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Abstract

This paper examines the performance of alternative forecasting formulae
with the fractional Brownian motion based on a discrete and finite sample.
One formula gives the optimal forecast when a continuous record over the
infinite past is available. Another formula gives the optimal forecast when
a continuous record over the finite past is available. Alternative discretiza-
tion schemes are proposed to approximate these formulae. These alternative
discretization schemes are then compared with the conditional expectation
of the target variable on the vector of the discrete and finite sample. It is
shown that the conditional expectation delivers more accurate forecasts than
the discretization-based formulae using both simulated data and daily realized
volatility (RV) data. Empirical results based on daily RV indicate that the
conditional expectation enhances the already-widely known great performance
of fBm in forecasting future RV.
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1 Introduction

Starting with the seminar paper by Gatheral et al. (2018), studies in the volatility

literature have shown that continuous-time models based on the rough fractional

Brownian motion (fBm) provide accurate forecasts relative to many popular discrete-

time models. For example, Gatheral et al. (2018) find that the rough fBm model

with the Hurst parameter (denoted by H) being 0.14 for log realized volatility (RV)

provides more accurate forecasts of log RV and RV than the HAR model of Corsi

(2009). Wang et al. (2021) find that rough fBm and rough fractional Ornstein-

Uhlenbeck (fOU) processes for log RV yield more accurate forecasts of log RV and

RV than the HAR model and the ARFIMA model. In Wang et al. (2021), the

Hurst parameter H is estimated recursively by the method-of-moments in the fBm

and fOU processes from daily log RV data and found to be always significantly less

than 0.5. Fukasawa et al. (2021) and Bolko et al. (2022) continue to find evidence

of H < 0.5 when the measurement error in RV is taken into account. Bennedsen et

al. (2022) find evidence of H < 0.5 when the composite likelihood method is used

to estimate the fOU process.

Since fBm with H < 0.5 produces a sample path rougher than the standard

Brownian motion, when it is used to model volatility, it is called the rough frac-

tional stochastic volatility (RFSV) model in the literature. The RFSV literature

has received a great deal of attention in mathematical finance, financial engineering,

and financial econometrics. The 2021 risk award was presented to Jim Gatheral and

Mathieu Rosenbaum for introducing such a model. There is a website dedicated

to the literature that collects more than 200 papers on this subject from different

perspectives.1 In addition to the applications in forecasting volatility as mentioned

earlier, RFSV models have been used to price options (Livieri et al., 2018; Bayer et

al., 2016; Garnier and Sølna, 2017) and variance swaps (Bayer et al., 2016), in port-

folios choice (Fouque and Hu, 2018), and in dynamic hedging (Euch and Rosenbaum,

2018).

This paper examines the performance of alternative forecasting formulae with

fBm based on a discrete and finite sample. We show that the existing forecasting

formula, albeit being optimal when a continuous record is available, when it is

discretized, does not generate the optimal forecast anymore. The optimal forecast

is the conditional expectation of the target variable on the vector of the discrete

1https://sites.google.com/site/roughvol/home/risks-1.
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and finite sample. We quantity the loss in effi ciency relative to the optimal forecast,

in terms of the root mean square error (RMSE), when a discrete and finite sample

is available. Findings in our paper suggest that rough fBm can produce even more

accurate forecasts of log RV than what has been reported in the literature, and

hence, enhance the already-widely known great performance of fBm in forecasting

volatility.

The rest of the paper is organized as follows. Section 2 reviews the model and

discusses the alternative forecasting formulae. Section 3 reports the forecast results

based on simulated data. Section 4 discusses how to use the maximum likelihood

(ML) method to estimate parameters in fBm and reports the forecast results based

on real RV data. Section 5 concludes. The appendix gives proof of the Proposition

in the paper.

2 The Model and Forecasting Formulae

The fBm, denoted by σBH(t), is a continuous-time Gaussian process with zero mean

and the autocovariance function of

Cov
(
BH(t), BH(s)

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, ∀t, s ∈ (−∞,+∞) , (1)

where σ > 0 is a constant scale parameter and H ∈ (0, 1) is called the Hurst

parameter of the fBm. Another definition of BH(t), given by Mandelbrot and Van

Ness (1968), is

BH(t) =
1

Γ(H + 0.5)

{∫ 0

−∞

[
(t− s)H−0.5 − (−s)H−0.5

]
dW (s) +

∫ t

0

(t− s)H−0.5 dW (s)

}
,

where Γ(·) denotes the Gamma function and W (t) is a standard Brownian motion.

It is clear to see that, when the Hurst parameter H = 0.5, BH(r) = W (r) becomes

a standard Brownian motion.

Let yt denote the increment of the fBm, that is, yt = σ
(
BH(t)−BH(t− 1)

)
. The

sequence {yt} is known in the literature as the fractional Gaussian noise (fGn), which
is a normally distributed stationary process with the following autocovariances:

Cov (yt, yt+k) =
σ2

2

(
(k + 1)2H + (k − 1)2H − 2k2H

)
, for any k ≥ 0 (2)

∼ σ2H(2H − 1)k2H−2 for large k.
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where ∼ denotes asymptotic equivalence. Equation (2) shows that when H ∈
(0.5, 1), {yt} has positive serial dependence, and the autocovariances of {yt} are
not absolutely summable. As a result, {yt} is called a long-memory process when
H > 0.5. In contrast, if H ∈ (0, 0.5), it can be proved that, {yt} has negative
autocovariances and

+∞∑
k=−∞

Cov (yt, yt+k) = 0.

In this case, {yt} is called an antipersistent process. The corresponding fBm has

sample paths that are rougher than those of the standard Brownian motion. Con-

sidering that the RFSV literature has found ample evidence supporting roughness

(i.e. H < 0.5), our paper focuses on the study for the case of H < 0.5.

2.1 Forecasts based on the infinite-past-formula

Gatheral et al. (2018, Equation 5.1) propose to use X(t) = σBH(t) with H = 0.14

to model log RV. If the continuous record of X(t) over the period of (−∞, T ] is

available, Nuzman and Poor (2000, Equation (34)) develop the following formula to

generate the optimal k-period-ahead forecast:

E {X (T + k) |X(t), t ∈ (−∞, T ]} =

∫ T

−∞

cos(Hπ)kH+0.5

π(T − s+ k)(T − s)H+0.5
X(s)ds. (3)

Being the conditional expectation, this formula generates the optimal forecast and is

a weighted average of the entire history of X(t) over (−∞, T ]. To simplify notations,

let

w1(s) =
cos(Hπ)kH+0.5

π(T − s+ k)(T − s)H+0.5
=

cos(Hπ)kH+0.5

π
w̃1(s),

where

w̃1(s) =
1

(T − s+ k)(T − s)H+0.5
.

We rewrite the forecasting formula in (3) as∫ T

−∞
w1(s)X(s)ds =

cos(Hπ)kH+0.5

π

∫ T

−∞
w̃1(s)X(s)ds. (4)

The following proposition shows that for any T, k > 0, the weights in the forecasting

formula integrated to unity.

Proposition 2.1 For any T, k > 0, it has∫ T

−∞
w1(s)ds =

∫ T

−∞

cos(Hπ)kH+0.5

π(T − s+ k)(T − s)H+0.5
ds = 1.
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Figure 1: Plot of w̃1(s) as a function of s when H = 0.2, k = 1/50, T = 2. The
picture-in-picture plots w̃1(s) when s takes values close to zero.

Figure 1 plots w̃1(s) as a function of s ∈ [0, T ] when H = 0.2, k = 1/50,

and T = 2. To help understand the near-zero behavior of w̃1(s), we plot w̃1(s)

when s takes values close to zero in the same Figure. The figure shows that w̃1(s)

is a monotonically increasing function that goes to ∞ as s → T . This property

suggests that nearer-distant history is more important than further-distant history

in forecasting XT+k.

However, in practice, it is infeasible to directly implement the forecasting formula

in (3) for two reasons. First, we live in a digital world. Instead of having a continuous

record, X (t), the log RV process, can only be observed at discrete time points.

Second, we cannot access to information in the infinite past. Therefore, in reality,

people can only generate forecasts based on a discrete record of X(t) collected over

the finite time-interval [0, T ]. Without loss of generality, we use {X0, X1, ..., XT} to
denote the data available.

Gatheral et al. (2018) suggest making adjustments to the formula in (4) in order

to generate forecasts based on the discrete record {X0, X1, ..., XT}. The adjusted

5



formula is

IPLA =

∑T−1
s=0 w1(s)Xs∑T−1
s=0 w1(s)

=

∑T−1
s=0 w̃1(s)Xs∑T−1
s=0 w̃1(s)

. (5)

From the formula in (4) to the formula in (5), three adjustments are made. First,

the integral (4) is truncated from below at zero. Second, the integral is replaced

with the left Riemann sum. Third, the weight function is normalized by
∑T−1

s=0 w̃1(s)

so that the new weights sum to unity, mimicking the feature in Proposition 2.1. The

last adjustment is to take into account of the truncation error introduced by the first

adjustment. In this paper, the formula given by (5) is called the infinite-past-left-

adjustment (IPLA) method.

There are other types of adjustments that can be made to the forecasting formula

in (4). Keeping other adjustments in IPLA intact, if we only change the integral

with the right Riemann sum, we can have2

IPRA =

∑T−1
s=1 w̃1(s)Xs + w̃1(T − 1)XT

w̃1(T − 1) +
∑T−1

s=1 w̃1(s)
. (6)

We name the forecasting formula in (6) the infinite-past-right-adjustment (IPRA)

method.

The third adjusted method is to replace the integral with the trapezoidal sum,

which gives the forecasting formula

IPTA =
1
2

∑T−2
s=0 (w1(s)Xs + w1(s+ 1)Xs+1) + w1(T − 1)(1

2
XT−1 + 1

2
XT )

1
2
w1(0) +

∑T−2
s=1 w1(s) + 3

2
w1(T − 1)

=
1
2
w̃1(0)X0 +

∑T−1
s=1 w̃1(s)Xs + 1

2
w̃1(T − 1)XT

1
2
w̃1(0) +

∑T−2
s=1 w̃1(s) + 3

2
w̃1(T − 1)

. (7)

This method is called the infinite-past-trapezoidal-adjustment (IPTA) method.

Another adjusted formula can be obtained by replacing the integral with the

middle Riemann sum applied to the weight only, that is,

IPMA =

∑T
s=1 w̃1

(
1
2

+ s− 1
)
Xs∑T

s=1 w̃1

(
1
2

+ s− 1
) . (8)

We name this adjustment method the infinite-past-middle-adjustment (IPMA) method.

It is important to remark that, although Formula (4) yields the optimal forecast

given a continuous record over (−∞, T ] being available, the alternative discretiza-

tions given in (5)-(8) may not lead to the optimal forecast when only finite number

2Note that the weight function is not well-defined at the point s = T . Therefore, to approximate
the integral

∫ T
T−1 w̃1(s)X (s) ds, we use X (T ) with weight w̃1(T − 1).
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discrete-time observations {X0, X1,..., XT} are available. In fact, they are not de-
signed to minimize any objective function of the forecast errors.

2.2 Forecasts based on the finite-past-formula

If X(t) has a continuous record over the finite time-span of [0, T ] available, Theorem

4.4 in Nuzman and Poor (2000) gives another formula for the k-period-ahead optimal

forecast at period T :

E {X (T + k) |X(t), t ∈ [0, T ]} =

∫ T

0

mT

(
k

T
, T − s

)
X(s)ds, (9)

where

mT (c, t) = T−1

(
t

T

)−H−0.5(
1− t

T

)−H−0.5

×
[
(0.5−H)Bc/(c+1) (H + 0.5, 1− 2H) +

cH+0.5(1 + c)H−0.5(1− t/T )

c+ t/T

]
,

and Bc/(c+1) (·, ·) denotes the incomplete beta function that takes the form of

Bc/(c+1) (H + 0.5, 1− 2H) =

∫ c/(c+1)

0

zH−0.5 (1− z)−2H dz.

It can be verified that, as noted on page 443 in Nuzman and Poor (2000), the weights

in the forecasting formula (9) integrated to unity:∫ T

0

mT (c, t)dt = 1 for any T, c > 0.

This feature is the same as that in Proposition 2.1. To simply notations, we let

w2(s) = mT

(
k

T
, T − s

)
,

and rewrite the forecasting formula in (9) as

E {X (T + k) |X(t), t ∈ [0, T ]} =

∫ T

0

w2(s)X(s)ds. (10)

Being the conditional expectation, this formula also generates the optimal forecast

and is a weighted average of the entire history of X(t) over [0, T ].

From the definition of w2(s), it is easy to get that lims→0w2(s) = ∞ and

lims→T w2(s) =∞ whenH ∈ (0, 0.5). As a result, w2(s) is not a monotonic function.

7
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Figure 2: Plots of w2(s) as a function of s when H = 0.2, k = 1/50, T = 2. The
picture-in-picture plots w2(s) when s takes values close to zero. The picture-in-
picture plots w2(s) when s takes values close to zero.

It is a little surprising to see that w2(s) approaches infinity as s → 0. This feature

is sharply distinct from the weights function w̃1(s) used in the forecast formula (4)

that converges to a small constant number when s→ 0, as discussed in Subsection

2.1. This difference is due to the fact that the new forecasting formula in (9) is

based on a continuous record over [0, T ] rather than (−∞, T ]. When the record over

[0, T ] being available, the forecasting formula (9) places the optimal weight X(s) for

s ∈ (0, T ). Hence, it can generate more accurate forecasts than using the forecasting

formula (4) with a truncation:∫ T

0

w1(s)X(s)ds, or

∫ T
0
w1(s)X(s)ds∫ T
0
w1(s)ds

=

∫ T
0
w̃1(s)X(s)ds∫ T
0
w̃1(s)ds

. (11)

Figure 2 plots w2(s) as a function of s when H = 0.2, k = 1/50, and T = 2.

It shows that when T is finite, w2(s) is U-shaped, placing higher weights when s

approaches T or 0.

We plot normalizedw2(s) and w̃1(s), i.e. w2(s)/
∫ T

0
w2(τ)dτ and w̃1(s)/

∫ T
0
w̃1(τ)dτ ,

as a function of s in Figure 3, for k = 1/250, 1/50 and T = 2, 4.3 The normalized

3Although
∫ T
0
w2(τ)dτ = 1, normalization of w2(τ) is needed as the numerical approximation

8
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Figure 3: Plots of normalized w̃1(s) and w2(s) as a function of s when H = 0.2,
k = 1/250, 1/50 and T = 2, 4. The solid line is for normalized w2(s) while the dash
line is for normalized w̃1(s). The picture-in-picture plots each weight function when
s takes values close to zero.

weight function ensures that the weights calculated at discrete points sum to unity.

These plots show that, compared to the normalized w̃1(s), the normalized w2(s)

places higher weights on observations near period 0.

In practice, to apply the formula (10) to generate forecasts based on {X0, ..., XT},
some adjustments have to be made. Again, there are various adjustment methods.

The first method is to replace the integral in (10) by the left Riemann sum and

then normalize the corresponding weights of every data observation. This method

is called the finite-past-left-adjustment (FPLA) method, which gives the following

forecasting formula:4

to
∫ T
0
w2(τ)dτ can be different from one.

4Note that w2(0) = ∞. Therefore, the left Riemann sum is not applicable to approximate the
integral

∫ 1
0
w2(s)X (s) ds. To approximate this integral, we use X (0) with the weight w2 (1).
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FPLA =

∑T
s=2w2(s− 1)Xs−1 + w2(1)X0

w2(1) +
∑T

s=2w2(s− 1)
. (12)

An alternative method is to replace the integral with the right Riemann sum, which

is named as the finite-past-right-adjustment (FPRA) method. The resulting fore-

casting formula is5

FPRA =

∑T−1
s=1 w2(s)Xs + w2(T − 1)XT

w2(T − 1) +
∑T−1

s=1 w2(s)
. (13)

The third method is called the finite-past-trapezoidal-adjustment (FPTA) method,

which replaces the integral with the trapezoidal sum and gives the forecasting for-

mula of

FPTA =

1
2
w2(1)(X0 +X1) + 1

2

∑T−2
s=1 (w2(s)Xs + w2(s+ 1)Xs+1) + 1

2
w2(T − 1)(XT−1 +XT )∑T−2

s=2 w2(s) + 3
2

(w2(1) + w2(T − 1))
.

(14)

The fourth adjustment method is to replace the integral with the middle Riemann

sum applied to the weight only. This method is called the finite-past-middle-

adjustment (FPMA) method and yields the following forecasting formula:

FPMA =

∑T
s=1 w2

(
1
2

+ s− 1
)
Xs∑T

s=1 w2

(
1
2

+ s− 1
) . (15)

As before, although Formula (9) yields the optimal forecast given a continuous

record over [0, T ] being available, the alternative discretizations given in (12)-(15)

may not lead to the optimal forecast when only finite number discrete-time obser-

vations {X0, X1,..., XT} are available. None of these discretization-based formulae
is designed to minimize any objective function of the forecast errors.

Table 1 reports the weights applied to all observations in the discrete sample

under alternative forecasting formulae. A distinctive feature is that both IPLA

and FPLA give zero weight to the most recent observation, XT . This feature has

important implications for the finite sample performance of the two methods, as will

be remarked on later.

5Note that w2(T ) = ∞. Therefore, we approximate the integral
∫ T
T−1 w2(s)X (s) ds by using

X (T ) with the weight of w2(T − 1).

10



Table 1: Weights on the sample under different forecasting formulae before the
normalization
Methods X0 X1 X2 · · · XT−2 XT−1 XT
IPLA w̃1(0) w̃1(1) w̃1(2) · · · w̃1(T − 2) w̃1(T − 1) 0
IPRA 0 w̃1(1) w̃1(2) · · · w̃1(T − 2) w̃1(T − 1) w̃1(T − 1)
IPTA 1

2 w̃1(0) w̃1(1) w̃1(2) · · · w̃1(T − 2) w̃1(T − 1) 1
2 w̃1(T − 1)

IPMA 0 w̃1(0.5) w̃1(1.5) · · · w̃1(T − 2.5) w̃1(T − 1.5) w̃1(T − 0.5)

FPLA w2(1) w2(1) w2(2) · · · w2(T − 2) w2(T − 1) 0
FPRA 0 w2(1) w2(2) · · · w2(T − 2) w2(T − 1) w2(T − 1)
FPTA 1

2w2(1) w2(1) w2(2) · · · w2(T − 2) w2(T − 1) 1
2w2(T − 1)

FPMA 0 w2(0.5) w2(1.5) · · · w2(T − 2.5) w2(T − 1.5) w2(T − 0.5)

2.3 Optimal forecast based on a discrete and finite sample

This subsection introduces the optimal forecasting formula based on finite discrete-

time observations {X0, X∆..., XT∆}, where ∆ is the sampling interval and T + 1

is the number of historical observations. We summarize the data into a column

vector X = (X0, X∆..., XT∆)′. Our goal is to generate the optimal forecast for

X(T+k)∆, that is, k-period-ahead forecast. Let the covariance matrix of X be

Σ0:T∆. Elements in Σ0:T∆ can be easily obtained from the formula in (1). Let

γ
(0:T∆)
k∆ = (Cov(X(T+k)∆, X0), ..., Cov(X(T+k)∆, XT∆))′ denote the vector of covari-

ances between X(T+k)∆ and the elements in X. Again, elements in γ
(0:T∆)
k∆ can

readily be obtained from (1).

SinceXt is a Gaussian process, (X0, X∆, ..., XT∆, X(T+k)∆)′ follows a multivariate

normal distribution. The conditional expectation, which is known as the optimal

forecast, has a closed-form expression. In particular, the conditional mean is given

by

E(X(T+k)∆|X) =
(
γ

(0:T∆)
k∆

)′
Σ−1

0:T∆X. (16)

This is the optimal forecast when a discrete record over the finite past [0, T∆],

(X0, X∆..., XT∆)′, is available because it minimizes the RMSE of the forecast.

Figure 4 plots the weight function
(
γ

(0:T )
k∆

)′
Σ−1

0:T∆ := w∗(s) as a function of

s ∈ {0,∆, 2∆, ..., T∆} when H = 0.2, k∆ = 1/50, T∆ = 2. It shows that simi-

lar to w2(s), the weight function in the optimal forecast
(
γ

(0:T∆)
k∆

)′
Σ−1

0:T∆X is also

U-shaped, indicating that the initial observation X0 is relatively important in fore-

casting X(T+k)∆.

Figure 5 plots the log of the ratio of w∗(s) to the normalized w̃1(s) (the weights

used in IPLA) and the log of the ratio of w∗(s) to the normalized w2(s) (the weights
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Figure 4: Optimal weight as a function of s ∈ {0,∆, 2∆, ..., T∆} when H = 0.2,
k∆ = 1/50, T∆ = 2.

used in FPLA), both as a function of s ∈ {0,∆, 2∆, ..., T∆} when H = 0.2, k∆ =

1/50, T∆ = 2. The figure shows that, compared to the optimal weight w∗(s), the

IPLA method and the FPLA method give too less weight when s is near 0 and too

greater weight when s is near T∆. Comparing the IPLA method and the FPLA

method, the weight implied by the IPLA method is further away from the optimal

weight w∗(s) than that implied by the FPLA method, suggesting that it is diffi cult

for the IPLA method to outperform the FPLA method. This comparison indicates

that although the IPLA method has been the method used in the literature (e.g.,

Gatheral et al., 2018; Wang et al., 2019), it is sub-optimal when a discrete record

over the finite period [0, T∆] is available. Improvements over the IPLA method are

possible.

3 Comparison based on Simulated Data

We now design Monte Carlo experiments to examine the performance of alternative

forecasting formulae when a discrete and finite sample is simulated from the fBm. In

all experiments, we set σ = 1, H ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.4}, ∆ = 1, and assume

12
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Figure 5: The log of the ratio of w∗(s) to the normalized w̃1(s) in IPLA and the log
of the ratio of w∗(s) to the normalized w2(s) in FPLA, both as functions of s for
H = 0.2, k∆ = 1/50, and T∆ = 2.

both σ and H are known.6 As a result, no estimation is needed. The number of

replications is 100,000 and used to calculate the RMSE. For each replication, we

simulate 511 observations. The first 501 observations (hence T = 501) are used

to generate forecasts. Alternative forecasting formulae are used to generate k-step-

ahead-forecast with k = 1, ..., 10. The RMSEs from these forecasting formulae are

reported in Tables 2-7. The last row in each table shows the theoretical RMSE of

the optimal forecast, which is obtained as

RMSE∗ = σ2 + w∗′Σ0:Tw
∗ − 2w∗′γ

(0:T )
k = σ2 − w∗′Σ0:Tw

∗, (17)

where σ2 = V ar(XT+k) and w∗ = Σ−1
0:Tγ

(0:T )
k .

Several conclusions can be drawn from these tables. First, the optimal forecast

(OP) always yields the lowest RMSE, which is always close to the theoretical RMSE.

Second, the smaller the k is, the bigger the improvement of the performance of

OP over the other forecasting formulae. For example, when H is 0.25, OP improves

IPLA by 16.19%, 10.94%, 8.50%, 6.72%, 5.98%, 2.27%, 4.52%, 4.18%, 4.07% and

3.69% for k = 1, ..., 10, respectively.

6Due to the self-similarity property, by setting ∆ = 1/250 will not change the empirical results
reported below.
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Third, the larger the H is, the bigger the improvement of OP’s performance over

the other forecasting formulae. For example, when k = 1, OP improves IPLA by

3.36%, 6.00%, 9.68%, 14.70%, 20.04%, 41.73% for H = 0.05, 0.1, 0.15, 0.2, 0.25, 0.4,

respectively.

Fourth, the relative performance of the four discretization schemes depends on

the value of H. When H is small, say H = 0.05, the right adjustment yields the

smallest RMSE. As H increases, the middle adjustment performs the best among

the discretization-based methods.

Fifth, the finite-past formulae always yield smaller RMSEs compared to their

infinite-past counterparts. However, the magnitude of the improvement is small.

For example, FPLA improves IPLA by 0.038%, 0.012%, 0.011%, 0%, 0.010% and

0.043% for H = 0.05, 0.1, 0.15, 0.2, 0.25, 0.4 when k = 1.

Last but not least, IPLA and its infinite-past counterpart, FPLA, always perform

the worst, although IPLA has been used in practice.

Table 2: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H = 0.05.

k 1 2 3 4 5 6 7 8 9 10
IPLA 0.8132 0.8202 0.8280 0.8352 0.8406 0.8455 0.8505 0.8551 0.8583 0.8619
IPRA 0.7929 0.8088 0.8199 0.8279 0.8353 0.8410 0.8464 0.8514 0.8553 0.8592
IPTA 0.7965 0.8101 0.8206 0.8288 0.8356 0.8412 0.8466 0.8516 0.8553 0.8592
IPMA 0.8053 0.8169 0.8256 0.8317 0.8387 0.8439 0.8487 0.8533 0.8572 0.8608
FPLA 0.8127 0.8199 0.8276 0.8349 0.8402 0.8452 0.8501 0.8547 0.8578 0.8615
FPRA 0.7926 0.8085 0.8196 0.8276 0.8349 0.8406 0.8460 0.8510 0.8548 0.8587
FPTA 0.7962 0.8098 0.8203 0.8285 0.8352 0.8409 0.8463 0.8512 0.8549 0.8587
FPMA 0.8048 0.8164 0.8251 0.8312 0.8382 0.8434 0.8482 0.8528 0.8566 0.8602
OP 0.7868 0.8043 0.8160 0.8246 0.8324 0.8384 0.8439 0.8490 0.8529 0.8568

Theoretical 0.7863 0.8044 0.8162 0.8250 0.8323 0.8384 0.8437 0.8485 0.8527 0.8566

4 Comparison based on Real Data

4.1 ML for fBm

Since X ∼ N(0,ΣT ) with elements of ΣT being found from (1), the log likelihood

function of fBm is,

lnL(H, σ2) = − lnσ2

2
− 1

2 (T + 1)
ln |ΣT | −

1

2 (T + 1)σ2
X ′Σ−1

T X. (18)

When we numerically maximize lnL(H, σ2), |ΣT | is obtained as the product of the
eigenvalues of ΣT .
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Table 3: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H = 0.1.

k 1 2 3 4 5 6 7 8 9 10
IPLA 0.8845 0.9123 0.9349 0.9550 0.9698 0.9846 0.9971 1.0098 1.0176 1.0278
IPRA 0.8400 0.8837 0.9149 0.9374 0.9558 0.9719 0.9855 0.9984 1.0080 1.0186
IPTA 0.8533 0.8919 0.9203 0.9424 0.9596 0.9754 0.9888 1.0018 1.0107 1.0213
IPMA 0.8392 0.8846 0.9164 0.9379 0.9568 0.9723 0.9856 0.9982 1.0081 1.0185
FPLA 0.8844 0.9122 0.9347 0.9548 0.9696 0.9844 0.9969 1.0095 1.0173 1.0274
FPRA 0.8399 0.8836 0.9147 0.9372 0.9556 0.9716 0.9852 0.9981 1.0077 1.0182
FPTA 0.8533 0.8919 0.9202 0.9422 0.9594 0.9752 0.9886 1.0015 1.0104 1.0209
FPMA 0.8390 0.8844 0.9161 0.9376 0.9565 0.9720 0.9852 0.9978 1.0077 1.0180
OP 0.8344 0.8810 0.9131 0.9358 0.9546 0.9706 0.9842 0.9970 1.0067 1.0172

Theoretical 0.8341 0.8819 0.9126 0.9357 0.9544 0.9702 0.9840 0.9962 1.0071 1.0171

Table 4: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H = 0.15.

k 1 2 3 4 5 6 7 8 9 10
IPLA 0.9562 1.0110 1.0527 1.0895 1.1166 1.1424 1.1637 1.1824 1.2011 1.2184
IPRA 0.8872 0.9648 1.0164 1.0576 1.0898 1.1181 1.1421 1.1631 1.1833 1.2016
IPTA 0.9102 0.9800 1.0284 1.0684 1.0989 1.1264 1.1494 1.1697 1.1894 1.2074
IPMA 0.8728 0.9576 1.0113 1.0523 1.0856 1.1142 1.1390 1.1605 1.1811 1.1995
FPLA 0.9563 1.0110 1.0527 1.0895 1.1166 1.1424 1.1636 1.1824 1.2010 1.2183
FPRA 0.8873 0.9648 1.0163 1.0576 1.0897 1.1180 1.1419 1.1630 1.1831 1.2014
FPTA 0.9103 0.9800 1.0284 1.0684 1.0988 1.1264 1.1493 1.1696 1.1892 1.2072
FPMA 0.8728 0.9575 1.0112 1.0522 1.0855 1.1141 1.1388 1.1603 1.1808 1.1991
OP 0.8718 0.9567 1.0105 1.0518 1.0852 1.1138 1.1384 1.1600 1.1802 1.1985

Theoretical 0.8725 0.9562 1.0105 1.0516 1.0850 1.1134 1.1382 1.1602 1.1801 1.1982

Table 5: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H = 0.2.

k 1 2 3 4 5 6 7 8 9 10
IPLA 1.0379 1.1202 1.1833 1.2338 1.2778 1.3171 1.3520 1.3826 1.4131 1.4371
IPRA 0.9402 1.0513 1.1282 1.1876 1.2372 1.2801 1.3182 1.3516 1.3835 1.4103
IPTA 0.9746 1.0756 1.1478 1.2041 1.2518 1.2935 1.3305 1.3630 1.3944 1.4201
IPMA 0.9073 1.0315 1.1136 1.1763 1.2277 1.2714 1.3102 1.3445 1.3765 1.4045
FPLA 1.0380 1.1202 1.1834 1.2339 1.2779 1.3171 1.3520 1.3826 1.4131 1.4371
FPRA 0.9402 1.0513 1.1282 1.1876 1.2372 1.2800 1.3181 1.3515 1.3833 1.4102
FPTA 0.9746 1.0757 1.1478 1.2041 1.2519 1.2935 1.3305 1.3629 1.3943 1.4201
FPMA 0.9073 1.0315 1.1136 1.1763 1.2277 1.2713 1.3101 1.3443 1.3763 1.4043
OP 0.9049 1.0294 1.1115 1.1744 1.2257 1.2691 1.3082 1.3425 1.3740 1.4024

Theoretical 0.9049 1.0290 1.1109 1.1737 1.2252 1.2692 1.3079 1.3424 1.3737 1.4024
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Table 6: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H = 0.25.

k 1 2 3 4 5 6 7 8 9 10
IPLA 1.1196 1.2358 1.3272 1.3961 1.4629 1.5176 1.5642 1.6105 1.6567 1.6929
IPRA 0.9932 1.1425 1.2496 1.3307 1.4029 1.4631 1.5151 1.5642 1.6114 1.6508
IPTA 1.0388 1.1765 1.2782 1.3550 1.4254 1.4837 1.5337 1.5818 1.6288 1.6671
IPMA 0.9409 1.1085 1.2230 1.3099 1.3837 1.4460 1.5003 1.5505 1.5976 1.6384
FPLA 1.1195 1.2357 1.3271 1.3960 1.4628 1.5175 1.5641 1.6103 1.6566 1.6928
FPRA 0.9931 1.1424 1.2495 1.3306 1.4027 1.4629 1.5149 1.5640 1.6112 1.6506
FPTA 1.0387 1.1764 1.2781 1.3548 1.4253 1.4835 1.5335 1.5816 1.6287 1.6669
FPMA 0.9408 1.1085 1.2229 1.3099 1.3836 1.4459 1.5001 1.5504 1.5975 1.6383
OP 0.9327 1.1006 1.2144 1.3023 1.3754 1.4382 1.4935 1.5432 1.5893 1.6304

Theoretical 0.9325 1.1006 1.2140 1.3021 1.3751 1.4381 1.4937 1.5436 1.5892 1.6312

Table 7: RMSE of the alternative forecasting formulae for k-day-ahead-forecast when
H = 0.4.

k 1 2 3 4 5 6 7 8 9 10
IPLA 1.4011 1.6381 1.8308 2.0009 2.1445 2.2779 2.3928 2.4944 2.6039 2.7015
IPRA 1.1730 1.4537 1.6677 1.8508 2.0059 2.1456 2.2680 2.3768 2.4892 2.5898
IPTA 1.2581 1.5235 1.7302 1.9091 2.0602 2.1979 2.3176 2.4236 2.5352 2.6348
IPMA 1.0403 1.3573 1.5876 1.7790 1.9410 2.0850 2.2121 2.3258 2.4395 2.5423
FPLA 1.4005 1.6373 1.8299 1.9999 2.1434 2.2767 2.3915 2.4931 2.6025 2.7000
FPRA 1.1725 1.4531 1.6670 1.8500 2.0051 2.1447 2.2671 2.3758 2.4882 2.5887
FPTA 1.2576 1.5228 1.7294 1.9082 2.0593 2.1968 2.3165 2.4225 2.5340 2.6335
FPMA 1.0400 1.3569 1.5871 1.7784 1.9404 2.0843 2.2114 2.3251 2.4387 2.5415
OP 0.9886 1.3024 1.5302 1.7162 1.8771 2.0184 2.1467 2.2637 2.3730 2.4756

Theoretical 0.9881 1.3020 1.5304 1.7165 1.8764 2.0181 2.1462 2.2638 2.3729 2.4749
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Let ĤML and σ̂
2
ML denote the maximum likelihood (ML) estimator of H and σ2,

respectively. The ML method is expected to deliver more effi cient estimates than

method-of-moment (MM), the latter of which was proposed in Lang and Roueff

(2001), Barndorff-Nielsen et al. (2013), Brouste et al. (2020), and Wang et al.

(2021), although MM is computationally cheaper to implement. It is also expected

to be more effi cient than the composite likelihood method of Bennedsen et al. (2022)

although the latter method is applicable to more complicated models.

4.2 Results

We now examine the performance of alternative forecasting formulae based on real

data. We download daily RV time series of the S&P 500 market ETF and nine

industry ETFs from the Risk Lab constructed by Dacheng Xiu.7 The sample period

is from October 1, 2017 to September 30, 2022. We model the log of each RV time

series by fBm. The ML method is then applied to estimate H and σ2. A two-year

rolling window is used to fit fBm and based on the ML estimates of H and σ2 in

fBm, we obtain k-day-ahead-forecast of log RV with k = 1, 2, ..., 10 for the remaining

three years. We set ∆ = 1/252 in this exercise to reflect 252 trading days in a year.

The top panel of Figure 6 plots the full sample of the log RV of S&P500 EFT. The

bottom panel plots the rolling window estimates of H . These estimates fluctuate

within the interval [0.2, 0.3] and are much lower than 0.5, indicating roughness.

Table 8 reports the RMSEs of the alternative forecasting formulae for the k-

day-ahead-forecast of log RV of SPY with k = 1, 2, ..., 10. It can be seen that OP

always yields the lowest RMSE. The smaller the k is, the biggest its improvement

over other forecasting formulae. For example, it improves the RMSE over the IPLA

method, which is the method used by Gatheral et al. (2018) and Wang et al. (2021),

by 20.6%, 12.4%, 7.1%, 5.4%, 5.7%, 4.2%, 3.6%, 4.0%, 3.6%, 3.8% for k = 1, ..., 10,

respectively. The magnitude of these improvements is consistent with our findings

based on simulated data. Judged by the forecast results provided in the literature

(Andersen et al. 2003, Gatheral et al. 2018, Wang et al. 2021), 20.6% for 1-day-

ahead-forecast is large and economically significant. Both IPLA and FPLA perform

relatively poorly. The reasons for the relative poor performance of IPLA and FPLA

can be found in Figure 5 and Table 1, including zero weight on XT∆, too less weight

on Xs when s is near 0 and too greater weight when s is near T∆. Moreover, the

7See https://dachxiu.chicagobooth.edu/#risklab.
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Figure 6: (a) The log RV of S&P 500 ETF between October 1, 2017 and September
30, 2022; (b) Rolling window estimates of H for log RV of S&P 500 ETF

second best is FPMA, which is followed closely by IPMA. The finite-past methods

always perform slightly better than the infinite-past methods. All these empirical

findings are consistent with the findings obtained from the simulated data.

Figure 7 plots the rolling window estimates of H for the log RV series of the nine

industry ETF. These estimates suggest that the estimates are fluctuating within the

interval [0.1, 0.35]. These values are lower than 0.5, indicating roughness.

Tables 9-17 report the RMSEs of the alternative forecasting formulae for the

k-day-ahead-forecast of log RV of the nine industry ETFs with k = 1, 2, ..., 10.

It can be seen that OP always yields the lowest RMSE with the only exception

of XLK and k = 3, 4. The smaller the h is, the biggest its improvement over

other forecasting formulae. For example, when h = 1, its improvement over the

IPLA method is 21.5%, 25.2%, 24.0%, 23.3%, 19.3%, 24.3%, 27.6%, 21.7%, 19.2% for

the nine industry ETF, respectively. These improvements are large and economically

significant. Again, both IPLA and FPLA perform relatively poorly. Moreover, the

second best methods are FPMA and IPMA. Interestingly, Table 13 shows that the

OP method is not the best when k = 3, 4 for XLK. One possible explanation is that

there may exist model mis-specification for this particular RV series.
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Table 8: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of log RV
of SPY between October 1, 2017 and September 30, 2022. Boldface corresponds to the
lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .3332 .3684 .3917 .4095 .4279 .4420 .4540 .4664 .4777 .4893
IPRA .2951 .3406 .3721 .3932 .4115 .4285 .4421 .4540 .4664 .4778
IPTA .3089 .3508 .3791 .3990 .4176 .4334 .4464 .4587 .4706 .4822
IPMA .2783 .3292 .3659 .3887 .4059 .4245 .4390 .4500 .4629 .4737
FPLA .3331 .3683 .3916 .4093 .4277 .4417 .4537 .4662 .4774 .4890
FPRA .2950 .3405 .3721 .3931 .4114 .4284 .4419 .4538 .4662 .4776
FPTA .3088 .3507 .3790 .3989 .4174 .4332 .4462 .4584 .4703 .4819
FPMA .2783 .3292 .3659 .3886 .4058 .4244 .4388 .4498 .4626 .4735
OP .2763 .3279 .3658 .3885 .4049 .4242 .4383 .4483 .4609 .4715
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0.2
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Figure 7: Rolling window estimates of H for log RV of 9 industry ETFs
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Table 9: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLB.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2512 .2796 .2997 .3161 .3308 .3411 .3508 .3599 .3688 .3775
IPRA .2220 .2575 .2833 .3018 .3180 .3315 .3415 .3507 .3596 .3687
IPTA .2327 .2657 .2893 .3071 .3229 .3350 .3449 .3542 .3631 .3721
IPMA .2090 .2481 .2774 .2968 .3133 .3289 .3390 .3480 .3567 .3657
FPLA .2512 .2797 .2997 .3161 .3309 .3412 .3508 .3600 .3689 .3776
FPRA .2220 .2575 .2833 .3018 .3180 .3316 .3416 .3508 .3597 .3687
FPTA .2327 .2657 .2893 .3071 .3229 .3351 .3450 .3542 .3632 .3722
FPMA .2090 .2481 .2775 .2969 .3133 .3290 .3390 .3480 .3568 .3658
OP .2068 .2460 .2760 .2955 .3121 .3283 .3377 .3462 .3542 .3631

Table 10: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLE.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2118 .2371 .2562 .2700 .2826 .2929 .3025 .3121 .3219 .3306
IPRA .1849 .2174 .2406 .2577 .2711 .2829 .2927 .3022 .3119 .3214
IPTA .1948 .2247 .2464 .2622 .2754 .2866 .2964 .3060 .3158 .3250
IPMA .1717 .2088 .2343 .2537 .2672 .2798 .2898 .2988 .3082 .3182
FPLA .2118 .2370 .2562 .2700 .2826 .2929 .3025 .3121 .3219 .3306
FPRA .1848 .2173 .2405 .2577 .2711 .2829 .2927 .3022 .3119 .3215
FPTA .1948 .2246 .2464 .2622 .2754 .2866 .2964 .3060 .3158 .3250
FPMA .1717 .2088 .2343 .2537 .2672 .2798 .2898 .2989 .3083 .3183
OP .1692 .2067 .2328 .2528 .2659 .2783 .2875 .2957 .3045 .3147

Table 11: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLF.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2470 .2763 .2972 .3135 .3285 .3417 .3532 .3637 .3738 .3835
IPRA .2165 .2532 .2801 .2989 .3148 .3293 .3422 .3533 .3633 .3736
IPTA .2277 .2618 .2864 .3043 .3200 .3341 .3464 .3573 .3674 .3775
IPMA .2021 .2430 .2738 .2941 .3100 .3250 .3386 .3498 .3596 .3700
FPLA .2470 .2763 .2972 .3135 .3285 .3417 .3532 .3638 .3738 .3835
FPRA .2165 .2532 .2801 .2989 .3148 .3294 .3422 .3533 .3634 .3737
FPTA .2277 .2618 .2864 .3043 .3200 .3341 .3464 .3573 .3674 .3775
FPMA .2021 .2430 .2738 .2941 .3100 .3250 .3386 .3499 .3596 .3701
OP .1992 .2404 .2721 .2923 .3080 .3232 .3365 .3474 .3565 .3670
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Table 12: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLI.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2567 .2884 .3114 .3288 .3449 .3567 .3679 .3786 .3885 .3975
IPRA .2254 .2634 .2928 .3136 .3308 .3456 .3573 .3683 .3784 .3883
IPTA .2369 .2728 .2998 .3193 .3362 .3497 .3613 .3722 .3823 .3918
IPMA .2111 .2521 .2856 .3082 .3255 .3423 .3540 .3649 .3748 .3852
FPLA .2567 .2884 .3114 .3289 .3449 .3567 .3680 .3787 .3886 .3976
FPRA .2254 .2634 .2929 .3136 .3309 .3457 .3574 .3684 .3785 .3884
FPTA .2369 .2729 .2998 .3193 .3362 .3498 .3614 .3723 .3824 .3919
FPMA .2111 .2521 .2856 .3082 .3256 .3423 .3541 .3650 .3749 .3853
OP .2082 .2492 .2839 .3067 .3242 .3415 .3527 .3632 .3726 .3829

Table 13: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLK.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2958 .3248 .3435 .3566 .3701 .3814 .3911 .4014 .4100 .4193
IPRA .2632 .3016 .3282 .3444 .3578 .3709 .3815 .3914 .4004 .4097
IPTA .2749 .3100 .3335 .3486 .3622 .3746 .3849 .3951 .4040 .4133
IPMA .2492 .2924 .3241 .3419 .3544 .3683 .3794 .3886 .3977 .4066
FPLA .2958 .3248 .3435 .3567 .3702 .3815 .3911 .4015 .4102 .4194
FPRA .2632 .3016 .3283 .3445 .3579 .3709 .3816 .3915 .4005 .4098
FPTA .2749 .3100 .3335 .3486 .3623 .3747 .3850 .3952 .4041 .4134
FPMA .2492 .2924 .3241 .3420 .3544 .3683 .3795 .3887 .3978 .4067
OP .2479 .2919 .3246 .3422 .3541 .3681 .3786 .3870 .3954 .4042

Table 14: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLP.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2471 .2788 .3024 .3215 .3400 .3538 .3677 .3797 .3919 .4039
IPRA .2163 .2542 .2828 .3042 .3234 .3405 .3544 .3677 .3800 .3928
IPTA .2277 .2635 .2903 .3109 .3299 .3457 .3597 .3724 .3848 .3972
IPMA .2021 .2433 .2753 .2978 .3166 .3360 .3494 .3634 .3753 .3882
FPLA .2471 .2788 .3024 .3215 .3400 .3538 .3678 .3797 .3920 .4039
FPRA .2163 .2542 .2828 .3042 .3234 .3405 .3544 .3677 .3801 .3928
FPTA .2277 .2635 .2903 .3109 .3299 .3457 .3597 .3725 .3848 .3973
FPMA .2021 .2433 .2753 .2978 .3166 .3361 .3494 .3634 .3754 .3882
OP .1988 .2397 .2722 .2947 .3134 .3336 .3464 .3605 .3720 .3854
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Table 15: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLU.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2101 .2398 .2630 .2821 .2977 .3125 .3262 .3384 .3502 .3615
IPRA .1822 .2167 .2437 .2652 .2828 .2986 .3131 .3266 .3389 .3509
IPTA .1926 .2255 .2512 .2718 .2886 .3041 .3183 .3313 .3435 .3552
IPMA .1689 .2059 .2355 .2582 .2769 .2931 .3079 .3220 .3343 .3465
FPLA .2101 .2398 .2630 .2821 .2977 .3124 .3261 .3384 .3502 .3614
FPRA .1822 .2166 .2437 .2651 .2828 .2986 .3131 .3265 .3388 .3508
FPTA .1926 .2255 .2512 .2718 .2886 .3041 .3183 .3313 .3434 .3551
FPMA .1689 .2059 .2355 .2582 .2769 .2931 .3079 .3220 .3342 .3465
OP .1647 .2012 .2313 .2544 .2734 .2895 .3042 .3185 .3304 .3429

Table 16: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLV.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2447 .2733 .2940 .3095 .3251 .3367 .3473 .3568 .3667 .3762
IPRA .2160 .2511 .2772 .2955 .3115 .3262 .3373 .3474 .3573 .3673
IPTA .2264 .2593 .2834 .3007 .3167 .3300 .3410 .3509 .3609 .3707
IPMA .2033 .2416 .2709 .2907 .3061 .3228 .3340 .3443 .3539 .3639
FPLA .2446 .2733 .2940 .3096 .3252 .3367 .3473 .3569 .3667 .3763
FPRA .2159 .2511 .2772 .2955 .3115 .3262 .3373 .3474 .3573 .3673
FPTA .2264 .2593 .2834 .3007 .3167 .3301 .3410 .3510 .3609 .3707
FPMA .2033 .2416 .2709 .2907 .3061 .3228 .3340 .3443 .3539 .3639
OP .2011 .2392 .2692 .2890 .3042 .3217 .3325 .3424 .3515 .3615

Table 17: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of XLY.
Boldface corresponds to the lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .2926 .3222 .3412 .3566 .3717 .3832 .3931 .4019 .4118 .4229
IPRA .2605 .2992 .3253 .3425 .3581 .3724 .3832 .3922 .4013 .4118
IPTA .2721 .3075 .3309 .3475 .3631 .3763 .3867 .3957 .4052 .4161
IPMA .2469 .2903 .3210 .3386 .3537 .3696 .3809 .3900 .3983 .4079
FPLA .2926 .3222 .3412 .3566 .3718 .3833 .3932 .4021 .4119 .4231
FPRA .2605 .2992 .3253 .3425 .3581 .3724 .3832 .3923 .4014 .4119
FPTA .2721 .3075 .3309 .3475 .3631 .3763 .3868 .3958 .4054 .4162
FPMA .2469 .2903 .3210 .3387 .3537 .3697 .3810 .3901 .3984 .4081
OP .2454 .2893 .3205 .3377 .3522 .3685 .3791 .3873 .3945 .4038
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4.3 Additional empirical results

The empirical study reported earlier is based on the sample period from October

1, 2017 to September 30, 2022. It is well known that the sample period contains

the financial crash in 2020 that began on February 20, 2020, and ended on April

7, 2020. This crash explains why the estimated H in the bottom panel of Figure 6

moved up from its values from the near 0.2 level in February 2020 to the near 0.3

level in April 2020.

To check the robustness of the empirical results reported earlier, we now examine

the performance of alternative forecasting formulae based on the daily RV time series

of the S&P 500 market ETF from January 2, 2012 to December 31, 2019. Once

again, we model the log of each RV time series by fBm and use the ML method to

estimate H and σ2. A fix-year rolling window is used to fit fBm and based on the

ML estimates of H and σ2 in fBm, we obtain k-day-ahead-forecast of log RV with

k = 1, 2, ..., 10 for the remaining two years.

The top panel of Figure 8 plots the full sample of the log RV of S&P500 EFT. The

bottom panel plots the rolling window estimates of H. These estimates fluctuate

within the much narrower interval [0.19, 0.22] and are much lower than 0.5, indicating

roughness.

Table 18 reports the RMSEs of the alternative forecasting formulae for the k-

day-ahead-forecast of log RV of SPY with k = 1, 2, ..., 10. It can be seen that OP

continues to yield the lowest RMSE always. The smaller the k is, the biggest its

improvement over other forecasting formulae. For example, it improves the RMSE

over the IPLA method, which is the method used by Gatheral et al. (2018) and

Wang et al. (2021), by 16.3%, 8.8%, 7.3%, 6.7%, 5.3%, 4.6%, 3.7%, 3.5%, 3.7%, 3.0%

for k = 1, ..., 10, respectively. The magnitude of these improvements is consistent

with our findings based on simulated data and the sample between October 1, 2017

and September 30, 2022. This finding suggests that our empirical results are not

driven by the 2020 financial crash.

5 Conclusion

In this paper, we have examined the performance of alternative forecasting formulae

with the fractional Brownian motion based on a discrete and finite sample. In the

literature, two optimal forecasting formulae, both based on a continuous record, have
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Figure 8: (a) The log RV of S&P 500 ETF between January 2, 2012 and December
31, 2019; (b) Rolling window estimates of H for log RV of S&P 500 ETF.

Table 18: RMSE of the alternative forecasting formulae for k-day-ahead-forecast of log
RV of SPY between January 2, 2012 and December 31, 2019. Boldface corresponds to the
lowest RMSE.

k 1 2 3 4 5 6 7 8 9 10
IPLA .3205 .3463 .3680 .3876 .4048 .4209 .4322 .4426 .4530 .4619
IPRA .2887 .3252 .3497 .3705 .3904 .4077 .4211 .4319 .4421 .4525
IPTA .3001 .3327 .3563 .3769 .3958 .4127 .4253 .4359 .4463 .4561
IPMA .2768 .3195 .3446 .3650 .3862 .4037 .4183 .4292 .4387 .4499
FPLA .3205 .3463 .3679 .3875 .4047 .4208 .4321 .4424 .4528 .4617
FPRA .2887 .3252 .3496 .3704 .3903 .4076 .4210 .4318 .4419 .4523
FPTA .3001 .3326 .3563 .3768 .3957 .4126 .4251 .4358 .4462 .4559
FPMA .2768 .3195 .3446 .3649 .3861 .4036 .4182 .4290 .4385 .4497
OP .2756 .3184 .3430 .3632 .3846 .4022 .4169 .4275 .4370 .4485
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been derived. The first one is based on an infinite past and the other is based on a

finite past. When a discrete and finite past sample is available, one may discretize

these two forecasting formulae by alternative schemes, leading to two classes of

forecasting formulae.

Instead of discretizing these two forecasting formulae, one can use the conditional

expectation to obtain the optimal forecast based on a discrete and finite past sample.

The conditional expectation is optimal in the sense of minimizing the RMSE.

Via simulated data and real RV data, we show that the conditional expectation

always yields more accurate forecasts than two classes of discretization-based fore-

casting formulae for all forecasting horizons considered. The shorter the forecast

horizon is, the bigger the improvement. When the forecast horizon is one day, for

example, we have found that the conditional expectation can improve the forecasting

formula currently implemented in the literature by 20% or so. This improvement is

large and economically significant.

6 Appendix

Proof of Proposition 2.1. Without loss of generality, let us assume k = 1. In

this case, the weight function becomes

ω1 (s) =
cos(Hπ)

π

1

(T − s+ 1)(T − s)H+0.5

We then have∫ T

−∞
ω1 (s) ds =

cos(Hπ)

π

∫ T

−∞

1

(T − s+ 1)(T − s)H+0.5
ds

=
cos(Hπ)

π

∫ ∞
0

1

(1 + u)uH+0.5
du

=
cos(Hπ)

π
π csc((H + 0.5)π)

=
cos(Hπ)

sin(Hπ + 0.5π)

=
cos(Hπ)

sin(0.5π) cos(Hπ) + cos(0.5π) sin(Hπ)
= 1.

where csc((H + 0.5)π) := 1/ sin((H + 0.5)π) and the third equation comes from the

Formula 361 on Page 290 of Tallarida (2015).
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