernstein’s inequality with independent data and is similar to (A.43). B

A.4 Proof of Proposition 3.4
A.4.1 Proof of Statement (i)

Focusing on the slope estimators for ¢ € I3, we notice that (:)j,it =1 {uf’]l)’vﬁi D a ( : )’vt(?; 2)} . It follows

that

Ot — 094
~ {7 -0t (it - 0t,) + (0 (o5 - 0nt) + (457 — 0ttt ) 0ttt
(657 - o) (637 - o) - (o) (4 - o) + (47 -0t ) ot
:u?fj (ij’)_l L Ze“tu” (1 —1{e;x <0}) +vth 11 Zeﬂtv” —1{61-,g§0})—|—72f,5
1613
8 (0) " S X 0 1 Y+

zels

such that max;er, 1e[7) ‘th‘ =0p ((N \Y, T)fl/ 2) by Theorem 3.3 and the second equality above combines
Theorem 3.3 and the fact that ‘

for subsamples I; and I, and then we obtain the statement (i).

OS% - O%UHF = Op(nn). With similar results hold for slope estimators

A.4.2 Proof of Statement (ii)

Combining (A.43), (A.47) and Lemma B.13(i), it’s clear that

log(N VT . R
=0, ( g()) Vjelp] and max_ |Og ;i — @8’# = O, (nnN).

max |©; SH
‘ Jyit — it NAT i€l3,te[T]

i€l3,te[T]
(A.48)

A.4.3 Proof of Statement (iii)

For i € I, and a € [3], with the distribution theory defined in Theorem 3.3, we notice that

1 0/ = 1 0/ =a , 0 R
T’Ut ]‘—‘u],l tj + N7u7,j ’U]u’L,J (Gj’it 7 ’Lt) ~ N(O 1)

which leads to the proof. B
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A.5 Proof of Theorem 4.1
A.5.1 Proof of Statement (i)

The proof is analogous to that in Castagnetti et al. (2015) and Lu and Su (2021). Recall that S,;, =
max(S (1.2) S (2:3), S(i’ 1)) For a € [3] and b € [3] \ {a}, Theorem 3.3 shows that

~(a,b) ®),0 — oWp- S
Uy i = Oy iy = VuJ sz”t-i-'Rg’u Vi e I,
where max;er, Rfu = 0p ((N\/T)*U?) Recall that u = N ZZGI . Under H{ : i,j =, Vi€
[N], we have
= (a,b) (b) (b)yr—1 1/2
u; 7 — O, u; =077V NT;; ]zt+ ZEXI:R (N\/T) ) (A.49)

where the last equality holds by a simple application of Bernstein’s inequality. Note that

T(u(zb) ﬁgab>( ) ((ab) A(ab))

(500 (52) (45 o) 7 (4 -0t (52)” (-0t

— 2T ( Al _ Off’zug) (Euj) ( (@t O(b ) = Iy + Inij — 21335 (A.50)
For Iy;;, we have
@) _ o0, |17 -1 _
max || < max T i ’ uyjujHQ Dumin (Bu,) + 0, (1)} = 0,(1) (A.51)

by Lemma B.33, Assumption 11 and (A.49). For Is;;, we have
rréax|13”| <T (max j Y

~(a,b) (b) )
e || i OuvjuJH2> ()

= TO, ( WVT)) 0p ((N v T)—W) = 0,(1) (A.52)

slab) O(b)uJH2) i (Su,) +0p(1)]—1

T

by (A.43) and (A.49). It suffices to study I;; below.
/!
Now, let Z%) = (Z%?{, e ,Z%%\,) , where Z%?i ~N (O7 O](-l)/ O(l)) fori € I3, Z(l) N (O, O§3)/Euj O§-3))
for i € I and Z), ~ N (0,08'5,,01)) for i € I. Note that

. /! .
1y = (0Z8); + 0,y + RL,) Tt (025); + 0,(1) + R],)

ab b "Tar _ ab b
1 (59— 0, [81 - 521] (550 — 0,

i, u,j
-1
= Z%?{ (O](b)/Eu_j Oéb)) Zg?i +0,(1) uniformly over i € [N]. (A.53)

It follows that
20 (01'5,0) " 29, + 0, (1), vie,
1 3 B N .
Suy = max 4 21 (017'2,,089) 2, +0,(1), Vi€ b (A.54)

-1
g (08'5,00) 2G4 0,(1), Vie I,
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-1 -1
with Z%?; (0542)/2”].0](.2)) Zg?i — x2(1) for each i € I, Z%?; (03(-3)/2%-0](-3)) Z%?i — x2(1) for each

-1
i € Iy, and Z%?; (O;l)'EujOj(.l)> Zg?i — x?%(1) for each i € I3. As in Castagnetti et al. (2015), we can

conclude that

1 —e~ %
P (2Suj <z+ b(N)> —e as (N,T) — oco. (A.55)
!
For the test statistic for Hl!, the proof is similar. Let Zg) = (Zg?i,n- ,Zg?/T) , where Zg?t ~

N (O, O](l)/Zvj O](-l)). As in (A.54), we can show that
(.0 @ (oWrs o) ' 7@
S = max 747 L (0572,0) 28 + 0,(1).

By the strong mixing condition in Assumption 1(iii), we have max;¢[,] ic|n] HC’ ov ( 522),5, bﬁ)s)

o(1) as t — s = oo by Davydov’s inequality. Then by Theorem 3.5.1 in Leadbetter and Rootzen (1988), we
have that

1 2 1 D\ e e
P (5 (maszr (0075,00) 28, ) <asb(r)) e

which implies that

1 —
P (255}“ <z+ b(T)) —e ¢ as (N,T) — oo

Recall that 51(}?’1)) = %Sff;’b) —b(T) and S,;, = InaX(S(1 2) S (2:3) S (3.1) ) Noting that S, is asymptotically

distributed as the maximum of three independent Gumbel randorn variables under Hé T we have P(S,, <

x

x) = e3¢ as (N,T) —

A.5.2 Proof of Statement (ii)

Under H{, we have that Vi € I,

)~ 50 = (62— 0 ) + O (a8, — ) — (559 — 0

] u,J "7 u,j 3 J u,J
- (0t + 8, - (09 —0l)
Then
T (ugajb) ﬁ(a,b))/ (iuj)il (a(a,b) B ﬁéa,b))
=7 (15"~ 0Lu;) £} (a) = 0Ly} + 7 () = 0Ly £} (4 — 0wy
—or (%" — 0Ly} S () — 0uy) + 21 (0D)et) S (5" — 0Dy
+7(00et,) St0W e o (0, ) St (i — 0w, )

O R Oy )

Uj,i, Uj,t,D u;,1,67

s® | _

uj,1,3

= O, (log N) by (A.53) and (A.55),

57(11.;)72‘ = 0, (1) by (A.51), max;er,

where max;ey, S( )Z 1
op (1) by (A.52). Next,

S(b)

max U 16,5

-1
na = max T (O(b).c“ ) 1O(b Pi{l+op(1)} 2 |:m%X)\max (Zu,j)} Tmax |[cj. ||, = T'max |

i€, w,j g u,j Zj S i€l, ZJHQ i€l,

28

log (t —s) =

illy-



which diverges to infinity at the rate faster than log N by condition in statement (ii). By Cauchy-Schwarz

inequality, we obtain that

1/2 1/2
max Si )Z 4 S max (Sy)i 1) (Sff’_)i 5) =0p (max Sib_)i 5‘) , and
iel, EALS icl, A AL iel, EALS
1/2 1/2
max Sib)l 6l S max (SZ ig) (Sy)i 5) =0y (max Sib_)i 5 ) .
iel, 3 iel, 3t AL iel, tALS

It follows that P {Su]. > cmN} — 1 as co, v <X log N, and the final result follows.
The power of the test statistic S,; can be analyzed analogously. B
A.6 Proof of Theorem 4.2

We first derive the linear expansion of (:)*f ., — 0% for i € I3, and similar results hold for ¢ € I; U I5. Let

.1t
o) := T 2iepr Vi and 122’1 = N~ ez, U ;- By Proposition 3.4, we obtain that uniformly in i € I,
éj Z ( Jyit T Mg, zt)
te (1]
1 o (1r(a)

DI AN S-S B JuJTZm 7R

te[T] i*€l, te(T] te [T]

o1&
=WV D W+ o ((N VT)~ 1/2) (A.56)

t=1

where the third equality holds by the fact that

1 o (¢ ! 1 o (v@\ " o
| 32t (W), 35 S| = s 0 32 (92) €

te(T] *e€l,
log N
=Op< = §N> p (VYT

by conditional Bernstein’s inequality given %, in Lemma B.12(i), Assumption 1(i)-(ii) and Assumption

1(ix). Similarly, uniformly in ¢ € [T], we have

églat - églat = NL Z (éj,it - G)?,it)

i€l3
_ 1 o (yra) 11 0 1 R ! B0 R
=N Uy 5\ Vo, t Eij,it-?’NaZ b "7TZ “t*—k Z
i€l, i€l, t*=1 LEI
=u;" (Vv(ﬁi)f S to (WvT) ), (A.57)
zEI
and
2 _ 1 R
Io I, _
®J o ®J T N.T Z (ewt 91 zt)
@7 el te[T)
1 o (@)t 1 0 0 1 4 0
=NT Uy j (ij,t) N Z i+ T Z Z VJ ij,it T Z Z R
97 iel, te[T) @ iel, i€l, te[T) t=1 i€l, te[T)
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=0, ((NvT)—1/2). (A.58)
Combining (A.56)-(A.58), we obtain that Vi € I, and t € [T7,

Ot — Ot = st — O] — (éj,zr - éj,i~) - ((f)’-a. - e ) + (éfa _ (:)I,a)

- -11 1
—0,1, a _ _
= (u?] u] ) <Vv(]35) N E g?zt (vt 7 O V = E bg lt 7,1‘7
@ iel,

such that max;cp,, ~ N(0,%% ;) with

*
it 'i

((N vT)~Y 2) It follows that ©*

. L om0 ® -0\ (®),,0 () -0 ®) ®-0) ®),0 (%) 50
=D n (Oj uij — O; “j) o (Oj ui; — O; “j) Liatm (O —0; “j) Y, (Oj v~ Oj “j) )
agf3] ="
and X,; and X, are as defined in Theorem 3.3. The reason why Y7 ;, is not indexed with b is owing to the
fact that O(b) shown in the right side of the equality can be absorbed by O;b) not shown in 3, and ¥, .
Define E] it =3 Zb Zt " with

&\ (b)* 1 - "¢ _ 1 @b\ & ([ ~
0= 3 [ (57 - ) S, (057 ) i (585 ) S (s = 577)
ag3] =

where uga b = I\}H, D iel, ﬁgfyb) and v _(a b= =5 Zte 7] ﬁiaj ®) By Theorem 3.3 and Lemma B.33, we have

* —
max Xial=

JElpl,i€[N] te(T]

op(1).

vk
‘Ej,lt

By arguments as used in the proof of Theorem 3.3, we have that as (N, T) — oo, P (3Syr < 2+ b(NT)) —

—e *

e under H and P (Sn7 > ca3.n7) — 1 under H{!! provided lé\é% Max; e [N te[T] |®;,it|2 —00. N

B Some Technical Lemmas

In this section we state and prove some technical lemmas that are used in the proofs of the main results in
the paper.
B.1 Lemmas for the Proof of Theorem 3.1

Lemma B.1 Consider a matriz sequence {A;,i =1,--- , N} whose values are symmetric matrices with

dimension d,

(i) suppose {A;,i=1,---, N} isindependent withE (4;) = 0 and || A;]|,, < M a.s. Let o? = HZiE[N] E (A?)
Then for all t > 0, we have

t2/2

1€[N]

op

op
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(i) suppose {A;,i=1,---,N} is sequence of martingale difference matrices with E;_1 (A;) = 0 and
[|Aill,, < M a.s., where E;_1 denotes E (-[-#;_1), where {#; :i < N} denotes the filtration that is
clear from the context. Let sz‘e[N] E,_1 (Af) ‘ < 02. Then for all t > 0, we have

op

P A >t <d-e t2/2
E i <d-exp{ ——"—— 7.
] P 0%+ Mt/3
i€[N] op

Proof. Lemma B.1(i) and (ii) are Matrix Bernstein inequality and Matrix Freedman inequality, which

are respectively stated in Theorem 1.3 and Corollary 4.2 in Tropp (2011). =

Lemma B.2 Consider a specific matriv A € RV*T whose rows (denoted as A, where A; € RT) are
independent random vectors in RT with EA; = 0 and X; = E(A;A]). Suppose maxen [|Aill, < vm
a.s. and maxe(n) [|Xill,, < M for some positive constant M. Then for every t > 0, with probability
1 —2T exp (—clt2), we have

IAll,, < VNM + tv/m + M,

where ¢1 is an absolute constant.

Proof. The proof follows similar arguments as used in the proof of Theorem 5.41 in Vershynin (2010).
Define Z; := % (A; A} — %;) € RT*T. We notice that {Z;} is an independent sequence with E (Z;) = 0. To
use the matrix Bernstein inequality, we analyze || Z;|,,, and Hzie[ ~ E (X7) H as follows. First, note that

op
uniformly over 1,
1 1 2 m + M
1Zillp < 5 (14:AH + 1510, ) < 5 (145 + 114l ) < 5=, as. (B.1)
Next, noting that E [(A,A;)ﬂ = B[ Aill, AiA] < m3; and 22 = 25 [(A;A)? — A, AR~ A AL + 32,

we have

& ()1, = w2 [[E [(4sa)? - 53]

L= e {[Efaar]], + ez,

2
< (m iy + 12:02,) < "M iformly .
It follows that
Do E(Z)| < Nmax|E(Z)],, < —F— (B.2)

i€[N] op

Let € = max (\/ Mo, 52> with § =t/ ™4 By (B.1)-(B.2) and the matrix Bernstein inequality in Lemma
B.1(i), we have

[ Y
Pl AA—(ZEZ- >ep =P VZZZ- >
i€[N] 1€[N]

op op

<or o
S 2L eXpy TGN e M
N N
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g2 N
< 2T - in ( —
< exp{ Clmm(M’E)erM}

52N
< 2T exp {— c1+ M} = 2Texp{—clt2} ,
m

for some positive constant c¢;, where the third inequality is due to the fact that

min (j\; 5> = min (max (6,6 /M), max (VA5,5) )

2 2 5 O
1 = 1 >
mln((S 7\/M(S) 6° if 6° > U
5t
min (6%/M,6%) = 62, if 6% < —.
1n((5/ ,(5) 0%, if 0°<
That is,

—A’A - Z S| < max (ma, 52) (B.3)

ZE [N] op

with probability 1 — exp (—¢;1t?). Combining the fact that ||3;|| < M uniformly over i and (B.3), we show
that

—|\A||Op HN Zz + —AA——ZE
zE[N] op op
< max ||, + VMS + 2
i€[N] P

2
M M M
gM—i—\/Mtq/m; +t2mj\_/, g<m+t m; ) .

It follows that [|Al,, < VNM +tym+ M. m

Lemma B.3 Recalla;; = 7—1{e;s <0} and a = {ai;} € RV*T. Under Assumption 1, we have | X; ® all,, =

0, (VN + VTTogT) Vj € [p) and |lal,, = Op (VN + VTTogT).

Proof. We focus on [|X; ®al|,,, as the result for ||a||o, can be derived in the same manner. We first
note that, conditional &, the i-th row of X; © a only depends on {e, € }+[7], which are independent
across 4. Therefore X; ©® a has independent rows, denoted as A; = X;; © a;, given &, where X;; and a;

being the i-th row of matrix X; and a, respectively. In addition, for the t-th element of A;, we have

2|2} o

where the second equality holds by Assumption 1(ii) and the fact that given Z., X; ;; is known. Therefore,

@].

First, under Assumption 1(iv), we have the T]( ”talt) < %Zte[T] ij’it < ¢y a.s. for some

E [Xj,itait

9} =E {Xj,itE |:ait

In order to apply Lemma B.1, conditionally on 2, we only need to upper bound || 4;[|, and E {AiAg

positive constant co, which implies

NAill2 = | X @ aill, < coVT  as. (B.4)
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Second, let ¥; = E { [(Xjﬂ- ©a;)(X;: © ai)'] ’@} with (¢, s)th element being E (ijithﬂ-Saitais

7)|

@).

Recall that [|-||; and |||, are matrix norms induced by 1- and co—norms, i.e.,

’)

By Davydov’s inequality for conditional strong mixing sequence, we can show that

?)

Cov <Xj,1't ity XjisQis

E <Xj,ith,isaitais

E <Xj,ith,isaitais

Sl =
o Bl = max >

s€[T]

Sill, =
1illy = max >
te(T)

max
s€[T] telT]

E (Xj,ith,isaitais

— s 2

7))
te(T]

1/q 1/q
< max {E [lXj,itait|q ’_@} } {E |:|Xj,isais}|q ‘_@} } X alt—s) a2/

s€lT] te(T]

<  max {]E{‘quit‘
i€[N],te[T) ’

2/q
@] } max a(t—s) 2/

s€lT] te([T]

<csa.s.,

where c3 is a positive constant which does not depend on i and the last line is by Assumption 1(iii) and

1(iv). Similarly, we have max;¢cp ZSG[T] E <Xj’ith,isaitais

Golub and Van Loan (1996), we have

max |2, < /IS0 ISl e s (B.5)

Combining (B.1), (B.2), and Lemma B.1 with ¢ = y/log T, we obtain the desired result. m

@)‘ < ¢3 a.s. Then by Corollary 2.3.2 in

Recall that Ag, = ©; — @? for any ©; and define
P P
R(C1) = ({80, }]—0 : D_ [P (Be,)]l, < C1 ) _[|Pi(e,)]],

=0 =0

Lemma B.4 Suppose Assumptions 1-3 hold. Then {A@j Hizo € R(3) w.p.a.1.

Proof. Define Q. ({Gj};’:o) = ﬁ Zfil Zthl pr (Yit — Ot — Z§=1 th@j,it) for generic {ej};):O‘
By the definition of the nuclear norm estimator in (2.9), we have

Q- ({e9)) — @ <{éj }j_o) "

In addition, we have

Q- ({69)),) - @ <{éﬂ'}j_o)

v (193, ~ |65t

_ } > 0. (B.6)

P
j=0
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1
N

I
S
] =
[M]=

~ P N Aog ;251 Xiitle, 4,
At A@O,it + ZXj,itA@j,it + / 1 {Eit < 5} -1 {Eit < 0} ds
1 J=1 0

@
Il
-
~
Il

P
ait | Aoy, + Y Xjile, .,

IA
Z‘H
N
M=
M=

=1 t=1 j=1
P 1 N T 1 N T i
S; T;;a”){j ztA@J it ﬁ;;aitAeo,it
P ) ) -
:Zﬁ‘ [A ](XjCDa)}‘—I—W‘tr( eoa))
J; 1
<3 [Be 1% 0l + 577 e el
P
Z (VN v \/JTgT) HA@j , w.p.a.l, (B.7)

where the first equality holds by Knight’s identity in Knight (1998) which states that

pr(u—v) —pr(u) =v(t —1{u<0}) + /OU (1{u < s} —1{u < 0})ds, (B.8)

the first inequality is due to the fact that the second term in the bracket of the second line is non-
negative, the second inequality holds by triangle inequality, the third inequality is by the fact that tr(AB) <
[|A][op||B||+«, and the last inequality holds by Lemma B.3.

Combining (B.6) and (B.7), w.p.a.1, we have

o<C4z{ TR el (1651, - 6] )} B9)

Besides, we can show that

H

0] = im0, - o8-8 4P

> |85+ P(Be,)|| — [P e, = 6511, +[|PH(Be))] - [[Ps(Be,)

L (B.10)

where the second equality holds by Lemma D.2(i) in Chernozhukov et al. (2019), the first inequality holds
by triangle inequality, and the last equality is by the construction of the linear space le and P;. Then
combining (B.9) and (B.10), we obtain

w{flpr (Be)] = [[ms (2]

- T I (5)

7=0

M"s

O;

} z”: fv\/W)HA

7=0

*

<.
Il
o

M

et (3

} , w.p.a.l

75 (Ba))|, <3500 [P (36,
Recall &% ;1 is the o-field generated by {V’}jepiugoys AW} Yieppls {€1s hi<i1,ser]s {€is Ys<ts {€1s hi<im1,sei175
and {e;s}s<i—1 and Fiu(-) and f;(-) are the conditional CDF and PDF of €; given ¥ ;_1, respectively.

By setting v; = % VIoeT) ' we obtain > o w.p.al. =

Specifically, we note that ({Xji}jefp)> {09} jeplufoy) are measurable w.r.t. & ; 1.
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Lemma B.5 For all uj,us € R and all ¢5 € (0, 1], we have

(i) J3* (1{ur <2} —1{uy <0})dz > [ (1{uy < 2} —1{u; <0})dz >0,

(1) fou2 {Fit (u1 + 2) — Fit (1)} dz > fﬂ " {Fit (u1 4 2) — F (u1)} dz > 0.

Proof. Statement (i) is just Feng (2019, Lemma A2). To prove statement (ii), notice that if us > 0,
then z > 0 and Fj; (u1 + 2) — Fir (u1) > 0 for all z € [0, ug], which leads to the existence of the second

inequality naturally:

/uz {F’Lt (u1 —+ Z) — Fit (ul)} dZ — /C5UZ {th (u1 + Z) — Fit (ul)} dZ
0 0

= /U2 {Fit (u1 +2) — Fit (u1)} dz > 0.

5U2

On the other hand, if us < 0, we have

/u2 {th (Ul —+ Z) — F'L't (Ul)}dZ — /C‘L’)u2 {Fit (Ul + Z) — F'L't (ul)}dz
0 0

0 0

{Fit (ul) — Fit (u1 + Z)} dZ — / {th (’U,1> — Fit (Ul + Z)} dZ

u2 C5U2

CsU2
= / {Fit (u1) 5Fit (u1 + 2)} dz > 0,

2

where the last inequality holds as the same reason for us > 0 case. ®m

Lemma B.6 Under Assumptions 1-4, for any {Ae, 520 € R(3,C2) such that [|Ae,|lmax < M for some

constant M > 0, we have

03 & cC
Q- ({6 +2e,}_,) — - (&5}, = Ny 18 .7~ per (V+T) wpal,

where QT({@J-}?:O) = 3 SYSTE {pT ( it — ot — 25—y Xj,it®j,it>

a positive constant between 0 and 1.

feg ,
%,t1:|7 c7 = =2 with cg being

3f

Proof. We can choose a sufficiently large constant M such that cg : € (0,1]. Then we have

~ W M(+p)
Q- ({69 +80,}7,) - Q- ({61,
1 L& p
= NT ZZE pr | Yie — ©o,it — ZX',it@j,it —pr | Yie — 634 ZX 0% | (i
i=1 t=1 j=1
L N »
= 57 22 2B | Beou T2 Xianbo, | (7= 1en <0} |Eirn
i=1 t=1 j=1

1 N T A(_)O,it+2§'):1 XjitDe; i
+WZZE /0 (1{eir < s} —1{ey <0})ds|¥

i,t— 1}
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1 Aeﬂvit+2§=1 Xj,itAej’it
NT E / (16it<s - 1€it<0) ds
S DALY .
1 Cﬁf&l(AGO,zt“FZi 1 J 1tAOJ Lt)
ESH Y|

cobn’ (A@)o,n +30, Xj,'itAG)j)“,)

%,t1}
%,t—1}

Y

(1€i:SS - 1€itS0) ds
0

3=
]
]
S~

[Fit (s) — Fit (0)] ds

CGEXII(A(—)O,“‘FZ? 1 Xjitley, i)
st 0+ 57, 9] s

2 3

fe2 T P o3
= 2]\};%]2\[ ZZ A@"’“ + ZXj*itA@J‘~if - GN;GES Z AOO T ZX] ztAej it

1t=1 j=1 i=1 t=1
2

fc? N T P
- 4]\;T§2 ZZ Aeo,it + ZX‘,#A@L“

N =1 t=1 j=1

1 L& fc2 u 2c6f’ u
+ Z Z j A@U,it + Z XjaitA@j,it 1- 3f£N A@o,it + Z Xj,itA@jyit
i=1 t=1 j=1 = j=1

2

fc NI
5 1 VNS P v

N =1 t=1 j=1
2

= —6 A90+ZXj®A@
N
F

fc?
= 4]\[1165]2v C3ZHA® 15 -Ca(N+T) 3 wpal

6703 P C7C4
= NT§2 ZH 0; ||F NT§2 N+T) (B'll)

where the second equality is by (B.8), the first inequality is by Lemma B.5 and the fact that ¢g/En < 1,
the fifth equality is by the mean-value theorem, the third inequality is by the fact that

266 F/
3fEn

266 F/
3fEn

p
A@O,it + ijvitAej,it >1-
j=1

1- M(1+p)in =0,

and the fourth inequality holds under Assumption 4. This concludes the proof. m

Lemma B.7 Under Assumptions 14, for any {A@j }];:0 € R(3,Cs), we have ||A@j H* < cg Z?:o ||A@j HF Vj e
{0,--- ,p} where cg = 4V2K.

Proof. For Vj € {0,--- ,p}, we obtain that

186,11, = 1Pi (A0, + 77 (A0l < [1Pi(de,)ll, +33_[1Ps(de,)ll,

Jj=0
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p p
< 42 ’|Pj(A91)||* < 42 Vv 2K; HPJ' (Aej)HF
=0 =0
_ P p
<AV2KY |Ae,llp=cs Y || Ae,lp
§=0 =0

where the first equality is by Chernozhukov et al. (2019, Lemma D.2(i)), the first inequality is by the
definition of R(C1,Cs), and the last two inequalities follow the facts that ||Al|, < y/rank(A)||A|, for
any matrix A € RV*T and rank (’Pj (A@j)) < 2K, which hold by Chernozhukov et al. (2019, Lemma
D.2.(iii)). m

Let Z be a separable metric space, {Z1,---,Z,} be a sequence of random variables in Z adapted to
the filtration {7 },cn), F = {f : £ — R} be a set of bounded real valued functions on R, and wuy,- -+ ,u,
be i.i.d. Rademacher random variables. Here we allow the dependence of sequence {Z,--- , Z,}. Similarly
as in Rakhlin et al. (2015), we define a Z-valued tree z of depth n with the sequence (z1, - - ,z,) such that
7 2 {uy, -+ ,up—1} — Z. For simplicity, we denote as z; (u) = z; (u1,- -+ ,us—1) and E;[[] = E Hﬁt] for
short. Also, denote wuy.¢ := (ug,- -+ ,u:) and similarly for Z;.;.

Lemma B.8 Let F be a class of functions. For any a > 0, it holds that

>ap < 2supP < sup >g .
z feF 4

and the outer supremum is taken over all Z-valued tree of

n

IS (2 B [f (2]

n
t=1

n

)

feF ni4

BnlP {Sup

A, Var(1(20)| 7 1)

n2a?

where [, > 1 — supscr
depth n.!

Proof. Let Zi,, be a decoupled sequence tangent to Zi.,. For the sequence of random variables
{Z; : t € [n]} adapted to the filtration {&#, :t € [n]}, the sequence Z}., = {Z;,t € [n]} is said to be a
decoupled sequence tangent to {Z; : t € [n]} if for each ¢ € [n], Z; is generated from the conditional distri-
bution of Z; given .%;_; and independent of everything else. This means the sequence Zj.,, is conditionally

independent given .%,, and for any measurable function f of Z},
E(f(Z0)|-7n) = B(f(Z])|F1-1) a.s. (B.12)

For Vf € F, with Chebyshev’s inequality, we have

p (i
IE {(2?_1 F(Z8) By [f (Z0)
- {(f (Z8) = Fas [f ()

n2a?

SO F(Z) —Fes [F(2))
t=1

> a/2‘33n>

2]
)

<

'This means the supremum is taken over all z = {z¢(-)}se[n)-
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— Ayl Var (f (Z) |jt—1)
B n2a?

b

where the first equality holds by the fact that, given #,, {Z] };¢[n are independent and the last equality
holds by (B.12). This implies
<af 2‘/ )

> a/2‘§n>

—Eia [f(2))]

By = inf ]P’(

feF

:17;1612_]? (n Zf(Zt*)*EtA [f (Z))]

>1_S Et 1Var( Zt ’/t 1)
- fe]-‘ n?a?

=1

Let function f* be the function that maximizes * |37, [f (Z]) — Ei—1 (f (Z7))]] condition on .Z,, and
define the event A; = {supfe}-% >ry [f (Zi) = Ei—1 (f (Z1))]| > a}. Then we obtain that

B"SPCL Zf —Ei 1 [f*(Z)] <a/2’,/ )

where the inequality follows by the definition of 3, and the fact that E,_; [f* (Z})] = Ei—1 [f* (Z)]. As
A, € Z,, we have

<a/2|A

Bn SP(:L S () — Bl (2)]

t=1

It follows that

BnP {Sup L (f(Ze) =B [f (Z0)])| > 04}
fer M
<P <i FZ5) ~ B 1 (20)]] < oz/2‘A1> P (4)
t=1
H”({i Do IZ) B [f1(2)] Sa/2}UA1>
<P (; £z - (2| 2 a/2>
<P (i sup Sz -1z = a/2> , (B.13)

where the second inequality holds by the implication rule. Let ¢(-) = 1{- > na/2}. By Lemma 18 in
Rakhlin et al. (2015), we have
> af 2)

“”(@22 2l
>a/2}

> uelf () = f(Z)]

=E1 fsup
N reF |y
t=1

< sup E,, --- sup E, 1{;u§_
€

n

A Z7)

=1

Zna/Q}

!
21,2} Zn, 2l
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n

Zutf zt) Zutf i)

21,2} Zn,20, fer 21,2} Zn,2), feF

> na/4} + sup E, ---sup E, 1 {sup

< sup E,, --- sup E,, 1 {sup > noz/4}
Zutf zt)| > na/d
z1,2] Zn, 20, feF

t=1
Z“tf 2 ( } (B.14)

where the standard text z; and Z;° are Z-valued, the bold text z; = z;(u) is the ¢-th root of a tree z(-) (i.e.,

=2sup E,, --- sup E, 1{bup

= 2supIP’{sup

z

a function of uy.t—1), and the outer supremum in the last line is taken over all Z-valued tree of depth n.

Combining (B.13) and (B.14), we can conclude that
{sup a}ﬁ?supl}”{sup }
feFr z feF

The next lemma is an extension of the contraction principle, i.e., Ledoux and Talagrand (1991, Theorem

n

Zutf Zt

—Eia [f(Z)])] >

t:l

4.12), to the case with sequential symmetrization.

Lemma B.9 Let function F : Ry — Ry be convex and increasing and ¢; : R — R be contractions such

that ¢4 (0) = 0, z; is the t-th root of a tree (z) which depends on {uy,--- ,us_1}. Then we have

Zum (2:(w))) } <EF{;gp > () }

Proof. We first consider the statement without the absolute value. Let function G : R — R be convex

)

U1:n1> } = { (SUP Z wdy (f (z(w))) + undn (f (2n(u)))

f€]—'t 1
ul:nl} )

E {G < sup (kl + un(bn (kQ))>
k1,k2 €K

where k1 = S0 wrgy (f (20(w))), ko = f (2a(w)), and K = {(k1,k2) : f € F} C R% We also note that
k1 and ko only depend on uj.,—1 and is independent of w,. The proof in Ledoux and Talagrand (1989,
Theorem 4.12) shows

fE

EF { sup

and increasing. We observe that

EG{SUPZUt¢t zi(u )))} {

feF 4

{sup > wi (f )}

feFr i3

and

E {G (;1612;%:@ (f (z¢(u)))

EG{ sup ki + usgpo (kjg)} < EG{ sup ki + ugkg} ,
kl,kgeK: kl,kf_)el(:

which implies

E {G <;2};;ut¢t (f (z¢(u)))

u>} { (m S i (f (24()) + un f (2 (1))

feF 4
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Taking expectation on both sides, we have

E {G (SUP Z%ﬂ?t (f (Zt(u)))> } { (Sup Z wdy (f w))) + un f (25 (u ))) } :
feFr 4
Next, let ky = > 1] 2wy (f (ze(w))), ko = f(2n_1(u)) and ks(tp_1) = Un f(2n (u)). We emphasize that
k1 and ko only depend on uq.,_2 and u,, while k3 also depends on wu,_1. The dependence of (k1, k2, k3(+))
on f is made implicit for notation simplicity. Furthermore, given the fact that w,_; only takes values
{-1,1}, we have

Up—1 + 1
2

1- Up—1

k3(1) + ks(—1) k3(1) — ks(—1)
5 _ " A

kg(un_l) = kg(l) + k‘3(—1) = 2 _ B

Given these notation and conditioning on (u1.,—2,u,), we have

Eu,_, { (SUP Z urde (f w))) + n f (2n(u ))) }

SN

=E,, , |G (sup ki 4+ tun—1¢n—1(k2) + k3(un1)>‘|

fer

=E,, , |G ( sup  hi + up—1 (pn-1(h2) + h3)>1 )

(hl,hz,h3)€7{

where E,, , means the expectation is taken conditionally on (ui.,—2,us), b1 = > 1) 2wy (f (ze(w))) +

“n(f(zn(u1:n—271));‘f(zn(“1:n—27—1))), hy = k‘g, hs = Un(f(Zn(ulzn—2,1))2—f(zn(u1;n 2,—1))) 7 and H = ((hl,hz,hg) .
f € F) € R%. Suppose (h%,h3, hi) € H and (hi, bl hl) € # achieve the supremum of

h1 + (¢n_1(h2) + hg) and h1 — (¢n_1(h2) + hg) s respectively.

Then, we have

E

Un—1

G ( sup  hi 4+ up—1 (Pn—1(h2) + hs))]

(h1,h2,h3)EH
1 * * * 1
= 5G((h] + 1) + dna(h3)) + 5G((h] — hb) — dur(h))

1 * * * 1
< §G((h1 +h3) + h3) + iG((hI - h;) - h%)

— HUn-—1

G ( sup  hy + up—1 (ha + h3)>] ;

(hl,hg,hg.)GH

where the first inequality is by the fact proved in the proof of Ledoux and Talagrand (1991, Theorem 4.12)

that for any ¢1, s1, t2, s9,

[t

56101+ 6um1(62) + 5651 — i (52)) < 560 +12) + 3Gls1 — 52)
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Plugging back the definition of hq, ho, h3, we have

n

Bu, { (SHP D wn (f (ze(w) + unf (2 (u )))} < By, {G (;ggZum (f () + D uef (2(w))

fer t=1 t=n—1

Taking expectation on both sides, we have

{ <sup2ut¢t W) + tn f (2 )))} SE{G<;ggZut¢t (f (@) + > utf(zt(U))>}~

fer i t=n—1

We can repeat a similar argument by taking conditional expectations given (u1.4—1, Us+1.,) and removing

¢ for all t =n —2,--- 2. This leads to the result that

E {G (?gggutﬁbt (f (Zt(u)))> } <E {G <J§1€l£§utf (Zt(u))> } : (B.15)

Next, we come back to the case with the absolute value. Note that

EF ;;gg > w (s (zt<u>>>H
< % {EF ]SCIEIE (Z urdy (f ) +EF ?1612 (Z udy (f ))
1 ]
=5 {IEF ?1611; (Z ur e (f ) +EF ?1612 (Z us e (f ))))
1 i [ +
=5 {EF (;gg;ut@ ) +EF (;gg;ut@ ))))
) : n +1 i n +7 ]
<5 {]EF (;22;%& (f (ZAU)))) +EF (;gg;@f(zt*(u*))>
) - . +: - +:
=3 {]EF sup (; uy (f (ZAU)))) +EF ?612 (Z ug f (2 (u )
) - . +: a4
=3 {]EF sup (; ug (f (ZAU)))) +EF ?33 (Zutf (z¢(u >
< EF |sup Zutf (z¢(u)) ] , (B.16)
fer |v=a
where uy = —uy, z7 (u) = z¢(—u), the first inequality is by the convexity of F', the first and second equalities

are by the fact that (v)~ = (—v)™T for any v, and the second inequality is by (B.15) and the fact that F((-)T)

is convex and increasing. This leads to the desired result. m

RNTXI

Define Rademacher sequence u = (uy1, -+ , U1, * ,UN1, "+ , UNT) = (u(1)7 . 7u(NT)) S . In

the matrix notation, let U = {u;} € RV*T. By vectorization, for a sequence of independent variables

41

)



X it, we define

(X1, Xjar, - Xjnt 5 Xinr) = (X, X5 vr)) 5

(6117"' JEIT, " L ENT, " ,ENT) = (6(1),"' 7€(NT)>7

Vj € [p]. Using the binary tree representation, let x7 , be (D' root of the tree which takes val-

-1 .= (u(l),~-~ ,u(l_l)) such that

ues in the support of Xj ), ie., x;(l) culTl e [, €] for w
MAXie[N] D e 7] (x;‘lt)Q < MT and maxie(r) >icin) (x;)it)% < MN for some fixed constant M < oo and
¢ =1,2. Similar notation follows for €f;) = €7, (u'~1). In the matrix notation, let z; = {m;‘tt} e RNXT

such that @7, = z; ) with i =[] and t =1 — (i — 1) T.

Lemma B.10 Under Assumption 1, for j € [p|, there exists an absolute constant C that is independent of
the trees (x*,€*) such that when log(N VvV T) > 2,

Eex “UHOP <C and Eex HU@x;HOP <C
P\VINWV D legV V) ) PV VD logvv D) )

Proof. The proof here follows similarly as Lemma B.2 except that we have martingale difference
matrices rather than independent matrices. For a specific j, let A=U ® x;‘ = (44, - ,AN)/ e RNXT Z,
be the o-field generated by {wi}i-<iterr), Ei(-) = E(-|F), ¥ = Ei1 (4:4]) and Z; = % (A; AL — %),
with % (A'A = Siein %) = Liepw Zi- Note that By (Z) = 0,
<VMT a.s., (B.17)

2
Al = * U = *
max | 4ifly = max [} (2] o) = max (25.0)

te[T]

diag ((x;il)Q e (szT)2>

< €% as., (B.18)

max [|3;]],, = max ’

i€[N] €[N] op

and for £ =1, 2,

Sost = fdiag | S (@)Y (@) || < MN as. (B.19)

i€[N] 1€E[N] i€[N]

op op
Combining (B.17) and (B.18) yields
1
mac 1 Zil,, < max 5 (14, +15,,)
1 5 MT + &%
(s LAl + ma Il ) < 255 s (8.20)
In addition,
E,_, (22)|| = E L TaAn? - 52
Zi_l(i) —Z'L—l m(zz)_z
1€E[N] op 1€[N] op
LY | (|\A-||2A-A’)‘ 3 w2
= N2 1—1 1|l Ae 4 op i
1E€[N] i€[N]

op
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g% MT| > 5|+ 53

i€[N] i€[N]
. MT+1)M
— N b

op op

(B.21)

where the last inequality holds by (B.17) and (B.19).
Combining (B.20) and (B.21), by matrix Bernstein’s inequality in Lemma B.1(ii), for some sufficiently

large constant ¢ that depends on M, we have

P>z >E(NVT)log(N\/T)

A N
1€E[N] op
2
122 (%) (log(N v T))° .
<Texp{ — TETCR— = exp (— (§ — 1) log((N Vv T))) ,
(MT+1)M + c-—x— log(NVT)
N 3

which implies that with probability greater than 1 —exp(—(¢/2 — 1) log(N Vv T)),

1 ((NVT)
il do% §c< ~ log(N\/T)>,
1E€[N] op
Loy 1 1 ’ _((NVT)
NA4 < N,Z Sil o+ |44 .ZEZ M+c( N~ lg(NVT) ), and
°op i€[N] op i€[N] op
1Al i,y < VI+EN V) log(N VT).

Consequently, when log(N V T) > 2, we have

Bexp <\/(N v T)log(N V T))

/ < v, )
VINVT)log(NVT) ~

([ o emoetwest

expl(u du—i—/ooexp( )exp( (NvT))

S/O estopt [ o - (u_;)Z{f) du

<exp(2) — 14 V2mexp <f) =C,

(NVT)log(N \/T)) du
—3),

where the first inequality is by the fact that

]P’( HUQxJHop > 1+c> < exp <_ <§—1> log((N\/T)))
VINVT)log(N V T) 2
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. = o Il
and by letting u = v/1 + ¢ > 2 for large ¢. Similarly, we can show that when log(NVT) > 2, Eexp < % log(N\/T)) <

C for some absolute constant C'. m
Recall that p;¢ ({A@j,m Xj’it}§:0 , el-t) is defined in (A.4) and %; ; is defined in Assumption 1.
Lemma B.11 If Assumptions 1-4 hold, then we have
N T .
‘ﬁ D im1 D i—1 Pit ({Ae)j,m Xj,it}§:0 ) Eit) ‘
sup

{Ae; }jzoeR(za,cQ) ?:o ||A9j ||F

= O, (anT),

(NVT)log(NVT)

where anyT = NT

Proof. Let n = NT and for | € [n], Z, = ({Xjit}jep). €i) with i = [£] and ¢t =1 — (i — 1) T, and
F1 =Y. Then, Z; is adapted to the filtration {.%;},c[,,). Lemma B.8 implies

{Ae, it, Xﬁit}? 0’ 6”)

N T 5
1 Pit ( : —
ByTP sup —_— > Csant
{26, }7 J€R(3,C2) NT ; ; f:o Qe ||F
<2sup P sup 1 i ~ Lithit ({Agj’it’x;’it}fzo ’ 62}) Csant (B.22)
e | {ae, }_ ER(3.C2) NT o= i=o 186, | » 4 7

for some positive constant C5, where the outer supremum on the RHS of the above display is taken over
[—¢n, En]P X R-valued trees with depth n and

Pi ( Ao, ity Xji b 761')
By =1 sup $ Z Var t { 558t Jt}JfO t

Git—1
{ae,}7_€R(G.C2) ©5 C2 (NT)’ a3y (i,t)E[N] X [T] i=0 |26, |

We first note

Pit ({A@j,m Xt };):o ) Gn)

Var -1
(u)e%v:]x[:r] ?zo ||A@], HF Z
2
Pit ({A@j,ita Xj,it}z;o , €it)
PRSI | G v o i
(i,t)E[N]x[T] 7=0 [1=85llp

< Aeg,it + 251 XjiOjit ’
y >0 |[Qe,]
(z t)e[N]x[T] Jj=0 illF
Z Z ( ],LtA@],Zt) ;_ Aég,it S 010512\7
i=1t=1 j:0 HA@]' HF

with some positive constant cjg, where the first inequality holds by Jensen inequality, the second in-

equality is by |pr(u) — p-(v)| < 2]u — v|, and the last line holds by Assumption 1(iv) and the fact that
2
(Z?:o |Ae, HF) =0 ( ?:0 | Ae, Hi) Therefore, we have

Py p
BT > 1— sup $ Z Var Pit ({A@j,it,Xj,it}jZO ) Q't)
 {2e, ) ere.0n) O5 C2 (NT)” a3p (i,t)€[N]x[T] >i—ollBe, | »
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4er0&3

>1-— sup
{Aej }5:067%(3,02) Cg (N V T) log (N V T)
3
>1-0 —1 B.23
- <(N VT)log(N Vv T) ’ ( )
where the last line is by Assumption 1(ix).
Define
N T
1 ’U/”A@ it
A= s Sy e,
{ae;}!_€R(3,C2) NT i=1 t=1 £4j=0 HA@ HF
N T
1 Uit T ; ztA@ it .
A; = sup —_l—— Yj € [pl,
{26, }!_€R(G.C2) NT ;; =0 ||A9 ||F
Mt S S0y i (Bega + Xy 0 Be, 1)
Ap—i—l = sup D A ’
{26, }!_€R(G.C2) =0 ” ©; HF
where ¢ (u) = (¢, —u)” — (€;) . Notice that
P P
it ({A@J,n’ x zt}] o zt) =7 | Agy,it + Zx;ﬂ»tA@j)it + @it | DNeoy,it + Zx;,itA@ja“ )
j=1 j=1
we obtain that
N T Uit Pit ({AG) Jity L zt} ) zt) C!
sup P sup ZZ ’ i) j=0 > S5ANT
e | {2e, ] ER(B3,C) NT i=1 t=1 >j=0 12,1 4
P
CsaNT } { Csant }
< sup P TA~> +su P > — ). B.24
_jZ::o - { ! A W TR (24
We first bound A, for j € [p]. We have
N Ay (Uoa)
1 Us x; i A K 1 }t?‘ [ O, (
= NT sup ZZ it it—0;,it < ﬁ sup p ; J
{26, }7_[€R(3.02) i=1 t=1 2= OHA@ HF {Aej}jzoen(s,cz) 2 =0 HA@J'HF
1 Ag,
N sup | . | op” (B.25)

7 {86, }?_ ERG,C2) >i—o || Qe HF

where the first inequality holds by tr(AB) < [|A]|,, [|B||, and the second inequality holds by Lemma B.7.
Then

[ U 5
SupP{TAj>W}<Sup]P || GIJH > Co
o* e 4(p+2) e VINVT)log(NVT) ™~ 4cs7(p+2)

G U@
<Sf*p{e’(p< 4csT(p+2)>]E eXp<\/(N\/T)log(N\/T)> }

< Cexp (—40872;2)) (B.26)
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for some absolute constant C' that independent of (x*, €*), where the last inequality holds by Lemma B.10.

Similarly, we can establish

Csant Cs
P — 3 < _ ). B.2
iy {TA°>4<p+2>}—CeXp< 4c87<p+2>> (B.27)

Next, we turn to Ap41. We have

C’5aNT 05 ) NT.Ap_H
P Ay > 2N < - E .
iy { T i+ 2)} = oxp < tes(p+ 1) (p+2)) o {exp <08(p+ 1)\/(NVT)log (N VT)

(B.28)
Because ¢ (-) is a contraction, Lemma B.9 implies
E { exp NT Ay
cs(p+ v/ (N V T) (log(N v 1))
_ N .
1 Zi:l Zthl Uit Pit (A@mit + Z§:1 xj,itA@jvit)
=E { exp sup >
es(p+ 1)V INVT) (log(N V) (a0} eraca) i=o |8, -
i N T p *
it (Aeg,it + D5 T5 Do, i
<E{ exp ! sup ZZ d thp 2371 = i)
cs(p+1)y/ (N VT) (log(N VT)) {86,}"_ €RG,C2) [iT1 121 Yo llBe, |
el (101 + Zjepn 00 251,
(p+1)/(NVT)(log(NVT))
1/(14p) 1/(1+p)
(i, (lvel,)
<E[{exp e [E q exp <C
VNV T) (log(N v T) VNV T) (log(N v T)
(B.29)

for some absolute constant C', where the first inequality is by Lemma B.9, the second inequality is by

(B.25), the third inequality is due to the fact that, for random variables {4;};cipy1]s
E(Wigp 1) Ail) < Migppy)[EA; 7]/ 0F7),

and the final inequality is by Lemma B.10 with an absolute constant C' that is independent of (z*,€*).
Combining (B.28) and (B.29), we have

Csant Cs
sup P oL L~ —
Iy {Ap“ - 4(p+2)} —CeXp( 4cs(p+1)(P+2)) ’

which, combined with (B.22), (B.24), (B.26), and (B.27), further implies that

N T 5, . o P .
1 Pit ({Aej,m Xj,zt}j:() , Ezt)
P sup — > CsanT
{4e; }::OER((B,CQ) NT ; ; ?:o HA@J' ||F
N Y opx P *
1 Uit Pit ({A@j,m xmt} i—0° Eit> Csant
< 2B%% sup P sup — J >
Mae | ae, Y er@.o) [N ; ; Yo l[Ae,l 1
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The RHS of the last inequality converges to zero as Cs5 — oo, which implies that

N T
’ﬁ Doim1 2ot Pit ({A@j,m Xj,it}§=0 ) eit)

sup - = O, (anT) .
{26, }3?:0672(3,02) Zj:O HA@]' HF
]
B.2 Lemmas for the Proof of Theorem 3.2
Lemma B.12 Let {Y¢,t =1,--- T} be a zero-mean strong mizing process, not necessarily stationary,

with the mizing coefficients satisfying a(z) < cap® for some cq >0 and p € (0,1). If sup; ;<7 |T¢| < M7,
then there exist a constant co depending on co, and p such that for any T > 2 and d > 0,

. T o d?
(i) P{’thl Ty > d} < exp {_M%T+dMT(l?)gT)(log Tog T) }

.. T d?
(ii) P{’Et:l Tt’ > d} < exp {_1)3T+M%i9dMT(10gT)2 }’

with v3 = SUPye 7] [Var(’rt) +23 o |Cou(Ty, TQ)H

Proof. The proof is the same as that of Theorems 1 and 2 in Merlevede et al. (2009)) with the condition
assumed «a(a) < exp {—2ca} for some ¢ > 0 changed with ¢, = 1 and p = exp {—2¢} in our lemma instead.

Lemma B.13 Suppose Assumptions 1-4 hold. Then, for j € {0,--- ,p}, we have

(i) max;ecn H“m”z < M and max,c(r HU?JHZ < Ui\{,j < %
(ii) maxery [|Of0r4|, < UiMJ < 2M and max¢ 7 HO "5 (}])"2 < U2KM <2 oypat,

1 7(1) 4M? | 4M*pC
(i) max;er, T ZtG[T] ‘ biy ‘ < T T'p

w.p.a.1.

Proof. (i) Recall that \/J{TTG LIOEOVO’ U0 \/NL{JQE? and V; = VTV;. Then we have

ivio
T@?VJO VNUE? = U and Tuo'@o VTS =9V (B.30)
Hence, it’s natural to see that

(L

o= e, <

1
< e, <

where the first inequality is due to the fact that V; is the unitary matrix and the last inequality holds

)

by Assumption 2. Since the upper bound M is not dependent on ¢, this result holds uniformly in 1.

Analogously,

et

[vf
27 ¢y

R e | ZCH R
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(ii) As in (B.30), we have

1 - - - .
ﬁ J/@J - \/TEJ
It follows that

2M
S -
2 Co

- 1 __ ~ =
l05all, < oita || [6],
-1

where the last inequality holds due to the fact that maxge(g ‘&k_; -2

bounded parameter space where (:) lies in by Assumption 2 and ADMM algorithm proposed in the last

)

1 ~
2= YN K I[e],

< 21_(1,]' w.p.a.1l. and the

section. The upper bound of max;¢(r HO(U' ) H follows the same argument as above.
(iii) We observe that
2 2
L s ~(1 s ~(1) H 4M 4M<pC 1
wpeq 2 W0, <7 3 lowld], om0 5 32 ot 1ial® < S+ TS wan,

o

where the last inequality holds by Lemma B.13(ii) and Assumption 1(iv). =
Lemma B.14 Under Assumptions 1-5, we have

3

(i) mln)\mm (égl)) > %, max Amax (égl)) <2C, w.p.a.1,

i€12 i€ly
(ii) For ¥j € [p)], rinz}x%ztem {Xiit —-E < 2 @f;”h«)} ‘ by — 0 ‘2 = 0,(n%),
(Z”) InaX T Zte[T ‘ (D( ) (I)?t = Op(7712\/)-
Proof. (i) Recall that
T
= Z o0, 0% with @Y = (v, v X1it, ..o, v Xpie)',  and
- - / !
(I)gl) Z(I)(l)q)(l)/ with ‘I’z('tl) _ |:(O(()1)/61£,10)) ,(O§1)’ﬁ§}fX1,it) : (0(1)/0(1)Xp Zt) ] .
Uniformly over ¢ € I, it is clear that
-
7 T F
AM & AM S &
1)7~(1 1)7~(1
S oo 206798 = b, + £ 05 — b, X
77 =1 77 j=1t=1
1/2
4 1 4]\/[2
< s ’0(1)/‘/(1) VP H \F HO(l)/V(l) VOH Z X0 =0, (nn),

where the third line holds by Lemma B.13(i) and Assumption 1(iv). It follows that

An'un |:(I)( ):| > )\mln ‘bi -0 > %7 .p-a.l
) ) Anin [ = Ol 2 55 wepa

and

max Amax [&)51)] < max Amax [8:] + O (nn) < 2Cy, w.p.a.l.
i€ly i€ls
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9h

{613}§<f

(11) Let Ij,i = % ZtE[T] Ij,it such that Ij,it = |:Xj2,it — E( it

for a constant ¢, we have

2
A1) ~(1)
)] HOj Ch _Ug’sz' Then

< . 2
leézE( Z Liu| > Ty Z}P’ Z I > Iy
te([T] i€l te[T]

3L | PR T

i€l te([T]
2(cTn?)?
S LT
i ~ (1) ~(1
€l Zte[T] {2512\{ HO]( )Ut(,j) - ”?,j u
2T 2\2
<2exp{ — (T'my) 5 +1log N » =o(1),

4551\[ {]ZI; + 4M2} Zte[T HO(l)/vt(lg) - vg

2
where the first inequality combines the fact that I;;; is the martingale difference sequence, Assumption
1(v) and the Azuma-Hoeffding inequality in Wainwright (2019, Corollary 2.20). The last inequality is by
Lemma B.13(i) and B.13(ii), and the finial result is by the definition of ny.

(iii) Note that

2 1 ~ N 2
- M _go]" <« HO(1)1~(1) ) H X2 oW Em _ 0 ’
1332( Z H i g = th 0 Y, Yt0 +pze§§?§[p T Z | > tl i Ut TVt 9
€[T] te[T]
Z HO(1 —? ‘ ’ + max l Z X2 —E 9h HO(I /v(l) —? ‘2
G pielg,je[p] T it J” {eistocs t,j td ||y
tG[T te(T]
+ max l Z E X2 @Il HO(I)/ _ ’UO H2
i€ly jG[p] T Jyit {e’i8}5<t t,j 2
’ te[T)
2 2
O(1 T ‘ + O + pM max — HO(I)' 51 _ 0
T tEZ[Y:“ H "0l o) +p j€l) T Z Lllg

== 0(”17(1LVOH + pma H
T ‘ o Yo Vol TP T

oY — VﬁHF + Opm?v)

= OP(TI?VL

where the the second inequality holds by Assumption 1(iv) and Lemma B.14(ii), and the last equality holds
by the Theorem 3.1(ii). m

Lemma B.15 Recall {A1;, -, A7i}ier, and gl defined in (A.5) and (A.6), respectively. Suppose As-

sumptions 1-5 hold. Then for any constant ¢11 < min( f,f, 1), we have

max(| Ayl / || v

i€ls

2) =0, (nn),Ym € {1,2,3,5,6,7} and

7,U

- . 2 _
(3chi— i) co || Aua| (3hi—chiF) vezal e 1
s s 1€ 1y, w.p.a.l.
12 6\@ 2 D

|A4,i| Z min
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Proof. Recall that wy;; = € — u? (<I>(1) (I)?t) . Let wo ;¢ = &)Etl)/Aw For some positive constant
c11 € (0,1], we observe that

T )
1 W2 it n
A4J:T;\/O E<1{€itSS}_l{eitSO}‘@ei>d3

1 T W2 it T C11W2 it
=72 [ Bl - maOlas = 13 [ Fuls) - (O s

1 T C11W2, it 2/ B
-3 [sfit<o>+‘;fit<s>} ds

t=1
~ 3

Lo [ (WAL i |E

> = ; 5 - ; (B.31)

where § € (0,s). Here, due to Assumption 1(i), the conditional CDF of €;; given 2! is the same as that
. . 0 0 . .

given the o-field generated by {{6zt}te[T] u{v, }je[p]u () U{w; }je[p] }, which leads to the second equality

of the above display by Assumption 1(Vii) the first inequality holds by Lemma B.5(ii) for any ¢;; € (0, 1].

Here, we choose c¢17 such that ¢1; <

f’ ; and the last inequality holds by Assumption 1(vii).
3

2 (5275

I 11
RS S0P If ¢ > q;°, we
te

3 ¢/ U
notice that % Zte 7] ’Q(l)/A‘ ( ’L[ ) and A41 > Cllf( ) _ ciqf (61 ) _ 3011j6011f (qu[)Q. It qu < quI,
1
2

1
212
Let ¢/ = {T > te[T] ( S)’Aw) } and recall that ¢/ = iI’Alf

1 F (1) A« 2 * ,UA .
we have | 73, cm (@lt A7 ) = ¢} with A}, = LT Define the function

i

@(1)’

TZ | e~ suto)as

Note that the second-order derivative of function F' (A) is no less than zero, which implies F' (A) is convex.

Therefore, we have

I A* g1 3c2 3 2 3 5\ I, I1
A 4 A7, qz x qi' 3cif —enf' 1 (1) ax )2 (Bchif— L) dldf
i z i te[T]
Combining these two cases, we have
[ 3ctif— LY 2 (3ctif—chi) ¢ al’
Ay > min <6 (¢i") 7( — )
_ . 2 _
o [(Gehi- e[ A, (ehi- ) yesal ||A .
min ) ) :
- 12 6v/2
where the second inequality holds by Lemma B.14(i).
As for |A; ;|, we notice that
% thl E {q)(l)/ (T -1 { p <y’ (‘igtl) - (I)?t) }) @e{l} Aiﬂt

e ([

) = max
2 i€ A
o HAW 2
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T A (7 S o (8 - 94)])

= max
el HAz,u
’* Zt 1 (I)(l TAVEY [f%t(szt) (q)(l) (I)?tﬂ ‘
= max
i€ly HALU
2

<mrp 3 [o
1 =7 @ a0ll®1.0

<mpe 7 2[00 7 2 [ - on
te(T]

< OP(nN)a

|, |28 - @b

el

(B.33)

where the second and third equalities hold by Assumption 1(vii) and mean-value theorem with some

sl € (0. [ud (@) - @%)

inequality holds by Lemmas B.13(i), B.13(iii) and B.14(ii).

For As ;, note that

Ly [

te[T

1
1 = (1)
=A{T2¢n

te(T]

) , the second inequality holds by Cauchy-Schwarz inequality, and the third
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where the first and third inequalities hold by triangle inequality. Besides, we observe that
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where the last equality holds by Lemma B.13(iii) and Assumption 1(iv). For a positive constant ¢;s,
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where the first inequality holds by the union bound and Assumption 1(i), and the second inequality
holds by Assumption 1(iii) and the conditional Bernstein’s inequality in Lemma B.12(i) with the fact
that max;er, tem) H&)S)HQ < %«/1 + p&% w.p.a.l. Here, we can apply the conditional Bernstein’s in-

icls,te[T) 5° that the only

equality because &)Etl) and E (1 {eit > T1/4} ’_@ell) are deterministic given {.@gl}
randomness comes from {e; }er). Furthermore, the joint distribution of {€;¢}seqr) given 271 is the same
as that given the o-field generated by Z,, due to the independence structure assumed in Assumption 1(i).
Last, given the o-field generated by Z,, {€it }+c[r] is strong mixing with mixing coefficient «;(-) as assumed
by Assumption 1(iii). Similarly, we obtain that
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which implies
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For |s| < TV let S = [-T/*, T*] and divide S into S,, for m =1,---

,ng such that |s — 5] < % for
sand 5 €S,, and ng < T%/4. Let s,, €S

m. For any s € S,,, we have
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, (B.37)
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such that
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For the first term in (B.38), we notice that

icls, me[na, T Z H

- Z 3
1612,m6 ng]

T 2 H“”H

icly T

6Me

(1o b o 3} 21)

‘ (&t Sm + %) — Bit(sm — i))

IN

<<

(1 +pC) w.pal, (B.39)

where the first inequality is by mean-value theorem, and the second inequality is due to the fact that
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We first observe that
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where the first inequality is by Var(z) < E(2?) for any random variable z and the second inequality is by

the mean-value theorem and Assumption 1(v). Similarly, we have
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where second inequality is by the union bound, the first inequality is by @4y C 73 n,;, the equality is
by the fact that % y; is @ell measurable, and the last inequality is by Lemma B.12(ii), the definition of

3N, and the fact that {;; }1e(r) is strong mixing given 2/1. This implies

1
max  sup || = AL (s)— AL, (sm =0 .
5,20 |5 5 a0 ]| 0o
2

Last, we turn to the first term of (B.37). Denote Aéf (sm) as the k*" element of Aﬁf (sm) and the event
set @y N, = {maxyc|r H&?E?‘L < c14&n}. Similarly, we have P(ﬂng;a{f’N,i) = P(max;er, te|1) H&)S)Hz >
c14€n) = o(1). Following the same argument as above, we have
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where the second inequality combines Lemma B.12(i). Combining (B.34), (B.36) and (B.40), we have
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We now turn to As;. Let Aé g = (T —=1{w; <0} D (1) -E <(T —1{w, <0}) D (1)

@Il> . Then

Asi = 7 EtT:l (Aéﬂ.t)/Ai’u. By conditional Bernstein’s inequality and similarly as (B.40), we can show
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O, (nn) . For Ag;, we note that
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1 - 2
> ||o — 4| 1],

1 = (1)]|?
<fmax — Z H(I)Et
ielz Tte[T]
= OP (nN)v

where the first inequality is by mean-value theorem and the other inequalities holds by similar reasons as
those in (B.33).

Last, for A7 ;, we have
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Then, following the same analyses of A; ; and As ;, we have

|ALi| A7
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2 2
which implies max;er, ﬁ Op(nn). m
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23
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| Sier, (9072)7]

L V]
N Zierp | Vit

’2 =0(nn),Vj € plU {0}} where we define ¢!/ =

ian 3
A

Lemma B.16 . Suppose Assumptions 1-5 hold. Then for {Bi,--- , Be}ier) defined in (A.8), for any

constant 0 < ¢11 < min(%, 1), we have
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] - e 02050
— H 2 I A
(st iT) o [Aw | (et i) vemat A,
- , 2 vt e [T7].

12 ) 6\/5 )

Proof. We first deal with By ;. Let wy;: = \I'Etl )/Am. Following the same arguments as used to derive
the lower bound for A4, in the proof of Lemma B.15 by replacing ws ;; with wy 1, we can show that, for

t € [T] and any constants ¢1; < min( f,f, 1),

(30%1f - C?l?) Cyp HAt,v z (3011f - Cnf/) \/7QHI HAt,sz

12 6+/2
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For Bj ., we have

By = < Z WO, (1 —1{ex < 0})) A, = ( Z B{ n) At

1612 1612

Conditional on the fixed effects {V } and {W]Q}je[p], the randomness in B ; is from {e;; }

Jjelplu{0} i€12,tE[T)
and {emt}]e [p]i€ 2 tE[T]? which are independent across i. Owing to this, by conditional Hoeffding’s inequal-

ity, we can show that
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te[T) 2

with B{Z being the k' element in B{ﬁit, c15 is a positive constant, where the second inequality is

LEl < Mé&n as. by Assumption 1(v) and

by Hoeffding’s inequality with the fact that maxie Lte(T] |B1it

Lemma B.13(i). It follows that maxc|z) m = O, (nn). If we use the conditional Bernstein’s in-

equality for the independent sequence rather than the Hoeffding’s inequality above, we can show that
LR\ = Op (1 / logll\\;VT), but here we only need to show the uniform convergence

1
maX¢e[T) N, ier, Bilit )

rate to be ny.
Let Xo;+ = 1. As for By ¢, note that
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p 2
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< O U 2
s, 2 9 — i 2% by |, X
1/2
< max max ( O Vg (1 ) i =0 , B.42
i€l je[p]u{0} I ZEXI:QJ 0 N i) ( )

where the first inequality is by Cauchy’s inequality, the second inequality is by Jensen’s inequality, and the
last equality is by Theorem 3.2(i) and Assumption 1(iv).

Next, we deal with Bs ;. Following similar arguments as used in (B.42), we obtain that

-1 ’ .
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which implies
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Now define the event set #n 1(M) = {max;cy, jepu{o} ||u£] O(1 9,1l < Mny}. Then, Theorem 3.2(i)
implies, for any e > 0, there is a sufficiently large M such that IP’(@]CVJ( )) < e. Recall that Z.,, is the

o-field generated by e;; U {V } U {W]Q} . Then, we have

jelplu{o} JElp]

PENr > Cnn) <PENT > Cnn, BNa) +e
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1
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1
a0 LR IR s BN )

icly Jj€lplu{o}

and the second equality for B;{It holds by Assumption 1(i). Following this, we show that
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te[T] N: Co
2(1 M?3C
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Co
where F;+(+) is the conditional CDF of €;; given %,, who also has bounded PDF by Assumption 1(vii), the

first inequality is by mean-value theorem and facts that ||\I! H2 < M? (1 + pmax;ep) \Xj,it|2) together
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with Lemma B.13(i), and the second inequality is due to Assumption 1(iv). In addition, given {Z.,, }icr,,
{€it }icr, are still independent across i. Therefore, by Hoeffding’s inequality and similar arguments for term

By, in (B.41), we can show that

P <max|;33t|| 5 clgnN> < S P (|BL, > caonw)

telt] te[T)
— Z EP (|}B§7t||2 > clamN {@@it}i€,2> =o(1). (B.45)
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Combining (B.43)-(B.45), we obtain that max;cz) ﬁ = Op(NN)-

For Bs, we observe that
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Following similar arguments for As ; with Bernstein’s inequality replacing by Hoeffding’s inequality, we can

I
show that max;c[r] ﬁ = O,(nn). Besides, we obtain that
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2 2
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In addition, for the first term on the RHS of the last equality, we have
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Following the same argument for Bs:, we only need to upper bound the RHS of the last display by

SUP,>0 (7] B§ ,(s) on By 1(M) for some sufficiently large but fixed constant M, where
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zEIz j€[p)u{o}

Let
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We note that sup, e Bg(s) = Op(nn). Similar to the arguments in (B.44), to show max; ¢z Bo.el

1Al
O,(nn), it suffices to show
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Then, we have B{ ,(s) = B{ (s) — B{Y (s) and thus,
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where the second inequality holds because both BI 1I(s) and Bé,‘t/ (s) are non-decreasing in s. Further note
that

[0l 1 Qe >s— Moy > |ofyll, ¢ and [[h[,1 e >s+ Moy Y [lof],
j€[plu{o} J€[plu{o}

are independent across i € Iy given {Z,,, }icr,- Therefore, following the same argument in the analysis of

Ag,+ with the Bernstein’s inequality replaced by the Hoeffding’s inequality, we have

IIT (1/4 IIT(1/4 } ‘: IIT 1/4 _
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IV (ml/4 IV (ml/4 ) ‘: v 1/4 _
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which implies

sup |Bé,t(8) - Bé£(3)| = OP(UN)
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In addition, following the same analysis in (B.37) and (B.38), we have

sup [Blu(s) ~ BLi(s)| =0
s€[0,T1/4] te[T)

which leads to the desired result that max;¢7 m =0p,(nn). =

Recall for i € Iy, s ({ues}, o0y ) = # s {7~ §u (g0 scgone))] e} where

git({ui 5 }jepuioy) = uj OvtO + Z U; gv( )XJ it — OvtO Z w; ]vt] ity
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and o = (Ut(o) , X1,it0 511)/’ e 7Xp,it'[11£,1p)/) .

Lemma B.17 Under Assumptions 1-5, the second-order derivative of H; ({ui’j};;?:O) is bounded in prob-
ability.

Proof. Noted that
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o 00t,0 — Ug "UtoJFXl il 10y — X irug v 1) Wit Ty
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For notation simplicity, we focus on the case with p =1 and denote u; = (u 500 ;1)/. Further denote
Hig <{“i7j}§:0) as the k' element in H; ({uw}?:O) and vt 0 . as the k' element in v( ). For k € [Ky),
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Therefore, we have

827'.[2‘& {ul,}p_ o T
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1) by Theorem 3.2(ii) and Lemma B.13(i).

where we use the fact that max,¢[7 ‘ U4 6 H
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T (wh0050 = ulloofo + Xt 18 = Xoaoulyof ) o e, X avinhe
Cia’ t=1
Therefore, we have
92H.. & ({wj}P ) T
i, 4,5 J j=0 < (1 1 L2
e It ot CH B b MIENE
10U, h €[T] =1
_ 1 :
< ! 1) H 1 — )(‘3 . = 1 .
< of [?éafﬁ } {?é?TX + 5> Xia | = 0p(1)
teT
]
Recall that
/
o = (500 0 X5 )
’ /
wzot = ((O(()I)Ut 0) (Ogl Ut 1) Xty (O;E;l)vg,p) Xp,it) )
1 & . . 1 &
DZI = f Zflt (A; U\I/ t) wztht, DzII = T Z |:T -1 {eit < A/ }:| Wit,
t=1 t=1
T T
DI_lZf(O) 0 __0r DII—l -1 <0
i — T it Wit Wit i T Z [T {e’tt }] Wit
t=1 t=1
-5, we have

J;

Lemma B.18 Under Assumptions 1
(i) maxier, || D' = Oy (V 1%(NTVT)&V)’

DzI — DZI » = Op(nN)}
DII DZII — % ZZ:l |:]_ {Git < 0} -1 {Eit < A;,U\Ij?t}} t

-

1\7

((N V)"

(ZZ) maXieejs

(ZZZ) maXieejs

62



Proof. Throughout the proof, we assume there is only one regressor p = 1 for notation simplicity.
(i) We notice that E { D!/|2 ) = 0. By conditional Bernstein’s inequality, for a positive constant cig,

we have

P | max Z[T—l{eitg()}] (l)vth“t >616\/Tlog(N\/T)§N‘@

i€l3
te[T] )
< Z exp CQC%6T§]2V lOg(N \Y T) _ 0(1)
= 4M2T§N 2Mers 2\ /Tlog(N vV T)log T'loglog T 7

where the inequality follows from Lemma B.12(i), Assumption 1(ii), Assumption 1(v), and the fact that

maX;er, te[T] H[T —1{ei <0} O(l)vt 1 X1t , < %51\; a.s. Similar arguments hold for the upper block of
DL This concludes the proof of (i).

(ii) Notice that

. . 1

pI_pl 1 fit (A;,vll’?t) V.0 Ut 0 fzt(o)vt Ovt 0 fit AQ,U‘I’% Ug O)Ut( )X1 it — fzt(o)vt oV, 1X1 it
i T 5 . 1 . 1

T te[T] fit (A;,U‘I/?t) t( 1)Ut( O)le‘ fvt(o)vt 1Y%, X1t it A:ﬁ,vqjgt g 1) t(

To show the upper bound of DZI — D!, we take the lower block for instance and all other three blocks follow
the same pattern. Noted that

1) . (1)
?g}? E [fzt ( qj?t) ”t(1) t(l) X1 it T fit (0 )Ut 1V, 1X1 zt:|
te[T) F

te[T] F

te[T] F

= Op(n), (B.47)

where the equality is by the fact that

. (A \1/0)—» )< v 2HA H'(”H 01l =0,1

Z_Gg{?g[T fir (A7, ) =5 0) emax [Pl Ao, maxio]| + [lob |, = Op(1),
W) _ 0 0 () 0 M _ 0

fzfg}?* E Xlztgc {2%‘%1%1 — Vg1V FSE%%?(‘UMHZ"_HU:&,JE)‘”tl _vtl‘Q

and

i€l3

1 .(1) . (1
max T Z [fit ( t v‘I’?f) - fz‘t(o)} [Ut(,fvt(,l)l - ”21”?,/1} X12,z't
te[T
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[V0) 2 _ 2
< s e o0 = otueti]| e 3l al” = 0, ().
te[T)
(iii) Note that
T
. 1 )
B Dl =13 [ few <0} —1{ew < A} 00} =

T
; . 1 .
[1 {ex <0} -1 {Qt < A;)U\IJ%H (wit — w?t) + T tz:; [T — 1{e;x <0} (wit — w?t)

I
Nl=
M=

o~
I
-

LUl
g}

E { [1 {ei <0} -1 {Git < A;,U\I]?t}} (@it — )

I
Nl =
[M]=

&~
Il
—

@I}U12:| }

_l’_
N =
[M]=

{ [1 {60 <0} —1 {eit < Aé,v‘lf?t}] (it — @%) —E Hl {60 <0} —1 {eit < A;’v\y?tﬂ (i — =)

1

~
Il

T
1

+5 Z [T — 1{exw <0} (coir — wyy)

t=1
=51, + S2,i + 53,4,
where

1 . 1
e Sl < ma - 3 [l = =l S (A0,9%) ~ Fl0)| Smax s S0 (Xl max A |, = 0, ().
te[T] te[T],5€p]

As for Ss ; and Ss3;, we first recall, for any e > 0, there exists a sufficiently large constant M such that for

o\ aft) — U?,JH < MnNa?é%Z(HO( Vo) — vngQ < Mny,Vj € [p]U {0}}

(M) = {max

i€l3

we have P(o7f(M)) < e. In addition, let

<M77N,maXHO g (1 —Ugj 2§M77N7Vj€ [p]U{O}}.

te(T)

i) = { 03" -,
Then, we have
P (r%z}x [|S2,il, > 01777]2V> <P (rxé&}x [|S2,ill, > 0177712\,,42%7(M)) +e
1€13 113

< ZIP’ (||52,i||2 > 0177712\[,42{7(]\4)) +e

i€l
<> P ([1S2.lly > i, w4 i(M)) + e
i€l
= SR (IS4l > x| 27 ) 1ot ()} + ¢
i€l3
2 2,4
SuE cock Tty ) oot
it c18Tn3E3 + cire s Tnién log T loglog T

with a positive constant ¢17 and the inequality above is by Lemma B.12(i) with the fact that, under < ; (M),

{1 {60 <0} —1 {eit < A%,U‘P?tH (it — @%) — Hl {60 <0} —1 {eit < A%,D‘P?tH (& — @) ‘@éurz}

2

max
i€l3,te[T)
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< cignnén.

As e is arbitrary, we have max;er, ||92,i/|, = Op(n% ). Following a similar argument, we have max;ey, ||S3,il|, =
O,(n%). By Assumption 1(ix), we note that O,(n%) = ((N vT)” 1/2). [

B.3 Lemmas for the Proof Theorem 3.3

2770 -1 N R ~ —1
Lemma B.19 Define Hglc’j = (LJNLJ) and Hy'; = W;)’Wj (WJ'W]> . Under Assumptions 6-8, we

have

(i) H, ;= H};+Op (NAT)

LOHW - O (N/\T)

(iii) & HVVj - W (Hi’,j)‘lHF = 0, (whr)-

Proof. The proof can be found in Bai and Ng (2020, Lemma 3 and Proposition 1). =
Lemma B.20 Under Assumptions 6-8, we have

(i) %Y (L; ~ LYHY, ) = Oy (k7).

.. S -1
(i) %WJQ/ (Wj - WJQ (Hi/7j) ) =0y (N}\T)’
A~ / o
(i) maxye(r] (Lj - L?Hi'fj) ej = Op (71 gz(v%T))’
. 2 -1\’ o
(iv) maxicpny 3 (W5 = WP () ™') e = 0, (25572,

Proof. Statements (i) and (ii) are the same as Lemma 4(i) and (ii) in Bai and Ng (2020). Statements
(iii) and (iv) are the uniform version of Lemma 4(iii) and (iv) in Bai and Ng (2020). Below we focus on

part (iv) as the proof of part (iii) follows analogously.

~ _ ~ 0 ~
Noting that W/ — (HL )" W = L1/ x; — Bliwo = Lir g, we have

L/ N A 1 1 0 rrw 1 7 0 ryw
= (W =W (HE) ™) g = o€ By Ly = <o) B LSHE, + e By (L — LYH, )

For the first term on the right side,

1 / /70 1 log(N\/T)
s Sy EY LA S s i 8l = 0 (50T

by Assumption 8(i). For the second term on the right side, we have

max ——

] HL — LYH,
€]

T 0 ryw
¢, (L; - 19m2,) < max Ve

\/7THJ1 J|

B (log(N v T)> < 1 )
P\ VWNAT ) P\VYNAT)
by Assumption 6(iv) and Lemma B.19(ii). Combining the above results completes the proof of part (iv).
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Lemma B.21 Under Assumption 1 and Assumptions 6-8, we have Vj € [p],
NN -1
(i) Wyt — (Hig) w?,t = Halc/,j% Zie[N] l?,iej,it + Rt

oa wowo -1 _
(1) ljl_Hw/lO = <%) (Halr) L Zt 1wgfejzt+le

x,575,

(i) fijit — fjie = €jir — €500 = W (W]O,TW]O)_l * ZtT:l w? i + 195 % YielN] 19 iej.it + Rjits
such that
i Rl =0y (577 ) masIRd =0, (TR e Rl =0, (5T,
{gﬁﬁ’ iy — (HL ;) wl, ‘F = Op(nw), max i = HY5155)| = Op(nw),
el 2N eyt T Citl = ) TOEX gy Wi = pn] = Opln),

RV log(N\/T é_
N-*

with N

Proof. Recall that X;;; = pj i + €5 = l] f j .+ eji and X; = LOWO’ + I in matrix form, where
Lg € RY*"i is the factor loading and WJQ € RT*"i is the factor matrix. Following Bai and Ng (2002), Bai
(2003) and Bai and Ng (2020), if we impose the normalization restrictions that

Loro WO
% =1, and J T 7 is a diagonal matrix with descending diagonal elements,
we have the principal components estimators:
2 % Foas ) L 3 22\l gy [y
Ly = x;W; (WiW;)  and W) = (L52;) L5, = L)X, (B.48)

Let Hivj = (NL;L?) . Premultiplying % on both sides of X; L?WJQ’ + E; yields

NL’X fNL;L(;WO/—k L’E

It follows that
p 1 10 L 2g
W= (Hyy) W)+ Lj'E,
T e 0 ort |
= (H},) " WY+~ (H,) LYB; + [L 9L, By
We then show the expansion for each factor, i.e.,

. ~1 !
iy — (HL ), = HY Z 065 + ~ [ — L0 ] e (B.49)
ZE[N]

For equation (B.49), we have the uniform bound for the second term, i.e.,

ngvTU

1 r. /
max — [Lj — L?Hiﬂ»] eji=0p ( NAT

te[T]
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by Lemma B.20(iii). With c;9 being a positive constant and max;e[ny,te[r) ’l?,iej,itHQ < c19€N a.s., we show

that

log(N v T) Z,NE2 log(N VT)
: - Au ) < 2 — —o(1) (B.50
gga;i % .i€hit|| > C20 ¢n | < max2exp N2, o(1) (B.50)
2

for a positive constant cpg by Hoeffding’s inequality. It follows that ;. — (Hgl”) -t w?’t Hf;j % ie[N] lg’iej7¢t+
Ruw,t, such that

NS T B log(N Vv T)
oo - 2,1, 0, (B0, oo

=0p (logzw;T) ) :

N R N —1
Similarly, if we premultiply T¥; (W;Wj) to both sides of X; = LYW + Ej, it yields

and max;e(7] [Ruw,

" PN —1 R N —1 R PN —
X Wy (W) = 9wir Wk )+ By (W)

It follows that

A N Ao\ 1
Ly = LY, + B W; (W)W;)
1

= L0+ BWY () (W) (- () ) (i)

e e a1
where the fist line is due to (B.48) and the definition that H,; = W]Q’Wj (W]’Wj) . Then we obtain the

expansion for the factor loading

A A -1 -1
w W/'Wj W/W 1 “ —1\/
bongt= () ) g () 5[0 el

Note that

iy (W= WP ) ) W) we

T T * T
- ~1\’ [+ -1 - -1\’ -1
(W= )Ty (w7 (W —w () ) W (L)
o T + T
()~ (W =i (12,) ™)) wow (i)™
+ T + T
(L) e () 1
= 7 +0, (N/\T)’ (B.52)

N _ /
where the last equality holds by Lemma B.19(iii). Note that max;cx) % (W -W (Hi’,j) 1) e; =0, (logjs,]X¥T)

by Lemma B.20(iv), and we can show that

E U/j t€5,it

max

o, ( log“\;w)aN) (B.53)
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as in (B.50) by conditional Bernstein’s inequality in Lemma B.12(i) given {W]Q}je[p] It follows that

wowoy T -1 T
lji— HYY, = (%) (Hij) 3 w9 ;€5 + Rui such that

7 w/! 70
max |\l — Hy 5l

log(N Vv T)
1€[N]

=0 d Ruil =
() and w1 ] =0, (B

Then, it’s natural to obtain that

~ g (%
Mjit — Kjit = lj,iwt - l_] 7 _]t

A VN -1 A / -1
= (lj,i— (Hy,) l?z) (wa‘,t — (Hz5) “’?t) + (ljvi - (Halm)/l?@) (H;)  wie
N —1
+ (wj,t ~ (M) w?t)

~ / _ ) _ log(NVT
= (b= () 10 011 bt (s (1)) 0, (YT

1
WPWE 1 1
- () R st i 3 st
t=1

T .
i€[N]

where the second equality holds by statements (i) and (ii), and the last equality holds with max;c|n) te[r) Ry, it| =

O, <%) By Assumption 1(iv), maxe[zy Hw?tH < M as. and max;en HZHH < M a.s., which
~ log(NVT
leads to Max;e|(p),ic[N],t[T) |fj,it — 1.5¢] = Op < %G )f ) Op(nn). =

Lemma B.22 Under Assumptions 1-9, for matrices DF and Df" defined in the proof of Theorem 5.3, we

\/log(NVT)E2,

have max;er, DZF — Df = Op(nn) with ny = T
Proof. Recall that
T PO s (1) (1)
: 1 1) 1,0 (1) Vt0Vt0 1zt1’t0”t1
DiF = T it [Lit (O(() U?0a01 uil?“il):| 1 R 1. (1| and
T o O )] | 5 62 oDty
T 1) 1
DF = 1 fo(o) O(() v ol 00( )/ 0 )
7 [3 7|
T t=1 0 €1 ”0§ Ut 1Y, 10( )
with max;er, | DF ||F 0O(1) as..
Let i;; denote v (O( uy, 0§1)ug{1,u§}f ) for short. We have
DF — DF
T .
_1 Z ) t(lo) t(lo) - Oél)vt 0, OO Uyglo)vt(lflel it — O(l)vt 0V, 10 e1it
T t=1 ! t(ll)vglo)/él it — O( )”t 1Y OO ey it 6% ztvt(l1)”§11)/ — e ztO(l)vt 1“ 104 (b
T 1), 0 (1)
1 0 Oy 09 09 ek "e1 it
4+ = fzt(o) 0 t,0%t,1 5
T tzzl Ogl)vt 1V 00(1) e1,it 0

X s o,
+ Z(fit(bit)*fit(o)) () s a9 (1) ()

tlvtO €1,it elztvt 1“t1

c=F i+ Foyy + Fs
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F!, Ft,

We define F7" for m = {1,2,3,4} as fourth clockwise blocks in F ; := v F3
i Fii

. Define FQmZ and F?an

similarly. We aim to show the uniform bound for each block.

First, we observe that

T
1
Fll,i =7 Zfzt(o) ( m“t(,l )/ O(()l Ut OU 00 1)/>
t=1

T
1 (1 1 (1 1 1 . 1) ! (1 1 1 !
= T Zfit(o) [(v§0) - Oé )U?,o) (Uzg,o) - O((J )U?, ) O(() )Uto (U O(() Uy 0) + (”t(,o) - O(() )U?,o) (O(() )Uz?o) }
t=1
=0p (7712\[) + Op(nn) = Op(nn) (B.54)
uniformly over i € I3. For Fﬁi, we have by Theorem 3.2 and Lemma B.21,

2 (1)1 4 (1)
Fl,i_ E:flt (”to”tlelzt_o UtOUuO e1,it

T Zf” { t(l())vt(ll)/ (é1,it — €1,t) + (Ut(lo) O(l t,0V¢, 10(1) ) el’it}

= Op(nn) uniformly in ¢ € I5. (B.55)

The same order holds for max;ey, HFle a8 Ff’i = Flz’l Next, we study F14¢ Noting that

|67 5 — €1 iel = 1(E1.i0 + exat) (e — €1,it)| < (261 it] + max |E1,ie — €1, ) ( max [€1 — el,z'tl) ;
) ) 3,t€[T] i€l3,t€(T)

we have

) )1

T
1 (1) . (1) 1) 1
T Z fit(0) (”:S 1)U£ ‘e zt Og ”t 1Y, 10( )/61 zt)

Fillp=
max || Fy ;|| r )

'Ut(11)”t(11)/ O(l)vglvt 10(1)/ 2

7 4, 7 240

< 3 3 i

Tllggi th ’ |€11t elzt| Jrnéé}? th F€1,t

(|2 N 2 o

= max |0, H2 (iegl,?é(m |E1,it — 61,1’t|> max { 7 ;fzt( el
—|—max‘ 1}511)H2 max_ |6y — erqi|* | max EZfzt(O)

te[T] Il "0 2 \iels,te[T) iels \ T P

|z
1 (1)
+ ?é‘[aTX Hvt 1Ut 1 O( ) v vy 10 u HFI}g}f (T tz_;fit(o)eiit> = Op(nn)- (B.56)
Combining (B.54)-(B.56), we conclude max;er, ||[Fiill, = Op(nn).
For F ;, we note that | (fzt( JuPovPhieri|Z | = 0by Assumption 9 and max;er, teir || fie(0)v] gvPer |, <

co2€N a.s. by Assumption 1(iv) and Lemma B.13(i). Then, by conditional Bernstein’s inequality in Lemma
B.12(i) and Assumption 9(iii), we can show that, with positive constants ca; and cag,
1 log(N VT
P | max T Z fit(O)ngv?ﬁel,it > Co1 ()fN’@

i€l3 T
te[T] F
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2. T2 log(NVT
S Zexp (_ - - C12C5 §N Og( 2) ) _ 0(1)’ (B57)
c5.TER + ca1¢22+/ T log(N VvV T)E3, log T'log log T

which yields max;er, |2l = Op(nn).
As for F3 ;, we show the bound for the first block and all other three blocks follow the same argument.
Recall that

(1) (1) or - (1)1
Lit = Uy, 2000 0 0~ U, oUt ot Aty |

o
Ut,
= {(051)%6?, ) (Ut(lo) O(l)”t 0)] ( 2 1tu£11) Ugll) H1, ltuz vt 1) (el,itU?,llOgl)vt(lf —e ztu?ﬂ)?l)

- th + [‘lt + LZItII’ (B58>

) or (1), 0r,0
1 — H1,itUy; 1Ut 1+ é Jit Uy, 101 U — €1,itUi 1 Vg1

with the fact that |if,| < HO 2 u? H Hvilo) Oél)vt H2 := R{ ;, such that max;ey, yepr) R ;; = Op(nn). In

addition, we have

ma (il =[G — ) 6820 + e (258 — 2o )|

i€l3,te[T) 2613 te[T}

< Ri%y + Ryjieliniel, (B.59)

where max;ep, = Op(nn) and max;ey, err) [R5 | = Op(nn). Similarly, we have

(1) (1) 0/ .0
€1 Jit Uy, 101 Ut 1 — €1,itU; 1V 1

|[/II _

<

/
(€1,it — e1,it) (Oﬁl)U?, ) (Uflf - 051)0?,1) + (81,5t — e1,it) (Ogl)ugﬁ) O?)U?l

v (0082)' (o - 0t )|

= R+ Ri%ileral, (B.60)

+

where max;er, ie(r) |R15| = Op(nn) and max;ep, ey |RS5| = Op(nn). Therefore, we have

2
ma | F |- < th (i) = £ O [ o£2)
< ma H ()’ ma. RI +RIL 4 RIL 4 RII 4 RIII 1+ leg | + i
te[TX 9 zEIg,té( 1,zt 1,3t 2 zt 1,3t 2 'Lt)T tez:[T]( | 1, t| ‘1“‘17 t|)
= Op(nn); (B.61)

Combining all results above, we obtain that max,cy, ||DF — DF||r = Op(ny). =

Lemma B.23 Under Assumptions 1-9, for matrices D;’ and D defined in the proof of Theorem 3.3, we

have
2
max ‘Dj _pl|| =% (WJQV) Op(m;,) .
i€l3 F Op (UN) Op (nN) »
Proof. Recall that
B /
1 . ol (og%t . U(l@)) 0
= > f(0) . N B
t=1 i 0 el 4,01 v}y <O1 vf) — 0, 1)
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D! - D}
!
= XT:f (0) 0 of gy O (exie — éve) + 0l (Oi oy — oy ) €1t — e1it)
== it
= (Erie — er,it) 015 (O(()l)vt 0~ ”glo)) oo O ey (6r,i0 — exn) — 000 (€31 — €3.40)
= " G
—_ it li
T t=1 7'1,5711) (Oél)v?, Uig) €1,it (UEIB - Og””%) (Ogl Ut,1 - Ut(ll)) e%,z’t
! A
L o] ) o]
TZ[fzf(th) FaOF |7 ) (0(1 e )’ NG ( ot (1)>'
t=1 €1,it0y 1 0 Ut,o Ut.0 t,1 (| €1,itUy Ut 1~ 61,005 1

c=Jii+ Joi + I3

As in the proof of the last lemma, we define Ji';, J3" and J37; for m = 1,2,3,4 as four clockwise blocks in

J1,i, J2i and Js3 ;, respectively.
First, we study .Ji ;. For J7,;, we notice that

T T
1 1 1 N 1 1 . (1 ! A~
Jii =7 Z fi:(0) vt(o)vgllOg ) (e1,4t — €14t) + T ;fit(o (O( )vt 1 vg’l)) (€14t —e1,it)
T Z fzt O(()l)vt 0V, 10(1) (el it — €1 zt)
1
+ Z fir(0) (v,glo) O(()l)vgo) vy, 10( y (e1,it — 1.it) + Op (nR)

TZ (000500 02,08 (e1,ie — é14t) + Op (%) + Op (n%)
t=1

(B.62)

Q

»(nn)  uniformly over i € Is.

Noted that the leading term in J7, is - Zthr fir(0)O (1)vt Vs, 10(1) (e1,it — €1,i), which will remain as the
bias term of 4 A(S 1).

Furthermore, it is clear that
1 & :
Jfﬂ, =% Z fit(0) (é1,56 — €1,it) vgll) (Oél)vgo — Ut(lo)) =0, (njzv) uniformly over i € I.
Next, we obtain that

T
Jl R T Z fyt U O( ) €1,it (61 it — €1 zf Z (éiit - e%,it)
t=1

T
)| oY — Z ()55 0y (10 — exie)”

= oV 7 Z Fit(0)v] yopenit (€1t — €1,t)
T Z flt 'Utll)vg 1 €1,it (61 it — el,it) + Op(nlzv)
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= -0V oM +0,n%), (B.63)

T

1 .

T Z fit(0)og 10 ex it (610 — enit)
t=1

where the first and second equalities hold by Theorem 3.2(ii) and Lemma B.21. We deal with the first term

in the second equality of (B.63) by inserting the linear expansion of é; ;; — e 4 in Lemma B.21(iii), i.e.,

T

1 R

T Z Fit(0)v) 10 e it (610 — €1.it)
t=1

T -1 . T
1 wywy 1
T Z {fu(O)vﬁlU?ﬁel,u [w?:t <1Tl> T Z w%tel,it] }

T
1 log(N VT
— 7 2| Ot e allig 3 Boerin| 140, (gz(vm)) (B64)
i*€[N]
uniformly over i € I3. For the first term in the right side of (B.64), we notice that

T -1 T
1 wowo 1
= E fir (0 )vt 1”t 161 it [w?jt ( L1 ) = E w?7t61,it‘| }
T { T T —

t=1

max
i€1l3

F

070\ —1 T
Wl Wl *Z 1telzt
T T L )
B F
W W —1 T
( 1T ) Z 1t617tL

1 T
0,0 0

= max || = E fit(0)vg vy 1 €1t E Wy ¢,k

icls || T P} ’ ’ 7

’CG[Tl]

1 I
0. 00
T Z fit(O)vt,lvt,llwl,t,kel,it]
t=1

| max

< max
rem) i€l3 P ke€[ri],i€ls =1
1 0,0/ ,.0
= 1;13? T Z fit(O)Ut,lvt,lwl,t,k:el,it Op(ﬁN)
kelri] t=1 F
= O;D(nlz\f)a

where w; ¢ is the fact of X ;;, r1 is the dimension of w; 4, and w41 is the kth element of wy 4, the second

equality holds by the results in (B.52) and (B.53), and the last equality is by the fact that

1 I
0,0/ .0
P | max *E fit(0)vg 1vp 1wy ¢ ket
i€l Tt—1 b hh

following analogous analysis as (B.57) with a positive constant cag.

For the second term on the RHS of equation (B.64), we notice that

T
1 1
T Z {fit(O)v?,w?,’l eln‘tl(l)fz'ﬁ Z l?,i*el,i*tl }

i*eEN

07 707 ;0
N E E fzt UHU l lz*el,itel,i*t

log(NVT)

> Co3 T&v’@) = 0(1)

F

z €[N] te[T)
~NT Z fi(0 Ut 171 5(1)/111 161 it + Z Z fir (0 Ut 17’ l1 ,i*C1,itC1,ix¢ (B.65)
te (7] z*;él te[T)

with

1
| 3 FuOdef 2| < om0 ([, e ],) e 3 b
te(T) te[T]
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()

where the equality holds by Assumption 1(iv), Lemma B.13(i) and Theorem 3.2(ii). For the second term in
(B.65), by Assumption 1(iii), e, ;; is strong mixing across ¢ and independent given fixed effect. We define
By = (€10, €1 ,-1,€1 041, » €1 n) With €14« = (e1+1€1,i1, -+ s e1-rer7) for i* # i. We can see

EY°¢ will also be a strong mixing sequence, conditional on &, which implies

(D01 o707 10 2
I}g}? *Z Z Jit0)0; 1oy Oy TITG0 merit€rine|| > Cosniy
i*#i te[T) F
1) o 1)7;07 70 2
< Z EP Z Z fit(0 ”g 1)Ut/10§ ) ll:ill,i*€17it617i*t > 02377N‘@ =o(1),
i€l3 z*;él te(T] P

where the equality holds by Lemma B.12(i). This implies

T

1
7 2 fit (vt olen e (Brie — evir)

t=1

max O( ) 051)/
i€ls

T
1 N
T Z Fir(0)of 10" ex i (E1.it — enat)

t=1

F

Therefore, we conclude that max;ey, H‘Jil,iHF = O, (n%). Then

5%%§<||J1,i||p =

Op (%) Op (1%)

Next, for Jii and Jé”’i, conditioning on 271Y!2 and following Bernstein’s inequality in Lemma B.12(i),

F

we have
!
max HJ2 l||F = max Zfzt vt(,lo) ( 1)1,?1 — 1';75’11)) erit| = Op (7712\/) )
F
a2, = ma | - an i3 (080t —o13) ena| =0y ().
F

which can be obtained by the similar arguments as Lemma B.24(i). These results, in conjunction with the
fact that

max”ng

H = max
i€ls F

1 1 1 1
Zfzt (vt( 1) O§ )“21> (O( )”?1 - UE 1)) ef it

F

2
1 1
'Ut( 1) Og )’Ut 1”2 =0y (7712\/)7

1
< — +(0)e2 ‘
< ie}?ft}é{[T] (T ,g:zlft( )el,zt> ?el%

imply that max;cy, || J2,l = O, (n%).
For Js ;, we have

T /
Z fzt th flt(o)] Ulg,lO) (OE)’U?,O - Ut(10)>

max [|Js ;| , = max |
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. (1
S—E
) 2

te[T)

if3 (0pato - 43) | max—Dfn(m) £ul0)

zeId

1 -
S Op(nw) max > |7l
3 te[T]
— 0, (%) . (B.66)

where the third line is by Lipschitz continuity of the density function, Theorem 3.2(ii), Assumption 2, and
the fact that |7;| lies between 0 and |i;;|, and the last line is by the fact that max;ey, % ZtE[T] |Tit] = Op ()
by (B.59) and (B.60). The bounds for other three blocks in J3; can be established in the same manner.
Hence, we have max;ey, ||Js,i||r = Op(n%).

Combining all results above yields the desired result. m
Lemma B.24 Under Assumptions 1-9, we have
(i) maxier, | 0 (40 = 0ol ) (r = Hew 01| =0, (),
(i) maxer, || 7 Zt 1 ( (1) O(()1 v} 1) (140 —e14) (T —1{ey < 0})H =0, (nk),
(iii) maxier, | S0 era (37 = 08700, ) (7 = L{ew < 0})|| = 0, (n).

(iv) maxer, (|4 Zt 1 1 Ut 1 (€1, —erie) (T —1{e < 0})HF =0, (n%)-

Proof. (i) We notice that E |:(Ut0 O(()1 vy 0) (1 —1{e;x <0}) ‘@Iluh] = 0 by Assumption 1(ii).

‘2 < M{N} with P (e#9(M)°) < e for any e > 0 by

Theorem 3.2(ii). With some positive constant coq4, it follows that

Define event @o(M) = {maxte[T] Hi’t,o _ O(()l)vto

T
1 1
P (ggf T E: (460 = 0fvh0) (= — 1 {ew < 0O}) e 0247712V>
L I
<P (néz}x T Z ( ) O(()l) Vo ) (r—=1{ex <0})|| > 02477]2\,7&{10(M)> +e
veis t=1 F

T
%Z (Ut(lo) OV O) (1 —1{ex < 0})

> Cauny, %O(M)> t+e

i€ls t=1 »
1

<) EP ( 30 (680 = 08l ) (r = 1{ew < 0D > oy @) 1{cho(M)} +e

i€l t=1 P

1264171y

< _
iezheXp{ MQTUJQV—|—624MT7712V10gT10g10gT}+e
=o(1) te. (B.67)

Since e can be made arbitrarily small, this completes the proof of statement (i).
(ii) It’s clear that

max
i€l

T

1 R

73 (0 = 0§40, ) (eran = evan) (7 = L{ew < 0))
t=1

F
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1)
S et e — vl |9~ 04, = Onta

where the equality holds by Lemma B.21(iii) and Theorem 3.2(ii).
(iii) Noting that
E [eut (vill) Oél)vgl) (1 —1{eix <0}) ‘@Ilw"l =0

by law of iterated expectation and Assumption 1(ii), we can obtain the desired result as in (B.67).
(iv) Note that

1 ~
T Z Uz(t),l (1.4t —e1it) (T — 1{es <0})

te[T]

1
W0/W0
22 thl (1 —1{e;x <0}) 0’( ) W} €

se[T] te[T]

+ ﬁ Z Z ’U?)l (T -1 {eit < 0}) l?/ll?me],ms + Rjﬁ't. (B68)
me[N]te[T)

For the first term on the RHS of (B.68), we have

—1
wowo
| X o ttew <ona (5 une

SE[T] te[T] 2

—1
1 wYwo
< max || LS s (1 e < 0w, TZ( T wg e

T T
te([T] F se[T]

=0, (77N) .

For the second term on RHS of (B.68), by Assumption 9(ii), Bernstein’s inequality in Lemma B.12(i)
conditional on factors, we have

2

max | S D ol (7= Lew SODEL eims|| = O ()

mE[N] te[T]

Then statement (iv) follows. m

Lemma B.25 Under Assumptions 1-9, we have

(i) max;er,

T 1 ~ (1) . (1
Lyl eniOf )U?,1fit(0) (Nl,itu?,'lv?,1 - Ml,itug,f/vt( 1)> H =0y (n%)>

s

(”) maxX;er,

% Z?:l O((Jl)”?,ofit(o) (ﬂl,itu?,l1vg1 f, ztuz 1 ”t 1 ) H = Op(nn)-
Proof. (i) Recall from (B.59), we have

(D)7 (

t,

it § O 1) /jfl,itu?,/lvz?,l = (fi,it — p1,it) U?Jvt R R (U(l) Ogl)u%) 051)&,1

+ p1,ie (Ogl)ug ) (vt(ll) Og)vf 1) +0, (mQV) uniformly over i € I3,t € [T].
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Then

T

1

T > €108 0f £ (0) (Ml,itu?ﬁvgl fin iy’ vff)
t=1

1 N
=7 Z el,it0§1)Uglfit(o)ugfjv?,j (1,6t — pa,it)
=1
1 . !
+ = Zel,itOgl)vglfit(O)Ul,it (uff - OPU%) Ogl)vgl
TS 7 7 7

=

!

~

1 ",

+ 7 2 1O fu O (09l ) (48 = 00l ) + 0, (n) - (B.69)
t=1

First, note that E (elﬁitvglfit(o)ﬂl’it (Ogl)ug ) (vt(ll) — O%l)vgl)

lowing similar arguments used in the proof of Lemma B.21(i), we can show that the third term on the RHS

@11u12> = 0 by Assumption 9(i). Fol-

of (B.69) is O, ( ) By analogous arguments in (B.64) with the fact that i1 — p1.4 = €1,it — €14, We
obtain that the first term on the RHS of (B.69) is O, (n%). In addition

max

T

1 . /

7 > en it fir(0) e (uilf — 0§1>u?,1) oM,
t=1

i€l3 5
< max HU£11) - 05 ) : 1ll2 max Z fir(0)er itpa, ztvt 1Ut 1| =0 (7712\7) ) (B.70)
i€l ’ .
where the equality holds by the fact that
log(N VT
(1125}24 Zfzt Jerittin itV Ven || > cas g(T)gN‘@> =o(1)
F

as in (B.57). Noted that Assumption 1(iv) implies factor and factor loading of X ;; is uniformly bounded

for Vj € [p], which indicates that yu;;; is also uniformly bounded a.s.. This completes the proof statement
(i)

(ii). Note that uniformly over ¢ € I5, we have
T Z O(l)”t 0fit(0 (Ml,itug,/1vg1 fu, ztu( 1) “glf)

T
1 .
== ZOO 020 fit(0) (fnie — paie) ug'jvy j + T ZOgl)Ug,ofit/il,it (uglf —oMu?, ) oy,

t=1

T
T Z 0 ”t ofztﬂl it (O( ) ) (’Ut(l) O(l) ) + O, ( )
= Op(nn). (B.71)

(3 )

This term will remain as the bias term in the linear expansion of ; [

Lemma B.26 Under Assumptions 1-9, we have
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(Z) maX;er,

% Zf:l 61,u0§1)11?,1 [ {eir <0} —1 {Qt <t (O( Ui 0 0(1) ?uu(l)) H
~ (Ful0) = Fi [ (0§80, 088,42 }

DI Oél)v?)o{ {1 {eir <0} -1 {Git < it (O(l) (R 0(1)“?,1’711(',11)) H

=0p ((N k4 T)_%>7

2

(i) max;er,

~ (Fie(0) = F [ (08P, 08Pt ) )H|—%0NvTV%.
2

Proof. (i) We still assume K; = 1 for notation simplicity. Let O = diag (O((,l), Ogl)). Recall from
Theorem 3.2(iii) that with

0r

0,0
O(l) 1 V90V 0 Ut oUt 1X1,it
flt X X
Ut 1Vt,031,it 'Uf 1”t1 1,it

T
1 oY
1 I 1 £,0
oW plt—oW E [T—l{eit<0}]l0 ]

t=1 U1 Xt

Ji <{At’v}te[T]) = O(l)% Z [1 {ex <0} —1 {Eit < Aé,v‘l’?t}] Lgfﬁ’g it] )

uniformly over ¢ € I3, we have

A= (D] [D{’ +1; ({At,v}temﬂ +o, (NVT)7?)
_ (0(1)/) ( Zfzt [ Ut O'Ut() Utz7ovt2,:1X12,it

-

;gTﬂ@mm[fO]

Ut 1V, 0X1 it Ut,1”t,1X1,it Ut,lxl,it
1« A 0 U?o 1
+ = [ € <0 —l{eigA'v\IliH : +o(NVT*§)
T ; {ei <0} t to Wit 0 Xy | ( )
=h; +

((N v T)*%) .
Let [ = (O/K07 1/K1), with O, being a Ky x 1 vector of zeros and 1k, a K x 1 vector of ones. Let
hf ="1h;. (B.72)

Then we have

N

O§”’u§}1’ . u?ﬁl =h! + o, ((N vT)” ) uniformly over ¢ € I3,

and max;er, ||h!|]2 = Op(nn).

Combining (B.58)-(B.60), uniformly in i € I3 and t € [T] we have
i (08l O i )
= {(O(()l)“?,o)/ (”1510) O((JI)U?,O)} + (.“1 ztu(lf/vgll) — M1 ztUO/ﬂ?1> + (él,itug,/10§l)”§11) — € 1tu(]/1”?1>
= (O(()l)“?, ) (”zglo) - O(()l)”go) + (ﬂglz)t - Nl,it) (Ogl) ) O(l)vt 1

/ /
+ p u( 511) O§1) ; ) Ogl)vtlJr:U'l (Ogl)u?,l) ('Ut(l) Ogl)’”t 1) + (€1,it — €1,it) (0§1)U?,1) 051)"’?1
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+ et <O£1)u?,1>/ (@15,11) Ogl)vgl) +0p ((N VT)_%)

e (40— 00 0048, + (0 8) (4 - 00 + (00} (52— 018, X

+op ((N \Y T)fé)

= Nl,itv%hf + {(Oél)ugo) (Uglo O((Jl Uy 0) + (O§1)“?,1)/ (Uill) Oi )Ut 1) X1 zt} + Rt

= Ml,itv% hf + h{tI (At,v) + Rt (B.73)
Ry iy (lie] + leviel) + R

_1
such that max;cr, tcir) [Reit| = 0p ((N v T) 2)7 maX;er, tc[T) ‘R}7it| = Op(nn) and max;cy, tcm) ’Riit} =
Op(nn), where we use the fact that i1 ; — p1,4¢ + €14 — €14+ = 0, and hftI (At,v) = \Il?t’Am with U, =
(08 20y (0l X1 0)) . et

H3 it — €1,itVy 1{ |: {Gzt < O} -1 {ezt < M1, ztvt 1h1 + h (At,v) }i| - (th(o) - Fit {Ml,itvg,llhil + hlltI (At,v)}) }7
ﬁélzt = 61,1::7121{ [1 {Eit < Nl,itﬂg’llh{ + nil (At,v) + Rb,it} -1 {Eit < Ml,itvallhf + nil (At,v) H

- (Fit {ul,itv?ﬁhf + hftl (At,v) +RL,¢t] — Fy {Ml,itv%hf + hftl (Atv>]) }

We first show that max;cr, || Zthl ﬁgzt =0, (n%).
2

For some sufficiently large constant M, define event «%;(M) = {rnaxiej3 Hh{H2 < va}. We have

P (o7 (M)) < e for any e > 0. For some positive large enough constant cgg, we have

max E i
(ZEIP, 3,it
T
max g g4
i€ls — 3,2t

~ 265%9( NAT T

log(N V T) > =7 [log(N V T))

log(N v T) = log(N v T)
NAT ) 7 M) | te

> C26§ 2+19 <

1 &, log(N VT)\ ™= [log(N Vv T)
< s 5 A=A A=A . .
<P (rzlgf?ell—) T ;:1 ]Ijﬁlt(ﬁ) > oy ( NAT T +e (B.74)
with E! := {¢ € RUEoHKDXD |||, < MnN} and

15 :1(€) = ex,iuvf 1{ [ {ei <0} -1 {Ezt < pnavgh €+ hif (At v) H - {Fn(o) — Fit (Ml,itvg,/lﬁ +hif (At,v»} }

Divide Z! into sub classes ZE! for s = 1,...,nz1 such that H§ - SH < £ for V¢, € € EL and nz < THKoTKs,

With analogous arguments from (A.14)-(A.17), for V¢, € E1, we have

LY @] < |k T Bae)| |4 D [fat© - B

te[T] 2 te[T 9 te([T]
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with

max sup |2 3 [#€) - B 6]

i€ls, SG[’I’L,—l] (€=,

te(T) )

< gg}y > lewseoall, 2 {Jese =t (80 < sl o, 5 | 2207

+ max ﬁéfil ) + kT Z} lexievs 1|| |11t Hvt 1||2 T

< max |11/ (T) a.s. (B.75)

SIIT _
where I3 = % Zte[T H3 i and

IRAREY
—E[l{g‘t—h (Atv)

Similarly to (A.17), we can show that

eir — hil (At,v)

< |14t HU?,/lHQ %}

< |M1 ztl Hvt 1H2 T} ’@IIU12:| }

549 (log(N Vv T) log (N \/T
P I R =N B.76
(glgg 8.it, > C20€N ( NAT (B.76)
549 (og(NVT) log( N\/T
ig ‘}1 , Faey . B.77
(m”f e, > ensl® (57577 ) V ) (10

Combining (B.74)-(B.76), we have

max
i€l3

1 T
1y,
t=1

=0, ((N v T)*%) .

Next, we notice that

T
T z_: Hélzt

<rlrg}xfz||e“w“||2 [ sentiind 027 (A,

< |Ezt| < ’/Jfl 1tv0/ hI h{tl (At,v>

+ |RL,“|}

+ max 7 Z llevive ], | Fit [ul awvp bl + hif (At,v) + Rmt] - Fy {m,itvﬂ’lhf +hif (At,v)i| ‘

<mp Z levawofall, 1 {|maofind + B (Aen)| < lel < |mosofihd + B (Aes) |+ Rul
3
TIEET Z llevieviall, Reil
_%5}2{72}13“4-017(1\[\/71) %) (B.78)
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where the first inequality is by triangle inequality, the second inequality is by mean value theorem and the

last line is by the uniform convergence rate for R, ;; with

1Y, = [levavly |, 1 {, 0y B + bl (AM)

I IrI A
< enl < ‘Ml,itv?,llhi + hit (At,v)

+ |Rb,it|} .

Define the event @2 (M) := {max;cr, 1e(r] |Ruit| < Mn% } with P{a5(M)} < e for any e > 0. Then

for a large enough constant cog, similarly as (A.37), we have

ZHM >C267712v> <gréa}§ Z]Ith

T
1 = I 2
<P <?§}§,{T Zli +(h;) > 6267]1\/) +e

> CopMars MQ(M)> +e

T
sup = Y 14(&) > coeni | + 2e
<l€13,§€— T ;
T = c 772 1 L. c 772
<P —NT1,06) - 10O > 22N ) 4p N 1,0 > 2N ) 42
(Ilréaﬁc;élg T ; (&) — 1t () 5|+ Igé%zcgseug T; +(§) 5 | T2
1 <& Co67> 1 o= o6
5 = 267N | 11 UL 7 261N
il 1. -1 0 IN 1Ul2 P — 1, 2
P | max sup TZ it(€) = L) > — ’—@e + P { max sup TZ it(&)| > +
ez t=1 13S t=1
(B.79)
where 1;(h!) := H€1,it1121H2 1 {)umv?flh{ + hif (At,v) < leit| < ‘Ml,it”?ﬁhf + hif (At,v) + MUJQV} and

I, UI.
_@61 2

iit(h{) =E [iit(hf) . By analogous arguments for the first term on the RHS of inequality (B.74),

we can show that

Z ~1u(®)

E |P | max sup
i€l gext

Besides, we observe that
Py

: %%?;32 *Z fevieeial, |7

2
> C%Q”NI%IU@)] = o).

max sup
i€l3 cext

H,ul iUy, e+ hlf (At,v)

+ M7712v] — Fy Hm,nv%f +hif (At,v>

J

= ?ée}f*ZHel 0l MR

which yields

T
P (max sup T Zi

i€l ¢eElL

026’7N> = o(1). (B.80)

Combining (B.78)-(B.80) yields max;er, || Z ]Iélzt

1(ix). This concludes the proof of statement (i).

=0, (1%) = 0p ((N \ T)_%) by Assumption

(ii) The proof is analogous to that of part (i) and thus omitted. m
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Lemma B.27 Under Assumptions 1-9, uniformly in i € I3, we can show that

( i) maX;ers,

o, (v,

(#) max;ecr,

=0, ((N v T)*E).
Proof. As in (B.73), we can show that

o (050,00

!
= 1tV Ol + [( i, & O(l) ) Ot()l)vtOJrel 1t( ,’1) *Ogl)u,l) 09)’0:& 1}
i

/
+ [( ) (v ) (()1)11?0) + Xy (Ogl) ) (U 1 Ogl v?,1> + Ri it
I (a3~ oy, ™, 0 3 W0 o pIT (A B
- ,u’1 Ztvt ]h ,0 O Z O OO vt 0 + €1 St u 1 Ol Ut,l + hit t,v + RL,Zt)
(B.81)
where max;er, te[r) Riit] = 0p ((N vT)” %) As in the proof of Theorem 3.2, we can show that max;ey, 573]71)

= O, (nn) for ¥j € [p] U{0}. Then by changing the event set %1 (M) t

- 1,0
g — O i

{maXthHz < My, ma|

S MUN} 5
i€l3 2

we can repeat the analysis in Lemma B.26 and obtain the desired results for statement (i). With some

obvious adjustment, statement (ii) can be proved. m

Lemma B.28 Under Assumptions 1-9, for block matrices ﬁf, DF, ZA)i] and D; defined in Appendiz A,

we have

gﬁ;{IIDF Df||p = Op(nw), and max||D - D{||r = ’

Proof. By analogous arguments as used in the proofs of Lemmas B.22 and B.23, we can prove the

lemma. m

Lemma B.29 Under Assumptions 1-9, we have

. 1) (3,1)7 . (1
(Z) maxtem HNLJ Zielg O( 0 i, o.fzt( ) (Nl,itu’?”lvgl ,[Ll ztul 1 )UE 1)> H

_1
(i4) max;e(r) HN% Dicls 617¢¢O$iu21f“(0) (Ml,itug,/lv?1 fu, ltﬁ£311)/vt(11)> H =0p ((N v T) 2)
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T
% > el,itog)vgl{l {eix <0}—1 {eit < i ( (301), af’l”,uﬁlf) }_<Fit(0) —Fy [Lit (ﬁf’dl)mgi” )
t=1

Z eh 0{1 {eir <0}-1 {Ezt < it ( S at E}f)}—(Fit(O) — Fi [Lz't (U(gol)a al 511))D }




Proof. (i) Note that

~(3,1)7 . (1) 0,0
Mlztun Uy — H1,itU; 1 Vg

= (fu1,5t — M1,it) ( 5.1 0(11% 1) (U&) - Ogl)vﬁl) + (fi1,ie — pa,it) (Ouliu?l) (Ut(ll) 09)1}21)
+ (fl,ie — Ml,z‘t) (agi’l) Oul,%“ ,1>/ Og”“?@ + (f11,3t — M1,it) (OS&U?J)/ 09)1}?,1
e (5 = Ol ) (5 = 010t ) 4 gme (a5 - 0Jut ) Oft,
+ M6t (Oiliugl) (U§11) - Og””?l) + M (O o Uy 1) 51)?’?1 Nl,itug,llvgl
(i

(3,1 1 1 1 "1 1
i,1 ) - 1&%“?1) Og )U?,l + i (O£%U?1> (Ut(,1) - Og )'U?1)

= (fi1,it — p1,it) (OTS{;U?J)/ O Ut 1+ M1t
+ Ml,itvg,/logl)/ (01(;11 - Ogl)) Ui,1 + Op (UN)
= (fi1,it — Ml,it) 1”t 1+ [t ( A%y OEH ?1) O(l)vt 1+t <O(1)U?,1)/ (@t(,ll) - O(l)vgl)

+ i O (08 = 0f) uf, +0, (11}) = Oplnw), (B.82)

uniformly over ¢ € I3 and ¢ € [T], where the last equality holds by the fact that HOS{ - O§1) HF = Op(nn)-
It follows that

1 1
max || o >~ OUudofu(0) (i aei’y " of ) = ey )| = Oplow).
3 €13 2
(ii) Observe that
1) ~(3,1).(1
N3 Z €1 ”Ou 1“1 1fit(0) (/‘g z)t z( 1 )/Ut( 1) Nl,itu(i),/lvg,l>
3 i€l3
1
o) — Z exittig 1 fit (0 ( — n) u)yvg,
1613
18 1 Z €1,itl;, 1 fie(0 JHit ( A%y Ozﬁ“?l) Ogl)vgl
1613
O(liN Z evittts 1 fir (0)pur it (0(1) ) (Ut(ll) 051)921)
Z €1,it Uy, 1fzt )i Ztvt 1 0(1 (Of}% - OE”) U?,l +0p (7712\/) . (B.83)

1613

By similar arguments as used in (B.64), we can show that the first term on the RHS of (B.83) is o, ((N v T)fé)
uniformly over ¢t. For the second term, by inserting the linear expansion for u(3 2 Oiliu? 1 in (A.41), we
notice that

/
N Z €1 ztuz 1fzt( ),U/I it (ﬁg?fl) - Oq(l,l,%u?,l) Ogl)vgl

1613

1
Z Z evitfir (0) el 0pl (Vi teq e v 4 (7 — 1{es- < 0}) + 0, ((N vT)” 2)

1613 te[T)
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By arguments as used in (B.65), we can show the leading term in the last equality is O, (\/ % 12v>
Then the second term on the RHS of (B.83) is o, ((N Y T)_é). For the third and the fourth terms on the

!/
RHS of (B.83), by conditional on 27*“%2 we notice that i 21613 er. ituglfl-t( V41,0t (O(l) 0 ) ('(1) - O(l) 01)

and Nis Zielg el,itu?,lfit( i, itV 10(1)/ (O O(l)) u? 1 are both mean zero and the randomness depends

only on {e1 ;:fi1(0)}. By conditional Hoeffding’s inequality, we can show that both these two terms are

0p ((N vT)*%). n

Define
- N0 vPo
Jit (At,v) = {1 {e <0} -1 {Eit < At,v‘lfit}] 0 ;
’Ut,le,u

T

hI 1_ Ut Ovt 0 U?,OU?,/1X1,it 9
Z flt X 0 or X2 9

Ut 1vt 0V 1,it Ut 1Ve 13 it

nl? = XT: (Jz (An) ‘@h%) ,

T
T 41
hIII ’U?/O w0, ZT Z Ut* 7' -1 {G’Lt* < O}) +X1 Ztvt 1 11T Z 617“*'[)?*71 (T — 1{6”* S O})

t*=1 t*=1
_ _ T 0
(AW Ly ' v

- (U wo zT t*z—:l U, ofit= (0) 1, zt*Ut* ) [ (01 ) (hi ) Tt*z::l [T — 1 {ei- < 0}] U?*,1X1,it*

or =1 1 = 0 LI b (AN T e
- ULOVuo,iT Z - o | fie= (0)| 21712 | pir il 4 | 1 (O ) (hi’ ) hi’

=1

= Riie + X1, R it (B.84)

. a
with max;er, 1) ‘Rh,z‘t

= O,(nn) for a € {1,2}. Note that E [fit(o)'ghuh} =E [fit(o)‘@].

Assumption 13 Let Fi() and fiyp111(-) be the conditional CDF and PDF of € given P and RIH,

(i) The derivative of the density fit‘h[tu is uniformly bounded in absolute value.

(it) max;e[ny te(ry | figniir(0) — fit|hiItII:O(O)‘ < C|hIT| for some Lipschitz constant C > 0.

Lemma B.30 Under Assumptions 1-9 and Assumption 13, we have

(Z) maX;e [T

N el 61,#@%“21 [1 {ein <0} -1 {ﬁit < 0t ( 5301)’ A§311)7 (Of},g))/_l vy, (
— (Fit(o) Fit {ta ( E 1)7 5,11)7 (Oq(il,()))/_l ”?,07 (Oq(il,%)/_l U?, }H = 0Op ((NVT) %)
N% Zielg Oq%“?o{ [1 {eir <0} —1 {Gzt < Oit ( il 1)’ agil) (Oq(},g))/il U?,Oa (Oul,i)lil U?,l) H
= (o) = £ (a5, 057 (013) ™ oo (0£) ™ et ) }H = 0,).
2
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Proof. (i) Recall from (B.72) that

—1
_ T 0, 0,0
I _ W\ (1 Ve,0V¢,0 Vg, OUt 1X1,it
hi =V (Ol ) (Tzf“(o) [ 0,0 0

Vg1 Vg0 X1,it V1t 1X1 it

0

Vt.0
X1 |
Ug 1416t

By Bernstein’s inequality in Lemma B.12; we can show that

T 0,/ 0,07 0 . 0,07

1 Vg, oUto 'Ut,Ovt,1X17it Vs, OvtO vt,OUt,lXLit 9
Z fzt( ) X 0 o7 X2 - fzt( ) X 0 o7 X2
=1 Ut 1”to 1,it Ve 1V 12 it ” 1Ut0 1,it Vg1V 12 it

Uy, 1X1 it

;i 7—1{en<o}}[ U0 ]

~
Il
-

max
iels
F
log N v T)
= O;D ( £N> 9
1 i 1{e < O} ), 0 log(N Vv T)f
max || = [T —1{e ’ = _— .
€13 T — i Ug]Xl,it 5 p T N
Besides, we observe that
max ||Var | Ji (At,v) ghVl
i€l3,te[T) P
0 . 0,0/
A 0 Vt,00¢,0 Ut, Ovt 1 X1t LuI
< ie}n?g[T] E {1 {ex <0} —1 {Gz‘t < A;,vq/itH O T i ‘_@ 1Ul,
3 t,1Vt,01,it Vg, 1Ut 1444t P
= max E |:Ft(0) — Fy (A/ \IIO )i| U?O 7/50 0?7011?7’1X1,it ’@Ilujz
= ; ; :
i€l3,tE[T] P oo X o Xy F
= max HAt max fit(30) W%, vbavto vBoven X ‘@Ilwz
- v K3
telT] 2 1€13,t€[T] R AT, SRV P .
= Op(nn), (B.85)

where the first equality holds by law of iterated expectations, the second equality is by mean-value theorem

for |3;¢| lies between 0 and ‘AQ,U\IJ%

and the last line is by Theorem 3.2(ii) and Assumption 1(iv). Similarly,

=0, (nﬁf’l’)
P

for any ¥ > 0, we also have

Cov (Jit (At,v) s s (At,v)/

By similar arguments as used in (A.12) and (A.13), we have

B )2 )

1
J; (At,v) ‘2 = Op(nn), uniformly over ¢ € [T], we have
T ’UO
Sl t{ea<o)] |,
=1

@Ilulg)

T
max g
i3, te[T
€ls telT] =7,

=0, ((N VT)~ 1/2) (B.86)
2

Together with the fact that max;cy,

e (o) 1)

+U (09))71 (h}l)*l BP0, (N V1))

Nl =

Ut,le,it
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By Assumption 1(iv) and Lemma B.13, we have max;e,

|, = Oplnv).

Similarly as (B.82), uniformly in ¢ € I3 and ¢ € [T] we have

1—1 1—1
o (az(,?dl),ﬁl(i,l)7 (01) "t (0) )

-1
_ B0 (A1 0 or ~(3,1)7 . (1) 0/ ,.0
=Uo (Ou,0> Uto — Uy, Ovt 0 F Aty TV = ity 1Ut 1

K2

hh 1HF = 0(1) a.s.. Like (B.85), we can show
hl?

that max;er, ||h;

/—1
) A(3 V1 { A1) 0 o0
+ €1t O, Vp 1~ €1,itUi Vg

!
= 112’00;}) (az(',gdl) - Oq(il,())u?,o) + Xl,itU%OS,%il ( o 0(11% 1) + i (Ogl)u?,l) (Ut(ll) - Og””?@)

7,1

+ 1 iy 101(117 4 (01(1,1% 051)) U?,1 +0p ((N v T)71/2)

o (00) " (4650~ O + Xt (O1) ™ (50— 0000.) v (00)' (5 — 00,

)

+ a2, 0 (Of}} - 05”) W1+ 0, ((N V)~ 1/2) (B.87)

s

where the last line is by the fact that HOS% - O(()l) HF = Op(nn) and HOSH - Ogl) HF = Op(nn). Combining
(A.41), (A.42) and Theorem 3.2(iii), we have

3,1) ~(3,1 1\t 1\ 1
( a0 (0) ot (0) et

A ~(1 1 1
= uo zT Z Ut* T - 1{6”* < 0}) + Ut O uo, ’LT Z vt* Oflt* (/j’l,it*u?,/lvi?* /’Lg Bt* gl)/vt(*) )

t*=1 t*=1

+ Ut oV uo,zT Z fir< (0 ”t* Ovt* 1“?1 (er,it — €1,i+) + X1 ztvt 1V, Z €1 Zt*vt* — 1{en < 0})

t*l

b (ogl um (vzls 042, + i 00 (os:; . ogv) - ((N y Tw)

= ’U«O,lT Z Ut* -1 {eit* < 0}) + Xl,itvt 1 Z €1,it* Ut* -1 {ezt* < O})
t*=1 t*—l

v (1 1 UNE!
tO uO,ZT Z Ut* it~ (0) it~ (“51) - OE )u?,l) 05 )U?* 1

t*=1

i
A 0,0 A (1) o (1)
tO w0, zT E Ut* ofit=(0 Ml,it* - Ml,it*)“i,lvt* 1 Uto o, zT E Ut* ofit=(0 Ml,it* (01 Us 1 vt* -0 Ut*

t*=1 t*=1
0 0\ (1,0
+Uto uoz E fit= (0 Ut* Ovt* 1U21(€1 it — €1+ ) + 11,4t (O 7%1) ( -0y 'y 1)
t*_l

)

+ 1 g, O (05}{ - 05”) W)+ op ((N v T)_1/2)

T
41
?7/ Vuo lT Z Ut* T -1 {Ezt* < 0}) -+ X1 ltvt 1 11? Z 617“*’[}?*71 (T —1 {eit* S 0})

t*=1 t*=1

t o Auo AT Z Vg oE |:fzt* )‘Qhub} 1 Zt*vt* 1h1 + hzt +op ((N \/T)_I/Q)

t*=1
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- Uto uo iT Z Ve o (fzt* —-E [fit* (0)’911&2}) it (O( ) ?1) (v(*l)l Oil)v?*’l)

t*—l

— Ut 0 o, ,LT Z Ut* 0 (fzt* —E |:fit* (0)’911U12:|> Nl,it*vto*/,lh’il

tr=1

= hi R+ Ry (B.88)
such that max;ez, 1) Ry, it| = O,(n%), where the first equality is by inserting the linear expansion for
Aﬁ)l O(loul o in (A.41) and u(3 b O(l)uo1 in (A.42), the second equality is by inserting the linear

i)~ 00

expansion for 4, w005 the third equality is by the fact that f; ;s — p1,44+ = €14+ — €14+ which leads to

the cancelling of the fourth and sixth terms in the second equality, the last equality is by the definition in
(B.84) and

li
h/,{tV = *vz(s),/ovuo zT Z Ut* OE [fzt* )‘@IIUIZ] H1,it* (Oil)ugl) (”Ut(*l) Oﬁl)v?* )

t*=1
—+ ,Ufl,it (Ogl)ugl) <'Ut 1 O%l Ut 1) + ;ul Ztu O(l)/ (O O(l ) vt 1
=R} it + 11, Ry it

= O,(nn) for a € {3,4}, and the last equality holds by the fact that

2 a
with max;cr, t[T] ‘Rh,it

i
hax Z Vi 0 (fzt* —E {fz‘t*(o)‘ghub}) H it (Ogl) ?1) (Uf*l) Oil)vng) = 0p ((N Vv T)_l/Q)
€13 t*—l 9
and
max

;i 0, (fm( )—E [fz-t* (0)

Z Vi 0 (flt* -E [fit*(o)‘@hwz]> [i1,5t+ Vg2

t*l

nLur o 1
Za 2}) it Vgs 1 B

i€ls
2

< max
i€l

max |1/ |2 = o, (Vv T)"/?)
i€l3

by conditional Bernstein’s inequality given 271“’2 and similar arguments as used in (B.86).
We notice that

/—1 /—1
= Z e itul 1{ {1 {e <0} —1 {elt < oit ( 55‘)61)7@1(?171)7 (Oul,%) v}, (0,}}) vgl) H

ZEIS

r—1 r—1
_(Fit@_F oo (a0, 02) ™t (02) 1)) |

- Z €1 ztuz 1 { {Ezt < 0} -1 {6” < hZ-ItII + hiItv ] - (Flt(O) — F’Lt [hiItII + hftv])}

zeId

+ = Z €1,itU; 1{ L{ew <hl/T+hlV} —1{ew < hi/"+ 1Y + Roi}]

16[3

- [Fit (hz'ItH + hz[tv) — Fit (thtH + h{tv + Rp,it)] }
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1
= LS enn {1 < 03— 1 e < T4 RV Y] — [Fof©) — e (7 4 1Y)
i€l

1
+ Fg Z 61$it’u,?’1{ [1 {eit S hftll + h,L-ItV -1 {eit S hftll =+ hiItV + Rg,it}]

i€l

— [Foe BT+ 0EY) = Foe (W + 1LY + R it)] }

1
+ A Z er,itud s { [Fi(0) — Fou (W7 + BLYV)] — [Fie(0) — Fye (R + BEY)]}

i€13
1
+ i Z el,itu?,l [Fit (h{tn + hiltv) — Fit (hftH +hlY + Roit)]
i€l
- NL3 Z el,itu?,l [Fit (h{tH + hiItV) — Fit (hzltll +hl) + Rg,it)]
icls

=Ty + T — T + 1Y 40, (WY T)7H) (B.89)

such that I§ , = 5= Dcp, 16 0o Iy = 5z Zicr, Tohier T4 = N7 Yier, 1650 16y = N7 Dicr, L6%s with
I§ s = evarugy {[1{er <0} = 1{ewr < h{T + R }] — [Fi(0) = Fir (hif T+ 0f)]}

Hfli,lit = 61,%”?,1{ [1{ex < hift+nlY -1 {en < REL 4 IV + Roit}]

— [Fie (W + 1LY = Foo (W + 0l 4+ Ry it)] } (B.90)

Igit = evavuls [Fie(0) = Fye (hif" +hit")]
Hé};t = 61@51&?}1 [.7:”(0) — ]:it (hgtjj + hlltv)] .

_1
2

The last line in (B.89) is due to the fact that the last two terms in the second equality is o, ((N vT) )
by mean-value theorem, Assumption (1)(iv), and Assumption (1)(viii) and the union bound for R, ;.

For I}, and I{;, conditional on Z/*“> and h}/!, the randomness is from €;, and we observe that
Héit and Hé:’it are independent over i by conditioning on 2/1“2 and h!/!. Therefore, we obtain that
maxye|r) ||]I{37t||2 = op ((N\/T)_%> and max;e[r) H]IéItH2 = 0p ((N\/T)_%> by conditional Bernstein’s
inequality for independent sequence given /1“2 and h{tf I

For I§*/, we notice that

1
Hé{tl = E Z el,itugl [Flt(O) — Fit (hiltlj + hZItV)]

i€l

1
= 5 2 evartlafula) (hEfT 4 BIY)

i€l
1 1 .
=N, Z ey fir(0) (T + hi)) + A Z evitf y [fit(3a) — fie(0)) (Ri{T + hiY)
i€1l3 i€l3
1 _1
= Z €1,itug1fz‘t(0) (hftH + hftv) +op ((N v T) 5) uniformly, (B.91)
3 i€ls
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where the second line is by mean-value theorem with |$;;| lies between 0 and |hI I ftV’ and the last line

is by Assumption 1(viii). By inserting /! and k!, we have

-~ Z €1,itU;, 1f2t (hiItII + hzltv)

1613
Z €1 1tu 1fzt 'Ut,/ovuo ZT Z Ut* 7' — 1 {G’Lt* < 0})
ZEIg tr=1
1 1 &
N Z €1,it“?,1fit(O)Xl,itU?,I1Vu_11T Z e1,it= Ve 1 (T — 1{ei= < 0})
3 iels t*=1
Z Faul -1 1 Z f [ (0(1)> ! (hl 1)_1 1 i ir— 1 {en <0}] Vg o
ezul ? uQ,i U l* Z*U* i7 — T — Eipx < ’
i€l R tO v Tt*_l eofur Ot Tt*:l ! v X1 it
i€l3 ,
v 1 -1
YA Z €1,itUy;, lfzt ( vioV, uo i Z Ut* ol [fzt* )’@hUh} M1, zt*vt* ) v (O(l ) (hz'IJ) thQ
3 iels t* 1
_ = nula |, .0 ) (1 _ H1) o
Z 1,1ty 1f“5 vt 0 w0, zT Z Ut* OE fir=(0)|2 Pt | Oy Uy 1 Ut* 07" v;- 1
3 el tr=1

1 1 1
+ Fs Z e,ittg g fir(0) it (OE )u?, ) (vt(l) O§ )vgl>

+ Z €1,it Uy, 2 1£it(0 ), ”u O(l (O 1 O(l ) vt

1613

Z I, ™. (B.92)

IT1,1 oII1,2 IIT . 1711 . .
L, I I 3 can be analyzed in the same manner, and we take I, '~ for instance. Noticed that

Hé’ItLl NgT Z Z Lty 1flt U uo th* (r—1 {Eit* < 0}) )

iclzt*=1

it is clear that conditioning on %, Héﬂl’l is mean zero by Assumption 1(ii) and the randomness is from

€;+ which is strong mixing. With the similar arguments as the second term in (B.65), we obtain that

maxX;c(r) HH I 1” =0, <1 /108;(1\]/\’TVT)§J\,)7 and by Assumption 1(ix), it follows that

s 3, = o (v ).

1114 1115 IIT4 .
We can also analyze I, ™ and I, in the same manner. Take I, for instance. Note that

—1 —1
]IIH 4 _ N Z Z e1 nuz fir(0 (’Ut oV /Ut 0E {fm( )‘@huh] 11, mvt* ) ¢ (0(1)) (hfl> hf’z

i€l t*=1

which is mean zero by conditioning on 1%’z owing to Assumption 9(i) and the fact that hf’l and hf’Z are

fixed given 271“!2, Then by similar arguments for HIH ! above, we have
maxHE””H - ((NVT)*”Q). (B.93)
te[T]
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IIT 111
For I,  and ]I 7 , we have

1
HIII,GH < S a1t Fin(0) i gyt H( —_ oW H
?G%H 0, < max Ngiez;sel,tu,,lft( ) it et - 08 vl
<f€1%2§ Zel it Uy, (U ),U/I'Ltuzl Op(nn)
2
log(N VT
<Op< L( )5N> p(n) = 0 (N V)72, (B.94)
1 1
i 17, = |y 2 et O] ol Joit - o)
2
log(N VT
go,,( L( )5N> p(n) = op (N VT)™2), (B.95)

where the second inequality is by Theorem 3.2(ii) and the third inequality is by Hoeffding’s inequality
conditional on 2 and the last line combines Lemma B.13(i) and the fact that HOS% - Ogl) HF = Op(nN)-

Combining (B.91)-(B.94), we have max;¢[n H]IélzltHg =0, ((N v T)_l/Q),

Last, we analyze I§Y. Like (B.91), we have

i = 3 =3 el [Ful0) - Fu (W 4 1Y)

i€l3

= F > eviud s Fionrir (3ie) (i + 01
i€l

~N Z €1 ztuz 1Jit|n 11T (0) (hiItII Z €1 Ztuz 1 [ it|hlIT (8t) — fit|h{{1 (0)} (hiItII + hiItV)
ZEI?, 7,6[3
_1

= Fs Z 61,ituzo,1fit|h{[1 ()" + Z e1,itl; 1fmh1”( i+ op ((N vT) 2)

iel3 ZEIS
1

— 5 S vt fungy (0|7 B (11|20 ) | 5 vl fugng (OFF (047|720

3 el 3 iy
1

o vttt [ Fupgps 0) = B (Funapr O1097) | 4 5 3 exsul bVE (Fugaszs 0] 720)
1613 i€l3

+o0p ((N vT)‘%)

N Z €1 ztul 1 [fmhf”( ) — fit\hft”:O(O):| |:h’z[tll -E (hftn

1613
ILUI>
96 ):|

@ewz) [ ituagr ) = E Loy (0) 2107

@IlLJIQ):l

+ = Z €1 ltuz 1Jit|pil = 0(0) |:hiItII —E (hiItII

zEI

+ = Z er,iul | E (h{gf

16[3

+ F Z 617itu?71E (h{tll

i€ls

@f%) E (fit\h{gf(o)@gl%)
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1 1
+ A Z el,itu?,lhftv [fz‘ﬂh{t” (0)—E (fitlh{t” (0)|@611u12)} + Nz Z el,itu?,lhftV]E (fit\h{{f (0)|9611u12)

3 iels 3 icly
+op ((N v T)7%>
-y ]I”’m+op(NVT) %) (B.96)
me|[6]

where all the o, ((N v T)_%> terms hold uniformly over ¢ € [T] and o, ((N vT )_%) term in the fourth
equality is by mean-value theorem, Assumption 13(i) and the fact that |5;| lies between 0 and |hI/T + h1Y|.

For Hé}{’l, with Assumption 13(ii), (B.84) and the fact that

max |E <h-IH @Ilu}2>
i€I3,te([T) i ¢
_ LUI PN AT SN )
= iegl,?é{[T] E ( uo ZT th oE [fzt ’@ :| 1,3t Vg 1) [ (O ) (hl ) h;*\2; 1

- -1 -1
= legl,?é([j"] (Ut 0 Vg, ,LT th OE |:f7,t ’@I1UI2:| Ml,itv?’/1> [/ (O](_ )) (h,LLl) hiI,Q
= Op(nn),
we have
ma (191", < w0 3 flewea |, (!hft”\ " ]E (hft” @e’l“h)‘) —0,(2). (BT
i€l

IvV,2 [IV,3 IV,5 Co
For I5 ", Iy~ and Ig 3™, conditioning on P12 the randomness is only from k1, which is indepen-

IV,2 [IV,3 IV5
dent across 7, and I ;" I} and Ig ;™ are zero mean by conditioning on PhYE | Similar to the arguments

for I§ , and I§’, in (B.90), we have

max H]I’VmH =0, ((N v T)*%) ,m € {2,3,5). (B.98)

For I;;*, by inserting E (hZItH

@glUb) and the fact that E (fit\h!gf (0)|@611U12> = fi(0), it yields

1613

v ~1 -1
il Z evitfir(0)ul, ( 010 Viro 1T th oE [fzt ‘_@Ilulz] va%) " (05”) (h{,l> hl?
]IIH 4= ((N vT)™ 1/2) uniformly, (B.99)

where the last equality is by (B.93).

T .
For ]16‘{’6, we notice that

1
IV,6
Isr = ﬁg > et WEVE (fipry (0| 217

i€l
~ Z e1,it fit (0 ,1hftv = Z Hé{f’m =0p ((N \Y T)fl/z) uniformly. (B.100)
3 iely me{5,6,7}
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Combining (B.96)-(B.100) yields max;c|ry HH(& nH ( (NVT)” 1/2) , which leads to the desired result
in statement (i).
(ii) As in (B.89), we have

]. R 1—1 1—1
o 0t [t 00 1o <o (s7.5857. (020) ™ot 0) ™ ) )

3 1€13

/—1 /—1
(Fit(O)F |:ta(§ Dl (00) b, (0h) fug’J)D}

— Z udy {[1{ew <0} = 1{ex < AT+ LY} = [Fau(0) = Fiu (BT +0E) ]}

2€I3

Z u; 1{ {eit < h’ZItII + h{tv -1 {eit < hiItII + h;‘tV + Rg,it}]

1613

- [}-it (hiItH + hz[tv) — Fit (hz'ItH + h{tV + Rg,it)] }

N Z Ui { i(0) — (hIH hz‘ltv)] - [Fit(o) — Fy (hz‘ItU + h{tv)]}
1€13
Z u! hIII + hq;ItV) _ ]:it (h{tll + hftv +Rg7it):|
74613
Z Us 1 zt hItH + hiItV) — Fu (hftH + hiItV + Rg,it)]
zEId
Z ugy {[1{eir <0} = L{en < /T + 1 }] = [Fie(0) = Fae (i + 1Y)}
1613
I 4 IV I 4 IV
+ — Z u; 1{ {ezt higm +hy t—1 {Gzt hit "+ hy + Rmt}]
’Lelg

— [Fie (Wi + 1iY) = Fae (il + 1Y + Ryt }
+— Z Wy {[Fa(0) = Far (W + YY) = [Fa(0) = Fu (T + )]} +0p (W V) T2)
zEId

where the last equality holds by similar arguments as used in the last line in (B.89). We can show the first
and second terms are o, ((N \Y T)fl/Z) by similar arguments for I , and I§%,. The third term is Op(nn)
by mean-value theorem and Assumption 1(viii). Compared with ]II I and Hé}{ in the proof of statement (i),

the third term here is not mean zero, and converges to zero at the rate ny. =

Lemma B.31 Under Assumptions 1-9 and Assumption 13, we have

(i) max;e [T)

NL3 ZiEIS €1 ztOu 1Y 1{1 {ei <0} -1 {ezt < it ( @ 1)’ ﬁ§311)7 At(?)ol)7 At(311)>}

— (Fit(O) F |:ta ( (3 1)7 Aggll)’ﬁt(?dl)’ﬁt(?l,l)>i|) }‘
2

=0, ((N v T)*%)
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59 s e Ot s 011 o < o (357 57,55, 5))

- (Fit(o) F [Qlt ( (3 1)7ﬂ§311)a@§301)3 Az§311))}> }

= Op(n).-

Proof. To handle the correlation between {e;, e;; } and { 5301), ﬁg?l’l) }, we follow similar arguments as

used in the proof of Lemma B.27 by putting { a3 ), E 1)} in a parameter set. Then by similar arguments

as used in the proof of Lemma B.30, we can obtam the desired results. m

Lemma B.32 Under Assumptions 1-9 and Assumption 13, we have

oy, - (o)

o (v,

max
te[T)

Proof. Recall that
o _ g oON T o TS £ 0162 . (00 — a@DY L (o)
vt K T O vt Ns an( )el,itui,l u,lWi1 — Ui u,1 :

Then

Oﬁ)t - (Oq(ﬂl)_l = (O’I(J,l,%/)_l I:V’U?)l t} [ Z fir(0)ed ztuz 1 (OS%U% A§311)> ] .

i€l3

Note that

I
1),0 - (3,1)
E fit(0 @1 'Ltuz 1 (OuJui,l —U;q

2613
1
N Z flf 61 Jit {O(I)Vull T Z €1 ltvt 1 -1 {eit S O}) + Rzl,u} U?,/l
i€13
- % =3 0,007 Ze1 ahy (7 = e < 0D ul + 0, (NVT) %)
i€l t=1
T 3 Z Fi(0)e OV ey v | (71— 1 {eu= < 0N ud) + 0, ((N v T)*%)
ic€lz t=1’

=0p ((N \ T)_§> uniformly over ¢ € [T,

where the second equality is by uniform convergence rate of R}’u and the last line follows by similar
arguments as in (B.65) by Bernstein’s inequality conditional on Z,. Then the result follows by noting that
Oy,1 is bounded and Vvll + is bounded uniformly over ¢t € [T]. m

B.4 Lemmas for the Consistent Estimation of the Asymptotic Variances

Recall that

1
7T § § Ezt J“svttj, = § § khN Qt Jztulljv
i€[N] te[T)

LE[N] te(T)
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1
R YD SRR A
i€[N] te[T)]
Ty t4T ¢ ¢,
Z ]ztejzsvts,] |:T_K( lt>:| |:T—K(ls):|
) hn hn
tf

1 ~ ~
P i (9l e (!

]te
T—

1
YT 2.
€[N]
1
s
€[N] t=
ij 1— T 1 Z Z 6]71,5111 0,59

S=

i

ze[N te[T]
N “ —1 ~ . -1, . -1
Euj ( ) u, < uj) y Evj = (ij) ij (ij) )
T
Vuj Z fzt j ztvt,]v?/ﬂ VU(Ja) = Z E flt j zt Uy ] ?,/]7

a i€l,

Qu.:Var Qv7* 177‘ Z]E j’Ltu'Lj ZJ)

1613

1 0
Z vt (7 = 1{ew < 0})
VT =
2, =0Vt v o, s, = oWyt vtol
Ui Joouy TTUG Tuy g0 vi Jootv STV Tvy
Lemma B.33 Under Assumptions 1-10 and Assumption 13, f]uj =Xy, +0p(1) and f)vj =3,; +0p(1).

Proof. First, we show that Vuj = OJ(-l)Vuj O§-1)' + 0,(1). Note that

+  max Z|XJ“5|

i€ls te| T]

max | — €] <  max ’@Qn @on

) Jyit T it
i€ls,tE[T) i€l3,tE[T) 3

1
=R+ max \X] it] R€ i, and

i€l3,te[T),j€[p
max o (62) — nn ()] = - max k(S8 — (St )‘ L ax e — el
i€l3,te[T) hy iels,te[T]| " hn hn'| ™ h?v i€l3,t€[T)
= Rb,+  max Xl R}, (B.101)

i€l3,t€[T],j€[p)]

where max;er, se(7] | REii| = Op(nn), maxie, seqry | B2 4| = Op (%)7 maX;er, e[T) ’Ri,n = Op(nvhy?)
and max;er, te[7] ‘Ri’it = Op(lofv]X¥Th %) by (A.48) and Assumption 1(iv). Let
b b
2i T S ofto
3] be3]\{a}
and recall that ¥, ; = ¢ 2 a3 2obe3)\ {a} f}t((z b t(a P’ With Theorem 3.3, it is clear that
b) (a,b b b
ma 1.5 = v = Z > (#5705 - 0wt 0
3] be[3]\{a}
~(a,b b (a,b b ! b a,b b !
P2 3 | -0) (o - o) o, (57 -0t
3] be[3]\{a}

£ (5057~ 0at,) (0F >%)’}
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logNVT
=0 (v N>-
a,b) ~(a,b)!

b . .
Let Vi, ; = § Zacf) bvel3)\ (o} Og(' )Ut; S/JO§ and recall that Ves; = § 2 qe() e {a) Ut(g Vg i s
similarly as above, we have max;c|1) sei1) st,j — Vgs_’jHF =0, (\/W). It follows that

~ E E khN Gu ]ZtVtt,j

ze[N] te[T]
72 ZkhN (€it) Jthtt] Z Zkhw (€ir)e ]zt Vtt] V?t])
i€[N] te[T) ze[N]te[T
Z Z khN 6zt _] it e?,it) Vgt,j Z Z khN €zt ] it 6?,#) (‘7t,t,j — V?,t,j)
ze[N] te[T) ze[N] fem
+ T Z Z khN 67,t khN (eit)] 6? tht t,j Z Z khN 6“5 khN (eit)] e?,it (\A’t,t,j _ Vg,t,j)
zE [N] te[T) N ter]
Z Z [ (€it) = B (eie)] (€550 — €5.40) Viu 5
16 [N] te[T)
+ NT Z Z (n (€it) — Eny (€it)] (éiit - e?ﬂ;t) (Vee,j — v?)m)
ze [N] te[T)
1 —
=NT Z Z khy (Gz‘t)e?,itvgtﬁj + O, (nvhy’)
i€[N] te[T)
1
- NT Z Z En (eit)eiitv,?,t,j + 0,(1), (B.102)
1€[N] te[T)

where the last two lines combines (A.47), (B.101), Assumption 10(ii) and facts that €3 ;,—e3 ;, = (&1 — ej,it)z—&-
et (&5t — €j4t) = Op(n]z\,) +¢€;+Op(nn) uniformly by Lemma B.21 and maXiEIg,tE[T |khN (eir)] = O(h;,l).

By Bernstein’s inequality, we obtain that

log N &2
NT Z Z K (€it)e Mt (khN( €it ”t|.@)]vmvglj :OP< i‘T 2%)’

ze[N] te(T] F
1 logT
T Z E[flt( ]zt|‘9] Utjvt] [flt( ) ]ztvt,jvg/j] :OP ( £N> (B103)
te[T] F
Besides, by Assumption 10(i), we observe that
E [kny (€it)|Ze] = fi(0) + O(hY), (B.104)
together with Assumption 10(v), and it gives
— Z > E (kny (eir)e] 4| 2) 0] o} = Z E [fit(0)e2 ;| 2] vf 0f; + O(h). (B.105)

1€[N te[T) te [T

Combining (B.102)-(B.105) and Assumption 10(ii), we obtain that V,, = O(l)Vu]O(l)/ + 0p(1). By analo-
gous analysis and Assumption 10(v), we can also show that Vg) O(l)Vv 0; W 4o p(1).
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Next, we show the consistency of QuJ With the restriction for 7} in Assumption 10(iii), we first note

that
1 T
Q.. =Var | — €‘iU04T—1 €r <0
J \/th:; J,it t,j( { t })
E(efltvg]vg/j> + = Z Z E [ej 7.t€] zsv?]UgJ( 1{6115 < O})(T* 1{615 S 0})]

1
o D Do Elenes i) ol (r—1{en <0} —1{es <0P] +O0(a™)

1 T 1 T—Ty t+Ty
= 7'(1 — T)T E (6? ztv?]'l)?/]) + T Z Z E |:€j77;t€j77;81}?7j1}2:j (}«—‘1,7“(07 O) _ 7_2)}
t=1 t=1 s=t+1
1 T t—1
7 2 E [ejirejisvt jvgj (Fis(0,0) — 7%)] + o(1),

where the second equality is by Assumption 1(iii), the third equality is by Assumption 1(vii) and Assumption

10(iii). Compared to Quj, what remains to show are

NT Z Z Jltvata] = TZ]E ]Ztvttj + 0p(1), (B.106)

16 [N]te[T]

1 T—Ty t+T . .
NT Z Z Z €j,itCjiisVt,s,j [TK<th>} {TK<hZ;/>}

i€[N] t=1 s=t+1

T-T1 t+T,
=7 Z > Elejirejisvi sy (Fies(0,0) = )] + 0p(1), (B.107)
t=1 s=t+1

. t—1 €i is
= 3 Z D GittiisVis {T - K <;1f/):| {T -k <;N)}

1€[N] t=1+4+T1 s=t—T1

T t—1
S>> Elejiesisvty; (Fies(0,0) = 72)] + 0p(1). (B.108)

t=1+4T1 s=t—T1

For (B.106), like (B.102), we notice that

72 Zeﬂtvtw Z Zejztvttj+op()

ze[N] te[T] 16 [N]te[T]
1
- ? ZE (6?7“‘/2?‘ J N Z Z j 1tvf 4 ( ?,itvto,t,j)} =+ 0p(1)
t=1 i€[N] te[T]

j ztvt t ] + OP< ) (Blog)

I\M’ﬂ

where the first equality is by Lemma B.21 and (A.47), and the second equality is by Bernstein’s inequality
and Assumption 10(v).
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For (B.107), we observe that

T-T1 t+T ¢ ¢
it 5
s S S s o ()] [ ()]

i€[N] t=1 s=t+1

T—-T, t+T T-T, t+T11 é
it
E E E ejltejlévté_[ E E E e] LteJ’Léth]K
’ 2. NT ’ 2. hN

t=1 s=t+1 t=1 s=t+1

T-Ty t+T1 T-T) t+T) . .
4zzzwww()wzzzwww%y%>

t=1 s=t+1 i€[N] t=1 s=t+1
(B.110)
such that
T-T, t+T, T-Ty t+T,
S S S Y s = g £ X O it 0 i)
ze[N] t=1 s=t+1 i€[N] t=1 s=t+1
T-T1 t+Ty T-T, t+T1
Z Z Z E e“tej stt s,j NT Z Z Z €3,it€j, 25Vt5j ]E(ej,itej,ing,s,j)]
t=1 s=t+1 Gi€[N] t=1 s=t+1
+0p (TNIN)
T-T, t+Ty
NT Z >N E(ejiesasvi, ;) + op(1), (B.111)
t=1 s=t+1

where the first equality is by the similar arguments as (B.102) and the last line combines Assumption
10(iii) and the fact that the second term in the second equality can be shown to be o0,(1) by Bernstein’s in-
K (2,3) -K (fﬁ,)‘ S e MaXier, reqr |€ir — €| =

O, (nNh]}l) and by the analogous arguments as above, we can show that

T-T1 t+T, ¢
NT Z Z Z eg Ztej stt s,jK <hzjf/>

t=1 s=t+1

1 T-Ty t+T) .
- NT Z Z Z €j,it€j,is Vs i K (hi) + O, (Tinnhy')

i€[N] t=1 s=t+1

T—T), t4+T,
1 €t
— g g E e”te”svtSJE K
T NT h
i€[N] t=1 s=t+1
T-T), t4+T,

- ﬁ Z Z Z ejitesisVis; + O(hR) + 0p(1)

i€[N] t=1 s=t+1

N Z Z Z er”er“VtSJ} +O(hm)+op( )

i€[N] t=1 s=t+1
T-T1 t+T1

= % SN0 D Elejuesisvis ] +op(1), (B.112)

i€[N] t=1 s=t+1

equality. Furthermore, with the fact that max;cy,,

@e} +0,(1)

where the first equality is similar as (B.102), the second equality is by addition and subtracting and
Assumption 10(iii), the third equality is by the fact that E [K (Z}f]) !@e} =7+ O(R}}) by the calculation
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of nonparametric kernel estimator which can be found in Galvao and Kato (2016). The last equality is
similar as the second equality and combines Assumption 10(i) and Assumption 10(ii).
Moreover, similarly as (B.111), with the fact that E [K (Z}G) K (Z—N> |96} = F;15(0,0) + O(hY}), we

can show that

1 T-Ty t+T) . .
5 enr ()5 (2)

t=1 s=t+1

T—T, t+T1 2
1 €it €is log(N VT) T: &y
:Ni Z Z Z ejltervtSjK(hN>K(hN>+OP< NAT h?\/‘

t=1 s=t+1

T-T1 t+T,

NLZ Do > Elejieisvis i Fies(0,0)] +op(1). (B.113)

t=1 s=t+1

Combining (B.110)-(B.113), we complete the proof for (B.107). By the analogous arguments, we can
show the proof for (B.108), which yields Quj =Qy, +0,(1). =

C Algorithm for low-rank Estimation

In this section, we provide the algorithm for the case of low-rank estimation with two regressors, the case of
more than two regressors is self-evident. To solve the regularized quantile regression, let the optimization

problem with two regressors be as

N T
@O%IIY}GQ NT ; ;Pr (Yit — O0,it — 1,011t — T2,14O2.it) + 10 [|Ooll, + 11 [|O1], + 2 [|O2l, -
As in Belloni et al. (2022), the above minimization problem is equivalent to the following one:
NI
i — Vi (C] Z Z
00,01,05, VW' Tey Zo, 2oy NT ;;m (Vie) + 10 [190ll. + w1 (1 Z6, L. +v2 [ Ze. .
s.t. V:VV, W:Y—Xl @@1 —Xg@@g—Z@O,

0, —00=0, Zg, —01 =0, Zg, — 02 =0.

As our theoretical results show, vy, v1 and vs converge to zero at rate % The augmented Lagrangian

is

Z (Va VV7 @07 Z@07 @1? Z@17@2a Z@sz’Ua Uw7 U@oa U@17 U@z)

N T
1
(Vi Z Z
;;p )+ 10 [1€ll, + 21 11Z6, Il + 12 | Ze, |, + 5o IV = W + UL
L WY +X,00,+ X900+ Zo, + U Zo. — 09 + Us, |I?
+2NT|| + X100 4+ Xy © 0y + Zo, + Uwl> + 2NT|| 00 o+ Us, |7
2
+ m ||Z@1 91 + U@1||F QNT ||Z@2 62 + U@2||F’

where p > 0 is the penalty parameter.
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By ADMM algorithm, similarly as Belloni et al. (2019), updates are as follows:

. 1 p 2
Vk+1 &argénln{mz;zt:m (Vzt)‘f'm HV—W’V—FUI]?HF} (Cl)
(OFtt ohth aggrgin{ [WFE—Y + X100, +X,00;+ 2§, +U{,‘"‘VHi, +1|Z&, — 61 +U{_§1Hi (C.2)
1,92

+ 28, - 02+ U8 ;|

. 1 2 yyNT
@’5“ — arg@mln {2 HZgO — O + USOHF + Op ||®0||*} (C.3)
0

.1 2 1 NT
Zg—li_l < argmin 7H®If+1 _Uéfh _Z@1HF+ ! ||Z@1||*
Zo, 2 P

. 1 2 VQNT
285" angin {1 o4~ U, - Z, [} + 2T |26, .}
2

(ZEF W) argmwi/n{ VAR W+ UF|[2 + W =V + X, 0 08! + X, © 05 + Zo, + Uty ||

oo-
|26, - 0§ + U, I }

Ujﬂ YR kL Uf

Uyt « W —y + Xy oo™ + Xo 0 05T + 25 + U,
Ust « Z5 - 6," " U,

UsT « z§H — ot + U,

USTH « z§H —eb™ + U§,

For (C.1), by Ali et al. (2016),

1—
VL Py (W’“ — Uk - TLNL’T) + P_ <W’“ —- Uk - =7 LNL'T) :
P P
where ¢ is the N x 1 all-ones vector, and same for ¢p. For (C.2), first order condition gives

2 k k k k o
(1423,) (Z@l,it + U, it — Aip1,it) — T1,0T0,0 (Z®2,it +Ug, it — Aa i)

oktl —
bt 1+af, +a3, ’
2 k k ) . . k k _A. )
Qk+l — (142t 30) (Z8, .00 + US, it — Auwtzit) — wrawo,it (28, 0 + UE, o — Auwrae)
20t 2 2 ’
I+ai, +a5,

where
A=Wr+ 28 + U, —Y.
To solve (C.3), by singular value thresholding estimations, the update for @’5“ is
O™ + PyDy, vnr Qp,
where Z(]f)o + U(’;O = PyDyQj, and DO/TO’“- = max(Do; — 2,0). Similarly for ngl and Zg;rl7

k+1 I
ZE — PLD| wnr Q)
P
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k+1 I
ZEF — PyD, wynr Qb
P

where 71! — Ué)l = D@}, ©5t! — ng = P,DyQ5, Dy m
max (DZ,ii — %, O) .
Finally, let A:= —Y + X, 00 + X, 005 + U B = —VF Uk O = —6," " 4 Uk, , then

— o _wn _
i = max (DLM > 70)7 and Dy vz j; =

—A-2C+B
k
Z@jle —

W A G- ozkH,
0
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