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Abstract

A social choice function (SCF) is said to be Nash implementable if there
exists a mechanism in which every Nash equilibrium induces outcomes spec-
ified by the SCF. The main objective of this paper is to assess the impact
of considering mixed strategy equilibria in Nash implementation. We call a
mixed strategy equilibrium “uncompelling” if its outcome is strictly Pareto
dominated by that induced by the SCF. We show that if the finite environ-
ment and the SCF to be implemented jointly satisfy what we call Condition
COM , then we can construct a finite mechanism which Nash implements
the SCF in pure strategies with the property that any mixed strategy Nash
equilibrium outcome is either uncompelling or consistent with the SCF. Our
mechanism has several desirable features: transfers are completely dispens-
able; only finite mechanisms are considered; integer games are not invoked;
and agents’ attitudes toward risk do not matter. These features make our
result quite distinct from prior attempts to handle mixed strategy equilibria
in the theory of implementation.
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1 Introduction

The theory of implementation attempts to answer two questions. First, can one
design a mechanism that successfully structures the interactions of agents in such a
way that, in each state of the world, they always choose actions which result in the
socially desirable outcomes for that state? Second, if agents possess information
about the state and interact through a given mechanism, what properties do the
resulting outcomes, viewed as a map from states to outcomes (and called social
choice functions - henceforth, SCFs), possess? In answering these, the consequences
of a given mechanism are predicted through the application of game theoretic
solution concepts.1

In this paper we adopt Nash equilibrium as a solution concept, consider com-
plete information environments, and ask if a given SCF is implementable, i.e., when
can we design a mechanism in which “every” Nash equilibrium induces outcomes
consistent with the SCF. Although the literature claims to care about all equilibria,
it often ignores mixed strategy equilibria and only focuses on pure strategy equi-
libria. Jackson (1992) provides the most forceful argument for why the omission
of mixed strategy equilibria brings about a serious consequence. In his Example
4, Jackson (1992) constructs a two-person environment and an SCF such that (i)
there is a finite mechanism that pure Nash implements the SCF; and (ii) every finite
pure Nash implementing mechanism always has a mixed strategy equilibrium that
gives a lottery that is preferred by both agents to the outcome of the SCF. Thus, if
we insist on using finite mechanisms, which is to be anticipated in an environment
with finite number of alternatives and agents, we must question why agents would
limit themselves to playing only pure strategies, particularly when there is a mixed
strategy equilibrium that would be strictly preferred by both of them than any
pure strategy equilibrium. In this paper, we revisit Jackson’s example in Section
3.

To obtain the main result of the paper, we consider a finite environment with
respect to an SCF on which we impose Condition COM , which delineates a set of
conditions where it is always possible to construct a finite, pure Nash implementing
mechanism such that every mixed strategy equilibrium outcome is either socially
desirable or uncompelling in the sense that it is strictly Pareto dominated by the
socially desirable outcome.2 We call such a notion of implementation compelling

1See Jackson (2001), Maskin and Sjöström (2002), and Serrano (2004) for the survey of im-
plementation theory.

2Note that Moore and Repullo (1990) identify Condition µ as a necessary and sufficient con-
dition for pure strategy Nash implementation when there are at least three agents. In addition,
Dutta and Sen (1991) and Moore and Repullo (1990) identify Condition β and Condition µ2,
respectively, as a necessary and sufficient condition for pure Nash implementation when there are
only two agents.
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implementation. Importantly, compelling implementation allows the implementing
mechanism to admit mixed strategy equilibria that result in outcomes not consis-
tent with the ones induced by the SCF, provided these mixed equilibria are uncom-
pelling.3 Hence, compelling implementation is considered a compromise between
pure Nash implementation where only pure strategies are considered and mixed
Nash implementation where all mixed strategy equilibria are fully considered.

To locate our contribution in a broader context, we first acknowledge that every
prior work cited in the table below exploits some combination of the following five
ingredients to handle mixed strategy equilibria in complete information environ-
ments: (i) infinite mechanisms; (ii) rationalizability as a stronger requirement than
Nash equilibrium;4 (iii) refinements of Nash equilibrium, such as subgame perfect
equilibrium and undominated Nash equilibrium; (iv) environments with transfers
or ones similar to separable environments of Jackson, Palfrey, and Srivstava (1994);
and (v) cardinal utilities.5

Combination of Previous works which handle mixed strategy equilibria
ingredients used in complete information environments

(i) Kartik and Tercieux (2012), Maskin (1999), Maskin and Sjöström (2002), Mezzetti and Renou (2012a)

(i) × (v) Kunimoto (2019), Serrano and Vohra (2010)

(i) × (ii) × (v) Bergemann, Morris, and Tercieux (2011), Jain (2021), Kunimoto and Serrano (2019), Xiong (2022)

(ii) × (iv) × (v) Abreu and Matsushima (1992), Chen, Kunimoto, Sun, and Xiong (2021)

(iii) × (iv) Goltsman (2011), Jackson, Palfrey, and Srivastava (1994), Moore and Repullo (1988), Sjöström (1994)

(iii) × (iv) × (v) Abreu and Matsushima (1994)

(iv) Mezzetti and Renou (2012b)

(iv) × (v) Chen, Kunimoto, Sun, and Xiong (2022)

Table 1: The list of prior works handling mixed strategy equilibria in complete
information environments.

We next emphasize that we obtain the main result of the paper without using
any of the five ingredients used in the previous works. Our result is built on the
following two requirements: (i) our implementing mechanism might admit mixed
strategy equilibria which are uncompelling; and (ii) the planner is aware that each

3Our compelling implementation is similar to the notion of repeated implementation adopted
by Lee and Sabourian (2015). They design a sequence of simple, finite mechanisms such that every
pure strategy subgame perfect equilibrium “repeatedly” implements the efficient social choice
function, while every mixed strategy subgame perfect equilibrium is strictly Pareto dominated
by the pure equilibrium.

4Rationalizability is a more demanding requirement than Nash equilibrium because every
action played with positive probability in a mixed strategy Nash equilibrium is rationalizable.

5This table, by no means, exhausts all related papers.
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agent’s cardinal utility from the socially desirable outcome is higher than that from
the punishment lotteries. As long as this utility difference is positive, no matter
how small it is, we can construct a mechanism that compellingly implements the
SCF. In this sense, while compelling implementation is not completely ordinal, it
can be made as ordinal as it can possibly be. We consider Nash implementation
as the right notion of implementation if we insist on the robustness to informa-
tion perturbations. This is so because Aghion, Fudenberg, Holden, Kunimoto, and
Tercieux (2012) and Chung and Ely (2003) both show that Maskin monotonic-
ity, a necessary condition for Nash implementation, is also necessary if we want
implementation using refinements of Nash equilibria to be robust to information
perturbations.6 Our mechanism is finite so that it does not use the integer games
which are often considered a questionable device in the literature.7 The use of
transfers can be dispensed with completely, which allows us to apply our result to
an important class of environments including the models of voting and matching
in which monetary transfers are simply unavailable.

We finally take up Korpela (2016) which is perhaps the closest to our paper.8

Korpela (2016) uses a weaker notion of implementation than our compelling imple-
mentation in the sense that his notion of implementation ignores all uncompelling
Nash equilibria, “regardless of whether they are pure or mixed.” Therefore, Ko-
rpela’s (2016) notion of implementation does not necessarily imply pure strategy
Nash implementation, whereas our compelling implementation does. We believe
that considering all pure strategy Nash equilibria is important because there is
a well-known game with two Pareto-ranked strict Nash equilibria (e.g., the Stag-
Hunt game), such that the Pareto-inferior (i.e., uncompelling) Nash equilibrium
can sometimes prevail over the Pareto-superior Nash equilibrium.

We organize the rest of the paper as follows: Section 2 presents the environ-
ment, notation, mechanisms and solution concepts. Section 3 revisits Example 4 of
Jackson (1992), which motivates our inquiry. Section 4 slightly modifies Example
4 of Jackson (1992) and presents an illustration of this paper’s main result. Sec-
tion 5 proposes Condition COM , provides an environment that satisfies Condition
COM , and constructs a canonical mechanism that can achieve compelling imple-
mentation under Condition COM when there are at least three agents. Section
6 argues that Condition COM is indispensable for compelling implementation, in

6Aghion, Fudenberg, Holden, Kunimoto, and Tercieux (2012) and Chung and Ely (2003)
adopt subgame perfect equilibrium and undominated Nash equilibrium as the solution concept,
respectively. Note that permissive implementation results via refinements of Nash equilibria are
usually obtained by weakening Maskin monotonicity.

7In the integer game, each agent announces some integer and the person who announces the
highest integer gets to name his favorite outcome.

8This paper has been developed independently of Korpela (2016) and we only became aware
of it after we completed Chatterji, Kunimoto, and Ramos (2022).
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the sense that our mechanism fails to achieve compelling implementation if at least
one property of Condition COM is violated. Section 7 extends the main result of
Section 5 to the case of two agents. In Section 8, we compare part of Condition
COM with Condition µ of Moore and Repullo (1990), which they show to be a
necessary and sufficient condition for pure Nash implementation when there are at
least three agents. Section 9 concludes the paper, and the Appendix contains the
proofs omitted from the main body of the paper.

2 Preliminaries

There is a finite set of agents, denoted by I = {0, . . . , n − 1} where we assume
n ≥ 2. Let Θ be the finite set of states. Let A denote the set of social alternatives,
which are assumed to be independent of the information state. We shall assume
that A is finite, and denote by ∆(A) the set of probability distributions over A.
Associated with each state θ is a preference profile �θ= (�θi )i∈I where �θi is agent
i’s preference relation over A at θ. We write a �θi a

′
when agent i weakly prefers

a to a
′

in state θ. We also write a �θi a
′

if agent i strictly prefers a to a
′

in state θ
and a ∼θi a

′
if agent i is indifferent between a and a

′
in state θ.

We assume that any preference relation �θi is extended to preferences over ∆(A)
by a von Neumann-Morgenstern utility function ui(·, θ) : ∆(A)→ R. We say that
ui(·, θ) is consistent with �θi if, for any a, a

′ ∈ A, ui(a, θ) ≥ ui(a
′
, θ) ⇔ a �θi a

′
.

We denote by U θi the set of all possible cardinal utility functions ui(·, θ) that are
consistent with �θi . We formally define U θi as follows:

U θi =
{
ui(·, θ) ∈ [0, 1]|A|| ui(·, θ) is consistent with �θi

}
,

where |A| denotes the cardinality of A. Let U θ ≡ ×i∈IU θi and U ≡ ×θ∈ΘU θ. We
denote any subset of U θi by Û θi , any subset of U θ by Û θ, any subset of U by Û ,
respectively.

We can now define an environment as E = (I, A,Θ, (�θi )i∈I,θ∈Θ, Û), which is
implicitly understood to be commonly certain among agents. This paper introduces
a planner who takes E as the primitive of her model and a social choice function—
(henceforth, SCF) f : Θ → ∆(A) as her objective. The planner’s objective takes
only ordinal information about the state θ as input, but is allowed to have lotteries
as outputs.9 This implies that the planner is agnostic about agents’ cardinal utility
functions. Finally, we adopt the complete information assumption. That is, the
underlying state θ ∈ Θ and cardinal utility functions u ∈ Û together are commonly
certain among agents.

9Although many papers deal with multi-valued social choice correspondences in the literature
of Nash implementation, we focus only on single-valued SCFs.
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2.1 Compelling Implementation

Let Γ = ((Mi)i∈I , g) be a finite mechanism where Mi is a nonempty finite set of
messages available to agent i; g : M → ∆(A) (where M ≡ ×i∈IMi) is the outcome
function. At each state θ ∈ Θ and profile of cardinal utility functions u ∈ Û ,
the environment and the mechanism together constitute a game with complete
information which we denote by Γ(θ, u). Note that the restriction of Mi to a finite
set rules out the use of integer games (See, for example, Maskin (1999)).

Let σi ∈ ∆(Mi) be a mixed strategy of agent i in the game Γ(θ, u). A strategy
profile σ = (σ1, . . . , σn) ∈ ×i∈I∆(Mi) is said to be a mixed-strategy Nash equilib-
rium of the game Γ(θ, u) if, for all agents i ∈ I and all messages mi ∈ supp (σi)
and m′i ∈Mi, we have∑

m−i∈M−i

∏
j 6=i

σj(mj)ui(g(mi,m−i), θ) ≥
∑

m−i∈M−i

∏
j 6=i

σj(mj)ui(g(m′i,m−i), θ).

A pure-strategy Nash equilibrium is a mixed-strategy Nash equilibrium σ such
that each agent i’s mixed-strategy σi assigns probability one to some mi ∈ Mi.
Let NE(Γ(θ, u)) denote the set of mixed-strategy Nash equilibria of the game
Γ(θ, u). By Γ(θ) we mean the game in which the preference profile (�θi )i∈N is
commonly certain among the agents, while any cardinal utility function u ∈ Û
is admissible. Since pure strategy equilibria do not depend on agents’ cardinal
utilities, we denote by pureNE(Γ(θ)) the set of pure strategy Nash equilibria of
the game Γ(θ). As far as we are only concerned with pure strategy equilibria, we
only need ordinal preferences so that we can write pureNE(Γ(θ)). We say that an
SCF f is pure Nash implementable if there exists a mechanism Γ = (M, g) such
that for any state θ, the following two conditions hold: (i) pureNE(Γ(θ)) 6= ∅; and
(ii) m ∈ pureNash(Γ(θ))⇒ g(m) = f(θ).

We strengthen the notion of pure Nash implementation by requiring that any
mixed equilibrium outcome, if exists, be either socially desirable or “uncompelling”
in the sense that it is strictly Pareto dominated by the socially desirable outcome.
For every mixed strategy profile σ ∈ ×i∈I∆(Mi), we write

g(σ) ≡
∑
m∈M

σ(m)g(m).

Our notion of implementation can then be formally defined as follows:

Definition 1 An SCF f is compellingly implementable with respect to Û
if there exists a finite mechanism Γ = (M, g) such that for every state θ ∈ Θ, (i)
pureNE(Γ(θ)) 6= ∅; (ii) m ∈ pureNE(Γ(θ)) ⇒ g (m) = f (θ); and (iii) for any
u ∈ Û θ and σ ∈ NE(Γ(θ, u)), g(σ) 6= f(θ)⇒ ui(f(θ), θ) > ui(g(σ), θ) for all i ∈ I.
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Remark 1 The implementing mechanism may have two types of mixed strategy
equilibria. We call the first type of it a “good” mixed strategy equilibrium in the
sense that its outcome is socially desirable and call the second type of it a “bad”
mixed strategy equilibrium in the sense that its outcome is strictly worse for all
agents than the socially desirable outcome. Our notion of compelling implementa-
tion says that the planner should ignore bad mixed strategy equilibria in the mech-
anism.

3 The Relevance of Mixed Strategy Equilibria in

Nash Implementation

In this section, we articulate a compelling reason why we need to be worried about
mixed strategy equilibria in Nash implementation. To do so, we revisit Example
4 of Jackson (1992), which shows that the omission of mixed strategy equilibria
brings about a serious blow to Nash implementation.

We revisit Example 4 of Jackson (1992). Suppose that there are two agents
I = {0, 1}; four alternatives A = {a, b, c, d}; and two states Θ = {θ, θ′}. Suppose
that agent 0 has the state-independent preference a �0 b �0 c ∼0 d and agent 1
has the preference a �θ1 b �θ1 d �θ1 c at state θ and preference b �θ′1 a �θ′1 c ∼θ′1 d
at state θ′. Consider the SCF f such that f (θ) = a and f (θ′) = c.

First, Jackson (1992) constructs a finite mechanism Γ = (M, g) (described in
Table 2) that implements the SCF f in pure-strategy Nash equilibria:

g(m) Agent 1
m1

1 m2
1 m3

1

m1
0 c d d

Agent 0 m2
0 d a b

m3
0 d b a

Table 2: The mechanism introduced in Example 4 of Jackson (1992).

There are two pure strategy Nash equilibria, (m2
0,m

2
1) and (m3

0,m
3
1), in the

game Γ(θ), both of which result in outcome a. In the game Γ(θ
′
), the unique

pure-strategy Nash equilibrium is (m1
0,m

1
1), which results in outcome c. Thus,

the SCF f is implementable by the above finite mechanism in pure-strategy Nash
equilibria. Due to the necessity of Maskin monotonicity for Nash implementation,
we know that the SCF f satisfies Maskin monotonicity. However, in the game
Γ(θ

′
), there is a mixed-strategy Nash equilibrium, where each agent i plays m2

i and

7



m3
i with equal probability, which results in outcomes a and b, each with probability

1/2. Both agents strictly prefer any outcome of the mixed-strategy equilibrium to
the outcome of the pure-strategy equilibrium. Thus, this mixed strategy Nash
equilibrium is Pareto-superior. Note that there is a conflict of interests between
the two agents over a and b in state θ

′
, i.e., while agent 0 prefers a to b, agent 1

prefers b to a. This conflict of interests allows us to have the unique pure strategy
Nash equilibrium in the game Γ(θ

′
), which results in outcome c. At the same time,

this logic for the uniqueness of the pure-strategy equilibrium is extremely dubious
because outcomes a and b are strictly better for both agents than outcome c.

Jackson (1992) further shows that his argument applies to any finite imple-
menting mechanism. That is, for any finite mechanism which implements the SCF
f in pure-strategy Nash equilibria, there must also exist a Pareto-superior mixed-
strategy Nash equilibrium at state θ′ inducing a lottery different from c, which is
the socially desirable outcome by the SCF f at state θ

′
. Therefore, the SCF f

is “not” compellingly implementable with respect to U , which is the set of “all”
cardinal utility functions, or any of its subsets. It thus follows that the identified
Pareto-superior mixed strategy equilibrium persists independently of any cardinal
utility functions.

4 Illustration of the Main Result

The main objective of this paper is to identify a class of environments where
the issue of mixed strategy equilibria can be avoided by carefully designing an
implementing mechanism. In this section, we illustrate how we resolve this issue
in the slightly modified version of Example 4 of Jackson (1992).

One crucial feature Jackson’s Example 4 has is that its argument seems to rely
heavily on the extreme inefficiency of the SCF, i.e., the SCF f assigns the common
worst outcome in state θ

′
.10 To investigate how robust Jackson’s argument is, we

only make the following modification: both agents now strictly prefer c to d in

state θ
′
, i.e., c �θ

′

i d for each i = 0, 1.
We summarize the basic setup. Agent 0 has the state-independent preference

a �0 b �0 c �0 d and agent 1 has the preference a �θ1 b �θ1 d �θ1 c at state θ
and preference b �θ′1 a �θ′1 c �θ′1 d at state θ′. Consider the same SCF f such
that f (θ) = a and f (θ′) = c. This way the SCF never assigns the worst outcome
for any agent in either state (a feature that will also be implied by our sufficient
condition).

With this modification, we are able to construct a mechanism that not only
implements the SCF in pure-strategy Nash equilibrium but also guarantees that

10Jackson (1992, p.770) is well aware of this point.
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all mixed-strategy equilibria of the constructed mechanism give each agent the
expected payoff arbitrarily close to that of d, which is worse than that of c, the
outcome induced by the SCF f at state θ′. Hence, we essentially overturn the
implication of Jackson’s Example 4 by assuming that there is a uniform bound for
the utility difference.11

For each integer k ≥ 2, we define Γk = (Mk, gk) as a mechanism with the
following properties: (i) for each i ∈ I, Mk

i = {0, 1, . . . , k} and (ii) the outcome
function gk : Mk → A is given by the following rules: for each m ∈Mk,

• If m = (k, k), then gk(m) = c;

• If there exists an integer h with 0 ≤ h ≤ k − 1 such that m = (h, h), then
gk(m) = a;

• If there exists an integer h with 0 ≤ h ≤ k − 1 such that m = (h, (h +
1 mod k)), then gk(m) = b; and

• Otherwise, gk(m) = d.

We illustrate this mechanism in Table 3:

gk(m) Agent 1
k k − 1 k − 2 k − 3 · · · 3 2 1 0

k c d d d · · · d d d d
k − 1 d a d d · · · d d d b
k − 2 d b a d · · · d d d d
k − 3 d d b a · · · d d d d

Agent 0
...

...
...

...
...

. . .
...

...
...

...
3 d d d d · · · a d d d
2 d d d d · · · b a d d
1 d d d d · · · d b a d
0 d d d d · · · d d b a

Table 3: Γk = (Mk, gk) where k ≥ 3.

When k = 2, the above mechanism is reduced to the one introduced by Jackson
(1992) where we set m1

i = 2;m2
i = 1; and m3

i = 0 for each i ∈ {0, 1}, as seen in
Table 4.

11The mechanism presented here differs slightly from the canonical mechanism introduced in
Section 5. Specifically, the mechanism here has been tailored to the particular example at hand
and simplified for ease of exposition. Nevertheless, the main insights of this paper are still
obtained in this illustration section.
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g(m) Agent 1
2 1 0

2 c d d
Agent 0 1 d a b

0 d b a

Table 4: Γk = (Mk, gk) where k = 2.

For each θ ∈ Θ, i ∈ {0, 1}, and ε > 0, we define U θ,εi as a subset of U θi as
follows:

U θ,εi =
{
ui ∈ Uθi

∣∣∣ |ui(a, θ)− ui(a′ , θ)| ≥ ε, ∀a ∈ A, ∀a′ ∈ A\{a}, ∀θ ∈ Θ
}
.

Let U θ,ε ≡ ×i∈NU θ,εi and U ε ≡ ×θ∈ΘU θ,ε. We observe that U ε possesses the follow-
ing monotonicity:

ε > ε
′
> 0⇒ U ε ( U ε

′

⊆ U ⊆ U0.

Loosely speaking, if we choose ε > 0 small enough, we can approximate U by U ε
to an arbitrary degree. We are now ready to state the main result of this section.

Proposition 1 For any ε > 0, there exists K ∈ N large enough such that the SCF
f is compellingly implementable with respect to U ε by the mechanism ΓK.

Proof : The proof is completed by a series of lemmas. For the moment, we
fix k in the proof and we ignore the dependence of the mechanism on k. We first
establish pure Nash implementation by the mechanism Γk.

Lemma 1 The mechanism Γk implements the SCF in pure-strategy Nash equilib-
rium.

Proof: The message profile (1, 1) is a Nash equilibrium of the game Γk(θ), as it
yields a which is their most preferred outcome for both agents so that no agent can
find a profitable deviation. We claim that a is the unique pure Nash equilibrium
outcome of the game Γk(θ). Let m be a message profile such that g(m) 6= a. We
will show that m is “not” a Nash equilibrium in the game Γk(θ):

• If g(m) = b, there exists an integer h with 0 ≤ h ≤ k − 1 such that m =
(h, (h + 1 mod k)). Then agent 0 has an incentive to send a message h +
1 mod k so that outcome a is induced.

• If g(m) = c, then m = (k, k). Then, agent 1 has an incentive to send any
message other than k so that outcome d is induced, as he strictly prefers
outcome d to outcome c at state θ.

10



• If g(m) = d, then we have m = (m0,m1) where m0 6= m1. If m0 > m1

then, agent 0 has an incentive to deviate from m0 to m1 so that outcome a
is induced. Conversely, if m1 > m0, then agent 0 has an incentive to deviate
from m1 to m0, so that outcome a is induced.

We next claim that (k, k) is a Nash equilibrium of the game Γk(θ
′
) because any

unilateral deviation from (k, k) yields d, which is inferior to c induced by (k, k) for
both agents. Moreover, no other outcome can be induced by a Nash equilibrium
in this game: every message profile m = (m0,m1) where m1 < k and g(m) 6= a
has a profitable deviation for agent 0 at m′0 = m1, while every message profile
m = (m0,m1) where m0 < k and g(m) 6= b has a profitable deviation for agent 1
at m′1 = m0 + 1 (mod k). Since g(m) = a implies m0 < k and g(m) = b implies
m1 < k, we have that (m0,m1) is not a Nash equilibrium if either m0 < k or
m1 < k. Thus, the only possible Nash equilibrium in pure strategies in the game
Γk(θ

′
) is (k, k). �

The following lemma is our key result, characterizing the set of Nash equilibria
of the mechanism Γk in state θ

′
.

Lemma 2 For each i ∈ {0, 1}, let σi = (σi(0), σi(1), ..., σi(k)) denote agent i’s
strategy and for each x ∈ {0, 1, . . . , k}, let σi(x) denote the probability that agent
i chooses x. If σ = (σ0, σ1) is a Nash equilibrium in the game Γk(θ

′
), then, for

each i ∈ {0, 1}, there is a number pi ∈ [0, 1] such that σi(x) = pi/k for each
x ∈ {0, . . . , k − 1}. Moreover, p0 = 0 if and only if p1 = 0.

Proof: Recall that we set ui(d; θ
′
) = 0 for each ui ∈ Uθ

′

i and i ∈ {0, 1}. Let σ
be a Nash equilibrium of the game Γk(θ

′
). If σi(k) = 1 for each i ∈ {0, 1}, such pi

in the lemma is guaranteed to exist by setting pi = 0. Thus, we assume that there
exists i ∈ {0, 1} for whom σi(k) < 1. We divide the proof into a series of steps.
The proof of each step is in the Appendix.

Step 1a: If there exists x ∈ {0, . . . , k − 1} such that σ0(x) > 0, then σ1(x) > 0.

Step 1b: If there exists x ∈ {1, . . . , k−1} such that σ1(x) > 0, then σ0(x−1) > 0.
Moreover, if σ1(0) > 0, then σ0(k − 1) > 0.

Step 1c: If there exist i ∈ {0, 1} and x
′ ∈ {0, . . . , k − 1} for whom σi(x

′
) > 0,

then σ0(x) > 0 and σ1(x) > 0 for all x ∈ {0, . . . , k − 1}.

Step 2: If there exist i ∈ {0, 1} and x, x
′ ∈ {0, . . . , k− 1} such that σi(x) > 0 and

σi(x
′
) > 0, then σi(x) = σi(x

′
).

11



It follows from both Steps 1c and 2 that σi(x) = σi(x
′
) for every x, x

′ ∈
{0, . . . , k− 1} and i ∈ {0, 1}. Thus, we can set pi =

∑k−1
x=0 σi(x) for each i ∈ {0, 1}.

Since we assume σi(k) < 1 for each i ∈ {0, 1}, we have pi > 0. This completes the
proof of Lemma 2. �

As we can easily see in the proof of Lemma 1,every mixed strategy Nash equi-
libria of the game Γk(θ) (if any) is uncompelling, because, in state θ, the unique
pure Nash equilibrium outcome is a, which is the best outcome for both agents.
It thus remains to prove that every mixed Nash equilibrium of the game Γk(θ

′
) is

also uncompelling.
If k ≥ 3, we let σk be a nontrivial mixed-strategy Nash equilibrium in the game

Γk(θ
′
). Then, the resulting outcome distribution induced by σk is given by

g ◦ σk =


c w.p. (1− p0)(1− p1)
a w.p. (p0p1)/k
b w.p. (p0p1)/k
d w.p. ((k − 2p0p1)/k)− ((1− p0)(1− p1)),

where p0, p1 ∈ (0, 1] and pi =
∑k−1

x=0 σi(x) for each i ∈ {0, 1}. Recall the following
pieces of notation:

U θ
′

0 =
{
u0(·; θ′) ∈ [0, 1]A

∣∣ 1 = u0(a; θ
′
) > u0(b; θ

′
) > u0(c; θ

′
) > u0(d; θ

′
) = 0

}
;

U θ
′

1 =
{
u1(·; θ′) ∈ [0, 1]A

∣∣ 1 = u1(b; θ
′
) > u1(a; θ

′
) > u1(c; θ

′
) > u1(d; θ

′
) = 0

}
.

Let U θ
′
≡ Uθ

′

0 × U θ
′

1 . For each ε ∈ (0, 1), we have

U θ
′
,ε

0 =
{
u0(·; θ′) ∈ Uθ

′

0

∣∣ u0(c; θ
′
) ≥ ε

}
;

U θ
′
,ε

1 =
{
u1(·; θ′) ∈ Uθ

′

1

∣∣ u1(c; θ
′
) ≥ ε

}
.

Similarly, let U θ
′
,ε ≡ Uθ

′
,ε

0 × U θ
′
,ε

1 .
By the lemma below, we show that for each ε > 0, there exists K ∈ N large

enough so that, for any u ∈ Uθ
′
,ε, any non-trivial mixed strategy equilibrium of

the game ΓK(θ
′
, u) is uncompelling.

Lemma 3 For each ε > 0, there exists an integer K ∈ N large enough so that for

any k ≥ K, i ∈ {0, 1}, and (u0(·, θ′), u1(·; θ′)) ∈ Uθ
′
,ε,

ui(g(σk); θ
′
) < ui(c; θ

′
).
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Proof : Fix ε > 0 and i ∈ {0, 1}. We compute

ui(g(σk); θ
′
) =

p0p1

k
[ui(a; θ

′
) + ui(b; θ

′
)] + (1− p0)(1− p1)ui(c; θ

′
).

For each (p0, p1) ∈ [0, 1]2, we define

k(p0, p1) =
ui(a; θ′) + ui(b; θ

′)

ui(c; θ′)

[
1

p0
+

1

p1
− 1

]−1

.

In the rest of the proof, we make use of the following properties of k(p0, p1):

• k(·, ·) is strictly increasing in both arguments over [0, 1]2.

• k(p0
h, p

1
h) converges to zero no matter how the sequence {(p0

h, p
1
h)}∞h=1 ap-

proaches (0, 0). Thus, k(0, 0) ≡ lim(p0,p1)→(0,0) k(p0, p1) = 0.

• k(1, 1) = [ui(a; θ′) + ui(b; θ
′)]/ui(c; θ

′) = max(p0,p1)∈[0,1]2 k(p0, p1).

• We can conveniently rewrite k(p0, p1) as

k(p0, p1) =
ui(a; θ′) + ui(b; θ

′)

ui(c; θ′)

p0p1

[1− (1− p0)(1− p1)]
.

We set K = min{k ∈ N|k ≥ 2/ε}. As 2/ε ≥ [ui(a; θ′) + ui(b; θ
′)]/ui(c; θ

′) for

any ui(·; θ
′
) ∈ U θ

′

i [ε], we have that K ≥ k(1, 1). Due to the strict monotonicity of
k(p0, p1) with respect to p0 and p1, we have that K ≥ k(p0, p1) for any (p0, p1) ∈
[0, 1]2. Hence, for any k ≥ K:

ui(g(σk); θ
′
) =

p0p1

k
[ui(a; θ

′
) + ui(b; θ

′
)] + (1− p0)(1− p1)ui(c; θ

′
)

≤ p0p1

k(p0, p1)
[ui(a; θ

′
) + ui(b; θ

′
)] + (1− p0)(1− p1)ui(c; θ

′
)

(∵ k ≥ K ≥ k(p0, p1) ∀(p0, p1) ∈ [0, 1]2)

= ui(c; θ
′)[1− (1− p0)(1− p1)] + (1− p0)(1− p1)ui(c; θ

′
)

= ui(c; θ
′
).

This completes the proof of Lemma 3. �

Combining Lemmas 1, 2, and 3 together, we complete the proof of Proposition
1. �
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5 The Main Result When n ≥ 3

Throughout this section, we assume that there are at least three agents, i.e., n ≥ 3.
We refer the reader to Section 7 where we address the result for the case of two
agents, i.e., n = 2.

5.1 Acceptability and Forums

Let G be a pair of agents in I. We call C : G ⇒ ∆(A) a choice correspondence
if it maps each agent in G into a nonempty, finite subset of lotteries in ∆(A).
Given a pair of agents G and a choice correspondence C, we define the concept of
C-acceptability:

Definition 2 Let G ⊆ I be a pair of agents, C a choice correspondence, θ ∈ Θ
a state, and u ∈ Û a cardinal utility function. We say that lottery x ∈ ∆(A) is
C-acceptable at (θ, u) if the following two conditions are satisfied:

• x ∈
⋃
i∈G C(i);

• For every i ∈ G and y ∈ C(i), ui(x, θ) ≥ ui(y, θ).

Remark: Strictly speaking, the definition of C-acceptability depends upon G.
However, since such G is always clear from the context whenever we discuss C-
acceptability, we omit C’s dependence on G. Thus, we simply say C-acceptability
without mentioning G. If there are only two agents, i.e., n = 2, then there is
no ambiguity about G so that we always take G = {0, 1} in the definition of C-
acceptability.

We say that F = (G, w, C, z) constitutes a forum if it satisfies the following
properties:

1. G is a pair of agents in I;

2. w : {0, 1} → G is a bijection, where we denote w−1 by its inverse function so
that w(w−1(i)) = i;

3. C : G ⇒ ∆(A) is a choice correspondence; and

4. z ∈ ∆(A) is a lottery such that z ∈
⋂
i∈G C(i).

14



For each θ̂ ∈ Θ, we write Fθ̂ = (Gθ̂, wθ̂, Cθ̂, zθ̂) as a forum indexed by the state

θ̂ ∈ Θ. In the forum Fθ̂, we have zθ̂ ∈ Cθ̂(i) for each i ∈ Gθ̂. If the forum Fθ̂ is
used when θ is the true state, we define

C∗
θ̂
(j, θ) ≡ arg max

y∈Cθ̂(j)
uj(y, θ)

as the set of agent j’s best lotteries in state θ within Cθ̂(j).

5.2 Condition COM

Definition 3 The environment E = (I, A,Θ, (�θi )i∈I,θ∈Θ, Û) satisfies Condition
COM with respect to the SCF f if there exists a collection of forums {Fθ̃}θ̃∈Θ =
{Gθ̃, wθ̃, Cθ̃, zθ̃}θ̃∈Θ with the following properties:

1. This property has two parts:

1-i. For every θ ∈ Θ and u ∈ Û , f(θ) is Cθ-acceptable at (θ, u).

1-ii. For every θ, θ̂ ∈ Θ, f(θ) ∈ Cθ̂(i) ⇔ f(θ) ∈ Cθ̂(j), where i = wθ̂(0) and

j = wθ̂(1). When θ̂ = θ, we have f(θ) ∈ Cθ(i) ∩ Cθ(j) for all θ ∈ Θ.

2. For every θ, θ̂ ∈ Θ and u ∈ Û , if x ∈ ∆(A) is Cθ̂-acceptable at (θ, u), then
x = f(θ).

3. There exists ε > 0 such that for each θ ∈ Θ, ui(f(θ), θ)− ui(z, θ) ≥ ε for all
i ∈ I, all u ∈ Û , and all z ∈

⋃
θ̃∈Θ{zθ̃}.

4. For all θ, θ̂ ∈ Θ, u ∈ Û , i ∈ Gθ̂, if f(θ) is Cθ̂-acceptable at (θ, u), then
ui(x, θ) = ui(f(θ), θ) implies x = f(θ) for all x ∈ Cθ̂(i).

Remark 2 There is a redundancy in Property 1. We do not need to assume
f(θ) ∈ Cθ(i) ∩ Cθ(j) for all θ ∈ Θ in Property 1-ii because it follows from (i) f(θ)
is Cθ-acceptable at (θ, u) in Property 1-i and (ii) f(θ) ∈ Cθ(i) ⇔ f(θ) ∈ Cθ(j)
when we set θ̂ = θ in Property 1-i. Nevertheless, for the convenience of writing the
proofs in the paper, we explicitly add this property to part of Property 1-ii.

Property 2 admits a possibility that agent i ∈ Gθ̂ is indifferent between f(θ) and
some x 6= f(θ), while agent j ∈ Gθ̂\{i} prefers f(θ) to x. However, Property 4
excludes this very possibility. This shows that Property 2 does not imply Property
4.

Property 1-i says that when θ is the true state, f(θ) is the best outcome for
both agents in the forum the forum θ (i.e., the two agents in Gθ). Property 1-ii
says that, if θ is the true state, then for every forum θ̂ 6= θ either f(θ) is in the
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choice sets for both agents in Gθ̂ or it is not in the choice sets for either agent in Gθ̂.
Moreover, if θ̂ = θ, f(θ) must be in the choice sets for both agents in Gθ̂. Property

2 says that, for every forum θ̂, if the true state is θ and x is the best outcome
within the choice sets for both agents in Gθ̂, then x must be f(θ). Property 3 says
that there exists the smallest unit ε > 0 such that each agent’s cardinal utility
from f(θ) is at least as high as that from any punishment lottery z by ε. Property
4 says that, for every forum θ̂ if θ is the true state and f(θ) is the best outcome
within the choice sets for both agents in Gθ̂, then, f(θ) is the only lottery with such
property.

We also provide an intuitive account for why Condition COM gets us com-
pelling implementation. It is well known that Maskin monotonicity is necessary
for Nash implementation. It requires that, for any θ, θ̂ ∈ Θ, whenever f(θ) 6= f(θ̂),

then there be agent i ∈ I and lottery x such that f(θ) �θi x, while x �θ̂i f(θ). Prop-
erties 1-i, 1-ii, 2 and 4 of Condition COM induces a stronger version of Maskin
monotonicity: agent i must be one of the two agents in Gθ and x must be among
the lotteries in Cθ(i). Property 3, on the other hand, is used to construct a set of
punishment lotteries which are guaranteed to cause a loss of utility for each agent
of at least ε when compared to their utility from the socially desirable alternative.
The stronger form of Maskin monotonicity is used to control how the set of Nash
Equilibria appear in our canonical mechanism, while the punishments are used to
ensure that any mixed equilibrium either yields a socially desirable outcome or is
uncompelling.

We now provide an example with three agents in which Condition COM is
satisfied.

Example 1 There are three agents, i.e., I = {0, 1, 2}. Let A = {a, b, c, d, z} be
the set of pure alternatives, Θ = {θa, θb, θc, θd} be the set of states, and f be the
SCF such that f(θx) = x for any x ∈ A\{z}. Agents’ preferences over A\{z} =
{a, b, c, d} are summarized in Table 5. In addition, for any x ∈ A\{z}, any i ∈ I,
and any θ ∈ Θ, we assume x �θi z, so z is the common worst outcome across
states.12

Fix ε > 0 as an arbitrary small number. For each i ∈ I and θ̃ ∈ Θ, we define

U θ̂,εi =

{
ui(·, θ̃) ∈ [0, 1]5

∣∣∣ ui(z, θ̃) = 0,max
ã∈A

ui(ã, θ̃) = 1, and ui(ã, θ̃) ≥ ε,∀ã ∈ A\{z}
}
,

12It is worthwhile to mention that we do not need the common worst outcome across states,
such as z, in this example. In particular, z can be state dependent and it does not have to be the
worst outcome for any agent. What we really need is that every state-dependent zθ is worse than
the social choice outcome in any state for any agent and zθ needs to be in both agents’ choice
sets in the forum Gθ
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State Agent 0 Agent 1 Agent 2

θa a �θa0 b �θa0 d �θa0 c a �θa1 b �θa1 d �θa1 c a �θa2 b �θa2 c �θa2 d

θb a �θb0 b �θb0 c �θb0 d b �θb1 a �θb1 c �θb1 d b �θb2 a �θb2 d �θb2 c

θc a �θc0 b �θc0 c �θc0 d b �θc1 a �θc1 c �θc1 d a �θc2 b �θc2 c �θc2 d

θd d �θd0 a �θd0 b �θd0 c b �θd1 a �θd1 c �θd1 d a �θd2 b �θd2 d �θd2 c

Table 5: Agents’ Preferences over A\{z}

as the set of all possible cardinal utility functions ui(·, θ̃) that are consistent with

ordinal preferences �θ̃i given in Table 5. Let U θ̃,ε ≡ ×i∈IU θ̃i and U ε ≡ ×θ̃∈ΘU θ̃,ε.
We construct the following collection of forums {Fθ̃}θ̃∈Θ = {Gθ̃, wθ̃, Cθ̃, zθ̃}θ̃∈Θ with
the following properties:

• for each θ ∈ Θ, we set zθ = z.

• At state θa we set Gθa = {0, 1}, wθa(0) = 0, wθa(1) = 1, and Cθa(0) =
Cθa(1) = {a, b, c, d, z}.

• At state θb, we set Gθb = {1, 2}, wθb(0) = 1, wθb(1) = 2, and Cθb(1) =
Cθb(2) = {a, b, c, d, z}.

• At state θc, we set Gθc = {1, 2}, wθc(0) = 1, wθc(1) = 2, and Cθc(1) =
Cθc(2) = {c, d, z}.

• Finally, at state θd, we set Gθd = {0, 2}, wθd(0) = 0, wθd(1) = 2, and Cθd(0) =
Cθc(2) = {c, d, z}.

We show in the Appendix that all properties of Condition COM are satisfied.

5.3 The Canonical Mechanism

Condition COM is utilized to construct our canonical mechanism that achieves
compelling implementation. By Condition COM , we can fix a collection of forums
{Fθ̃}θ̃∈Θ that satisfies all the properties in Condition COM . Recall that we assume
that there are at least three agents, i.e., n ≥ 3. Fix θ∗ ∈ Θ and k ≥ 2 as a state
and an integer, respectively. We write Γk = (Mk, gk) as a mechanism. We define
Mk

i ≡ M1
i × M2

i × M3
i as agent i’s message space in the mechanism Γk. Let

mi = (m1
i ,m

2
i ,m

3
i ) ∈Mi be agent i’s generic message such that (i) m1

i ∈M1
i = Θ;

(ii) m2
i = (m2

i [θ̃])θ̃∈Θ ∈ M2
i = ×θ̃∈ΘM

2
i [θ̃] where m2

i [θ̃] ∈ {0, . . . , k − 1}; and (iii)

m3
i = (m3

i [θ̃])θ̃∈Θ ∈ M3
i ≡ ×θ̃∈ΘM

3
i [θ̃] where, for all i ∈ I, M3

i [θ̃] = Cθ̃(i) if i ∈ Gθ̃
and M3

i [θ̃] = {∅} if i /∈ Gθ̃. In words, each agent i announces a state, a collection of
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state-contingent integers between 0 and k− 1, and a collection of state-contingent
outcomes such that each outcome in state θ̃ is required to be chosen from Cθ̃(i)
only if i ∈ Gθ̃. We thus define M = ×i∈IMi as the set of message profiles in the
mechanism Γk. For any m ∈M , we define θm ∈ Θ as follows:

θm =

{
θ
′

if there exists θ
′ ∈ Θ such that |{j ∈ I|m1

j = θ
′}| > n/2,

θ∗ otherwise.

Note that θm is well defined because we assume n ≥ 3. Thus, θm is determined by
the simple majority rule.

For any m ∈M , gk(m) induces the following two rules:

Rule 1: If there exists q ∈ {0, 1} such that q =
[∑

j∈Gθm m
2
j [θ

m] (mod k)
]
, then

gk(m) = m3
i∗ [θ

m],

where i∗ = wθm(q). Rule 1 says that after θm is selected, the two agents in Gθm
will play a modified version of the modulo game using the integer in the second
component of their messages that corresponds to state θm. In this modulo game,
if the modulo sum given by q is equal to either 0 or 1, there is a winner, given by
i∗ = wθm(q), which then dictates the outcome as one of the lotteries chosen from
his choice set. However, if the modulo sum results in any other values, then there
are no winners and we move to Rule 2 below.

Rule 2: If
[∑

j∈Gθm m
2
j [θ

m] (mod k)
]
> 1, then

gk(m) = zθm .

Rule 2 says that when two agents in Gθm play the modified modulo game and there
are no winners, the mechanism induces lottery zθm .

Our canonical mechanism can be understood as the following two-step proce-
dure: the first step is to identify the state θm by the simple majority rule, where
each agent i’s vote is represented by the first component of his message, m1

i . The
second step is to pick Gθm and ask each agent i ∈ Gθm to pick a lottery from his
choice set Cθm(i). If θm corresponds to the true state θ, then Condition COM
ensures that not only f(θ) will be in their choice sets, but also that both agents
will select it in the third component of their message m3

i [θ
m], and furthermore that

they have the right incentive to coordinate the second component of their mes-
sage m2

i [θ
m] so that a winner is chosen in the modified modulo game. However, if

θm 6= θ, then Condition COM ensures that there is a mixed strategy equilibrium in
which both agents in Gθm pick different lotteries. This undermines their incentives
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to coordinate on the modulo game, resulting in Rule 2 being triggered with high
probability, so that, if we choose k large enough, we can choose an arbitrarily high
probability that the punishment lotteries will be chosen. Then, Condition COM
further ensures that each agent’s expected utility from this mixed strategy equi-
librium is worse than if they induce θm = θ, making the focused mixed strategy
equilibrium uncompelling.

5.4 Main Theorem

Theorem 1 Let f be an SCF. Suppose that the finite environment
E =

(
I, A,Θ, (�θi )i∈I,θ∈Θ

)
satisfies Condition COM with respect to f and Û . Then,

the SCF f is compellingly implementable with respect to Û .

Proof : Suppose that E satisfies Condition COM with respect to the SCF f and
Û . Therefore, throughout the proof of the theorem, we fix a collection of forums
(Fθ̃)θ̃∈Θ = (Gθ̃, wθ̃, Cθ̃, zθ̃)θ̃∈Θ that satisfies Properties 1 through 4 of Condition

COM with respect to f and Û . We prove this theorem through a series of steps.

Step 1: For any k ≥ 2, the SCF f is pure Nash implementable by the mechanism
Γk.

Proof of Step 1: Let θ ∈ Θ be a true state. Fix u ∈ Û arbitrarily. It
follows from Property 1 of Condition COM that there exists i = wθ(0) for whom
f(θ) ∈ Cθ(i). Let m ∈M be a message profile with the following properties:

• m1
j = θ for all j ∈ I;

• m2
j [θ] = 0 for all j ∈ Gθ;

• m3
i [θ] = f(θ).

Since i = wθ(0) where
∑

j∈Gθ m
2
j [θ] (mod k) = 0 under Rule 1, it follows that

g(m) = f(θ). We next claim that m is a pure strategy Nash equilibrium in the
game Γk(θ). First, since there are at least three agents (i.e., n ≥ 3), no agent can
unilaterally change θm = θ. Thus, every agent i cannot find any profitable deviation
from m when restricting her deviation strategy to M1

i . Hence, any profitable
unilateral deviation of agent i from m, if any, must involve the change of her
message in either M2

i , M3
i , or both. By construction of the mechanism Γk, the

only agents who can unilaterally change the outcome from gk(m) are those who
are in Gθ. We also know that each agent j ∈ Gθ can only induce outcomes within
Cθ(j) by her unilateral deviation from m. Property 1-i of Condition COM ensures
that any agent j ∈ Gθ finds f(θ) as her best outcome within Cθ(j) in state θ.
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Therefore, no agent j ∈ Gθ can find any profitable unilateral deviation by inducing
Rules 1 or 2. Thus, m is indeed a pure strategy Nash equilibrium in the game
Γk(θ).

Now we show that m ∈ pureNE(Γk(θ)) implies g(m) = f(θ). We assume by
way of contradiction that there exists m ∈ pureNE(Γ(θ)) such that g(m) 6= f(θ).

Since g(m) 6= f(θ), it follows from Property 2 that, for any θ̃ ∈ Θ, g(m)
is “not” Cθ̃-acceptable at state θ. In particular, we have that g(m) is not Cθm-
acceptable at state θ. This implies that there exist i ∈ Gθm and x ∈ Cθm(i)
such that ui(x, θ) > ui(g(m), θ). We define m̂i to be identical to mi except that
m̂3
i [θ

m] = x and m̂2
i [θ

m] such that agent i is the modulo game winner, i.e.,

wθm
((
m̂2
i [θ

m] +m2
j [θ

m]
)

mod k
)

= i.

Then, agent i has a profitable unilateral deviation from m. This shows that m
is not a pure strategy Nash equilibrium in the game Γk(θ), which is a desired
contradiction. Thus, f is pure Nash implementable by mechanism Γk. �

Throughout the proof, we denote by θ the true state and by θ̂ the state de-
termined by the agents’ announcement in the mechanism. Let Γk = (Mk, gk)
be our canonical mechanism where k ≥ 3. We define Cθ̂ ≡

⋃
i∈I Cθ̂(i) for each

θ̂ ∈ Θ, and C ≡
⋃
θ̂∈ΘCθ̂. Note that Cθ̂ and C are both finite. For each θ̂ ∈ Θ,

q ∈ {0, . . . , k − 1}, i ∈ I, and x ∈ C, we define

M∗(θ̂, q, x) =

m ∈Mk

∣∣∣∣∣ θm = θ̂,
∑
j∈Gθ̂

m2
j [θ̂] (mod k) = q, gk(m) = x


as a subset of Mk. Notice that as M∗(θ̂, q, x) requires a lot structure on itself, it
may well be empty for certain combinations of θ̂, q and x; in particular, it is empty
for all (θ̂, q, x) with q ≥ 2 and x 6= zθ̂. By construction, we have⋃

θ̂∈Θ

⋃
q∈{0,...,k−1}

⋃
x∈C

M∗(θ̂, q, x) = Mk.

Let σ be a mixed strategy profile in the mechanism Γk. For any θ̂ ∈ Θ, q ∈
{0, . . . , k − 1}, and x ∈ C, we define

P σ(θ̂, q, x) ≡
∑

m∈M∗(θ̂,q,x)

σ(m).

For each θ̂ ∈ Θ and q ∈ {0, . . . , k − 1}, we define

M∗(θ̂, q) =
⋃
x∈C

M∗(θ̂, q, x) and P σ(θ̂, q) =
∑

m∈M∗(θ̂,q)

σ(m).
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For any θ̂ ∈ Θ, we define

M∗(θ̂) =
⋃

q∈{0,...,k−1}

M∗(θ̂, q) and P σ(θ̂) =
∑

m∈M∗(θ̂)

σ(m).

We can now define conditional probabilities as well:

P σ(q, x|θ̂) =

{
P σ(θ̂, q, x)/P σ(θ̂) if P σ(θ̂) > 0,

0 if P σ(θ̂) = 0.

P σ(q|θ̂) =

{
P σ(θ̂, q)/P σ(θ̂) if P σ(θ̂) > 0,

0 if P σ(θ̂) = 0.

P σ(x|q, θ̂) =

{
P σ(q, x|θ̂)/P σ(q|θ̂) if P σ(q|θ̂) > 0,

0 if P σ(q|θ̂) = 0.

We define the set of message profiles in which θ̂ is the agreed-upon state chosen
by the mechanism and agent i sends m2

i [θ̂] = q:

M∗(θ̂, q, i) =

{
m ∈Mk

∣∣∣∣∣ θm = θ̂, m2
i [θ̂] = q

}
.

Using this set, we define P σ
i (q|θ̂) as the probability that agent i sends q under

σ conditional on M∗(θ̂, q, i):

P σ
i (q|θ̂) =

{ ∑
mi:(mi,m−i)∈M∗(θ̂,q,i) σi(mi)/P

σ(θ̂) if P σ(θ̂) > 0,

0 if P σ(θ̂) = 0.

Lastly, for each θ̂ ∈ Θ and each q ∈ {0, 1}, define the following lottery:

`kq(θ̂, σ) ≡
∑
x∈C

P σ(x|q, θ̂)x.

Step 2: For any mixed strategy profile σ in the mechanism Γk = (Mk, gk), gk(σ)
can be represented by the following multiple forms:

gk(σ) =
∑
θ̂∈Θ

∑
x∈C

 ∑
q∈{0,1}

P σ(θ̂, q, x)x+
∑

q∈{2,...,k−1}

P σ(θ̂, q, x)zθ̂


=

∑
θ̂∈Θ

P σ(θ̂)
∑
x∈C

 ∑
q∈{0,1}

P σ(q, x|θ̂)x+
∑

q∈{2,...,k−1}

P σ(q, x|θ̂)zθ̂


=

∑
θ̂∈Θ

P σ(θ̂)`k(θ̂, σ),
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where, for each θ̂ ∈ Θ,

`k(θ̂, σ) ≡
∑
x∈C

 ∑
q∈{0,1}

P σ(q, x|θ̂)x+
∑

q∈{2,...,k−1}

P σ(q, x|θ̂)zθ̂


=

∑
q∈{0,1}

∑
x∈C

P σ(q, x|θ̂)x+
∑

q∈{2,...,k−1}

∑
x∈C

P σ(q, x|θ̂)zθ̂

=
∑

q∈{0,1}

P σ(q|θ̂)`kq(θ̂, σ) +
∑

q∈{2,...,k−1}

P σ(q|θ̂)zθ̂

= P σ(q = 0|θ̂)`k0(θ̂, σ) + P σ(q = 1|θ̂)`k1(θ̂, σ) +

1−
∑

q∈{0,1}

P σ(q|θ̂)

 zθ̂

= P σ(q = 0|θ̂)(`k0(θ̂, σ)− zθ̂) + P σ(q = 1|θ̂)(`k1(θ̂, σ)− zθ̂) + zθ̂

Proof of Step 2: This comes from the construction of our mechanism. �

Step 3: Let σ ∈ NE(Γk(θ, u)) for some u ∈ Û . Then, for any m ∈ supp(σ),
q ∈ {0, 1}, and θ̂ ∈ Θ, if m ∈M∗(θ̂, q), then m3

i [θ̂] ∈ C∗θ̂ (i, θ), where i = wθ̂(q).

Proof of Step 3: Fix u ∈ Û . Let σ ∈ NE(Γk(θ, u)). Fix m ∈ supp(σ),
q ∈ {0, 1}, and θ̂ ∈ Θ. Assume that m ∈ M∗(θ̂, q), and let i = wθ̂(q). Suppose,

by way of contradiction, that m3
i [θ̂] /∈ C∗θ̂ (i, θ). We define m̄i to be identical to mi

except that m̄3
i [θ̂] = c∗

θ̂
(i, θ) for some c∗

θ̂
(i, θ) ∈ C∗

θ̂
(i, θ). By construction, we know

that m̄i weakly dominates mi. We next define σ̄i to be the following deviation
strategy: for any m̃i ∈Mi,

σ̄i(m̃i) =


σi(m̄i) + σi(mi) if m̃i = m̄i,

0 if m̃i = mi,
σi(m̃i) otherwise.
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We compute the following utility difference:

ui(g
k(σ̄i, σ−i), θ)− ui(gk(σi, σ−i), θ)

=
∑
m̃−i

σi(mi)
[
ui(g

k(m̄i, m̃−i), θ)− ui(gk(mi, m̃−i), θ)
]

= σ(m)
[
ui(g

k(m̄i,m−i), θ)− ui(gk(mi,m−i), θ)
]

+
∑

m̃−i 6=m−i

σ(mi, m̃−i)
[
ui(g

k(m̄i, m̃−i), θ)− ui(gk(mi, m̃−i), θ)
]

≥ σ(m)
[
ui(g

k(m̄i,m−i), θ)− ui(gk(mi,m−i), θ)
]

= σ(m)
[
ui(c

∗
θ̂
(i, θ), θ)− ui(m3

i [θ̃], θ)
]

> 0,

where the weak inequality follows because m̄i weakly dominates mi, and the strict
inequality follows because σ(m) > 0 and ui(c

∗
θ̂
(i, θ)) > ui(m

3
i [θ̂], θ), as c∗

θ̂
(i, θ) ∈

C∗
θ̂
(i, θ) and m3

i [θ̂] /∈ C∗θ̂ (i, θ). This shows that σ is not a Nash equilibrium in the

game Γk(θ, u), which is the desired contradiction. Thus, we complete the proof. �

Step 4: Let σ be a mixed strategy profile in the mechanism ΓK , where we later
choose K ≥ 3 large enough, and fix θ̂ ∈ Θ such that P σ(θ̂) > 0. Assume that
P σ(q = 0|θ̂) +P σ(q = 1|θ̂) ≤ 2/K . Then, there exists K ∈ N large enough so that
ui(`

K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I and u ∈ Û .

Proof of Step 4: Fix θ̂ ∈ Θ with P σ(θ̂) > 0, u ∈ Û , and i ∈ I arbitrarily.
Since the utility achievable is bounded above from 1 and the compound lottery
`K(θ̂, σ) induces zθ̂ with probability equal to at least 1− 2/K, we have

ui(`
K(θ̂, σ), θ) ≤ 2

K
· 1 +

K − 2

K
ui(zθ̂, θ)

= ui(zθ̂, θ) +
2 (1− ui(zθ̂, θ))

K

≤ ui(zθ̂, θ) +
2

K

By Property 3 of Condition COM , we have that, for any i ∈ I and u ∈ Û ,

ui(zθ̂, θ) ≤ ui(f(θ), θ)− ε.

Hence, we combine this with the previous inequality obtained so that

ui(`
K(θ̂, σ), θ) ≤ ui(f(θ), θ)− ε+

2

K
.
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If we choose K to be the smallest integer such that K ≥ 4/ε, we have

ui(`
K(θ̂, σ), θ) ≤ ui(f(θ), θ)− ε

2
,

for any i ∈ I and u ∈ Û . Since ε > 0, we have that ui(`
K(θ̂, θ)) < ui(f(θ), θ) for

any i ∈ I and u ∈ Û , as desired. This completes the proof. �

From here till the end of the proof of Step 7, we fix u ∈ Û , θ̂ ∈ Θ, and adopt
the convention that wθ̂(0) = i and wθ̂(1) = j. We focus now on the lotteries that
emerge from the remaining components of a strategy profile σ after a particular
state θ̂ is selected by the mechanism, which we denote by `k(θ̂, σ). Steps 5, 6 and
7 are all used to show that if σ is a Nash equilibrium of the game ΓK(θ, u) and
f(θ) 6= `K(θ̂, σ), all agents must prefer f(θ) to `K(θ̂, σ) where we choose K large
enough.

Let mj ∈ supp(σj), m̄j be agent j’s arbitrary message sent, and σ−j be other
players’ strategy profile. Let (mj, σ−j) denote the strategy profile in which agent j
plays mj and other agents play σ−j, and (m̄j, σ−j) be the strategy profile in which
agent j plays m̄j and other agents play σ−j. These two strategy profiles will induce

different lotteries, `k(θ̂, (mj, σ−j)) and `k(θ̂, (m̄j, σ−j)), respectively. Using Step 2,
we compute the difference in expected payoff for agent j at state θ between these
two lotteries as:

uj(`
k(θ̂, (m̄j, σj)), θ)− uj(`k(θ̂, (mj, σj)), θ)

= P (m̄j ,σ−j)(q = 0|θ̂)
(
uj(`

k
0(θ̂, (mj, σ−j)), θ)− uj(zθ̂, θ)

)
+ P (m̄j ,σ−j)(q = 1|θ̂) (ū1 − uj(zθ̂, θ)) + uj(zθ̂, θ)

−
[
P (mj ,σ−j)(q = 0|θ̂)

(
uj(`

k
0(θ̂, (mj, σ−j)), θ)− uj(zθ̂, θ)

)
+ P (mj ,σ−j)(q = 1|θ̂)

(
uj(m

3
j [θ̂], θ)− uj(zθ̂, θ)

)
+ uj(zθ̂, θ)

]
To ease the notation, we will adopt the following set of conventions:

P (mj ,σ−j)(q = 0|θ̂) = p0; P (m̄j ,σ−j)(q = 0|θ̂) = p̄0;P (mj ,σ−j)(q = 1|θ̂) = p1;

P (m̄j ,σ−j)(q = 1|θ̂) = p̄1; uj(`
k
0(θ̂, (mj, σ−j)), θ) = u0;

uj(m
3
j [θ̂], θ) = u1; uj(m̄

3
j [θ̂], θ) = ū1;uj(zθ̂, θ) = uz.

This introduced notation allows us to simply the previous expression to

uj(`
k(θ̂, (m̄j, σj)), θ)− uj(`k(θ̂, (mj, σj)), θ)

= p̄0(u0 − uz) + p̄1(ū1 − uz) + uz − [p0(u0 − uz) + p1(u1 − uz) + uz.]
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The above expression will be extensively used in the rest of the proof. For any
x ∈ {0, 1} and q ∈ {0, . . . , K − 1}, we define bx(q) ∈ {0, . . . , K − 1} such that
q + bx(q) (mod K) = x.

Step 5: Let σ ∈ NE(ΓK(θ, u)), where we later choose K large enough. For
any θ̂ ∈ Θ with P σ(θ̂) > 0, we assume that there exists q ∈ {0, 1} such that
P σ(q|θ̂) = 0. Then, there exists K ∈ N large enough so that, for any θ̂ ∈ Θ with
P σ(θ̂) > 0, if `K(θ̂, σ) 6= f(θ), then ui(`

K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I.

Proof of Step 5: Fix σ ∈ NE(ΓK(θ, u)), and θ̂ ∈ Θ with P σ(θ̂) > 0 arbitrarily.
We assume that there exists q ∈ {0, 1} such that P σ(q|θ̂) = 0. We further assume
that `K(θ̂, σ) 6= f(θ). We divide the proof into each of the following two cases.

Case 1: P σ(q|θ̂) = 0 for all q ∈ {0, 1}

This implies that `K(θ̂, σ) induces zθ̂ with probability one. It follows from

Property 3 of Condition COM that ui(`
K(θ̂, σ), θ) < ui(f(θ), θ) for any i ∈ I,

u ∈ Û , and K ≥ 3.

Case 2: P σ(q = 0|θ̂) > 0 and P σ(q = 1|θ̂) = 0

The argument we provide below regarding Case 2 will ensure that we can handle
the case that P σ(q = 1|θ̂) > 0 and P σ(q = 0|θ̂) = 0 in a similar fashion. So we
omit this case. With the help of Step 2, we can write

`K(θ̂, σ) = P σ(q = 0|θ̂)(`K0 (θ̂, σ)− zθ̂) + zθ̂.

Fix c∗
θ̂
(j, θ) ∈ C∗

θ̂
(j, θ). We further divide Case 2 into four sub-cases:

Case 2-1: u0 ≥ uj(c
∗
θ̂
(j, θ), σ), θ) ≥ uz

This implies that some c∗
θ̂
(i, θ) ∈ supp (`K0 (θ̂, σ)) is Cθ̂-acceptable at (θ, u). It

then follows from Property 2 of Condition COM that c∗
θ̂
(i, θ) = f(θ). From Step 4,

we also have that supp (`k0(θ̂, σ)) ⊆ Cθ̂(i, θ). Thus, f(θ) ∈ C∗
θ̂
(i, θ), which further

implies that ui(c, θ) = ui(f(θ), θ) for all c ∈ C∗
θ̂
(i, θ). Finally, by Property 4 of

Condition COM , we have C∗
θ̂
(i, θ) = {f(θ)}, which further implies `k0(θ̂, σ) = f(θ).

Since we assume that `K(θ̂, σ) 6= f(θ), we must have P σ(q = 0|θ̂) < 1. By Property
3 of Condition COM , there exists ε > 0 such that uj(f(θ), θ) − uj(zθ̂, θ) ≥ ε for

all j ∈ I and u ∈ Û . Due to the construction of `K(θ̂, θ) and the fact that
`k0(θ̂, σ) = f(θ), we conclude that uj(`

K(θ̂, σ), θ) < uj(f(θ), θ) for all j ∈ I.
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Case 2-2: uj(c
∗
θ̂
(j, θ), θ) > uz > u0.

In this case, we will show that there is no Nash equilibrium σ in the game
ΓK(θ, u) such that P σ(q = 0|θ̂) > 0 and P σ(q = 1|θ̂) = 0. Suppose, on the
contrary, that such σ constitutes a Nash equilibrium in the game ΓK(θ, u).

Fix m ∈ supp(σ) as a message profile such that θm = θ̂. The existence of such m
is guaranteed because we have P σ(θ̂) > 0. Note that P σ(q = 1|θ̂) = 0 implies that
P (mj ,σ−j)(q = 1|θ̂) = p1 = 0. Our goal is to find a message m̄j, which together with

σ−j induces a lottery `K(θ̂, (m̄j, σ−j)) that first-order stochastically dominates the
lottery induced by (mj, σ−j), showing that σ is not a Nash equilibrium of the game

ΓK(θ, u). To achieve this, we need to find m̄2
j [θ̂] ∈ {0, . . . , K − 1}, which together

with σ−j guarantees that p̄1 > 0 and p̄0 = 0. We shall propose an algorithm

selecting such m̄2
j [θ̂].

Recall the following notation:

M∗(θ̂, q, i) =

{
m ∈MK

∣∣∣∣∣ θm = θ̂, m2
i [θ̂] = q

}
.

and
P σ
i (q|θ̂) =

∑
mi:(mi,m−i)∈M∗(θ̂,q,i)

σi(mi)/P
σ(θ̂).

We also use this notation in Case 2-3 later. Start the algorithm by setting q0 =
b1(m2

j [θ̂]), where, for any q ∈ {0, . . . , K− 1}, we define b1(q) ∈ {0, . . . , K− 1} such

that q + b1(q) (mod K) = 1. It follows from P σ(q = 1|θ̂) = 0 that P σ
i (q0|θ̂) = 0.

Next, for any h ∈ {1, · · · , K − 1} and qh−1 ∈ {0, . . . , K − 1}, we define

qh = qh−1 + 1 (mod K).

Since
∑K−1

q=0 P σ
i (q|θ̂) = 1, we can choose h ∈ {1, . . . , K − 1} uniquely in such a

way that P σ
i (qh|θ̂) > 0 and P σ

i (qh′ |θ̂) = 0 for all h
′ ∈ {0, . . . , h− 1}. Then, we set

m̄2
j [θ̂] = b1(qh). Define m̄3

j [θ̂] as follows:

m̄3
j [θ̂] =

{
c∗
θ̂
(j, θ) if m3

j [θ̂] /∈ C∗θ̂ (j, θ),

m3
j [θ̂] if m3

j [θ̂] ∈ C∗θ̂ (j, θ).

Thus, we define m̄j to be identical to mj except that m2
j [θ̂] is replaced by m̄2

j [θ̂]

and m3
j [θ̂] is replaced by m̄3

j [θ̂]. By the algorithm to find qh and construction of

26



m̄2
j [θ̂], we have the following properties:

p̄1 ≡ P (m̄j ,σ−j)(q = 1|θ̂) = P (m̄j ,σ−j)
(
qh + b1(qh) (mod K)

∣∣θ̂)
= P

(m̄j ,σ−j)
i (qh|θ̂) > 0,

p̄0 ≡ P (m̄j ,σ−j)(q = 0|θ̂) = P (m̄j ,σ−j)
(
qh−1 + b1(qh) (mod K)

∣∣θ̂)
= P

(m̄j ,σ−j)
i (qh−1|θ̂) = 0.

It follows from P σ(q = 1|θ̂) = 0 that p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = 0, implying
p̄1 − p1 > 0. Since p̄0 = 0, we also have

p0 ≡ P (mj ,σ−j)(q = 0|θ̂) ≥ P (m̄j ,σj)(q = 0|θ̂) ≡ p̄0,

which implies p0−p̄0 ≥ 0. Due to the construction of m̄3
j [θ̂], we obtain the following

inequalities:

uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) > uj(zθ̂, θ) ⇒ ū1 − uz > 0,

uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) ≥ uj(m

3
j [θ̂], θ) ⇒ ū1 − u1 ≥ 0.

Now, we claim that uj(g(m̄j, σj), θ)−uj(g(mj, σj), θ) > 0. Since P σ(θ̂) > 0, by

Step 2 and the construction of m̄j, it suffices to show that uj(`
K(θ̂, (m̄j, σj)), θ)−

uj(`
K(θ̂, (mj, σj)), θ) > 0. Thus, we compute

uj(`
K(θ̂, (m̄j, σj)), θ)− uj(`K(θ̂, (mj, σj)), θ)

= p̄0(u0 − uz) + p̄1(ū1 − uz) + uz − [p0(u0 − uz) + p1(u1 − uz) + uz]

= (p̄1 − p1)(ū1 − uz) + (p0 − p̄0)(uz − u0) + p1(ū1 − u1)

> 0,

where the strict inequality follows because (p0− p̄0)(uz − u0) ≥ 0, p1(ū1− u1) ≥ 0,
and (p̄1 − p1)(ū1 − uz) > 0. This contradicts the hypothesis that σ is a Nash
equilibrium in the game ΓK(θ, u). �

Case 2-3: uj(c
∗
θ̂
(j, θ), θ) > u0 > uz

In this case, we will show that there is no Nash equilibrium σ in the game
ΓK(θ, u) such that P σ(q = 0|θ̂) > 0 and P σ(q = 1|θ̂) = 0. Suppose, on the
contrary, that such σ constitutes a Nash equilibrium in the game ΓK(θ, u).

Fix m ∈ supp(σ) as a message profile such that θm = θ̂. The existence of such m
is guaranteed because we have P σ(θ̂) > 0. Note that P σ(q = 1|θ̂) = 0 implies that
P (mj ,σ−j)(q = 1|θ̂) = p1 = 0. Our goal here is to find a message m̄j, which together
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with σ−j induces a lottery `K(θ̂, (m̄j, σ−j)) that first-order stochastically dominates
the lottery induced by (mj, σ−j), showing that σ is not a Nash equilibrium of the

game ΓK(θ, u). To achieve this, we need to find m̄2
j [θ̂] ∈ {0, . . . , K − 1}, which

together with σ−j guarantees that p̄1 > 0 and p̄0 + p̄1 > p0 + p1. Such m̄2
j [θ̂] will

be found by the following algorithm:
Start the algorithm by setting q0 = b1(m2

j [θ̂]). It follows from P σ(q = 1|θ̂) = 0

that P σ
i (q0|θ̂) = 0. Next, for any h ∈ {1, · · · , K − 1} and qh−1 ∈ {0, . . . , K − 1},

we define
qh = qh−1 − 1 (mod K).

Since
∑K−1

q=0 P σ
i (q|θ̂) = 1, we can choose h ∈ {1, . . . , K − 1} uniquely in such a

way that P σ
i (qh|θ̂) > 0 and P σ

i (qh′ |θ̂) = 0 for all h
′ ∈ {0, . . . , h− 1}. Then, we set

m̄2
j [θ̂] = b1(qh). Define also m̄3

j [θ̂] as follows:

m̄3
j [θ̂] =

{
c∗
θ̂
(j, θ) if m3

j [θ̂] /∈ C∗θ̂ (j, θ),

m3
j [θ̂] if m3

j [θ̂] ∈ C∗θ̂ (j, θ),

Thus, we define m̄j to be identical to mj except that m2
j [θ̂] is replaced by m̄2

j [θ̂]

and m3
j [θ̂] is replaced by m̄3

j [θ̂].

By the algorithm to find qh and construction of m̄2
j [θ̂], we have the following

properties:

p̄1 ≡ P (m̄j ,σ−j)(q = 1|θ̂) = P (m̄j ,σ−j)(qh + b1(qh) (mod K)|θ̂)
= P

(m̄j ,σ−j)
i (qh|θ̂) > 0,

≥ P
(m̄j ,σ−j)
i (q1|θ̂)

= P (mj ,σ−j)(q0 − 1 +m2
j [θ̂] (mod K)|θ̂)

= P (mj ,σ−j)(q = 0|θ̂) ≡ p0 (∵ q0 +m2
j [θ̂] (mod K) = 1)

P (m̄j ,σ−j)(q = 2|θ̂) = P (m̄j ,σ−j)(qh−1 + b1(qh) (mod K)|θ̂)
= P

(m̄j ,σ−j)
i (qh−1|θ̂) = 0,

which implies p̄1 − p0 ≥ 0. Since p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = 0 and P (m̄j ,σ−j)(q =
0|θ̂) ≥ 0, we have P (m̄j ,σ−j)(q = 0|θ̂) ≥ P (mj ,σ−j)(q = 1|θ̂), which implies that p̄0 −
p1 ≥ 0. In addition, since p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = 0, we also have P (m̄j ,σ−j)(q =
1|θ̂) > P (mj ,σ−j)(q = 1|θ̂), which implies that p̄1 − p1 > 0.

Since uj(c
∗
θ̂
(j, θ), θ) > u0 > uz, due to the construction of m̄3

j [θ̂], we have the
following inequality:

ū1 ≡ uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) > uj(`

K
0 (θ̂, (mj, σ−j)), θ) ≡ u0
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Thus, ū1 − u0 > 0.
We claim now that uj(g(m̄j, σj), θ) − uj(g(mj, σj), θ) > 0. Since P σ(θ̂) > 0,

by Step 2, it suffices to show that uj(`
k(θ̂, (m̄j, σj)), θ)− uj(`k(θ̂, (mj, σj)), θ) > 0.

Thus, we compute the following:

uj(`
k(θ̂, (m̄j, σj)), θ)− uj(`k(θ̂, (mj, σj)), θ)

= p̄0(u0 − uz) + p̄1(ū1 − uz) + uz − [p0(u0 − uz) + p1(u1 − uz) + uz]

= (p̄1 − p1)(ū1 − u0) + (p̄1 − p0)(u0 − uz) + (p̄0 − p1)(u0 − uz) + p1(ū1 − u1)

> 0,

where the strict inequality follows because (p̄1−p0)(u0−uz) ≥ 0, (p̄0−p1)(u0−uz) ≥
0, p1(ū1 − u1) ≥ 0, and (p̄1 − p1)(ū1 − u0) > 0. This contradicts the hypothesis
that σ is a Nash equilibrium in the game ΓK(θ, u). �

Case 2-4: uj(c
∗
θ̂
(j, θ), θ) = uz > u0

We will show that P σ(q = 0|θ̂) ≤ 1/K. Suppose not, that is, P σ(q = 0|θ̂) >
1/K. We construct σ̄j to be identical to σj except that P

(σ̄j ,σ−j)
i (q|θ̂) = 1/K for

all q ∈ {0, · · · , K − 1} and m̄3
j [θ̂] = c∗

θ̂
(j, θ) for all mj ∈ supp (σ̄j). Then, since we

have uj(c
∗
θ̂
(j, θ), θ) = uz, we compute agent j’s payoff difference between (σ̄j, σ−j)

and σ:

uj(g
K(σ̄j, σ−j), θ)− uj(gK(σ), θ)

= P σ(θ̂)

[
K − 1

K
uz +

1

K
u0

]
−P σ(θ̂)

[
P σ(q = 0|θ̂)u0 + (1− P σ(q = 0|θ̂))uz

]
= P σ(θ̂)

(
P σ(q = 0|θ̂)− 1

K

)
[uz − u0]

> 0,

where the strict inequality follows because P σ(θ̂) > 0; P σ(q = 0|θ̂) > 1/K; and
uz > u0. This implies that σ is not a Nash equilibrium in the game ΓK(θ, u), which
is the desired contradiction. Thus, we have P σ(q = 0|θ̂) + P σ(q = 0|θ̂) ≤ 1/K.
We can then use Step 4 to conclude that there exists K ∈ N large enough so that
ui(`

K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I. �

Step 6: Let σ ∈ NE(ΓK(θ, u)), where we later choose K large enough. Assume
that there exists θ̂ ∈ Θ with P σ(θ̂) > 0 such that P σ(q|θ̂) > 0 for all q ∈ {0, 1}. If
f(θ) is not Cθ̂-acceptable at (θ, u), then there exists K ∈ N large enough so that

ui(`
K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I.
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Proof of Step 6: Fix σ ∈ NE(ΓK(θ, u)) and θ̂ ∈ Θ such that P σ(θ̂) > 0 and
P σ(q|θ̂) > 0 for all q ∈ {0, 1}. We take the contrapositive statement of Property
2 of Condition COM : for any x ∈

⋃
i∈Gθ̂

Cθ̂(i), if x 6= f(θ), x is not Cθ̂-acceptable

at (θ, u). Let Gθ̂ = {i, j} in the rest of the proof. In addition, we know that either

f(θ) ∈ Cθ̂(i) ∪ Cθ̂(j) or f(θ) /∈ Cθ̂(i) ∪ Cθ̂(j)

holds. Since f(θ) is not Cθ̂-acceptable at (θ, u), we therefore have the following
property: for any x ∈ Cθ̂(i) ∪ Cθ̂(j), x is not Cθ̂-acceptable at (θ, u). This implies
that for any c∗

θ̂
(i, θ) ∈ C∗

θ̂
(i, θ) and any c∗

θ̂
(j, θ) ∈ C∗

θ̂
(j, θ), we have ui(c

∗
θ̂
(i, θ), θ) >

ui(c
∗
θ̂
(j, θ), θ) and uj(c

∗
θ̂
(j, θ), θ) > uj(c

∗
θ̂
(i, θ), θ).

If either ui(c
∗
θ̂
(i, θ), θ) = ui(zθ̂, θ) or uj(c

∗
θ̂
(j, θ), θ) = uj(zθ̂, θ) holds, then we

can appeal to an argument identical to the one employed in Case 2-4 of Step 5 to
conclude that there exists K ∈ N large enough so that ui(`

K(θ̂, σ), θ) < ui(f(θ), θ)
for all i ∈ I.

Therefore, we can assume that both ui(c
∗
θ̂
(i, θ), θ) > ui(zθ̂, θ) and uj(c

∗
θ̂
(j, θ), θ) >

uj(zθ̂, θ) ≡ uz hold. We define πmini and πmaxi as follows:

πmini = min{P σ
i (q|θ̂) ∈ [0, 1]|q ∈ {0, . . . , K − 1}},

and πmaxi = max{P σ
i (q|θ̂) ∈ [0, 1]|q ∈ {0, . . . , K − 1}}.

We can also define πminj and πmaxj in a similar fashion. We will show that
πmini = πmaxi and πminj = πmaxj , which implies that both agents randomize uniformly
in their choice of integer. We shall prove this through Steps 6.a and 6.b below.

Step 6.a: For any q∗ ∈ {0, . . . , K − 1}, if P σ
i (q∗|θ̂) = πmini and πmini < πmaxi , then

P σ
j (b1(q∗)|θ̂) = 0, where b1(q∗) ∈ {0, . . . , K−1} such that q∗+b1(q∗) (mod K) = 1.

Proof of Step 6.a: Fix q∗ ∈ {0, . . . , K−1} such that P σ
i (q∗|θ̂) = πmini < πmaxi .

Assume, by way of contradiction, that P σ
j (b1(q∗)|θ̂) > 0. This implies that there

exists m ∈ supp (σ) such that θm = θ̂ and m2
j [θ̂] = b1(q∗). This further implies

p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = P (mj ,σ−j)(q∗ + b1(q∗)|θ̂) = P
(mj ,σ−j)
i (q∗|θ̂) = πmini .

We claim that mj is not a best response to σ−j, contradicting the hypothesis that σ
is a Nash equilibrium in the game ΓK(θ, u). To prove this, we consider two possible
cases:

Case 1: uj(c
∗
θ̂
(j, θ), θ) > uz > u0.

Our goal here is to find a message m̄j, which together with σ−j induces a lottery

`K(θ̂, (m̄j, σ−j)) that first-order stochastically dominates the lottery induced by
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(mj, σ−j), hence showing that σ is not a Nash equilibrium of the game ΓK(θ, u).

To achieve this, we need to find m̄2
j [θ̂] ∈ {0, . . . , K − 1}, which together with σ−j

guarantees that p̄1 > πmini and p̄0 = πmini . We shall propose an algorithm selecting
such m̄2

j [θ̂].
Recall the following notation:

M∗(θ̂, q, i) =

{
m ∈MK

∣∣∣∣∣ θm = θ̂, m2
i [θ̂] = q

}
,

and
P σ
i (q|θ̂) =

∑
mi:(mi,m−i)∈M∗(θ̂,q,i)

σi(mi)/P
σ(θ̂).

We also use this notation in Case 2 later. Start the algorithm by setting q0 = q∗.
Next, for any h ∈ {1, · · · , K − 1} and qh−1 ∈ {0, . . . , K − 1}, we define

qh = qh−1 + 1 (mod K).

Since πmini < πmaxi , we can choose h ∈ {1, . . . , K − 1} uniquely in such a way that
P σ
i (qh|θ̂) > πmini and P σ

i (qh′ |θ̂) = πmini for all h
′ ∈ {0, . . . , h − 1}. Then, we set

m̄2
j [θ̂] = b1(qh). Define m̄3

j [θ̂] as follows:

m̄3
j [θ̂] =

{
c∗
θ̂
(j, θ) if m3

j [θ̂] /∈ C∗θ̂ (j, θ),

m3
j [θ̂] if m3

j [θ̂] ∈ C∗θ̂ (j, θ).

Thus, we define m̄j to be identical to mj except that m2
j [θ̂] is replaced by m̄2

j [θ̂]

and m3
j [θ̂] is replaced by m̄3

j [θ̂]. By the algorithm selecting qh and construction of

m̄2
j [θ̂], we have the following properties:

p̄1 ≡ P (m̄j ,σ−j)(q = 1|θ̂) = P (m̄j ,σ−j)
(
qh + b1(qh) (mod K)

∣∣θ̂)
= P

(m̄j ,σ−j)
i (qh|θ̂) > πmini ,

p̄0 ≡ P (m̄j ,σ−j)(q = 0|θ̂) = P (m̄j ,σ−j)
(
qh−1 + b1(qh) (mod K)

∣∣θ̂)
= P

(m̄j ,σ−j)
i (qh−1|θ̂) = πmini .

It follows from p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = πmini that p̄1−p1 > 0. Since p̄0 = πmini ,
we also have

p0 ≡ P (mj ,σ−j)(q = 0|θ̂) ≥ P (m̄j ,σj)(q = 0|θ̂) ≡ p̄0,

31



which implies p0−p̄0 ≥ 0. Due to the construction of m̄3
j [θ̂], we obtain the following

inequalities:

uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) > uj(zθ̂, θ) ⇒ ū1 − uz > 0,

uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) ≥ uj(m

3
j [θ̂], θ) ⇒ ū1 − u1 ≥ 0.

We claim now that uj(g(m̄j, σj), θ)− uj(g(mj, σj), θ) > 0. Since P σ(θ̂) > 0, by

Step 2 and the construction of m̄j, it suffices to show that uj(`
K(θ̂, (m̄j, σj)), θ)−

uj(`
K(θ̂, (mj, σj)), θ) > 0. Thus, we compute

uj(`
K(θ̂, (m̄j, σj)), θ)− uj(`K(θ̂, (mj, σj)), θ)

= p̄0(u0 − uz) + p̄1(ū1 − uz) + uz − [p0(u0 − uz) + p1(u1 − uz) + uz]

= (p̄1 − p1)(ū1 − uz) + (p0 − p̄0)(uz − u0) + p1(ū1 − u1)

> 0,

where the strict inequality follows because (p0− p̄0)(uz − u0) ≥ 0, p1(ū1− u1) ≥ 0,
and (p̄1 − p1)(ū1 − uz) > 0. This contradicts the hypothesis that σ is a Nash
equilibrium in the game ΓK(θ, u). �

Case 2: uj(c
∗
θ̂
(j, θ), θ) > u0 > uz.

Our goal here is to find a message m̄j, which together with σ−j induces a

lottery `k(θ̂, (m̄j, σ−j)) that first-order stochastically dominates the lottery induced
by (mj, σ−j), showing that σ is not a Nash equilibrium of the game ΓK(θ, u). To

achieve this, we need to find m̄2
j [θ̂] ∈ {0, . . . , K − 1}, which together with σ−j

guarantees that p̄1 > πmini and p̄0 + p̄1 > p0 + p1. Such m̄2
j [θ̂] will be found by the

following algorithm:
Start the algorithm by setting q0 = q∗. Next, for any h ∈ {1, · · · , K − 1} and

qh−1 ∈ {0, . . . , K − 1}, we define

qh = qh−1 − 1 (mod K).

Since πmini < πmaxi , we can choose h ∈ {1, . . . , K − 1} uniquely in such a way that
P σ
i (qh|θ̂) > πmini and P σ

i (qh′ |θ̂) = πmini for all h
′ ∈ {0, . . . , h − 1}. Then, we set

m̄2
j [θ̂] = b1(qh). Define also m̄3

j [θ̂] as follows:

m̄3
j [θ̂] =

{
c∗
θ̂
(j, θ) if m3

j [θ̂] /∈ C∗θ̂ (j, θ),

m3
j [θ̂] if m3

j [θ̂] ∈ C∗θ̂ (j, θ).

Thus, we define m̄j to be identical to mj except that m2
j [θ̂] is replaced by m̄2

j [θ̂]

and m3
j [θ̂] is replaced by m̄3

j [θ̂].
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By the algorithm selection qh and construction of m̄2
j [θ̂], we have the following

properties:

p̄1 ≡ P (m̄j ,σ−j)(q = 1|θ̂) = P (m̄j ,σ−j)(qh + b1(qh) (mod K)|θ̂)
= P

(m̄j ,σ−j)
i (qh|θ̂) > πmini ,

≥ P
(m̄j ,σ−j)
i (q1|θ̂)

= P (mj ,σ−j)(q0 − 1 +m2
j [θ̂] (mod K)|θ̂)

= P (mj ,σ−j)(q = 0|θ̂) ≡ p0 (∵ q0 +m2
j [θ̂] (mod K) = 1)

P (m̄j ,σ−j)(q = 2|θ̂) = P (m̄j ,σ−j)(qh−1 + b1(qh) (mod K)|θ̂)
= P

(m̄j ,σ−j)
i (qh−1|θ̂) = πmini ,

which implies p̄1 − p0 ≥ 0. Since p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = πmini and P (m̄j ,σ−j)(q =
0|θ̂) ≥ πmini , we have P (m̄j ,σ−j)(q = 0|θ̂) ≥ P (mj ,σ−j)(q = 1|θ̂), which implies that
p̄0 − p1 ≥ 0. In addition, since p1 ≡ P (mj ,σ−j)(q = 1|θ̂) = πmini , we also have
P (m̄j ,σ−j)(q = 1|θ̂) > P (mj ,σ−j)(q = 1|θ̂), which implies that p̄1 − p1 > 0.

Since we have uj(c
∗
θ̂
(j, θ), θ) > u0 > uz, due to the construction of m̄3

j [θ̂], we
have the following inequality:

ū1 ≡ uj(m̄
3
j [θ̂], θ) = uj(c

∗
θ̂
(j, θ), θ) > uj(`

K
0 (θ̂, (mj, σ−j)), θ) ≡ u0

Thus, ū1 − u0 > 0.
Now, we claim that uj(g(m̄j, σj), θ) − uj(g(mj, σj), θ) > 0. Since P σ(θ̂) > 0,

by Step 2, it suffices to show that uj(`
k(θ̂, (m̄j, σj)), θ)− uj(`k(θ̂, (mj, σj)), θ) > 0.

Thus, we compute the following:

uj(`
k(θ̂, (m̄j, σj)), θ)− uj(`k(θ̂, (mj, σj)), θ)

= p̄0(u0 − uz) + p̄1(ū1 − uz) + uz − [p0(u0 − uz) + p1(u1 − uz) + uz]

= (p̄1 − p1)(ū1 − u0) + (p̄1 − p0)(u0 − uz) + (p̄0 − p1)(u0 − uz) + p1(ū1 − u1)

> 0,

where the strict inequality follows because (p̄1−p0)(u0−uz) ≥ 0, (p̄0−p1)(u0−uz) ≥
0, p1(ū1 − u1) ≥ 0, and (p̄1 − p1)(ū1 − u0) > 0. This contradicts the hypothesis
that σ is a Nash equilibrium in the game ΓK(θ, u). �

Step 6.b: πmini = πmax
i .

Proof of Step 6.b: Assume, by way of contradiction, that πmini < πmax
i . We

then use Step 6.a to conclude that, for each q ∈ {0, · · · , K − 1}, P σ
i (q|θ̂) = πmini

implies P σ
j (b1(q)|θ̂) = 0. This implies πminj = 0 so that πminj < πmax

j . We then
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establish the counterpart of Step 6.a by swapping the roles of i and j and replacing
the function b1(q) with the function b0(q), where we define b0(q) ∈ {0, . . . , K − 1}
such that q + b0(q) (mod K) = 0. Therefore, we conclude that, for each q ∈
{0, · · · , K − 1}, if P σ

j (q|θ̂) = πminj , then P σ
i (b0(q)|θ̂) = 0. Hence, πmini = 0.

Then, we can set q ∈ {0, . . . , K − 1} such that P σ
i (q|θ̂) = 0. By Step 6.a, we

have
P σ
j (b1(q)|θ̂) = P σ

j (1− q (mod K)|θ̂) = 0.

By Step 6.a, we also have

P σ
i (b0(b1(q))|θ̂) = P σ

i (q − 1 (mod K)|θ̂) = 0.

We use Step 6.a repeatedly to conclude that P σ
i (q|θ̂) = P σ

j (q|θ̂) = 0 for each

q ∈ {0, . . . , K−1}. However, this is simply impossible, as we have
∑K−1

q=0 P σ
i (q|θ̂) =∑K−1

q=0 P σ
j (q|θ̂) = 1. Therefore, we must have πmini = πmax

i . �

Since we can replace the role of agent i with that of agent j in the entire
argument, we conclude that πmini = πmaxi and πminj = πmaxj . Thus, we have

P σ
i (q|θ̂) = P σ

j (q|θ̂) = 1/K for each q ∈ {0, . . . , K − 1}. This implies that

P σ(q = 0|θ̂) + P σ(q = 1|θ̂) ≤ 2/K. By Step 4, we conclude that there exists
K ∈ N large enough so that ui(`

K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I. This com-
pletes the proof. �

Step 7: Let σ ∈ NE(ΓK(θ, u)), where we later choose K large enough. Assume
that there exists θ̂ ∈ Θ such that P σ(θ̂) > 0 and P σ(q|θ̂) > 0 for all q ∈ {0, 1}. If
`K(θ̂, σ) 6= f(θ) and f(θ) is Cθ̂-acceptable at (θ, u), then there exists K ∈ N large

enough so that ui(`
K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I.

Proof of Step 7: Fix σ ∈ NE(ΓK(θ, u)). Assume that there exists θ̂ ∈ Θ
such that P σ(θ̂) > 0 and P σ(q|θ̂) > 0 for all q ∈ {0, 1}. Assume further that
f(θ) is Cθ̂-acceptable at (θ, u). Then, there exist q ∈ {0, 1} and i ∈ Gθ̂ such that
f(θ) ∈ Cθ̂(i), where i = wθ̂(q). We write Gθ̂ = {i, j} in the rest of the proof. By
Property 1-ii of Condition COM , we have f(θ) ∈ Cθ̂(i) ∩ Cθ̂(j).13 By Property
4 of Condition COM , f(θ) is agent i’s unique maximal element in Cθ̂(i) so that
C∗
θ̂
(i, θ) = {f(θ)}. Similarly, by Property 4 of Condition COM , f(θ) is also agent

j’s unique maximal element in Cθ̂(j) so that C∗
θ̂
(j, θ) = {f(θ)}. Step 3 implies that

13When there are only two agents, we do not need to assume f(θ) ∈ Cθ̂(i) ∩ Cθ̂(j). The

hypothesis that f(θ) is Cθ̂-acceptable at (θ, u) and f(θ) 6= `K(θ̂, σ) implies that both agents must

strictly prefer f(θ) to lottery `K(θ̂, σ). When there are only two agents, this implies that `K(θ̂, σ)
is strictly Pareto dominated by f(θ). Hence, we can conclude that we can ignore σ because it is
“uncompelling” without the help of Property 1-ii of Condition COM .
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for each q ∈ {0, 1}, we have supp(`Kq (θ̂, σ)) ∈ C∗
θ̂
(wθ̂(q), θ), hence we can conclude

that both `K0 (θ̂, σ) = f(θ) and `K1 (θ̂, σ) = f(θ). Using the notation developed in
Step 2, we can write

`K(θ̂, σ) = P σ(q = 0|θ̂)(`K0 (θ̂, σ)− zθ̂) + P σ(q = 1|θ̂)(`K1 (θ̂, σ)− zθ̂) + zθ̂

=
(
P σ(q = 0|θ̂) + P σ(q = 1|θ̂)

)
(f(θ)− zθ̂) + zθ̂.

Moreover, since we assume `K(θ̂, σ) 6= f(θ), zθ̂ is induced with positive prob-
ability. By Property 3 of Condition COM , we have ui(f(θ), θ) − ui(zθ̂, θ) ≥ ε

for all i ∈ I and u ∈ Û . By the continuity of expected payoff, this implies that
ui(`

K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I and u ∈ Û . �

By Step 2, we have the following expressions:

gK(σ) =
∑
θ̂∈Θ

P σ(θ̂)`K(θ̂, σ) and ui(g
K(σ), θ) =

∑
θ̂∈Θ

P σ(θ̂)ui(`
K(θ̂, σ), θ).

Steps 5, 6 and 7 show that, for a fixed u ∈ Û , we can find a value of K such
that, for every θ, θ̂ ∈ Θ and every i ∈ I, if P σ(θ̂) > 0 and `K(θ̂, σ) 6= f(θ), then
we have ui(`

K(θ̂, σ), θ) < ui(f(θ, θ). By Property 3 of Condition COM , we have
that there exists ε > 0 such that ui(f(θ), θ)− ui(zθ̂, θ) ≥ ε for all possible cardinal

utility functions u ∈ Û . Therefore, we can choose K ∈ N large enough such that
ui(`

K(θ̂, σ), θ) < ui(f(θ), θ) hold for all u ∈ Û (and all θ, θ̂ ∈ Θ, i ∈ I). We
summarize this into the following step:

Step 8: There exists K ∈ N large enough such that, for any u ∈ Û and σ ∈
NE(ΓK(θ, u)), it follows that either gK(σ) = f(θ) or ui(g

K(σ), θ) < ui(f(θ), θ) for
all i ∈ I.

Combining Steps 1 and 8, we conclude that there exists K ∈ N large enough
such that the SCF f is compellingly implementable with respect to Û by the
mechanism ΓK . This completes the proof of the theorem. �

6 Indispensability of Condition COM

In this section, we show that Condition COM is indispensable for our Theorem 1.
We show this by arguing that Properties 1-i and 2 in Condition COM are in fact
implied by the very requirement of our compelling implementation, while for each
of Properties 1-ii, 3 and 4, we will provide an example that satisfies all but one
of Condition COM in which our canonical mechanism fails to achieve compelling
implementation.
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6.1 Properties 1-i and 2 of Condition COM

We show that if the SCF f is compellingly implementable by our canonical mech-
anism Γk, Properties 1-i and 2 of Condition COM are satisfied.

Proposition 2 Let E = (I, A,Θ, (�θi )i∈I,θ∈Θ, Û) be a finite environment. If the

SCF f is compellingly implementable with respect to Û by the mechanism Γk, then
the finite environment E satisfies Properties 1-i and 2 of Condition COM with
respect to f and Û .

Proof: By Condition COM , we first define a collection of forums, (Fθ̃)θ̃∈Θ =
{Gθ̃, wθ̃, Cθ̃, zθ̃}θ̃∈Θ.

Assume, on the contrary, that Property 1-i is violated. That is, there exist
θ ∈ Θ and u ∈ Û such that f(θ) is not Cθ-acceptable at (θ, u). This implies that
there exist a player i ∈ Gθ and a lottery l ∈ Cθ(i) such that ui(l, θ) > ui(f(θ), θ).
Since the SCF f is compellingly implementable by the mechanism Γk, there exists
m ∈ pureNE(Γk(θ)) such that g(m) = f(θ) and m1

j = θ for each j ∈ I (i.e., all
agents agree upon the true state θ). We define m̄2

i [θ] ∈ {0, . . . , k − 1} such that

m̄2
i [θ] +m2

j [θ] (mod k) = w−1
θ (i),

where j ∈ Gθ\{i}. We also define m̄3
i [θ] = l. Then, we define m̄i to be identical to

mi except that m2
i [θ] is replaced by m̄2

i [θ] and m3
i [θ] is replaced by m̄3

i [θ]. It then
follows from the construction of m and m̄i that g(m) = f(θ) and g(m̄i,m−i) = l.
Therefore, m̄i is a profitable deviation from m in the game Γk(θ), contradicting
the hypothesis that m ∈ pureNE(Γk(θ)). This proves that Property 1-i holds if
the mechanism Γk C-implements f .

Next, assume, on the contrary, that Property 2 is violated. That is, there exist
θ, θ̂ ∈ Θ, u ∈ Û , and a lottery l 6= f(θ) such that l is Cθ̂-acceptable at (θ, u). This
implies that there exists i∗ ∈ Gθ̂ such that l ∈ Cθ̂(i∗). We assume, without loss of
generality, that i∗ = wθ̂(0). For all i ∈ I, we define

• m̂1
i = θ̂;

• m̂2
i [θ̃] = 0 for all θ̃ ∈ Θ;

• m̂3
i [θ̃] = l for all θ̃ ∈ Θ.

So, we define m̂i = (m̂1
i , (m̂

2
i [θ̃])θ̃∈Θ, (m̂

3
i [θ̃])θ̃∈Θ) so that we can write m̂ = (m̂i)i∈I

as a message profile. We claim that m̂ ∈ pureNE(Γk(θ)). By construction of the
mechanism and the fact that n ≥ 3, no agent can unilaterally change the agreed
upon state θ̂ by changing the first component of their message. By construction
of the mechanism, Gθ̂ contains only two agents who can affect the outcome of
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the mechanism. This implies that all the other agents are left with no profitable
deviations. Moreover, by construction of the mechanism, the only other outcomes
attainable by a unilateral deviation of any agent in Gθ̂ are the ones in the image of
Cθ̂. Since the lottery l is Cθ̂-acceptable at (θ, u) and g(m̂) = l, neither of the two
agents in Gθ̂ can find a profitable deviation from m̄. Hence, m̂ ∈ pureNE(Γk(θ)),
which contradicts the hypothesis that the mechanism Γk C-implements f . Thus,
Property 2 holds. �

6.2 Property 3 of Condition COM

We argue by means of an example that Property 3 of Condition COM is indispens-
able if we are to achieve compelling implementation by our canonical mechanism.
To do this, we revisit Example 1 in Section 5.2 but we set Û = U , which is the set
of all possible cardinal utility functions consistent with the ordinal preferences in
the example. It is easy to see that the collection of forums Fθ̃∈Θ we constructed
in Section 5.2 continue to satisfy Properties 1, 2, and 4 of Condition COM even if
we replace U ε with U .

We claim that for any integer K ∈ N with K ≥ 3, there exist u ∈ U and strategy
profile σ ∈ NE(Γk(θc, u)) such that ui(g(σ), θc) > ui(f(θc), θc) for all i ∈ I. We
define σ as follows:

• σ1
i (θa) = 1 for all i ∈ I, i.e., all agents commonly announce θa.

• σ2
i [θ̃](k̃) = 1/K for each i ∈ I, θ̃ ∈ Θ, and k̃ ∈ {0, . . . , K − 1}, each agent

announces every integer in {0, . . . , K − 1} with equal probability.

• σ3
0[θa](a) = σ3

0[θb](∅) = σ3
0[θc](∅) = σ3

0[θd](c) = 1. Here, agent 0 always
propose a when they agree on θa.

• σ3
1[θa](b) = σ3

1[θb](b) = σ3
1[θc](c) = σ3

1[θd](∅) = 1. Here, agent 1 always
proposes b when they agree on θa.

• σ3
2[θa](∅) = σ3

2[θb](a) = σ3
2[θc](c) = σ3

2[θd](c) = 1. As agent 2 is not a part of
forum θa, he cannot propose any alternative when agents agree on θa.

By construction of the mechanism and the fact that n = 3, no agent can
unilaterally change the agreed upon state θa by changing the first component of
their message. By construction of the mechanism, Gθa contains only agents 0 and
1 who can affect the outcome of the mechanism. This implies that agent 2 is left
with no profitable deviations. Moreover, by construction of the mechanism, the
only other outcomes attainable by a unilateral deviation of either agents 0 or 1 in
Gθa are the ones in the image of Cθa .
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We consider the game ΓK(θc, u). In this game, the constructed σ dictates
that agent 0 already chooses his best outcome a in state θc, while agent 1 already
chooses his best outcome b in state θc. Therefore, agents 0 and 1 have no profitable
deviations by changing the third component of their message. It thus remains to
show that agents 0 and 1 have no profitable deviations by changing the second
component of their message. Given σ1 and σ2, any deviation m0 restricted to the
second component of agent 0’s message induces the following lottery:

`K(θa, (m0, σ1, σ2)) =
1

K
a+

1

K
b+

(
1− 2

K

)
z = `K(θa, σ),

where `K(θa, σ) denotes the lottery induced by σ in which the agreed-upon state is
θa. Similarly, given σ0 and σ2, any deviation m1 restricted to the second component
of agent 1’s message induces the following lottery:

`K(θa, (m1, σ0, σ2)) =
1

K
a+

1

K
b+

(
1− 2

K

)
z = `K(θa, σ).

So, agents 0 and 1 cannot change the induced lottery by their unilateral deviation.
Thus, σ ∈ NE(ΓK(θc, u)) for any u ∈ U .

For any K ∈ N, we can select ε1, ε2 ∈ (0, 1) such that

2(1− ε1)

K
> ε2,

Since U includes all possible cardinal utility functions consistent with the under-
lying ordinal preferences, we can select u ∈ U such that u0(a, θc) − u0(b, θc) =
u1(b, θc) − u1(a, θc) = u2(a, θc) − u2(b, θc) = ε1 and ui(c, θc) = ε2 for all i ∈ I.
By Step 2, we have that ui(g

K(σ), θc) = ui(`
K(θa, σ), θc) for all i ∈ I and P σ(q =

0|θa) = P σ(q = 1|θa) = 1/K. Therefore, for any i ∈ I, we have

ui(g
K(σ), θc) =

2(1− ε1)

K
,

ui(f(θc), θc) = ui(c, θc) = ε2.

This implies that, for any K ∈ N, there exists u ∈ U such that ui(g
K(σ), θc) >

ui(f(θc), θc) for all i ∈ I. Thus, the SCF f is not compellingly implementable in
this example. �

6.3 Property 4 of Condition COM

In what follows, we will first present an environment in which Condition COM
holds, then modify it in a specific way so that only a specific property is violated.
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Let E∗ = {I, A,Θ, (�θi )i∈I,θ∈Θ} be an environment such that I = {0, 1, 2, 3}, Θ =
{θ, θ′}, A = {a, b, c}, and preferences (�θi ) are directly given by their cardinal
utilities in Table 6. We therefore assume Û = {u} - a singleton set. We consider
this restriction to the singleton set inconsequential because the same argument we
provide below goes through with any Û as long as it contains {u}.

ui(a, θ), ui(a, θ
′) ui(b, θ), ui(b, θ

′) ui(c, θ), ui(c, θ
′)

i = 0 1 , 0.8 0.8 , 0 0 , 1
i = 1 0 , 1 1 , 0 0.8 , 0.8
i = 2 0 , 0.8 0.8 , 1 1 , 0
i = 3 0 , 1 1 , 0 0.8 , 0.8

Table 6: The environment E∗

The SCF f is specified as follows: f(θ) = (0.1, 0.8, 0.1), in which (0.1, 0.8, 0.1)
denotes the lottery which induces a with probability 0.1, b with probability 0.8,
and c with probability 0.1. Using the same notation, we have f(θ′) = (0.8, 0.1, 0.1).

This environment satisfies Condition COM with the following two forums:

• At state θ, we have Gθ = {1, 2}, wθ(0) = 1, wθ(1) = 2, Cθ(1) = {zθ, a, c, f(θ)}
and Cθ(2) = {zθ, f(θ)}, where zθ = (1/3, 1/3, 1/3).

• At state θ′, we have Gθ′ = {1, 0}, wθ′(0) = 1, wθ′(1) = 0, Cθ′(1) = {zθ′ , b, c, f(θ′)}
and Cθ′(0) = {zθ′ , f(θ′)}, where zθ′ = (1/3, 1/3, 1/3).

Using the utility values in Table 6, we compute u0(f(θ′), θ) = u1(f(θ), θ) =
u1(f(θ′), θ′) = u2(f(θ), θ′) = 0.88, u0(f(θ), θ) = u0(f(θ′), θ′) = u2(f(θ), θ) =
u2(f(θ′), θ′) = 0.74, u1(f(θ), θ′) = u1(f(θ′), θ) = 0.18, and ui(z, θ) = ui(z, θ

′) = 0.6
for all i ∈ I. We shall verify that the environment E∗ satisfies Condition COM
with respect to f and U :

• Property 1-i

f(θ) is Cθ-acceptable at (θ, u) because f(θ) is the best outcome within
Cθ(1) = {zθ, a, c, f(θ)} for agent 1 and the best outcome within Cθ(2) =
{zθ, f(θ)} for agent 2. f(θ′) is Cθ′-acceptable at (θ′, u) because f(θ′) is the
best outcome within Cθ′(1) = {zθ′ , b, c, f(θ′)} for agent 1 and the best out-
come within Cθ′(0) = {zθ′ , f(θ′)} for agent 0.

• Property 1-ii

We have f(θ) ∈ {zθ, a, c, f(θ)} ∩ {zθ, f(θ)} = Cθ(1) ∩ Cθ(2) as well as
f(θ′) ∈ {zθ′ , b, c, f(θ′)} ∩ {zθ′ , f(θ′)} = Cθ′(1) ∩ Cθ(0). Likewise, f(θ′) /∈
{zθ, a, c, f(θ)}∩{zθ, f(θ)} = Cθ(1)∩Cθ(2) as well as f(θ) /∈ {zθ′ , b, c, f(θ′)}∩
{zθ′ , f(θ′)} = Cθ′(1) ∩ Cθ(0).
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• Property 2

f(θ) is the only outcome that is Cθ-acceptable at (θ, u). Since u1(b, θ) >
u1(f(θ′), θ) while u0(f(θ′), θ) > u0(b, θ), there are no outcomes that are Cθ′-
acceptable (θ, u). Likewise, f(θ′) is the only outcome that is Cθ′-acceptable
at (θ

′
, u). Since u1(a, θ′) > u1(f(θ), θ′) while u2(f(θ), θ′) > u2(a, θ), there are

no outcomes that are Cθ-acceptable at (θ, u).

• Property 3

Since we have ui(zθ, θ) = ui(zθ′ , θ
′) = 0.6 for any i ∈ I and mini∈I ui(f(θ), θ) =

mini∈I ui(f(θ′), θ′) = 0.74, Property 3 holds.

• Property 4

As we argue above, there are no outcomes that are either Cθ-acceptable at
(θ
′
, u) or Cθ′-acceptable at (θ, u). Moreover, at state θ, f(θ) is the unique

best outcome in Cθ(1) for agent 1 and the unique best outcome in Cθ(2) for
agent 2. Likewise, at state θ′, f(θ′) is the unique best outcome in Cθ′(1) for
agent 1 and the unique best outcome in Cθ′(0) for agent 0. Hence, Property
4 holds.

To construct an environment in which only Property 4 is violated, we modify
the environment by adding the lottery y = (0.16, 0.5, 0.34) to Cθ(2). Under cardinal
utility function u, we have that u2((0.16, 0.5, 0.34), θ) = 0.74 = u2(f(θ), θ), hence
violating Property 4. Let σ be a strategy profile satisfying the following properties:

• σ1
i (θ) = 1 for all i ∈ I;

• σ2
0[θ̃](0) = σ2

1[θ̃](0) = σ2
3[θ̃](0) = 1 and σ2

2[θ̃](0) = σ2
2[θ̃](1) = 1/2 for all

θ̃ ∈ Θ, meaning that when state θ is selected half of the time agent 1 wins
the modulo game and the other half the winner is agent 2;

• σ3
1[θ̃](f(θ̃)) = 1 for all θ̃ ∈ Θ, σ3

2[θ](f(θ)) = 0.99, σ3
2[θ](y) = 0.01, σ3

2[θ′](∅) =
1, σ3

3[θ̃](∅) = 1 and σ3
0[θ](∅) = 1 and σ3

0[θ
′
](f(θ

′
)) = 1, meaning that at state

θ, when agent 1 wins the modulo game, he always selects f(θ); and when
agent 2 is the winner, he chooses f(θ) with probability 0.99 and y with the
remaining probability.

The key reason why σ is a Nash equilibrium in the game Γk(θ, u) is that agent 2
is indifferent between y and f(θ), while agent 1 has no profitable deviations because
sending any other integer increases the probability that outcome zθ is realized. It
thus follows that σ ∈ NE(Γk(θ, u)) so that u2(g(σ), θ)) = u2(f(θ), θ)). This implies
that that compelling implementation fails. �
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6.4 Property 1-ii of Condition COM

We first modify the environment E∗ in the previous section by removing f(θ) from
Cθ(1), thus violating Property 1-ii. We next eliminate c from Cθ(1) and instead add
the following lottery y

′
= (2/9, 7/18, 7/18) to Cθ(1) so that u1(y

′
, θ) = u2(y

′
, θ) =

0.7. Since both f(θ) and c are no longer in Cθ(1), y
′
is the new unique best outcome

for agent 1 in Cθ(1) at state θ. Finally, we modify agent 3’s utilities at state θ as
follows: u3(a, θ) = 0, u3(b, θ) = 0.51, and u3(c, θ) = 1. Under these new utility
values, we note that u3(f(θ), θ) = 0.508, u3(zθ, θ) ≈ 0.503 and u3(y, θ) ≈ 0.587.
We also note that none of these modifications violate any of the other properties in
Condition COM . Let σ be a strategy profile satisfying the following characteristics:

• σ1
i (θ) = 1 for all i ∈ I;

• σ2
1[θ̃](0) = 7/9, σ2

1[θ̃](1) = 2/9, σ2
2[θ̃](0) = 14/23, σ2

2[θ̃](1) = 9/23, and σ2
0[θ̃](0) =

σ2
3[θ̃](0) = 1 for all θ̃ ∈ Θ. This implies that P σ(q = 0|θ) = 98/207,
P σ(q = 1|θ) = 91/207, and P σ(q = 2|θ) = 18/207;

• σ3
3[θ̃](∅) = 1 for all θ̃ ∈ Θ, σ3

1[θ](y
′
) = σ3

1[θ′](b) = 1 σ3
2[θ](f(θ)) = 1,

σ3
0[θ
′
](f(θ

′
)) = 1, σ3

2[θ
′
](∅) = 1, and σ3

0[θ](∅) = 1. This implies that at
state θ whenever agent 1 wins the modulo game, he always selects y

′
, and

when agent 2 is the winner, he always chooses f(θ).

We claim σ ∈ NE(Γk(θ, u)). As we discuss in other examples, no agent can find
profitable deviations by changing the first component of his messages because all
agents announce θ. This implies that P (mi,σ−i)(θ) = 1 for any i ∈ I and mi ∈ Mi.
By construction of the mechanism, Gθ contains only agents 1 and 2 who can affect
the outcome of the mechanism. This implies that agents 0 and 3 are left with
no profitable deviations when they agree on θ. Since agents 1 and 2 choose their
unique best outcome in the third component of their message under σ, they find
no profitable deviations by changing the third component of their message. Using
the notation developed in the proof of Theorem 1, we have

gk((mi, σ−i)) = P (mi,σ−i)(q = 0|θ)(y − zθ) + P (mi,σ−i)(q = 1|θ)(f(θ)− zθ) + zθ.

This shows that the only deviations with which we are concerned are the ones
changing the second component of their message, which induces a change in
P (mi,σ−i)(q = 0|θ) and P (mi,σ−i)(q = 1|θ). Moreover, for such a deviation to be
profitable, it must either increase P (mi,σ−i)(q = 0|θ)+P (mi,σ−i)(q = 1|θ) or increase
P (mi,σ−i)(q = 1|θ) without decreasing P (mi,σ−i)(q = 0|θ) + P (mi,σ−i)(q = 1|θ). This
rules out any message m1 with m2

1[θ] /∈ {0, 1}, since these messages would increase
the probability that zθ is realized and decrease the probability that f(θ) is realized.
Similarly, any message m2 with m2

2[θ] /∈ {0, 1} is an unprofitable deviation. Hence,
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the only profitable deviation from σ, if any, is to change P σ
1 (q = 0|θ), P σ

1 (q = 1|θ),
P σ

2 (q = 0|θ), or P σ
2 (q = 1|θ), all of which are the probabilities that agents 1 and 2

announce integers 0 and 1. For each q ∈ {0, 1}, let mq
2 ∈M2 be a deviation message

such that m1,q
2 = θ; m2,q

2 [θ̃] = q for each θ̃ ∈ Θ; m3,q
2 [θ] = f(θ); m3,q

2 [θ
′
] = ∅.

However, given the strategies of the other agent, both agent 1 and 2 are indifferent
between sending each of these two integers:

P
(m0

2,σ−2)
1 (q = 0|θ)u2(y, θ) + P

(m0
2,σ−2)

1 (q = 1|θ)u2(f(θ), θ)

= P
(m1

2,σ−2)
1 (q = 0|θ)u2(f(θ), θ) + P

(m1
2,σ−2)

1 (q = 1|θ)u2(zθ, θ)

In the equation above, the left hand side represents the expected payoff for agent
2 to play m0

2 given σ−2, while the right hand side represents the expected payoff
for agent 2 to play m1

2 given σ−2. For each q ∈ {0, 1}, let mq
1 ∈M1 be a deviation

message such that m1,q
1 = θ; m2,q

1 [θ̃] = q for each θ̃ ∈ Θ; m3,q
1 [θ] = m3,q

1 [θ
′
] = y

′
;

m3,q
2 [θ

′
] = ∅.

P
(m0

1,σ−1)
2 (q = 0|θ)u1(y

′
, θ) + P

(m0
1,σ1)

2 (q = 1|θ)u1(f(θ), θ)

= P
(m1

1,σ−1)
2 (q = 0|θ)u1(f(θ), θ) + P

(m1
1,σ−1)

2 (q = 1|θ)u1(zθ, θ).

In the equation above, the left hand side represents the expected payoff for agent 1
to play m0

1 given σ−1, while the right hand side represents the expected payoff for
agent 1 to play m1

1 given σ−1. This shows that there are no profitable deviations
from σ so that σ ∈ NE(Γk(θ, u)).

In this equilibrium σ, although both agents want agent 2 to be the winner of the
modulo game, the lack of coordination causes agent 1 to win the modulo game with
positive probability. Given the strategy profile of other agents, both agents 1 and 2
are indifferent between sending either 0 or 1 in the modulo game, which induces a
positive probability that agent 1 is the winner. When that happens, agent 1 chooses
y
′

as his best outcome within Cθ(1) in state θ, while agent 3 strictly prefers y
′

to
f(θ) in state θ. Thus, we have u3(g(σ), θ) ≈ 0.545 > 0.508 = u3(f(θ), θ). This
implies that compelling implementation fails.

7 The Main Result When n = 2

Condition COM guarantees that each forum essentially induces a subgame with
only two agents. Therefore, it is natural to ask if Condition COM is also suf-
ficient to achieve compelling implementation when there are only two agents. It
is well known that two-person pure Nash implementation is much more demand-
ing than when there are at least three agents.14 This same difficulty persists in

14Dutta and Sen (1991) and Moore and Repullo (1990) independently identify a necessary and
sufficient condition (called Condition β and Condition µ2, respectively) for two-person pure Nash
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compelling implementation because compelling implementation implies pure Nash
implementation. This difficulty boils down to how they agree on the state θ̂ in
the mechanism. When there are three or more agents, if all agents announce the
same state θ̂, then no agent can change θ̂. This, in turn, limits the set of possible
outcomes that an agent can induce by a unilateral deviation to the outcomes in
Cθ̂ alone. However, this argument fails because a two-person environment allows a

single agent to induce a change in θ̂ by changing his own message. As a result, the
set of outcomes that agent can achieve through a unilateral deviation becomes (po-
tentially) larger than Cθ̂. Thus, we need to modify both our canonical mechanism
and the notions of forums.

Our first step is to modify the notion of forums so that our canonical mechanism
and Condition COM are both redefined. With I = {0, 1}, both Gθ̂ and wθ̂ become
redundant in the definition of Condition COM . We also define a punishment
function z to depend on both agents’ state announcements. Hence, we modify our
definition of forums from the one in Section 5.

We say that F2 = ({Cθ}θ∈Θ, z) is a forum-2 if it satisfies the following proper-
ties:

1. C : {0, 1}⇒ ∆(A) is a choice correspondence; and

2. z : Θ × Θ → ∆(A) is a function such that, for all θ0, θ1 ∈ Θ, z(θ0, θ1) ∈
Cθ1(0) ∩ Cθ0(1).

We now introduce the two-person counterpart of Condition COM , which we
call Condition COM2.

Definition 4 The environment E =
(
{0, 1}, A,Θ, (�θi )i∈{0,1},θ∈Θ, Û

)
satisfies Con-

dition COM2 with respect to the SCF f if there exists a forum-2 F2 = ({Cθ}θ∈Θ, z)
such that:

1. For every θ ∈ Θ and u ∈ Û , f(θ) is Cθ-acceptable at (θ, u).

2. For every θ, θ̂ ∈ Θ and u ∈ Û , if x ∈ A is is Cθ̂-acceptable (θ, u), then
x = f(θ).

3. There exists ε > 0 such that, for all θ, θ0, θ1 ∈ Θ, ui(f(θ), θ)−ui(z(θ0, θ1), θ) ≥
ε for all i ∈ {0, 1} and all u ∈ Û .

4. For all θ, θ̂ ∈ Θ, u ∈ Û , i ∈ {0, 1}, and x ∈ Cθ̂, if f(θ) is Cθ̂-acceptable at
(θ, u), then ui(x, θ) = ui(f(θ), θ) implies x = f(θ).

implementation.
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5. For each θ, θ0, θ1 ∈ Θ and each u ∈ Û , there exists either a(θ0,θ1) ∈ Cθ1(0) such
that u0(a(θ0,θ1), θ) > u0(z(θ0, θ1), θ) or b(θ0,θ1) ∈ Cθ0(1) such that u1(b(θ0,θ1), θ) >
u1(z(θ0, θ1), θ);

For each k ≥ 2, we define a new canonical mechanism, Γ̃k = (Mk, g̃k). For
each i ∈ {0, 1}, agent i’s message space is given by Mk

i ≡ M1
i ×M2

i ×M3
i . Each

component of the message space is identical to the one introduced to prove Theorem
1. Let mi = (m1

i ,m
2
i ,m

3
i ) ∈ Mk

i be agent i’s generic message such that (i) m1
i ∈

M1
i = Θ; (ii) m2

i = (m2
i [θ̃])θ̃∈Θ ∈ M2

i = ×θ̃∈ΘM
2
i [θ̃] where m2

i [θ̃] ∈ {0, . . . , k − 1};
and (iii) m3

i = (m3
i [θ̃])θ̃∈Θ ∈ M3

i ≡ ×θ̃∈ΘM
3
i [θ̃] where M3

i [θ̃] = Cθ̃(i). Throughout

this section, we write Γ̃k and g̃k as the two-person counterparts of Γk and gk,
respectively, used for Theorem 1.

The outcome function g̃k induces the following rules in a similar way gk used
for Theorem 1 is defined: for each m ∈Mk,

Rule 1: If there exists θm ∈ Θ such that m1
0 = m1

1 = θm and i∗ ∈ {0, 1} such that
[m2

0[θm] +m2
1[θm] (mod k)] = i∗, then

g̃k(m) = m3
i∗ [θ

m].

In words, Rule 1 says that if two agents agree on the state θm, they play the
modified modulo game so that the modulo game winner - if one is selected - dictates
the lottery which needs to be chosen in his choice set.
Rule 2: Otherwise,

g̃k(m) = z(m1
0,m

1
1).

In words, Rule 2 says that if either the two agents do not agree on the state or if
they agree upon a state but no modulo winner is selected, then their distinct state
announcements m1

0 and m1
1 jointly determine the lottery by z(m1

0,m
1
1).

Before we prove our main theorem in this section, we first establish the following
result.

Lemma 4 If a finite environment E = ({0, 1}, A,Θ, (�θi )i∈{0,1},θ∈Θ, Û) satisfies
Condition COM2 with respect to f , then there exists a collection of forums {Fθ̃}θ̃∈Θ =
{Gθ̃, wθ̃, Cθ̃, zθ̃}θ̃∈Θ which satisfies Properties 1-i, 2, 3 and 4 of Condition COM
with respect to f .

Proof: For each θ ∈ Θ, we set Gθ = {0, 1} and wθ(i) = i for all i ∈ {0, 1}.
By our hypothesis, there is a collection of choice sets {Cθ}θ∈Θ and a punishment
function z that satisfy Properties 1 through 4 of Condition COM2. For each θ ∈ Θ,
we set zθ = z(θ, θ). We first claim that {Fθ̃}θ̃∈Θ = {Gθ̃, wθ̃, Cθ̃, zθ̃}θ̃∈Θ is a collection
of forums. It is immediate to see that the constructed collection of forums satisfies
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Properties 1 through 3 of the definition of forums. Property 4 of a forum follows
from Property 2 of a forum-2, which implies z(θ, θ) ∈ Cθ(0) ∩ Cθ(1).

It remains to show that all properties except Property 1-ii of Condition COM
are satisfied. First, we observe that Property 1 of Condition COM2 implies Prop-
erty 1-i of Condition COM . Second, we observe that Properties 2 and 4 of Condi-
tion COM2 imply Properties 2 and 4 of Condition COM . Finally, we observe that
Property 3 of Condition COM2 implies Property 3 of Condition COM because it
ensures that ui(f(θ), θ)− ui(z(θ̂, θ̂), θ) ≥ ε for all θ, θ̂ ∈ Θ, u ∈ Û , and i ∈ I. �

We state our second theorem for the case of two agents.

Theorem 2 Suppose that the two-person finite environment

E =
(
{0, 1}, A,Θ, (�θi )i∈I,θ∈Θ, Û

)
satisfies Condition COM2 with respect to f .

Then, the SCF f is compellingly implementable with respect to Û .

Proof : The proof is in the Appendix. �

8 Relation with pure Nash Implementation

In Step 1 in the proof of Theorem 1, we show that our canonical mechanism
achieves pure Nash implementation under Properties 1-i, 1-ii and 2 of Condition
COM . These properties are, therefore, sufficient for pure Nash implementation by
our mechanism. It is then natural to ask how they compare to the necessary and
sufficient conditions in Moore and Repullo (1990).

It turns out that Properties 1-i and 2 are more restrictive than Condition µ of
Moore and Repullo (1990). The reason for this is simply that our mechanism is dif-
ferent from the mechanism used in Moore and Repullo (1990). In sum, Properties
1-i and 2 of Condition COM allow our canonical mechanism to achieve compelling
implementation, while they impose more stringent requirements on environments
than those only necessary to achieve pure Nash implementation by the mechanism
proposed by Moore and Repullo (1990).

We propose an environment that does not satisfy Properties 1-i and 2 of Con-
dition COM , but in which pure Nash implementation is still possible:

Example 2 Let I = {0, 1, 2} be the set of agents, A = {a, b, c, d} be the set of
social alternatives, Θ = {θ, θ′} be the set of states. Let f be an SCF such that
f(θ) = a, f(θ′) = c. Agent 0’s state dependent preferences over A are given by

�θ0= a �θ0 b �θ0 d �θ0 c and �θ′0 = a �θ′0 b �θ′0 c �θ′0 d.
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Agent 1’s state dependent preferences over A are given by

�θ1= a �θ1�θ2 b �θ1 d �θ1 c and �θ′1 = b �θ′1 a �θ′1 c �θ′1 d.

Finally, agent 2’s preferences over A at state θ are identical to those by agent 0
in that state, while agent 2’s preferences over A at state θ

′
are identical to those

by agent 1 in that state. We summarize this environment as E∗∗ = (I, A,Θ, (�θi
)i∈I,θ∈Θ)

Assume that the environment E∗∗ admits a collection of forums {Fθ̃}θ̃∈Θ =

{Gθ̃, wθ̃, Cθ̃, zθ̃}θ̃∈Θ. We also set Û = U , which is the set of all possible cardinal

utility functions consistent with (�θ̃i )θ̃∈Θ. In the rest of the argument, we fix u ∈ Û
arbitrarily. We claim that, if Fθ′ satisfies Property 1-i of Condition COM , it
violates Property 2 of Condition COM . Notice that, for any i ∈ Gθ′ , Property 1-i
requires that Cθ′(i) be a subset of agent i’s lower contour set of c at state θ′. For
all three agents, this lower contour set is equal to {c, d}. Moreover, at state θ, all
three agents have identical preferences over {c, d}. This implies that either c or d
must be Cθ′-acceptable at (θ, u).15 This violates Property 2, as f(θ) = a 6= c, d. In
particular, if the SCF f is compellingly implementable by our canonical mechanism
Γk, there necessarily exists m ∈ pureNE(Γk(θ)) such that g(m) ∈ {c, d}.

Despite the failure of compelling implementation in this example, pure Nash
implementation is still possible if we adopt a different mechanism than our canon-
ical mechanism. Consider the 2-agent mechanism depicted in Table 7, in which
only the messages from agents 0 and 1 are used to determine the outcome and
agent 2 is excluded from the mechanism:

g(m) Agent 1
m1

1 m2
1 m3

1

m1
0 c d d

Agent 0 m2
0 d a b

m3
0 d b a

Table 7: The mechanism used by Example 4 of Jackson (1992).

This is the same mechanism featured in Example 4 of Jackson (1992) with
the same SCF as in the current example. In addition, the preferences in this
example are very similar to the ones in Jackson’s (1992) example. In this case,
we have Gθ = Gθ′ = {0, 1}. The main reason why pure Nash implementation

15We can show this easily. If d ∈ Cθ′(i) for some i ∈ Gθ′ , it follows that d is Cθ′ -acceptable
at (θ, u). Otherwise, we have Cθ′(i) = c for all i ∈ Gθ′ . This implies that c is Cθ′ -acceptable at
(θ, u).
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is possible, while Property 2 is violated, is that in the above mechanism, the
set of outcomes each agent can induce crucially depends on what message the
other agent chooses. If we are only concerned with pure Nash implementation,
there is a loss of generality to use Cθ′(i) ⊆ {c, d} as the set possible outcomes
agent i ∈ Gθ′ can induce in the mechanism. For example, even if d is the best
alternative in the set Cθ′(i) at state θ, this does not necessarily imply that d is a
Nash equilibrium outcome at that state. Indeed, each agent can unilaterally induce
outcome a at any message profile that yields outcome d in the above mechanism. In
contrast, in our mechanism, the set Cθ′(i) defines all possible outcomes agent i ∈ Gθ′
can induce unilaterally, once the forum Fθ′ was selected. This is an important
distinction between our canonical mechanism and other mechanisms such as the
one above, because our mechanism enables us to restrict the set of outcomes an
agent can induce when contemplating a mixed strategy, once the forum has been
selected. The cost of having this feature in our mechanism is the possibility that
some undesirable outcomes can easily be realized as pure Nash equilibria. This
motivates us to propose Condition COM , which shuts down such a possibility,
and nevertheless, allows us to achieve compelling implementation.

9 Conclusion

We present a concept of compelling implementation, which strengthens the re-
quirement of pure-strategy Nash implementation with an additional property that
every mixed strategy equilibrium is either socially desirable or “uncompelling” in
the sense that its outcome is strictly Pareto dominated by the socially desirable
outcome. The main contribution of this paper is to propose Condition COM under
which compelling implementation is possible by finite mechanisms in environments
with at least three agents. We construct an example that satisfies Condition COM
and show that Condition COM is indispensable for our result. We also propose
Condition COM2 to extend our compelling implementation result to the case of
two agents. Our implementing mechanism has desirable properties: transfers are
not needed at all; only finite mechanisms are used; integer games are not invoked;
and agents’ risk attitudes do not matter.

10 Appendix

In this appendix, we provide the proofs we omitted in the main body of the paper.
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10.1 Proof of Lemma 2

Proof of Step 1a: Assume by way of contradiction that there exists an integer
x ∈ {0, . . . , k − 1} such that σ0(x) > 0 and σ1(x) = 0. Then, there are two
possibilities: either there exists x

′ ∈ {0, . . . , k − 1}\{x} such that σ1(x
′
) > 0 or

σ1(k) = 1.
In the first case, let x

′ ∈ arg maxx′′∈{0,...,k−1}\{x} σ1(x
′′
). The expected payoff

for agent 0 when sending message x is

u0(g(x, σ1); θ
′
) =

{
σ1(x+ 1)u0(b; θ

′
) if x < k − 1

σ1(0)u0(b; θ
′
) if x = k − 1,

where we take into account that ui(d; θ
′
) = 0. On the other hand, the expected

payoff for agent 0 when sending message x
′

is given by

u0(g(x, σ1); θ
′
) =

{
σ1(x

′
)u0(a; θ

′
) + σ1(x

′
+ 1)u0(b; θ

′
) if x

′
< k − 1

σ1(x
′
)u0(a; θ

′
) + σ1(0)u0(b; θ

′
) if x

′
= k − 1

As u0(a, θ
′
) > u0(b, θ

′
) and σ1(x

′
) ≥ σ1(x + 1), sending message x

′
is strictly

better for agent 1 than sending x against σ1, thus contradicting the hypothesis
that message x is played with positive probability in the Nash equilibrium σ.

Consider the second possibility where agent 1 sends k with probability 1. Then,
agent 0’s expected payoff of sending message x is u0(g(x, σ1); θ

′
) = 0, while agent

0’s expected payoff of sending message k is u0(g(σ1; k); θ
′
) = u0(c, θ

′
) > 0, con-

tradicting the hypothesis that message x is played with positive probability in the
Nash equilibrium σ. �

Proof of Step 1b: Assume by way of contradiction that there exists x ∈
{0, . . . , k − 1} such that σ1(x) > 0 and σ0(x − 1) = 0 if x ≥ 1 and σ0(k − 1) = 0
if x = 0. Then we decompose our argument into the following two cases: (i) there
exists x

′ ∈ {0, . . . , k − 1} such that σ0(x
′
) > 0 or (ii) σ0(k) = 1.

We first consider Case (i). We assume without loss of generality that x
′ ∈

arg maxx′′∈{0,...,k−1} σ0(x
′′
). Agent 1’s expected payoff of sending message x against

σ0 in the game Γ(θ
′
) is given by

u1(g(σ0, x); θ
′
) = σ0(x)u1(a; θ′),

while agent 2’s expected payoff of sending message (x
′
+ 1 mod k) against σ0 in

the game Γ(θ
′
) is given by

u1(g(σ0, x
′
+1 mod k); θ

′
) =

{
σ1(x

′
)u1(b; θ

′
) + σ0(x

′
+ 1)u1(a; θ

′
) if x

′
< k − 1

σ1(x
′
)u1(b; θ

′
) + σ0(0)u1(a; θ

′
) if x

′
= k − 1,
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where we take into account that u1(d; θ
′
) = 0. Since u1(b; θ

′
) > u1(a; θ

′
) > 0, due

to the way x
′
is defined, we have u1(g(σ0, x

′
+1 mod k); θ

′
) > u1(g(σ0, x); θ

′
), which

contradicts the hypothesis that message x is sent with positive probability in the
Nash equilibrium σ.

We next consider Case (ii). Agent 2’s expected payoff of sending message x
against σ1 in the game Γ(θ

′
) is given by

u1(g(σ0, x); θ
′
) = 0,

where we take into account that u1(d; θ
′
) = 0. On the contrary, agent 2’s expected

payoff of sending message k against σ0 in the game Γ(θ
′
) is given by

u1(g(σ0, k); θ
′
) = u1(c; θ

′
).

Since u1(c; θ
′
) > u1(d; θ

′
) = 0, we have u1(g(σ0, k); θ

′
) > u1(g(σ0, x); θ

′
), contra-

dicting the hypothesis that message x is sent with positive probability in the Nash
equilibrium σ in the game Γ(θ

′
). �

Proof of Step 1c: Assume first that i = 0; that is, there exists x
′ ∈ {0, . . . , k−

1} such that σ0(x
′
) > 0. By Step 1a, we first have that σ1(x

′
) > 0. Second, by

Step 1b, σ1(x
′
) > 0 implies σ0(x

′ − 1) > 0 if x
′ ≥ 1 and σ0(k) > 0 if x

′
= 0. Third,

using Step 1a once again, we conclude that σ1(x
′ − 1) > 0 if x

′ ≥ 1 and σ1(k) > 0
if x

′
= 0. Finally, iterating this argument, we are able to conclude that σ0(x) > 0

and σ1(x) > 0 for all x ∈ {0, . . . , k − 1}.
The case where i = 1 is analogous to the previous one, only that we start the

loop by applying Step 1b first, before Step 1a. This completes the proof of Step
1c. �

Proof of Step 2: Assume by way of contradiction that there exist i ∈ {0, 1}
and x, x

′ ∈ {0, . . . , k − 1} such that σi(x) > σi(x
′
) > 0. By Step 1c, we know that

σi(x̃) > 0 for all x̃ ∈ {0, . . . , k − 1}. Then, we can choose x and x
′

satisfying the
following property:

x ∈ arg max
x̃∈{0,...,k−1}

σi(x̃) and x
′ ∈ arg min

x̃∈{0,...,k−1}
σi(x̃).

By Step 1c, we also know that σj(x̃) > 0 for each x̃ ∈ {0, . . . , k − 1}, where
j ∈ {1, 2}\{i}.

Assume that i = 1. The expected payoff for agent 0 of sending message x
′

against σ1 in the game Γ(θ
′
) is given by

u0(g(x
′
, σ1); θ

′
) =

{
σ1(x

′
)u0(a; θ

′
) + σ1(x

′
+ 1)u0(b; θ

′
) if x

′
< k − 1

σ1(x
′
)u0(a; θ

′
) + σ1(0)u0(b; θ

′
) if x

′
= k − 1
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On the other hand, The expected payoff for agent 0 of sending message x against
σ1 in the game Γ(θ

′
) is given by

u0(g(x, σ1); θ
′
) =

{
σ1(x)u0(a; θ

′
) + σ1(x+ 1)u0(b; θ

′
) if x < k − 1

σ1(x)u0(a; θ
′
) + σ1(0)u0(b; θ

′
) if x = k − 1.

We compute

u0(g(x, σ1); θ
′
)− u0(g(x

′
, σ1); θ

′
)

= [σ1(x)− σ1(x
′
)]u0(a; θ

′
) + [σ1(x+ 1 mod k)− σ1(x′ + 1 mod k)]u0(b; θ

′
)

≥ [σ1(x)− σ1(x
′
)]u0(a; θ

′
)− [σ1(x)− σ1(x

′
)]u0(b; θ

′
)

(∵ [σ1(x+ 1 mod k)− σ1(x′ + 1 mod k)] ≥ −[σ1(x)− σ1(x
′
)], u0(b; θ

′
) > 0)

= [σ1(x)− σ1(x
′
)](u0(a; θ

′
)− u0(b; θ

′
)

> 0.

This implies that message x is a strictly better response for agent 0 against σ1 than
x
′

in the game Γ(θ
′
), contradicting the hypothesis that σ0(x

′
) > 0.

We next assume i = 0. The expected payoff for agent 1 of sending message
x
′
+ 1 against σ0 in the game Γ(θ

′
) is given by

u1(g(σ0, x
′
+ 1); θ

′
) =

{
σ0(x

′
+ 1)u1(a; θ

′
) + σ0(x

′
)u1(b; θ

′
) if x

′
< k − 1

σ0(0)u1(a; θ
′
) + σ0(x′)u1(b; θ

′
) if x

′
= k − 1

On the other hand, The expected payoff for agent 1 of sending message x + 1
against σ0 in the game Γ(θ

′
) is given by

u1(g(σ0, x+ 1); θ
′
) =

{
σ0(x+ 1)u1(a; θ

′
) + σ0(x)u1(b; θ

′
) if x < k − 1

σ0(0)u1(a; θ
′
) + σ0(x)u1(b; θ

′
) if x = k − 1.

We compute

u1(g(σ0, x+ 1); θ
′
)− u1(g(σ0, x

′
+ 1); θ

′
)

= [σ0(x+ 1)− σ0(x
′
+ 1)]u1(a; θ

′
) + [σ0(x)− σ0(x′)]u1(b; θ

′
)

≥ [σ0(x+ 1)− σ0(x
′
+ 1)]u1(b; θ

′
)− [σ0(x)− σ0(x

′
)]u1(a; θ

′
)

(∵ [σ0(x+ 1 mod k)− σ0(x′ + 1) mod k)] ≥ −[σ0(x)− σ0(x
′
)], u1(a; θ

′
) > 0)

= [σ0(x)− σ0(x
′
)](u1(b; θ

′
)− u1(a; θ

′
))

> 0.

This implies that message x+ 1 is a strictly better response for agent 1 against σ0

than x
′
+ 1 in the game Γ(θ

′
), contradicting the hypothesis that σ1(x

′
+ 1) > 0.

This completes the proof of Step 2. �
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10.2 Condition COM holds in Example 1

We shall show that all properties of Condition COM are satisfied.

• Property 1-i

f(θa) = a is Cθa-acceptable at (θa, u) for any u ∈ U ε because a is the best
outcome within Cθa(i) = A for each i ∈ {0, 1}. f(θb) = b is Cθb-acceptable
at (θb, u) for any u ∈ U ε because b is the best outcome within Cθb(i) = A for
each i ∈ {1, 2}. f(θc) = c is Cθc-acceptable at (θc, u) for any u ∈ U ε because
c is the best outcome within Cθc(i) = {c, d, z} for each i ∈ {1, 2}. f(θd) = d
is Cθd-acceptable at (θd, u) for any u ∈ U ε because d is the best outcome
within Cθd(i) = {c, d, z} for each i ∈ {0, 2}.

• Property 1-ii

By construction, we set Cθ̃(i) = Cθ̃(j) for all θ̃ ∈ Θ and i, j ∈ Gθ̃. This
guarantees that f(θ) ∈ Cθ(i) ∩ Cθ(j) for all θ ∈ Θ and i, j ∈ Gθ.

– When θ = θa and θ̂ = θb, it follows that f(θa) = a ∈ Cθb(i) = A for

all i ∈ {1, 2}. When θ = θa and θ̂ = θc, it follows that f(θa) = a /∈
Cθc(i) = {c, d, z} for all i ∈ {1, 2}. When θ = θa and θ̂ = θd, it follows
that f(θa) = a /∈ Cθd(i) = {c, d, z} for all i ∈ {0, 2}.

– When θ = θb and θ̂ = θa, it follows that f(θb) = b ∈ Cθa(i) = A for
all i ∈ {0, 1}. When θ = θb and θ̂ = θc, it follows that f(θb) = b /∈
Cθc(i) = {c, d, z} for all i ∈ {1, 2}. When θ = θb and θ̂ = θd, it follows
that f(θb) = b /∈ Cθd(i) = {c, d, z} for all i ∈ {0, 2}.

– When θ = θc and θ̂ = θa, it follows that f(θc) = c ∈ Cθa(i) = A for
all i ∈ {0, 1}. When θ = θc and θ̂ = θb, it follows that f(θc) = c ∈
Cθb(i) = A for all i ∈ {1, 2}. When θ = θc and θ̂ = θd, it follows that
f(θc) = c ∈ Cθd(i) = {c, d, z} for all i ∈ {0, 2}.

– When θ = θd and θ̂ = θa, it follows that f(θd) = d ∈ Cθa(i) = A for
all i ∈ {0, 1}. When θ = θd and θ̂ = θb, it follows that f(θc) = c ∈
Cθb(i) = A for all i ∈ {1, 2}. When θ = θd and θ̂ = θc, it follows that
f(θd) = d ∈ Cθc(i) = {c, d, z} for all i ∈ {1, 2}.

• Property 2

When θ = θa, for any θ̂ ∈ {θa, θb} and u ∈ U ε, it follows that a is the unique
outcome in ∆(A) that is Cθ̂-acceptable at (θa, u). Then, we have f(θa) = a.

– When θ = θa and θ̂ = θc, for any u ∈ U ε, it follows that there is no
x ∈ ∆(A) that is Cθc-acceptable at (θa, u) because u1(d, θa) > u1(c, θa)
and u2(d, θa) < u2(c, θa) and Cθc(i) = {c, d, z} for each i ∈ Gθc .
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– When θ = θa and θ̂ = θd, for any u ∈ U ε, it follows that there is no
x ∈ ∆(A) that is Cθd-acceptable at (θa, u) because u0(d, θa) > u0(c, θa)
and u2(d, θa) < u2(c, θa) and Cθd(i) = {c, d, z} for each i ∈ Gθd .

– When θ = θb, for any θ̂ ∈ {θa, θb} and u ∈ U ε, it follows that b is the
unique outcome in ∆(A) that is Cθ̂-acceptable at (θb, u). Then, we have
f(θb) = b.

– When θ = θb and θ̂ = θc, for any u ∈ U ε, it follows that there is no
x ∈ ∆(A) that is Cθc-acceptable at (θb, u) because u1(d, θb) < u1(c, θb)
and u2(d, θb) > u2(c, θb) and Cθc(i) = {c, d, z} for each i ∈ Gθc .

– When θ = θb and θ̂ = θd, for any u ∈ U ε, it follows that there is no
x ∈ ∆(A) that is Cθd-acceptable at (θb, u) because u0(d, θa) < u0(c, θa)
and u2(d, θa) > u2(c, θa) and Cθd(i) = {c, d, z} for each i ∈ Gθd .

– When θ = θc and θ̂ = θa, for any u ∈ U ε, it follows that there is no
x ∈ ∆(A) that is Cθa-acceptable at (θc, u) because u0(a, θc) > u0(b, θc)
and u1(a, θc) < u1(b, θc) and Cθa(i) = A for each i ∈ Gθa .

– When θ = θc and θ̂ = θb, for any u ∈ U ε, it follows that there is no
x ∈ ∆(A) that is Cθb-acceptable at (θc, u) because u1(a, θc) < u1(b, θc)
and u2(a, θc) > u2(b, θc) and Cθb(i) = A for each i ∈ Gθb .

– When θ = θc and θ̂ = θd, for any u ∈ U ε, it follows that c ∈ ∆(A)
is the unique outcome that is Cθd-acceptable at (θc, u). Then, we have
f(θc) = c.

– When θ = θd and θ̂ = θa, for any u ∈ U ε, it follows that there is no
x ∈ ∆(A) that is Cθa-acceptable at (θd, u) because d is agent 0’s best
outcome within Cθa(0) in state θd, while b is agent 1’s best outcome
within Cθa(1) in state θb and Cθa(i) = A for each i ∈ Gθa .

– When θ = θd and θ̂ = θb, for any u ∈ U ε, it follows that there is no
x ∈ ∆(A) that is Cθb-acceptable at (θd, u) because b is agent 1’s best
outcome within Cθb(1) in state θd, while a is agent 2’s best outcome
within Cθb(2) in state θd and Cθb(i) = A for each i ∈ Gθb .

– When θ = θd and θ̂ = θc, for any u ∈ U ε, it follows that d ∈ ∆(A)
is the unique outcome that is Cθc-acceptable at (θc, u). Then, we have
f(θd) = d.

• Property 3

This property is satisfied due to the very construction of U ε.

• Property 4
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– When θ = θa and θ̂ = θb, for any u ∈ U ε, it follows that f(θa) = a is
Cθb-acceptable at (θa, u). Since a is the best outcome for both agents 1
and 2 in state θa and Gθb = {1, 2}, this property holds.

– When θ = θa, for any θ̂ ∈ {θc, θd} and u ∈ U ε, it follows that f(θa) is
not Cθ̂-acceptable at (θa, u). Hence, the property holds.

– When θ = θb and θ̂ = θa, for any u ∈ U ε, it follows that f(θb) = b is not
Cθa-acceptable at (θb, u) because u0(a, θb) > u0(b, θb), while u1(a, θb) <
u1(b, θb) and Cθa(i) = A for each i ∈ Gθa . Hence, this property holds.

– When θ = θb, for any θ̂ ∈ {θc, θd} and u ∈ U ε, it follows that f(θb) is
not Cθ̂-acceptable at (θb, u). Hence, the property holds.

– When θ = θc, for any θ̂ ∈ {θa, θb} and u ∈ U ε, it follows that f(θc) = c
is not Cθ̂-acceptable at (θc, u). Hence, the property holds.

– When θ = θc and θ̂ = θd, for any u ∈ U ε, it follows that f(θc) = c is
Cθd-acceptable at (θc, u). Since c is the best outcome within {c, d, z} for
both agents 0 and 2 in state θc and Cθd(i) = {c, d, z} for each i ∈ Gθd ,
the property holds.

– When θ = θd, for any θ̂ ∈ {θa, θb} and u ∈ U ε, it follows that f(θd) = d
is not Cθ̂-acceptable at (θc, u). Hence, the property holds.

– When θ = θd and θ̂ = θc, for any u ∈ U ε, it follows that f(θd) = d is Cθc-
acceptable at (θd, u). For any ã ∈ {c, z}, we have ui(ã, θd) 6= ui(f(θd), θd)
for each i ∈ {1, 2} = Gθd . Hence, the property holds.

Therefore, this environment satisfies Condition COM with respect to the SCF
f and U ε.

10.3 Proof of Theorem 2

Proof of Theorem 2: Lemma 4 allows us to make use of many of the arguments
established in the proof of Theorem 1 to prove Theorem 2. The main difference
between the two proofs lies on the fact that the outcome function g̃k is now slightly
different from the outcome function gk used for Theorem 1. In particular, we need
to modify the arguments in Steps 1 and 2 for Theorem 1 because establishing two-
person pure Nash implementation requires a separate proof. Therefore, we first
need to establish the two-person counterparts of these two steps. Once that is
done, by Lemma 4, we will show that the rest of the proof follows from the same
argument in Theorem 1.
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Let f be an SCF and I = {0, 1}. Suppose that the finite environment E satisfies
Condition COM2 with respect to f and Û . The rest of the proof is completed by
a series of steps in a very similar way Theorem 1 is proved.

Step 1: For each k ≥ 2, f is pure Nash implementable by the mechanism Γ̃k.

Proof of Step 1: Let θ ∈ Θ be a true state and u ∈ Û be an arbitrary cardinal
utility function. Fix k ≥ 2. By Property 1, we know that f(θ) is Cθ-acceptable at
(θ, u). Thus, f(θ) ∈ Cθ(i) for some i ∈ I. We assume, without loss of generality,
that i = 0. Let m be a message profile with the following characteristics:

• m1
j = θ for all j ∈ I;

• m2
j [θ] = 0 for all j ∈ I;

• m3
0[θ] = f(θ).

By construction ofm, we have g̃k(m) = f(θ). We first establishm ∈ pureNE(Γ̃k(θ)).
Notice that any deviation by either agents 0 or 1 will yield a lottery that is in either
Cθ(0) (if agent 0 is deviating) or Cθ(1) (if agent 1 is deviating). This is immediate
for the case in which the deviating strategies preserve m1

i = θ, but even a devia-
tion involving a different choice for either θ0 or θ1 will result in z(θ0, θ) or z(θ, θ1),
respectively, both of which are in the sets Cθ(0) and Cθ(1). Then, Property 1 of
Condition COM2 ensures that no lottery in {Cθ(i)}i∈{0,1}, which includes all pos-
sible outcomes which are induced by Rules 1 or 2, can be strictly preferred to f(θ).
Thus, we show that m ∈ pureNE(Γ̃k(θ)).

We next show that m ∈ pureNE(Γ̃k(θ)) implies g̃k(m) = f(θ). We assume,
by way of contradiction, that there exists m ∈ pureNE(Γ̃k(θ)) such that g̃k(m) 6=
f(θ). The, there are two cases we need to consider. The first case occurs when
there exists θ̂ ∈ Θ such that g̃k(m) ∈ Cθ̂(0) ∪Cθ̂(1). The second case occurs when

no such θ̂ exists, which implies that g̃k(m) = z(θ0, θ1), where θ0 ≡ m1
0 and θ1 ≡ m1

1.
Suppose that the first case applies. It follows from Property 2 of Condition

COM2 that, for any θ̂ ∈ Θ, g̃k(m) is not Cθ̂-acceptable at (θ, u). Therefore, there
exist agent i ∈ {0, 1} and x ∈ Cθ̂(i) such that ui(x, θ) > ui(g̃

k(m), θ). We define

m̂3
i [θ̂] = x and m̂2

i [θ̂] ∈ {0, . . . , k − 1} such that m2
i [θ̂] + m2

j [θ̂] (mod k) = i. We

define m̂i to be identical to mi except that m3
i [θ̂] is replaced by m̂3

i [θ̂] and m2
i [θ̂] is

replaced by m̂2
i [θ̂]. Then, m̂i is agent i’s profitable deviation such that agent i is the

winner of the modulo game. Thus, m /∈ pureNE(Γ̃k(θ)), a desired contradiction.
Next suppose that the second case applies. Then, by Property 5 of Condition

COM2, there exists either a(θ0,θ1) ∈ Cθ1(0) such that u0(a(θ0,θ1), θ) > u0(z(θ0, θ1), θ)
or b(θ0,θ1) ∈ Cθ0(1) such that u1(b(θ0,θ1), θ) > u1(z(θ0, θ1), θ). Assume the first case
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applies. We define m̂1
0 = θ1, m̂3

0[θ1] = a(θ0,θ1), and m̂2
0[θ1] such that m̂2

0[θ1] +
m2

1[θ1] (mod k) = 0. Then, we define m̂0 to be identical to m0 except that m1
0 is

replaced by m̂1
0, m3

0[θ1] is replaced by m̂3
0[θ1], and m2

0[θ1] is replaced by m̂2
0[θ1]. This

implies that m̂0, which ensures that agent 0 is the winner of the modulo game, is a
profitable deviation from m so that m /∈ pureNE(Γ̃k(θ)), a desired contradiction.

Assume the second case applies. We define m̂1
1 = θ0, m̂3

1[θ0] = b(θ0,θ1), and
m̂2

1[θ0] such that m̂2
1[θ0] +m2

0[θ0] (mod k) = 1. Then, we define m̂1 to be identical
to m1 except that m1

1 is replaced by m̂1
1, m3

1[θ0] is replaced by m̂3
1[θ0], and m2

1[θ0] is
replaced by m̂2

1[θ0]. This implies that m̂1, which ensures that agent 1 is the winner
of the modulo game, is a profitable deviation from m so that m /∈ pureNE(Γ̃k(θ)),
a desired contradiction. This completes the proof. �

Throughout the proof, we denote by θ the true state and by θ̂ the state deter-
mined by the agents’ announcement in the mechanism. Let Γ̃k = (Mk, g̃k) be our
canonical mechanism where k ≥ 3. We define Cθ̂ ≡

⋃
i∈I Cθ̂(i) for each θ̂ ∈ Θ, and

C ≡
⋃
θ̂∈ΘCθ̂. Note that Cθ̂ and C are both finite. In the rest of the proof, we use

the same notation used in the proof of Theorem 1. The difference centers around
the fact that we use a different outcome function g̃k rather than gk. Therefore, to
stress this difference, we add “tilde” to the notation used in the proof of Theorem
1. Specifically, we use M̃∗(θ̂, q, x), P̃ σ(q|θ̂), ˜̀k(θ̂, σ), and so on.

We also need to introduce a new set of notation for probabilities and lotteries
that have no counterparts in Theorem 1. This is because the two agents announce
different states in the first component of their message.

M̃∗(θ0, θ1) ≡
{
m ∈Mk

∣∣ m1
0 = θ0 and m1

1 = θ1

}
;

P̃ σ(θ0, θ1) ≡
∑

m∈M̃∗(θ0,θ1)

σ(m);

˜̀k
z(σ) =

∑
θ0 6=θ1

P̃ σ(θ0, θ1)z(θ0, θ1)

(
1−

∑
θ∈Θ

P σ(θ)

)−1

.

Using this notation, we establish the two-person counterpart of Step 2 in the proof
of Theorem 1:
Step 2: For any mixed strategy profile σ in the mechanism Γ̃k = (Mk, g̃k),

g̃k(σ) =
∑
θ̂∈Θ

P̃ σ(θ̂)˜̀k(θ̂, σ) +

1−
∑
θ̂∈Θ

P̃ σ(θ̂)

 ˜̀k
z(σ),

where, for each θ̂ ∈ Θ,

˜̀k(θ̂, σ) = P̃ σ(q = 0|θ̂)(˜̀k
0(θ̂, σ)− z(θ̂, θ̂)) + P̃ σ(q = 1|θ̂)(˜̀k

1(θ̂, σ)− z(θ̂, θ̂)) + z(θ̂, θ̂).
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Proof of Step 2: This comes from how our mechanism and the lotteries are
constructed. Fix σ. For each θ̂ ∈ Θ, the event that m1

0 = m1
1 = θ̂ occurs with

probability P̃ σ(θ̂). Following the argument in Step 2 in the proof of Theorem 1, we
can show that the outcome must be given by ˜̀k(θ̂, σ). On the contrary, the event
that m1

0 = θ0 6= θ1 = m1
1 occurs with the remaining probability, 1 −

∑
θ̂∈Θ P̃

σ(θ̂).
In this case, the mechanism triggers Rule 2, which will yield z(θ0, θ1), which occurs
with probability P̃ σ(θ0, θ1). This is represented by the lottery ˜̀k

z(σ). �

We will now show how the rest of the argument closely follows Steps 3 through
8 developed in the proof of Theorem 1. We note that Property 3 of Condition
COM2 implies that ui(˜̀k

z(σ), θ) < ui(f(θ), θ) for all i ∈ {0, 1}, as ˜̀k
z(σ) is nothing

but a weighted average over different punishment outcomes. In turn, this structure
allows us to focus on the set of lotteries {`k(θ̂, σ)}θ̂∈Θ because it follows from Step

2 that if each ˜̀k(θ̂, σ) is strictly Pareto dominated by f(θ), then g̃k(σ) will also be
strictly Pareto dominated by f(θ). For all θ̂ ∈ Θ, we set Gθ̂ = {0, 1}, wθ̂(q) = q

for all q ∈ {0, 1}, and zθ̂ = z(θ̂, θ̂). Then, we can replicate all of the arguments in
the remaining steps in the proof of Theorem 1. In what follows, we will briefly go
over each of them.

Step 3: Let σ ∈ NE(Γ̃k(θ, u)) for some u ∈ Û . Then, for any m ∈ supp(σ),
q ∈ {0, 1}, and θ̂ ∈ Θ, if m ∈ M̃∗(θ̂, q), then m3

i [θ̂] ∈ C∗θ̂ (i, θ), where i = wθ̂(q).

Proof of Step 3: This proof is identical to the proof of Step 3 in the proof of
Theorem 1 if we replace M∗(θ̂, q) with M̃∗(θ̂, q). Since Step 3 does not require any
of the properties in Condition COM , it relies only on the fact that whenever an
agent can dictate the outcome with positive probability, he must choose pick one
of his best alternatives in his choice set. Therefore, the same logic applies to the
modified mechanism of the two-agent case. �

Step 4: Let σ be a mixed strategy profile in the mechanism Γ̃K , where we later
choose K ≥ 3 large enough, and fix θ̂ ∈ Θ such that P̃ σ(θ̂) > 0. Assume that
P̃ σ(q = 0|θ̂) + P̃ σ(q = 1|θ̂) ≤ 2/K . Then, there exists K ∈ N large enough so that
ui(˜̀K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I and u ∈ Û .

Proof of Step 4: This proof is identical to the proof of Step 4 in the proof of
Theorem 1, once we replace all the conditional probabilities and lotteries with their
respective counterparts in Theorem 2. In particular, if lottery ˜̀K(θ̂, σ) assigns a
sufficiently high probability to the event in which the punishment zθ̂ is realized,

we can use Property 3 of Condition COM to conclude that ˜̀K(θ̂, σ) is strictly
Pareto dominated by f(θ). We complete the proof of Step 4, as we acknowledge
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that the lottery ˜̀K(θ̂, σ) corresponds to `K(θ̂, σ) used for the proof of Theorem 1,
and Property 3 of Condition COM2 has the same implications of Property 3 of
Condition COM . �

Step 5: Let σ ∈ NE(Γ̃K(θ, u)), where we later choose K large enough. For
any θ̂ ∈ Θ with P̃ σ(θ̂) > 0, we assume that there exists q ∈ {0, 1} such that
P̃ σ(q|θ̂) = 0. Then, there exists K ∈ N large enough so that, for any θ̂ ∈ Θ with
P̃ σ(θ̂) > 0, if ˜̀K(θ̂, σ) 6= f(θ), then ui(˜̀K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I.

Proof of Step 5: It follows the same argument in Step 5 in the proof of
Theorem 1. We postpone the discussion relevant here to that in Step 6. �

Step 6: Let σ ∈ NE(Γ̃K(θ, u)), where we later choose K large enough. Assume
that there exists θ̂ ∈ Θ with P̃ σ(θ̂) > 0 such that P̃ σ(q|θ̂) > 0 for all q ∈ {0, 1}. If
f(θ) is not Cθ̂-acceptable at (θ, u), then there exists K ∈ N large enough so that

ui(˜̀K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I.

Proof of Step 6: It follows the same argument as in Step 6 in the proof
of Theorem 1. Steps 5 and 6 both aim to establish the following result: there
exists K ∈ N large enough so that, for any σ ∈ NE(Γ̃K(θ, u)), if ˜̀K(θ̂, σ) 6= f(θ),
then ˜̀K(θ̂, σ) is strictly Pareto dominated by f(θ). To show this, we rely on the
proof by contradiction, i.e., we construct an alternative message for an agent that
constitutes a profitable deviation from σ, which contradicts the hypothesis that σ
is an equilibrium. We can replicate the same argument even in the case of two
agents because these two mechanisms ΓK and Γ̃K work in the same way as far
as we are concerned with how each deviation induces the changes in the second
and third components of their message m2

j [θ̂] and m3
j [θ̂]. In particular, P̃ σ(q|θ̂) and

P̃ σ
i (q|θ̂) both work in the same way as P σ(q|θ̂) and P σ

i (q|θ̂) do, as both mechanisms
share the same modulo game to determine the outcome after the agents agree on
the state, i.e., θm = θ̂. By Lemma 4, we know that Properties 2, 3 and 4 of
Condition COM2 imply Properties 2, 3, and 4 of Condition COM . Therefore, we
can replicate the same argument as in Steps 5 and 6 in the proof of Theorem 1. �

Step 7: Let σ ∈ NE(Γ̃K(θ, u)), where we later choose K large enough. Assume
that there exists θ̂ ∈ Θ such that P̃ σ(θ̂) > 0 and P̃ σ(q|θ̂) > 0 for all q ∈ {0, 1}. If
˜̀K(θ̂, σ) 6= f(θ) and f(θ) is Cθ̂-acceptable at (θ, u), then there exists K ∈ N large

enough so that ui(˜̀K(θ̂, σ), θ) < ui(f(θ), θ) for all i ∈ I.

Proof of Step 7: As explained in the proof of Step 7 in the proof of Theorem
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1, if f(θ) is Cθ̂-acceptable at (θ, u), then, for every x ∈ C∗
θ̂
(0, θ) we have either

x = f(θ) or both u0(x, θ) < u0(f(θ), θ) and u1(x, θ) < u1(f(θ), θ). Similarly, if
f(θ) is Cθ̂-acceptable at (θ, u), then, for every x ∈ C∗

θ̂
(1, θ) we have either x = f(θ)

or both u0(x, θ) < u0(f(θ), θ) and u1(x, θ) < u1(f(θ), θ). It follows from Step 3 that
both ˜̀K

0 (θ̂, σ) and ˜̀K
1 (θ̂, σ) are either equal to f(θ) or strictly Pareto dominated

by f(θ). Furthermore, we can use Step 2 and Property 3 of Condition COM2 in
the same way as in Step 7 in the proof of Theorem 1 to establish that ˜̀k(θ̂, σ) is
strictly Pareto dominated by f(θ). �

This allows us to conclude with Step 8 much in the same way as in the proof
of Theorem 1.

Step 8: There exists K ∈ N large enough such that, for any u ∈ Û and σ ∈
NE(Γ̃K(θ, u)), it follows that either g̃K(σ) = f(θ) or ui(g̃

K(σ), θ) < ui(f(θ), θ) for
all i ∈ I.

Combining Steps 1 and 8, we conclude that there exists K ∈ N large enough
such that the SCF f is compellingly implementable with respect to Û by the
mechanism Γ̃K . This completes the proof of the theorem. �
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