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Abstract

This paper examines the performance of alternative forecasting formulae
with the fractional Brownian motion based on a discrete and finite sample.
One formula gives the optimal forecast when a continuous record over the
infinite past is available. Another formula gives the optimal forecast when
a continuous record over the finite past is available. Alternative discretiza-
tion schemes are proposed to approximate these formulae. These alternative
discretization schemes are then compared with the conditional expectation
of the target variable on the vector of the discrete and finite sample. It is
shown that the conditional expectation delivers more accurate forecasts than
the discretization-based formulae using both simulated data and daily realized
volatility (RV) data. Empirical results based on daily RV indicate that the
conditional expectation enhances the already-widely known great performance
of fBm in forecasting future RV.
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1 Introduction

Starting with the seminar paper by Gatheral et al. (2018), studies in the volatility
literature have shown that continuous-time models based on the rough fractional
Brownian motion (fBm) provide accurate forecasts relative to many popular discrete-
time models. For example, Gatheral et al. (2018) find that the rough fBm model
with the Hurst parameter (denoted by H) being 0.14 for log realized volatility (RV)
provides more accurate forecasts of log RV and RV than the HAR model of Corsi
(2009). Wang et al. (2021) find that rough fBm and rough fractional Ornstein-
Uhlenbeck (fOU) processes for log RV yield more accurate forecasts of log RV and
RV than the HAR model and the ARFIMA model. In Wang et al. (2021), the
Hurst parameter H is estimated recursively by the method-of-moments in the fBm
and fOU processes from daily log RV data and found to be always significantly less
than 0.5. Fukasawa et al. (2021) and Bolko et al. (2022) continue to find evidence
of H < 0.5 when the measurement error in RV is taken into account. Bennedsen et
al. (2022) find evidence of H < 0.5 when the composite likelihood method is used
to estimate the fOU process.

Since fBm with H < 0.5 produces a sample path rougher than the standard
Brownian motion, when it is used to model volatility, it is called the rough frac-
tional stochastic volatility (RFSV) model in the literature. The RFSV literature
has received a great deal of attention in mathematical finance, financial engineering,
and financial econometrics. The 2021 risk award was presented to Jim Gatheral and
Mathieu Rosenbaum for introducing such a model. There is a website dedicated
to the literature that collects more than 200 papers on this subject from different
perspectives.! In addition to the applications in forecasting volatility as mentioned
earlier, RFSV models have been used to price options (Livieri et al., 2018; Bayer et
al., 2016; Garnier and Sglna, 2017) and variance swaps (Bayer et al., 2016), in port-
folios choice (Fouque and Hu, 2018), and in dynamic hedging (Euch and Rosenbaum,
2018).

This paper examines the performance of alternative forecasting formulae with
fBm based on a discrete and finite sample. We show that the existing forecasting
formula, albeit being optimal when a continuous record is available, when it is
discretized, does not generate the optimal forecast anymore. The optimal forecast

is the conditional expectation of the target variable on the vector of the discrete

Yhttps:/ /sites.google.com /site /roughvol /home /risks-1.



and finite sample. We quantity the loss in efficiency relative to the optimal forecast,
in terms of the root mean square error (RMSE), when a discrete and finite sample
is available. Findings in our paper suggest that rough fBm can produce even more
accurate forecasts of log RV than what has been reported in the literature, and
hence, enhance the already-widely known great performance of fBm in forecasting
volatility.

The rest of the paper is organized as follows. Section 2 reviews the model and
discusses the alternative forecasting formulae. Section 3 reports the forecast results
based on simulated data. Section 4 discusses how to use the maximum likelihood
(ML) method to estimate parameters in fBm and reports the forecast results based
on real RV data. Section 5 concludes. The appendix gives proof of the Proposition

in the paper.

2 The Model and Forecasting Formulae

The fBm, denoted by o B (t), is a continuous-time Gaussian process with zero mean

and the autocovariance function of
1
Cov (B (1), B"(s)) = 5 <|t|2H s - s|2H) . Vs € (—oo,400), (1)

where 0 > 0 is a constant scale parameter and H € (0,1) is called the Hurst
parameter of the fBm. Another definition of B¥(t), given by Mandelbrot and Van
Ness (1968), is

BH(t) = m { /_ : [(t — )05 _ <—5>H*0-5} AW (s) + /0 t (t — )0 dW(s)} ,

[e.9]

where I'(+) denotes the Gamma function and W (¢) is a standard Brownian motion.
It is clear to see that, when the Hurst parameter H = 0.5, B (r) = W (r) becomes
a standard Brownian motion.

Let y; denote the increment of the fBm, that is, y, = o (B (t) — B¥(t — 1)). The
sequence {y;} is known in the literature as the fractional Gaussian noise (fGn), which

is a normally distributed stationary process with the following autocovariances:

0.2

Cov (Ye, Yerk) = 5 ((k+ 128 4 (B —1)2H — 2k2H) , for any £ >0 (2)
~ o*H(2H — 1)k*72 for large k.



where ~ denotes asymptotic equivalence. Equation (2) shows that when H €
(0.5,1), {y:} has positive serial dependence, and the autocovariances of {y;} are
not absolutely summable. As a result, {y;} is called a long-memory process when
H > 0.5. In contrast, if H € (0,0.5), it can be proved that, {y;} has negative

autocovariances and
—+00

Z Cov (yt, Yr+x) = 0.

k=—00
In this case, {y;} is called an antipersistent process. The corresponding fBm has
sample paths that are rougher than those of the standard Brownian motion. Con-
sidering that the RFSV literature has found ample evidence supporting roughness

(i.e. H < 0.5), our paper focuses on the study for the case of H < 0.5.

2.1 Forecasts based on the infinite-past-formula

Gatheral et al. (2018, Equation 5.1) propose to use X (t) = o B¥(t) with H = 0.14
to model log RV. If the continuous record of X (t) over the period of (—oo,T] is
available, Nuzman and Poor (2000, Equation (34)) develop the following formula to
generate the optimal k-period-ahead forecast:

cos( Hr) k105

— 5+ k)(T — s)H+05

Being the conditional expectation, this formula generates the optimal forecast and is

ngawknxm¢e@wqﬂ}=/ﬂg X(s)ds. (3)

a weighted average of the entire history of X () over (—oo, T']. To simplify notations,

let
cos(Hm)kH+05  cos(Hm)kHt05

(T — s+ k)(T — s)H+05 7r

wi(s) = wy(s),

where
71 (s) 1
wy(s) = .
' (T — s+ k)(T — s)H+05
We rewrite the forecasting formula in (3) as

/ M@X@@:mwhwm%/ @1 ()X (s)ds. (4)

™

—00 —00

The following proposition shows that for any 7', &k > 0, the weights in the forecasting

formula integrated to unity.

Proposition 2.1 For any T,k > 0, it has

T r cos(Hm)kH+05
/ wl(s)dS—/ 7T(T—8+k)(T—s)H+0-5dS_1‘

—00 —00
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Figure 1: Plot of w;(s) as a function of s when H = 0.2, k = 1/50, T' = 2. The
picture-in-picture plots w;(s) when s takes values close to zero.

Figure 1 plots wy(s) as a function of s € [0,7] when H = 0.2, k = 1/50,
and T = 2. To help understand the near-zero behavior of w;(s), we plot w;(s)
when s takes values close to zero in the same Figure. The figure shows that w(s)
is a monotonically increasing function that goes to oo as s — 7. This property
suggests that nearer-distant history is more important than further-distant history
in forecasting X .

However, in practice, it is infeasible to directly implement the forecasting formula
in (3) for two reasons. First, we live in a digital world. Instead of having a continuous
record, X (t), the log RV process, can only be observed at discrete time points.
Second, we cannot access to information in the infinite past. Therefore, in reality,
people can only generate forecasts based on a discrete record of X (¢) collected over
the finite time-interval [0, 7]. Without loss of generality, we use { Xy, X1, ..., X7} to
denote the data available.

Gatheral et al. (2018) suggest making adjustments to the formula in (4) in order
to generate forecasts based on the discrete record {Xg, X1, ..., X7}. The adjusted



formula is . S
IPLA o Zs:O wl(s)XS - Zs:() wl(S>XS 5
= i = T (5)
Zs:O wl(s) 25:0 wl(s)

From the formula in (4) to the formula in (5), three adjustments are made. First,

the integral (4) is truncated from below at zero. Second, the integral is replaced
with the left Riemann sum. Third, the weight function is normalized by Zfz_ol wy($)
so that the new weights sum to unity, mimicking the feature in Proposition 2.1. The
last adjustment is to take into account of the truncation error introduced by the first
adjustment. In this paper, the formula given by (5) is called the infinite-past-left-
adjustment (IPLA) method.

There are other types of adjustments that can be made to the forecasting formula
in (4). Keeping other adjustments in IPLA intact, if we only change the integral

with the right Riemann sum, we can have?

S (s) X, +i51(T 1) X7
(T = 1) + 3 @i (s)

We name the forecasting formula in (6) the infinite-past-right-adjustment (IPRA)

method.
The third adjusted method is to replace the integral with the trapezoidal sum,

IPRA = (6)

which gives the forecasting formula
IS 2 (wi(8) X + wi (s + 1)X5+1) +wy (T — 1) (3X7r-1 + 3 X7)
w1 (0) + Yo wi(s) + Swn (T — 1)
5 0(0)Xo + 3 @i(s) X + 3@ (T — 1) X ™)
301(0) + Y wn(s) + Sw(T—1)
This method is called the infinite-past-trapezoidal-adjustment (IPTA) method.
Another adjusted formula can be obtained by replacing the integral with the

IPTA =

middle Riemann sum applied to the weight only, that is,
Zstl W (3+s5-1) X,
> W (3+s-1) '
We name this adjustment method the infinite-past-middle-adjustment (IPMA) method.
It is important to remark that, although Formula (4) yields the optimal forecast

IPMA =

(8)

given a continuous record over (—oo, 7’| being available, the alternative discretiza-

tions given in (5)-(8) may not lead to the optimal forecast when only finite number

2Note that the weight function is not well-defined at the point s = T'. Therefore, to approximate
the integral fTT71 w1(8)X (s)ds, we use X (T') with weight w; (T — 1).

6



discrete-time observations {Xo, X; ..., X7} are available. In fact, they are not de-

signed to minimize any objective function of the forecast errors.

2.2 Forecasts based on the finite-past-formula

If X (t) has a continuous record over the finite time-span of [0, 7] available, Theorem
4.4 in Nuzman and Poor (2000) gives another formula for the k-period-ahead optimal

forecast at period T

E{X (T + k) |X(6),¢ € [0,7]} :/0 iy <%,T—s> X (s)ds, ()

where

¢ —H-0.5 ¢ —H-0.5
mien =1 (z) - (1-)

X {(05 — H)BC/(C+1) (H +0.5,1 — QH) +

CH+0.5(1 + C)H_0'5(1 _ t/T)
c+t/T } ’

and B./(c41) (-, -) denotes the incomplete beta function that takes the form of
/(c+1) -
Bejer1) (H+0.5,1—2H) = / 05 (1 — )7 dz.
0

It can be verified that, as noted on page 443 in Nuzman and Poor (2000), the weights

in the forecasting formula (9) integrated to unity:
T
/ mr(c,t)dt =1 for any T,c > 0.
0
This feature is the same as that in Proposition 2.1. To simply notations, we let
k
way(s) = mr ?,T— s,
and rewrite the forecasting formula in (9) as
T
E{X(T+k)|X(),te[0,T]} = / wa(s) X (s)ds. (10)
0

Being the conditional expectation, this formula also generates the optimal forecast
and is a weighted average of the entire history of X (¢) over [0, 7.
From the definition of wy(s), it is easy to get that limg ows(s) = oo and

limg 7 wy(s) = oo when H € (0,0.5). As aresult, ws(s) is not a monotonic function.

7
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Figure 2: Plots of wy(s) as a function of s when H = 0.2,k = 1/50,7 = 2. The
picture-in-picture plots wy(s) when s takes values close to zero. The picture-in-
picture plots ws(s) when s takes values close to zero.

It is a little surprising to see that ws(s) approaches infinity as s — 0. This feature
is sharply distinct from the weights function w;(s) used in the forecast formula (4)
that converges to a small constant number when s — 0, as discussed in Subsection
2.1. This difference is due to the fact that the new forecasting formula in (9) is
based on a continuous record over [0, 7] rather than (—oo, T]. When the record over
[0, T'] being available, the forecasting formula (9) places the optimal weight X (s) for
s € (0, 7). Hence, it can generate more accurate forecasts than using the forecasting

formula (4) with a truncation:
) fOT wi(s)X (s)ds [ wi(s)X(s)ds
fUT wi(s)ds fOT w1 (s)ds '

Figure 2 plots wq(s) as a function of s when H = 0.2,k = 1/50, and T' = 2.
It shows that when T is finite, wy(s) is U-shaped, placing higher weights when s

/0 wy(s) X (s)ds, (11)

approaches T' or 0.
We plot normalized wy(s) and w; (s), i.e. wa(s)/ fOT wo(7)d7 and w(s)/ fOT wy(T)dr,
as a function of s in Figure 3, for k¥ = 1/250,1/50 and T = 2,4.> The normalized

3 Although fOT wa(7)dT = 1, normalization of ws(7) is needed as the numerical approximation

8



(a) k=1/250, T=2 (b) k=1/250, T=4

0.4 0.4

03r 1 031

0.2 1 0.2 1
2
0.5
01t |~ 1 0.1+

0 0.5 1 1.5 2 0 1 2 3 4

(c) k=5/250, T=2

0.25 0.25
0271 1 021
-4 -4
6 10 3 x10
015t 1 0.5 f
4 2
0.1 B 0.1+ 1
2 1
005} 0T 1 0.05 |- === 1
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
ol ‘ ‘ ‘ ‘ ol . _ ‘ ‘
0 0.5 1 15 2 0 1 2 3 4

Figure 3: Plots of normalized w(s) and ws(s) as a function of s when H = 0.2,
k =1/250,1/50 and T' = 2,4. The solid line is for normalized w(s) while the dash
line is for normalized w;(s). The picture-in-picture plots each weight function when
s takes values close to zero.

weight function ensures that the weights calculated at discrete points sum to unity.
These plots show that, compared to the normalized w;(s), the normalized ws(s)
places higher weights on observations near period 0.

In practice, to apply the formula (10) to generate forecasts based on { X, ..., X7},
some adjustments have to be made. Again, there are various adjustment methods.
The first method is to replace the integral in (10) by the left Riemann sum and
then normalize the corresponding weights of every data observation. This method
is called the finite-past-left-adjustment (FPLA) method, which gives the following

forecasting formula:*

to fOT wa(7)dT can be different from one.
“Note that wo(0) = co. Therefore, the left Riemann sum is not applicable to approximate the

integral fol wa(s)X (s)ds. To approximate this integral, we use X (0) with the weight ws (1).



2322 wa(s — 1) X1 4+ wa(1) X
wy(1) + Yo pwa(s —1)

An alternative method is to replace the integral with the right Riemann sum, which

FPLA =

(12)

is named as the finite-past-right-adjustment (FPRA) method. The resulting fore-

casting formula is®

ZTill U}Q( )X + wg(T 1)XT
wa(T = 1) + 3005 ws(s)

The third method is called the finite-past-trapezoidal-adjustment (FPTA) method,

which replaces the integral with the trapezoidal sum and gives the forecasting for-

FPRA =

(13)

mula of

FPTA =

Jwa(1)(Xo + X1) + 5 5.5 (wa(9) Xs + wa(s + 1) Xe1) + gwa(T — 1) (X7 1 + X7)

> oms wa(s) + 5 (wa(1) + wa(T — 1))
(14)

The fourth adjustment method is to replace the integral with the middle Riemann
sum applied to the weight only. This method is called the finite-past-middle-
adjustment (FPMA) method and yields the following forecasting formula:

ZST=1W2 (%+3_1) X
Zstlw2 (%""3_1) .

As before, although Formula (9) yields the optimal forecast given a continuous

FPMA =

(15)

record over [0, 7] being available, the alternative discretizations given in (12)-(15)
may not lead to the optimal forecast when only finite number discrete-time obser-
vations { Xy, X; ..., Xr} are available. None of these discretization-based formulae
is designed to minimize any objective function of the forecast errors.

Table 1 reports the weights applied to all observations in the discrete sample
under alternative forecasting formulae. A distinctive feature is that both TPLA
and FPLA give zero weight to the most recent observation, X,. This feature has
important implications for the finite sample performance of the two methods, as will

be remarked on later.

’Note that wy(T) = co. Therefore, we approximate the integral f]j:—l wa(s)X (s)ds by using
X (T) with the weight of wo(T — 1).

10



Table 1: Weights on the sample under different forecasting formulae before the
normalization

Methods X() X1 X2 cee XT_2 XT_1 XT

IPLA @1(0)  wi(l)  wi(2) W (T —2) @ (T —1) 0
IPRA 0 w1 (1) w1(2) (T —-2)  w(T—1)  w(T-1)
IPTA w1 (0)  wi(l)  wi(2) o (T—2) i (T—-1) Fu(T-1)
IPMA 0 w1(0.5)  wy(1.5) w1 (T —2.5)  wi (T —1.5) w (T —0.5)
FPLA ’u)g(l) U)Q(l) w2(2) ’LUQ(T - 2) ’LUQ(T - ) 0
FPRA 0 ’u}g(l) w2(2) ’LUQ(T — ) wQ(T — ) wQ(T — 1)
FPTA swa(l)  wa(l)  wa(2) wy(T—2)  wo(T—1)  Fwo(T—1)
FPMA 0 wo(0.5)  wa(1.5) wo(T —2.5)  wa(T —1.5)  we(T —0.5)

2.3 Optimal forecast based on a discrete and finite sample

This subsection introduces the optimal forecasting formula based on finite discrete-
time observations {Xo, Xa..., X7a}, where A is the sampling interval and T + 1
is the number of historical observations. We summarize the data into a column
vector X = (Xo, Xa..., X7a). Our goal is to generate the optimal forecast for
X(r+k)a, that is, k-period-ahead forecast. Let the covariance matrix of X be
Yora. Elements in Yg.ra can be easily obtained from the formula in (1). Let
’y,(COA:TA) = (Cov(X(r1r)a, X0), -, Cov(X(r4r)a, X1a))" denote the vector of covari-
ances between X(p;p)a and the elements in X. Again, elements in 'y,(COA:TA) can
readily be obtained from (1).

Since X, is a Gaussian process, (Xo, Xa, ..., Xra, X(74x)a)’ follows a multivariate
normal distribution. The conditional expectation, which is known as the optimal
forecast, has a closed-form expression. In particular, the conditional mean is given
by

B(XrialX) = (457) SobaX. (16)

This is the optimal forecast when a discrete record over the finite past [0,TA],
(X0, Xa..., X7a)', is available because it minimizes the RMSE of the forecast.

Figure 4 plots the weight function (7,2[2T)>/Za%m = w*(s) as a function of
s € {0,A,2A,...,TA} when H = 0.2, kA = 1/50, TA = 2. It shows that simi-
lar to wsy(s), the weight function in the optimal forecast (WECOA:TA) )l Z(}}F AX is also
U-shaped, indicating that the initial observation Xj is relatively important in fore-
casting X (ryp)a-

Figure 5 plots the log of the ratio of w*(s) to the normalized w;(s) (the weights

used in IPLA) and the log of the ratio of w*(s) to the normalized wy(s) (the weights

11
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Figure 4: Optimal weight as a function of s € {0,A,2A, ..., TA} when H = 0.2,
kA =1/50, TA = 2.

used in FPLA), both as a function of s € {0, A,2A, ..., TA} when H = 0.2, kA =
1/50, TA = 2. The figure shows that, compared to the optimal weight w*(s), the
IPLA method and the FPLA method give too less weight when s is near 0 and too
greater weight when s is near TA. Comparing the IPLA method and the FPLA
method, the weight implied by the IPLA method is further away from the optimal
weight w*(s) than that implied by the FPLA method, suggesting that it is difficult
for the IPLA method to outperform the FPLA method. This comparison indicates
that although the IPLA method has been the method used in the literature (e.g.,
Gatheral et al., 2018; Wang et al., 2019), it is sub-optimal when a discrete record
over the finite period [0, T'A] is available. Improvements over the IPLA method are

possible.

3 Comparison based on Simulated Data

We now design Monte Carlo experiments to examine the performance of alternative
forecasting formulae when a discrete and finite sample is simulated from the fBm. In
all experiments, we set 0 = 1, H € {0.05,0.1,0.15,0.2,0.25,0.4}, A = 1, and assume

12



OP weight versus IPLA and FPLA weights
T T T T T

Figure 5: The log of the ratio of w*(s) to the normalized w;(s) in IPLA and the log
of the ratio of w*(s) to the normalized wy(s) in FPLA, both as functions of s for
H =02, kA =1/50, and TA = 2.

both ¢ and H are known.® As a result, no estimation is needed. The number of
replications is 100,000 and used to calculate the RMSE. For each replication, we
simulate 511 observations. The first 501 observations (hence 7" = 501) are used
to generate forecasts. Alternative forecasting formulae are used to generate k-step-
ahead-forecast with £ = 1,...,10. The RMSEs from these forecasting formulae are
reported in Tables 2-7. The last row in each table shows the theoretical RMSE of

the optimal forecast, which is obtained as

RMSE* = 6% + w"So.rw* — 2w*’7§€0:T) = 0% — WSy w*, (17)

where 02 = Var(Xr,;,) and w* = E&1T75€0:T)

Several conclusions can be drawn from these tables. First, the optimal forecast
(OP) always yields the lowest RMSE, which is always close to the theoretical RMSE.

Second, the smaller the k is, the bigger the improvement of the performance of
OP over the other forecasting formulae. For example, when H is 0.25, OP improves
IPLA by 16.19%, 10.94%, 8.50%, 6.72%, 5.98%, 2.27%, 4.52%, 4.18%, 4.07% and
3.69% for k =1, ..., 10, respectively.

5Due to the self-similarity property, by setting A = 1/250 will not change the empirical results
reported below.
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Third, the larger the H is, the bigger the improvement of OP’s performance over
the other forecasting formulae. For example, when & = 1, OP improves IPLA by
3.36%, 6.00%, 9.68%, 14.70%, 20.04%, 41.73% for H = 0.05, 0.1, 0.15, 0.2, 0.25, 0.4,
respectively.

Fourth, the relative performance of the four discretization schemes depends on
the value of H. When H is small, say H = 0.05, the right adjustment yields the
smallest RMSE. As H increases, the middle adjustment performs the best among
the discretization-based methods.

Fifth, the finite-past formulae always yield smaller RMSEs compared to their
infinite-past counterparts. However, the magnitude of the improvement is small.
For example, FPLA improves IPLA by 0.038%, 0.012%, 0.011%, 0%, 0.010% and
0.043% for H = 0.05, 0.1, 0.15, 0.2, 0.25, 0.4 when k = 1.

Last but not least, IPLA and its infinite-past counterpart, FPLA, always perform
the worst, although IPLA has been used in practice.

Table 2: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H =0.05.

k 1 2 3 4 5 6 7 8 9 10
IPLA 0.8132 0.8202 0.8280 0.8352 0.8406 0.8455 0.8505 0.8551 0.8583 0.8619
IPRA 0.7929 0.8088 0.8199 0.8279 0.8353 0.8410 0.8464 0.8514 0.8553 0.8592
IPTA 0.7965 0.8101 0.8206 0.8288 0.8356 0.8412 0.8466 0.8516 0.8553 0.8592
IPMA 0.8053 0.8169 0.8256 0.8317 0.8387 0.8439 0.8487 0.8533 0.8572 0.8608
FPLA 0.8127 0.8199 0.8276 0.8349 0.8402 0.8452 0.8501 0.8547 0.8578 0.8615
FPRA 0.7926 0.8085 0.8196 0.8276 0.8349 0.8406 0.8460 0.8510 0.8548 0.8587
FPTA 0.7962 0.8098 0.8203 0.8285 0.8352 0.8409 0.8463 0.8512 0.8549 0.8587
FPMA 0.8048 0.8164 0.8251 0.8312 0.8382 0.8434 0.8482 0.8528 0.8566 0.8602

0) 0.7868 0.8043 0.8160 0.8246 0.8324 0.8384 0.8439 0.8490 0.8529 0.8568
Theoretical 0.7863 0.8044 0.8162 0.8250 0.8323 0.8384 0.8437 0.8485 0.8527 0.8566

4 Comparison based on Real Data

4.1 ML for fBm

Since X ~ N(0,%Xr) with elements of ¥ being found from (1), the log likelihood

function of fBm is,

In o2 1 1
2y _ _
InL(H,o%) = 5 ST T1) In |27 5

———d) y=2S'] 1
(T +1) 02 T (18)

When we numerically maximize In L(H, 0?), |$7| is obtained as the product of the

eigenvalues of Y.
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Table 3: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H=0.1.

k 1 2 3 4 5 6 7 8 9 10
IPLA 0.8845 0.9123 0.9349 0.9550 0.9698 0.9846 0.9971 1.0098 1.0176 1.0278
IPRA 0.8400 0.8837 0.9149 0.9374 0.9558 0.9719 0.9855 0.9984 1.0080 1.0186
IPTA 0.8533 0.8919 0.9203 0.9424 0.9596 0.9754 0.9888 1.0018 1.0107 1.0213
IPMA 0.8392 0.8846 0.9164 0.9379 0.9568 0.9723 0.9856 0.9982 1.0081 1.0185
FPLA 0.8844 0.9122 0.9347 0.9548 0.9696 0.9844 0.9969 1.0095 1.0173 1.0274
FPRA 0.8399 0.8836 0.9147 0.9372 0.9556 0.9716 0.9852 0.9981 1.0077 1.0182
FPTA 0.8533 0.8919 0.9202 0.9422 0.9594 0.9752 0.9886 1.0015 1.0104 1.0209
FPMA 0.8390 0.8844 0.9161 0.9376 0.9565 0.9720 0.9852 0.9978 1.0077 1.0180

0) 0.8344 0.8810 0.9131 0.9358 0.9546 0.9706 0.9842 0.9970 1.0067 1.0172
Theoretical 0.8341 0.8819 0.9126 0.9357 0.9544 0.9702 0.9840 0.9962 1.0071 1.0171

Table 4: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when

H =0.15.

k 1 2 3 4 5 6 7 8 9 10
IPLA 0.9562 1.0110 1.0527 1.0895 1.1166 1.1424 1.1637 1.1824 1.2011 1.2184
IPRA 0.8872 0.9648 1.0164 1.0576 1.0898 1.1181 1.1421 1.1631 1.1833 1.2016
IPTA 0.9102 0.9800 1.0284 1.0684 1.0989 1.1264 1.1494 1.1697 1.1894 1.2074
IPMA 0.8728 0.9576 1.0113 1.0523 1.0856 1.1142 1.1390 1.1605 1.1811 1.1995
FPLA 0.9563 1.0110 1.0527 1.0895 1.1166 1.1424 1.1636 1.1824 1.2010 1.2183
FPRA 0.8873 0.9648 1.0163 1.0576 1.0897 1.1180 1.1419 1.1630 1.1831 1.2014
FPTA 0.9103 0.9800 1.0284 1.0684 1.0988 1.1264 1.1493 1.1696 1.1892 1.2072
FPMA 0.8728 0.9575 1.0112 1.0522 1.0855 1.1141 1.1388 1.1603 1.1808 1.1991

op 0.8718 0.9567 1.0105 1.0518 1.0852 1.1138 1.1384 1.1600 1.1802 1.1985
Theoretical 0.8725 0.9562 1.0105 1.0516 1.0850 1.1134 1.1382 1.1602 1.1801 1.1982

Table 5: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H=0.2.
k 1 2 3 4 5 6 7 8 9 10
IPLA 1.0379 1.1202 1.1833 1.2338 1.2778 1.3171 1.3520 1.3826 1.4131 1.4371
IPRA 0.9402 1.0513 1.1282 1.1876 1.2372 1.2801 1.3182 1.3516 1.3835 1.4103
IPTA 0.9746 1.0756 1.1478 1.2041 1.2518 1.2935 1.3305 1.3630 1.3944 1.4201
IPMA 0.9073 1.0315 1.1136 1.1763 1.2277 1.2714 1.3102 1.3445 1.3765 1.4045
FPLA 1.0380 1.1202 1.1834 1.2339 1.2779 1.3171 1.3520 1.3826 1.4131 1.4371
FPRA 0.9402 1.0513 1.1282 1.1876 1.2372 1.2800 1.3181 1.3515 1.3833 1.4102
FPTA 0.9746 1.0757 1.1478 1.2041 1.2519 1.2935 1.3305 1.3629 1.3943 1.4201
FPMA 0.9073 1.0315 1.1136 1.1763 1.2277 1.2713 1.3101 1.3443 1.3763 1.4043
opP 0.9049 1.0294 1.1115 1.1744 1.2257 1.2691 1.3082 1.3425 1.3740 1.4024
Theoretical 0.9049 1.0290 1.1109 1.1737 1.2252 1.2692 1.3079 1.3424 1.3737 1.4024
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Table 6: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H =0.25.

k 1 2 3 4 5 6 7 8 9 10

IPLA 1.1196 1.2358 1.3272 1.3961 1.4629 1.5176 1.5642 1.6105 1.6567 1.6929
IPRA 0.9932 1.1425 1.2496 1.3307 1.4029 1.4631 1.5151 1.5642 1.6114 1.6508
IPTA 1.0388 1.1765 1.2782 1.3550 1.4254 1.4837 1.5337 1.5818 1.6288 1.6671
IPMA 0.9409 1.1085 1.2230 1.3099 1.3837 1.4460 1.5003 1.5505 1.5976 1.6384
FPLA 1.1195 1.2357 1.3271 1.3960 1.4628 1.5175 1.5641 1.6103 1.6566 1.6928
FPRA 0.9931 1.1424 1.2495 1.3306 1.4027 1.4629 1.5149 1.5640 1.6112 1.6506
FPTA 1.0387 1.1764 1.2781 1.3548 1.4253 1.4835 1.5335 1.5816 1.6287 1.6669
FPMA 0.9408 1.1085 1.2229 1.3099 1.3836 1.4459 1.5001 1.5504 1.5975 1.6383
op 0.9327 1.1006 1.2144 1.3023 1.3754 1.4382 1.4935 1.5432 1.5893 1.6304
Theoretical 0.9325 1.1006 1.2140 1.3021 1.3751 1.4381 1.4937 1.5436 1.5892 1.6312

Table 7: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H=104.
k 1 2 3 4 5 6 7 8 9 10
IPLA 1.4011 1.6381 1.8308 2.0009 2.1445 2.2779 2.3928 2.4944 2.6039 2.7015
IPRA 1.1730 1.4537 1.6677 1.8508 2.0059 2.1456 2.2680 2.3768 2.4892 2.5898
IPTA 1.2581 1.5235 1.7302 1.9091 2.0602 2.1979 2.3176 2.4236 2.5352 2.6348
IPMA 1.0403 1.3573 1.5876 1.7790 1.9410 2.0850 2.2121 2.3258 2.4395 2.5423
FPLA 1.4005 1.6373 1.8299 1.9999 2.1434 2.2767 2.3915 2.4931 2.6025 2.7000
FPRA 1.1725 1.4531 1.6670 1.8500 2.0051 2.1447 2.2671 2.3758 2.4882 2.5887
FPTA 1.2576 1.5228 1.7294 1.9082 2.0593 2.1968 2.3165 2.4225 2.5340 2.6335
FPMA 1.0400 1.3569 1.5871 1.7784 1.9404 2.0843 2.2114 2.3251 2.4387 2.5415
opP 0.9886 1.3024 1.5302 1.7162 1.8771 2.0184 2.1467 2.2637 2.3730 2.4756
Theoretical 0.9881 1.3020 1.5304 1.7165 1.8764 2.0181 2.1462 2.2638 2.3729 2.4749
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Let Hyp and 53, denote the maximum likelihood (ML) estimator of H and o2,
respectively. The ML method is expected to deliver more efficient estimates than
method-of-moment (MM), the latter of which was proposed in Lang and Roueff
(2001), Barndorff-Nielsen et al. (2013), Brouste et al. (2020), and Wang et al.
(2021), although MM is computationally cheaper to implement. It is also expected
to be more efficient than the composite likelihood method of Bennedsen et al. (2022)

although the latter method is applicable to more complicated models.

4.2 Results

We now examine the performance of alternative forecasting formulae based on real
data. We download daily RV time series of the S&P 500 market ETF and nine
industry ETFs from the Risk Lab constructed by Dacheng Xiu.” The sample period
is from October 1, 2017 to September 30, 2022. We model the log of each RV time
series by fBm. The ML method is then applied to estimate H and o%. A two-year
rolling window is used to fit fBm and based on the ML estimates of H and o2 in
fBm, we obtain k-day-ahead-forecast of log RV with £ = 1,2, ..., 10 for the remaining
three years. We set A = 1/252 in this exercise to reflect 252 trading days in a year.
The top panel of Figure 6 plots the full sample of the log RV of S&P500 EFT. The
bottom panel plots the rolling window estimates of H . These estimates fluctuate
within the interval [0.2,0.3] and are much lower than 0.5, indicating roughness.
Table 8 reports the RMSEs of the alternative forecasting formulae for the k-
day-ahead-forecast of log RV of SPY with £ = 1,2,...,10. It can be seen that OP
always yields the lowest RMSE. The smaller the k is, the biggest its improvement
over other forecasting formulae. For example, it improves the RMSE over the IPLA
method, which is the method used by Gatheral et al. (2018) and Wang et al. (2021),
by 20.6%, 12.4%, 7.1%, 5.4%, 5.7%, 4.2%, 3.6%, 4.0%, 3.6%, 3.8% for k =1, ..., 10,
respectively. The magnitude of these improvements is consistent with our findings
based on simulated data. Judged by the forecast results provided in the literature
(Andersen et al. 2003, Gatheral et al. 2018, Wang et al. 2021), 20.6% for 1-day-
ahead-forecast is large and economically significant. Both IPLA and FPLA perform
relatively poorly. The reasons for the relative poor performance of IPLA and FPLA
can be found in Figure 5 and Table 1, including zero weight on Xra, too less weight

on X, when s is near 0 and too greater weight when s is near TA. Moreover, the

"See https://dachxiu.chicagobooth.edu/#trisklab.
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Figure 6: (a) The log RV of S&P 500 ETF between October 1, 2017 and September
30, 2022; (b) Rolling window estimates of H for log RV of S&P 500 ETF

second best is FPMA, which is followed closely by IPMA. The finite-past methods
always perform slightly better than the infinite-past methods. All these empirical
findings are consistent with the findings obtained from the simulated data.

Figure 7 plots the rolling window estimates of H for the log RV series of the nine
industry ETF. These estimates suggest that the estimates are fluctuating within the
interval [0.1,0.35]. These values are lower than 0.5, indicating roughness.

Tables 9-17 report the RMSEs of the alternative forecasting formulae for the
k-day-ahead-forecast of log RV of the nine industry ETFs with £ = 1,2,...,10.
It can be seen that OP always yields the lowest RMSE with the only exception
of XLK and £k = 3,4. The smaller the h is, the biggest its improvement over
other forecasting formulae. For example, when h = 1, its improvement over the
IPLA method is 21.5%, 25.2%, 24.0%, 23.3%, 19.3%, 24.3%, 27.6%, 21.7%, 19.2% for
the nine industry ETF, respectively. These improvements are large and economically
significant. Again, both IPLA and FPLA perform relatively poorly. Moreover, the
second best methods are FPMA and IPMA. Interestingly, Table 13 shows that the
OP method is not the best when k£ = 3,4 for XLK. One possible explanation is that

there may exist model mis-specification for this particular RV series.
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Table 8: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of log RV
of SPY between October 1, 2017 and September 30, 2022. Boldface corresponds to the
lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .3332 .3684 3917 .4095 4279 .4420 4540 .4664 AT 4893
IPRA .2951 .3406 3721 .3932 4115 4285 4421 .4540 .4664 4778
IPTA .3089 .3508 3791 .3990 4176 4334 .4464 4587 4706 4822
IPMA 2783 .3292 .3659 .3887 .4059 4245 .4390 .4500 4629 4737
FPLA  .3331 .3683 .3916 .4093 4277 4417 4537 .4662 AT74 4890
FPRA  .2950 .3405 3721 3931 4114 4284 4419 4538 .4662 4776
FPTA  .3088 .3507 .3790 .3989 4174 4332 4462 4584 4703 4819

FPMA  .2783 .3292 .3659 .3886 4058 4244 4388 4498 4626 4735
OoP 2763 .3279 .3658 .3885 .4049 .4242 4383 .4483 .4609 .4715
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Figure 7: Rolling window estimates of H for log RV of 9 industry ETF's
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Table 9: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLB.

Boldface corresponds to the lowest RMSE.

k 1 2 3 4 ) 6 7 8 9 10
IPLA .2512 .2796 .2997 3161 .3308 3411 .3508 .3599 .3688 3775
IPRA .2220 2575 .2833 3018 3180 3315 3415 .3507 .3596 .3687
IPTA 2327 2657 2893 3071 .3229 .3350 .3449 .3542 3631 3721
IPMA  .2090 .2481 2774 .2968 3133 .3289 .3390 .3480 3567 3657
FPLA  .2512 2797 .2997 3161 .3309 3412 .3508 .3600 .3689 3776
FPRA 2220 2575 .2833 3018 3180 .3316 .3416 .3508 3597 3687
FPTA 2327 2657  .2893 3071 3229 3351 .3450 .3542 .3632 3722
FPMA  .2090 .2481 2775 .2969 3133 .3290 .3390 .3480 .3568 .3658

OoP .2068 .2460 .2760 .2955 .3121 .3283 .3377 .3462 .3542 .3631

Table 10: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLE.

Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA 2118 2371 .2562 .2700 .2826 .2929 .3025 3121 3219 .3306
IPRA .1849 2174 .2406 2577 2711 .2829 2927 .3022 3119 3214
IPTA .1948 .2247 .2464 .2622 2754 .2866 .2964 .3060 3158 .3250
IPMA 1717 .2088 .2343 2537 2672 .2798 .2898 .2988 .3082 3182
FPLA 2118 .2370 .2562 .2700 .2826 .2929 .3025 3121 3219 .3306
FPRA  .1848 2173 .2405 2577 2711 .2829 .2927 .3022 3119 3215
FPTA  .1948 .2246 .2464 .2622 2754 .2866 .2964 .3060 3158 .3250
FPMA 1717 .2088 .2343 2537 2672 .2798 .2898 .2989 .3083 3183

op 1692 .2067 .2328 .2528 .2659 .2783 .2875 .2957 .3045 .3147

Table 11: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLF.

Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 3 9 10
IPLA .2470 2763 2972 3135 .3285 3417 3532 .3637 3738 .3835
IPRA .2165 2532 .2801 .2989 3148 .3293 .3422 3533 .3633 .3736
IPTA 2277 2618 .2864 .3043 .3200 3341 .3464 3573 .3674 3775
IPMA 2021 .2430 2738 2941 .3100 .3250 .3386 .3498 .3596 .3700
FPLA  .2470 2763 2972 3135 .3285 3417 3532 .3638 3738 .3835
FPRA  .2165 .2532 .2801 .2989 3148 .3294 .3422 .3533 .3634 3737
FPTA 2277  .2618 .2864 .3043 .3200 3341 .3464 3573 .3674 3775
FPMA 2021 .2430 2738 2941 .3100 .3250 .3386 .3499 .3596 .3701

op 1992 .2404 .2721 .2923 .3080 .3232 .3365 .3474 .3565 .3670
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Table 12: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLI.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA 2567 2884 3114 .3288 .3449 .3567 .3679 .3786 .3885 3975
IPRA .2254 .2634 .2928 .3136 .3308 .3456 3573 .3683 3784 .3883
IPTA .2369 2728 .2998 3193 .3362 3497 3613 3722 .3823 .3918
IPMA 2111 2521 .2856 .3082 .3255 .3423 .3540 .3649 3748 .3852
FPLA 2567  .2884 3114 .3289 .3449 .3567 .3680 3787 .3886 .3976
FPRA 2254 .2634 .2929 .3136 .3309 3457 3574 .3684 3785 .3884
FPTA  .2369 2729 .2998 3193 .3362 .3498 .3614 3723 3824 3919

FPMA 2111 2521 .2856 .3082 .3256 .3423 .3541 .3650 3749 .3853
oP .2082 .2492 .2839 .3067 .3242 .3415 .3527 .3632 .3726 .3829

Table 13: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLK.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2958 .3248 3435 .3566 3701 3814 3911 4014 14100 14193
IPRA .2632 .3016 3282 .3444 3578 3709 .3815 .3914 .4004 4097
IPTA .2749 .3100 .3335 .3486 .3622 .3746 .3849 .3951 .4040 4133
IPMA .2492 .2924 .3241  .3419 .3544 .3683 3794 .3886 3977 .4066
FPLA .2958 .3248 .3435 .3567 3702 3815 3911 4015 14102 4194
FPRA .2632 .3016 3283 .3445 .3579 .3709 .3816 3915 4005 4098
FPTA .2749 .3100 .3335 .3486 .3623 3747 .3850 .3952 14041 4134
FPMA .2492 .2924 .3241  .3420 .3544 .3683 3795 3887 3978 4067

op .2479 .2919 .3246 .3422 .3541 .3681 3786 .3870 .3954 .4042
Table 14: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLP.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2471 2788 3024 3215 .3400 .3538 3677 3797 .3919 14039
IPRA .2163 .2542 .2828 .3042 .3234 .3405 .3544 3677 .3800 .3928
IPTA 2277 .2635 .2903 .3109 .3299 .3457 .3597 3724 .3848 3972
IPMA .2021 .2433 .2753 2978 .3166 .3360 .3494 .3634 3753 .3882
FPLA 2471 2788 3024 3215 .3400 .3538 .3678 3797 .3920 14039
FPRA .2163 .2542 .2828 .3042 .3234 .3405 .3544 3677 3801 .3928
FPTA 2277 .2635 .2903 .3109 .3299 .3457 .3597 3725 .3848 3973
FPMA  .2021 .2433 2753 2978 .3166 .3361 .3494 .3634 3754 3882

OoP 1988  .2397  .2722 .2947 .3134 .3336 .3464 .3605 .3720 .3854
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Table 15: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLU.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA 2101 .2398 .2630 2821 2977 3125 .3262 3384 .3502 .3615
IPRA 1822 2167 2437 .2652 .2828 .2986 3131 .3266 .3389 .3509
IPTA 1926 .2255 .2512 2718 .2886 3041 3183 3313 .3435 .3552
IPMA .1689 .2059 .2355 .2582 .2769 .2931 .3079 .3220 .3343 .3465
FPLA 2101 .2398 .2630 2821 2977 3124 .3261 3384 .3502 .3614
FPRA 1822 .2166 2437 .2651 .2828 .2986 3131 .3265 .3388 .3508
FPTA 1926 .2255 .2512 2718 .2886 3041 3183 3313 3434 .3551
FPMA  .1689 .2059 .2355 .2582 .2769 .2931 .3079 .3220 .3342 .3465

(0] 1647 .2012 2313 .2544 2734 2895 .3042 .3185 .3304 .3429
Table 16: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLV.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2447 2733 .2940 .3095 .3251 3367 3473 .3568 .3667 3762
IPRA .2160 2511 2772 .2955 3115 .3262 3373 3474 3573 .3673
IPTA .2264 .2593 .2834 .3007 3167 .3300 .3410 .3509 .3609 3707
IPMA .2033 .2416 .2709 .2907 .3061 3228 .3340 .3443 .3539 .3639
FPLA .2446 2733 .2940 .3096 .3252 .3367 3473 .3569 .3667 3763
FPRA .2159 2511 2772 .2955 3115 .3262 3373 3474 .3573 .3673
FPTA .2264 .2593 .2834 .3007 3167 .3301 .3410 .3510 .3609 3707
FPMA  .2033 .2416 .2709 .2907 .3061 3228 .3340 .3443 .3539 .3639

OopP .2011  .2392 .2692 .2890 .3042 .3217 .3325 .3424 .3515 .3615
Table 17: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLY.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2926 3222 3412 .3566 3717 3832 3931 .4019 4118 4229
IPRA .2605 .2992 .3253 .3425 .3581 3724 3832 .3922 4013 4118
IPTA 2721 3075 .3309 .3475 .3631 3763 .3867 3957 4052 4161
IPMA .2469 .2903 .3210 .3386 .3537 .3696 .3809 .3900 .3983 4079
FPLA .2926 3222 3412 .3566 3718 .3833 .3932 4021 4119 4231
FPRA .2605 .2992 .3253 .3425 .3581 3724 3832 .3923 4014 4119
FPTA 2721 3075 .3309 .3475 .3631 3763 .3868 .3958 4054 4162
FPMA  .2469 .2903 .3210 3387 .3537 .3697 .3810 .3901 .3984 4081

OP .2454 .2893 .3205 .3377 .3522 .3685 .3791 .3873 .3945 .4038
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4.3 Additional empirical results

The empirical study reported earlier is based on the sample period from October
1, 2017 to September 30, 2022. It is well known that the sample period contains
the financial crash in 2020 that began on February 20, 2020, and ended on April
7, 2020. This crash explains why the estimated H in the bottom panel of Figure 6
moved up from its values from the near 0.2 level in February 2020 to the near 0.3
level in April 2020.

To check the robustness of the empirical results reported earlier, we now examine
the performance of alternative forecasting formulae based on the daily RV time series
of the S&P 500 market ETF from January 2, 2012 to December 31, 2019. Once
again, we model the log of each RV time series by {Bm and use the ML method to
estimate H and o%. A fix-year rolling window is used to fit fBm and based on the
ML estimates of H and o2 in fBm, we obtain k-day-ahead-forecast of log RV with
k=1,2,...,10 for the remaining two years.

The top panel of Figure 8 plots the full sample of the log RV of S&P500 EFT. The
bottom panel plots the rolling window estimates of H. These estimates fluctuate
within the much narrower interval [0.19, 0.22] and are much lower than 0.5, indicating
roughness.

Table 18 reports the RMSEs of the alternative forecasting formulae for the k-
day-ahead-forecast of log RV of SPY with k£ = 1,2,...,10. It can be seen that OP
continues to yield the lowest RMSE always. The smaller the k is, the biggest its
improvement over other forecasting formulae. For example, it improves the RMSE
over the IPLA method, which is the method used by Gatheral et al. (2018) and
Wang et al. (2021), by 16.3%, 8.8%, 7.3%, 6.7%, 5.3%, 4.6%, 3.7%, 3.5%, 3.7%, 3.0%
for £ = 1,...,10, respectively. The magnitude of these improvements is consistent
with our findings based on simulated data and the sample between October 1, 2017
and September 30, 2022. This finding suggests that our empirical results are not
driven by the 2020 financial crash.

5 Conclusion

In this paper, we have examined the performance of alternative forecasting formulae
with the fractional Brownian motion based on a discrete and finite sample. In the

literature, two optimal forecasting formulae, both based on a continuous record, have
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Figure 8: (a) The log RV of S&P 500 ETF between January 2, 2012 and December
31, 2019; (b) Rolling window estimates of H for log RV of S&P 500 ETF.

Table 18: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of log
RV of SPY between January 2, 2012 and December 31, 2019. Boldface corresponds to the
lowest RMSE.

k 1 2 3 4 ) 6 7 8 9 10
IPLA .3205 .3463 .3680 .3876 4048 4209 4322 .4426 4530 4619
IPRA .2887 .3252 .3497 3705 .3904 4077 4211 4319 4421 .4525
IPTA .3001 3327 .3563 .3769 .3958 4127 4253 4359 4463 .4561
IPMA .2768 3195 .3446 .3650 .3862 4037 4183 4292 4387 .4499
FPLA .3205 .3463 3679 3875 .4047 4208 4321 4424 4528 4617
FPRA  .2887 .3252 .3496 3704 .3903 4076 4210 4318 4419 4523
FPTA  .3001 .3326 .3563 3768 .3957 4126 4251 4358 4462 .4559

FPMA  .2768 3195 .3446 .3649 .3861 4036 4182 4290 4385 4497
op 2756 .3184 .3430 .3632 .3846 .4022 .4169 .4275 .4370 .4485
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been derived. The first one is based on an infinite past and the other is based on a
finite past. When a discrete and finite past sample is available, one may discretize
these two forecasting formulae by alternative schemes, leading to two classes of
forecasting formulae.

Instead of discretizing these two forecasting formulae, one can use the conditional
expectation to obtain the optimal forecast based on a discrete and finite past sample.
The conditional expectation is optimal in the sense of minimizing the RMSE.

Via simulated data and real RV data, we show that the conditional expectation
always yields more accurate forecasts than two classes of discretization-based fore-
casting formulae for all forecasting horizons considered. The shorter the forecast
horizon is, the bigger the improvement. When the forecast horizon is one day, for
example, we have found that the conditional expectation can improve the forecasting
formula currently implemented in the literature by 20% or so. This improvement is

large and economically significant.

6 Appendix

Proof of Proposition 2.1. Without loss of generality, let us assume £ = 1. In

this case, the weight function becomes

cos(H) 1
7 (T —s+1)(T —s)H+05

wi (s) =

We then have

/T wils)ds = COS(W—HW)/T (T—s+1)ET—s)H+0-5dS

—0o0 —00

_ COS(Hﬂ')/ 1 du
T o (14 w)uf+05

— COSST—HW)W cse((H + 0.5))

cos(H)
sin(Hm + 0.57)
cos(H)
sin(0.57m) cos(Hm) + cos(0.5m) sin( H)
= 1.

where csc((H + 0.5)7) := 1/sin((H + 0.5)7) and the third equation comes from the
Formula 361 on Page 290 of Tallarida (2015).
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