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Abstract

A new Wald-type statistic is proposed for hypothesis testing based on Bayesian
posterior distributions. The new statistic can be explained as a posterior version of
Wald test and have several nice properties. First, it is well-defined under improper
prior distributions. Second, it avoids Jeffreys-Lindley’s paradox. Third, under the
null hypothesis and repeated sampling, it follows a χ2 distribution asymptotically,
offering an asymptotically pivotal test. Fourth, it only requires inverting the posterior
covariance for the parameters of interest. Fifth and perhaps most importantly, when a
random sample from the posterior distribution (such as an MCMC output) is available,
the proposed statistic can be easily obtained as a by-product of posterior simulation.
In addition, the numerical standard error of the estimated proposed statistic can be
computed based on the random sample. The finite sample performance of the statistic
is examined in Monte Carlo studies. The method is applied to two latent variable
models used in microeconometrics and financial econometrics.
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1 Introduction

This paper develops an approach to test a point null hypothesis based on the Bayesian

posterior distribution. The statistic can be understood as the posterior version of the

well-known Wald statistic that has been used widely in practical applications. The Wald

statistic is often based on the maximum likelihood estimator (MLE) or the classical ex-

tremum estimators (denoted by θ̂) of the parameter(s) of interest (denoted θ). Typically

one kind of squared difference between θ̂ and θ is shown to follow a χ2 distribution asymp-

totically under the null hypothesis, producing an asymptotically pivotal test.

However, in many practical applications, the MLE or the classical extremum estima-

tors may be too difficult to obtain computationally. For example, for the entire class

of non-linear and non-Gaussian state space models, the likelihood function is very hard

to calculate numerically, making the MLE nearly impossible to obtain. Not surprisingly,

Bayesian MCMC methods have emerged as the leading estimation tool to deal with non-

linear and non-Gaussian state space models. There are many other examples in economics

where the classical extremum estimators are subject to the curse of dimensionality in com-

putation and some numerical problems. To circumvents this problem, Chernozhukov and

Hong (2003) introduced a class of quasi-Bayesian methods that allow users to employ

MCMC to simulate a random sequence of draws such that the marginal distribution of

the sequence is the same as the quasi-posterior distribution of parameters.

The central question we ask in this paper is how to test a point null hypothesis with

the posterior distribution of parameters being available. Testing a point null hypothesis

is important for checking statistical evidence from data to support or to be against a

particular theory because theory often can be reduced to a testable hypothesis. In many

cases, the posterior distribution of parameters is available in the form of a random sample

(such as MCMC sample).

Broadly speaking, there are three posterior-based methods available in the literature

for hypothesis testing. The first one is the Bayes factor (BF) which compares the posterior

odds of the two competing theories corresponding to the null and alternative hypotheses

(Kass and Raftery, 1995). Unfortunately, BFs are subject to a few theoretical and practical

problems. First, BFs are not well-defined under improper priors. Second, BFs are subject

to Jeffreys-Lindley’s paradox. That is, they tend to choose the null hypothesis when a very

vague prior is used for parameters in the null hypothesis; see Kass and Raftery (1995),

Poirier (1995). Third, the calculation of BFs generally involves evaluation of marginal

likelihood. In many cases, evaluation of marginal likelihood is difficult. Several strategies

have been proposed in the literature to address some of these difficulties. For example, to

deal with the first two problems, when calculating BFs one may use a highly informative
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prior which is data-dependent. To make it data-dependent, one may split the data into

two parts, one as a training set, the other for statistical analysis. The training data can be

used to update a prior (whether it is improper or vague) to generate a proper informative

prior which is subsequently used to analyze the remaining data. See the fractional BF

of O’Hagan (1995), and the intrinsic BF of Berger (1985). To address the computational

problem, one can use the methods of Chib (1995) and Chib and Jeliazkov (2001) to

compute BFs.

The second posterior-based method is to use credible intervals for point identified

parameters and credible sets for partially identified parameters. This line of approaches

has drawn a great deal of attentions among econometricians and statisticians in recent

years; see Chernozhukov and Hong (2003), Moon and Schorfheide (2012), Norets and

Tang (2013), Kline and Tamer (2016), Liao and Simoni (2015), Chen, et al (2016). Except

Chernozhukov and Hong (2003), all the other studies focus in developing credible sets in

partially identified models. Most of these studies justify credible sets using large-sample

theory under repeated sampling.

The third method is based on the statistical decision theory. The idea begins with

Bernardo and Rueda (2002, BR hereafter) where they demonstrated that the BF can be

regarded as a decision problem with a simple zero-one loss function when it is used for

point hypothesis testing. It is this zero-one loss that leads to Jeffreys-Lindley’s paradox.

BR further suggested using the continuous Kullback-Leibler (KL) divergence function as

the loss functions to replace the zero-one loss. Subsequent extensions include Li and

Yu (2012), Li, Zeng and Yu (2014) and Li, Liu and Yu (2015, LLY hereafter) where

different continuous loss functions or net loss functions were used. The justification of

these extensions is made by large-sample theory under repeated sampling.

In this paper, following the third line of approach, we propose a Wald-type statistic

for hypothesis testing based on posterior distributions. The new statistic is well-defined

under improper prior distributions and avoids Jeffreys-Lindley’s paradox. It is asymptot-

ically equivalent to the Wald statistic under the null hypothesis, and hence, follows a χ2

distribution asymptotically. It is a by-product of posterior simulation, requiring almost

no coding effort and little computational cost.

The paper is organized as follows. Section 2 reviews existing posterior-based statistics

for hypothesis testing in the statistical decision framework. Section 3 develops the new

statistic and establishes its large-sample theory. Section 4 explains how to implement the

proposed test for an important class of models – latent variable models – where posterior

analysis is routinely used. Section 5 investigates finite-sample properties of the proposed

statistic using simulated data. Section 6 gives two real-data applications of the proposed

method. Section 7 concludes the paper. Appendix collects the proof of theoretical results.
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2 Hypothesis Testing based on Statistical Decision

It is assumed that a probability model M ≡ {p(y|ϑ)} is used to fit data y := (y1, . . . yn)′

where ϑ :=
(
θ′,ψ′

)′ ∈ Θ. We are concerned with testing a point null hypothesis which

may arise from the prediction of a particular theory. Let θ ∈ Θθ denote a vector of

qθ-dimensional parameters of interest and ψ ∈ Θψ a vector of qψ-dimensional nuisance

parameters, where Θ = Θθ ×Θψ. The testing problem is given by{
H0 : θ = θ0,
H1 : θ 6= θ0.

(1)

In the statistical decision framework, hypothesis testing may be understood as follows.

There are two statistical decisions in the decision space, accepting H0 (name it d0) or

rejecting H0 (name it d1). Let {L[di,θ,ψ], i = 0, 1} be the loss function of the statistical

decision associated with di. When the expected posterior loss of accepting H0 is sufficiently

larger than the expected posterior loss of rejecting H0, we reject H0. That is, H0 is rejected

if

T (y,θ0) =

∫
Θ
{L (d0,θ,ψ)− L (d1,θ,ψ)} p(θ,ψ|y)dθdψ

=

∫
Θ
4L (H0,θ,ψ) p(θ,ψ|y)dθdψ

= Eϑ|y (4L (H0,θ,ψ)) > c ≥ 0,

where T (y,θ0) is a posterior-based statistic, p(θ,ψ|y) is the posterior distribution, c is a

threshold value, 4L (H0,θ,ψ) := L (d0,θ,ψ)− L (d1,θ,ψ) is the net loss function.

BR showed that when the equal prior p (θ = θ0) = p (θ 6= θ0) = 1
2 is used, c = 0, and

the net loss function is taken as

∆L (H0,θ,ψ) =

{
−1, if θ = θ0

1, if θ 6= θ0

,

then T (y,θ0) > 0 is equivalent to the following decision rule based on the BF: reject H0

if

BF10 =
p(y|H1)

p(y|H0)
=

∫
p(y,ϑ)dϑ∫

p(y,ψ|θ0)dψ
> 1.

While the BF serves as the gold standard for model comparison after posterior dis-

tributions are obtained for candidate models, it suffers from several theoretical and com-

putational difficulties when it is used to test a point null hypothesis. First, it is not

well-defined under improper priors. Second, it leads to Jeffreys-Lindley’s paradox when

a very vague prior is used. Third, BF10 requires evaluating the two marginal likelihood

functions, p(y|Hi), i = 0, 1. Clearly, this involves marginalizations over ψ and over ϑ.
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Fourth, if ϑ is high-dimensional so that the integration is a high-dimensional problem,

calculating p(y|Hi), i = 0, 1 will be difficult numerically although there have been several

interesting methods proposed in the literature to compute the BF from MCMC output;

see, for example, Chib (1995), and Chib and Jeliazkov (2001).

In the statistical decision framework, several statistics have been proposed for testing

a point null hypothesis. Poirier (1997) developed a loss function approach for hypothesis

testing for models without latent variables. BR (2002) suggested choosing the loss function

to be the KL divergence function. The large-sample theory of the test statistics of BR

has not been developed although it is well-defined under improper priors and can solve

Jeffreys-Lindley’s paradox.1

In a recent paper, LLY (2015) proposed the following quadratic net loss function

∆L (H0,θ,ψ) =
(
θ − θ̄

)′
Cθθ

(
ϑ̄0

) (
θ − θ̄

)
, C (ϑ) =

{
∂ log p (y,ϑ)

∂θ

}{
∂ log p (y,ϑ)

∂θ

}′
,

where ϑ̄ =
(
θ̄
′
, ψ̄
′
)′

and ϑ̄0 =
(
θ′0, ψ̄

′
0

)′
are the posterior mean under H0 and H1,

respectively, Cθθ is the submatrix of C corresponding to θ. The statistic corresponding to

this net loss function is given by

TLLY (y,θ0) = Eϑ|y (4L (H0,θ,ψ)) =

∫
Θ

(
θ − θ̄

)′
Cθθ

(
ϑ̄0

) (
θ − θ̄

)
p(ϑ|y)dϑ. (2)

Under repeated sampling, LLY showed that TLLY (y,θ0) follows a χ2 distribution asymp-

totically, providing an asymptotically pivotal quantity. This statistic is well-defined under

improper priors and immune to Jeffreys-Lindley’s paradox. Clearly, TLLY (y,θ0) requires

evaluating the first-order derivative of the (observed-data) likelihood function. In some

models, especially in latent variable models, this first-order derivative is not easy to eval-

uate since the observed-data likelihood function may not have an analytical expression.

Another feature of TLLY (y,θ0) is that it requires estimating both the null model and

the alternative model although, under H0, it was shown to be asymptotically equivalent

to the Lagrange Multiplier (LM) test which requires estimating the null model only.

1Given that the KL function is not analytically available for most latent variable models, Li and Yu
(2012) suggested basing the loss function on the Q-function used in the EM algorithm. However, its large-
sample theory has not been developed. On the other hand, Li, Zeng and Yu (2014) suggested using the
deviance function to be the loss function. large-sample theory of the test statistic is derived. Unfortunately,
in general the asymptotic distribution depends on some unknown population parameters and hence the
test is not pivotal asymptotically.
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3 A Posterior Wald-type Statistic

3.1 The statistic based on a quadratic loss function

For any ϑ̃ ∈ Θ, denote

V
(
ϑ̃
)

= E

[(
ϑ− ϑ̃

)(
ϑ− ϑ̃

)′
|y, H1

]
=

∫ (
ϑ− ϑ̃

)(
ϑ− ϑ̃

)′
p(ϑ|y)dϑ.

We propose the following net loss function for hypothesis testing:

4L[H0,θ,ψ] = (θ − θ0)′
[
Vθθ(ϑ̄)

]−1
(θ − θ0) ,

where Vθθ

(
ϑ̃
)

is the submatrix of V
(
ϑ̃
)

corresponding to θ,
[
Vθθ

(
ϑ̃
)]−1

the inverse

of Vθθ

(
ϑ̃
)

, and ϑ̄ the posterior mean of ϑ under H1. Then, the new test statistic can be

defined as:

T (y,θ0) =

∫
(θ − θ0)′

[
Vθθ

(
ϑ̄
)]−1

(θ − θ0) p(ϑ|y)dϑ =tr
[[

Vθθ

(
ϑ̄
)]−1

Vθ (θ0)
]
, (3)

where Vθ (θ0) :=
∫

(θ − θ0) (θ − θ0)′ p(ϑ|y)dϑ.

Remark 3.1. It is easy to see show that T (y,θ0) is well-defined under improper pri-

ors. An improper prior p(ϑ) satisfies that p(ϑ) = af(ϑ) where f(ϑ) is a non-integrable

function and a is an arbitrary positive constant. Since the posterior distribution p(ϑ|y) is

independent of a, Vθθ

(
ϑ̃
)

, being the posterior covariance matrix of θ, is also independent

of a. Hence, the proposed statistic does not depend on a.

Remark 3.2. To see how the new statistic can avoid Jeffreys-Lindley’s paradox, consider

the example used in LLY (2015). Let y1, y2, . . . , yn ∼ N(θ, σ2) with a known σ2, the null

hypothesis be H0 : θ = 0, the prior distribution of θ be N(0, τ2). Denote ȳ = 1
n

∑n
i=1 yi. It

is easy to show that the posterior distribution of θ is N(µ(y), ω2) with

µ(y) =
nτ2ȳ

σ2 + nτ2
, ω2 =

σ2τ2

σ2 + nτ2
,

and

2 logBF10 =
nτ2

nτ2 + σ2

nȳ2

σ2
+ log

σ2

nτ2 + σ2
,

T(y, θ0) =
nτ2

nτ2 + σ2

nȳ2

σ2
+ 1.

Thus, when τ2 → +∞ (the prior information becomes more and more uninformative),

logBF10 → −∞ which suggest that the BF supports H0 regardless how much ȳ is. This is

exactly what Jeffreys-Lindley’s paradox predicts. On the other hand, T(y, θ0) → nȳ2

σ2 + 1

as τ2 → +∞. Hence, T(y, θ0) is distributed asymptotically as χ2(1) + 1 when H0 is true,

suggesting that T(y, θ0) is immune to Jeffreys-Lindley’s paradox.
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3.2 Large-sample theory for T (y,θ0)

In this subsection, we establish large-sample properties for T (y,θ0) under repeated sam-

pling. Let yt := (y0, y1, . . . , yt) for any 0 ≤ t ≤ n and lt
(
yt,ϑ

)
= log p(yt|ϑ) −

log p(yt−1|ϑ) be the conditional log-likelihood for the tth observation for any 1 ≤ t ≤ n.

When there is no confusion, we just write lt
(
yt,ϑ

)
as lt (ϑ) so that the log-likelihood

function Ln(ϑ) (:= log p(y|ϑ) conditional on the initial observation), can be written as∑n
t=1 lt (ϑ). Let l

(j)
t (ϑ) be the jth derivative of lt (ϑ) and l

(0)
t (ϑ) = lt (ϑ). Moreover, let

s(yt,ϑ) :=
∂ log p(yt|ϑ)

∂ϑ
=

t∑
i=1

l
(1)
i (ϑ) , h(yt,ϑ) :=

∂2 log p(yt|ϑ)

∂ϑ∂ϑ′
=

t∑
i=1

l
(2)
i (ϑ) ,

st(ϑ) := l
(1)
t (ϑ) = s(yt,ϑ)− s(yt−1,ϑ), ht(ϑ) := l

(2)
t (ϑ) = h(yt,ϑ)− h(yt−1,ϑ),

H̄n(ϑ) :=
1

n

n∑
t=1

ht(ϑ), J̄n(ϑ) :=
1

n

n∑
t=1

[st(ϑ)− s̄t(ϑ)] [st(ϑ)− s̄t(ϑ)]′ , s̄t(ϑ) =
1

n

n∑
t=1

st(ϑ),

L[j]
n (ϑ) := ∂j log p(ϑ|y)/∂ϑj ,Hn(ϑ) :=

∫
H̄n(ϑ)g (y) dy, Jn(ϑ) :=

∫
J̄n(ϑ)g (y) dy.

Hn(ϑ) and Jn(ϑ) are generally known as the Hessian matrix and the Fisher information

matrix; H̄n(ϑ) and J̄n(ϑ) are the empirical Hessian matrix and empirical Fisher informa-

tion matrix.

In this paper, we first impose the following regularity conditions. A similar set of

assumptions was used in Li, et al (2017).

Assumption 1: Θ ⊂ Rq where q = qθ + qψ is compact.

Assumption 2: {yt}∞t=1 satisfies the strong mixing condition with the mixing coeffi-

cient α (m) = O
(
m
−2r
r−2
−ε
)

for some ε > 0 and r > 2.

Assumption 3: For all t, lt (ϑ) satisfies the standard measurability and continu-

ity condition, and the eight-times differentiability condition on F t−∞× Θ where F t−∞ =

σ (yt, yt−1, · · · ).
Assumption 4: For j = 0, 1, 2, for any ϑ,ϑ′ ∈ Θ,

∥∥∥l(j)t (ϑ)− l(j)t
(
ϑ′
)∥∥∥ ≤ cjt (yt) ∥∥ϑ− ϑ′∥∥

in probability, where cjt
(
yt
)

is a positive random variable with suptE
∥∥∥cjt (yt)∥∥∥ <∞ and

1
n

∑n
t=1

(
cjt
(
yt
)
− E

(
cjt
(
yt
))) p→ 0.

Assumption 5: For j = 0, 1, 2, 3, there exists a function Mt(y
t) such that for all

ϑ ∈ Θ, l
(j)
t (ϑ) exists, supϑ∈Θ

∥∥∥l(j)t (ϑ)
∥∥∥ 6Mt(y

t), and suptE
∥∥Mt(y

t)
∥∥r+δ ≤M <∞ for

some δ > 0, where r is the same as that in Assumption 2.

Assumption 6:
{
l
(j)
t (ϑ)

}
is L2-near epoch dependent with respect to {yt} of size

−1 for 0 6 j 6 1 and −1
2 for j = 2 uniformly on Θ.

Assumption 7: Let ϑ0
n be the value that minimizes the KL loss between the DGP

7
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and the candidate model

ϑ0
n = arg min

ϑ∈Θ

1

n

∫
log

g(y)

p(y|ϑ)
g(y)dy,

where
{
ϑ0
n

}
is the sequence of minimizers interior to Θ uniformly in n. For all ε > 0,

lim
n→∞

sup sup
Θ\N

(
ϑ0
n,ε
) 1

n

n∑
t=1

{
E [lt (ϑ)]− E

[
lt
(
ϑ0
n

)]}
< 0, (4)

where N
(
ϑ0
n, ε
)

is the open ball of radius ε around ϑ0
n.

Assumption 8: The sequence
{
Hn

(
ϑ0
n

)}
is negative definite.

Assumption 9: The prior density p(ϑ) is three-times continuously differentiable,

p
(
ϑ0
n

)
> 0 and

∫
‖ϑ‖2 p(ϑ)dϑ <∞.

Remark 3.3. An important condition for the asymptotic posterior normality is the con-

sistency condition which means that, for each ε > 0, there exists K (ε) > 0 such that

lim
n→∞

P

 sup
Θ\N

(
ϑ0
n,ε
) 1

n

n∑
t=1

[
lt (ϑ)− lt

(
ϑ0
n

)]
< −K (ε)

 = 1; (5)

see Heyde and Johnstone (1979), Schervish (2012), Ghosh and Ramamoorthi (2003). If

Assumptions 1-7 hold true, then (5) holds, as shown in Li et al. (2017).

Remark 3.4. According to Li et al. (2017), if Assumptions 1-9 hold true, then for each

ε > 0, there exists K (ε) > 0 such that

lim
n→∞

P

 sup

Θ\N
(
ϑ̂m,ε

) 1

n

[
n∑
t=1

lt (ϑ)−
n∑
t=1

lt
(
ϑ0
n

)]
< −K (ε)

 = 1, (6)

where ϑ̂m is the posterior mode of ϑ. Li et al. (2017) showed that this is sufficient to

ensure that the concentration condition around the posterior mode given by Chen (1985).

Lemma 3.1. Let ϑ̂ be the MLE of ϑ and N0 (δ) =
{
ϑ :
∥∥ϑ− ϑ0

n

∥∥ ≤ δ}. If Assumptions

1-7 hold true, then for any ε > 0, there exists δ (ε) > 0 such that

P

(
sup

N0(δ(ε))

∣∣∣H̄n (ϑ)− H̄n

(
ϑ̂
)∣∣∣ < ε

)
→ 1. (7)

and

P

(
sup

N0(δ(ε)),‖r0‖=1

∣∣∣1− r′0H̄
−1/2
n

(
ϑ̂
)

H̄n (ϑ) H̄−1/2
n

(
ϑ̂
)

r0

∣∣∣ < ε

)
→ 1.

where r0 is q-dimension vector.

8
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Let Σn = − 1
nH̄−1

n (ϑ̂) and zn= Σ
−1/2
n

(
ϑ−ϑ̂

)
. Lemma 3.2 below gives the order of

the difference between the first k moments of the posterior distribution of zn under H1

and those of a standard multivariate normal distribution. To establish the closeness of

higher order moments between the two distribution, we have to strengthen Assumption 9

by Assumption 9B. In Assumption 9B, the k-th order moment of the prior distribution is

assumed to be finite.

Assumption 9B: The prior density p(ϑ) is three-times continuously differentiable,

p
(
ϑ0
n

)
> 0 and

∫
‖ϑ‖k p (ϑ) dϑ <∞ for integer some k ≥ 1.

Lemma 3.2. Under Assumptions 1-8 and Assumption 9B, it can be shown that

E
[
z{k}n |y, H1

]
= MN{k}q + op(1),

where E
[
z
{k}
n |y, H1

]
is the k-th order moments of the posterior distribution of zn under

H1 (i.e. zn|y, H1), and MN
{k}
q is the k-th order moments of a standard multivariate

normal distribution with dimension q. When k = 1, 2, i.e., Assumption 9 holds, we can

have

ϑ = E [ϑ|y, H1] = ϑ̂+ op(n
−1/2), (8)

V
(
ϑ̂
)

= E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y, H1

]
= − 1

n
H̄−1
n

(
ϑ̂
)

+ op(n
−1). (9)

Remark 3.5. Under different regularity conditions, the Bernstein-von Mises theorem

shows that the posterior distribution converges to a normal distribution with the MLE

as its mean and the inverse of the empirical Hessian matrix evaluated at the MLE as

its covariance. Based on the Bernstein-von Mises theorem, when the parameter is one-

dimension, Ghosh and Ramamoorthi (2003) developed the same results as Lemma 3.2 for

the i.i.d. case. Hence, Lemma 3.2 extends the results of Ghosh and Ramamoorthi (2003)

in three aspects: (1) to the weakly dependent case; (2) to the multivariate case; (3) to show

that the order of the difference in high-order moments between the posterior distribution

and a normal distribution.

Remark 3.6. Assumptions 1-9 are weaker than those used in Li, et al. (2017) where a

high order Laplace expansion was developed. With the high order Laplace expansion, Li,

et al. (2018) derived the exact order for the difference in the first and second moments

ϑ̄ = E [ϑ|y, H1] = ϑ̂+Op(n
−1), (10)

V
(
ϑ̂
)

= E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y, H1

]
= − 1

n
H̄−1
n

(
ϑ̂
)

+Op(n
−2). (11)

Clearly, (10) and (11) are a stronger set of results than (8) and (9). Lemma 3.2 is

sufficient to develop large-sample properties of the proposed statistic. Hence, we can relax

the assumptions of Li, et al (2017).
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Let θ̂ be the subvector of ϑ̂ corresponding to θ. The Wald statistic is

Wald = n
(
θ̂ − θ0

)′ [
−H̄−1

n,θθ

(
ϑ̂
)]−1 (

θ̂ − θ0

)
, (12)

where H̄−1
n,θθ

(
ϑ̂
)

is the submatrix of H̄−1
n

(
ϑ̂
)

corresponding to θ and H̄−1
n

(
ϑ̂
)

is the

inverse of H̄n

(
ϑ̂
)

.

Theorem 3.1. Under Assumptions 1-9, we can show that, under the null hypothesis,

T (y,θ0)− qθ = Wald + op(1),

and

T (y,θ0)− qθ
d→ χ2(qθ).

Remark 3.7. From Theorem 3.1, T (y,θ0)− qθ may be regarded as the posterior version

of the Wald statistic. It shares the same asymptotic distribution as the Wald test under

the null hypothesis. However, the Wald statistic is based on the MLE of the alternative

model, whereas the proposed test is based on the posterior mean and variance under the

alternative hypothesis.

Corollary 3.2. Under Assumptions 1-9, we have, under the null hypothesis,

T (y,θ0)− qθ = TLLY (y,θ0) + op(1)
d→ χ2(qθ).

Remark 3.8. LLY (2015) has established the relationship between TLLY (y,θ0) and the

LM test statistic, i.e., TLLY (y,θ0) =LM+op(1) under the null hypothesis. It is noted in

Engle (1984) that under the null hypothesis LM =Wald+op(1). So Corollary 3.2 is the

posterior version of this asymptotic equivalence between the Wald and LM statistics.

Remark 3.9. Theorem 3.1 suggests that the asymptotic distribution of T (y,θ0) is piv-

otal. To implement the proposed test, we can choose the threshold value, c, to be the critical

value of χ2(qθ) distribution, i.e.,

Accept H0 if T (y,θ0)− qθ ≤ c; Reject H0 if T (y,θ0)− qθ > c.

Remark 3.10. It is obvious that T (y,θ0) only requires evaluating the inverse of the

submatrix of the covariance matrix corresponding to θ and, thus, it is very easy to com-

pute. In contrast, the Wald statistic in (12) requires evaluating the inverse of the entire

empirical Hessian matrix and then use the submatrix corresponding to θ. When ϑ is

high-dimensional, this inversion is numerically more involved than the inversion of the

submatrix. For example,, consider the case where the dimension of ϑ is 100, but the null

hypothesis involves only one of the parameters. To use the Wald statistic, one has to eval-

uate the inverse of a 100 × 100 dimensional Hessian matrix. Whereas, to use T (y,θ0),

one only needs to evaluate the inverse of a scalar.
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Remark 3.11. Compared with the Wald statistic, the proposed statistic can incorporate

the prior information through the posterior distribution. To illustrate the influence of prior

distribution, let y1, ..., yn ∼ N(θ, σ2) with a known variance σ2 = 1. The true value of

θ is set at θ0 = 0.10. The prior distribution of θ is set as N(µ0, τ
2). We wish to test

H0 : θ = 0. It can be shown that

2 logBF10 =
σ2τ2

σ2 + nτ2

(nȳ
σ2

+
µ0

τ2

)2

+ log
σ2

σ2 + nτ2
,

T(y, θ0)− 1 =
σ2τ2

σ2 + nτ2

(nȳ
σ2

+
µ0

τ2

)2

,

Wald =
nȳ2

σ2
,

where ȳ = 1
n

∑n
i=1 yi. When n→∞, T(y, θ0)− 1−Wald

p→ 0 and the asymptotic distribu-

tion for both T(y, θ0)− 1 and the Wald statistic is χ2(1). Suppose two prior distributions

are used, a highly informative prior N(0.10, 10−3) and a very vague prior N(0, 1050). Ta-

ble 1 reports 2 logBF10, T(y, θ0)−1, and Wald when n = 10, 100, 1000, 10000 under these

two priors. It can be seen that T(y, θ0)−1 and Wald take identical values when the vague

prior is used. It is consistent with the prediction of our asymptotic theory. Moreover, both

the BF and the new statistic depend on the prior (although the BFs tend to choose the

wrong model under the vague prior even when the sample size is very large) while the Wald

test is independent of the prior. When n = 10, 100, T(y, θ0)− 1 correctly rejects the null

hypothesis when the prior is informative but fails to reject it when the prior is vague under

the 5% significance level. In this case, the Wald test fails to reject the null hypothesis.

Table 1: Comparison of 2 logBF10, T(y, θ0)− 1, and the Wald statistic

Prior N(0.10, 10−3) N(0, 1050)

n 10 100 1000 10000 10 100 1000 10000

2 logBF10 9.96 11.12 20.60 93.58 -117.42 -118.50 -110.72 -38.00

T(y, θ0)− 1 9.96 11.22 21.30 95.98 0.01 1.23 11.32 86.03

Wald 0.01 1.23 11.32 86.03 0.01 1.23 11.32 86.03

Remark 3.12. Assumption 9 requires finiteness of the first and second moments of the

posterior distribution. When improper priors satisfies this assumption, Theorem 3.1 holds.

In practice, however, many improper priors do not have finite first and second moments

and hence Assumption is violated. In addition, Assumption 9 excludes the Jeffreys prior

(Jeffreys, 1961) since the Jeffreys prior depends on the sample size n. If informative priors

are not available, we suggest using vague noninformative priors (a prior with large variance

spread) to implement our proposed tests. For more details about vague noninformative

priors, one can refer to Kass and Raftery (1995).
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3.3 Extension to hypotheses in a general form

In this subsection, we extend the point null hypothesis to the following nonlinear form,{
H0 : R (θ0) = r

H1 : R (θ0) 6= r
, (13)

where R (·) : Θθ → Rm, m ≤ q, and r ∈ Rm. Here R is a set of m nonlinear func-

tions/restrictions. We can test for a single hypothesis on multiple parameters, as well as

a jointly multiple hypotheses on single/multiple parameters. While this hypothesis prob-

lem is in the standard form for the Wald test, it makes BFs difficult to implement due

to nonlinear relationships among parameters. To develop large-sample properties of the

proposed test, we need to impose the following assumption on R (θ).

Assumption 10: R (θ) is second-order continuously differentiable with respect to θ

on Θ and full rank at θ0 .

For the hypothesis defined in (13), the classical Wald statistic and its asymptotic theory

are

Wald =
[
R
(
θ̂
)
− r
]′∂R

(
θ̂
)

∂θ′

[
−H̄−1

n,θθ

(
ϑ̂
)] ∂R(θ̂)

∂θ


−1 [

R
(
θ̂
)
− r
]

d→ χ2 (m) .

Based on the statistical decision theory, we can define the following net loss function

∆L (H0,θ,ψ) = (R (θ)− r)′
[
∂R
(
θ
)

∂θ′
Vθθ

(
ϑ
) ∂R (θ)

∂θ

]−1

(R (θ)− r) ,

and introduce our test statistic as:

T (y, r) =

∫
Θ

∆L (H0,θ,ψ) p (ϑ|y) dϑ

=

∫
Θ

(R (θ)− r)′
[
∂R
(
θ
)

∂θ′
Vθθ
(
ϑ̄
) ∂R (θ)

∂θ

]−1

(R (θ)− r) p (ϑ|y) dϑ

= tr

(∂R (θ)
∂θ′

Vθθ
(
ϑ̄
) ∂R (θ)

∂θ

)−1

Vθ(r)

 , (14)

where Vθ(r) =
∫

(R (θ)− r) (R (θ)− r)′ p (ϑ|y) dϑ.

Theorem 3.3. Under Assumptions 1-10, , we can show that, under the null hypothesis,

T (y, r)−m = Wald + op(1)
d→χ2 (m) .
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3.4 Calculating the proposed statistic

As noted in Sections 3.2 and 3.3, the proposed statistics are only dependent on the posterior

mean and the posterior variance of ϑ, i.e., ϑ and V
(
ϑ
)
. In practice, ϑ and V

(
ϑ
)

are often unknown analytically. Fortunately, when random samples from the posterior

distribution p(ϑ|y) are obtained via posterior simulation (such as MCMC or importance

sampling), we can consistently estimate ϑ and V
(
ϑ
)

arbitrarily well. Specifically, let

{ϑ[j], j = 1, 2, . . . , J} be effective samples generated from p(ϑ|y), consistent estimates of

ϑ and V
(
ϑ
)

are given by

¯̄ϑ =
1

J

J∑
j=1

ϑ[j], V̄
(

¯̄ϑ
)

=
1

J

J∑
j=1

(
ϑ[j] − ¯̄ϑ

)(
ϑ[j] − ¯̄ϑ

)′
.

By plugging ¯̄ϑ and V̄
(

¯̄ϑ
)

into the proposed statistics, we obtain a consistent estimate of

T (y,θ0) or T (y, r) as

T̂ (y,θ0) := tr

[(
V̄θθ

(
¯̄ϑ
))−1

V̄θ (θ0)

]
,

T̂ (y, r) := tr


∂R

(
¯̄θ
)

∂θ′
V̄θθ

(
¯̄ϑ
) ∂R( ¯̄ϑ

)
∂θ

−1

V̄θ(r)

 , (15)

where

V̄θ (θ0) =
1

J

J∑
j=1

(
θ[j] − θ0

)(
θ[j] − θ0

)′
,

and

V̄θ(r) =
1

J

J∑
j=1

(
R
(
θ[j]
)
− r
)(

R
(
θ[j]
)
− r
)′
.

Remark 3.13. Various approaches have been developed for posterior simulation. Exam-

ples include Monte Carlo (MC) integration, important sampling, MCMC techniques such

as the Gibbs sampler and the Metropolis-Hastings algorithm. For more details about pos-

terior simulation, one can refer to Geweke (2005). All these approaches can be used to

generate the random observations from p(ϑ|y). From (15), the proposed statistics are

by-products of posterior simulation. Furthermore, the test statistics can be applied in a

variety of models.

When T̂(y,θ0) and T̂ (y, r) are calculated from posterior simulation, it is important to

obtain their numerical standard error (NSE) which measures the magnitude of simulation

errors. The following theorem provides formulae to calculate the NSE of T̂(y,θ0) and

T̂ (y, r).
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Theorem 3.4. Let v̄1 = 1
J

∑J
j=1 θ

[j], V̄2 = 1
J

∑J
j=1

(
θ[j] − ¯̄θ

)(
θ[j] − ¯̄θ

)′
, v̄2 = vech

(
V̄2

)
,

v̄ = (v̄′1, v̄
′
2)′, V ar (v̄) be the NSE of v̄, where vech denotes the column-wise vectorization

of a matrix. The NSE of T̂ (y,θ0) is given by

NSE
(
T̂ (y,θ0)

)
=

√√√√(∂T̂ (y, θ0)

∂v̄

)′
V ar (v̄)

∂T̂ (y,θ0)

∂v̄
,

where

∂T̂ (y,θ0)

∂v̄
=vech (Iqθ)

′
[((

(v̄1 − θ0)′ V̄−1
2

)′ ⊗ Iqθ + V̄−1
2 ⊗ (v̄1 − θ0)

) ∂v̄1

∂v̄

−
[
Iqθ ⊗ (v̄1 − θ0) (v̄1 − θ0)′

] (
V̄−1

2 ⊗ V̄−1
2

) ∂V̄2

∂v̄

]
.

and

∂v̄1

∂v̄
=
∂v̄′1
∂v̄

= [Iqθ , 0qθ×q∗ ] ,
∂V̄2

∂v̄
=

0q2θ×qθ
,

(
∂vech

(
V̄2

)
∂v̄2

)
q2θ×q∗

 .
Furthermore, if R (θ) is second-order continuously differentiable, the NSE of T̂ (y, r)

is given by

NSE
(
T̂ (y, r)

)
=

√√√√(∂T̂ (y, r)

∂v̄

)′
V ar (v̄)

∂T̂ (y, r)

∂v̄
,

where

∂T̂ (y, r)

∂v̄
=vech (Im)′

{[(
(v̄3 − r)′

(
V̄′4V̄2V̄4

)−1
)′
⊗ Im

]
∂v̄3

∂v̄1

∂v̄1

∂v̄

+
[(

V̄′4V̄2V̄4

)−1 ⊗ (v̄3 − r)
] ∂v̄′3
∂v̄1

∂v̄1

∂v̄

+
[
Im ⊗ (v̄3 − r) (v̄3 − r)′

] [(
V̄′4V̄2V̄4

)−1 ⊗
(
V̄′4V̄2V̄4

)−1
]

×
∂vech

(
V̄′4V̄2V̄4

)
∂v̄

}
,

v̄3 = R

 1

J

J∑
j=1

θ[j]

 = R (v̄1) , V̄4 =
∂R
(

1
J

∑J
j=1 θ

[j]
)

∂θ
=
∂R (θ)

∂θ
|θ=v̄1

,

∂vech
(
V̄′4V̄2V̄4

)
∂v̄

=
((

V̄2V̄4

)′ ⊗ Im) ∂V̄′4
∂v̄1

∂v̄1

∂v̄
+
(
V̄4 ⊗ V̄′4

) ∂V̄2

∂v̄

+
(
Im ⊗ V̄′4V̄2

) ∂V̄4

∂v̄1

∂v̄1

∂v̄
,

and the derivatives of V̄4 and v̄3 depend on the form of R (θ).
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Remark 3.14. Following Newey and West (1987), a consistent estimator of the NSE of

v̄ is given by

V ar(v̄) =
1

J

[
Ω0 +

K∑
k=1

(
1− k

K + 1

)(
Ωk + Ω′k

)]
,

where

Ωk = J−1
J∑

j=k+1

(
v[j] − v̄

)(
v[j] − v̂

)′
.

4 Hypothesis Testing for Latent Variable Models

Latent variable models have found a wide range of applications in microeconometrics,

macroeconometrics and financial econometrics; see Stern (1997), Norets (2009), Koop and

Korobilis (2009), Yu (2011). Without loss of generality, let y = (y1,y2, . . . ,yn)
′

denote

the observed variables and z = (z1, z2, . . . , zn)
′
the latent variables. The set of parameters

in the model is denoted by ϑ. Let p(y|ϑ) be the likelihood function of the observed data,

and p(y, z|ϑ) be the complete-data likelihood function. The relationship between these

two likelihood functions is

p(y|ϑ) =

∫
p(y, z|ϑ)dz. (16)

In many latent variable models, especially dynamic latent variable models, the number

of latent variables is often the same as the sample size. Hence, the integral in (16) is

high-dimensional when the sample size is large. If the integral does not have an analyt-

ical expression, it will be very difficult to evaluate numerically. Consequently, statistical

inferences, including estimation and hypothesis testing, are difficult to implement if they

are based on the MLE.

In recent years, it has been documented that latent variable models can be efficiently

analyzed using MCMC techniques; see Geweke, et al. (2011). Let p(ϑ) be the prior

distribution of ϑ. To alleviate the difficulty in maximum likelihood, the data-augmentation

strategy (Tanner and Wong, 1987) is often employed where the latent variables are treated

as additional parameters. Then, the Gibbs sampler can be used to generate random

samples from the joint posterior distribution p(ϑ, z|y), denoted by
{
ϑ[j], z[j]

}J
j=1

, after a

burn-in phase. The Bayesian estimates of ϑ and the estimates of the covariance matrix

can be obtained as,

¯̄ϑ =
1

J

J∑
j=1

ϑ[j], V̄
(

¯̄ϑ
)

=
1

J

J∑
j=1

(
ϑ[j] − ¯̄ϑ

)(
ϑ[j] − ¯̄ϑ

)′
.
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Similarly, the proposed test can be easily computed from
{
ϑ[j]
}J
j=1

and hence it is very

easy to implement.

Remark 4.1. As noted before, the test statistic of LLY in (2) requires the evaluation

of the first derivative of the observed-data likelihood function. For many latent variable

model, this is difficult to evaluate when the observed-data likelihood function does not

have a closed-form expression. In addition, it requires estimating both the null model

and the alternative model. However, the proposed test does not require evaluating the

first derivative and only estimate the model under the alterative hypothesis. Clearly, the

proposed test is easier to implement and faster to compute.

5 Simulation Studies

In this section, we first design two experiments to examine the finite-sample performance

of the proposed test with simulated data. In the first experiment, we test different null

hypotheses in a linear regression model. This study aims to compare the finite sample

behavior between T (y,θ0) and the Wald statistic in terms of size and power. In the

second experiment, we test the point null hypothesis in a discrete choice model. It is a

simultaneous equation model with ordered probit and two-limit censored regression. Li

(2006) applied this microeconometric model to study the relationship between high school

completion and future youth unemployment.

5.1 Hypothesis testing in a linear regression model

The linear regression model we consider is specified as

yi = x′iβ + εi, εi ∼ N
(
0, σ2

)
, i = 1, . . . , n.

with xi1 = 1. Let β =
(
β′1,β

′
2

)′
. We consider two different null hypotheses, both concern-

ing β1. The first one is to test H0 : β1 = β∗1 against H1 : β1 6= β∗1. The other is to test

H0 : Rβ1 = r against H1 : Rβ1 6= r. To do Bayesian analysis, the conjugate priors for β

and σ2 can be specified as the normal distribution and the inverse gamma distribution,

respectively,

β|σ2 ∼ N
(
µ0, σ

2V0

)
, σ2 ∼ IG (a, b) ,

where µ0, V0 and a, b are hyperparameters. As a result, the posterior distributions are

available analytically.

For simplicity, we consider the case in which β = (β1, β2, β3, β4), xi = (xi1, xi2, xi3, xi4)′,

where xi1 = 1, xi2, xi3, xi4 ∼ N (0, 1). The true parameter values used to simulate data
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are given as σ2 = 0.01, β1 = 0.3, β2 = 0.2, β3 = 0.1C, β4 = 0.5C for C = 0, 0.1, 0.3, 0.5,

where C is used to control the difference between the true value and zero. The number of

replications is set at 1000 while three sample sizes are considered, n = 50, 100, 150. Each

of four null hypotheses is tested, β3 = 0, or β4 = 0, or β3 = β4 = 0, or β3 + β4 = 0, in

every replication. To make the priors vague, the hyperparameters are specified at

µ0 = (0, 0, 0, 0)′ ,V0 = 1000× I4, a = 0.0001, b = 0.0001,

with I4 being the 4 × 4 identity matrix. In each replication, we draw 5000 i.i.d. random

samples from the posterior distribution and then use the posterior samples to compute

the proposed statistic. Also computed is the Wald statistic for the purpose of comparison.

The Wald test is feasible because MLE is easy to obtain in this application.

Table 2 reports the size and the power of the proposed test and the Wald test for a

nominal size of 5%. In all cases, the size distortion for the new statistic is very small and

the two tests perform similarly in terms of size. The size approaches 5% as the sample size

increases. Moreover, in all cases, the power of the proposed test is comparable to that of

the Wald statistic. As C increases, the power of the proposed statistic approaches 100%.

Similarly, as the sample size increases, the power of the proposed statistic approaches

100%.

Table 2: The size and power of the proposed test and the Wald test for different null
hypothesis in a linear regression model

Empirical Size Empirical Power

C = 0 C = 0.1 C = 0.3 C = 0.5

n H0 T (y,β10) Wald T (y,β10) Wald T (y,β10) Wald T (y,β10) Wald

50

β3 = 0 4.50% 5.10% 10.40% 11.00% 55.80% 57.30% 92.00% 92.20%

β4 = 0 6.50% 7.10% 92.00% 92.5% 100% 100% 100% 100%

β3 = β4 = 0 6.60% 7.50% 88.80% 89.70% 100% 100% 100% 100%

β3 + β4 = 0 6.20% 6.70% 83.30% 84.00% 100% 100% 100% 100%

100

β3 = 0 5.50% 5.80% 20.20% 20.40% 82.00% 82.80% 99.90% 100%

β4 = 0 4.60% 5.00% 99.70% 99.70% 100% 100% 100% 100%

β3 = β4 = 0 5.70% 6.00% 99.50% 99.50% 100% 100% 100% 100%

β3 + β4 = 0 6.00% 6.20% 98.60% 98.60% 100% 100% 100% 100%

150

β3 = 0 5.30% 5.40% 24.40 24.60% 95.90% 95.90% 100% 100%

β4 = 0 5.20% 5.30% 100% 100% 100% 100% 100% 100%

β3 = β4 = 0 5.40% 5.60% 100% 100% 100% 100% 100% 100%

β3 + β4 = 0 4.20% 4.20% 99.80% 99.80% 100% 100% 100% 100%

5.2 Hypothesis testing in a discrete choice model

The second model in the simulation study is a simplified version of the model of Li (2006)

where the effects of attendance on high school completion and future youth unemployment
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were studied. As noted in Li (2006), the likelihood function involves multiple integrals and

discrete and censor variables. Consequently, the likelihood function and the corresponding

derivatives are not easy to evaluate. Consequently, Li introduced a MCMC approach to

do statistical analysis. We perform hypothesis testing in the discrete choice model with

latent variables.

Let zi = 1, 2, 3, 4 denote the high school grade completed by individual i which is by

definition an ordered integer. Let yi denote the latent outcome corresponding to zi. The

first part of the model is an ordered probit defined as{
yi = β0 + β1xi + εi, εi ∼ N

(
0, σ2

)
, γzi < yi < γzi+1,

γ1 = −∞, γ2 = 0, γ2 < γ3 < γ4, γ4 = 1, γ5 =∞,

where i = 1, . . . , n with n being the total number of individuals, εi is an individual level

random error term, σ2 is the variance of the error term, {γj}5j=1 are the cutoff points, xi

contains some covariates which are assumed to be exogenous. For the purpose of simulating

data, we simply assume xi is univariate and xi ∼ N (0, 1).

Furthermore, let ωi denote the proportion of time during which individual i is unem-

ployed, ỹi is the latent outcome corresponding to ωi, and ỹi is limited as,

ỹi


≤ 0, ωi = 0,

= ωi, 0 < ωi < 1,

≥ 1, ωi = 1.

Then the censored regression is,

ỹi = β̃0 + β̃1x+ ε̃i, ε̃i ∼ N
(
0, σ̃2

)
. (17)

The two error terms are correlated, that is,(
εi
ε̃i

)
∼ N

((
0
0

)
,

(
σ2 σ12

σ12 σ̃2

))
:= N (0,Σ) .

In the simulation study, the null and alternative hypotheses are,

H0 : β1 = 0, H1 : β1 6= 0.

To calculate the size and power of the proposed statistic, three sample sizes are considered,

n = 100, 250 and 500. In each case, we compute the empirical size when β1 = 0 at a

nominal size of 5%. We also compute the power when β1 = 0.1, 0.2 and 0.4. The number

of replications is 500. The true values of other parameters are set at,

β0 = 1, β̃0 = 0.01, β̃1 = 0.1,Σ =

(
1 −0.01

−0.01 0.1

)
, γ3 = 0.67.
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Table 3: The size and power of the proposed test in a discrete choice model
Empirical Size Empirical Power

β1 = 0 β1 = 0.1 β1 = 0.2 β1 = 0.4

n = 100 4.2% 11.0% 23.0% 75.8%
n = 250 5.2% 24.0% 65.0% 100%
n = 500 4.6% 49.4% 97.2% 100%

These values are close to those reported in Li (2006) based on actual data.

Following Li (2006), we use the following vague priors to do Bayesian analysis,

β =
(
β0, β1.β̃0, β̃1

)′
∼ N (0, 1000× I4) , Σ ∼ IW (6, 6× I2) , γ3 ∼ Beta (1, 1) ,

where IW denotes the inverted Wishart distribution and Beta denotes the Beta distribu-

tion.

We run MCMC to obtain 10,000 random samples. After dropping the first 4,000 sam-

ples, we treat the remaining 6,000 sample as effective draws from the posterior distribution.

Let
{
β

[j]
1

}J
j=1

denote the effective posterior draws. From (15), the proposed statistic can

be simply calculated as

T̂ (y, β1 = 0) =

1
J

∑J
j=1

(
β

[j]
1

)2

1
J

∑J
j=1

(
β

[j]
1 − β1

)2 , β1 =
1

J

J∑
j=1

β
[j]
1 .

Other test statistics, such as BFs and the Wald statistic, are harder to obtain due to the

presence of latent variables.

The empirical size and power of the proposed test are reported in Table 3 for a nominal

size of 5%. It is obvious that the empirical size is close the nominal size in all cases, even

when the sample size is only 100. When β1 becomes further and further away from 0,

the power increases and approaches 100%. Furthermore, as the sample size increase, the

power increases in all cases.

6 Empirical Examples

We then consider two empirical studies using real data. The first model is the full version of

the discrete choice model of Li (2006). The second model is the stochastic volatility model

with leverage effect. For both models, it is well-known that the observed-data likelihood

function is intractable due to the presence of latent variables. As a result, the observed-

data likelihood function and its derivatives are very difficult to evaluate and hence it is

advantageous to use the proposed statistic over existing statistics for hypothesis testing.
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6.1 Hypothesis testing in a discrete choice model

In the first empirical study, we consider the same model and use the same data set as in Li

(2006). Let zhi denote the high school grade completed by individual i, and yhi denote the

latent outcome corresponding to zhi, where h labels the schooling outcome. Let zhi = 1

if individual i dropped out of high school after completing the ninth grade, zhi = 2 if he

dropped out after completing the tenth grade, zhi = 3 if he dropped out after completing

the eleventh grade, and zhi = 4 if he completed high school. An ordered probit is specified

as

{
yhi = β′hxhi + εhi, εhi ∼ N

(
0, σ2

h

)
, γzhi < yhi < γzhi+1,

γ1 = −∞, γ2 = 0, γ2 < γ3 < γ4, γ4 = 1, γ5 =∞,
(18)

where xhi is a kh × 1 vector incorporating individual level variables, including base year

cognitive test score, parental income, parental education, number of siblings, gender, race,

county level employment growth rate between 1980 and 1982, a fourth-order polynomial

in age and a fourth-order polynomial in the time eligible to drop out.

Furthermore, let ωui represent the proportion of time when individual i is unemployed,

yui the latent outcome corresponding to ωui, and yui is limited as,

yui


≤ 0, ωui = 0,

= ωui, 0 < ωui < 1,

≥ 1, ωui = 1.

(19)

Thus, the censored regression is,

yui = β′uxui + s′iη + εui, εui ∼ N
(
0, σ2

u

)
, (20)

where xui is a ku×1 vector incorporating observed variables, including base year cognitive

test score, parental income, parental education, number of siblings, gender, race, age and

a dummy variable indicating any post-secondary education.

In Equation (20), si is a 4×1 vector consisting of dummy variables indicating the high

school grade completed by individual i. In other words, si = (si,1, si,2, si,3, si,4)′, and if

si,zhi = 1 then si,j = 0, j 6= zhi. Besides, η indicates the 4× 1 vector of the effect of high

school completion on unemployment. For simplicity, η is assumed to be the same across

schools. This assumption is different from that in Li (2006) although our empirical results

are almost the same as those in Li. The random terms are assumed to be correlated,(
εhi
εui

)
∼ N

((
0
0

)
,

(
σ2
h σhu

σhu σ2
u

))
= N (0,Σ) .
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In total, there are 34 parameters in the model.

As noted in Li (2006), the MLE is difficult to obtain. Hence, the MCMC technique is

implemented. We adopted the same priors as Li which are listed in the following,

β =
(
β′h,β

′
u

)′ ∼ N (0k×1, 1000× Ik) , Σ ∼ IW (6, 6× I2) ,

η ∼ N (0, I4) , γ3 ∼ Beta (1, 1) ,

where k = kh + ku.

The dataset contains 5,238 students from 871 schools. For more details about the data,

one can refer to Li (2006). We run MCMC for 20,000 times. After dropping the first 4,000

samples, we treat the remaining 16,000 as effective draws. Posterior means and posterior

standard errors are reported in Table 4, all of which are very close to those reported in Li.

Suppose one is interested in testing that the marginal effects of father’s education level

and mother’s education level on the completion of high school can be ignored or not. The

null hypothesis can be written as H0 : β4h = β5h = 0. With the MCMC output, we can

very easily compute the statistic. We also compute ̂logBF10 and T̂LLY (y,θ0). The three

test statistics and their numerical standard errors are reported in Table 5.2

According to Table 5, both T̂ (y,θ0) − 1 and T̂LLY (y,θ0) take very large values, in-

dicating that the null hypothesis is overwhelmingly rejected. This conclusion is consistent

with that by ̂logBF10, which strongly supports the alternative hypothesis. Furthermore,

their numerical standard errors are all small relative to the values of the statistics. Fi-

nally, in spite of the same conclusion reached, the CPU time required to compute the test

statistics is vastly different. The proposed statistic is more than 1700 times and nearly

13000 times faster to compute than T̂LLY (y,θ0) and ̂logBF10 after MCMC outputs are

available. An additional advantage that does not reflect in the CPU time is that the pro-

posed statistic only needs MCMC output from the alternative model while the other two

statistics require MCMC output for both the null and alternative models.

6.1.1 Hypothesis testing in a stochastic volatility model

Stochastic volatility (SV) models with leverage effect have been widely used in finance;

see Harvey and Shephard (1996) and Aı̈t-Sahalia, et al (2017). Following Yu (2005), the

stochastic volatility model with leverage effect is defined as,{
rt = exp (ht/2) εt,

ht+1 = µ+ φ (ht − µ) + σεt+1, h0 = µ,

2We use the marginal likelihood method of Chib (1995) to compute the BF and its NSE.
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Table 4: Posterior means and posterior standard errors of parameters in a discrete choice
model of Li (2006)

E (·|Data) SE (·|Data)

High school completion yh
Constant 0.9474 0.2119
Parental income 0.0110 0.0262
Base year cognitive test 0.4413 0.0370
Father’s education 0.0456 0.0131
Mother’s education 0.0627 0.0159
Number of siblings -0.0370 0.0153
Female -0.0694 0.0534
Minority 0.3840 0.0664
County employment growth -0.0132 0.0047
Age -0.4150 0.0853
Age2 -0.1887 0.0766
Age3 -0.0333 0.0468
Age4 0.0311 0.0148
Time eligible to drop out 0.0932 0.0696
Time2 0.0905 0.0473
Time3 -0.0090 0.0106
Time4 -0.0094 0.0053

Proportion of time unemployed ωu
Parental income -0.0275 0.0056
Base year cognitive test -0.0392 0.0071
Father’s education -0.0020 0.0025
Mother’s education -0.0043 0.0030
Number of siblings 0.0049 0.0034
Post-secondary education -0.0113 0.0138
Female 0.0621 0.0112
Minority 0.0826 0.0131
Age -0.0058 0.0126
Completing ninth grade(η1) 0.1925 0.0705
Completing tenth grade(η2) 0.1211 0.0530
Completing eleventh grade(η3) 0.1187 0.0492
Completing high school(η4) 0.0083 0.0416

Covariance matrix Σ

σ2
h 0.9450 0.0914
σ2
u 0.1215 0.0039
σhu -0.0099 0.0191

Cutoff point

γ3 0.6684 0.0220
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Table 5: The proposed statistic, T̂LLY (y,θ0), ̂logBF10, the CPU time (in seconds), and
their NSEs in the discrete choice model of Li (2006).

β4 = β5 = 0
Value NSE CPU Time (seconds)†

T̂ (y,θ0)− 1 44.39 1.59 22.54

T̂LLY (y,θ0) 2502.00 89.57 39,096.79
̂logBF10 5.2019 1.03 292,886.45
† The CPU time for computing each statistic is obtained from a laptop
with an Intel i5 CPU and 8 GB memory after MCMC outputs are
available.

with (
εt
εt+1

)
i.i.d.∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

where rt is the return at time t, ht the latent volatility at period t. In this model, ρ is the

parameter that captures the leverage effect when it is negative. Hence, we test H0 : ρ = 0

against H1 : ρ 6= 0. In this example, we use two different datasets for hypothesis testing.

For each dataset, we compute the proposed statistic, TLLY (y,θ0) and ̂logBF10.3

Let
{
ρ[j]
}J
j=1

denote the effective posterior draws for ρ under H1. The proposed

statistic is simply calculated as

T̂(y, ρ = 0) =
1
J

∑J
j=1

(
ρ[j]
)2

1
J

∑J
j=1

(
ρ[j] − ρ

)2 , ρ =
1

J

J∑
j=1

ρ[j].

On the contrary, computing T̂LLY (y,θ0) and ̂logBF10 require substantially higher coding

efforts and extra CPU time.

The first dataset consists of daily returns on Pound/Dollar exchange rates from 01/10/81

to 28/06/85 with sample size 945. The series rt is the daily mean-corrected returns. The

following vague priors are used:

µ ∼ N (0, 100) , φ ∼ Beta (1, 1) , σ−2 ∼ Γ (0.001, 0.001) , ρ ∼ U (−1, 1) .

We draw 50,000 from the posterior distribution and discard the first 20,000 as build-in

samples. Then we store every 5th value of the remaining samples as effective random

samples. The estimation results are reported in Table 6.

Table 7 reports the proposed statistic, T̂LLY (y,θ0) and ̂logBF10 and the NSEs for the

first two statistics. Since the observed-data likelihood function is expensive to compute,

3Again we use the marginal likelihood method of Chib (1995) to compute the BF.

23

Electronic copy available at: https://ssrn.com/abstract=3184330



Table 6: Posterior means of parameters in the SV model with and without leverage effect
for the Pound/Dollar returns.

H1 H0

Parameter Mean SE Mean SE

µ -0.5776 0.3487 -0.6608 0.3164
φ 0.9849 0.0097 0.9793 0.0127
ρ -0.0941 0.1507 - -
τ 0.1553 0.0243 0.1618 0.0360

Table 7: The proposed statistic, T̂LLY (y, θ0), ̂logBF10, the CPU time (in seconds), and
the NSEs of the first two statistics for the Pound/Dollar returns.

T̂ (y,θ0)− 1 T̂LLY (y,θ0) ̂logBF10

Value 0.3893 0.2883 -10.1235
NSE 0.0255 0.2028 -

CPU Time (seconds) 0.9411 549.0631 3,701.2241

the NSE of BF is too difficult to obtain and not report. ̂logBF10 strongly supports the null

hypothesis, that is, the SV model without leverage effect. T̂LLY (y,θ0) takes a very small

value, suggesting that we cannot reject the null hypothesis. When the null hypothesis is

true, we know that T (y,θ0)−1
d→ χ2 (1). It can be found that T̂ (y,θ0)−1 is very closed

to T̂LLY (y,θ0), also suggesting that we cannot reject the null hypothesis. Finally, our

proposed statistic has a smaller NSE than T̂LLY (y,θ0).

The second dataset contains 1,822 daily returns of the Standard & Poor (S&P) 500

index, covering the period between January 3, 2005 and March 28, 2012. We use the same

priors and method as before to estimate the model with and without leverage effect. The

estimation results are reported in Table 8.

Table 8: Posterior means of parameters in the SV model with and without leverage effect
for the S&P500 returns.

H1 H0

Parameter Mean SE Mean SE

µ -10.8800 0.1751 -11.2200 0.3349
φ 0.9804 0.0039 0.9897 0.0042
ρ -0.7151 0.0422 - -
τ 0.2057 0.0178 0.1705 0.0169

The three test statistics and the NSEs for the first two statistics are reported in Table

9. Contrary to the case of Pound/Dollar returns, all three statistics strongly support the
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alternative hypothesis. Both T̂ (y,θ0) − 1 and T̂LLY (y,θ0) reject the null hypothesis

under the 99% significance level. Similarly, ̂logBF10 strongly supports the alternative

hypothesis. However, the proposed statistic is nearly 1000 times and more than 6000 times

faster to compute than T̂LLY (y,θ0) and ̂logBF10 after MCMC outputs are available.

Table 9: The proposed statistic, T̂LLY (y, θ0), ̂logBF10, the CPU time (in seconds), and
the NSEs of the first two statistics for the S&P500 returns.

T̂ (y,θ0)− 1 T̂LLY (y,θ0) ̂logBF10

Value 286.7944 8.2419 51.9582
NSE 0.6915 0.6849 -

CPU Time (seconds) 1.2922 1,256.7768 7,785.6888

7 Conclusion

In this paper, a new test statistic is proposed to test for a point null hypothesis which can

be treated as the posterior version of the Wald test. Compared with existing methods, the

proposed statistic has many important advantages. First, it is well-defined under improper

prior distributions. Second, it avoids Jeffreys-Lindley’s paradox. Third, its asymptotic

distribution is a χ2 distribution under the null hypothesis and repeated sampling. This

property is the same as the Wald statistic so that the critical values can be easily obtained.

Fourth, it is very easy to compute as it is based on the posterior mean and posterior

variance of the parameters of interest. Fifth, it can be used to test hypotheses that

imposes nonlinear relationships among the parameters of interest, for which the BF is

difficult to use. Sixth, for latent variable models for which the MLE and the Wald test

are more difficult to obtain, the proposed statistic is the by-product of posterior sampling.

Finally, only posterior sampling for the alternative hypothesis is needed for the proposed

statistic.

The finite sample properties of the proposed statistic is examined in a linear regression

model and in a discrete choice model with latent variables. In the linear regression models,

the Wald statistics is feasible and compared with the proposed test. Simulation results

show that the proposed test has little size distortion even when the sample size is small

and its size and power are very similar to those of the Wald test when a vague prior is

used. In the discrete choice model, the proposed test has little size distortion even when

the sample size is small. The power increases rapidly when the sample size increases or

when the difference between the null and alternative hypotheses increases.

We apply the method to two models using real data. The first one is a discrete choice

model and the second is a SV model. In both models there are latent variables. Due to the
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presence of latent variables, the Wald statistic is very difficult to obtain and because the

maximum likelihood method is difficult to use. While both the BF and the test proposed

by LLY (2015) are feasible to compute based on MCMC output, they are much more

expensive to compute than the proposed statistic with longer CPU time after MCMC

output is available. The empirical conclusion obtained by these three methods is the same

in both empirical applications.

8 Appendix

8.1 Proof of Lemma 3.1

First, we can show that∥∥∥H̄n (ϑ)− H̄n

(
ϑ̂
)∥∥∥

=
∥∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)
+ H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)
+ Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥

≤
∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)∥∥+
∥∥H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)∥∥+
∥∥∥Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥ . (21)

For any ε, there exists a δ (ε) > 0 such that

P

(
sup

N(ϑ0
n,δ(ε))

∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)∥∥ < ε

3

)
→ 1. (22)

From Assumption 3 that l
(2)
t (ϑ) is almost surely continuous at ϑ0

n. We also have

P
(∥∥H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)∥∥ < ε

3

)
→ 1, P

(∥∥∥Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥ < ε

3

)
→ 1, (23)

because of the uniform convergence of l
(2)
t (ϑ) and ϑ̂− ϑ0

n
p→ 0 by Assumptions 1-7 (Gal-

lant and White, 1988). Define events An (ε) =
{

supN(ϑ0
n,δ(ε))

∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)∥∥ < ε
3

}
,

Bn (ε) =
{∥∥H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)∥∥ < ε
3

}
and Cn (ε) =

{∥∥∥Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥ < ε

3

}
. Then

we have

P

(
sup

N(ϑ0
n,δ(ε))

{∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)∥∥+
∥∥H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)∥∥+
∥∥∥Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥} < ε

)
≥ P (An (ε) ∩Bn (ε) ∩ Cn (ε)) .

From (22) and (23), the probability of the complementary event of An (ε)∩An (ε)∩An (ε)

is

P ((An (ε) ∩Bn (ε) ∩ Cn (ε))c)

= P (An (ε)c ∪Bn (ε)c ∪ Cn (ε)c) ≤ P (An (ε)c) + P (Bn (ε)c) + P (Cn (ε)c)→ 0.

26

Electronic copy available at: https://ssrn.com/abstract=3184330



Then

P (An (ε) ∩Bn (ε) ∩ Cn (ε))→ 1.

Hence, by (21), for any ε > 0

P

(
sup

N(ϑ0
n,δ(ε))

∥∥∥H̄n (ϑ)− H̄n

(
ϑ̂
)∥∥∥ < ε

)

≥ P

(
sup

N(ϑ0
n,δ(ε))

∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)∥∥+
∥∥H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)∥∥+
∥∥∥Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥ < ε

)
→ 1. (24)

It is noted that

sup
N(ϑ0

n,δ(ε)),‖r0‖=1

∣∣∣1− r′0H̄
−1/2
n

(
ϑ̂
)

H̄n (ϑ) H̄−1/2
n

(
ϑ̂
)

r0

∣∣∣
= sup

N(ϑ0
n,δ(ε)),‖r0‖=1

∣∣∣1 + r′0

(
−H̄−1/2

n

(
ϑ̂
)) (
−H̄n (ϑ)

) (
−H̄−1/2

n

(
ϑ̂
))

r0

∣∣∣
= sup

N(ϑ0
n,δ(ε)),‖r0‖=1

∣∣∣r′0 (−H̄−1/2
n

(
ϑ̂
)) [
−H̄n

(
ϑ̂
)

+ H̄n (ϑ)
] (
−H̄−1/2

n

(
ϑ̂
))

r0

∣∣∣
≤ λn sup

N(ϑ0
n,δ(ε)),‖r0‖=1

∣∣∣r′0 (H̄n (ϑ)− H̄n

(
ϑ̂
))

r0

∣∣∣
≤ λn sup

N(ϑ0
n,δ(ε)),‖r0‖=1

∥∥r′0∥∥∥∥∥H̄n (ϑ)− H̄n

(
ϑ̂
)∥∥∥ ‖r0‖

= λn sup
N(ϑ0

n,δ(ε)),‖r0‖=1

∥∥∥H̄n

(
ϑ̂
)
− H̄n (ϑ)

∥∥∥ ,
where λn is the smallest eigenvalue of −H̄n

(
ϑ̂
)

. Then from (24), for any ε > 0

P

(
sup

N(ϑ0
n,δ(ε)),‖r0‖=1

∣∣∣1− r′0H̄
−1/2
n

(
ϑ̂
)

H̄n (ϑ) H̄−1/2
n

(
ϑ̂
)

r0

∣∣∣ < ε

)
→ 1. (25)

8.2 Proof of Lemma 3.2

Lemma 8.1. Let X1, X2, ..., Xq be independently and identically distributed, then the fol-

lowing inequality for the order statistic maxiXi holds

E

[(
max
i
|Xi|

)k]
<
√

2 exp

(
5

3

)
q + 1
√
q

[
E |X1|2k

]1/2
,

under the condition that E |X1|2k <∞ and k > 0.
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Proof. Let δ = kρ−1, 0 < ρ ≤ 1/2, then from Gribkova (1995), the following inequality

E

[∣∣∣∣max
i
Xi

∣∣∣∣k
]
< C (ρ)

{
E |X1|δ g−1

(
q

q + 1

)}ρ
,

holds for q ≥ 2ρ + 1, where C (ρ) = 2
√
ρ exp (ρ+ 7/6) and g (u) = u (1− u). By setting

ρ = 1/2, it can be shown that

E

[∣∣∣∣max
i
Xi

∣∣∣∣k
]

< C

(
1

2

){
E |X1|δ g−1

(
q

q + 1

)}1/2

=
√

2 exp

(
5

3

)
q + 1
√
q

[
E |X1|2k

]1/2
, (26)

for q ≥ 2.

For q = 1, by Jensen’s Inequality,

E

[∣∣∣∣max
i
Xi

∣∣∣∣k
]

= E
[
|X1|k

]
≤
[
E |X1|2k

]1/2
,

then

E

[∣∣∣∣max
i
Xi

∣∣∣∣k
]
<
√

2 exp

(
5

3

)
1 + 1√

1

[
E |X1|2k

]1/2
. (27)

From (26) and (27), we can get

E

[∣∣∣∣max
i
Xi

∣∣∣∣k
]
<
√

2 exp

(
5

3

)
q + 1
√
q

[
E |X1|2k

]1/2
, (28)

for k > 0 and q ≥ 1.

Let Yi = |Xi|, then it is easy to show that

E

[(
max
i
|Xi|

)k]
= E

[∣∣∣∣max
i
|Xi|

∣∣∣∣k
]

= E

[∣∣∣∣max
i
Yi

∣∣∣∣k
]

<
√

2 exp

(
5

3

)
q + 1
√
q

[
E |Y1|2k

]1/2

=
√

2 exp

(
5

3

)
q + 1
√
q

[
E |X1|2k

]1/2
,

by (28).

�

Lemma 8.2. Suppose the posterior density of ϑ can be written as

p (ϑ|y) =
p (ϑ) p (y|ϑ)

p (y)
,
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where

p (y) =

∫
Θ
p (ϑ) p (y|ϑ) dϑ.

Then

lim
n→∞

P

(∫
An

‖zn‖k
∣∣∣∣p (zn|y)− (2π)−q/2 exp

(
−z′nzn

2

)∣∣∣∣ dzn> ε

)
= 0, (29)

where An =
{

zn : ϑ̂+Σ
1/2
n zn∈ Θ

}
is the support of zn

(
: =Σ

−1/2
n

(
ϑ− ϑ̂

))
, Σ−1

n =

−∂2 log p(y|ϑ̂)
∂ϑ∂ϑ′ .

Proof. The posterior density of zn, p (zn|y), can be written as

p (zn|y) =
|Σn|1/2 p (y|ϑ) p (ϑ)

p (y)
=
|Σn|1/2 p

(
y|ϑ̂+Σ

1/2
n zn

)
p
(
ϑ̂+Σ

1/2
n zn

)
p (y)

(30)

Then, we take the Taylor expansion to log p
(
y|ϑ̂+ Σ

1/2
n zn

)
at ϑ̂ so that we can have

log p
(
y|ϑ̂+ Σ1/2

n zn

)
= log p

(
y|ϑ̂

)
+

1

2
z′nΣ

1/2
n

∂2 log p
(
y|ϑ̃1

)
∂θ∂ϑ′

Σ1/2
n zn

= log p
(
y|ϑ̂

)
− 1

2
z′nΣ

1/2
n

−∂2 log p
(
y|ϑ̂

)
∂θ∂ϑ′

−
∂2 log p

(
y|ϑ̃1

)
∂θ∂ϑ′

+
∂2 log p

(
y|ϑ̂

)
∂ϑ∂ϑ′

Σ1/2
n zn

= log p
(
y|ϑ̂

)
− 1

2
z′nΣ

1/2
n

Σ−1
n −

∂2 log p
(
y|ϑ̃1

)
∂ϑ∂ϑ′

−Σ−1
n

Σ1/2
n zn

= log p
(
y|ϑ̂

)
− 1

2
z′n [Iq −Rn (ϑ,y)] zn, (31)

where Iq is a q-dimension identity matrix and

Rn (ϑ,y) = Iq + Σ1/2
n

∂2 log p
(
y|ϑ̃1

)
∂ϑ∂ϑ′

Σ1/2
n ,

with ϑ̃1 lies between ϑ̂+ Σ
1/2
n zn and ϑ̂.

To prove (29), note that

p (zn|y)− (2π)−q/2 exp

(
−z′nzn

2

)
= p (y)−1 |Σn|1/2 p

(
y|ϑ̂+Σ1/2

n zn

)
p
(
ϑ̂+Σ1/2

n zn

)
− (2π)−q/2 exp

(
−z′nzn

2

)
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= p (y)−1 |Σn|1/2 p
(
y|ϑ̂

)
p
(
ϑ̂+Σ1/2

n zn

) p(y|ϑ̂+Σ
1/2
n zn

)
p
(
y|ϑ̂n

) − (2π)−q/2 exp

(
−z′nzn

2

)
,

and that

p (y)−1 |Σn|1/2 p
(
y|ϑ̂

)
p→ (2π)−q/2

p (ϑ0
n)

,

by Chen (1985) and Schervish (2012). Hence, according to (31), to verify (29), it is

sufficient to show

P

∫
An

‖zn‖k
∣∣∣∣∣∣
p
(
ϑ̂+Σ

1/2
n zn

)
p (ϑ0

n)
exp

[
−z′n[Iq −Rn (ϑ,y)]zn

2

]
− exp

(
−z′nzn

2

)∣∣∣∣∣∣ dzn< ε

→ 1

(32)

Hence, to ensure (32), by assumption 9, it is enough to prove

P

(∫
An

‖zn‖k
∣∣∣∣p(ϑ̂+Σ1/2

n zn

)
exp

[
−z′n[Iq −Rn (ϑ,y)]zn

2

]
− p

(
ϑ0
n

)
exp

(
−z′nzn

2

)∣∣∣∣ dzn< ε

)
→ 1

(33)

In the following, we prove that (33) holds. Since the prior density function is continuous

at ϑ0
n, that is, given any ε > 0, for any η ∈ (0, 1) satisfying

ε ≥ η

(
q2 (1 + η)

√
(2k + 1) (2k + 3)

2 (1− η)
q+k+2

2

+ 1

)
,

∃δ1 > 0, so that for any ϑ satisfying
∥∥ϑ− ϑ0

n

∥∥ ≤ δ1, that is, ϑ ∈ N0 (δ1) =
{
ϑ :
∥∥ϑ− ϑ0

n

∥∥ ≤ δ1

}
,∣∣p (ϑ)− p

(
ϑ0
n

)∣∣ =
∣∣∣p(ϑ̂+ Σ1/2

n zn

)
− p

(
ϑ0
n

)∣∣∣ ≤ ηp (ϑ0
n

)
. (34)

Furthermore, by Lemma 3.1, ∀η > 0, ∃δ2 > 0,

lim
n→∞

P

(
sup

ϑ∈N0(δ2),‖r0‖=1

∣∣∣∣1 + r′0Σ
1/2
n

∂2 log p (y|ϑ)

∂ϑ∂ϑ′
Σ1/2
n r0

∣∣∣∣ < η

)
= 1, (35)

where N0 (δ) =
{
ϑ :
∥∥ϑ− ϑ0

n

∥∥ ≤ δ}, see Schervish (2012).

Let δ = min {δ1, δ2} and define

A1n =
{

zn : ϑ̂+ Σ1/2
n zn∈ N0 (δ)

}
, A2n =

{
zn : ϑ̂+ Σ1/2

n zn∈ Θ\N0 (δ)
}
,

and

Cn = ‖zn‖k
∣∣∣∣p(ϑ̂+ Σ1/2

n zn

)
exp

[
−1

2
z′n

[
Iq −Rn(ϑ̃1)

]
zn

]
− p

(
ϑ0
n

)
exp

(
−z′nzn

2

)∣∣∣∣ .
(36)
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The integration of Cn in the space An can be decomposed into two areas, A1n and A2n,

i.e.,

J =

∫
An

Cndzn=J1 + J2,

where J1 =
∫
A1n

Cndzn, J2 =
∫
A2n

Cndzn. In the following, we try to prove

J1 =

∫
A1n

Cndzn
p→ 0, J2 =

∫
A2n

Cndzn
p→ 0.

For J1, we note that

Cn ≤ C1n + C2n

where

C1n = ‖zn‖k
∣∣∣p(ϑ̂+Σ1/2

n zn

)∣∣∣ ∣∣∣∣exp

[
−1

2
z′n [Iq −Rn (ϑ,y)] zn

]
− exp

(
−z′nzn

2

)∣∣∣∣ ,
C2n = ‖zn‖k

∣∣∣p(ϑ̂+Σ1/2
n zn

)
− p

(
ϑ0
n

)∣∣∣ exp

(
−z′nzn

2

)
.

Then we have

0 ≤ J1 ≤ J11 + J12,

where

J11 =

∫
A1n

C1ndzn, J12 =

∫
A1n

C2ndzn.

It is noted that since δ ≤ δ1, from (34), we can know that
∣∣∣p(ϑ̂+Σ

1/2
n zn

)∣∣∣ ≤ (1 + η) p
(
ϑ0
n

)
.

Hence, we can have

J11 ≤ (1 + η) p
(
ϑ0
n

) ∫
A1n

‖zn‖k
∣∣∣∣exp

[
−z′n [Iq −Rn (ϑ,y)] zn

2

]
− exp

(
−z′nzn

2

)∣∣∣∣ dzn.
Let r0 = zn/ ‖zn‖, so ‖r0‖ = 1, then, we can get that

r′0Rn

(
ϑ̃1

)
r0 = r′0r0 + r′0Σ

1/2
∂2 log p

(
y|ϑ̃1

)
∂ϑ∂ϑ′

Σ1/2r0 = 1 + r′0Σ
1/2

∂2 log p
(
y|ϑ̃1

)
∂ϑ∂ϑ′

Σ1/2r0,

where ϑ̃1 lies between ϑ and ϑ̂. Since ϑ̂
p→ ϑ0

n, we can get that with probability 1,

ϑ̂ ∈ N0 (δ), and hence, ϑ̃1 ∈ N0 (δ) with probability 1.

Following (35), with probability 1, when θ ∈ N0 (δ), we can further get that

‖zn‖k
∣∣∣∣exp

[
−1

2
z′n [Iq −Rn (ϑ,y)] zn

]
− exp

(
−z′nzn

2

)∣∣∣∣
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= ‖zn‖k
∣∣∣∣exp

[
1

2
z′nRn (ϑ,y) zn

]
− 1

∣∣∣∣ exp

(
−z′nzn

2

)
≤ ‖zn‖k exp

[∣∣∣∣12z′nRn (ϑ,y) zn

∣∣∣∣] ∣∣∣∣12z′nRn (ϑ,y) zn

∣∣∣∣ exp

(
−z′nzn

2

)
= ‖zn‖k exp

[∣∣∣∣12z′nzn

∣∣∣∣ ∣∣r′0Rn (ϑ,y) r0

∣∣] ∣∣∣∣12z′nzn

∣∣∣∣ ∣∣r′0Rn (ϑ,y) r0

∣∣ exp

(
−z′nzn

2

)
≤ η

2
‖zn‖k exp

[∣∣∣η
2
z′nzn

∣∣∣] ∣∣z′nzn∣∣ exp

(
−z′nzn

2

)
=

η

2
‖zn‖k+2 exp

(
−(1− η)z′nzn

2

)
(37)

Let

J∗11 =

∫
A1n

‖zn‖k
∣∣∣∣exp

[
−1

2
z′n [Iq −Rn (ϑ,y)] zn

]
− exp

(
−z′nzn

2

)∣∣∣∣ dzn,
It follows from (37), we can get that

lim
n→∞

P

{
J∗11 ≤

η

2

∫
A1n

‖zn‖k+2 exp

(
−(1− η) z′nzn

2

)
dzn

}
= 1. (38)

It is noted that, by Lemma 8.1, we have∫
A1n

‖zn‖k+2 exp

(
−(1− η) z′nzn

2

)
dzn

≤
∫
Rq
‖zn‖k+2 exp

(
−1− η

2
z′nzn

)
dzn ≤

∫
Rq

(
q∑
i=1

|zni|2
) k+2

2

exp

(
−1− η

2
z′nzn

)
dzn

≤ (2π)q/2 (1− η)−q/2 qk+2

∫
Rq

(
max
i
|zni|

)k+2

(2π)−q/2 (1− η)q/2 exp

(
−1− η

2
z′nzn

)
dzn

≤
√

2 exp

(
5

3

)(
q + 1
√
q

)
qk+2 (2π)q/2 (1− η)−q/2

×

[∫
R
|t|2(k+2)

√
1− η

2π
exp

(
−1− η

2
t2
)
dt

]1/2

=
√

2 exp

(
5

3

)
(q + 1) qk+ 3

2 (2π)q/2 (1− η)−q/2 (1− η)−(k+2)/2 2(k+2)/2

(
Γ
(

2k+5
2

)
√
π

)1/2

= 2
k+q+3

2 exp

(
5

3

)
(q + 1) qk+ 3

2

√
Γ

(
2k + 5

2

)
π

2q−1
4

(
1

1− η

)(k+q+2)/2

= 2
k+q+3

2 exp

(
5

3

)
(q + 1) qk+ 3

2π
2q−1

4

√
2k + 3

2

2k + 1

2
Γ

(
2k + 1

2

)(
1

1− η

)(k+q+2)/2

,

where zni is the ith element of zn and the penultimate equation results from the fact

that the central absolute moment of a scalar normal random variable X with mean µ and
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variance σ2 is

E {|X − µ|ν} = σν2ν/2
Γ
(
ν+1

2

)
√
π

.

Hence, we have,

lim
n→∞

P

(
J11

CJ1
≤
q2η (1 + η)

√
(2k + 1) (2k + 3)

2 (1− η)
q+k+2

2

)
= 1, (39)

where

CJ1 = exp

(
5

3

)
p
(
ϑ0
n

)
2
q+k+1

2 π
2q−1

4 (q + 1) qk−
1
2

√
Γ

(
2k + 1

2

)
.

In the following, we deal with J12. From (34) and Lemma 8.1, we have

J12 ≤
∫
A1n

‖zn‖k
∣∣∣p(ϑ̂+Σ1/2

n zn

)
− p

(
ϑ0
n

)∣∣∣ exp

(
−z′nzn

2

)
dzn

≤ ηp
(
ϑ0
n

) ∫
A1n

‖zn‖k exp

(
−z′nzn

2

)
dzn

≤ ηp
(
ϑ0
n

) ∫
Rq
‖zn‖k exp

(
−z′nzn

2

)
dzn

= ηp
(
ϑ0
n

)
(2π)q/2

∫
Rq
‖zn‖k (2π)−q/2 exp

(
−z′nzn

2

)
dzn

≤ ηp
(
ϑ0
n

)
(2π)q/2 qk

∫
Rq

(
max
i
|zni|

)k
(2π)−q/2 exp

(
−1− η

2
z′nzn

)
dzn

≤
√

2 exp

(
5

3

)(
q + 1
√
q

)
ηp
(
ϑ0
n

)
(2π)q/2 qk

[∫
R
|t|2k (2π)−1/2 exp

(
− t

2

2

)
dt

]1/2

= η
√

2 exp

(
5

3

)
p
(
ϑ0
n

)
(2π)q/2 (q + 1) qk−

1
2 2k/2

(
Γ
(

2k+1
2

)
√
π

)1/2

= η exp

(
5

3

)
p
(
ϑ0
n

)
2
q+k+1

2 π
2q−1

4 (q + 1) qk−
1
2

√
Γ

(
2k + 1

2

)
= CJ1η.

Similarly, we have

lim
n→∞

P

{
J12

CJ1
≤ η

}
= 1. (40)

And from (39) and (40),

lim
n→∞

P

{
J11 + J12

CJ1
≤ η

(
q2 (1 + η)

√
(2k + 1) (2k + 3)

2 (1− η)
q+k+2

2

+ 1

)}
= 1. (41)
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By the way how η and ε are chosen, we can get from (41) that

lim
n→∞

P

{
J1

CJ1
≤ ε
}

= 1. (42)

Since ε is chosen arbitrarily and J1 ≥ 0, we have

J1
p→ 0.

Next we show that

J2
p→ 0. (43)

Using (36), we can write

0 ≤ J2 =

∫
A2n

Cndzn ≤ J21 + J22,

where

J21 =

∫
A2n

‖zn‖k p
(
ϑ̂+Σ1/2

n zn

)
exp

[
−1

2
z′n [IP −Rn (ϑ,y)] zn

]
dzn,

J22 =

∫
A2n

‖zn‖k p
(
ϑ0
n

)
exp

(
−z′nzn

2

)
dzn.

For J21, in terms of (31), we have

J21 =

∫
A2n

‖zn‖k p
(
ϑ̂+Σ1/2

n zn

)
exp

[
−1

2
z′n [Iq −Rn (ϑ,y)] zn

]
dzn

=

∫
A2n

‖zn‖k p
(
ϑ̂+Σ1/2

n zn

)
exp

[
log p

(
y|ϑ̂+ Σ1/2

n zn

)
− log p

(
y|ϑ̂

)]
dzn

=

∫
A2n

‖zn‖k p
(
ϑ̂+Σ1/2

n zn

)
exp

[
log p

(
y|ϑ̂+ Σ1/2

n zn

)
− log p

(
y|ϑ0

n

)]
dzn

× exp
[
log p

(
y|ϑ0

n

)
− log p

(
y|ϑ̂

)]
. (44)

According to Lemma 3.1 in Li et al. (2017), if zn∈A2n, log p
(
y|ϑ̂+ Σ1/2zn

)
−log p

(
y|ϑ0

n

)
<

−nK (δ) with probability approaching 1. It is noted that exp
[
log p

(
y|ϑ0

n

)
− log p

(
y|ϑ̂

)]
≤ 1. Hence, the integral on the right-hand side of (44) is less than

exp [−nK (δ)]

∫
A2n

‖zn‖k p
(
ϑ̂+Σ1/2

n zn

)
dzn,

with probability approaching 1. Then, we can have

exp [−nK (δ)]

∫
A2n

‖zn‖k p
(
ϑ̂+Σ1/2

n zn

)
dzn
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= exp [−nK (δ)]

∫
Θ\N0(δ)

∥∥∥Σ−1/2
n

(
ϑ−ϑ̂

)∥∥∥k p (ϑ) |Σn|−1/2 dϑ

≤ exp [−nK (δ)]

∫
Θ\N0(δ)

∥∥∥Σ−1/2
n

∥∥∥k ∥∥∥ϑ−ϑ̂∥∥∥k p (ϑ) |Σn|−1/2 dϑ

≤ exp [−nK (δ)]
∥∥∥Σ−1/2

n

∥∥∥k |Σn|−1/2
∫

Θ

∥∥∥ϑ−ϑ̂∥∥∥k p (ϑ) dϑ

≤ exp [−nK (δ)]
∥∥∥Σ−1/2

n

∥∥∥k |Σn|−1/2
∫

Θ

(
‖ϑ‖+

∥∥∥ϑ̂∥∥∥)k p (ϑ) dϑ

≤ exp [−nK (δ)]
∥∥∥Σ−1/2

n

∥∥∥k |Σn|−1/2
k∑
s=0

(
k
s

)∥∥∥ϑ̂∥∥∥k−s ∫
Θ
‖ϑ‖s p (ϑ) dϑ.

Note that

exp [−nK (δ)]
∥∥∥Σ−1/2

n

∥∥∥k |Σn|−1/2

= exp [−nK (δ)]n(k+1)/2
∥∥∥−H̄−1/2

n

∥∥∥k ∣∣H̄n

∣∣−1/2 p→ 0,

Furthermore,
∫
Θ ‖ϑ‖

k p (ϑ) dϑ <∞ and ϑ̂ − ϑ0
n

p→ 0 by the Assumptions 1-8, then we

have

J21
p→ 0. (45)

For J22, we can show that

J22 =

∫
A2n

‖zn‖k p (ϑpn) exp

(
−z′nzn

2

)
dzn

= p (ϑpn)

∫
A2n

‖zn‖k exp

(
−z′nzn

2

)
dzn

≤ p
(
ϑ0
n

) ∫
‖zn‖>

√
nλnδ
‖zn‖k exp

(
−z′nzn

2

)
dzn

≤ (2π)q/2 p
(
ϑ0
n

) ∫
∩qi=1{|zni|>

√
nλn
q+1

δ}
‖zn‖k (2π)−q/2 exp

(
−z′nzn

2

)
dzn

≤ (2π)q/2 p
(
ϑ0
n

)
qk
∫
∩qi=1{|zni|>

√
nλn
q+1

δ}

(
max
i
|zni|

)k
(2π)−q/2 exp

(
−z′nzn

2

)
dzn

= (2π)q/2 p
(
ϑ0
n

)
qk
∫
Rq

(
max
i
|zni|

)k
1

(
∩qi=1{|zni| >

√
nλn
q + 1

δ}

)
(2π)−q/2 exp

(
−z′nzn

2

)
dzn

= (2π)q/2 p
(
ϑ0
n

)
qk
∫
Rq

(
max
i
|zni|

)k∏q

i=1
1

(
|zni| >

√
nλn
q + 1

δ

)
(2π)−q/2 exp

(
−z′nzn

2

)
dzn

≤ (2π)q/2 p
(
ϑ0
n

)
qk

[∫
Rq

(
max
i
|zni|

)2k

(2π)−q/2 exp

(
−z′nzn

2

)
dzn

]1/2
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×


∫
Rq

[∏q

i=1
1

(
|zni| >

√
nλn
q + 1

δ

)]2

(2π)−q/2 exp

(
−z′nzn

2

)
dzn


1/2

where zni is the ith element of zn and λn is the smallest eigenvalue of −H̄n

(
ϑ̂
)

.

From (28), we have∫
Rq

(
max
i
|zni|

)2k

(2π)−q/2 exp

(
−z′nzn

2

)
dzn <∞. (46)

It can be shown that∫
Rq

[∏q

i=1
1

(
|zni| >

√
nλn
q + 1

δ

)]2

(2π)−q/2 exp

(
−z′nzn

2

)
dzn

=

∫
Rq

∏q

i=1
1

(
|zni| >

√
nλn
q + 1

δ

)
(2π)−q/2 exp

(
−z′nzn

2

)
dzn

=
∏q

i=1

[∫
R

1

(
|zni| >

√
nλn
q + 1

δ

)
(2π)−1/2 exp

(
−z2

ni

2

)
dzni

]

=
∏q

i=1

[∫
|zni|>

√
nλn
q+1

δ
(2π)−1/2 exp

(
−z2

ni

2

)
dzni

]

≤

(√
q + 1

exp
(
−nλnδ2/2(q + 1)

)
√
nλn2πδ

)q
= 2−

q
2 (q + 1)

q
2

(
1√
πδ

)q
(nλn)−

q
2 exp

(
−nλnqδ

2

q + 1

)
p→ 0, (47)

where the last inequality results from∫ ∞
x

1√
2π
e−

t2

2 dt ≤
∫ ∞
x

1√
2π

t

x
e−

t2

2 dt =
e−

x2

2

x
√

2π
.

From (46) and (47), we have

J22
p→ 0. (48)

From (45) and (48), we can get (43). And from (42) and (43), we have

J
p→ 0.

�

To prove E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]
−Σn = op

(
1
n

)
, it is sufficient to show that, for any

ε > 0,

lim
n→∞

P

(∫
An

∥∥znz′n∥∥ ∣∣∣∣p (zn|y)− (2π)−q/2 exp

(
−z′nzn

2

)∣∣∣∣ dzn> ε

)
= 0, (49)
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where ‖·‖ is the matrix norm for a matrix A defined as ‖A‖ = sup‖x‖=1 ‖Ax‖. It is because

that by (49), ∫
An

∥∥znz′n∥∥ ∣∣∣∣p (zn|y)− (2π)−q/2 exp

(
−z′nzn

2

)∣∣∣∣ dzn p→ 0.

Thus, we have
∣∣∣∫An znz

′
n

[
p (zn|y)− (2π)−q/2 exp

(
−z′nzn

2

)]
dzn

∣∣∣ p→ 0q×q, which implies

that ∫
An

znz
′
np (zn|y) dzn −

∫
An

znz
′
n (2π)−q/2 exp

(
−z′nzn

2

)
dzn

p→ 0q×q. (50)

So from (30) we can get∫
An

znz
′
np (zn|y) dzn =

∫
An

znz
′
np (y)−1 |Σn|1/2 p

(
y|ϑ̂+Σ1/2

n zn

)
p
(
ϑ̂+Σ1/2

n zn

)
dzn

=

∫
Θ

Σ−1/2
n

(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
Σ−1/2
n p (y)−1 |Σn|1/2 p (y|ϑ) p (ϑ) |Σn|−1/2 dϑ

=

∫
Θ

Σ−1/2
n

(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
Σ−1/2
n p (ϑ|y) dϑ

= Σ−1/2
n E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]

Σ−1/2
n , (51)

by changing of variables. From (50) and (51), using Assumptions 1-9, we have

Σ−1/2
n E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]

Σ−1/2
n − Iq

p→ 0q×q.

Hence, we can have that

E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]
−Σn = E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]

+

∂2 log p
(
y|ϑ̂

)
∂ϑ∂ϑ′

−1

= op

(
1

n

)
.

Since ‖znz′n‖ ≤ ‖zn‖
2, when k = 2, the formula (29) holds so that (49) is also held.

Similarly, from this Lemma with k = 1, it is also easy to derive that
√
n
(
ϑ̄−ϑ̂

)
p→ 0.

8.3 Proof of Theorem 3.1

According to Lemma 3.2, we have

E
[(
ϑ− ϑ̂

)
|y
]

= op

(
n−

1
2

)
V
(
ϑ̂
)

= E

[(
ϑ− ϑ̂n

)(
ϑ− ϑ̂

)′
|y
]

= − 1

n
H̄
−1
n (ϑ̂) + op

(
n−1

)
= Op(

1

n
).
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Hence, based on Lemma 3.2, we have

V
(
ϑ̄
)

= E
[
(ϑ− ϑ̄)(ϑ− ϑ̄)′|y

]
= E

[(
ϑ− ϑ̂+ ϑ̂− ϑ̄

)(
ϑ− ϑ̂+ ϑ̂− ϑ̄

)′
|y
]

= E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]

+ 2E

[(
ϑ̂− ϑ̄

)(
ϑ− ϑ̂

)′
|y
]

+ E

[(
ϑ̂− ϑ̄

)(
ϑ̂− ϑ̄

)′
|y
]

= V
(
ϑ̂
)
− E

[(
ϑ̂− ϑ̄

)(
ϑ̂− ϑ̄

)′
|y
]

= V
(
ϑ̂
)

+ op(n
−1/2)op(n

−1/2)

= V
(
ϑ̂
)

+ op(n
−1)

= − 1

n
H̄−1
n (ϑ̂) + op

(
n−1

)
= Op(

1

n
).

According to the maximum likelihood theory (White, 1996), θ̂−θ0 = Op(n
−1/2) under

the null hypothesis. Thus, we can show that

(θ̂n − θ0)′
[
Vθθ(ϑ̄)

]−1
(θ̂n − θ0) = (θ̂ − θ0)′

[
−n−1H̄−1

n,θθ(ϑ̂n) + op(n
−1)
]−1

(θ̂ − θ0)

=
√
n(θ̂ − θ0)′

[
−H̄−1

n,θθ(ϑ̂) + op(1)
]−1√

n(θ̂ − θ0)

=
√
n(θ̂n − θ0)′

[
−H̄−1

n,θθ(ϑ̂)
]−1√

n(θ̂ − θ0) + op(1)
√
n(θ̂ − θ0)′

√
n(θ̂ − θ0)

=
√
n(θ̂ − θ0)′

[
−H̄−1

n,θθ(ϑ̂)
]−1√

n(θ̂ − θ0) + op(1)
√
nOp(n

−1/2)
√
nOp(n

−1/2)

=
√
n(θ̂ − θ0)′

[
−H̄−1

n,θθ(ϑ̂)
]−1√

n(θ̂ − θ0) + op(1)

= Wald + op(1). (52)

Furthermore, we can simply derive that

V (ϑ0) = E
[
(ϑ− ϑ0) (ϑ− ϑ0)′ |y

]
= E

[(
ϑ− ϑ̄+ ϑ̄− ϑ0

) (
ϑ− ϑ̄+ ϑ̄− ϑ0

)′ |y]
= V

(
ϑ̄
)

+ 2
(
ϑ̄− ϑ0

) (
ϑ̄− ϑ̄

)′
+
(
ϑ̄− ϑ0

) (
ϑ̄− ϑ0

)′
= V

(
ϑ̄
)

+
(
ϑ̄− ϑ0

) (
ϑ̄− ϑ0

)′
, (53)

under the null hypothesis.

Hence, we can further prove that

T (y,θ0) =

∫
Θθ

(θ − θ0)′
[
Vθθ

(
ϑ̄
)]−1

(θ − θ0) dθ

= tr
{[

Vθθ

(
ϑ̄
)]−1

E
[
(θ − θ0) (θ − θ0)′ |y

]}
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= tr
{[

Vθθ

(
ϑ̄
)]−1

[
Vθθ

(
ϑ̄
)

+
(
θ̄ − θ0

) (
θ̄ − θ0

)′]}
= qθ + tr

{[
Vθθ

(
ϑ̄
)]−1 (

θ̄ − θ0

) (
θ̄ − θ0

)′}
= qθ +

(
θ̄ − θ0

)′ [
Vθθ

(
ϑ̄
)]−1 (

θ̄ − θ0

)
= qθ +

(
θ̄ − θ̂ + θ̂ − θ0

)′ [
Vθθ

(
ϑ̄
)]−1

(
θ̄ − θ̂ + θ̂ − θ0

)
= qθ +

(
θ̂ − θ0

)′ [
Vθθ

(
ϑ̄
)]−1

(
θ̂ − θ0

)
+2
(
θ̄ − θ̂

)′ [
Vθθ(ϑ̄)

]−1
(
θ̂ − θ0

)
+
(
θ̄ − θ̂

)′ [
Vθθ(ϑ̄)

]−1
(
θ̄ − θ̂

)
= qθ +

(
θ̂ − θ0

)′ [
Vθθ(ϑ̄)

]−1
(
θ̂ − θ0

)
+ op

(
1√
n

)
Op (n)Op

(
1√
n

)
+op

(
1√
n

)
Op (n) op

(
1√
n

)
= qθ +

(
θ̂ − θ0

)′ [
Vθθ

(
ϑ̄
)]−1

(
θ̂ − θ0

)
+ op(1)

= qθ + Wald + op(1),

form (52) and (53).

From the above derivation, it is easy to show that

T (y,θ0)− qθ = Wald + op(1)
d→ χ2(q),

under the null hypothesis.

8.4 Proof of Theorem 3.3

Note that

T (y, r) =

∫
Θ

∆L (H0,ϑ) p (ϑ|y) dϑ

=

∫
Θ

(R (θ)− r)′
[
∂R
(
θ
)

∂θ′
Vθθ(ϑ̄)

∂R
(
θ
)

∂θ

]−1

(R (θ)− r) p (ϑ|y) dϑ

= tr


∫

Θ
[R (θ)− r] [R (θ)− r]′ p (ϑ|y) dϑ

[
∂R
(
θ
)

∂θ′
Vθθ(ϑ̄)

∂R
(
θ
)

∂θ

]−1


= tr

E [n (R (θ)− r) (R (θ)− r)′
∣∣y, H1

] [∂R (θ)
∂θ′

nVθθ(ϑ̄)
∂R
(
θ
)

∂θ

]−1
 .

We have

E
[
n (R (θ)− r) (R (θ)− r)′

∣∣y, H1

]
= E

[
n
(
R (θ)−R

(
θ̂
)

+R
(
θ̂
)
− r
)(

R (θ)−R
(
θ̂
)

+R
(
θ̂
)
− r
)′∣∣∣∣y, H1

]
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= E

[
n
(
R (θ)−R

(
θ̂
))(

R (θ)−R
(
θ̂
))′∣∣∣∣y, H1

]
+2E

[
n
(
R (θ)−R

(
θ̂
))(

R
(
θ̂
)
− r

)′∣∣∣∣y, H1

]
+n
(
R
(
θ̂
)
− r
)(

R
(
θ̂
)
− r
)′
. (54)

By the Taylor expansion, we can show that

√
n
(
R (θ)−R

(
θ̂
))

=
∂R
(
θ̂
)

∂θ

√
n
(
θ − θ̂

)
+

[√
n
(
θ − θ̂

)′
⊗ Im

] ∂R2
(
θ̃
)

∂θ∂θ′

(
θ − θ̂

)
,

where θ̃ lies between θ and θ̂. Note that
∂2R(θ)
∂θ∂θ′

is continuous and Θ is compact. Thus,

we have ∥∥∥∥∥∥
∂2R

(
θ̃
)

∂θ∂θ′

∥∥∥∥∥∥ ≤M ′, (55)

for some 0 < M ′ <∞. Furthermore, by Bayesian large-sample theory,
√
n(ϑ−ϑ̂) = Op(1).

Hence, from (55), we can further derive that

[√
n
(
θ − θ̂

)′
⊗ Im

] ∂R2
(
θ̃
)

∂θ∂θ′

(
θ−θ̂

)
= Op(1)O(1)

1√
n

= Op(
1√
n

) = op (1) , (56)

Since
∫ √

n
(
θ − θ̂

)
p (ϑ|y) dϑ =

√
n(θ̄− θ̂) = op (1) according to Lemma 3.2 and also

√
n
(
R
(
θ̂
)
−R (θ0)

)
= Op (1) by using Delta method and the consistency property of

MLE, the second term of (54) is

E

[
n
(
R (θ)−R

(
θ̂
))(

R
(
θ̂
)
− r
)′∣∣∣∣y, H1

]
=

∫
Θ

√
n
[
R (θ)−R

(
θ̂
)]
p (ϑ|y) dϑ×

√
n
(
R
(
θ̂
)
−R (θ0)

)′
=

∫
Θ

√
n
[
R (θ)−R

(
θ̂
)]
p (ϑ|y) dϑ×

√
n
(
R
(
θ̂
)
−R (θ0)

)′
=

∂R
(
θ̂
)

∂θ

∫
Θ

√
n
(
θ − θ̂

)
p (ϑ|y) dϑ

√
n
(
R
(
θ̂
)
−R (θ0)

)
+ op (1)

= Op(1)op (1)Op(1) + op (1) = op(1).

For the first term of (54), after integrating out the nuisance parameters, we have,

E

[
n
(
R (θ)−R

(
θ̂
))(

R (θ)−R
(
θ̂
))′∣∣∣∣y, H1

]
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=

∫
Θθ

n
(
R (θ)−R

(
θ̂
))(

R (θ)−R
(
θ̂
))′

p (θ|y) dθ

=
∂R
(
θ̂n

)
∂θ′

∫
Θθ

n
(
θ − θ̂

)(
θ − θ̂

)′
p (θ|y) dθ

∂R
(
θ̂
)

∂θ
+ op (1) ,

by the Taylor expansion. Based on Lemma 3.2,∫
Θθ

(
θ − θ̂

)(
θ − θ̂

)′
p (θ|y) dθ = − 1

n
H̄−1
n,θθ

(
ϑ̂
)

+ op
(
n−1

)
.

Therefore, we have

E

[
n
(
R (θ)−R

(
θ̂
))(

R (θ)−R
(
θ̂
))′∣∣∣∣y, H1

]

=
∂R
(
θ̂
)

∂θ′

[
−H̄−1

n,θθ

(
ϑ̂
)] ∂R(θ̂)

∂θ
+ op (1) .

Since Vθθ
(
ϑ̄
)

= − 1
nH̄−1

n,θθ

(
ϑ̂
)

+ op
(
n−1

)
, θ = θ̂ + op

(
n−1/2

)
= θ0 +Op

(
n−1/2

)
, by (56),

we have

tr

E
[
n
(
R (θ)−R

(
θ̂
))(

R (θ)−R
(
θ̂
))′∣∣∣∣y, H1

][
∂R
(
θ
)

∂θ′
nVθθ

(
ϑ̄
) ∂R (θ)

∂θ

]−1


=
∂R
(
θ̂
)

∂θ′

[
−H̄−1

n,θθ

(
ϑ̂
)] ∂R(θ̂)

∂θ

[
∂R
(
θ
)

∂θ′
nVθθ

(
ϑ̄
) ∂R (θ)

∂θ

]−1

+ op (1)

=
∂R
(
θ̂
)

∂θ′

[
−H̄−1

n,θθ

(
ϑ̂
)] ∂R(θ̂)

∂θ

[
∂R
(
θ
)

∂θ′
nVθθ

(
ϑ̄
) ∂R (θ)

∂θ

]−1

+ op (1)

p→ m.

Finally, the third term of (54) can be expressed as

tr

n(R(θ̂)− r
)(

R
(
θ̂
)
− r
)′ [∂R (θ)

∂θ′
nVθθ

(
ϑ̄
) ∂R (θ)

∂θ

]−1
+ op (1)

=
[
R
(
θ̂
)
− r
]′∂R

(
θ̂
)

∂θ′

[
−H̄−1

n,θθ

(
ϑ̂
)] ∂R(θ̂)

∂θ


−1 [

R
(
θ̂
)
− r
]

+ op (1)

= Wald + op (1) .

Therefore, under the null hypotheses, we have

T (y, r)−m = Wald + op (1)
d→ χ2 (m) .
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8.5 Proof of Theorem 3.4

Let {ϑ[j], j = 1, 2, · · · , J} be the efficient random draws from p (ϑ|y). Then, we have

V̄2 =
1

J

J∑
j=1

(
θ[j] − ¯̄θ

)(
θ[j] − ¯̄θ

)′
=

1

J

J∑
j=1

V
[j]
2 = V̄θθ(

¯̄ϑ),

v̄1 = ¯̄θ =
1

J

J∑
j=1

θ[j],

Hence, T̂(y,θ0) in (15) can be rewritten as

T̂ (y,θ0) = tr

[(
V̄θθ(

¯̄ϑ)
)−1

V̄θ(θ0)

]

= tr

[V̄θθ(
¯̄ϑ)
]−1

 1

J

J∑
j=1

(
θ[j] − θ0

)(
θ[j] − θ0

)
= tr

{[
V̄θθ(

¯̄ϑ)
]−1

[
V̄θθ

(
¯̄ϑ
)

+
(

¯̄θ − θ0

)(
¯̄θ − θ0

)′]}
= qθ + tr

[
(v̄1 − θ0) (v̄1 − θ0)′ V̄−1

2

]
,

which is a consistent estimator of T (y,θ0).

Following the notations of Magnus and Neudecker (2002) about matrix derivatives, let

v
(j)
2 = vech

(
V

[j]
2

)
, v

[j]
1 = θ[j],

v̄2 = vech
(
V̄2

)
, v̄1 = ¯̄θ, v̄ =

(
v̄′1, v̄

′
2

)′
.

Note that the dimension of v̄2 is q∗ × 1, q∗ = qθ (qθ + 1) /2. Hence, we have

∂T̂ (y,θ0)

∂v̄
=vec (Iqθ)

′
{[(

(v̄1 − θ0)′ V̄−1
2

)′ ⊗ Iqθ] ∂v̄1

∂v̄
+
[
V̄−1

2 ⊗ (v̄1 − θ0)
] ∂v̄′1
∂v̄

−
[
Iqθ ⊗ (v̄1 − θ0) (v̄1 − θ0)′

] (
V̄−1

2 ⊗ V̄−1
2

) ∂vec (V̄2

)
∂v̄

}

=vec (Iqθ)
′
[((

(v̄1 − θ0)′ V̄−1
2

)′ ⊗ Iqθ + V̄−1
2 ⊗ (v̄1 − θ0)

) ∂v̄1

∂v̄

−
[
Iqθ ⊗ (v̄1 − θ0) (v̄1 − θ0)′

] (
V̄−1

2 ⊗ V̄−1
2

) ∂V̄2

∂v̄

]
.

where

∂v̄1

∂v̄
=
∂v̄′1
∂v̄

= [Iqθ , 0qθ×q∗ ] ,
∂V̄2

∂v̄
=

0q2θ×qθ
,

(
∂vec

(
V̄2

)
∂v̄2

)
q2θ×q∗

 .
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By the Delta method,

V ar
(
T̂ (y,θ0)

)
=
∂T̂ (y,θ0)

∂v̄
V ar (v̄)

(
∂T̂ (y,θ0)

∂v̄

)′
.

The expression of the NSE for T̂ (y, r) can also be obtained in the similar way.

T̂ (y, r) = tr


∂R

(
¯̄θ
)

∂θ′
V̄θθ

(
¯̄ϑ
) ∂R( ¯̄ϑ

)
∂θ

−1

V̄θ(r)


= m+ tr


(
R
(

¯̄θ
)
− r
)(

R
(

¯̄θ
)
− r
)′∂R

(
¯̄θ
)

∂θ′
V̄θθ

(
¯̄ϑ
) ∂R( ¯̄ϑ

)
∂θ

−1


= m+ tr
[
(v̄3 − r) (v̄3 − r)′

(
V̄′4V̄2V̄4

)−1
]
,

where similarly,

v̄3 = R

 1

J

J∑
j=1

θ[j]

 = R (v̄1) , V̄4 =
∂R
(

1
J

∑J
j=1 θ

[j]
)

∂θ
=
∂R (v̄1)

∂θ
, v̄ =

(
v̄′1, v̄

′
2

)′
.

So that,

∂T̂ (y, r)

∂v̄
=vec (Im)′

{[(
(v̄3 − r)′

(
V̄′4V̄2V̄4

)−1
)′
⊗ Im

]
∂v̄3

∂v̄1

∂v̄1

∂v̄

+
[(

V̄′4V̄2V̄4

)−1 ⊗ (v̄3 − r)
] ∂v̄′3
∂v̄1

∂v̄1

∂v̄

+
[
Im ⊗ (v̄3 − r) (v̄3 − r)′

] [(
V̄′4V̄2V̄4

)−1 ⊗
(
V̄′4V̄2V̄4

)−1
]

×
∂vec

(
V̄′4V̄2V̄4

)
∂v̄

}
,

where

∂vec
(
V̄′4V̄2V̄4

)
∂v̄

=
((

V̄2V̄4

)′ ⊗ Im) ∂V̄′4
∂v̄1

∂v̄1

∂v̄
+
(
V̄4 ⊗ V̄′4

) ∂V̄2

∂v̄

+
(
Im ⊗ V̄′4V̄2

) ∂V̄4

∂v̄1

∂v̄1

∂v̄
,

where the derivatives of V̄4 and v̄3 depend on the form of the function R (θ). By the

Delta method, we have

V ar
(
T̂ (y, r)

)
=
∂T̂ (y, r)

∂v̄
V ar (v̄)

(
∂T̂ (y, r)

∂v̄

)′
.
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