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a b s t r a c t

This paper studies non-separable models with a continuous treatment when the di-
mension of the control variables is high and potentially larger than the effective
sample size. We propose a three-step estimation procedure to estimate the average,
quantile, and marginal treatment effects. In the first stage we estimate the conditional
mean, distribution, and density objects by penalized local least squares, penalized
local maximum likelihood estimation, and numerical differentiation, respectively, where
control variables are selected via a localized method of L1-penalization at each value of
the continuous treatment. In the second stage we estimate the average and marginal
distribution of the potential outcome via the plug-in principle. In the third stage,
we estimate the quantile and marginal treatment effects by inverting the estimated
distribution function and using the local linear regression, respectively. We study the
asymptotic properties of these estimators and propose a weighted-bootstrap method
for inference. Using simulated and real datasets, we demonstrate that the proposed
estimators perform well in finite samples.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Non-separable models without additivity appear frequently in econometric analyses, because economic theory
motivates a nonlinear role of the unobserved individual heterogeneity (Altonji and Matzkin, 2005) and its multi-
dimensionality (Browning and Carro, 2007; Carneiro et al., 2003; Cunha et al., 2010). A large fraction of the previous
literature on non-separable models has used control variables to achieve the unconfoundedness condition (Rosenbaum
and Rubin, 1983), that is, the conditional independence between a regressor of interest (or a treatment) and the
unobserved individual heterogeneity given the control variables. Although including high-dimensional control variables
makes unconfoundedness more plausible, the estimation and inference become more challenging, as well. It remains
unanswered how to select control variables among potentially very many variables and conduct proper statistical
inference for parameters of interest in non-separable models with a continuous treatment.
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This paper proposes estimation and inference for unconditional parameters,1 including unconditional means of
the potential outcomes, the unconditional cumulative distribution function, the unconditional quantile function, and
the unconditional quantile partial derivative with the presence of both continuous treatment and high-dimensional
covariates.2 The proposed method estimates the parameters of interest in three stages. The first stage selects controls
by the method of least absolute shrinkage and selection operator (Lasso) and predicts reduced-form parameters such as
the conditional expectation and distribution of the outcome given the variables and treatment level and the conditional
density of the treatment given the control variables. We allow for different control variables to be selected at different
values of the continuous treatment. The second stage recovers the average and the marginal distribution of the potential
outcome by plugging the reduced-form parameters into doubly robust moment conditions. The last stage recovers the
quantile of the potential outcome and its derivative with respect to the treatment by inverting the estimated distribution
function and using the local linear regression, respectively. The inference is implemented via a weighted-bootstrap without
recalculating the first stage variable selections, which saves considerable computation time.

To motivate our parameters of interest, we relate our estimands (the population objects that our procedure aims to
recover) with the structural outcome function. Notably, we extend Hoderlein and Mammen (2007) and Sasaki (2015) to
demonstrate that the unconditional derivative of the quantile of the potential outcome with respect to the treatment is
equal to the weighted average of the marginal effects over individuals with same outcomes and treatments.

This paper contributes to two important strands of the econometric literature. The first is the literature on non-
separable models with a continuous treatment, in which previous analyses have focused on a fixed and small number
of control variables; see, e.g., Chesher (2003), Chernozhukov et al. (2007), Hoderlein and Mammen (2007), Imbens and
Newey (2009), Matzkin (1994) and Matzkin (2003). The second is a growing literature on recovering the causal effect from
the high-dimensional data; see, e.g., Belloni et al. (2012), Belloni et al. (2014a), Chernozhukov et al. (2015a), Chernozhukov
et al. (2015b), Farrell (2015), Athey and Imbens (2016), Chernozhukov et al. (2017), Belloni et al. (2014b), Wager and Athey
(2018), Belloni et al. (2017), and Belloni et al. (2016b). Our paper complements the previous works by studying both the
variable selection and post-selection inference of causal parameters in a non-separable model with a continuous treatment.
Recently, Cattaneo et al. (2016), Cattaneo et al. (2019), and Cattaneo et al. (2018) have considered the semiparametric
estimation of the causal effect in a setting with many included covariates and proposed novel bias-correction methods to
conduct valid inference. Comparing with them, we deal with the fully nonparametric model with an ultra-high dimension
of potential covariates, and rely on the approximate sparsity to reduce dimensionality.

The treatment variable being continuous imposes difficulties in both variable selection and post-selection inference.
To address the former, we use penalized local Maximum Likelihood and Least Square estimations (hereafter, MLE and LS,
respectively) to select control variables for each value of the continuous treatment. The penalized local LS was previously
studied by Kong et al. (2015) and Lee and Mammen (2016).3 The local MLE complements the LS method by estimating a
nonlinear and high-dimensional model with varying coefficients indexed by not only the continuous treatment variable
but also a location variable. Our approach directly extend the distribution regression proposed in Chernozhukov et al.
(2013) to the high-dimensional varying coefficient setting. By relying on the kernel smoothing method, we require a
different penalty loading than the traditional Lasso method. Chu et al. (2011) and Ning and Liu (2017) develop general
theories of estimation, inference, and hypothesis testing of penalized (Pseudo) MLE. We complement their results by
considering the local likelihood with an L1 penalty term. Belloni et al. (2018) construct uniformly valid confidence bands
for the Z-estimators of unconditional moment equalities. Our results are not covered by theirs, either, as our parameters
are defined based on conditional moment equalities. To prove the statistical properties of the penalized local MLE, we
establish a local version of the compatibility condition (Bühlmann and van de Geer, 2011), which itself is new to the best
of our knowledge.

For the post-selection inference, we establish doubly robust moment conditions for the continuous treatment effect
model. Our parameters of interest are irregularly identified by the definition in Khan and Tamer (2010), as they are
identified by a thin-set. Therefore, by averaging observations only when their treatment levels are close to the one of
interest, the convergence rates of our estimators are nonparametric, which is in contrast with the

√
n -rate obtained

in Belloni et al. (2017) and Farrell (2015). Albeit motivated by distinct models, Belloni et al. (2016a) also estimate the
irregular identified parameters in the high-dimensional setting. However, the irregularity faced by Belloni et al. (2016a)
is not due to the continuity of the variable of interest. Consequently, Belloni et al. (2016a) do not study the regularized
estimator with localization as we do in this paper.

Estimation based on doubly robust moments is also related to the literature of semiparametric efficiency. The idea of
doubly robust estimation can be traced back to the nonparametric efficiency theory for functional estimation developed
by Begun et al. (1983), Pfanzagl (1990), Bickel et al. (1993), and Newey (1994). Robins and Rotnitzky (2001) and van der

1 To be more specific, the parameters of interest are unconditional on covariates but conditional on the treatment level.
2 We focus on unconditional parameters, in which (potentially high-dimensional) covariates are employed to achieve the unconfoundedness

but the parameters of interest are unconditional on the covariates. Unconditional parameters are simple to display and the simplicity is crucial
especially when the covariates are high dimensional. As emphasized in Frölich and Melly (2013) and Powell (2010), unconditional parameters have
two additional attractive features. First, by definition, they capture all the individuals in the sample at the same time instead of investigating the
underlying structure separately for each subgroup defined by the covariates X . The treatment effect for the whole population is more policy-relevant.
Second, an estimator for unconditional parameters can have better finite/large sample properties.
3 We thank a referee for the reference.
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Laan and Robins (2003) study the semiparametric doubly robust estimators by modeling both the treatment and outcome
processes. van der Laan and Dudoit (2003) allow for nonparametric modeling in causal inference problems. When both
processes are nonparametrically estimated, the doubly robust methods can achieve faster rates of convergence than their
nuisance estimator, making the estimator less sensitive to the curse of dimensionality and model selection bias. Their use
in causal inference is also considered by Robins and Rotnitzky (1995), Hahn (1998), van der Laan and Robins (2003), Hirano
et al. (2003), van der Laan and Rubin (2006), Firpo (2007), Tsiatis (2007), van der Laan and Rose (2011), Kennedy et al.
(2017), and Robins et al. (2017), among others.

Among the works above, our paper is most closely related to Kennedy et al. (2017), who consider the doubly robust
estimation for the average treatment effect when the treatment variable is continuous. Our paper complements theirs in
four aspects. First, the estimation procedures are different. Kennedy et al. (2017) first estimate the efficient influence
function for the weighted average of the mean effect over all treatment levels, and then, use kernel smoothing to
estimate the mean effect at each treatment level. On the contrary, we consider the doubly-robust moment for the
parameters of interest. Second, Kennedy et al. (2017) mainly focus on the mean effect, while we also consider quantile and
marginal treatment effects. We obtain linear expansions for our estimators uniformly over both the quantile index and
the treatment variable. Third, Kennedy et al. (2017) do not construct detailed estimators of their nuisance parameters,
but instead, impose high-level assumptions. To verify such high-level assumptions in the high-dimensional setting is
nontrivial. In contrast, we provide valid estimators for our nuisance parameters via both regularization and localization,
and derive their statistical properties. Fourth, we take into account the fact that the dimension of covariates may increase
with the sample size so that the complexity of our nuisance parameter estimator measured by the uniform entropy will
diverge to infinity. Such a situation is ruled out by Kennedy et al. (2017).

To obtain uniformly valid results over values of the continuous treatment, we derive linear expansions of the
rearrangement operator for a local process which is not tight, extending the existing results in Chernozhukov et al. (2010).

We study the finite sample performance of our estimation procedure via Monte Carlo simulations and an empirical
application. The simulations suggest that the proposed estimators perform reasonably well in finite samples. In the
empirical exercise, we estimate the distributional effect of parental income on son’s income and intergenerational
elasticity using the 1979 National Longitudinal Survey of Youth (NLSY79). We control for a large dimension of demographic
variables. The quantiles of son’s potential income are in general upward slopping with respect to parental income, but
for the subsample of blacks, the intergenerational elasticities are not statistically significant.

The rest of this paper is organized as follows. Section 2 presents the model and the parameters of interest. Section 3
proposes an estimation method in the presence of high-dimensional covariates. Section 4 demonstrates the validity of a
bootstrap inference procedure. Section 5 presents Monte Carlo simulations. Section 6 illustrates the proposed estimator
using NLSY79. Section 7 concludes. Proofs of the main theorems and Lemma 3.1 are reported in the Appendix. Proofs of
the rest of the lemmas are collected in an online supplement.

Throughout this paper, we adopt the convention that the capital letters, such as A, Y , X , denote random elements
while their corresponding lower cases denote realizations. C denotes an arbitrary positive constant that may not be the
same in different contexts. For a sequence of random variables {Un}

∞

n=1 and a random variable U , Un ⇝ U indicates weak
convergence in the sense of van der Vaart and Wellner (1996). When Un and U are k-dimensional elements, the space of
the sample path is ℜk equipped with Euclidean norm. When Un and U are stochastic processes, the space of sample path
is L∞({v ∈ ℜk

: |v| < B}) for some positive B equipped with sup norm. The letters Pn, P, and Un denote the empirical
process, expectation, and U-process, respectively. In particular, Pn assigns probability 1

n to each observation and Un assigns
probability 1

n(n−1) to each pair of observations. E also denotes expectation. We use P and E exchangeably. For any positive
(random) sequence (un, vn), if there exists a positive constant C independent of n such that un ≤ Cvn, then we write
un ≲ vn. ∥ · ∥Q ,q denotes Lq norm under measure Q , where q = 1, 2,∞. If measure Q is omitted, the underlying measure
is assumed to be the counting measure. For any vector θ , ∥θ∥0 denotes the number of its nonzero coordinates. Supp(θ ),
the support of a p-dimensional vector θ , is defined as {j : θj ̸= 0}. For T ⊂ {1, 2, . . . , p}, let |T | be the cardinality of T , T c

be the complement of T , and θT be the vector in ℜp that has the same coordinates as θ on T and zero coordinates on T c .
Last, let a ∨ b = max(a, b).

2. Model and parameters of interest

Econometricians observe an outcome Y , a continuous treatment T , and a set of covariates X , which may be high-
dimensional. They are connected by a measurable function Γ (·), i.e.,

Y = Γ (T , X, A),

where A is an unobservable random vector and may not be weakly separable from observables (T , X), and Γ may not be
monotone in either T or A.

Let Y (t) = Γ (t, X, A). We are interested in the average EY (t), the marginal distribution P(Y (t) ≤ u) for some u ∈ ℜ,
and the quantile qτ (t), where we denote qτ (t) as the τ -th quantile of Y (t) for some τ ∈ (0, 1). We are also interested in
the causal effect of moving T from t to t ′, i.e., E(Y (t) − Y (t ′)) and qτ (t) − qτ (t ′). Last, we are interested in the average
marginal effect E[∂tΓ (t, X, A)] and quantile partial derivative ∂tqτ (t). Next, we specify conditions under which the above
parameters are identified.
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Assumption 1. The random variables A and T are conditionally independent given X .

Assumption 1 is known as the unconfoundedness condition, which is commonly assumed in the treatment effect
literature. See Cattaneo (2010), Cattaneo and Farrell (2011), Hirano et al. (2003) and Firpo (2007) for the case of discrete
treatment and Graham et al. (2014), Galvao and Wang (2015), and Hirano and Imbens (2004) for the case of continuous
treatment. It is also called the conditional independence assumption in Hoderlein and Mammen (2007), which is weaker
than the full joint independence between A and (T , X). Note that X can be arbitrarily correlated with the unobservables
A. This assumption is more plausible when we control for sufficiently many and potentially high-dimensional covariates.

Theorem 2.1. Suppose Assumption 1 holds and Γ (·) is differentiable in its first argument. Then the marginal distribution of Y (t)
and the average marginal effect ∂tEY (t) are identified. In addition, if Assumption 6 in Appendix A holds and X is continuously
distributed, then ∂tqτ (t) = Eµτ ,t [∂tΓ (t, X, A)], where, for f(X,A) denoting the joint density of (X, A), µτ ,t is the probability
measure on {(x, a) : Γ (t, x, a) = qτ (t)} with density f(X,A)

cf ∥∇(x,a)Γ (t,·,·)∥ , where

cf =
∫
(x,a):Γ (t,x,a)=qτ (t)

f(X,A)(x, a)
∥∇(x,a)Γ (t, ·, ·)∥

dxda.

Several comments are in order. First, because the marginal distribution of Y (t) is identified, so be its average, quantile,
average marginal effect, and quantile partial derivative. As pointed out by Imbens and Newey (2009), a non-separable
outcome with a general disturbance is equivalent to treatment effect models. Therefore, we can view Y (t) as the potential
outcome. Under unconfoundedness, the identification of the marginal distribution of the potential outcome with a
continuous treatment has already been established in Hirano and Imbens (2004) and Galvao and Wang (2015). The first
part of Theorem 2.1 just re-states their results. Second, the second result indicates that the partial quantile derivative
identifies the weighted average marginal effect for the subpopulation with the same potential outcome, i.e., {Y (t) = qτ (t)}.
The result is closely related to, but different from Sasaki (2015) . We consider the unconditional quantile of Y (t), whereas
he considered the conditional quantile of Y (t) given X . Third, we require X to be continuous just for the simplicity
of derivation. If some elements of X are discrete, a similar result can be established in a conceptually straightforward
manner by focusing on the continuous covariates within samples homogeneous in the discrete covariates, at the expense
of additional notation. Finally, we do not require X to be continuous when establishing the estimation and inference
results below.

3. Estimation

Let ft (x) = fT |X (t|x) denote the conditional density of T evaluated at t given X = x and dt (·) denote the Dirac function
such that for any function g(·),∫

g(s)dt (s)ds = g(t).

In addition, let Yu(t) = 1{Y (t) ≤ u} and Yu = 1{Y ≤ u} for some u ∈ ℜ. Then E(Y (t)) and E(Yu(t)) can be identified by
the method of generalized propensity score as proposed in Hirano and Imbens (2004), i.e.,

E(Y (t)) = E
(
Ydt (T )
ft (X)

)
and E(Yu(t)) = E

(
Yudt (T )
ft (X)

)
. (3.1)

There is a direct analogy between (3.1) for the continuous treatment and E(Yu(t)) = E( Yu1{T=t}P(T=t|X) ) when the treatment
T is discrete: the indicator function shrinks to a Dirac function and the propensity score is replaced by the conditional
density. Following this analogy, Hirano and Imbens (2004) called ft (X) the generalized propensity.

Belloni et al. (2017) and Farrell (2015) considered the model with a discrete treatment and high-dimensional
control variables, and proposed to use the doubly robust moment for inference. Following their lead, we propose the
corresponding doubly robust moment when the treatment status is continuous. Let νt (x) = E(Y |X = x, T = t) and
φt,u(x) = E(Yu|X = x, T = t), then

E(Y (t)) = E
[(

(Y − νt (X))dt (T )
ft (X)

)
+ νt (X)

]
(3.2)

and

E(Yu(t)) = E
[(

(Yu − φt,u(X))dt (T )
ft (X)

)
+ φt,u(X)

]
. (3.3)

We propose the following three-stage procedure to estimate µ(t) := EY (t), α(t, u) := P(Y (t) ≤ u), qτ (t), and ∂tqτ (t):

1. Estimate νt (x), φt,u(x), and ft (x) by ν̂t (x), φ̂t,u(x) and f̂t (x), respectively, using the first-stage bandwidth h1.
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2. Estimate µ(t) and α(t, u) by

µ̂(t) =
1
n

n∑
i=1

[(
(Y − ν̂t (Xi))

f̂t (Xi)h2
K (

Ti − t
h2

)
)
+ ν̂t (Xi)

]
and

α̂(t, u) =
1
n

n∑
i=1

[(
(Yu − φ̂t,u(Xi))

f̂t (Xi)h2
K (

Ti − t
h2

)
)
+ φ̂t,u(Xi)

]
, respectively,

where K (·) and h2 are a kernel function and the second-stage bandwidth, respectively. Then rearrange α̂(t, u) to
obtain α̂r (t, u), which is monotone in u.

3. Estimate qτ (t) by inverting âr (t, u) with respect to (w.r.t.) u, i.e., q̂τ (t) = inf{u : âr (t, u) ≥ τ }; estimate ∂tµ(t) =
E∂tΓ (t, X, A) by β̆1(t), which is the estimator of the slope coefficient in the local linear regression of µ̂(Ti) on Ti;
estimate ∂tqτ (t) by β̂1

τ (t), which is the estimator of the slope coefficient in the local linear regression of q̂τ (Ti) on Ti.

3.1. The first stage estimation

In this section, we define the first stage estimators and derive their asymptotic properties. Since νt (x), φt,u(x), and
ft (x) are local parameters w.r.t. T = t , in addition to using L1 penalty to select relevant covariates, we rely on a kernel
function to implement the localization. In particular, we propose to estimate νt (x), φt,u(x), and ft (x) by a penalized local
LS, a penalized local MLE, and numerical differentiation, respectively.

3.1.1. Penalized local LS and MLE
Recall νt (x) = E(Y |X = x, T = t) and φt,u(x) = E(Yu|X = x, T = t) where Yu = 1{Y ≤ u}. We approximate νt (x) and

φt,u(x) by b(x)′γt and Λ(b(x)′θt,u), respectively, where Λ(·) is the logistic CDF and b(X) is a p× 1 vector of basis functions
with potentially large p. In the case of high-dimensional covariates, b(X) is just X , while in the case of nonparametric sieve
estimation, b(X) is a series of bases of X . The approximation errors for νt (x) and φt,u(x) are given by rνt (x) = νt (x)−b(x)′γt
and rφt,u(x) = φt,u(x)−Λ(b(x)′θt,u), respectively.

Note that we only approximate νt (x) and φt,u(x) by a linear regression and a logistic regression, respectively, with the
approximation errors satisfying Assumption 2. Assumption 2 puts a sparsity structure on νt (x) and φt,u(x) so that the
number of effective covariates that can affect them is much smaller than p. If the effective covariates are a few discrete
variables that have a few categories, then we can saturate the regressions by low-dimensional dummy variables so that
there is no approximate error. If some of the effective covariates are continuous, then we can include sieve bases in the
linear regression so that the approximation error can still satisfy Assumption 2. One possible scenario that the approximate
sparsity condition may fail is when there are a substantial amount of discrete variables that are all on the same footing
(e.g., job occupation dummies). In this case, it is hard to define a sparse approximation.4 Last, the coefficients γt and θt,u
are both functional parameters that can vary with their indexes. This provides additional flexibility of our setup against
misspecification.

We estimate νt (x) and φt,u(x) by ν̂t (x) = b(x)′γ̂t and φ̂t,u(x) = Λ(b(x)′θ̂t,u), respectively, where

γ̂t = argmin
γ

1
2n

n∑
i=1

(Yi − b(Xi)′γ )2K (
Ti − t
h1

)+
λ

n
∥Ξ̂tγ ∥1, (3.4)

θ̂t,u = argmin
θ

1
n

n∑
i=1

M(1{Yi ≤ u}, Xi; θ )K (
Ti − t
h1

)+
λ

n
∥Ψ̂t,uθ∥1, (3.5)

∥·∥1 denotes the L1 norm, h1 is the first-stage bandwidth, λ = ℓn(log(p∨ nh1)nh1)1/2 for some slowly diverging sequence
ℓn, and M(y, x; g) = −[y log(Λ(b(x)′g)) + (1 − y) log(1 − Λ(b(x)′g))]. Our penalty term λ is different from the one used
in Belloni et al. (2017) and Belloni et al. (2019), i.e., λ∗ = 1.1Φ−1(1 − γ /p)n1/2, where γ = o(1) is some user-supplied
constant, and Φ(·) is the standard normal CDF. Belloni et al. (2017) suggest γ = C/(n log(n)), which implies that

Φ−1(1− γ /p) ∼ [log(1/C)+ log(p)+ log(n)+ log(log(n))]1/2 ∼
√
log(p ∨ n).

Therefore, our penalty term λ is of same order of magnitude of λ∗ if nh1 is replaced with n and ℓn is removed. We need to
use nh1 in our penalty due to the presence of the kernel function in our estimation procedure. In particular, the effective
sample size is of the same order of nh1.5 We will specify the order of magnitude of h1 in Assumption 2. The role played by
ℓn in our penalty is similar to that of γ in λ∗, which is to control the selection error uniformly. We refer readers to Belloni

4 We thank the Associate Editor for this point.
5 Note that log(n) and log(nh1) are of the same order of magnitude.
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et al. (2017, Equation (6.4)) for a more detailed discussion on this point. Since we do not use the advanced technique
of self-normalized process as in Belloni et al. (2017), we multiply the sequence ℓn with

√
log(p ∨ n) while in λ∗, log(γ )

is additive to log(pn) inside the square root. We propose a rule-of-thumb λ in Section 5 and study the sensitivity of our
inference method against the choice of λ in Section S.3 of the online supplementary material.

In (3.4) and (3.5), Ξ̂t = diag(l̃t,1, . . . , l̃t,p) and Ψ̂t,u = diag(lt,u,1, . . . , lt,u,p) are generic penalty loading matrices. The
infeasible loading matrices we would like to use are Ξ̂t,0 = diag(l̃t,0,1, . . . , l̃t,0,p) and Ψ̂t,u,0 = diag(lt,u,0,1, . . . , lt,u,0,p) in
which

l̃t,0,j =
(Y − νt (X))bj(X)K (T − t

h1
)h−1/21


Pn,2

and

lt,u,0,j =
(Yu − φt,u(X))bj(X)K (

T − t
h1

)h−1/21


Pn,2
,

respectively. Since νt (·) and φt,u(·) are not known, we follow Belloni et al. (2017) and propose an iterative algorithm
to obtain the feasible versions of the loading matrices. The statistical properties of the feasible loading matrices are
summarized in Lemma A.3 in Appendix A.

Algorithm 3.1.

1. Let Ξ̂ 0
t = diag(l̃0t,1, . . . , l̃

0
t,p) and Ψ̂ 0

t,u = diag(l0t,u,1, . . . , l
0
t,u,p), where l̃0t,j = ∥Ybj(X)K (

T−t
h1

)h−1/21 ∥Pn,2 and l0t,u,j =
∥Yubj(X)K ( T−th1

)h−1/21 ∥Pn,2. Using Ξ̂
0
t and Ψ̂ 0

t,u, we can compute γ̂ 0
t and θ̂0t,u by (3.4) and (3.5). Let ν̂0t (x) = b(x)′γ̂ 0

t

and φ̂0
t,u(x) = Λ(b(x)′θ̂0t,u) for x = X1, . . . , Xn.

2. For k = 1, . . . , K for some fixed positive integer K , we compute Ξ̂ k
t = diag(l̃kt,1, . . . ,

l̃kt,p) and Ψ̂
k
t,u = diag(lkt,u,1, . . . , l

k
t,u,p), where

l̃kt,j =
(Y − ν̂k−1t (X))bj(X)K (

T − t
h1

)h−1/21


Pn,2

and

lkt,u,j =
(Yu − φ̂

k−1
t,u (X))bj(X)K (

T − t
h1

)h−1/21


Pn,2
.

Using Ξ̂ k
t and Ψ̂ k

t,u, we can compute γ̂ k
t and θ̂ kt,u by (3.4) and (3.5). Let ν̂kt (x) = b(x)′γ̂ k

t and φ̂k
t,u(x) = Λ(b(x)′θ̂ kt,u) for

x = X1, . . . , Xn. The final penalty loading matrices Ξ̂K
t and Ψ̂ K

t,u will be used for Ξ̂t and Ψ̂t,u in (3.4) and (3.5).

Let S̃µt and S̃t,u contain the supports of γ̂t and θ̂t,u, respectively, such that |S̃µt | ≲ supt∈T ∥γ̂t∥0, and |S̃t,u| ≲
sup(t,u)∈T U ∥̂θt,u∥0. For each (t, u) ∈ T U := T × U where T and U are compact subsets of the supports of T and Y ,
respectively, the post-Lasso estimator of γt and θt,u based on the set of covariates S̃µt and S̃t,u are defined as

γ̃t ∈ argmin
γ

n∑
i=1

(Yi − b(Xi)′γ )2K (
Ti − t
h1

), s.t. Supp(γ ) ∈ S̃µt ,

and

θ̃t,u ∈ argmin
θ

n∑
i=1

M(1{Yi ≤ u}, Xi; θ )K (
Ti − t
h1

), s.t. Supp(θ ) ∈ S̃t,u.

The post-Lasso estimators of νt (x) and φt,u(X) are given by ν̃t (X) = b(X)′γ̃t and φ̃t,u(X) = Λ(b(X)′θ̃t,u), respectively.

3.1.2. Conditional density estimation
Following Belloni et al. (2019), we propose to first estimate Ft (X), the conditional CDF of T given X , by the (logistic)

distributional Lasso regression studied in Belloni et al. (2017) and then take the numerical derivative. Following Belloni
et al. (2017), we approximate Ft (X) by a logistic CDF Λ(b(X)′βt ) and the approximation error is denoted as rFt (x) =
Ft (x)−Λ(b(x)′βt ). We estimate βt by β̂t , which is computed as

β̂t = argmin
β

1
n

n∑
i=1

M(1{Ti ≤ t}, Xi;β)+
λ̃

n
∥Ψ̂tβ∥1 and F̂t (x) = Λ(b(x)′β̂t ), (3.6)

where M(·) is the logistic likelihood as defined previously, the penalty

λ̃ = 1.1Φ−1(1− γ /{p ∨ nh1})n1/2
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is slightly modified from but of the same order of magnitude as λ∗ used in Belloni et al. (2017) and Belloni et al. (2019), for
some γ → 0 specified in Section 5, and the penalty loading Ψ̂t is estimated in Algorithm 3.2, which is also due to Belloni
et al. (2017):

Algorithm 3.2.

1. Let Ψ̂ 0
t = diag(l0t,1, . . . , l

0
t,p) where l0t,j = ∥1{T ≤ t}bj(X)∥Pn,2. Using Ψ̂

0
t , we can compute β̂0

t and F̂t (X) by the
(logistic) distributional Lasso regression.

2. For k = 1, . . . , K , we compute Ψ̂ k
t = diag(lkt,1, . . . , l

k
t,p) where

lkt,j =
(1{T ≤ t} − F̂ k−1

t (X)
)
bj(X)


Pn,2
.

Using Ψ̂ k
t , we can compute β̂k

t and F̂ k
t (X) by the (logistic) distributional Lasso regression. The final penalty loading

matrix Ψ̂ K
t will be used as Ψ̂t in (3.6).

Then, ft (X), the conditional density of T = t given X is computed as

f̂t (X) =
F̂t+h1 (X)− F̂t−h1 (X)

2h1
,

where h1 is the first-stage bandwidth.

3.1.3. Asymptotic properties of the first stage estimators
To study the asymptotic properties of the first stage estimators, we need some assumptions.

Assumption 2. Let T U be a compact subset of the support of (T , Y ) and X be the support of X .

1. The sample {Yi, Ti, Xi}
n
i=1 is i.i.d.

2. ∥maxj≤p |bj(X)|∥P,∞ ≤ ζn and C ≤ Ebj(X)2 ≤ 1/C j = 1, . . . , p.
3. sup(t,u)∈T U max(∥γt∥0, ∥βt∥0, ∥θt,u∥0) ≤ s for some s which possibly depends on the sample size n.
4. supt∈T ∥rFt (X)∥Pn,2 = Op((s log(p ∨ n)/(n))1/2) and

sup
(t,u)∈T U

[
∥rνt,u(X)K (

T − t
h1

)1/2∥Pn,2 + ∥r
φ
t,u(X)K (

T − t
h1

)1/2∥Pn,2

]
= Op((s log(p ∨ n)/n)1/2).

5. supt∈T ∥rFt (X)∥P,∞ = O((log(p ∨ n)s2ζ 2n /(n))
1/2) and

sup
(t,u)∈T U

[
∥rνt,u(X)∥P,∞ + ∥r

φ
t,u(X)∥P,∞

]
= O((log(p ∨ n)s2ζ 2n /(nh1))1/2).

6. ft (x) is second-order differentiable w.r.t. t with bounded derivatives uniformly over (t, x) ∈ T X , where T is a
compact subset of the support of T and X is the support of X .

7. ζ 2n s
2ℓ2n log(p ∨ n)/(nh1)→ 0, nh5

1/(log(p ∨ n))→ 0.

Assumption 2.1 is common for cross-sectional observations. Assumption 2.2 is the same as Assumption 6.1(a) in Belloni
et al. (2017). Assumption 2.3 requires that νt (x), φt,u(x), and Ft (x) are approximately sparse, i.e., they can be well-
approximated by using at most s elements of b(x). This approximate sparsity condition is common in the literature on
high-dimensional data (see, e.g., Belloni et al. (2017)). Assumptions 2.4 and 2.5 specify how well the approximations are
in terms of LPn,2 and LP,∞ norms. The exact rate for rFt (X) follows Belloni et al. (2017). The rates for rνt,u(X) and rφt,u(X) are
different from that for rFt (X) because their approximations are local in T = t . If the models for νt (·), φt,u(·), and Ft (·) are
correctly specified and exactly sparse, i.e., the coefficients for all but s regressors are zero, then there are no approximate
errors. This implies rFt (·), r

ν
t,u(·), and rφt,u(·) equal to zero so that Assumptions 2.4 and 2.5 hold automatically. In the sieve

estimation, X is finite dimensional and b(X) is just a sequence of sieve bases of X . Then rFt (·), r
ν
t,u(·), and rφt,u(·) are the sieve

approximation bias. Assumptions 2.3 and 2.4 can be verified under some smoothness conditions (see, e.g., Chen (2007)).
Therefore, Assumptions 2.4 and 2.5 are in spirit close to the smoothness condition. Assumption 2.6 is the smoothness of
the true density, which is needed for the theoretical analysis of the numerical derivative. Because T needs not be the
whole support of T , this condition is plausible. In a simple case, if T = µ(X)+U , |µ(x)| is bounded uniformly over x ∈ X ,
and U is independent of X and logistically distributed, then this condition holds. Assumption 2.7 imposes conditions on
the rates at which s, ζn, and p grow with sample size n. It ensures that the first stage nuisance parameters are estimated
with sufficient accuracy. In particular, we require s2/(nh1) → 0. Comparing with the condition that s2/n → 0 imposed
in Belloni et al. (2017), our condition reflects the local nature of our estimation procedure in the sense that our effective
sample size is of order of magnitude nh1.
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Assumption 3.

1. K (·) is a symmetric probability density function (PDF) with∫
uK (u)du = 0, and κ2 :=

∫
u2K (u)du <∞.

There exists a positive constant CK such that supu ulK (u) ≤ CK for l = 0, 1.
2. There exists some positive constant C < 1 such that C ≤ ft (x) ≤ 1/C uniformly over (t, x) ∈ T X .
3. νt (x) and φt,u(x) are three times differentiable w.r.t. t , with all three derivatives being bounded uniformly over

(t, x, u) ∈ T XU .
4. For the same C as above, C ≤ E(Yu(t)|X = x) ≤ 1− C uniformly over (t, x, u) ∈ T XU := T X × U .

Assumption 3.1 holds for many kernel functions, e.g., uniform and Gaussian kernels. Since fT (X) was referred to as the
generalized propensity by Hirano and Imbens (2004), Assumption 3.2 is analogous to the overlapping support condition
commonly assumed in the treatment effect literature; see, e.g., Hirano et al. (2003) and Firpo (2007). Since the conditional
density also has the sparsity structure as assumed in Assumption 2, at most smembers of X ’s affect the conditional density,
which makes Assumption 3.2 more plausible. It is possible to modify our proof to allow for the infimum of the density
to decay to zero slowly, as sample size increases. On the other hand, we rule out the case that

inf
(t,x)∈T X

ft (x) = 0. (3.7)

Recall that ft (X) is referred to as the generalized propensity score by Hirano and Imbens (2004). It is the counterpart
of propensity score when the treatment status is binary. Khan and Tamer (2010) have already pointed out that, when
the propensity score can approach zero, the semi-parametric efficiency bound for the average treatment effect is zero,
which implies that there does not exist a regular estimator for the mean potential outcomes. Similarly, if (3.7) holds,
the identification of µ(t) and α(t, u) is not only based on the ‘‘thin set" (a neighborhood of t) but also at infinity (ft (X)
approaches zero). Sample selection and special regressor models are also identified at infinity. As shown in Andrews and
Schafgans (1998) and Khan and Tamer (2010), their estimations are difficult and involve asymptotic trimming. In our
case, asymptotic trimming means that we need to truncate the density estimator from below by ε = εn → 0 as n→∞.
Similar to Tan and Zhang (2018), εn controls the trade-off between bias and variance, which play key roles for inference.
Such an extension is left as a future research topic. Assumption 3.3 imposes some smoothness conditions that are widely
assumed in the nonparametric kernel literature. Assumption 3.4 holds if XU is compact.

Assumption 4. There exists a sequence ℓn →∞ such that, with probability approaching one,

0 < κ ′ ≤ inf
δ ̸=0,∥δ∥0≤sℓn

∥b(X)′δ∥Pn,2
∥δ∥2

≤ sup
δ ̸=0,∥δ∥0≤sℓn

∥b(X)′δ∥Pn,2
∥δ∥2

≤ κ
′′

<∞.

Assumption 4 is the restricted eigenvalue condition commonly assumed in the high-dimensional data literature. Based
on Bickel et al. (2009),

inf
δ ̸=0,∥δ∥0≤sℓn

∥b(X)′δ∥Pn,2
∥δ∥2

and sup
δ ̸=0,∥δ∥0≤sℓn

∥b(X)′δ∥Pn,2
∥δ∥2

are the minimal and maximal eigenvalues of Gram submatrices formed by any sℓn components of b(X). Because p ≫ n,
the matrix b(X)′b(X) is not invertible. However, because sℓn ≪ n, Assumption 4 implies that the Gram submatrices can
still be invertible. We refer interested readers to Bickel et al. (2009) for more details and Bühlmann and van de Geer
(2011) for a textbook treatment.

Since there is a kernel in the Lasso objective functions in (3.4) and (3.5), the asymptotic properties of γ̂t and θ̂t,u
cannot be established by directly applying the results in Belloni et al. (2017). The key missing piece is the following local
version of the compatibility condition. Let St,u be an arbitrary subset of {1, . . . , p} such that sup(t,u)∈T U |St,u| ≤ s and
∆c,t,u = {δ : ∥δSc

t,u
∥1 ≤ c∥δSt,u∥1} for some c <∞ independent of (t, u).

Lemma 3.1. If Assumptions 1–4 hold, then there exists κ = κ ′C1/2/4 > 0 such that, w.p.a.1,

inf
(t,u)∈T U

inf
δ∈∆c,t,u

∥b(X)′δK ( T−th1
)1/2∥Pn,2

∥δSt,u∥2
√
h1

≥ κ.

Note St,u in Lemma 3.1 is either the support of θt,u or the support of γt . For the latter case, the index u is not needed.
We refer to Lemma 3.1 as the local compatibility condition because (1) there is a kernel function implementing the
localization; and (2) by the Cauchy inequality, Lemma 3.1 implies

inf
(t,u)∈T U

inf
δ∈∆c,t,u

√
s∥b(X)′δK ( T−th1

)1/2∥Pn,2

∥δSt,u∥1
√
h1

≥ κ.
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Bickel et al. (2009, Lemma 4.2) show that, under Assumption 4, we have the following compatibility condition:

inf
(t,u)∈T U

inf
δ∈∆c,t,u

√
s∥b(X)′δ∥Pn,2
∥δSt,u∥1

≥ inf
(t,u)∈T U

inf
δ∈∆c,t,u

∥b(X)′δ∥Pn,2
∥δSt,u∥2

≥ κ, (3.8)

which is the key convertibility condition used in high-dimensional analysis. We refer interested readers to Bühlmann and
van de Geer (2011, Equation 6.4), the remarks after that, and Bühlmann and van de Geer (2011, Section 6.13) for more
detailed discussions and further references. Under Assumption 4 and some regularity conditions assumed in the paper,
Lemma 3.1 establishes a local version of (3.8). Based on Lemma 3.1, we can establish the following asymptotic probability
bounds for the first stage estimators.

Theorem 3.1. Suppose Assumptions 1–2, 3.1–3.3, and 4 hold. Then

sup
t∈T
∥(̂νt (X)− νt (X))∥Pn,2 = Op(ℓn(log(p ∨ n)s)1/2(nh1)−1/2),

sup
t∈T
∥̂νt (X)− νt (X)∥P,∞ = Op(ℓn(log(p ∨ n)s2ζ 2n /(nh1))1/2),

sup
t∈T
∥(̃νt (X)− νt (X))∥Pn,2 = Op(ℓn(log(p ∨ n)s)1/2(nh1)−1/2),

sup
t∈T
∥̃νt (X)− νt (X)∥P,∞ = Op(ℓn(log(p ∨ n)s2ζ 2n /(nh1))1/2),

and supt∈T ∥γ̂t∥0 = Op(s). If in addition, Assumption 3.4 holds, then

sup
(t,u)∈T U

∥(̂φt,u(X)− φt,u(X))∥Pn,2 = Op(ℓn(log(p ∨ n)s)1/2(nh1)−1/2),

sup
(t,u)∈T U

∥φ̂t,u(X)− φt,u(X)∥P,∞ = Op(ℓn(log(p ∨ n)s2ζ 2n /(nh1))1/2),

sup
(t,u)∈T U

∥(̃φt,u(X)− φt,u(X))∥Pn,2 = Op(ℓn(log(p ∨ n)s)1/2(nh1)−1/2),

sup
(t,u)∈T U

∥φ̃t,u(X)− φt,u(X)∥P,∞ = Op(ℓn(log(p ∨ n)s2ζ 2n /(nh1))1/2),

and sup(t,u)∈T U ∥θ̂t,u∥0 = Op(s).

Several comments are in order. First, due to the nonlinearity of the logistic link function, Assumption 3.4 is needed
for deriving the asymptotic properties of the penalized local MLE estimators φ̂t,u(x) and φ̃t,u(x). Second, the LPn,2 bounds
in Theorem 3.1 are faster than (nh2)−1/4 by Assumption 5. This implies the estimators are sufficiently accurate so that
in the second stage, their second and higher order impacts are asymptotically negligible. Last, the numbers of nonzero
coordinates of γ̂t and θ̂t,u determine the complexity of our first stage estimators, which are uniformly controlled with a
high probability.

For the conditional density estimation, we have the following results.

Theorem 3.2. Suppose Assumptions 1–2, 3.1–3.3, and 4 hold. Then

sup
t∈T
∥f̂t (X)− ft (X)∥Pn,2 = Op((log(p ∨ n)s/n)1/2h−11 ),

sup
t∈T
∥f̂t (X)− ft (X)∥P,∞ = Op((log(p ∨ n)s2ζ 2n /n)

1/2h−11 ),

sup
t∈T
∥f̃t (X)− ft (X)∥Pn,2 = Op((log(p ∨ n)s/n)1/2h−11 ),

sup
t∈T
∥f̃t (X)− ft (X)∥P,∞ = Op((log(p ∨ n)s2ζ 2n /n)

1/2h−11 ),

and supt∈T ∥β̂t∥0 = Op(s).

The rates of convergence in Theorem 3.2 are the same as those derived in Belloni et al. (2019, Section 8).

3.2. The second stage estimation

Let W = {Y , T , X} and Wu = {Yu, T , X}. For three generic functions ν̆(·), φ̆(·) and f̆ (·) of X , denote

Π ′t (W , ν̆, f̆ ) =
(Y − ν̆(X))

f̆ (X)h2
K (

T − t
h2

)+ ν̆(X)
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and

Πt,u(Wu, φ̆, f̆ ) =
(Yu − φ̆(X))

f̆ (X)h2
K (

T − t
h2

)+ φ̆(X).

Then the estimators µ̂(t) and α̂(t, u) can be written as

µ̂(t) = PnΠ
′

t (W , νt , f ) and α̂(t, u) = PnΠt,u(Wu, φt,u, f ),

where νt (·), φt,u(·), and f t (·) are either the Lasso estimators (i.e., ν̂t (·), φ̂t,u(·), and f̂t (·)) or the post-Lasso estimators
(i.e., ν̃t (·), φ̃t,u(·), and f̃t (·)) as defined in Section 3.1.

Assumption 5. Let h2 = C2n−H2 for some positive constant C2.

1. H2 ∈ [1/5, 1/3), log2(n)s2 log2(p∨ n)/(nh2)→ 0, and ℓ2ns
2 log2(p∨ n)/(nh2

1)→ 0, and ℓ2ns
2 log2(p∨ n)h2/(nh3

1)→ 0.
2. H2 ∈ (1/4, 1/3), log2(n)s2 log2(p ∨ n)/(nh2

2)→ 0, ℓ2ns
2 log2(p ∨ n)/(nh2

1h2)→ 0, and ℓ2ns
2 log2(p ∨ n)/(nh3

1)→ 0.

It is possible to allow for different sparsity levels for the infinite-dimensional nuisance functions (i.e., νt (·), φt,u(·), ft (·))
with more complicate notation. Then, following Farrell (2015),6 we conjecture that Assumption 5 can be relaxed to

sup
t∈T
∥νt (·)− νt (·)∥Pn,2∥f t (·)− ft (·)∥Pn,2 = op((nh2)−1/2)

and

sup
(t,u)∈T U

∥φt,u(·)− νt (·)∥Pn,2∥f t (·)− ft (·)∥Pn,2 = op((nh2)−1/2).

In addition, by implementing the cross-fitting technique proposed by Chernozhukov et al. (2018), it is possible to
apply other machine-learning method other than Lasso for the estimation of nuisance functions and further relax the
requirement on the complexity of the function spaces their estimators live in. Such an extension is left as a future research
topic.

Theorem 3.3. Suppose Assumptions 1–4 and 5.1 hold. Then

α̂(t, u)− α(t, u) = (Pn − P)Πt,u(Wu, φt,u, ft )+ Bα(t, u)h2
2 + Rn(t, u),

where

Bα(t, u) =
κ2

2

[
E
(
∂2t φt,u(X)+

2∂tφt,u(X)∂t ft (X)
ft (X)

)]
,

κ2 =
∫
u2K (u)du and sup(t,u)∈T U |Rn(t, u)| = op((nh2)−1/2). If Assumption 5.1 is replaced by Assumption 5.2, then

sup
(t,u)∈T U

|Bα(t, u)h2
2 + Rn(t, u)| = op(n−1/2).

Theorem 3.3 presents the Bahadur representations of the nonparametric estimator α̂(t, u) with a uniform control on
the remainder term. For most purposes (e.g., to obtain the asymptotic distributions of the intermediate estimator or to
obtain the results below), Assumption 5.1 is sufficient. Occasionally, one needs to impose Assumption 5.2 to have a better
control on the remainder term, say, when one conducts an L2-type specification test. See the remark after Theorem 3.4.
Under an extra moment condition on Y (e.g., EY q <∞ for some q ≥ 4), one can establish similar results for the average
effect estimator, i.e.,

µ̂(t)− µ(t) = (Pn − P)Π ′t (W , νt , ft )+ Bµ(t)h2
2 + R′n(t),

where supt∈T |R′n(t)| = op((nh2)−1/2) and

Bµ(t) =
κ2

2

[
E
(
∂2t νt (X)+

2∂tνt (X)∂t ft (X)
ft (X)

)]
.

If Assumption 5.1 is replaced by Assumption 5.2, then

sup
t∈T
|Bµ(t)h2

2 + R′n(t)| = op(n−1/2).

6 We thank a referee for the reference and suggestion.
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3.3. The third stage estimation

Recall that qτ (t) denotes the τ -th quantile of Y (t), which is the inverse of α(t, u) w.r.t. u. We propose to estimate qτ (t)
by q̂τ (t) where q̂τ (t) = inf{u : α̂r (t, u) ≥ τ } and α̂r (t, u) is the rearrangement of α̂(t, u).

We rearrange α̂(t, u) to make it monotonically increasing in u ∈ U . Following Chernozhukov et al. (2010), for a generic
function Q (·), we define Q = Q ◦ ψ← where ψ can be any increasing bijective mapping: U ↦→ [0, 1] and ψ← is the
inverse of ψ . Then the rearrangement Q

r
of Q is defined as

Q
r
(u) = F←(u) = inf{y : F (y) ≥ u},

where F (y) =
∫ 1
0 1{Q (u) ≤ y}du. The rearrangement Q r for Q is Q r

= Q
r
◦ ψ(u).

The rearrangement and inverse are two functionals operating on the process

{α̂(t, u) : (t, u) ∈ T U}

and are shown to be Hadamard differentiable by Chernozhukov et al. (2010) and van der Vaart and Wellner (1996),
respectively. However, by Theorem 3.3,

sup
(t,u)∈T U

(nh2)1/2(α̂(t, u)− α(t, u)) = Op(log1/2(n)),

which is not asymptotically tight. Therefore, the standard functional delta method used in Chernozhukov et al. (2010)
and van der Vaart and Wellner (1996) is not directly applicable. The next theorem overcomes this difficulty and establishes
the linear expansion of the quantile estimator. Denote T I, {qτ (t) : τ ∈ I}ε , {qτ (t) : τ ∈ I}ε , and Ut as T ×I, the ε-enlarged
set of {qτ (t) : τ ∈ I}, the closure of {qτ (t) : τ ∈ I}ε , and the projection of T U on T = t , respectively.

Theorem 3.4. Suppose that Assumptions 1–4 and 5.1 hold. If {qτ (t) : τ ∈ I}ε ⊂ Ut for any t ∈ T , then

q̂τ (t)− qτ (t) = −(Pn − P)
Πt,u(Wqτ (t), φt,qτ (t), ft )

fY (t)(qτ (t))
− βq(t, τ )h2

2 + Rq
n(t, τ ),

where fY (t) is the density of Y (t), βq(t, τ ) =
βα (t,qτ (t))
fY (t)(qτ (t))

, and sup(t,τ )∈T I Rq
n(t, τ ) = op((nh2)−1/2). If Assumption 5.1 is replaced

by Assumption 5.2, then

sup
(t,τ )∈T I

(
|Rq

n(t, τ )| +
⏐⏐βq(t, τ )

⏐⏐) h2
2 = op(n−1/2).

Under Assumption 5.2, the remainder term Rq
n(t, τ ) is op(n−1/2) uniformly in (t, τ ) ∈ T I. This result is needed if one

wants to establish an L2-type specification test for qτ (t). For example, one may be interested in testing the null hypotheses
of the quantile partial derivative being homogeneous across treatment. In this case, the null hypothesis can be written as

H0 : qτ (t) = β0(τ )+ β1(τ )t for all (t, τ ) ∈ T I,

and the alternative hypothesis is the negation of H0. One way to conduct a consistent test for the above hypothesis is to
employ the residuals of the linear regression of q̂τ (Ti) on Ti to construct the test statistic Υn(τ ), i.e.,

Υn(τ ) =
1
n

n∑
i=1

(q̂τ (Ti)− β̂0 − β̂1Ti)21{Ti ∈ T },

where (β̂0, β̂1) are the linear coefficient estimators. This type of specification test has been previously studied by Su and
Chen (2013), Lewbel et al. (2015), Su et al. (2015), Hoderlein et al. (2016), and Su and Hoshino (2016) in various contexts.
One can follow them and apply the results in Theorem 3.4 to study the asymptotic distribution of Υn(τ ) for each τ . In
addition, one can also consider either an integrated or a sup-version of Υn(τ ) and then study its asymptotic properties.
For brevity we do not study such a specification test in this paper.

Given the estimators µ̂(t) and q̂τ (t), we can run local linear regressions of µ̂(Ti) and q̂τ (Ti) on (1, Ti − t) and obtain
estimators β̆1(t) and β̂1

τ (t) of ∂µ(t) and ∂tqτ (t), respectively, as estimators of the linear coefficients in the local linear
regression.7 Specifically, we define

(β̆0(t), β̆1(t)) = argmax
β0,β1

n∑
i=1

(µ̂(Ti)− β0
− β1(Ti − t))2K (

Ti − t
h2

)

and

(β̂0
τ (t), β̂

1
τ (t)) = argmax

β0,β1

n∑
i=1

(q̂τ (Ti)− β0
− β1(Ti − t))2K (

Ti − t
h2

),

7 Alternatively, one can consider the local quadratic or cubic regression.
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where h2 is the second-stage bandwidth. It is possible to use a third bandwidth h3 in this step. Results similar to
Theorem 3.5 still holds if h3/h2 = O(1). Note that the usual optimal bandwidth for the kernel estimator of the derivative
is O(n−1/7). However, because h2 = O(n−1/5), the requirement that h3/h2 = O(1) implies the optimal bandwidth is not
achievable. The key reason is that, unlike the usual local linear regression, we need to plug in the estimates of µ(·) and
qτ (·). For simplicity, we just take h3 = h2.

The following theorem shows the asymptotic properties of β̆1(t) and β̂1
τ (t).

Theorem 3.5. Suppose Assumptions 1–4, and 5.1. If {qτ (t) : τ ∈ I}ε ⊂ Ut for any t ∈ T , then

β̂1
τ (t)− ∂tqτ (t) = −(Pn − P)(κ2fY (t)(qτ (t))ft (Xj)h2

2)
−1
[
Yqτ (t),j − φt,qτ (t)(Xj)

]
K (

Tj − t
h2

)+ R1
n(t, τ ),

where sup(t,τ )∈T I |R1
n(t, τ )| = op((nh3

2)
−1/2) and K (v) =

∫
wK (v − w)K (w)dw.

Theorem 3.5 presents the Bahadur representation for β̂1
τ (t). Since it is the estimator for the first order derivative ∂tqτ (t),

we can show that it converges to the true values at the
(
nh3

2

)1/2-rate. Such a rate is common for kernel estimations of
the first-order derivative of the conditional expectation, i.e., Li and Racine (2007, Theorem 2.10). If the addition moment
condition for Y holds, the similar results hold for β̆1(t), i.e.,

β̆1(t)− ∂tµ(t) = (Pn − P)(κ2ft (Xj)h2
2)
−1
[
Yj − νt (Xj)

]
K (

Tj − t
h2

)+ R̆1
n(t),

where supt∈T |R̆1
n(t)| = op((nh3

2)
−1/2).

4. Inference

In this section, we study the inference for µ(t), qτ (t), and ∂tqτ (t). We follow the lead of Belloni et al. (2017) and consider
the weighted-bootstrap inference. Let {ηi}ni=1 be a sequence of i.i.d. random variables generated from the distribution of η
such that it has sub-exponential tails and unit mean and variance.8 For example, η can be a standard exponential random
variable or a normal random variable with unit mean and standard deviation. We conduct the bootstrap inference based
on the following procedure.

1. Obtain ν̂t (x), φ̂t,u(x), f̂t (x), ν̃t (x), φ̃t,u(x) and f̃t (x) from the first stage.
2. For the bth bootstrap sample:

• Generate {ηi}ni=1 from the distribution of η.
• Compute

µ̂b(t) :=
1∑n
i=1 ηi

n∑
i=1

ηiΠ
′

t (Wi, νt , f t )

and

α̂b(t, u) :=
1∑n
i=1 ηi

n∑
i=1

ηiΠt,u(Wui, φt,u, f t ),

where (φt,u(·), f t (·)) are either (̂φt,u(·), f̂t (·)) or (̃φt,u(·), f̃t (·)).
• Rearrange α̂b(t, u) and obtain α̂br (t, u).
• Invert âbr (t, u) w.r.t. u and obtain q̂bτ (t) = inf{u : âbr (t, u) ≥ τ }.
• Compute β̆b1(t) and β̂b1

τ (t) as the slope coefficients of local linear regressions of ηiµ̂b(Ti) on (ηi, ηi(Ti− t)) and
ηiq̂bτ (Ti) on (ηi, ηi(Ti − t)), respectively.

3. We repeat the above step for b = 1, . . . , B and obtain a bootstrap sample of

{µ̂b(t), q̂bτ (t), β̆
b1(t), β̂b1

τ (t)}Bb=1.

4. Obtain Q̂µ(α), Q̂ 0(α), Q̂µ1(α), and Q̂ 1(α) as the α-th quantile of the sequences {µ̂b(t)− µ̂(t)}Bb=1, {q̂
b
τ (t)− q̂τ (t)}Bb=1,

{β̆b1(t)− β̆1(t)}Bb=1, and {β̂
b1
τ (t)− β̂1

τ (t)}
B
b=1, respectively.

The standard 100(1− α)% percentile bootstrap confidence interval for qτ (t) is

(Q̂ 0(α/2)+ q̂τ (t), Q̂ 0(1− α/2)+ q̂τ (t)).

8 A random variable η has sub-exponential tails if P(|η| > x) ≤ K exp(−Cx) for every x and some constants K and C .
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However, in our simulation study, we find that it slightly undercovers. Instead, we use the fact that normal CDF is
symmetric and propose to use the modified percentile bootstrap confidence interval as follows:

(−Q̂ ∗0(α/2)+ q̂τ (t), Q̂ ∗0(α/2)+ q̂τ (t)),

where Q̂ ∗0(α/2) = (−Q̂ 0(α/2)) ∨ Q̂ 0(1 − α/2). We define Q̂ ∗µ(α/2), Q̂ ∗µ1(α/2), and Q̂ ∗1(α/2) in the same manner. The
following theorem summarizes the main results in this section.

Theorem 4.1. Suppose that Assumptions 1–4 and 5.1 hold and nh5
2 → 0. Then

P(−Q̂ ∗0(α/2)+ q̂τ (t) ≤ qτ (t) ≤ Q̂ ∗0(α/2)+ q̂τ (t))→ 1− α

and

P(−Q̂ ∗1(α/2)+ β̆1
τ (t) ≤ ∂tqτ (t) ≤ Q̂ ∗1(α/2)+ β̆1

τ (t))→ 1− α.

Theorem 4.1 implies that, via under-smoothing, the 100(1 − α)% bootstrap confidence intervals for qτ (t) and ∂tqτ (t)
have the correct asymptotic coverage probability 1 − α. We need to under-smooth because, regardless of under-
smoothing, the bootstrap estimator always center around the original estimator without the asymptotic bias. With more
complicated notations and the arguments of strong approximation in Chernozhukov et al. (2014a) and Chernozhukov et al.
(2014b), one can show that the validity of bootstrap inference holds uniformly over (t, τ ). One of the key ingredients to
verify Chernozhukov et al. (2014a, Condition H1) is the linear expansions of the estimators with a uniform control of the
reminder terms, which has already been established in Theorems 3.4 and 3.5. Last, if the extra moment condition for Y
holds, then the same results hold for µ̂(t) and β̆1(t), i.e.,

P(−Q̂ ∗µ(α/2)+ µ̂(t) ≤ µ(t) ≤ Q̂ ∗µ(α/2)+ µ̂(t))→ 1− α,

and

P(−Q̂ ∗µ1(α/2)+ β̆1(t) ≤ ∂tµ(t) ≤ Q̂ ∗µ1(α/2)+ β̆1(t))→ 1− α.

5. Monte Carlo simulations

This section presents the results of Monte Carlo simulations, which demonstrate the finite sample performance of the
estimation and inference procedure. Let Y be generated as

Y = Λ
((
U + b(X)′β −Φ−1 (0.5T + 0.25)

)
exp

(
(T − 0.5)2

))
(5.1)

while T be generated as

T = Λ(V − b(X)′β), (5.2)

where U and V are two standard logistic random variables such that U ⊥ V and (U, V ) ⊥ X , Λ(·) and Φ(·) are the logistic
and normal CDFs, respectively, p = 100, X is a p-dimensional random variables whose distribution is the Gaussian copula
with covariance parameter [0.5|j−k|]jk, and b(X) is a vector of basis functions constructed from X . Note that T ranges from
0 to 1. The parameters of interest are qτ (t) and ∂tqτ (t), where t = 0.25, 0.5, 0.75 and τ ∈ (0.2, 0.8). We consider the
following three designs:

1. (Exact sparse) βj =
π2

24 for j = 1, . . . , 4 βj = 0, j ≥ 5, and b(Xj) = Xj, j = 1, . . . , 100;
2. (Approximate sparsity) βj =

1
j2

for j = 1, . . . , 100 and b(Xj) = Xj, j = 1, . . . , 100;

3. (Sieve basis) β1 = β2 =
π2

12 and βj = 0, j ≥ 3. We construct b(X) as the cubic spline basis functions of (X1, X2):

b(X) =
[
1, X1, X2

1 , X
3
1 ,max(X1 − q(1)(0.1), 0)3, . . . ,max(X1 − q(1)(0.9), 0)3

]
×
[
1, X2, X2

2 , X
3
2 ,max(X2 − q(2)(0.1), 0)3, . . . ,max(X2 − q(2)(0.9), 0)3

]
,

where q(j)(τ ) denotes the τ -th empirical quantile of Xj, j = 1, 2. This results in 169 basis functions. We further
remove the basis functions with variance less than 10−4. We end up with about 128 basis functions on average.9

Note that the sum of the coefficients are (approximately) π2/6 for all three designs. We normalize the basis functions
b(X) by their sample means and standard errors.

We use Gaussian kernel function in all three stages. We have four tuning parameters: λ, λ̃, h1, and h2. As we discussed
in Section 3.1, we use

λ = ℓn(log(p ∨ nh1)nh1)1/2 and λ̃ = 1.1Φ−1(1− γ /{p ∨ nh1})n1/2,

9 The number of basis functions slightly varies across simulations.
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Fig. 1. DGP1, finite sample performance of q̂τ (t).

where ℓn =
√
log(log(nh1)) and γ = 1/log(n). We use the rule-of-thumb bandwidth for h1, i.e., h1 = h∗ = 1.06 ×

sd(T )× n−1/5. Last, we build h2 based on the rule-of-thumb bandwidth for the local quantile regression suggested by Yu
and Jones (1998). In particular, Yu and Jones (1998) propose the bandwidths hRoT (τ ) = C(τ ) × hmean, where C(τ ) is a
constant dependent only on τ , and C(0.5) = 1.095 and C(0.25) = C(0.75) = 1.13 and hmean is the bandwidth for the
kernel estimation of E(Y |T ).10 We use the leave-one-out cross-validation to search for the optimal bandwidth of hmean
over a grid in (0.8h∗, 1.2h∗). The resulting bandwidth is denoted as h∗mean. In order to achieve under-smoothing, we define
h2 = n−1/10 × C(τ )× h∗mean, where our choice of the factor n−1/10 follows Cai and Xiao (2012, p.418).

We repeat the bootstrap inference 500 times and all the results are based on 500 Monte Carlo simulations. The sample
size is n = 500. Although the sample size is large compared to p, in this DGP, the first-stage bandwidth is as small as 0.09.
The effective sample size for the first-stage estimation is of order of magnitude of nh1 ≈ 45 < 100. In fact, we obtained
warning signs of potential multi-collinearity and were unable to estimate the model when implementing the traditional
estimation procedures without variable selection (i.e., without penalization).

The upper-left subplots in Figs. 1, 4, 7 and 2, 5, 8 report the true functions of qτ (t) and ∂tqτ (t) for t = 0.25, 0.5, 0.75,
τ ∈ (0.2, 0.8) and DGP 1, 2, and 3, respectively. Both qτ (t) and ∂tqτ (t) are heterogeneous across τ and t , which imposes
difficulties for estimation and inference. The rest of the subplots in the above Figures show the estimation biases and
standard errors. We observe that all the biases of our estimators are of smaller order of magnitude than the standard
error (std) and the root mean squared error (rMSE), which indicates the doubly robust moments effectively remove the
selection bias induced by the Lasso method. The estimators of the quantile functions are very accurate. The estimators
of the quantile partial derivatives are less so because they have slower convergence rates. Figs. 3, 6 and 9 show that
the 90% point-wise modified percentile bootstrap confidence intervals have reasonable performance for both the quantile
functions and their derivatives, across all τ and t values considered, with slight over-coverage for the quantile derivative
functions. The results of variable selections depend on the values of t and (t, u) for conditional density estimation and
penalized local MLE, respectively, which are tedious to report. Thus, they are omitted for brevity. Overall, 2 to 4 covariates
are selected.

In Section S.3 of the online supplementary material, we report the performance of oracle estimators for the three
designs, in which oracle estimators are computed using the true conditional CDF and density functions. We also report
the finite-sample performance of our mean potential outcome (i.e., E(Y (t))) estimators, which is similar to that of the
quantile effect estimates reported here. Last, we consider an extra design in which the approximate sparsity condition
may be violated and show that our method breaks down. We use this design to illustrate the limitation of our method.

10 We refer interested readers to Yu and Jones (1998, Table 1) for more details on C(τ ). In our simulation studies, as C(τ ) is nearly constant over
τ ∈ [0.25, 0.75], we just choose C(0.5) = 1.095 for all the quantile index τ .
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Fig. 2. DGP1, finite sample performance of β̂1
τ (t).

Fig. 3. DGP1, coverage probability.

6. Empirical illustration

To investigate our proposed estimation and inference procedures, we use the 1979 National Longitudinal Survey of
Youth (NLSY79) and consider the effect of father’s income on son’s income in the presence of many control variables.
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Fig. 4. DGP2, finite sample performance of q̂τ (t).

Fig. 5. DGP2, finite sample performance of β̂1
τ (t).

Our analysis is based on Bhattacharya and Mazumder (2011). The data consist of a nationally representative sample of
individuals with age 14–22 years old as of 1979. We use only white and black males and discard the individuals with
missing values in the covariates we use. The resulting sample size is 1,795, out of which 1,302 individuals are white and
493 individuals are black.
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Fig. 6. DGP2, coverage probability.

Fig. 7. DGP3, finite sample performance of q̂τ (t).

The treatment variable of interest is the logarithm of father’s income, in which father’s income is computed as the
average family income for 1978, 1979, and 1980. The outcome variable is the logarithm of son income, in which son
income is computed as the average family income for 1997, 1999, 2001 and 2003. We create control variables by
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Fig. 8. DGP3, finite sample performance of β̂1
τ (t).

Fig. 9. DGP3, coverage probability.
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Fig. 10. Whites. First column: the quantile index τ (X-axis), the son’s log income (Y-axis), the estimated unconditional quantile function at τ (solid
line), and its (point-wise) 90% confidence bands (dot–dash line). Second column: the quantile index τ (X-axis), the intergenerational elasticity (Y-axis),
the estimated derivative of the unconditional quantile function at τ (solid line), and its (point-wise) 90% confidence bands (dot–dash line).

interacting a list of demographic variables with the cubic splines of the AFQT score and the years of education.11 The
list includes the age, the mother’s education level, the father’s education level, the indicators of (i) living in urban areas
at age 14, (ii) living in the south, (iii) speaking a foreign language at childhood, and (iv) being born outside the U.S. We
drop the variables whose variance is less than 10−4. The resulting numbers of control variables are 120 for whites and
145 for blacks.

We apply the proposed estimation and inference procedures for black and white individuals separately. We use the
same tuning parameter choices as in the previous section.12 As a result, our effective sample sizes are of orders of
magnitude nh1 ≈ 462 and 175 for whites and blacks, respectively. Figs. 10 and 11 show the estimated unconditional
quantile functions and the estimated derivative, as well as the point-wise 90% confidence bands for τ ∈ [0.2, 0.8] and t
taking values at the 25%, 50%, and 75% quantiles of the empirical distribution of Ti. Under the context of intergenerational
income mobility, the unconditional quantile and its derivative represent the quantile of son’s potential log income indexed
by father’s log income and the intergenerational elasticity, respectively. The unconditional quantile functions have a slight
upward trend and the estimated derivative is positive in most parts of father’s log income. The confidence bands for the
unconditional quantile functions are quite narrow for both black and white individuals. For white individuals with the
values of father’s log income at the 50% or 75% quantile, we can reject the (locally) zero intergenerational elasticity for
most of the values of τ ∈ [0.2, 0.8]. For the other cases, we cannot reject the (locally) zero intergenerational elasticity for
almost all τ ’s. This is considered as the cost of our fully nonparametric specification.

It is worthwhile to mention the variable selection in this application. The years of education, the AFQT score, the age,
the father’s education level, and the mother’s education level are the leading control variables selected.13

7. Conclusion

This paper studies non-separable models with a continuous treatment and high-dimensional control variables. It
extends the existing results on the causal inference in non-separable models to the case with both continuous treatment

11 The cubic splines for the AFQT score are constructed based on the normalized value by scaling the raw AFQT score into [0,1], where the knots
are taken at the quantiles of the normalized AFQT score at 10%, 20%, . . . , 90%. The cubic splines for the years of education are constructed in the
same way. In this exercise, we do not interact the cubic splines for the AFQT score and the years of education.
12 In Section S.4 of the online supplementary material, we investigate the sensitivity of our estimation method with respect to the tuning
parameters.
13 More precisely, for whites, dad_educ ∗ afqt and mom_educ are the two most selected control variables for the density estimations. age ∗ educ
and age ∗ afqt are the two most selected control variables for the penalized local MLE. For blacks, mom_educ and dad_educ ∗ educ are the two most
selected control variables for the density estimations. educ and age ∗ afqt are the two most selected control variables for the penalized local MLE.
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Fig. 11. Blacks. First column: the quantile index τ (X-axis), the son’s log income (Y-axis), the estimated unconditional quantile function at τ (solid
line), and its (point-wise) 90% confidence bands (dot–dash line). Second column: the quantile index τ (X-axis), the intergenerational elasticity (Y-axis),
the estimated derivative of the unconditional quantile function at τ (solid line), and its (point-wise) 90% confidence bands (dot–dash line).

and high-dimensional covariates. It develops a method based on localized L1-penalization to select covariates at each value
of the continuous treatment. It then proposes a multi-stage estimation and inference procedure for average, quantile, and
marginal treatment effects. The simulation and empirical exercises support the theoretical findings in finite samples.

Appendix A. Proof of the main results in the paper

Before proving the theorem, we first introduce some additional notation and Assumption 6, which is a restatement
of Sasaki (2015, Assumptions 1 and 2) in our framework. Denote by dimX (resp. dimA) the dimensionality of X (resp. A).
We define ∂V (y, t) = {(x, a) : Γ (t, x, a) = y} and ∂V (y, t) can be parametrized as a mapping from a (dimX + dimA−1)-
dimensional rectangle, denoted by Σ , to ∂V (y, t). HdimX + dimA −1 is the (dimX + dimA−1)-dimensional Hausdorff measure
restricted from RdimX + dimA to (∂V (y, t),B(y, t)), where B(y, t) is the set of the interactions between ∂V (y, t) and a Borel
set in RdimX + dimA . ∂v(y, ·; u)/∂y (resp. ∂v(·, t; u)/∂t) is the velocity of ∂V (y, t) at u with respect to y (resp. t).

Assumption 6.

1. Γ is continuously differentiable.
2. ∥∇(x,a)Γ (t, ·, ·)∥ ̸= 0 on ∂V (y, t).
3. The conditional distribution of (X, A) given T is absolutely continuous with respect to the Lebesgue measure, and

f(X,A)|T is a continuously differentiable function of T to L1(RdimX + dimA ).
4.
∫
∂V (y,t) f(X,A)|T (x, a | t)dH

dimX + dimA −1(x, a) > 0.
5. t ↦→ ∂V (y, t) is a continuously differentiable function of Σ × T to RdimX + dimA for every y and y ↦→ ∂V (y, t) is a

continuously differentiable function of Σ × Y to RdimX + dimA for every t .
6. The mapping ∂v(y, ·; ·)/∂t is a continuously differentiable function of T to RdimX + dimA and ∂v(·, t; ·)/∂y is a

continuously differentiable function of Y to RdimX + dimA .
7. There is p, q ≥ 1 with 1

p +
1
q = 1 such that the mapping (x, a) ↦→ ∥∇(x,a)Γ (t, x, a)∥−1 is bounded in

Lp(∂V (y, t),HdimX + dimA −1) and that the mapping (x, a) ↦→ f(X,A)(x, a) is bounded in Lq(∂V (y, t),HdimX + dimA −1).

Assumption 6 is a combination of Assumptions 1 and 2 in Sasaki (2015). We refer the readers to the paper for detailed
explanation.

Proof of Theorem 2.1. For the marginal distribution of Y (t), we note that, by Assumption 1, P(Y (t) ≤ u) = E[E(1{Y (t) ≤
u}|X)] = E[E(1{Y (t) ≤ u}|X, T = t)] = E[E(1{Y ≤ u}|X, T = t)]. The first result follows as E(1{Y ≤ u}|X, T = t) is
identified.
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For the second result, consider a random variable T ∗ which has the same marginal distribution as T and is independent
of (X, A). Define

Y ∗ = Γ (T ∗, X, A). (A.1)

Note that the (i) (X, A) and T ∗ are independent, and (ii) the τ -th quantile of Y ∗ given T ∗ = t is qτ (t) for all t , because
P(Y ∗ ≤ qτ (t) | T ∗ = t) = P(Γ (t, X, A) ≤ qτ (t)) = τ . Assumption 6 implies Assumptions 1 and 2 in Sasaki (2015) for
(Y ∗, T ∗,U∗) with U∗ = (X, A), and then his Theorem 1 implies that the derivative of the τ -th quantile of Y ∗ given T ∗ = t is
equal to Eµτ ,t [∂tΓ (t, X, A)]. Therefore, ∂tqτ (t) = Eµτ ,t [∂tΓ (t, X, A)]. Note that Theorem 1 in Sasaki (2015) does not apply
directly to (Y , T ,U∗), because our assumptions do not imply that T and U∗ are independent. ■

Lemma 3.1 is the local version of the compatibility condition, which is one of the key building blocks for Lemma A.1.
Then, Lemma A.1 is used to prove Theorem 3.1.

Proof of Lemma 3.1. By Assumption 4, we can work on the set{
{Xi}

n
i=1 : sup

|δ|0≤sℓn

∥b(X)′δ∥Pn,2
∥δ∥2

≤ κ
′′

<∞

}
.

We use the same partition as in Bickel et al. (2009). Let S0 = St,u and m ≥ s be an integer which will be specified later.
Partition Sc

t,u, the complement of St,u, as
∑L

l=1 Sl such that |Sl| = m for 1 ≤ l < L, |SL| ≤ m, where Sl, for l < L, contains
the indexes corresponding to m largest coordinates (in absolute value) of δ outside ∪l−1

j=0Sj, and SL collects the remaining
indexes. Further denote δj = δSj and δ01 = δS0∪S1 . Then

∥b(X)′δK (
T − t
h1

)1/2∥Pn,2 ≥ ∥b(X)
′δ01K (

T − t
h1

)1/2∥Pn,2 −
L∑

l=2

∥b(X)′δlK (
T − t
h1

)1/2∥Pn,2. (A.2)

For the first term on the right hand side (r.h.s.) of (A.2), we have

∥b(X)′δ01K (
T − t
h1

)1/2∥2Pn,2

≥∥b(X)′δ01K (
T − t
h1

)1/2∥2P,2 − |(Pn − P)(b(X)′δ01)2K (
T − t
h1

)|

≥Ch1∥b(X)′δ01∥2P,2 − |(Pn − P)(b(X)′δ01)2K (
T − t
h1

)|

≥Ch1∥b(X)′δ01∥2Pn,2 − Ch|(Pn − P)(b(X)′δ01)2| − |(Pn − P)(b(X)′δ01)2K (
T − t
h1

)|

≥Ch1∥δ01∥
2
2(κ
′)2 − Ch1|(Pn − P)(b(X)′δ01)2| − |(Pn − P)(b(X)′δ01)2K (

T − t
h1

)|

(A.3)

where the second inequality holds because

E(b(X)′δ01)2K (
T − t
h1

) = h1E(b(X)′δ01)2
∫

ft+h1v(X)K (v)dv ≥ Ch1E(b(X)′δ01)2.

We next bound the last term on the r.h.s. of (A.2). The second term can be bounded in the same manner. Let
δ̃01 = δ01/∥δ01∥2. Then we have

|(Pn − P)(b(X)′δ01)2K (
T − t
h1

)| = ∥δ01∥22|(Pn − P)(b(X)′δ̃01)2K (
T − t
h1

)|.

Let {ηi}ni=1 be a sequence of Rademacher random variables which is independent of the data and F = {b(X)′δK ( T−th1
)1/2 :

∥δ∥0 = m+ s, ∥δ∥2 = 1, t ∈ T } with envelope F = CK ζn(m+ s)1/2. Denote π1n as ( log(p∨n)(s+m)2ζ2n
nh1

)1/2 with m = sℓ1/2n . Then,

E sup
∥δ̃01∥0≤m+s,∥δ̃01∥2=1,t∈T

|(Pn − P)(b(X)′δ̃01)2K (
T − t
h1

)|

≤2E sup
∥δ̃01∥0≤m+s,∥δ̃01∥2=1,t∈T

|Pnη(b(X)′δ̃01)2K (
T − t
h1

)|

≤8ζn

(
sup

∥δ̃01∥0≤m+s,∥δ̃01∥2=1
∥δ̃01∥1

)(
E sup

f∈F
|Pnηf |

)
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≲8ζn(m+ s)1/2
[(

log(p ∨ n)(s+m)h1

n

)1/2

+
CK ζn(m+ s)1/2 log(p ∨ n)(s+m)

n

]
≲

(
log(p ∨ n)(s+m)2h1ζ

2
n

n

)1/2

= h1π1n,

where the first inequality is by van der Vaart and Wellner (1996, Lemma 2.3.1), the second inequality is by Ledoux and
Talagrand (2013, Theorem 4.12) and the remark thereafter, and the third one is by applying Corollary 5.1 of Chernozhukov
et al. (2014b) with σ 2

= supf∈F Ef 2 ≲ h1 and, for some A ≥ e,

sup
Q

N(F, eQ , ε∥F∥Q ,2) ≤
(

p
s+m

)(
A
ε

)s+m

≲

(
Ap
ε

)s+m

.

By Assumption 2, π1n → 0. Then we have, w.p.a.1.,

|(Pn − P)(b(X)′δ01)2K (
T − t
h1

)| ≤ 3h1C(κ ′)2∥δ01∥22/8. (A.4)

By the same token we can show that

E sup
∥δ̃01∥0≤m+s,∥δ̃01∥2=1,t∈T

|(Pn − P)(b(X)′δ̃01)2| ≲
√
h1π1n → 0.

Therefore, we have, w.p.a.1.,

|(Pn − P)(b(X)′δ01)2| ≤ 3(κ ′)2∥δ01∥22/8. (A.5)

Combining (A.3), (A.4), and (A.5) yields that w.p.a.1.,

∥b(X)′δ01K (
T − t
h1

)1/2∥2Pn,2 ≥ ∥δ01∥
2
2h1(κ ′)2C/4.

Analogously, we can show that, w.p.a.1,

∥b(X)′δlK (
T − t
h1

)1/2∥2Pn,2 ≤ 4∥δl∥22C
−1h1(κ ′′)2.

Following (A.2), we have, w.p.a.1,

∥b(X)′δK (
T − t
h1

)1/2∥Pn,2 ≥h
1/2
1 ∥δ01∥2κ

′C1/2/2− h1/2
1

L∑
l=2

2∥δl∥2κ
′′

C−1/2

≥h1/2
1 ∥δ01∥2κ

′C1/2/2− h1/2
1

L∑
l=2

2κ
′′

C−1/2(∥δl−1∥1∥δl∥1)1/2/
√
m

≥h1/2
1 ∥δ01∥2κ

′C1/2/2− 2h1/2
1 κ

′′

C−1/2∥δT c∥1/
√
m

≥h1/2
1 ∥δ01∥2κ

′C1/2/2− 2h1/2
1 κ

′′

C−1/2c1/2∥δ0∥1/
√
m

≥h1/2
1 ∥δ01∥2κ

′C1/2/2− 2h1/2
1 κ

′′

C−1/2c1/2∥δ0∥2
√
s/
√
m

≥h1/2
1 ∥δ0∥2

[
κ ′C1/2/2− 2κ

′′

C−1/2c1/2
√
s/
√
m
]
,

where the second inequality holds because, by construction, ∥δl∥22 ≤ ∥δl−1∥1∥δl∥1/
√
m. Since m = sℓ1/2n , s/m = ℓ−1/2n → 0,

and thus, for n large enough, the constant inside the brackets is greater than κ ′C1/2/4 which is independent of (t, u, n).
Therefore, we can conclude that, for n large enough,

inf
(t,u)∈T U

inf
δ∈∆2c̃,t,u

∥b(X)′δK ( T−th1
)1/2∥Pn,2

∥δSt,u∥2
√
h1

≥ κ ′C1/2/4 := κ.

This completes the proof of the lemma. ■

We aim to prove the results with regard to φ̂t,u(X) and θ̂t,u in Theorem 3.1. The derivations for the results regarding
φ̃t,u(X) and θ̃t,u are exactly the same. We do not need to deal with the nonlinear logistic link function when deriving the
results regarding ν̂t (X), ν̃t (X), γ̂t , and γ̃t . Therefore, the corresponding results can be shown by following the same proving
strategy as below and treating ωt,u defined below as 1. The proofs for results regarding ν̂t (X), ν̃t (X), γ̂t , and γ̃t are omitted
for brevity.

Let r̃φt,u = Λ−1(E(Yu|X, T = t)) − b(X)′θt,u, δt,u = θ̂t,u − θt,u, ŝt,u = ∥θ̂t,u∥0, ωt,u = E(Yu(t)|X)(1− E(Yu(t)|X)), and Ŝt,u
be the support of θ̂t,u. We need the following four lemmas, whose proofs are relegated to the online supplement.
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Lemma A.1. If Assumptions 1–4 hold, then

sup
(t,u)∈T U

∥ω
1/2
t,u b(X)

′δt,uK (
T − t
h1

)1/2∥Pn,2 = Op(ℓn(log(p ∨ n)s)1/2n−1/2)

and

sup
(t,u)∈T U

∥δt,u∥1 = Op(ℓn(log(p ∨ n)s2)1/2(nh1)−1/2).

Lemma A.2. Suppose Assumptions 1–4 hold. Let ξt,u = Yu − φt,u(X). Then

sup
(t,u)∈T U

Ψ̂ −1t,u Pn

[
ξt,uK (

T − t
h1

)b(X)
]
∞

= Op((log(p ∨ n)h1/n)1/2).

Lemma A.3. If the assumptions in Theorem 3.1 hold, then there exists a constant Cψ ∈ (0, 1) such that w.p.a.1,

Cψ/2 ≤ inf
(t,u)∈T U,j=1,...,p

l0t,u,j ≤ sup
(t,u)∈T U,j=1,...,p

l0t,u,j ≤ 2/Cψ . (A.6)

For any k = 0, 1, . . . , K and Ψ̂ k
t,u defined in Algorithm 3.1, there exists a constant Ck ∈ (0, 1) such that, w.p.a.1,

Ck/2 ≤ inf
(t,u)∈T U,j=1,...,p

lkt,u,j ≤ sup
(t,u)∈T U,j=1,...,p

lkt,u,j ≤ 2Ck. (A.7)

In addition, for any k = 0, 1, . . . , K and Ψ̂ k
t,u defined in Algorithm 3.1, there exist constants l < 1 < L independent of n, (t, u),

and k such that, element-wise and w.p.a.1,

lΨ̂t,u,0 ≤ Ψ̂
k
t,u ≤ LΨ̂t,u,0. (A.8)

Lemma A.4. If the assumptions in Theorem 3.1 hold, then w.p.a.1,

sup
t∈T ,∥δ∥2=1,∥δ∥0≤sℓn

∥b(X)′δK (
T − t
h1

)1/2∥Pn,2h
−1/2
1 ≤ 2C−1/2κ

′′

.

Proof of Theorem 3.1. By the mean value theorem, there exist θ t,u ∈ (θt,u, θ̂t,u) and rφt,u ∈ (0, r̃φt,u) such that

|φt,u(X)− φ̂t,u(X)| ≤ Λ(b(X)′θ t,u + rφt,u)(1−Λ(b(X)′θ t,u + rφt,u))(b(X)
′δt,u + r̃φt,u),

where δt,u = θ̂t,u − θt,u. By the proof of Lemma A.1, we have, w.p.a.1,

|r̃φt,u| ≤ [C/2(1− C/2)]−1|rφt,u|.

Therefore, by Lemma A.1 and Assumptions 4 and 5, we have

sup
(t,u)∈T U

|b(X)′θ t,u + rφt,u − b(X)′θt,u − r̃φt,u|

≲ sup
(t,u)∈T U

|b(X)′δt,u| + sup
(t,u)∈T U

|rφt,u|

≲ζn sup
(t,u)∈T U

∥δt,u∥1 + O((log(p ∨ n)s2ζ 2n /(nh1))−1/2) = op(1),

where the last equality is because sup(t,u)∈T U ∥δt,u∥1 = Op((log(p ∨ n)s2)1/2(nh1)−1/2) by Lemma A.1 and log(p ∨
n)s2ζ 2n /(nh1)→ 0 by Assumption 5. In addition, under Assumption 3.4 we have

Λ(b(X)′θt,u + r̃φt,u) = E(Yu|X, T = t) ∈ [C, 1− C].

Hence, there exist some positive constants c and c ′ only depending on C such that, w.p.a.1,

Λ(b(X)′θ t,u + rφt,u)(1−Λ(b(X)′θ t,u + rφt,u)) ≤ c

and uniformly over (t, u) ∈ T U ,

|φt,u(X)− φ̂t,u(X)| ≤ c(b(X)′δt,u + r̃φt,u) ≤ c ′(b(X)′δt,u + rφt,u). (A.9)
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By Assumptions 3.3, 3.4, Lemma A.1, and the fact that ωt,u is bounded and bounded away from zero uniformly over T U ,
we have, w.p.a.1,

sup
(t,u)∈T U

∥(φt,u(X)− φ̂t,u(X))K (
T − t
h1

)1/2∥Pn,2

≤ sup
(t,u)∈T U

c
[
∥b(X)′δt,uK (

T − t
h1

)1/2∥Pn,2 + ∥r
φ
t,uK (

T − t
h1

)1/2∥Pn,2

]
=Op(ℓn(log(p ∨ n)s/n)1/2) (A.10)

and

sup
(t,u)∈T U

∥φt,u(X)− φ̂t,u(X)∥P,∞ ≲ζn sup
(t,u)∈T U

∥δt,u∥1 + O((log(p ∨ n)s2ζ 2n /(nh1))1/2)

=Op(ℓn(log(p ∨ n)s2ζ 2n /(nh1))1/2). (A.11)

Next, recall that λ = ℓn(log(p ∨ n)nh)1/2. By the first order conditions (FOC), for any j ∈ Ŝt,u, we have⏐⏐⏐⏐Pn

[
(Yu −Λ(b(X)′θ̂t,u))bj(X)K (

T − t
h1

)
]⏐⏐⏐⏐ = Ψ̂t,u,jj

λ

n
.

Denote ξt,u = Yu − φt,u(X). By Lemmas A.1–A.3, for any ε > 0, with probability greater than 1 − ε, there exist positive
constants Cλ and C , which only depend on ε and are independent of (t, u, n), such that

λŝ1/2t,u

n
=

Ψ̂ −1t,u

{
Pn

[
(Yu −Λ(b(X)′θ̂t,u))b(X)K (

T − t
h1

)
]}

Ŝt,u


2

≤ sup
∥θ∥0≤ŝt,u,∥θ∥2=1

∥θ∥1 sup
(t,u)∈T U

∥Ψ̂ −1t,u (Pnξt,ub(X)K (
T − t
h1

))∥∞

+
∥Ψ̂ −1t,u,0∥∞

l
sup

∥θ∥0≤ŝt,u,∥θ∥2=1

⏐⏐⏐⏐{Pn

(
Λ(b(X)′θ̂t,u)−Λ(b(X)′θt,u)− rφt,u

)
b(X)′θK (

T − t
h1

)
}⏐⏐⏐⏐

≤
Cλλŝ

1/2
t,u

nℓn
+

c ′∥Ψ̂ −1t,u,0∥∞

l
∥(b(X)′δt,u + rφt,u)K (

T − t
h1

)1/2∥Pn,2

× sup
∥θ∥0≤ŝt,u,∥θ∥2=1

∥b(X)′θK (
T − t
h1

)1/2∥Pn,2

≤
λŝ1/2t,u

2n
+ C(log(p ∨ n)s/n)1/2φ1/2

max(ŝt,u)

≤
λŝ1/2t,u

2n
+

Cλs1/2

nh1/2
1

φ1/2
max(ŝt,u)

where φmax(s) = sup∥θ∥0≤s,∥θ∥2=1 ∥b(X)
′θK ( T−th1

)1/2∥2Pn,2 and rφt,u = rφt,u(X). This implies that there exists a constant C only
depending on ε, such that, with probability greater than 1− ε,

ŝt,u ≤ Csφmax(ŝt,u)/h1. (A.12)

Let M = {m ∈ Z : m > 2Csφmax(m)/h1}. We claim that, for any m ∈M, ŝt,u ≤ m. Suppose not and there exists m0 ∈M
such that m0 < ŝt,u. Then,

ŝt,u ≤ Csφmax(
ŝt,u
m0

m0)/h1 ≤ ⌈
ŝt,u
m0
⌉Csφmax(m0)/h1 ≤

ŝt,u
m0

[
2Csφmax(m0)/h1

]
< ŝt,u,

where the second inequality holds because of Belloni and Chernozhukov (2011, Lemma 23), the third inequality holds
because ⌈a⌉ ≤ 2a for any a > 1, and the last inequality holds because m0 ∈ M. Therefore we reach a contradiction. In
addition, by Lemma A.4, we can choose Cs > 4CC−1(κ ′′)2, which is independent of (t, u, n), such that

2Csφmax(Css)/h1 ≤ 4CC−1(κ ′′)2s < Css. (A.13)

This implies Css ∈M and thus with probability greater than 1−ε, ŝt,u ≤ Css. This result holds uniformly over (t, u) ∈ T U .
Last, we show that

sup
(t,u)∈T U

∥(̂φt,u(X)− φt,u(X))∥Pn,2 = Op(ℓn(log(p ∨ n)s)1/2(nh1)−1/2).



670 L. Su, T. Ura and Y. Zhang / Journal of Econometrics 212 (2019) 646–677

Let εn = (log(p ∨ n)s/(nh1))1/2, δn = (log(p ∨ n)s2ζ 2n /(nh1))1/2, and

Jt,u =

{
Λ(b(x)′θ ) : ∥θ∥0 ≤ Ms, ∥(Λ(b(X)′θ )− φt,u(X))K ( T−th )1/2∥Pn,2 ≤ Mℓnεnh

1/2
1 ,

∥Λ(b(X)′θ )− φt,u(X)∥P,∞ ≤ Mℓnδn.

}
By (A.10), (A.11), and (A.13), for any ε > 0, there exists a constant M such that, with probability greater than 1 − ε,

φ̂t,u(·) ∈ Jt,u uniformly in (t, u) ∈ T U . Therefore, with probability greater than 1− ε,⏐⏐⏐⏐Pn(φ̂t,u(X)− φt,u(X))2
[
K (

T − t
h1

)− E(K (
T − t
h1

)|X)
]⏐⏐⏐⏐

≤ sup
(t,u)∈T U

sup
J∈Jt,u

⏐⏐⏐⏐Pn(J(X)− φt,u(X))2
[
K (

T − t
h1

)− E(K (
Ti − t
h1

)|X)
]⏐⏐⏐⏐ = ∥Pn − P∥F ,

where F =
{
(J(X)− φt,u(X))2

[
K ( T−th1

)− E(K ( Ti−th1
)|X)

]
: J ∈ Jt,u, (t, u) ∈ T U

}
with bounded envelope. Note that,

σ 2
≡ sup

f∈F
Ef 2 ≤ sup

(t,u)∈T U
sup
J∈Jt,u

E(J(X)− φt,u(X))4K 2(
T − t
h1

)

≲ℓ2nδ
2
n sup
(t,u)∈T U

sup
J∈Jt,u

E(J(X)− φt,u(X))2K (
T − t
h1

)

=ℓ2nδ
2
n sup
(t,u)∈T U

sup
J∈Jt,u

E∥(J(X)− φt,u(X))K 1/2(
T − t
h1

)∥2Pn,2

≲ℓ4nδ
2
nε

2
nh1,

In addition, we note that F is nested by

F =
{
(Λ(b(X)′θ )− φt,u(X))2

[
K (

T − t
h1

)− E(K (
Ti − t
h1

)|X)
]
, ∥θ∥0 ≤ Ms, (t, u) ∈ T U

}
,

such that

sup
Q

logN(F, eQ , ε) ≲ s log(p ∨ n)+ s log(
1
ε
) ∨ 0.

Therefore, by Chernozhukov et al. (2014b, Corollary 5.1), we have

E∥Pn − P∥F ≲ ℓ2nεnh
1/2
1 δns1/2 log1/2(p ∨ n)n−1/2 + s log(p ∨ n)n−1 = op(ℓ2nε

2
nh1). (A.14)

Therefore,

h1Pn(φ̂t,u(X)− φt,u(X))2

≲Pnh1

∫
ft+h1v(X)K (v)dv(φ̂t,u(X)− φt,u(X))2

=Pn(φ̂t,u(X)− φt,u(X))2E
(
K
(
T − t
h1

)
|X
)

≤Pn(φ̂t,u(X)− φt,u(X))2K (
T − t
h1

)+
⏐⏐⏐⏐Pn(φ̂t,u(X)− φt,u(X))2

[
K (

T − t
h1

)− E(K (
T − t
h1

)|X)
]⏐⏐⏐⏐

=Op(ℓ2nε
2
nh1),

where the last equality holds due to (A.10) and (A.14). Canceling the h1’s on both sides, we obtain the desired result. ■

Proof of Theorem 3.2. By Belloni et al. (2017, Theorem 6.2), we have

sup
t
∥Ft (X)−Λ(b(X)′β̂t )∥Pn,2 ≲p

√
s log(p ∨ n)

n

and

sup
t
∥Ft (X)−Λ(b(X)′β̂t )∥P,∞ ≲p

√
ζ 2n s2 log(p ∨ n)

n
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Then, we have

∥f̂t (X)− ft (X)∥Pn,2

≤

Λ(b(X)′β̂t+h1 )− Ft+h1 (X)
2h1


Pn,2

+

Λ(b(X)′β̂t−h1 )− Ft−h1 (X)
2h1


Pn,2

+

Ft+h1 (X)− Ft−h1 (X)
2h1

− ft (X)

Pn,2

≲p
1
h1

√
s log(p ∨ n)

n
+ h2

1

and similarly,

∥f̂t (X)− ft (X)∥P,∞ ≲p
1
h1

√
ζ 2n s2 log(p ∨ n)

n
+ h2

1. ■

Proof of Theorem 3.3. Let α̂†(t, u) = PnηΠt,u(Wu, φ̂t,u, f̂t ) where either η = 1 or η is a random variable that has sub-
exponential tails with unit mean and variance. When η = 1, α̂†(t, u) = α̂(t, u), which is our original estimator. When η
is random, for η̄ =

∑n
i=1 ηi/n,

α̂b(t, u) = α̂†(t, u)/η̄

is the bootstrap estimator. In the following, we establish the linear expansion of α̂†(t, u).
Recall εn = (log(p ∨ n)s/(nh1))1/2 and δn = (log(p ∨ n)s2ζ 2n /(nh1))1/2. By Theorems 3.1 and 3.2, for any ε > 0, there

exists a constant M such that, with probability greater than 1−ε, f̂t (·) ∈ Gt uniformly in t ∈ T and φ̂t,u(·) ∈ Jt,u uniformly
in (t, u) ∈ T U . Here, we denote

Gt =

⎧⎨⎩
f̃t (X) ≡ (Λ(b(X)′βt+h1 )−Λ(b(X)′βt−h1 ))/(2h1) :

∥βt+h1∥0 + ∥βt−h1∥0 ≤ Ms, ∥f̃t (X)− ft (X)∥P,∞ ≤ Mδnh
−1/2
1 ,

∥f̃t (X)− ft (X)∥Pn,2 ≤ Mεnh
−1/2
1

⎫⎬⎭
and

Jt,u =

{
Λ(b(x)′θ ) : ∥θ∥0 ≤ Ms, ∥(Λ(b(X)′θ )− φt,u(X))∥Pn,2 ≤ Mℓnεn,

∥Λ(b(X)′θ )− φt,u(X)∥P,∞ ≤ Mℓnδn.

}
We focus on the case in which (̂φt,u, f̂t ) ∈ Jt,u × Gt . Then

α̂†(t, u)− α(t, u) =(Pn − P)ηΠt,u(Wu, φt,u, ft )+ (Pn − P)
[
ηΠt,u(Wu, φ, f )− ηΠt,u(Wu, φt,u, ft )

]
+P
[
ηΠt,u(Wu, φ, f )− ηΠt,u(Wu, φt,u, ft )

]
+

[
PηΠt,u(Wu, φt,u, ft )− α(t, u)

]
:=I + II + III + IV ,

where (φ, f ) = (̂φt,u, f̂t ).
Below we fix (φ, f ) ∈ Jt,u × Gt . First,

Term IV =
κ2h2

2

2

[
E
(
∂2t φt,u(X)+

2∂tφt,u(X)∂t ft (X)
ft (X)

)]
+ o(h2

2) = βα(t, u)h
2
2 + o(h2

2).

where the o(h2
2) term holds uniformly in (t, u) ∈ T U . For term III , uniformly over (t, u) ∈ T U , we have

Pη
[
Πt,u(Wu, φ, f )−Πt,u(Wu, φt,u, ft )

]
=E
(
φ(X)− φt,u(X)

)(
1−

E(K ( T−th2
)|X)

h2ft (X)

)
+ E

(
Yu − φ(X)

f (X)ft (X)

)(
ft (X)− f (X)

h2

)
K (

T − t
h2

)

=O(ℓnδnh2
2)+ E

(
Yu − φ (X)

f (X)ft (X)

)(
ft (X)− f (X)

h2

)
K (

T − t
h2

)

=O(ℓnδnh2
2)+ E

[
ft (X)− f̄t (X)
f̄t (X)ft (X)h2

E
(
(φT ,u(X)− φt,u(X))K (

T − t
h2

)
⏐⏐⏐⏐X)]

+ E
[
(ft (X)− f̄t (X))(φt,u(X)− φ̄(X))

f̄t (X)ft (X)h2
EK (

T − t
h2
|X)
]
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=O(ℓnδnh
−1/2
1 h2

2)+ O(∥(φt,u(X)− φ(X))∥P,2∥(ft (X)− f (X))∥P,2)

=O(ℓnδnh
−1/2
1 h2

2 + ℓnε
2
nh
−1/2
1 ). (A.15)

The second equality of (A.15) follows because there exists a constant c independent of n such that

sup
(t,u)∈T U

⏐⏐⏐⏐1− E(K ( T−th2
)|X)

h2ft (X)

⏐⏐⏐⏐ ≤ ch2
2

and then

E
(
φ(X)− φt,u(X)

)(
1−

E(K ( T−th2
)|X)

h2ft (X)

)
≤ ch2

2E∥φ(X)− φt,u(X)∥P,∞ = O(ℓnδnh2
2).

The third equality of (A.15) holds because E(Yu|X, T ) = φT ,u(X). The fourth equality of (A.15) holds by the fact that
∥f t (X) − ft (X)∥P,∞ = O(δnh

−1/2
1 ) = o(1), ft (x) is assumed to be bounded away from zero uniformly over t, τ and the

Cauchy inequality. The fifth inequality of (A.15) holds because

∥(φt,u(X)− φ(X))∥P,2 = [E∥(φt,u(X)− φ(X))∥2Pn,2]
1/2
= O(ℓnεn)

and for some constant c > 0 independent of (t, u, n),

∥(ft (X)− f (X))∥P,2 = O(εnh
−1/2
1 ).

For the term II , we have

E(Pn − P)η
[
Πt,u(Wu, φ, f )−Πt,u(Wu, φt,u, ft )

]
≤ E∥Pn − P∥F

where

F = ∪(t,u)∈T UFt,u and Ft,u =

{
η

[
Πt,u(Wu, φ, f )−Πt,u(Wu, φt,u, ft )

]
: φ ∈ Jt,u, f ∈ Gt

}
.

Note F has envelope | ηh2 |,

σ 2
:= sup

f∈F
Ef 2

≲ sup
(t,u)∈T U,(φ̄,f̄ )∈Jt,u×Gt

E
[
(φ(X)− φt,u(X))2

(
1−

K ( T−th2
)

ft (X)h2

)2]
+ sup

(t,u)∈T U,(φ̄,f̄ )∈Jt,u×Gt

E
[

Yu − φ(X)

f (X)ft (X)h2
K (

T − t
h2

)
(
ft (X)− f (X)

)]2
≲ sup

(t,u)∈T U,(φ̄,f̄ )∈Jt,u×Gt

E
[
(φ(X)− φt,u(X))2

][
1+

K 2( T−th2
)

h2
2

]

+ sup
(t,u)∈T U,(φ̄,f̄ )∈Jt,u×Gt

E
[
ft (X)− f (X)

]2 K 2( T−th2
)

h2
2

≲ sup
(t,u)∈T U,(φ̄,f̄ )∈Jt,u×Gt

h−12 E
[
(φ(X)− φt,u(X))2

]
+ h−12 sup

(t,u)∈T U,(φ̄,f̄ )∈Jt,u×Gt

E
[
(f (X)− ft (X))2

]
≲h−12 ε2nh

−1
1 .

The second last inequality in the above display holds because ft (x) is bounded away from zero uniformly in (t, x), where
t = T + h2v belongs to some compact enlargement of T . Furthermore, F is nested by

F =
{

Πt,u(Wu,Λ(b(X)′θ ), b(X)′β)−Πt,u(Wu, φt,u, ft ) : (t, u) ∈ T U,
∥θ∥0 ≤ Ms, ∥β∥0 ≤ Ms

}
,

such that

sup
Q

logN(F, eQ , ε) ≲ s log(p ∨ n)+ s log(
1
ε
) ∨ 0.

In addition, we claim ∥max1≤i≤n |ηi/h2|∥p,2 ≲ log(n)h−12 . When η = 1, the above claim holds trivially. When η has sub-
exponential tail, the claim holds by van der Vaart and Wellner (1996, Lemma 2.2.2) . Therefore, by Chernozhukov et al.
(2014b, Corollary 5.1), we have

E∥Pn − P∥F ≲ εn(nh1h2)−1/2s1/2 log1/2(p ∨ n)+ log(n)(nh2)−1s log(p ∨ n).
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Combining the bounds for II , III , and IV , we have

α̂†(t, u)− α(t, u) = (Pn − P)ηΠt,u(Wu, φt,u, ft )+ βα(t, u)h2
2 + Rn(t, u)

and

sup
(t,u)∈T U

|Rn(t, u)| = Op(ε2n(h
−1/2
2 + ℓnh

−1/2
1 )+ log(n)s log(p ∨ n)(nh2)−1)+ op(h2

2).

Then, when η = 1,

α̂(t, u)− α(t, u) =(Pn − P)Πt,u(Wu, φt,u, ft )+ Bα(t, u)h2
2 + Rn(t, u)

=(Pn − P)(Πt,u(Wu, φt,u, ft )− α(t, u))+ Bα(t, u)h2
2 + Rn(t, u).

Then, Assumption 5 implies that sup(t,u)∈T U |Rn(t, u)| = op((nh2)−1/2). For the bootstrap estimator, we have

α̂b(t, u)− α(t, u) =α̂†(t, u)/η̄ − α(t, u)
=(α̂†(t, u)− α(t, u))/η̄ + α(t, u)(1/η̄ − 1)

=(Pn − P)ηΠt,u(Wu, φt,u, ft )/η̄ + α(t, u)(1/η̄ − 1)+ Bα(t, u)h2
2/η̄ + Rn(t, u)/η̄

=(Pn − P)ηΠt,u(Wu, φt,u, ft − α(t, u))/η̄ + Bα(t, u)h2
2/η̄ + Rn(t, u)/η̄

=(Pn − P)η(Πt,u(Wu, φt,u, ft )− α(t, u))+ Bα(t, u)h2
2 + Rb

n(t, u), (A.16)

where sup(t,u)∈T U |Rb
n(t, u)| = Op(ε2n(h

−1/2
2 + ℓnh

−1/2
1 )+ log(n)s log(p∨ n)(nh2)−1)+ op(h2

2). This is because of the fact that

η̄ − Eη = η̄ − 1 = Op(n−1/2),

sup
(t,u)∈T U

|Rn(t, u)| = Op(ε2n(h
−1/2
2 + ℓnh

−1/2
1 )+ log(n)s log(p ∨ n)(nh2)−1)+ op(h2

2),

and the collection of functions

{η(Πt,u(Wu, φt,u, ft )− α(t, u)) : (t, u) ∈ T U}

satisfies

sup
(t,u)∈T U

|(Pn − P)(η(Πt,u(Wu, φt,u, ft )− α(t, u)))| = Op(log1/2(n)(nh2)−1/2).

Therefore,

α̂b(t, u)− α̂(t, u) =(Pn − P)(η − 1)(Πt,u(Wu, φt,u, ft )− α(t, u))+ Rb
n(t, u)− Rn(t, u),

where

sup
(t,u)∈T U

|Rb
n(t, u)− Rn(t, u)| = Op(ε2n(h

−1/2
2 + ℓnh

−1/2
1 )+ log(n)s log(p ∨ n)(nh2)−1)+ op(h2

2) = op((nh2)−1/2). ■

Proof of Theorem 3.4. Let α̂∗(t, u) be either the original or the bootstrap estimator of α(t, u). We first derive the linear
expansion of the rearrangement of α̂∗(t, u) defined in the proof of Theorem 3.3. For z ∈ (0, 1), let

F (t, z) =
∫ 1

0
1{α(t, ψ←(v)) ≤ z}dv, F (t, z|dn) =

∫ 1

0
1{α̂∗(t, ψ←(v)) ≤ y}dv,

where ψ(·) is defined in Section 3.3. Then, by Lemma S.1.2 in the online supplement, we have

F (t, z|dn)− F (t, z)
rn

+
dn(t, ψ(qz(t)))ψ ′(qz(t))

fY (t)(qz(t))
= op(∆n) (A.17)

and
α̂∗r (t, u)− α(t, u)

rn
+

F (t, α(t, u)|dn)− F (t, α(t, u))fY (t)(u)
rnψ ′(u)

= op(∆n). (A.18)

where rn = (nh2)−1/2, dn(t, v) = (nh2)1/2(α̂∗(t, ψ←(v))−α(t, ψ←(v))), fY (t)(·) is the density of Y (t), qz(t) is the zth quantile
of Y (t), and ∆n equals either 1 or h1/2

2 , depending on either Assumptions 5.1 or 5.2 is in place.
Combining (A.17) and (A.18), we have

(nh2)1/2(α̂∗r (t, u)− α(t, u)) = dn(t, ψ(u))+ op(∆n) = (nh2)1/2(α̂∗(t, u)− α(t, u))+ op(∆n) (A.19)

uniformly over (t, u) ∈ T U .
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We can apply Lemma S.1.2 on α̂∗r (t, u) again with Jn(t, u) = (nh2)1/2(α̂∗r (t, u)−α(t, u)), F (t, u) = P(Y (t) ≤ u) = α(t, u),
f (t, u) = fY (t)(u), and F←(t, τ ) = qτ (t). Then, for ∆n equals 1 or h1/2

2 under either Assumptions 5.1 or 5.2, respectively, we
have,

q̂∗τ (t)− qτ (t)
rn

= −
Jn(t, qτ (t))
fY (t)(qτ (t))

+ op(∆n) = −
(nh2)1/2(α̂∗r (t, qτ (t))− τ )

fY (t)(qτ (t))
+ op(∆n) (A.20)

uniformly over (t, τ ) ∈ T I.
When η = 1, combining (A.19), (A.20), and Theorem 3.3, we have

q̂τ (t)− qτ (t) = −(Pn − P)
Πt,u(Wqτ (t), φt,qτ (t), ft )

fY (t)(qτ (t))
−
βα(t, qτ (t))h2

2

fY (t)(qτ (t))
+ Rn(t, τ )+ op(∆n(nh2)−1/2).

By taking ∆n = 1 and ∆n = h1/2
2 under Assumption 5.1 and 5.2, respectively, we have established the desired results. For

the bootstrap estimator, by (A.16), we have

q̂bτ (t)− qτ (t) = −(Pn − P)η
Πt,u(Wqτ (t), φt,qτ (t), ft )

fY (t)(qτ (t))
−
βα(t, qτ (t))h2

2

fY (t)(qτ (t))
+ Rb

n(t, τ )+ op(∆n(nh2)−1/2).

Then,

q̂bτ (t)− q̂τ (t)

=− (Pn − P)(η − 1)Πt,u(Wqτ (t), φt,qτ (t), ft )/fY (t)(qτ (t))+ Rb
n(t, τ )− Rn(t, τ )+ op(∆n(nh2)−1/2).

By taking ∆n = 1 and ∆n = h1/2
2 under Assumption 5.1 and 5.2, respectively, we have established the linear expansion

of the bootstrap estimator too. Last, note that the bootstrap estimator cannot preserve the asymptotic bias term. For
the validity of bootstrap inference, we need to under-smooth and require nh5

2 → 0. This condition is assumed in
Theorem 4.1. ■

Proof of Theorem 3.5. We consider the general case in which the observations are weighted by {ηi}ni=1 as above. For
brevity, denote δ̂ := (δ̂0, δ̂1)′ = (β̂∗0τ (t), β̂∗1τ (t))′ and δ := (δ0, δ1)′ = (β0

τ (t), β
1
τ (t)). For any variable Rn := Rn(τ , t) and

some deterministic sequence rn, we write Rn = O∗p(rn) (resp. o∗p(rn)) if sup(t,τ )∈T I |Rn(τ , t)| = Op(rn) (resp. op(rn)). Then
δ̂ = Σ̂−12 Σ̂1, where

Σ̂1 =

(
1
n

∑n
i=1 K (

Ti−t
h2

)ηiq̂∗τ (Ti)
1
n

∑n
i=1 K (

Ti−t
h2

)(Ti − t)ηiq̂∗τ (Ti)

)
and

Σ̂2 =

(
1
n

∑n
i=1 K (

Ti−t
h2

)ηi 1
n

∑n
i=1 K (

Ti−t
h2

)(Ti − t)ηi
1
n

∑n
i=1 K (

Ti−t
h2

)(Ti − t)ηi 1
n

∑n
i=1 K (

Ti−t
h2

)(Ti − t)2ηi

)
.

Let Σ2 =

(
f (t) 0

κ2f (1)(t) κ2f (t)

)
and G =

(
h−12 0
0 h−32

)
. Then we have

GΣ̂2 −Σ2 = O∗p(log
1/2(n)(nh3

2)
−1/2).

In addition, note

q̂∗τ (Ti) = δ0 + δ1(Ti − t)+ (qτ (Ti)− δ0 − δ1(Ti − t))+ (q̂∗τ (Ti)− qτ (Ti))

and ⎛⎜⎜⎝
1

nh2

∑n
i=1 K (

Ti−t
h2

)ηi

(
qτ (Ti)− δ0 − δ1(Ti − t)

)
1

nh32

∑n
i=1 K (

Ti−t
h2

)(Ti − t)ηi

(
qτ (Ti)− δ0 − δ1(Ti − t)

)
⎞⎟⎟⎠

=

( 1
2q
′′
τ (t)fT (t)κ2h

2
2

1
6∂t (q

′′
τ (t)fT (t))κ4h

2
2

)
+ O∗p(

√
log(n)h2

n
)+ o∗(h2

2).
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Therefore,

GΣ̂1 =GΣ̂2δ +

⎛⎜⎜⎝
1

nh2

∑n
i=1 K (

Ti−t
h2

)
(
q̂τ (Ti)− qτ (Ti)

)
ηi

1
nh32

∑n
i=1 K (

Ti−t
h2

)(Ti − t)
(
q̂τ (Ti)− qτ (Ti)

)
ηi

⎞⎟⎟⎠+ ( 1
2q
′′
τ (t)fT (t)κ2h

2
2

1
6∂t (q

′′
τ (t)fT (t))κ4h

2
2

)

+ O∗p(

√
log(n)h2

n
)+ o∗(h2

2). (A.21)

Let E(t, τ ) = E Yqτ (t),j−φt,qτ (t)(Xj)
ft (Xj)h2

K ( Tj−th2
)+ τ . By Theorem 3.4, we have

q̂∗τ (t)− qτ (t)

=
−1

fYt (qτ (t))
1
n

n∑
j=1

ηj

(
Yqτ (t),j − φt,qτ (t)(Xj)

ft (Xj)h2
K (

Tj − t
h2

)+ φt,qτ (t)(Xj)− E(t, τ )
)

− βq(t, τ )h2
2 + o∗p((nh2)−1/2). (A.22)

Let Υi = (Yi, Ti, Xi, ηi). Then, by plugging (A.22) in (A.21) and noticing that{
supt∈T

1
nh2

∑n
i=1 K (

Ti−t
h2

)ηi
supt∈T

1
nh32

∑n
i=1 K (

Ti−t
h2

)|Ti − t|ηi

}
=

{
Op(1)

Op(h−12 )

}
,

we have

GΣ̂1 =GΣ̂2δ −
1

n(n− 1)

∑
i̸=j

ηiηjΓ (Υi,Υj; t, τ )−
(
fT (t)βq(t, τ )h2

2
f ′T (t)βq(t, τ )h2

2

)
+

( 1
2q
′′
τ (t)fT (t)κ2h

2
2

1
6∂t (q

′′
τ (t)fT (t))κ4h

2
2

)
+

{
o∗p((nh2)−1/2)
o∗p((nh

3
2)
−1/2)

}
where Γ (Υi,Υj; t, τ ) = (Γ0(Υi,Υj; t, τ ),Γ1(Υi,Υj; t, τ ))′, and

Γℓ(Υi,Υj; t, τ )

=
(Ti − t)ℓ

h1+2ℓ
2 fYTi (qτ (Ti))

K (
Ti − t
h2

)
(
Yqτ (Ti),j − φTi,qτ (Ti)(Xj)

fTi (Xj)h2
K (

Tj − Ti
h2

)+ φTi,qτ (Ti)(Xj)− E(Ti, τ )
)

for ℓ = 0, 1. Let Γ s(Υi,Υj; t, τ ) = (Γ (Υi,Υj; t, τ )+ Γ (Υj,Υi; t, τ ))/2. Because nh7
2 → 0, we have

β̂1∗
τ (t)− β1

τ (t) = −e
′

2(GΣ̂2)−1Un(t, τ )+ o∗p((nh
3
2)
−1/2), (A.23)

where e2 = (0, 1)′ and Un(t, τ ) = (C2
n )
−1∑

1≤i<j≤n ηiηjΓ
s(·, ·; t, τ ) is a U-process indexed by (t, τ ). By Lemma S.1.3 in the

online supplement,

e′2(GΣ̂2)−1Un(t, τ ) =
−1
n

n∑
j=1

ηj(κ2fY (t)(qτ (t))ft (Xj)h2
2)
−1
[
Yqτ (t),j − φt,qτ (t)(Xj)

]
K (

Tj − t
h2

)+ o∗p((nh
3
2)
−1/2). (A.24)

Combining (A.23) and (A.24), we have

β̂1∗
τ (t)− β1

τ (t) =
−1
n

n∑
j=1

ηj(κ2fYt (qτ (t))ft (Xj)h2
2)
−1
[
Yqτ (t),j − φt,qτ (t)(Xj)

]
K (

Tj − t
h2

)+ o∗p((nh
3
2)
−1/2). ■

Proof of Theorem 4.1. By the proofs of Theorems 3.4 and 3.5, we have

q̂bτ (t)− q̂τ (t) = −(Pn − P)(η − 1)
(
Πt,u(Wqτ (t), φt,qτ (t), ft )− τ

)
/ft (qτ (t))+ op((nh2)−1/2)

and

β̂1b
τ (t)− β̂1

τ (t) =
1
n

n∑
j=1

(ηj − 1)(κ2fY (t)(qτ (t))ft (Xj)h2)−1
[
Yqτ (t),j − φt,qτ (t)(Xj)

]
K (

Tj − t
h2

)+ o∗p((nh
3
2)
−1/2).

Then, it is straightforward to show that
√
nh2(q̂bτ (t)− q̂τ (t)) and (nh3

2)
1/2(β̂1b

τ (t)− β̂1
τ (t)) converge weakly to the limiting

distribution of
√
nh2(q̂τ (t) − qτ (t)) and (nh3

2)
1/2(β̂1

τ (t) − β
1
τ (t)), respectively, conditional on data in the sense of van der

Vaart and Wellner (1996, Section 2.9). The desired results then follow. ■
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Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.06.004.
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