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Chalk and Cheese in Twitter: Discriminating
Personal and Organization Accounts

Richard J. Oentaryo, Jia-Wei Low, and Ee-Peng Lim

Living Analytics Research Centre, Singapore Management University
{roentaryo, jwlow, eplim}@smu.edu.sg

Abstract. Social media have been popular not only for individuals to
share contents, but also for organizations to engage users and spread in-
formation. Given the trait differences between personal and organization
accounts, the ability to distinguish between the two account types is im-
portant for developing better search /recommendation engines, marketing
strategies, and information dissemination platforms. However, such task
is non-trivial and has not been well studied thus far. In this paper, we
present a new generic framework for classifying personal and organization
accounts, based upon which comprehensive and systematic investigation
on a rich variety of content, social, and temporal features can be carried
out. In addition to generic feature transformation pipelines, the frame-
work features a gradient boosting classifier that is accurate/robust and
facilitates good data understanding such as the importance of different
features. We demonstrate the efficacy of our approach through exten-
sive experiments on Twitter data from Singapore, by which we discover
several discriminative content, social, and temporal features.

Keywords: account type classification, gradient boosting, social media

1 Introduction

Social media provide a platform not only for social interaction among users, but
also for businesses, government agencies, and other interest groups to engage
users with news and campaign events. As such, social media see the strong pres-
ence of both ordinary users and organizations. Unfortunately, these two kinds of
social media accounts are not clearly differentiated, as the account types are not
specified when accounts are created. In some cases, one could manually judge the
account type by examining the account name, description, and content postings.
However, such kind of intelligent judgment is a non-trivial task for machines.
We define organization account as a social media account that represents
an institution, corporation, agencies, news media, or common interest group,
whereas personal account is of non-organizational nature and usually managed
by an individual. An accurate labeling of these account types will bring about
many benefits. Firstly, organization and oersonal accounts exist for different pur-
poses and thus demand for different types of support and services. For example,
organization accounts may require templates to standardize the format of their



content postings, and dashboard to track their social media performance, say the
amount of positive and negative sentiments on their product brands. Personal
accounts, in contrast, would likely benefit from friend and content recommenda-
tion. Such differentiation of services is presently not possible until the account
type can be made known or accurately predicted, which is the focus of this paper.

From the information retrieval perspective, the ability to distinguish personal
and organization accounts is useful for enriching and providing context to search
or recommendation engines. For example, when searching for a certain trending
topic, one may be interested to separate/categorize between official information
coming from a credible institution or news source and subjective opinions/views
from individuals. From the social science standpoint, much work on social media,
such as friend recommendation, community discovery, topic modeling, etc., has
been done often assuming that social media accounts are owned by ordinary
users. The presence of organization accounts clearly introduces biases to the
results analysis and should be treated differently from personal accounts.

In this work, we attempt to address the account type classification problem,
which involves assigning social media accounts into the personal and organization
categories. This problem has not been well studied in the past. Nevertheless,
recently there is a surge of interest in developing methods for differentiating the
two account types, such as the works in [7,12,14, 15]. However, most of these
works focused on a limited set of social, temporal, or content features [7,12],
or relied on assumptions that may impose significant biases in their evaluation
(e.g., using only geotagged tweets [15] or small data samples [12, 14]).

Contributions. Deviating from the previous works, we approach the account
classification task by developing a generic framework that facilitates systematic
studies on a rich set of content, temporal, and social features, and that offers
accurate/robust prediction method. Specifically, our key contributions include:

— We develop a generic framework for account type classification that can cater
for various features using generic set of feature transformation pipelines. At
its core is the gradient boosting classification method [8], which provides not
only accurate and robust prediction but also facilitates data understanding.

— We present a new empirical study on Twitter data involving a large (unbal-
anced) pool of personal and organization accounts. We conduct exploratory
analyses on a variety of content, social, and temporal factors associated with
personal and organization accounts, based on which we systematically devise
a comprehensive set of predictive features for account type classifcation.

— Extensive experiments have also been carried out to evaluate the impacts
of different features, and to compare the performance of our gradient boost-
ing approach with other classification methods. We also identify several key
features important for the distinction of personal and organization accounts.

2 Related Work

The abundance of user-generated data in social media has recently attracted
great interest in inferring the latent attributes of users (e.g., gender [3], political



stand [6], ethnicity [5]). Most of these works, however, have treated organiza-
tion and personal accounts equally. Yet, the ability to distinguish the two is
practically important for marketing and information dissemination. Nonethe-
less, several efforts have been recently made to this end. Tavares and Faisal
[12] distinguished between personal, managed, and bot accounts in Twitter, us-
ing only the temporal features of the tweets. De Choudhury et al. [7] classified
Twitter accounts as organization, journalist /blogger, or individual. They utilized
structural features, textual features, and binary features indicating the presence
of named entitites and associations with news topics. Yan et al. [14] called the
personal and organization accounts closed and open accounts respectively, and
used the diversity of the follower distribution as features. Recently, Yin et al.
[15] devised a probabilistic method that utilizes temporal, spatial and textual
features to classify personal communication and public dissemination accounts.

Proposed approach. Our work differs from the abovementioned approaches
in several ways. For instance, Tavares and Faisal [12] focused only on temporal
features without considering other feature types. Meanwhile, Yin et al. [15] used
only geotagged tweets, which may yield significant bias against non-mobile (e.g.,
desktop) users who do not share their location. In contrast, we use a compre-
hensive set of content, social, and temporal features, and we consider all tweets
with or without geotag information. In [7], De Choudhury et al. utilized only
simple social features based on in-degree and out-degree centrality metrics. By
comparison, our work involves more sophisticated social features that go beyond
simple degree centrality. Moreover, we utilize temporal features (e.g., tweet dis-
tribution per hour or weekday) in our classification model. Compared to [14],
our approach takes into account a more comprehensive set of temporal and so-
cial features (encompassing many node centrality and diversity measures). We
further elaborate our classification method and feature set in Sections 4 and 5.

3 Data Exploration

In this study, we use the Twitter data of users from Singapore collected from
March to May 2014. Starting from a set of popular seed users (having many
followers) based in Singapore, we crawled their network based on the follow,
retweet, and user mention links. In turn, we added into our user base those fol-
lowers/followees, retweet sources, and mentioned users who declare Singapore in
their profile location. This led to a total of 160,143 public Twitter accounts whose
profiles can be accessed. To establish the ground truth, we took accounts whose
“urlEntities” field ends with “.com.sg”, “.gov.sg”, or “.edu.sg”. This choice al-
lows us to clearly identify organization accounts for deriving high-quality ground
truths, though it may impose labeling bias and miss other, less common types of
organization. Nevertheless, we show later that our prediction method can work
well for organization accounts that are not from these domains (cf. Section 5.4).

Using this procedure, we were able to identify 885 organization accounts.
Through random sampling of the Twitter data, we also obtained 1,135 personal
accounts. All labels have been manually inspected by humans. In total, we have
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Fig. 1. Data distributions for personal and organization accounts

2,020 labeled accounts, involving 1.18 million tweets. One may argue that it is
better to balance the label distribution, e.g., by using the same number (885)
of personal accounts. However, we can expect that the full Twitter population
would naturally have more personal accounts than organization accounts [7, 14].
Hence, we maintain the current label distribution (i.e., 885 vs. 1,135), and let
our classification algorithm internally take care of the skewed distribution.

Content analysis. We first conducted analysis on the number of tweets for
personal and organization accounts. Fig. 1(a) shows the distribution of tweet
counts for the two accounts. From the figure, we can see that the tweet counts
generally follow a long-tail distribution. It is also shown that personal accounts
tend to tweet more than organization accounts. We then conducted Kolmogorov-
Smirnov (K-S) test [11] to check whether the two distributions are significantly
different!. In this case, we obtained a p-value of 2.8779 x 10736, which is smaller
than typical significance level (e.g., 0.01 or 0.05). Hence, we can reject the null
hypothesis that the two distributions are identical. That is, the distributions of
personal and organization accounts are significantly different.

Temporal analysis. Next, we conducted a temporal data analysis to check
whether the tweet dynamics of the personal and organization accounts are differ-
ent. Fig. 1(b) shows the hourly distribution of the tweet counts. As the purpose
of setting organization accounts is chiefly about information dissemination, we
can see that their tweet activities tend to be more aligned with business opera-
tion/working hours. On the other hand, we observe that personal accounts tend
to tweet more towards the end of the day, peaking around midnight. Using the

1 'We use two-sample K-S test, which is a nonparametric statistical test to quantify
the distance between the empirical distribution functions of two samples.
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Fig. 2. Proposed framework for account type classification

K-S test, we again obtained p-value < 1071 and concluded a significant dif-
ference between the two. This suggests that the temporal distribution of tweets
could be a useful feature for distinguishing the two account types.

Social analysis. We also analyzed the interaction patterns among accounts.
Fig. 1(c) shows the distributions of the followee counts for personal and organiza-
tion accounts. We can see that in general personal accounts have more followees
than organization accounts. Again, this may be attributed to the fact that orga-
nization accounts are set up mainly for dissemination purposes, and so unlikely
to be interested in other accounts. The significant difference between the two
distributions is evident in our K-S test, with p-value of 8.07 x 10761,

4 Proposed Framework

Our proposed account classification framework is outlined in Fig. 2. It takes three
types of (raw) input variables: content, temporal, and social. Each variable type
goes through a specific transformation pipeline (cf. “Transformation” in Fig. 2)
to derive feature vector representation suitable for our classification model. The
choice of pipeline for a given variable depends on the semantics of the variable.
Using the feature vector and the class label, we build the model (cf. “Predictive
Model” in Fig. 2). We then evaluate the model performance based on several
metrics (cf. “Evaluation” in Fig. 2). The framework also has a specialized module
to extract knowledge structure from the model (cf. “Interpretation” in Fig. 2).

4.1 Feature Transformation Module

Our framework has three types of transformation pipeline, which can be gener-
ically used to transform any content, temporal, and social variables into feature



vector representation for our classification model. For convenience, we refer the
collection of tweets belonging to a user as the user’s tweet document.

Textual pipeline. For text variables such as tweet documents, we convert
them into bag-of-words vector representation [10]. This involves several steps:

— Tokenization: We break a tweet document into its constituent word tokens.
Delimiters, such as punctuation marks and white spaces, were used as word
boundaries. At the end of this process, we obtain bags of word frequencies.

— Stop-word removal: We then discard words that appear very frequently and
contribute little to discriminating the tweets of a user from those of other
users. In this work, we use the list of English stop-words in [9].

— Normalization: We then applied the term frequency—inverse document fre-
quency (TF-IDF) scheme [10] to obtain normalized word frequencies. The
scheme puts greater importance on words that appear frequently in a doc-
ument, and deems words that occur in many documents as less important.
Our TF-IDF vectors span unigram, bigram, and trigram representations.
More advanced methods such as BM25 and part-of-speech tagging [10] can
be included, but for simplicity we use only the TF-IDF method in this work.

Numerical pipeline. The transformation steps of numerical variables (such
as count or ratio variables; cf. Table 1) include:

— Imputation. We first impute the missing feature values by replacing them
with some constant value, or else the average of the other, existing feature
values. In this work, we impute missing values with a constant value of zero.

— Normalization: This step performs feature normalization by (re)scaling each
feature to a unit range [0, 1]. This normalization serves to address the feature
scaling issues in classification methods that rely on some distance metric.

Categorical pipeline: In our framework, all categorical variables are binary-
encoded. For example, a categorical variable with four possible values: “A”, “B”,
“C”, and “D” is encoded using four binary features: “1 000”7, “0100”, ©00 1
07, and “0 0 0 17, respectively. This is also known as one-hot encoding scheme.

4.2 Prediction Model

For our classification task, we employ an ensemble model called gradient boost-
ing machine (GBM) [8]. The learning procedure in GBM involves consecutively
fitting new models to provide more accurate estimate of the response variable
(i.e., class label). The centerpiece of GBM is to construct new base-learners so
that they are maximally correlated with the negative gradient of the specified
loss function, associated with the entire ensemble [8].

It is worth noting that the loss function used in GBM can be arbitrary, thus
providing practitioners with the flexibility to select the most appropriate loss
function to the task requirements. GBM is also relatively easy to implement,
allowing practitioners to experiment with different model designs. In this work,
we focus on using the binomial loss function in GBM, which is suitable for our
(binary) classification task [8]. As the base learners in GBM, we choose decision
tree [2] for both computational efficiency and interpretability reasons.



4.3 Evaluation Module

To evaluate our approach, we use a stratified 10-fold cross-validation (CV) pro-
cedure, whereby we split the Twitter data into 10 folds of training and testing
data, each retaining the class label proportion as per the original data. We then
report the average performance as well as its variation (i.e., standard deviation).
The stratification is needed to ensure that each fold is a good representative of
the whole, i.e., retains the (unbalanced) label distribution in the original data.

In this work, we consider several evaluation metrics popularly used in infor-
mation retrieval, namely Precision, Recall, and F1-score [10]:

Precision — TP - Recall — TP - 2PrecisionRecall
T TP+ FP’ TP+ FN’ " Precision + Recall

(1)

where TP, FP and FN are the true positives, false positives, and false negatives
respectively. Here we treat the organization account as the positive class.

4.4 Interpretation Module

The ability to describe and interpret the derived predictive model is important
for many applications. A useful interpretation of our GBM classifier involves
understanding those particular features that are most influential in contributing
to the classification performance as well as its variance. To this end, we utilize
the feature importance metric derived based on the decision tree influences [2].
Specifically, the feature importance corresponds to the expected fraction of the
samples that each decision tree contributes within the ensemble models [8].

5 Experiment

This section presents our empirical studies on the Twitter data we have collected.
All evaluations were based on the stratified 10-fold CV method (cf. Section 4.3).

5.1 Features Extracted

Based on findings in Section 3, we devised numerous content, social and temporal
features for our account classification task. Table 1 lists all features used in our
work, as well as their corresponding types and feature transformation pipelines.
For convenience, we shall use the term “user” and “account” interchangably. We
do not use categorical features in this work for now, although the implementation
of the categorical pipeline is readily available in our framework.

For the textual contents of tweet documents, we use the TF-IDF representa-
tion for tweet documents, as described in Section 4.1. We also construct a number
of numerical features from the content and social variables. These include count
and ratio features, such as the total counts of entities (e.g., “MentionCount”),
the counts of unique entities (e.g., “MentionUnique”), and the ratio of unique
over total counts (e.g., “MentionUniqueRatio”).



Table 1. List of features used

Feature Type Pipeline Description

TweetContent C TF-IDF vector of a user’s tweet document
TweetCount C No. of tweets of a user (March-May 2014)
SourceUnique No. of unique applications a user tweets from
SourceUniqueRatio No. of unique applications / total no. of tweets
HashtagUnique No. of unique hashtags

HashtagCount Total no. of hashtags

HashtagUniqueRatio No. of unique hashtags / total no. of hashtags
HashtagCountRatio No. of hashtags / total no. of tweets
ListedCount No. of Twitter lists at which a user appears
FavouritesCount No. of tweets a user has marked as favourite
MentionUnique No. of unique (user) mentions

MentionCount Total no. of (user) mentions
MentionUniqueRatio No. of unique mentions / total no. of mentions
MentionCountRatio No. of mentions / total no. of tweets
MentionClusterCoeff Clustering coefficient for mention graph
MentionMentionedRatio No. of mentions / no. of mentioneds
FollowersCount No. of followers of a user

FolloweesCount No. of followees of a user
FolloweeClusterCoeff Clustering coefficient for followee graph

FollowerFolloweeRatio
FolloweeFollowerMean
FolloweeFollowerMedian
FolloweeFollowerStdDev
FolloweeFollowerEntropy
FolloweeFolloweeMean
FolloweeFolloweeMedian
FolloweeFolloweeStdDev
FolloweeFolloweeEntropy

No. of followers / no. of followees

Mean of the no. of followers of a user’s followees
Median of the no. of followers of a user’s followees
Deviation of the no. of followers of a user’s followees
Entropy of the no. of followers of a user’s followees
Mean of the no. of followees of a user’s followees
Median of the no. of followees of a user’s followees
Deviation of the no. of followees of a user’s followees
Entropy of the no. of followees of a user’s followees

HHNNSNNE8R8NNRNNLRNNNNNNRNNRNNNLNNNHLNLHAAQAQNQQ
222222222/2222222222222222222222222222/2222222X

FolloweeTraceMean Mean of the trace of no. of followees over time
FolloweeTraceMedian Median of the trace of no. of followees over time
FolloweeTraceStdDev Deviation of the trace of no. of followees over time
FolloweeTraceEntropy Entropy of the trace of no. of followees over time
FollowerTraceMean Mean of the trace of no. of followers over time
FollowerTraceMedian Median of the trace of no. of followers over time
FollowerTraceStdDev Deviation of the trace of no. of followers over time
FollowerTraceEntropy Entropy of the trace of no. of followers over time
AccountAge Total duration from since account created till now
AverageTweetCount No. of tweets / account age

ProbWeekend Probability of a user tweeting on the weekend
ProbMorning Probability of a user tweeting in the morning
ProbAfternoon Probability of a user tweeting in the afternoon
ProbEvening Probability of a user tweeting in the evening
ProbNight Probability of a user tweeting at night

Hour-z Probability of a user tweeting at hour =
Weekday-z Probability of a user tweeting at day =

Type — C': content, S: social, T": temporal; Pipeline — N: numeric, X: textual

For social features, we also consider two-hop centrality features such as clus-
tering coefficient (CC) and some first- and second-order statistics of the followees’
followees (or followees’ followers) of a user. The purpose of including two-hop
features is to allow us to account for a sufficiently large community of users. The
CC metric measures the extent to which a user’s neighborhood form a clique.
For a user i, CC is the number of edges between the user’s neighbors N; divided
by the total number of possible edges between them, i.e., |[N;| x (|N;| — 1).

As for the statistics of the followees/followers, we use first-order statistics
such as mean and median, as well as second-order statistics such as standard de-
viation and entropy. The second-order metrics are used to quantify the diversity
of the entities associated with a user’s neighborhood. To obtain the entropy, we



Table 2. Impacts of different features for account type classification (10-fold CV)

(a) Classification results (b) Statistical significance (p-value)

Features Precision Recall F1-Score C, S C,T S, T C,s, T
[ 0.841 +0.030 0.782 4+ 0.046 0.809 £ 0.025 C 0.005**[0.005**[0.005"* [0.005**
S 0.865 + 0.031 0.858 4+ 0.040 0.860 £ 0.025 S 0.007*(0.333 0.013™ |0.005**
T 0.758 £ 0.029 0.777 +£0.054 0.766 £ 0.028 T 0.005**|0.005**|0.005**|0.005**
c, s 0.879 +0.036 0.886 + 0.034 0.882 + 0.024 C,S|- 0.021* [0.241 |0.009**
C,T 0.854 +0.019 0.861 4 0.058 0.856 £ 0.033 C,T|- - 0.009**|0.007**
S, T 0.890 4+ 0.032 0.889 4 0.047 0.889 £ 0.024 S, T |- - - 0.008"*
C,S, T 0.909 £+ 0.023 0.904 + 0.041 0.906 + 0.016 C': content, S: social, T: temporal

C': content, S: social, T: temporal * / **: significant at 95% / 99%

Table 3. Benchmarking results of different algorithms (10-fold CV)

Algorithm Precision Recall F1-Score p-value
Support vector machine 0.859 + 0.045 0.843 +0.033 0.850 £ 0.029 0.005**
Logistic regression 0.863 + 0.037 0.842 4+ 0.039 0.852 £ 0.030 0.005**
Decision tree 0.808 +0.023 0.827 +0.043 0.817 4 0.023 0.005™*
Random forest 0.878 + 0.028 0.899 4+ 0.032 0.888 £ 0.029 0.008"*
Gradient boosting 0.909 + 0.023 0.904 + 0.041 0.906 + 0.016 -

**: significant at 99%

first take the normalized count (i.e., probability density) p; ; for each neighbor
j € N; of user i, and then compute the entropy — Z'fill pi,j logpi ;.

We also devise more advanced social features dubbed trace, describing the
dynamics of social entities over time. For instance, the “FolloweeTraceMean”
feature in Table 1 means the average of the trace vector of followee counts over
time. Here each element in the trace vector is the followee count observed for
time period ¢ . In this work, we set the observation period as t = 3 days.

Finally, we devise a number of temporal features based on the periodic-
ity of the tweet counts observed at different time spans. In particular, we bin
the tweets by time and compute the probability of tweeting in the morning
(4:00-11:59am), afternoon (12:00pm-4:59pm), evening (5:00-7:59pm), and night
(8:00pm-3:59am). We also compute the probability of the tweets occurring in the
weekend. To capture daily and hourly distribution of tweets (cf. Fig. 1(b)), we
also compute the probability of tweeting at Weekday-z (where z € {0,1,...,6}
for Monday to Sunday), and Hour-z (where € {0,1,...,23} for 24 hours).

5.2 Performance Assessment

We first evaluated the impact of different features to the overall classification
performance of GBM, and then compared the GBM results using all features to
the results of several other popular classification algorithms. Table 2 illustrates
the impact of different features. Looking at the results of individual content (C),
social (S), and temporal (T) features, we can see that the social features alone
gave the highest F1-score, followed by the content features and temporal features.
The performance of combination of content and social features is higher than
either of the individual baseline. The same conclusion applies for the combination
of social and temporal features. Lastly, the GBM model that uses all content,
social, and temporal features was able to achieve the highest F1 score.
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Fig. 3. Top 15 features for Twitter account type classification

Table 4. Prediction results on unseen data

(a) Confusion matrix

Predicted (b) Organization accounts

Top 20 | Top 40 | Top 60 | Top 80 | Top 100 Domain|No. of accounts
Per|Org|Per|Org|Per|Org|Per[Org[Per[Org .com 66
Actuallper 200 0 [40[ O [60] O [79] 1T [99] 1 .sg 14
[Org[ 1T 1193 [37] 555 7 [73]12]388 .org 5
Per: personal, Org: organization None 3

To evaluate the contributions of different feature combinations, we conducted
the Wilcozon signed-rank statistical test [13]%. From the p-values in Table 2(b),
we can see that the overall pairwise differences of F'1 are statistically significant,
except for two cases. Nevertheless, it is clear that combining all feature types
(content, social, and temporal) gave substantially better results than using the
constituent features (cf. Table 2(b), last column), which is our primary interest.

We further benchmarked the results of our approach against those of other
classification algorithms. These include support vector machine and logistic re-
gression [4], which are linear models widely used in information retrieval. We
also used decision tree baseline [2], as well as random forest [1]—a popular boot-
strap aggregating method to create an ensemble of decision trees. For fairness,
we used all three feature types in this benchmark. As evident from Table 3, our
GBM method consistently outperforms the other algorithms across all evalua-
tion metrics. We also found that the improvements are statistically significant
according to the Wilcoxon signed-rank test, as per the last column of Table 3.
This in turn justifies the accuracy and robustness traits of our approach.

5.3 Feature Importance

Using the trained GBM model, we can now evaluate the importance of different
features, as described in Section 4.4. Fig. 3 shows the top 15 most important
features produced by GBM for each feature type. Several interesting insights
are observed. For example, the top textual feature “nak” is the short form of

2 The Wilcoxon test provides a non-parametric alternative to the t-test for matched
pairs, when the pairs cannot be assumed to be normally distributed



“want” in Malay language, which is often used for informal communication. From
Fig. 3 and our manual inspections, we also found that special word such as “rt”
(which stands for retweet) is indicative of the account type (in this case, personal
accounts tend to retweet more). Among the non-textual features, “HashtagU-
niqueRatio” is ranked among the top. A closer look at the data shows that
organization accounts often have more unique hashtags than personal accounts,
suggesting that the former have a more focused topic of interest.

As for social features, it is shown that “FavouritesCount” emerges as the top
feature. Indeed, our internal inspections reveals that personal accounts tend to
have larger favourite counts. Despite this observation, using “FavouritesCount”
alone is not sufficient to obtain good classification results, and the collective
contribution of the other social features remains important. We also found the
diversities of the no. of followees/followers over time (e.g., “FollowerTraceStd-
Dev”, “FolloweeTraceStdDev”, “FollowerFolloweeEntropy”) to be discriminative
of the account types. From our inspections, we found that the deviations of fol-
lowee trace for organization accounts are moderate in general. This is likely due
to the fact that most organizations utilize Twitter as a dissemination platform.

With regard to temporal features, we discovered that organization accounts
have gained traction on Twitter only in the recent 2-3 years, whereas many
personal accounts were created 4-5 years ago. This explains why the account
age is one of the top features. We also noticed that personal accounts have
higher “AverageTweetCount” than organization accounts. In addition, we con-
clude from “ProbWeekend” and “Weekday-6” that personal accounts tend to
tweet more than organization accounts during the weekend. The results also
suggest that the probability of tweeting in the afternoon (“ProbAfternoon”) or
evening (“ProbEvening”) is discriminative. Lastly, there are several critical hours
(e.g., “Hour-117, “Hour-12”, “Hour-19”—possibly related to lunch/dinner time)
as well as critical days (e.g., “Weekday-1" (Tuesday), “Weekday-3" (Thursday),
“Weekday-5" (Saturday)) that are useful for the account type classification.

5.4 OQut-of-Sample Generalization

To assess the ability of our model to generalize, we used our trained GBM model
to predict for all unlabeled data. We then picked the top K organization accounts
and top K personal accounts based on the prediction scores. We varied K from
20 to 100 and examined the prediction results for all the top accounts, so as to see
how the GBM predictions match with our manually-examined labels. Table 4(a)
summarizes the results. It is shown that, under varied K, our approach produced
good performance on unseen data, achieving robust accuracies of 98.75 — 100%
for personal accounts and 88 — 95% for organization accounts.

Table 4(b) shows the domain type breakdown of the 88 correct predictions for
the top 100 organization accounts. We can see that our approach can correctly
predict for organization accounts with domain types other than those of the
labeled (training) data. Note here that the domain extensions “.com” and “.sg”
in the unlabeled data are different from the “.com.sg” extension in the labeled
data. In sum, these results justify the generalization ability of our approach.



6 Conclusion

We put forward a generic framework for discriminating personal and organiza-
tional accounts in social media. Our framework provides a generic set of feature
transformation pipelines that supports integration of rich content, social, and
temporal features. With gradient boosting as its core, our approach achieves
accurate/robust performance and provides useful insights on the data. We have
empirically demonstrated the effectiveness and interpretability of our approach
using Singapore Twitter data. Moving forward, we wish to apply our method to
Twitter data from a larger region. We also plan to build a multi-attribute predic-
tion method that can integrate information from heterogeneous social networks.
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