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A Conditional Linear Combination Test with Many Weak

Instruments∗

Dennis Lim† Wenjie Wang‡ Yichong Zhang§

Abstract

We consider a linear combination of jackknife Anderson-Rubin (AR), jackknife Lagrangian

multiplier (LM), and orthogonalized jackknife LM tests for inference in IV regressions with many

weak instruments and heteroskedasticity. Following I.Andrews (2016), we choose the weights in

the linear combination based on a decision-theoretic rule that is adaptive to the identification

strength. Under both weak and strong identifications, the proposed test controls asymptotic

size and is admissible among certain class of tests. Under strong identification, our linear

combination test has optimal power against local alternatives among the class of invariant or

unbiased tests which are constructed based on jackknife AR and LM tests. Simulations and an

empirical application to Angrist and Krueger’s (1991) dataset confirm the good power properties

of our test.
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1 Introduction

Various recent surveys in leading economics journals suggest that weak instruments remain impor-

tant concerns for empirical practice. For instance, I.Andrews, Stock, and Sun (2019) survey 230

instrumental variable (IV) regressions from 17 papers published in the American Economic Review

(AER). They find that many of the first-stage F-statistics (and non-homoskedastic generalizations)

are in a range that raises such concerns, and virtually all of these papers report at least one first-

stage F with a value smaller than 10. Similarly, in Lee, McCrary, Moreira, and Porter’s (2022)

survey of 123 AER articles involving IV regressions, 105 out of 847 specifications have first-stage

Fs smaller than 10. Moreover, many IV applications involve a large number of instruments. For

example, in their seminal paper, Angrist and Krueger (1991) study the effect of schooling on wages

by interacting three base instruments (dummies for the quarter of birth) with state and year of

birth, resulting in 180 instruments. Hansen, Hausman, and Newey (2008) show that using the 180

instruments gives tighter confidence intervals than using the base instruments even after adjusting

for the effect of many instruments. In addition, as pointed out by Mikusheva and Sun (2022), in

empirical papers that employ the “judge design” (e.g., see Maestas, Mullen, and Strand (2013),

Sampat and Williams (2019), and Dobbie, Goldin, and Yang (2018)), the number of instruments

(the number of judges) is typically proportional to the sample size, and the famous Fama-MacBeth

two-pass regression in empirical asset pricing (e.g., see Fama and MacBeth (1973), Shanken (1992),

and Anatolyev and Mikusheva (2022)) is equivalent to IV estimation with the number of instru-

ments proportional to the number of assets. Similarly, Belloni, Chen, Chernozhukov, and Hansen

(2012) consider an IV application involving more than one hundred instruments for the study of

the effect of judicial eminent domain decisions on economic outcomes. Carrasco and Tchuente

(2015) used many instruments in the estimation of the elasticity of intertemporal substitution in

consumption. Furthermore, as pointed out by Goldsmith-Pinkham, Sorkin, and Swift (2020), the

shift-share or Bartik instrument (e.g., see Bartik (1991) and Blanchard, Katz, Hall, and Eichen-

green (1992)), which has been widely applied in many fields such as labor, public, development,

macroeconomics, international trade, and finance, can be considered as a particular way of com-

bining many instruments. For example, in the canonical setting of estimating the labor supply

elasticity, the corresponding number of instruments is equal to the number of industries, which is

also typically proportional to the sample size.

In this paper, following the seminal study by I.Andrews (2016), we propose a jackknife condi-

tional linear combination (CLC) test that is robust to weak identification, many instruments, and

heteroskedasticity. The proposed test also achieves efficiency under strong identification against

local alternatives. The starting point of our analysis is the observation that, under strong identi-

fication, an orthogonalized jackknife Lagrangian multiplier (LM) test is the uniformly most pow-

erful (UMP) test against local alternatives among the class of tests that are constructed based on

jackknife LM and Anderson-Rubin (AR) tests and are either unbiased or invariant to sign changes.
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However, the orthogonalized LM test may not have good power under weak identification or against

certain fixed alternatives. Therefore, we consider a linear combination of jackknife AR, jackknife

LM, and orthogonalized LM tests. Specifically, we follow I.Andrews (2016) and determine the linear

combination weights by minimizing the maximum power loss, which can be viewed as a maximum

regret and is further calibrated based on the limit experiment of interest and a sufficient statistic

for the identification strength under many instruments. Then, similar to I.Andrews (2016), we

show such a jackknife CLC test is adaptive to the identification strength in the sense that (1) it

achieves correct asymptotic size, (2) it is asymptotically and conditionally admissible under weak

identification among some class of tests, (3) it converges to the UMP test mentioned above under

strong identification against local alternatives,1 and (4) it has asymptotic power equal to 1 under

strong identification against fixed alternatives. The properties of jackknife AR, jackknife LM, or-

thogonalized LM, and our CLC tests are summarized in Table 1. Simulations based on the limit

experiment as well as calibrated data confirm the good power properties of our test. Then, we

apply the new jackknife CLC test to Angrist and Krueger’s (1991) dataset with the specifications

of 180 and 1,530 instruments. We find that, in both specifications, our confidence intervals (CIs)

are the shortest among those constructed by weak identification robust tests, namely, the jackknife

AR, LM, and CLC tests, and the two-step procedure. Furthermore, our CIs are found to be even

shorter than the non-robust Wald test CIs based on the jackknife IV estimator (JIVE) proposed by

Angrist, Imbens, and Krueger (1999), which is in line with the theoretical result that the jackknife

CLC test is adaptive to the identification strength and is efficient under strong identification.

Weak ID, fixed alternative Strong ID, local alternative Strong ID, fixed alternative

Jackknife AR Admissible Not UMP Power 1
Jackknife LM Admissible Not UMP Power 1
Orthogonalized LM Admissible UMP Non-monotonic power
CLC Admissible UMP Power 1

Table 1: Power Comparision of the Tests

Relation to the literature. The contributions in the present paper relate to two strands of

literature. First, it is related to the literature on many instruments; see, for example, Kunitomo

(1980), Morimune (1983), Bekker (1994), Donald and Newey (2001), Chamberlain and Imbens

(2004), Chao and Swanson (2005), Stock and Yogo (2005a), Han and Phillips (2006), D.Andrews

and Stock (2007), Hansen et al. (2008), Newey and Windmeijer (2009), Anderson, Kunitomo, and

Matsushita (2010), Kuersteiner and Okui (2010), Anatolyev and Gospodinov (2011), Belloni, Cher-

nozhukov, and Hansen (2011), Okui (2011), Belloni et al. (2012), Carrasco (2012), Chao, Swanson,

1We emphasize that the UMP property of our CLC test under strong identification holds within the class of
sign-invariant or unbiased tests that are constructed based on jackknife AR and LM tests only. It may be possible
to construct more efficient tests using test statistics besides the jackknife AR and LM. How to construct a globally
optimal test under strong identification with many IVs and heteroskedastic errors is a topic that remains to be
explored in future research.
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Hausman, Newey, and Woutersen (2012), Hausman, Newey, Woutersen, Chao, and Swanson (2012),

Hansen and Kozbur (2014), Carrasco and Tchuente (2015), Wang and Kaffo (2016), Kolesár (2018),

Matsushita and Otsu (2022), Sølvsten (2020), Crudu, Mellace, and Sándor (2021), and Mikusheva

and Sun (2022), among others. In the context of many instruments and heteroskedasticity, Chao

et al. (2012) and Hausman et al. (2012) provide standard errors for Wald-type inferences that are

based on JIVE and jackknifed versions of the limited information maximum likelihood (LIML) and

Fuller’s (1977) estimators (HLIM and HFUL). These estimators are more robust to many instru-

ments than the commonly used two-stage least squares (TSLS) estimator because they can correct

the bias caused by the high dimension of IVs.2 In simulations derived from the data in Angrist and

Krueger (1991), which is representative of empirical labor studies with many instrument concerns,

Angrist and Frandsen (2022, Section IV) show that such bias-corrected estimators outperform the

TSLS that is based on the instruments selected by the least absolute shrinkage and selection oper-

ator (LASSO) introduced in Belloni et al. (2012) or the random forest-fitted first stage introduced

in Athey, Tibshirani, and Wager (2019). Furthermore, under many weak moment asymptotics,

Newey and Windmeijer (2009) provide new variance estimators for the jackknife GMM and the

class of generalized empirical likelihood (GEL) estimators, which includes the continuous updating

estimator (CUE) and EL estimator as special cases. In the linear heteroskedastic IV model, con-

sistency and asymptotic normality of CUE require m2/n → 0 and m3/n → 0, respectively, where

m and n denote the number of moment conditions and the sample size (e.g., see p.689 of Newey

and Windmeijer (2009)). Such conditions are needed to simultaneously control the estimation error

for all the elements of the heteroskedasticity consistent weighting matrix. Somewhat stronger rate

conditions are required for other GEL estimators.

However, the Wald-type inference methods are invalid under weak identification, which occurs

when the ratio of the concentration parameter over the square root of the number of instruments

remains bounded as the sample size increases to infinity. In this case, all the estimators mentioned

earlier become inconsistent, and there is no consistent test for the structural parameter of interest

(see Section 3 of Mikusheva and Sun (2022)). For weak identification robust inference under

many instruments, D.Andrews and Stock (2007) consider the AR test, the score test introduced in

Kleibergen (2002), and the conditional likelihood ratio test introduced in Moreira (2003). Their IV

model is homoskedastic and requires the number of instruments to diverge slower than the cube

root of the sample size (K3/n → 0, where K denotes the number of instruments). Anatolyev

and Gospodinov (2011) propose a modified AR test that allows for the number of instruments to

be proportional to the sample size but still require homoskedastic errors. Recently, Crudu et al.

(2021) and Mikusheva and Sun (2022) propose jackknifed versions of the AR test in a model

2Specifically, the rate of growth of the concentration parameter, which measure the overal instrument strength,
is denoted as µ2

n. JIVE, HLIM, and HFUL remain consistent with heteroskedastic errors even when instrument
weakness is such that µ2

n is slower than the number of instruments K, provided that µ2
n/
√
K → ∞ as the number

of observations n → ∞ (Chao et al., 2012; Hausman et al., 2012). In contrast, TSLS is less robust to instrument
weakness as it is shown to be consistent only under homoskedasticity if µ2

n/K →∞ (Chao and Swanson, 2005).
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with many instruments and heteroskedasticity. Both tests are robust to weak identification, but

Mikusheva and Sun’s (2022) jackknife AR test has better power properties due to the use of

a cross-fit variance estimator. However, the jackknife AR tests may be inefficient under strong

identification. To address this issue, Mikusheva and Sun (2022) also propose a new pre-test for

weak identification under many instruments and apply it to form a two-stage testing procedure

with a Wald test based on the JIVE introduced in Angrist et al. (1999). The JIVE-Wald test is

more efficient than the jackknife AR under strong identification. Therefore, an empirical researcher

can employ the jackknife AR if the pre-test suggests weak identification and the JIVE-Wald if the

pre-test suggests strong identification. In addition to the jackknife AR, Matsushita and Otsu (2022)

propose a jackknife LM test, which is also robust to weak identification, many instruments, and

heteroskedastic errors. However, the jackknife CLC test introduced in our paper is more efficient

than the jackknife AR, the jackknife LM, and the two-step test under strong identification and

local alternatives, while still being robust to weak identification.

Second, our paper is related to the literature on weak identification under the framework of

a fixed number of instruments or moment conditions, in which various robust inference methods

are available for non-homoskedastic errors; see, for example, Stock and Wright (2000), Kleiber-

gen (2005), D.Andrews and Cheng (2012), I.Andrews (2016), I.Andrews and Mikusheva (2016),

I.Andrews (2018), Moreira and Moreira (2019), D.Andrews and Guggenberger (2019), and Lee

et al. (2022). In particular, our jackknife CLC test extends the work of I.Andrews (2016) to the

framework with many weak instruments. I.Andrews (2016) considers the convex combination be-

tween the generalized AR statistic (S statistic) introduced by Stock and Wright (2000) and the score

statistic (K statistic) introduced by Kleibergen (2005). We find that under many weak instruments,

the orthogonalized jackknife LM statistic plays a role similar to the K statistic. However, the trade-

off between the jackknife AR and orthogonalized LM statistics turns out to be rather different from

that between the S and K statistics. As pointed out by I.Andrews (2016), in the case with a fixed

number of weak instruments (or moment conditions), the K statistic picks out a particular (ran-

dom) direction corresponding to the span of a conditioning statistic that measures the identification

strength and restricts attention to deviations from the null along this specific direction. In contrast

to the K statistic, the S statistic treats all deviations from the null equally. Therefore, the trade-off

between the K and S statistics is mainly from the difference in attention to deviation directions.

We find that with many weak instruments, the jackknife AR and orthogonalized LM tests do not

have such difference in deviation directions. Instead, their trade-off is mostly between local and

non-local alternatives. Furthermore, although the standard LM test (without orthogonalization) is

not weak identification robust under I.Andrews (2016)’s framework, the jackknife LM test is under

many instruments. Therefore, we consider a linear combination of jackknife AR, jackknife LM, and

orthogonalized jackknife LM tests and find that the resulting CLC test has good power properties

in a variety of scenarios.
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Notation. We denote Z(µ) as the normal random variable with unit variance and expectation µ

and [n] = {1, 2, · · · , n}. We further simplify Z(0) as Z, which is just a standard normal random vari-

able. We denote zα as the (1−α) quantile of a standard normal random variable and Cα(a1, a2; ρ)

as the (1−α) quantile of random variable a1Z2
1 +a2(ρZ1 + (1−ρ2)1/2Z2)2 + (1−a1−a2)Z2

2 where

Z1 and Z2 are two independent standard normal random variables, α is the significance level, ρ

is a constant in (−1, 1), and a1 and a2 are the weights of the first and second components in the

random variable. We further simplify C0,0;ρ as Cα, which is just the 1 − α quantile of Z2. We let

Cα,max(ρ) = sup(a1,a2)∈A0
Cα(a1, a2; ρ), where A0 = {(a1, a2) ∈ [0, 1] × [0, 1], a1 + a2 ≤ a} for some

a < 1. We suppress the dependence of Cα,max(ρ) on a for simplicity of notation. The operators

E∗ and P∗ are expectation and probability taken conditionally on data, respectively. For example,

E∗1{Z2(µ̂) ≥ Cα}, in which µ̂ is some estimator of the expectation µ based on data, means the

expectation is taken over the normal random variable by treating µ̂ as deterministic. We use  to

denote convergence in distribution, U
d
= V to denote that U and V share the same distribution, and

maxeig(V) and mineig(V) to denote maximum and minimum eigenvalues of a positive semidefinite

matrix V. For two sequences of random variables Un and Vn, we write Un
d
= Vn + oP (1) if there

exist Ũn
d
= Un and Ṽn

d
= Vn such that Ũn − Ṽn = oP (1).

2 Setup and Limit Problems

We consider the linear IV regression with a scalar outcome Yi, a scalar endogenous variable Xi,

and a K × 1 vector of instruments Zi such that

Yi = Xiβ + ei, Xi = Πi + Vi, ∀i ∈ [n], (2.1)

where Πi = EXi and {Zi}i∈[n] is treated as fixed, following the many-instrument literature. We let

K diverge with sample size n, allowing for the case that K is of the same order of magnitude as n.

We further have EVi = 0 by construction, and Eei = 0 by IV exogeneity. We allow (ei, Vi) to be

heteroskedastic across i. Also, following the literature on many instruments (e.g., Mikusheva and

Sun (2022)), we assume that there are no controls included in our model as they can be partialled

out from (Yi, Xi, Zi). We provide more discussions about the effect of partialling out the covariates

after Assumption 1 below.

We are interested in testing β = β0. Let ei(β0) = Yi − Xiβ0 = ei + Xi∆, where ∆ = β − β0.

We collect the transpose of Zi in each row of Z, an n × K matrix of instruments, and denote

P = Z(Z>Z)−1Z>. In addition, Let Qa,b =
∑
i∈[n]

∑
j 6=i aiPijbj√
K

and C = QΠ,Π. Then, as pointed out

by Mikusheva and Sun (2022), the rescaled C is the concentration parameter that measures the

strength of identification in the heteroskedastic IV model with many instruments. Specifically, the

parameter β is weakly identified if C is bounded and strongly identified if |C| → ∞. We consider

drifting sequence asymptotics so that all quantities are implicitly indexed by the sample size n

6



except specified otherwise. We omit such dependence for notation simplicity.

Throughout the paper, we consider three scenarios: (1) weak identification and fixed alter-

natives in which C → C̃ for some fixed constant C̃ ∈ < and ∆ is fixed and bounded, (2) strong

identification and local alternatives in which C = C̃/dn, ∆ = ∆̃dn, C̃ and ∆̃ are bounded constants

independent of n, and dn → 0 is a deterministic sequence, and (3) strong identification and fixed

alternatives in which C = C̃/dn for the same C̃ and dn defined in case (2) and ∆ is fixed and

bounded.3 Many weak identification robust tests proposed in the literature (namely, the jackknife

AR tests proposed by Crudu et al. (2021) and Mikusheva and Sun (2022) and the jackknife LM

test proposed by Matsushita and Otsu (2022)) depend on a subset of the following three quan-

tities: (Qe(β0),e(β0), QX,e(β0), QX,X). Throughout the paper, we maintain the following high-level

assumption.

Assumption 1. Under both weak and strong identification, the following weak convergence holds: Qe,e

QX,e

QX,X − C

 N

0

0

0

 ,

Φ1 Φ12 Φ13

Φ12 Ψ τ

Φ13 τ Υ


 , (2.2)

for some (Φ1,Φ12,Φ13,Ψ, τ,Υ).

Although there are no controls in the model (2.1), we further verify Assumption 1 in Section

A of the Online Supplement for a proper linear IV regression that includes a fixed dimension

of exogenous control variables, which are then partialled out from the original outcome variable,

endogenous variable, and instruments.4

Assumption 1 implies that,5 under both strong and weak identification, Qe(β0),e(β0) −∆2C
QX,e(β0) −∆C
QX,X − C

 d
= N


0

0

0

 ,

Φ1(β0) Φ12(β0) Φ13(β0)

Φ12(β0) Ψ(β0) τ(β0)

Φ13(β0) τ(β0) Υ


+ op(1), (2.3)

3If we follow the setup in Chao et al. (2012) and Hausman et al. (2012) and assume Πi = µnπi/
√
n so that

∞ > C ≥
∑
i∈[n]

∑
j 6=i πiPijπj/n ≥ c > 0 for some constants c, C, then C =

µ2
n√
K

∑
i∈[n]

∑
j 6=i πiPijπj

n
, implying that

dn =
√
K/µ2

n. Then, our definition of strong identification (dn → 0) is equivalent to that defined in Chao et al.
(2012) and Hausman et al. (2012) (µ2

n/
√
K →∞).

4Here, we focus on the case where the number of exogenous control variables is treated as fixed. In the case where
the dimension of the exogenous variables is also large and assumed to diverge to infinity with the sample size, Chao,
Swanson, and Woutersen (2023) propose new versions of various jackknife IV estimators and show they are consistent
and asymptotically normal under strong identification. We conjecture that it is possible to replace our jackknife
construct (i.e. Qa,b) by the new version and consider weak identification robust tests and their linear combinations
in the same manner as studied in this paper. This is left as a topic for future research.

5Note that

Qe(β0),e(β0)

QX,e(β0)

QX,X

 =

1 2∆ ∆2

0 1 ∆
0 0 1

 Qe,e
QX,e
QX,X

 .
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where

Φ1(β0) = ∆4Υ + 4∆3τ + ∆2(4Ψ + 2Φ13) + 4∆Φ12 + Φ1,

Φ12(β0) = ∆3Υ + 3∆2τ + ∆(2Ψ + Φ13) + Φ12,

Φ13(β0) = ∆2Υ + 2∆τ + Φ13,

Ψ(β0) = ∆2Υ + 2∆τ + Ψ,

τ(β0) = ∆Υ + τ. (2.4)

In particular, under strong identification, we have QX,Xdn
p−→ C̃, which has a degenerate distribu-

tion. Also, under local alternatives, we have ∆ = o(1) so that

(Φ1(β0),Φ12(β0),Φ13(β0),Ψ(β0), τ(β0))→ (Φ1,Φ12,Φ13,Ψ, τ).

To describe a feasible version of the test, we assume we have consistent estimates for all the

variance components.

Assumption 2. Let ρ(β0) = Φ12(β0)√
Φ1(β0)Ψ(β0)

, γ̂(β0) = (Φ̂1(β0), Φ̂12(β0), Φ̂13(β0), Ψ̂(β0), τ̂(β0), Υ̂, ρ̂(β0))

be an estimator, and B ∈ < be a compact parameter space. Then, we have infβ0∈B Φ1(β0) > 0,

infβ0∈BΨ(β0) > 0, Υ > 0, and for β0 ∈ B,

||γ̂(β0)− γ(β0)||2 = op(1),

where γ(β0) ≡ (Φ1(β0),Φ12(β0),Φ13(β0),Ψ(β0), τ(β0),Υ, ρ(β0)).

Several remarks on Assumption 2 are in order. First, Chao et al. (2012) propose a consis-

tent estimator for Ψ where there is strong identification and many instruments. It is possible to

compute γ̂(β0) based on Chao et al.’s (2012) estimator with their JIVE-based residuals êi from

the structural equation replaced by ei(β0). Under weak identification and β0 = β, Crudu et al.

(2021) and Matsushita and Otsu (2021) establish the consistency of such estimators for Φ1(β0)

and Ψ(β0), respectively. Similar arguments can be used to show the consistency of the rest of the

elements in γ̂(β0) under both weak and strong identification. In addition, the consistency can be

established under both local and fixed alternatives. We provide more details in Section B.1 in the

Online Supplement. Second, motivated by Kline, Saggio, and Sølvsten (2020), Mikusheva and Sun

(2022) propose cross-fit estimators Φ̂1(β0) and Υ̂, which are consistent under both weak and strong

identification and lead to better power properties. Following their lead, one can write down the

cross-fit estimators for the rest of the elements in γ(β0) and show they are consistent.6 We provide

6For example, Mikusheva and Sun (2022, p.22) establish the limit of their cross-fit estimator Ψ̂ under weak
identification and many instruments when the residual êi from the structural equation is computed based on the
JIVE estimator. We can construct Ψ̂(β0) by replacing êi by ei(β0). Then, the argument, as theirs with QX,e/QX,X

replaced by ∆, establishes that Ψ̂(β0)
p−→ Ψ(β0).
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more details in Section B.2 in the Online Supplement. Note that both Crudu et al.’s (2021) and

Mikusheva and Sun’s (2022) estimators are consistent under heteroskedasticity and allow for K to

be of the same order of n. Third, the consistency of γ̂(β0) over the entire parameter space under

both strong and weak identifications is more than necessary and maintained mainly for simplicity

of presentation. In fact, in order for our jackknife CLC test proposed below to control size under

both weak and strong identification, it suffices to require γ̂(β0) to be consistent under the null

only. The power analyses in Lemmas 2.1 and 2.4 below, and subsequently, Theorems 4.1 and 4.2,

only require the consistency of γ̂(β0) under strong identification with local alternatives and weak

identification with fixed alternatives, respectively.

Under this framework, Crudu et al. (2021) and Mikusheva and Sun (2022) consider the jackknife

AR test

1{AR(β0) ≥ zα}, AR(β0) =
Qe(β0),e(β0)

Φ̂
1/2
1 (β0)

, (2.5)

and Matsushita and Otsu (2022) consider the jackknife LM test

1{LM2(β0) ≥ Cα}, LM(β0) =
QX,e(β0)

Ψ̂1/2(β0)
. (2.6)

Both tests are robust to weak identification, many instruments, and heteroskedasticity. Lemma 2.1

below characterizes the joint limit distribution of (AR(β0), LM(β0))> under strong identification

and local alternatives.

Lemma 2.1. Suppose Assumptions 1 and 2 hold and we are under strong identification with local

alternatives, that is, there exists a deterministic sequence dn → 0 such that C = C̃/dn and ∆ = ∆̃dn,

where C̃ and ∆̃ are bounded constants independent of n. Then, we have(
AR(β0)

LM(β0)

)
 

(
N1

N2

)
d
= N

((
0

∆̃C̃
Ψ1/2

)
,

(
1 ρ

ρ 1

))

where ρ = Φ12/
√

Φ1Ψ.

Two remarks are in order. First, under strong identification, we consider local alternatives so

that β − β0 → 0. This is why we have (Ψ(β0),Φ1(β0),Φ12(β0)) converge to (Ψ,Φ1,Φ12), which

are just the counterparts of (Ψ(β0),Φ1(β0),Φ12(β0)) when β0 is replaced by β. Second, although

AR(β0) has zero mean, and hence, no power in this case, it is correlated with LM(β0). It is

therefore possible to use AR(β0) to reduce the variance of LM(β0) and obtain a test that is more

powerful than the LM test.
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Lemma 2.2. Consider the limit experiment in which researchers observe (N1,N2) with(
N1

N2

)
d
= N

((
0

θ

)
,

(
1 ρ

ρ 1

))
,

know the value of ρ and that EN1 = 0, and want to test for θ = 0 versus the two-sided alternative.

In this case, 1{N ∗22 ≥ Cα} is UMP among level-α tests that are either invariant to sign changes or

unbiased, where

N ∗2 = (1− ρ2)−1/2(N2 − ρN1)

is the normalized residual from the projection of N2 on N1.

Let the orthogonalized jackknife LM statistic be LM∗(β0) = (1−ρ̂(β0)2)−1/2(LM(β0)−ρ̂(β0)AR(β0)).

Then, Lemma 2.1 implies, under strong identification and local alternatives,(
AR(β0)

LM∗(β0)

)
 

(
N1

N ∗2

)
d
= N

((
0

∆̃C̃
[(1−ρ2)Ψ]1/2

)
,

(
1 0

0 1

))
. (2.7)

Lemma 2.2 with θ = ∆̃C̃Ψ−1/2 implies, in this case, that the test 1{LM∗2(β0) ≥ Cα} is asymptot-

ically strictly more powerful than the jackknife AR and LM tests based on AR(β0) and LM(β0)

against local alternatives as long as ρ 6= 0. In addition, under strong identification and local alter-

natives, Mikusheva and Sun’s (2022) two-step test statistic is asymptotically equivalent to LM(β0),

and thus, is less powerful than LM∗(β0) too.

Next, we compare the behaviors of AR(β0), LM(β0), and LM∗(β0) under strong identification

and fixed alternatives.

Lemma 2.3. Suppose Assumption 2 holds, (Qe(β0),e(β0)−∆2C, QX,e(β0)−∆C, QX,X−C)> = Op(1),

and we are under strong identification so that dnC → C̃ for some dn → 0. Then, we have, for any

fixed ∆ 6= 0,

d2
n

 AR2(β0)

LM2(β0)

LM∗2(β0)

 p−→

 Φ−1
1 (β0)∆4C̃2

Ψ−1(β0)∆2C̃2

(1− ρ2(β0))−1(Ψ−1/2(β0)− ρ(β0)Φ
−1/2
1 (β0)∆)2∆2C̃2

 .

Given dn → 0 and both Φ−1
1 (β0)∆4C̃2 > 0 and Φ−1

1 (β0)∆2C̃2 > 0, AR2(β0) and LM2(β0) have

power 1 against fixed alternatives asymptotically. By contrast, LM∗2(β0) may not have power if

∆ = ∆∗(β0) ≡ Φ
1/2
1 (β0)Ψ−1/2(β0)ρ−1(β0).

Next, we compare the performance of AR(β0) and LM∗(β0) under weak identification and fixed

alternatives.
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Lemma 2.4. Suppose Assumptions 1 and 2 hold and we are under weak identification so that

C → C̃ ∈ <. Then, we have, for any fixed ∆ 6= 0,(
AR(β0)

LM∗(β0)

)
 

(
N1

N ∗2

)
d
= N

((
m1(∆)

m2(∆)

)
,

(
1 0

0 1

))
, (2.8)

where ρ(β0) = Φ12(β0)√
Ψ(β0)Φ1(β0)

and

(
m1(∆)

m2(∆)

)
=

(
Φ
−1/2
1 (β0)∆2C̃

(1− ρ2(β0))−1/2Ψ−1/2(β0)∆C̃ − ρ(β0)(1− ρ2(β0))−1/2Φ
−1/2
1 (β0)∆2C̃

)
.

In particular, as ∆→∞, we have

m1(∆)→ C̃
Υ1/2

and m2(∆)→ C̃
Υ1/2

ρ23

(1− ρ2
23)1/2

,

where ρ23 = τ
(ΨΥ)1/2 is the correlation between QX,e and QX,X .7

By comparing the means of the normal limit distribution in (2.8), we notice that under weak

identification and fixed alternatives, neither LM∗(β0) dominates AR(β0) or vice versa. We also

notice from Lemma 2.4 that for testing distant alternatives, the power of LM∗(β0) is different from

AR(β0) by a factor of ρ23/
√

1− ρ2
23, so that it will be lower when |ρ23| ≤ 1/

√
2. Under weak

identification and homoskedasticity,8 we have ρ23 = ρ = Φ12/
√

ΨΦ1. Therefore, although the test

1{LM∗2(β0) ≥ Cα} has a power advantage under strong identification against local alternatives, it

may lack power under weak identification against distant alternatives if the degree of endogeneity

is low. Furthermore, LM∗(β0) may not have power if ∆ = ∆∗(β0).

In the current setting with many instruments, AR(β0) and LM∗(β0) play roles similar to that

of Stock and Wright’s (2000) S and Kleibergen’s (2005) K statistics in I.Andrews’s (2016) setting,

respectively. In the fixed number of IVs case, the power trade-off between S and K statistics is

based on the direction of deviations from the null. However, as shown in Lemma 2.4 (the case with

weak identification and fixed alternatives), the deviations of AR(β0) and LM∗(β0) from the null

do not have such a difference in direction under the many-instrument setting because C̃ is just a

scalar. Instead, their power trade-off is between local and non-local alternatives. This is in stark

contrast to the setting in I.Andrews (2016).

To achieve the advantages of AR(β0), LM(β0), and LM∗(β0) in all three scenarios above, we

need to combine them in a way that is adaptive to the identification strength. Following I.Andrews

(2016), we consider the linear combination of AR2(β0), LM2(β0), and LM∗2(β0). Recall that

(N1,N ∗2 ) are the limits of (AR(β0), LM∗(β0)) in either strong or weak identification. See (2.7) and

7We suppress the dependence of m1(∆) and m2(∆) on γ(β0) and C̃ for notation simplicity.
8Specifically, we say the data are homoskedastic if the covariance matrices of (ei, Vi) are constant across i.
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(2.8) for their expressions in these two cases. Then, in the limit experiment, the linear combination

test can be written as

φa1,a2,∞ = 1{a1N 2
1 + a2(ρ̃N1 + (1− ρ̃2)1/2N ∗2 )2 + (1− a1 − a2)N ∗22 ≥ Cα(a1, a2; ρ̃)}, (2.9)

where (a1, a2) ∈ A0 are the combination weights, N1 ∼ Z(θ1), and N ∗2 ∼ Z(θ2); the mean parame-

ters θ1 and θ2 are defined in Lemmas 2.1 and 2.4 for strong and weak identification, respectively; and

ρ̃ is the limit of ρ̂(β0).9 Let the eigenvalue decomposition of the matrix

(
a1 + a2ρ̃

2 a2ρ̃(1− ρ̃2)1/2

a2ρ̃(1− ρ̃2)1/2 1− a1 − a2ρ̃
2

)
be (

a1 + a2ρ̃
2 a2ρ̃(1− ρ̃2)1/2

a2ρ̃(1− ρ̃2)1/2 1− a1 − a2ρ̃
2

)
= U

(
ν1(a1, a2) 0

0 ν2(a1, a2)

)
U> (2.10)

where, by construction, ν1(a1, a2) ≥ ν2(a1, a2) ≥ 0 and U is a 2 × 2 unitary matrix. We highlight

the dependence of eigenvalues (ν1, ν2) on the weights (a1, a2). The dependence of U on (a1, a2) is

suppressed for notation simplicity. Then, we have

a1N 2
1 + a2(ρ̃N1 + (1− ρ̃2)1/2N ∗2 )2 + (1− a1 − a2)N ∗22 = ν1(a1, a2)Ñ 2

1 + ν2(a1, a2)Ñ 2
2

and φa1,a2,∞ = 1{ν1(a1, a2)Ñ 2
1 + ν2(a1, a2)Ñ 2

2 ≥ Cα(a1, a2; ρ̃)}, where(
Ñ1

Ñ2

)
= U>

(
N1

N ∗2

)
(2.11)

and Ñ1 and Ñ2 are independent normal random variables with unit variance. This implies that

φa1,a2,∞ can be viewed as a linear combination test of two independent chi-squared random variables

with one degree of freedom, and those two chi-squared random variables are obtained by properly

rotating N1 and N ∗2 (i.e., the limits of AR(β0) and LM∗(β0)).

Theorem 2.1 states the key properties of φa1,a2,∞ under the limit experiment.

Theorem 2.1. (i) Suppose we are under weak identification and fixed alternatives and let N1 ∼
Z(θ1), N ∗2 ∼ Z(θ2), and they are independent, where θ1 = m1(∆) and θ2 = m2(∆) as in

(2.8). We consider the test of H0 : θ1 = θ2 = 0 against H1 : θ1 6= 0 or θ2 6= 0. Let Φα

denote the class of size-α tests for H0 : θ1 = θ2 = 0 constructed based on (Ñ 2
1 , Ñ 2

2 ) defined in

(2.11). Then, for any (a1, a2) ∈ A0, φa1,a2,∞ defined in (2.9) is an admissible test within Φα.

In addition, let (θ̃1, θ̃2) = (θ1, θ2)U . If (θ̃2
1, θ̃

2
2) = b · (ν1(a1, a2), ν2(a1, a2)) for some positive

constant b, then for any test φ ∈ Φα, there exists some b > 0 such that for any 0 < b < b, we

have Eφ ≤ Eφa1,a2,∞.

9Under fixed alternatives, ρ̃ = ρ(β0); under local alternatives, ρ̃ = ρ.

12



(ii) Suppose we are under strong identification and local alternatives and(
N1

N2

)
d
= N

((
0

θ

)
,

(
1 ρ

ρ 1

))
,

where θ = ∆̃C̃
Ψ1/2 . We consider the test of H0 : θ = 0 against H1 : θ 6= 0. Then, φa1,a2,∞ defined

in (2.9) is UMP among the class of level-α tests that are constructed based on (N1,N2) and

invariant to the sign change if and only if a1 = 0 and a2ρ = 0. In this case, this test is also

UMP among the class of unbiased level-α tests that are constructed based on (N1,N2).

(iii) Suppose Assumption 2 holds, (Qe(β0),e(β0) − ∆2C, QX,e(β0) − ∆C, QX,X − C)> = Op(1), and

we are under strong identification with fixed alternatives. If 1 ≥ a1,n ≥ q̃Φ1(β0)
C2∆4

∗(β0)
for some

constant q̃ > Cα,max(ρ(β0)) and (a1,n, a2,n) ∈ A0, where ∆∗(β0) = Φ
1/2
1 (β0)Ψ−1/2(β0)ρ−1(β0),

then

1{a1,nAR
2(β0) + a2,nLM

2(β0) + (1− a1,n − a2,n)LM∗2(β0) ≥ Cα(a1,n, a2,n; ρ̂(β0))} p−→ 1.

Several remarks are in order. First, unlike the one-sided jackknife AR test proposed by Miku-

sheva and Sun (2022), we construct the jackknife CLC test based on AR2(β0) for several reasons.

First, under weak identification, when the concentration parameter C, and thus, m1(∆) defined

in Lemma 2.4 is nonnegative, the one-sided test has good power. However, even in this case, the

power curves simulation in Section 5.1 shows that our jackknife CLC test is more powerful than

the one-sided AR test in most scenarios. Second, our jackknife CLC test will have good power

even when C is negative.10 Third, we show below that under strong identification and local al-

ternatives, our jackknife CLC test converges to the UMP test 1{N ∗22 > Cα} whereas both the

one- and two-sided tests based on AR(β0) have no power, as shown in Lemma 2.1. Fourth, under

strong identification and fixed alternatives, our jackknife CLC test has asymptotic power equal to

1, as shown in Lemma 2.3 and Theorem 4.4 below. In this case, using the one-sided jackknife AR

test cannot further improve the power. Fifth, combining LM∗2(β0) with AR2(β0) (and LM2(β0)),

rather than AR(β0), can substantially mitigate the impact of power loss of LM∗(β0) at ∆∗(β0), as

shown in the numerical investigation in Section 5.

Second, Theorem 2.1(i) implies that φa1,a2,∞ is admissible among tests that are also quadratic

functions of N1 and N ∗2 with the same rotation U but different eigenvalues (ν̃1, ν̃2); that is,

(N1,N ∗2 )U

(
ν̃1 0

0 ν̃2

)
U>
(
N1

N ∗2

)
.

10We note that C =
∑

i∈[n]

∑
j 6=i ΠiPijΠj√
K

=
∑

i∈[n](1−Pii)Π
2
i−Π>MΠ

√
K

, where M = I − P . If Π>MΠ and
∑
i∈[n] PiiΠ

2
i

are sufficiently large, C can be negative. Mikusheva and Sun (2022) further assume that Π>MΠ ≤ CΠ>Π
K

for some
constant C > 0, which implies that C > 0.
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Specifically, in the special case with a2 = 0 (i.e., we put zero weight on LM2(β0)), the rotation

matrix U = I2 and φa1,0,∞ is admissible among level-α tests based on the test statistics of the form

a1N 2
1 + (1 − a1)N ∗22 for a1 ∈ [0, 1], which is similar to the result for the linear combination of S

and K statistics in I.Andrews (2016).

Third, similar to I.Andrews (2016, Theorem 2.1), Theorem 2.1(i) also shows that our linear

combination test is optimal against certain alternatives under weak identification. Additionally, in

the case with a2 = 0, the power optimality result in 2.1(i) also carries over to φa1,0,∞ among level-α

tests of the form a1N 2
1 + (1− a1)N ∗22 for a1 ∈ [0, 1].

Fourth, when a1 = 0 and a2ρ = 0 and under strong identification and local alternatives, we

have φa1,a2,∞ = 1{N ∗22 ≥ Cα}, which is both the UMP invariant and unbiased test. When ρ = 0

and under local alternatives, a2N ∗22 in the second and third terms of φa1,a2,∞ cancels out, implying

that φa1,a2,∞ = 1{N ∗22 ≥ Cα} as long as a1 = 0.

Fifth, we note that both the rotation matrix U and the eigenvalues ν1 and ν2 in (2.10) are func-

tions of (a1, a2). We choose this specific parametrization so that φa1,a2,∞ can be written as a linear

combination of AR2(β0), LM2(β0), and LM∗2(β0). It is possible to use other parametrizations to

combine AR(β0) and LM∗(β0). For example, let

O(ζ) =

(
cos(ζ) − sin(ζ)

sin(ζ) cos(ζ)

)

be a rotation matrix with angle ζ and

(
AR†(β0, ζ)

LM †(β0, ζ)

)
= O(ζ)

(
AR(β0)

LM∗(β0)

)
. Then, in the limit

experiment, the linear combination test statistic can be written as

aN †21 + (1− a)N †22 , (2.12)

where (N †1 ,N
†
2 ) are the limits of (AR†(β0, ζ), LM †(β0, ζ)) under either weak or strong identification.

In the following, we will use a minimax procedure to determine the optimal weights (a1, a2) for our

jackknife CLC test φa1,a2,∞. Similarly, we can use this procedure to select the value of a and ζ for

the new parametrization in (2.12). Under strong identification and local alternatives, Lemma 2.2

shows that the test 1{LM∗2(β0) ≥ Cα} is the most powerful test against local alternatives. This

is achieved by our jackknife CLC test φa1,a2,∞ with a1 = 0 and a2ρ = 0. In this case, the new

parametrization does not bring any additional power.
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3 A Conditional Linear Combination Test

In this section, we determine the weights (a1, a2) in the jackknife CLC test via a minimax procedure.

Under weak identification, the limit test statistic of the jackknife CLC test with weights (a1, a2) is

φa1,a2,∞ = 1

{
a1Z2

1 (m1(∆)) + a2(ρ(β0)Z1(m1(∆)) + (1− ρ2(β0))1/2Z2(m2(∆)))2

+(1− a1 − a2)Z2
2 (m2(∆)) ≥ Cα(a1, a2; ρ(β0))

}
, (3.1)

where m1(∆) and m2(∆) are defined in Lemma 2.4, and Z1(·) and Z2(·) are independent. In this

case, we can be explicit and write φa1,a2,∞ = φa1,a2,∞(∆). However, the limit power of the jackknife

CLC test will typically remain unknown as the true parameter β (and hence ∆) is unknown. To

overcome this issue, we follow I.Andrews (2016) and calibrate the power, i.e, Eφa1,a2,∞(δ), where

δ ranges over all possible values that ∆ can potentially take; we define φa1,a2,∞(δ) as well as the

range of potential values of ∆ below.

Let D̂ = QX,X − (Qe(β0),e(β0), QX,e(β0))

(
Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)
be the residual from

the projection of QX,X on (Qe(β0),e(β0), QX,e(β0)). By (2.3), under weak identification,

D̂ = D + op(1), D
d
= N (µD, σ

2
D),

where

µD = C̃

1− (∆2,∆)

(Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

) and

σ2
D = Υ−

(Φ13(β0), τ(β0))

(
Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

) .

We note that D̂ is a sufficient statistic for µD, which contains information about the concentration

parameter C and is asymptotically independent of AR(β0), LM(β0), and hence LM∗(β0).

Under weak identification, we observe that m1(∆) and m2(∆) in Lemma 2.4 can be written as(
m1(∆)

m2(∆)

)
=

(
C1(∆)

C2(∆)

)
µD, (3.2)

where (
C1(∆)

C2(∆)

)
≡

(
Φ
−1/2
1 (β0)∆2

(1− ρ2(β0))−1/2(Ψ−1/2(β0)∆− ρ(β0)Φ
−1/2
1 (β0)∆2)

)
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×

1− (∆2,∆)

(Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

)−1

. (3.3)

By (3.2), we see that φa1,a2,∞ = φa1,a2,∞(∆) defined in (2.9) can be written as

1

{
a1Z2

1 (C1(∆)µD) + a2(ρ(β0)Z1(C1(∆)µD) + (1− ρ2(β0))1/2Z2(C2(∆)µD))2

+(1− a1 − a2)Z2
2 (C2(∆)µD) ≥ Cα(a1, a2; ρ(β0))

}
.

This motivates the definition that

φa1,a2,∞(δ) = 1

{
a1Z2

1 (C1(δ)µD) + a2(ρ(β0)Z1(C1(δ)µD) + (1− ρ2(β0))1/2Z2(C2(δ)µD))2

+(1− a1 − a2)Z2
2 (C2(δ)µD) ≥ Cα(a1, a2; ρ(β0))

}
.

(3.4)

To emphasize the dependence of φa1,a2,∞(δ) on µD and γ(β0), we further write φa1,a2,∞(δ) as

φa1,a2,∞(δ, µD, γ(β0)).

The range of values that ∆ can take is defined as D(β0) = {δ : δ + β0 ∈ B}, where B is the

parameter space. For instance, in their empirical application of returns to education, Mikusheva

and Sun (2022) assume that β (i.e., the return to education) ranges from -0.5 to 0.5, with B =

[−0.5, 0.5]. We adopt the same practice in our simulations based on calibrated data in Section 5.2

and empirical application in Section 6. Specifying the parameter space is almost inevitable for any

weak-identification-robust inference method, but additional simulation results in Section U of the

Online Supplement show that our method is insensitive to the choice of parameter space.

Following the lead of I.Andrews (2016), we define the highest attainable power for each δ ∈ D(β0)

as Pδ,µD = sup(a1,a2)∈A(µD,γ(β0)) Eφa1,a2,∞(δ, µD, γ(β0)), which means that

Pδ,µD − Eφa1,a2,∞(δ, µD, γ(β0))

is the power loss when the weights are set as (a1, a2). Here we denote the domain of (a1, a2)

as A(µD, γ(β0)) and define it as A(µD, γ(β0)) = {(a1, a2) ∈ A0, a1 ∈ [a(µD, γ(β0)), 1]} where

A0 = {(a1, a2) ∈ [0, 1]× [0, 1], a1 + a2 ≤ a} for some a < 1,

a(µD, γ(β0)) = min

(
p1,

p2Cα,max(ρ(β0))Φ1(β0)cB(β0)

∆4
∗(β0)µ2

D

)
, (3.5)

the two tuning parameters (p1, p2) = (0.01, 1.1), ∆∗(β0) = Φ
1/2
1 (β0)Ψ−1/2(β0)ρ−1(β0) as defined

16



after Lemma 2.3, and

cB(β0) = sup
δ∈D(β0)

1− (δ2, δ)

(Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

)2

.

The maximum power loss over δ ∈ D(β0) can be viewed as a maximum regret. Then, we choose

(a1, a2) that minimizes the maximum regret; that is,

(a1(µD, γ(β0)), a2(µD, γ(β0))) ∈ arg min
(a1,a2)∈A(µD,γ(β0))

sup
δ∈D(β0)

(Pδ,µD − Eφa1,a2,∞(δ, µD, γ(β0))). (3.6)

Four remarks on the domain of (a1, a2) (i.e., A(µD, γ(β0))) are in order. First, the lower

bound a(µD, γ(β0)) is motivated by Theorem 2.1(iii). Specifically, we require p1 ∈ (0, 1) and

close to 0 and p2 > 1. In the Online Supplement, we provide a detailed report on the finite

sample performance of our CLC test for both simulation designs analyzed in Section 5 and the

empirical application in Section 6, where we consider different values of p1 and p2. The results

indicate that our test’s finite sample performance is not affected by the specific values chosen for

(p1, p2), as all the results are very close to those reported in the main paper. Second, under weak

identification, µD is bounded, and
1.1Cα,max(ρ(β0))Φ1(β0)cB(β0)

∆4
∗(β0)µ2

D
may be larger than 0.01. In this case,

we have A(µD, γ(β0)) = {(a1, a2) ∈ A0, a1 ∈ [0.01, 1]}. Third, under strong identification and local

alternatives,
1.1Cα,max(ρ(β0))Φ1(β0)cB(β0)

∆4
∗(β0)µ2

D
will converge to zero so that

A(µD, γ(β0)) =

{
(a1, a2) ∈ A0, a1 ∈

[
1.1Cα,max(ρ(β0))Φ1(β0)cB(β0)

∆4
∗(β0)µ2

D

, 1

]}
.

We show in Theorem 4.2 below that in this case, the minimax jackknife CLC test converges to

1{N ∗22 ≥ Cα} defined in Lemma 2.2, which is the UMP invariant and unbiased test. Furthermore,

the minimax a1 satisfies the requirement in Theorem 2.1(iii) with q̃ = 1.1Cα,max(ρ(β0)) so that

under strong identification, our CLC test has asymptotic power 1 against fixed alternatives, as

shown in Theorem 4.4. Fourth, we require a < 1 for some technical reason. In our simulations, we

have not observed the minimax a1 + a2 reaching the upper bound. Therefore, setting the upper

bound to a or 1 does not have any numerical impact.

Since we cannot observe the values of µD and γ(β0) in practice, we adopt the plug-in method de-

scribed in Section 6 of I.Andrews (2016). Specifically, we replace γ(β0) with its consistent estimator

γ̂(β0) as specified in Assumption 2. To obtain a proxy of µD,11 we define

σ̂D =

Υ̂− (Φ̂13(β0), τ̂(β0))

(
Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)1/2

,

11In fact, as φa1,a2,∞(δ, µD, γ(β0)) only depends on µ2
D, we aim to find a good estimator for µ2

D.
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which is a function of γ̂(β0) and a consistent estimator of σD by Assumption 2. Then, under weak

identification, we have D̂2/σ̂2
D = D2/σ2

D + op(1)
d
= Z2(µD/σD) + op(1) and D2/σ2

D is a sufficient

statistic for µ2
D. Let r̂ = D̂2/σ̂2

D. We consider two estimators for µD as functions of D̂ and σ̂D,

namely, fpp(D̂, γ̂(β0)) = σ̂D
√
r̂pp and fkrs(D̂, γ̂(β0)) = σ̂D

√
r̂krs, where r̂pp = max(r̂ − 1, 0) and

r̂krs = r̂ − 1 + exp

(
− r̂

2

) ∞∑
j=0

(
− r̂

2

)j 1

j!(1 + 2j)

−1

.

Specifically, Kubokawa, Robert, and Saleh (1993) show that r̂krs is positive as long as r̂ > 0 and

r̂ ≥ r̂krs ≥ r̂ − 1. It is also possible to consider the MLE based on a single observation D̂2/σ̂2
D.

However, such an estimator is harder to use because it does not have a closed-form expression.

In practice, we estimate Eφa1,a2,∞(δ, µD, γ(β0)) by E∗φa1,a2,s(δ, D̂, γ̂(β0)) for s ∈ {pp, krs},
where

φa1,a2,s(δ, D̂, γ̂(β0))

= 1


a1Z2

1 (Ĉ1(δ)fs(D̂, γ̂(β0)))

+a2

[
ρ̂(β0)Z1(Ĉ1(δ)fs(D̂, γ̂(β0))) + (1− ρ̂2(β0))1/2Z2(Ĉ2(δ)fs(D̂, γ̂(β0)))

]2

+(1− a1 − a2)Z2
2 (Ĉ2(δ)fs(D̂, γ̂(β0)) ≥ Cα(a1, a2; ρ̂(β0))

 , (3.7)

and (Ĉ1(δ), Ĉ2(δ)) are similarly defined as (C1(δ), C2(δ)) in (3.3) with γ(β0) replaced by γ̂(β0); that

is, (
Ĉ1(δ)

Ĉ2(δ)

)
≡

(
Φ̂
−1/2
1 (β0)δ2

(1− ρ̂2(β0))−1/2(Ψ̂−1/2(β0)δ − ρ̂(β0)Φ̂
−1/2
1 (β0)δ2)

)

×

1− (δ2, δ)

( Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)−1

.

Let Pδ,s(D̂, γ̂(β0)) = sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0))

E∗φa1,a2,s(δ, D̂, γ̂(β0)). Then, for s ∈ {pp, krs},
we can estimate a(µD, γ(β0)) in (3.6) by As(D̂, γ̂(β0)) = (A1,s(D̂, γ̂(β0)),A2,s(D̂, γ̂(β0))) defined as

As(D̂, γ̂(β0)) ∈ arg min
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0))

sup
δ∈D(β0)

(Pδ,s(D̂, γ̂(β0))− E∗φa1,a2,s(δ, D̂, γ̂(β0))), (3.8)

where φa1,a2,s(δ, D̂, γ̂(β0)) is defined in (3.7),

A(fs(D̂, γ̂(β0)), γ̂(β0)) = {(a1, a2) ∈ A0, a1 ∈ [a(fs(D̂, γ̂(β0)), γ̂(β0)), a]},
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a(fs(D̂, γ̂(β0)), γ̂(β0)) = min

(
0.01,

1.1Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)f2

s (D̂, γ̂(β0))

)
,

ĉB(β0) = sup
δ∈D(β0)

1− (δ2, δ)

( Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)2

,

and ∆̂∗(β0) = Φ̂
1/2
1 (β0)Ψ̂−1/2(β0)ρ̂−1(β0). Then, the feasible jackknife CLC test is, for s ∈ {pp, krs},

φ̂As(D̂,γ̂(β0))
= 1

{
A1,s(D̂, γ̂(β0))AR2(β0) +A2,s(D̂, γ̂(β0))LM2(β0)

+(1−A1,s(D̂, γ̂(β0))−A2,s(D̂, γ̂(β0)))LM∗2(β0) ≥ Cα(As(D̂, γ̂(β0)); ρ̂(β0))

}
.

(3.9)

4 Asymptotic Properties

We first consider the asymptotic properties of the jackknife CLC test under weak identification and

fixed alternatives, in which C → C̃ and ∆ is treated as fixed so that we have

D̂  D
d
= N (µD, σ

2
D).

We see from (3.6) and (3.8) that As(d, r) = (a1(fs(d, r), r), a2(fs(d, r), r)) is a function of (d, r) ∈
< × Γ, where Γ is the parameter space for γ(β0) and s ∈ {pp, krs}. We make the following

assumption on As(·).

Assumption 3. Let Ss be the set of discontinuities of As(·, γ(β0)) : < 7→ [0, 1] × [0, 1]. Then, we

assume As(d, r) is continuous in r for any d ∈ </Ss, and the Lebesgue measure of Ss is zero for

s ∈ {pp, krs}.

Assumption 3 is a technical condition that allows us to apply the continuous mapping theorem.

It is mild because As(·) is allowed to be discontinuous in its first argument. In practice, we can

approximate As(·) by a step function defined over a grid of d so that there is a finite number of

discontinuities. The continuity of As(·) in its second argument is due to the smoothness of the

bivariate normal PDF with respect to the covariance matrix. Therefore, in this case, Assumption

3 holds automatically.

Theorem 4.1. Suppose we are under weak identification and fixed alternatives and that Assump-

tions 1–3 hold. Then, for s ∈ {pp, krs},

As(D̂, γ̂(β0)) As(D, γ(β0)) = (a1(fs(D, γ(β0)), γ(β0)), a2(fs(D, γ(β0)), γ(β0)))
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and12

Eφ̂As(D̂,γ̂(β0))
→ Eφa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞(∆, µD, γ(β0)),

where φa1,a2,∞(δ) is defined in (3.4) and al(fs(D, γ(β0)), γ(β0)) is interpreted as al(µD, γ(β0)) de-

fined in (3.6) with µD replaced by fs(D, γ(β0)) for l = 1, 2.

In addition, let BL1 be the class of functions h(·) of D that is bounded and Lipschitz with

Lipschitz constant 1. Then, if the null hypothesis holds such that ∆ = 0, we have

E(φ̂As(D̂,γ̂(β0))
− α)h(D̂)→ 0, ∀h ∈ BL1.

Several remarks on Theorem 4.1 are in order. First, we see that the power of our jackknife CLC

test is EφAs(D,γ(β0)),∞(∆, µD, γ(β0)), which does not exactly match the minimax power

Eφa1(µD,γ(β0)),a2(µD,γ(β0)),∞(∆, µD, γ(β0))

in the limit problem. This is because under weak identification, it is impossible to consistently

estimate µD, or equivalently, the concentration parameter. A similar result holds under weak

identification with a fixed number of moment conditions in I.Andrews (2016). The best we can do

is to approximate µD by reasonable estimators based on D such as fpp(D, γ(β0)) and fkrs(D, γ(β0)).

Second, Theorem 4.1 implies that our jackknife CLC test controls size asymptotically conditionally

on D̂, and thus, unconditionally. Last, according to Theorem 4.1, the CLC test’s asymptotic power,

with weights (a1, a2) chosen through the minimax procedure, is equivalent to the limit experiment’s

asymptotic power when the weights are As(D, γ(β0)), which is a function of D. As D is independent

of the normal random variables in φa1,a2,∞(δ) in (3.4), the two optimality results stated in Theorem

2.1(i) also hold asymptotically, conditional on D̂. To make this statement precise, we define the

eigenvalue decomposition(
A1,s(D̂, γ̂(β0)) +A2,s(D̂, γ̂(β0))ρ̂2(β0) A2,s(D̂, γ̂(β0))ρ̂(β0)(1− ρ̂2(β0))1/2

A2,s(D̂, γ̂(β0))ρ̂(β0)(1− ρ̂2(β0))1/2 1−A1,s(D̂, γ̂(β0))−A2,s(D̂, γ̂(β0))ρ̂2(β0)

)

= Us(D̂, γ̂(β0))

(
ν1,s(D̂, γ̂(β0)) 0

0 ν2,s(D̂, γ̂(β0))

)
Us(D̂, γ̂(β0))>. (4.1)

12We assume that C
0

= +∞ if C > 0 and min(C,+∞) = C.

20



Define a class of tests

Φα =


φ̃(Z2

1 ,Z2
2 , d, r) : Eφ̃(Z2

1 ,Z2
2 , d, r) ≤ α, for any (d, r) ∈ < × Γ,

φ̃(Z2
1 ,Z2

2 , d, r) is continuous in r,

the discontinuities of φ̃(Z2
1 ,Z2

2 , d, r) w.r.t.

the first three arguments have zero Lebesgue measure

 ,

where (Z1,Z2) are two independent standard normal random variables. Further define, for s ∈
{pp, krs}, (

ÃRs(β0)

L̃M
∗
s(β0)

)
= Us(D̂, γ̂(β0))>

(
AR(β0)

LM∗(β0)

)
.

Assumption 4. Suppose Us(d, r) is continuous in r and the set of discontinuities of Us(·) w.r.t.

its first argument has zero Lebesgue measure.

Corollary 4.1. Suppose we are under weak identification and fixed alternatives and that Assump-

tions 1–4 hold. Let φ̃(·) ∈ Φα and for any d ∈ <, denote (θ1, θ2) = (m1(∆),m2(∆))Us(d, γ(β0)).

Then, the following two optimality results hold.

(i) If for some d ∈ < and s ∈ {pp, krs}, we have

lim
ε→0

lim
n→∞

Eφ̃(ÃR
2

s(β0), L̃M
∗2
s (β0), D̂, γ̂(β0))1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}

≥ lim
ε→0

lim
n→∞

Eφ̂As(D̂,γ̂(β0))
1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
,

for all (θ1, θ2) ∈ <2, then

lim
ε→0

lim
n→∞

Eφ̃(ÃR
2

s(β0), L̃M
∗2
s (β0), D̂, γ̂(β0))1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}

= lim
ε→0

lim
n→∞

Eφ̂As(D̂,γ̂(β0))
1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
,

for all (θ1, θ2) ∈ <2.

(ii) If (θ2
1, θ

2
2) = b · (ν1(d, γ(β0)), ν2(d, γ(β0))) for some positive constant b, then there exists b > 0

such that if 0 < b < b, we have

lim
ε→0

lim
n→∞

Eφ̃(ÃR
2

s(β0), L̃M
∗2
s (β0), D̂, γ̂(β0))1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
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≤ lim
ε→0

lim
n→∞

Eφ̂As(D̂,γ̂(β0))
1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
,

Corollary 4.1 shows that under weak identification and fixed alternatives, our jackknife CLC

test is asymptotically admissible and optimal against certain alternatives conditional on D̂.

Next, we consider the performance of φ̂As(D̂,γ̂(β0))
defined in (3.9) under strong identification

and local alternatives. To precisely state the optimality result, we further consider the class of level-

α tests against θ = 0 v.s. the two-sided alternative that are constructed based on one observation

of (N1,N2), where θ = ∆̃C̃Ψ−1/2 and(
N1

N2

)
d
= N

((
0

θ

)
,

(
1 ρ

ρ 1

))
,

Specifically, denote

ΦI
α =


φ(·) : Eφ(N1,N2) ≤ α under the null,

φ(N1,N2) = φ(N1,−N2),

the discontinuities of φ(·) has zero Lebesgue measure


and

ΦU
α =


φ(·) : Eφ(N1,N2) ≤ α under the null,

Eφ(N1,N2) ≥ α under the alternative,

the discontinuities of φ(·) has zero Lebesgue measure


as the classes of sign-invariant and unbiased tests, respectively.

Theorem 4.2. Suppose that Assumptions 1 and 2 hold. Further suppose that we are under strong

identification and local alternatives as described in Lemma 2.1. Then, for s ∈ {pp, krs}, we have

A1,s(D̂, γ̂(β0))
p−→ 0, A2,s(D̂, γ̂(β0))ρ

p−→ 0, and φ̂As(D̂,γ̂(β0))
 1{N ∗22 ≥ Cα},

where N ∗2
d
= N

(
∆̃C̃

[(1−ρ2)Ψ]1/2
, 1
)

. In addition, suppose φ̆n = φ(AR(β0), LM(β0)) + oP (1) for some

φ ∈ ΦI
α ∪ ΦU

α and the sequence {φ̆n}n≥1 is uniformly integrable. Then, we have

lim
n→∞

Eφ̂As(D̂,γ̂(β0))
= sup

φ∈ΦIα∪ΦUα

lim
n→∞

Eφ(AR(β0), LM(β0)) ≥ lim
n→∞

Eφ̆n.

Five remarks are in order. First, under strong identification, µD, and thus, D approaches

infinity, and so does our estimator D̂. This is how our estimator D̂ can detect the identification
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strength. In addition, we show in the proof of Theorem 4.2 that under strong identification, the

calibrated power gap Pδ,s(D̂, γ̂(β0))−E∗φa1,a2,s(δ, D̂, γ̂(β0)) is maximized when δ is in the region of

local alternatives. However, in this region, as shown by Lemma 2.2, the maximum power gap can

achieve zero if all the weights are put on LM∗(β0), which leads to the first result in Theorem 4.2.

Second, our jackknife CLC test is adaptive to identification strength. In practice, econometricians

do not know whether the true value β is close to the null β0. Therefore, our jackknife CLC test

calibrates power across all possible values of δ (i.e., δ ∈ D(β0)), which include both local and fixed

alternatives. Yet, Theorem 4.2 shows that the minimax procedure can produce the most powerful

test as if it is known that β belongs to the region of local alternatives. Third, Theorem 4.2 shows

that under strong identification and local alternatives, our jackknife CLC test converges to the

UMP level-α test that is either invariant to the sign change or unbiased and constructed based on

AR(β0) and LM(β0). Therefore, it is more powerful than the jackknife AR and LM tests. Fourth,

under strong identification and local alternatives, the JIVE-based Wald test proposed by Chao

et al. (2012) is asymptotically equivalent to the jackknife LM test, which implies that the jackknife

AR and JIVE-Wald-based two-step test in Mikusheva and Sun (2022) is also dominated by the

jackknife CLC test. Fifth, consider the HLIM based Wald test statistic proposed by Hausman

et al. (2012), which is denoted as Wh(β0). In Section T in the Online Supplement, we show that,

under local alternative and strong identification,

Wh(β0) =
Ψ1/2

Ψ
1/2
h

LM(β0)− ρ̃Φ
1/2
1

Ψ
1/2
h

AR(β0) + oP (1),

where ρ̃ = plimn→∞X
>e(β0)/(e(β0)>e(β0)) and Ψh = Ψ − 2ρ̃Φ12 + ρ̃2Φ1 is the corresponding

asymptotic variance. Then, by letting φ̆n = 1{W 2
h (β0) ≥ Cα} and

φ(AR(β0), LM(β0)) = 1


[

Ψ1/2

Ψ
1/2
h

LM(β0)− ρ̃Φ
1/2
1

Ψ
1/2
h

AR(β0)

]2

≥ Cα

 ,

Theorem 4.2 implies our jackknife CLC test is more powerful than the HLIM based Wald test under

strong identification against local alternatives. In fact, by direct calculation, we can see that, for

θ = ∆̃C̃Ψ−1/2,

Ψ1/2

Ψ
1/2
h

LM(β0)− ρ̃Φ
1/2
1

Ψ
1/2
h

AR(β0) Z(θ̃), where θ̃2 =
θ2

1− ρ2 +
(
ρ̃Φ

1/2
1 Ψ−1/2 − ρ

)2 ≤
θ2

(1− ρ2)
.

The noncentrality parameter for the HLIM based Wald test is weakly smaller than that of the CLC

test, which explains the power comparison. The equality holds if ρ̃Φ
1/2
1 Ψ−1/2 = ρ, which further

holds in the special case of many weak IVs and homoskedasticity in the sense that Π>Π/K = o(1)
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and E(Vi, ei)
>(Vi, ei) does not vary across i.

Combining Theorems 4.1 and 4.2, we can show the uniform size control of our jackknife CLC

test no matter the identification is strong or weak. Let λn ∈ Λn be the data generating process

of n observations of (e, V, Z). Under λn, the covariance matrix of (Qe,e, QX,e, QX,X) is denoted as

Vn. We impose the following restriction on the sequence of classes of DGPs ({Λn}n≥1):13



{Vi, ei}i∈[n] are independent, Eei = EVi = 0,

maxi Ee4
i + maxi EV 4

i ≤ C1 <∞,
Cn = 1√

K

∑
i∈[n]

∑
j 6=i ΠiPijΠj ∈ <,

Pii ≤ C2 < 1,

0 < κ1 ≤ mineig(Vn) ≤ maxeig(Vn) ≤ κ2 <∞,
where C1, C2, κ1, and κ2 are some fixed constants,

and Assumption 2 holds for β0 = β.


(4.2)

In Sections B.1 and B.2 of the Online Supplement, we further verify that Assumption 2 holds,

respectively, for the standard variance estimators, which follow the construction in Crudu et al.

(2021), and the cross-fit variance estimators, which follow Mikusheva and Sun (2022). Theorem 4.3

shows that our jackknife CLC test has correct asymptotic size, under similar arguments as those

in Andrews, Cheng, and Guggenberger (2020) and I.Andrews (2016).

Theorem 4.3. Suppose Assumption 3 holds, {Λn}n≥1 satisfies (4.2), and we are under the null

hypothesis that β0 = β. Then, we have

lim inf
n→∞

inf
λn∈Λn

Eλn(φ̂As(D̂,γ̂(β0))
) = lim sup

n→∞
sup
λn∈Λn

Eλn(φ̂As(D̂,γ̂(β0))
) = α.

Last, we show that, under strong identification, the jackknife CLC test φ̂As(D̂,γ̂(β0))
defined in

(3.9) has asymptotic power 1 against fixed alternatives.

Theorem 4.4. Suppose Assumption 2 holds, and (Qe(β0),e(β0)−∆2C, QX,e(β0)−∆C, QX,X −C)> =

Op(1). Further suppose that we are under strong identification with fixed alternatives so that ∆ =

β − β0 is nonzero and fixed. Then, we have

φ̂As(D̂,γ̂(β0))

p−→ 1.

13In (4.2), we focus on the model without exogenous control variables. The independence and moment conditions
for (ei, Vi) are sufficient for Assumption 1. We further verify in Section A of the Online Supplement that the joint
asymptotic normality (Assumption 1) holds in the case with exogenous controls.
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5 Simulation

5.1 Power Curve Simulation for the Limit Problem

In this section, we present simulation results to compare the power performance of various tests

under the limit problem described in Section 2. We consider the following tests with a nominal

rate of 5%: (i) our jackknife CLC test, where µD is estimated using either pp or krs method, (ii)

the one-sided jackknife AR test defined in (2.5), (iii) the jackknife LM test defined in (2.6), and

(iv) the test that is based on the orthogonalized jackknife LM statistic LM∗2(β0) defined in this

paper. We conduct 5,000 simulation replications to obtain stable simulation results.

We set the parameter space for β as B = [−6/C, 6/C], where C = 3 and 6. The choice of

parameter space follows that in I.Andrews (2016, Section 7.2). We set β0 = 0, and the values of

the covariance matrix in (2.2) are set as follows: Φ1 = Ψ = Υ = 1, and Φ12 = Φ13 = τ = ρ, where

ρ ∈ {0.2, 0.4, 0.7, 0.9}. We then compute γ(β0) based on (2.4) as β ranges over B and generate

AR(β0) and LM(β0) based on (2.3). Last, we implement our CLC test purely based on AR(β0),

LM(β0), γ(β0), and B without assuming the knowledge of (C, β). We have tried to simulate under

alternative settings of the covariance matrix, and the obtained patterns of the power behavior are

very similar.

Figures 1–4 plot the power curves for ρ = 0.2, 0.4, 0.7, and 0.9. In each figure, we report the

results under both C = 3 and 6. We observe that overall, the two jackknife CLC tests have the best

power properties in terms of minimizing the maximum regret. Especially when the identification is

relatively strong (C = 6) and/or the degree of endogeneity is not very low (ρ = 0.4, 0.7, or 0.9), the

jackknife CLC tests outperform their AR and LM counterparts by a large margin. In addition, we

notice that when C = 3, for some parameter values LM∗(β0) can suffer from substantial declines in

power relative to the other tests, which is in line with our theoretical predictions. By contrast, our

jackknife CLC tests are able to guard against such substantial power loss because of the adaptive

nature of their minimax procedure. In Section U.1 of the Online Supplement, we further report

power curves for alternative values of the tuning parameters (p1, p2) in (3.5) and of C, and find that

the overall patterns remain very similar.

5.2 Simulation Based on Calibrated Data

We follow the approach of Angrist and Frandsen (2022) and Mikusheva and Sun (2022) and use

a data generating process (DGP) calibrated based on the 1980 census dataset from Angrist and

Krueger (1991). We define the instruments as

Z̃i =
(
(1{Qi = q, Ci = c})q∈{2,3,4},c∈{31,··· ,39}, (1{Qi = q, Pi = p})q∈{2,3,4},p∈{51 states}

)
,
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Figure 2: Power Curve for ρ = 0.4

where Qi, Ci, Pi are individual i’s quarter of birth (QOB), year of birth (YOB) and place of birth

(POB), respectively, so that there are 180 instruments. Note that the dummy with q = 1 and

c = 30 is omitted in Zi. We denote Ỹi as income, X̃i as the highest grade completed, and W̃i as

the full set of YOB-POB interactions; that is,

W̃i =
(
1{Ci = c, Pi = p}c∈{30,...,39},p∈{51 states}

)
,

which is a 510× 1 matrix.

As in Angrist and Frandsen (2022), using the full 1980 sample (consisting of 329,509 individuals),

we first obtain the average X̃i for each QOB-YOB-POB cell; we call this s̄(q, c, p). Next we use

LIML to estimate the structural parameters in the following linear IV regression:

Ỹi = X̃iβX + W̃>i βW + ei,
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X̃i = Z̃>i ΓZ + W̃>i ΓW + Vi,

where X̃ is endogenous and instrumented by Z̃i and W̃i is the exogenous control variable. Denote

the LIML estimate for βX,W ≡ (β>X , β
>
W )> as β̂>LIML = (β̂>LIML,X , β̂

>
LIML,W ). We let ŷ(Ci, Pi) =

W̃>i β̂LIML,W and

ω(Qi, Ci, Pi) = Ỹi − X̃iβ̂LIML,X − W̃>i β̂LIML,W .

Based on the LIML estimate and the calibrated ω(Qi, Ci, Pi), we simulate the following two

DGPs:

1. DGP 1:

ỹi = ȳ + βs̃i + ω(Qi, Ci, Pi)(νi + κ2ξi) (5.1)
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s̃i ∼ Poisson(µi),

where β is the parameter of interest, νi and ξi are independent standard normal, ȳ =
1
n

∑n
i=1 ŷ(Ci, Pi), µi ≡ max{1, γ0 +γ>Z Z̃i +κ1νi}, and γ0 +γ>Z Z̃i is the projection of s̄i(q, c, p)

onto a constant and Z̃i. We set κ1 = 1.7 and κ2 = 0.1 as in Mikusheva and Sun (2022).

2. DGP 2: Same as DGP 1 except that κ1 = 2.7 and

s̃i ∼ bPoisson(2µi)/2c.

We consider sample sizes of 0.5%, 1%, and 1.5% of the full sample size. Upon obtaining n obser-

vations, we exclude instruments with
∑n

i=1 Z̃ij < 5. This results in three different sample sizes:

small, medium, and large, with 1,648, 3,296, and 4,943 observations, respectively. The number of

instruments also varies across sample sizes, with 119, 142, and 150 instruments for small, medium,

and large samples, respectively. Our DGP 1 is exactly the same as that in Mikusheva and Sun

(2022), with the correlation parameter of ρ = 0.41. DGP 2 has a higher correlation parameter of

ρ = 0.7. The identification strength increases with the sample size. For DGP 1, the concentration

parameters C/Υ1/2 for small, medium, and large samples are 2.15, 3.62, and 4.85, respectively. For

DGP 2, they are 2.38, 3.97, 5.28, respectively.

We emphasize that following Angrist and Frandsen (2022) and Mikusheva and Sun (2022),

we only use W̃i to compute the LIML estimator and calibrate ω(Qi, Ci, Pi), but do not use it to

generate new data. Therefore, for the simulated data, the outcome variable is ỹi, the endogenous

variable is s̃i, the IV Z̃i is viewed to be fixed, and the exogenous control variable is just an intercept.

We then denote the demeaned versions of ỹi, s̃i, and Z̃i as Yi, Xi, and Zi, respectively, in (2.1)

and implement various inference methods described below. Following Mikusheva and Sun (2022),

we test the null hypothesis that β = β0 for β0 = 0.1 while varying the true value β ∈ B. The

parameter space is set as B = [−0.5, 0.5], which is consistent with the choice of parameter space

for the empirical application below. The results below are based on 1,000 simulation repetitions.

We provide more details about the implementation in Section C in the Online Supplement. We set

(p1, p2) = (0.01, 1.1) in (3.5). Additional simulation results using other choices of (p1, p2) and B are

reported in Section U.2 in the Online Supplement. All of them are very close to what we report

here.

We compare the following tests with a nominal rate of 5%:

1. pp: our jackknife CLC test when µD is estimated by the method pp.

2. krs: our jackknife CLC test when µD is estimated by the method krs.

3. AR: the one-sided jackknife AR test with the cross-fit variance estimator proposed by Miku-

sheva and Sun (2022).
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4. LM CF: Matsushita and Otsu’s (2021) jackknife LM test, but with a cross-fit variance esti-

mator (details are given in Section B.2 in the Online Supplement).

5. 2-step: Mikusheva and Sun’s (2022) two-step estimator in which the overall size is set at 5%.

6. LM∗: LM∗ test defined in this paper.

7. LM MO: Matsushita and Otsu’s (2021) original jackknife LM test.
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Figure 5: Power Curve for DGP 1
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Figure 6: Power Curve for DGP 2

Figures 5 and 6 plot the power curves of the aforementioned tests. We can make four observa-

tions. First, all methods control size well because they are all weak identification robust. Second,

the performance of the jackknife CLC test with krs is slightly better than that with pp, which is

consistent with the power curve simulation in Section 5.1. Third, in DGP 1 with a small sample

size, the power of the jackknife AR test is at most about 9.2% higher than that of the krs test
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when β is around -0.3. However, for alternatives close to the null (e.g., when β is around 0), the

power of the krs test is 24% higher, which implies that the power of the krs test is still better than

that for the jackknife AR test in the minimax sense. The power of the jackknife LM tests is similar

to that of the krs test in DGP 1 with a small sample size. Fourth, for the rest of the scenarios,

the power of the krs test is the highest in most regions of the parameter space. The power of the

jackknife AR and LM is at most 0.7% higher than that of the krs test at some point. For DGP

1 with medium and large sample sizes, the maximum power gaps between our krs test and the

jackknife LM are about 8.6% and 5.6%, and about 43.2% and 50% compared with the jackknife

AR. Furthermore, they are 23.3%, 19.5%, and 18.5% compared with the jackknife LM for DGP

2 with small, medium, and large sample sizes, respectively, and about 41.5%, 55.3%, and 55.85%

compared with the jackknife AR.

Figures 7 and 8 show the average values of (a1, a2), which represents the weights assigned to

AR(β0) and LM(β0) in our CLC tests, under DGPs 1 and 2, respectively. The weight assigned to

LM∗(β0) is simply 1−a1−a2. As shown in Table 1, under weak identification and fixed alternatives,

there is no clear winner among AR(β0), LM(β0), and LM∗(β0), and thus, our CLC test assigns

weights to all the three tests. However, under strong identification and local alternative, LM∗(β0)

is the UMP test and should carry all the weights, which means a1 + a2 should be minimum. On

the other hand, under strong identification and for some fixed alternatives, LM∗(β0) may lack

power while both AR(β0) and LM(β0) have power 1. In this case, as long as we do not assign

all weights on LM∗(β0), our CLC test should also have power 1. We observe that our simulation

results are consistent with these theoretical predictions. First, when β0 is close to the null 0.1, both

a1 and a2 are small, indicating that most of the weights are put on LM∗(β0). Second, we observe

from Figures 5 and 6 that the power of LM∗(β0) drops rapidly when β is smaller than around

zero. Therefore, our CLC test assigns more weights on AR(β0) and LM(β0). Third, for distant

alternatives, significant weights are assigned to AR(β0) and LM(β0), which ensures the good power

of our CLC test. Additionally, we note that the weights assigned to AR(β0) (a1) are higher on the

left side of the parameter space relative to the right, since AR(β0) is more powerful on the left.

6 Empirical Application

In this section, we consider the linear IV regressions with the specification underlying Angrist and

Krueger (1991, Table VII, column (6)), using the full original dataset.14 The outcome variable Y

and endogenous variable X are log weekly wages and schooling, respectively. We follow Angrist

and Krueger (1991) and focus on two specifications with 180 and 1,530 instruments. The 180

instruments consist of 30 quarter and year of birth interactions (QOB-YOB) and 150 quarter

and place of birth interactions (QOB-POB). The second specification includes full interactions

14The dataset can be downloaded from MIT Economics, Angrist Data Archive,
https://economics.mit.edu/faculty/angrist/data1/data/angkru1991.
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Figure 7: Average Values of a for DGP 1
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Figure 8: Average Values of a for DGP 2

among QOB-YOB-POB, resulting in 1,530 instruments. The exogenous control variables have

been partialled out from the outcome, endogenous variables, and IVs. Further details on the

empirical application can be found in Section D in the Online Supplement. The considered tests

are similar to those in the previous section. The jackknife AR test is defined in (2.5) with Φ̂1 being

the cross-fit estimator in Mikusheva and Sun (2022). The jackknife LM test is defined in (2.6) with

the cross-fit estimator for Ψ(β0). The pp and krs tests are our jackknife CLC tests. The two-step

procedure is given by Mikusheva and Sun (2022, Section 5). Specifically, the researcher accepts the

null if F̃ > 9.98 and Wald(β0) < C0.02
15 or if F̃ ≤ 9.98 and AR(β0) < z0.02. In the case of 180

instruments, because F̃ = 13.42 > 9.98, the lower and upper bounds of the 95% confidence interval

15F̃ = QX,X/Υ̂, where Υ̂ is the cross-fit estimator. Wald(β0) is defined as
(
β̂−β0
V̂

)2

, where β̂ is the JIVE estimator

and V̂ is a cross-fit estimator of the asymptotic variance of β̂. We refer interested readers to Mikusheva and Sun
(2022, Section 5) for more details.
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(CI) for the two-step procedure correspond respectively to the minimum and maximum of the set

{β0 ∈ < : Wald(β0) < C0.02}; similarly, for the 1,530 instruments, as F̃ = 6.32 ≤ 9.98, the lower

and upper bounds of the CI for the two-step procedure correspond respectively to the minimum and

maximum of the set {β0 ∈ < : AR(β0) < z0.02}. We also report the 95% Wald test CI based on the

JIVE estimator, denoted as JIVE-t. Table 2 reports the 95% CIs by inverting the corresponding

5% tests mentioned above for the parameter space B = [−0.5, 0.5]. Note all CIs except JIVE-t are

robust to weak identification. As F̃ ’s are higher than 4.14 in both cases, the JIVE-t (5%) has the

Stock and Yogo (2005b)-type guarantee with at most a 5% size distortion (i.e., the overall size is

less than 10%). We set (p1, p2) in (3.5) as (0.01, 1.1). The empirical results with other choices of

(p1, p2) and B are reported in Section V in the Online Supplement. All of them are very close to

what we report here.

jackknife AR jackknife LM JIVE-t Two-step pp krs
(5%) (5%) (5%) (5%) (5%) (5%)

180 IVs [0.008,0.201] [0.067,0.135] [0.066,0.132] [0.059,0.139] [0.067,0.128] [0.067,0.128]

1530 IVs [-0.035,0.22] [0.036,0.138] [0.035,0.133] [-0.051,0.242] [0.037,0.133] [0.037,0.133]

Table 2: Confidence Intervals
Notes: The F̃ ’s for 180 and 1,530 instruments are 13.42 and 6.32, respectively. The grid-search used for our
confidence interval was over 10,000 equidistant grid-points for β0 ∈ [−0.5, 0.5]. Our jackknife AR confidence
interval for 1530 instruments differs from that in Mikusheva and Sun (2022) because they used year-of-birth
1930-1938 dummies for the QOB-YOB-POB interactions, whereas we used 1930-1939 dummies. More details
are provided in Section D in the Online Supplement.

Table 2 highlights that the CIs generated by our jackknife CLC tests are the shortest among

all the weak identification robust CIs (i.e., pp, krs, jackknife AR, jackknife LM, and two-step).

Furthermore, the jackknife CLC CIs are 7.6% and 2.0% shorter than the non-robust JIVE-t CIs

with 180 and 1,530 instruments, respectively, which is in line with our theoretical result that the

CLC tests are adaptive to the identification strength and efficient under strong identification.
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A Exogenous Control Variables

Suppose we observe {Ỹi, X̃i, Z̃i,Wi}i∈[n], where

Ỹi = X̃iβ +W>i γ + ẽi, X̃i = Π̃i + Ṽi,

X̃i ∈ <, Z̃i ∈ <K , Wi ∈ <d, Π̃i = EX̃i, and (Z̃i,Wi)i∈[n] are treated as fixed. We allow K to diverge

to infinity with n while d is fixed. We then have Eẽi = EṼi = 0. Denote PW = W (W>W )−1W>

and MW = In − PW be the projection and residual matrices based on W , respectively, where In is

the n × n identity matrix and W = (W1,W2, · · · ,Wn)> ∈ <n×d. Further denote Ỹ , X̃, ẽ, Π̃, Ṽ as

matrices with their ith row being Ỹi, X̃i, ẽi, Π̃i, Ṽi, respectively. Then, we have

Yi = Xiβ + ei, Xi = Πi + Vi,

where Y = MW Ỹ , X = MW X̃, V = MW Ṽ , e = MW ẽ, Π = MW Π̃, and Z = MW Z̃. We still denote

P as the projection matrix constructed by Z. The next theorem shows Assumption 1 holds.

Theorem A.1. Suppose {Ṽi, ẽi}i∈[n] are independent, maxi Eẽ4
i+maxi EṼ 4

i ≤ C <∞, maxi ||Wi||2 ≤
C < ∞, Π>Π/K = O(1), and 0 < c ≤ mineig(W>W/n) ≤ maxeig(W>W/n) ≤ C < ∞,

for some constants c, C. Then, Assumption 1 holds and Qe,e = Qẽ,ẽ + oP (1). If in addition,

p2
n

Π>Π
K = o(1) with pn = maxi Pii, then we have QX,e = QX,ẽ + oP (1) and QX,X = QX,X + oP (1),

where Xi = Πi + Ṽi.

Theorem A.1 shows Assumption 1 still holds if (Yi, Xi, Zi) are defined after partialing out the

fixed dimensional control variables Wi. It further provides a sufficient condition under which the

effect of partialling-out on the sampling error is asymptotically negligible, i.e., the asymptotic

covariance matrix remains the same after partialing out Wi. To interpret the sufficient condition,

we consider the balanced design in which pn is of order K/n. If K/n = o(1) and Π>Π/n = O(1),

then the sufficient condition holds because

p2
nΠ>Π/K = O

(
Π>Π

n

K

n

)
= o(1).

On the other hand, if K � n, the sufficient condition requires Π>Π/K = o(1), which can hold

under both weak identification (Π>Π/
√
K = O(1)) and strong identification (Π>Π/

√
K → ∞).

We further emphasize that, even if K � n and Π>Π/K � 1 so that the sufficient condition does

not hold, Assumption 1 still holds. It is just that partialing out the exogenous control variable will

have a non-negligible effect on the asymptotic covariance of (Qe,e, QX,e, QX,X −QΠ,Π).
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B Verifying Assumption 2

B.1 Standard Estimators

In this section, we maintain Assumption 5, which is stated below and just Mikusheva and Sun

(2022, Assumption 1).

Assumption 5. Suppose {Vi, ei}i∈[n] are independent and Eei = EVi = 0. Suppose P is an n× n
projection matrix of rank K, K →∞ as n→∞ and there exists a constant δ such that Pii ≤ δ < 1.

Following the results in Chao et al. (2012) and Mikusheva and Sun (2022), we can show that

under either weak or strong identification, Assumption 1 in the paper holds: Qe,e

QX,e

QX,X − C

 N

0

0

0

 ,

Φ1 Φ12 Φ13

Φ12 Ψ τ

Φ13 τ Υ


 , (B.1)

where σ2
i = Ee2

i , η
2
i = EV 2

i , γi = EeiVi, ωi =
∑

j 6=i PijΠj ,

Φ1 = lim
n→∞

2

K

∑
i∈[n]

∑
j 6=i

P 2
ijσ

2
i σ

2
j ,

Φ12 = lim
n→∞

1

K

∑
i∈[n]

∑
j 6=i

P 2
ij(γjσ

2
i + γiσ

2
j ),

Φ13 = lim
n→∞

2

K

∑
i∈[n]

∑
j 6=i

P 2
ijγiγj ,

Ψ = lim
n→∞

 1

K

∑
i∈[n]

∑
j 6=i

P 2
ij(η

2
i σ

2
j + γiγj) +

1

K

∑
i∈[n]

ω2
i σ

2
i

 ,
τ = lim

n→∞

 2

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
i γj +

2

K

∑
i∈[n]

ω2
i γi

 , and

Υ = lim
n→∞

 2

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
i η

2
j +

4

K

∑
i∈[n]

ω2
i η

2
i

 .
We note that the standard estimators of the above variance components proposed by Crudu

et al. (2021) are equal to Chao et al.’s (2012) estimators with their residual êi replaced by ei(β0).

Specifically, let

Φ̂1(β0) =
2

K

∑
i∈[n]

∑
j 6=i

P 2
ije

2
i (β0)e2

j (β0),
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Φ̂12(β0) =
1

K

∑
i∈[n]

∑
j 6=i

P 2
ij(Xjej(β0)e2

i (β0) +Xiei(β0)e2
j (β0)),

Φ̂13(β0) =
2

K

∑
i∈[n]

∑
j 6=i

P 2
ijXiei(β0)Xjej(β0),

Ψ̂(β0) =
1

K

∑
i∈[n]

(
∑
j 6=i

PijXj)
2e2
i (β0) +

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijXiei(β0)Xjej(β0),

τ̂(β0) =
1

K

∑
i∈[n]

(
∑
j 6=i

PijXj)
2Xiei(β0) +

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijX

2
iXjej(β0), and

Υ̂ =
2

K

∑
i∈[n]

∑
j 6=i

P 2
ijX

2
iX

2
j .

Assumption 6. Suppose maxi∈[n] |Πi| ≤ C, Π>Π
K = o(1), and maxi Ee6

i + maxi EV 6
i <∞.

Two remarks on Assumption 6 are in order. First, maxi∈[n] |Πi| ≤ C is mild because Πi = EXi.

Second, Assumption 6 allows for weak identification when Π>Π/
√
K → c for a constant c. It

also allows for strong identification when Π>Π/
√
K → ∞ and Π>Π/K → 0. The restriction that

Π>Π/K → 0 is needed because Assumption 2 includes the case of fixed alternatives (i.e., fixed

∆ 6= 0), which is not considered in Crudu et al. (2021) and Chao et al. (2012). Furthermore, our

results include τ̂(β0) and Υ̂, which are not considered in Crudu et al. (2021) and Chao et al. (2012),

and the consistency of these terms require Π>Π/K → 0.

Theorem B.1. Suppose Assumptions 5 and 6 hold. Then Assumption 2 holds for Crudu et al.’s

(2021) estimators defined above.

B.2 Cross-Fit Estimators

Let M = I − P , Mij be the (i, j) element of M , Mi be the ith row of M , and P̃ 2
ij =

P 2
ij

MiiMjj+M2
ij

.

Then, Mikusheva and Sun (2022) consider the cross-fit estimators for Φ1(β0), Ψ(β0), and Υ defined

as

Φ̂1(β0) =
2

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ij [ei(β0)Mie(β0)][ej(β0)Mje(β0)],

Ψ̂(β0) =
1

K

∑
i∈[n]

(
∑
j 6=i

PijXj)
2 ei(β0)Mie(β0)

Mii
+
∑
i∈[n]

∑
j 6=i

P̃ 2
ijMiXei(β0)MjXej(β0)

 , and

Υ̂ =
2

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ij [Xi(β0)MiX][Xj(β0)MjX],
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where X and e(β0) are the column vectors that collect all Xi and ei(β0), respectively. Following

their lead, we can construct the cross-fit estimators for the rest three elements in γ(β0) as follows:

Φ̂12(β0) =
1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ij(MjXej(β0)ei(β0)Mie(β0) +MiXei(β0)ej(β0)Mje(β0)),

Φ̂13(β0) =
2

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMiXei(β0)MjXej(β0), and

τ̂(β0) =
1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ij(XiMiX)(MjXej(β0)) +

1

K

∑
i∈[n]

(
∑
j 6=i

PijXj)
2

(
ei(β0)MiX

2Mii
+
XiMie(β0)

2Mii

)
,

Assumption 7. Suppose Assumption 6 holds. Further suppose that Π>MΠ ≤ CΠ>Π
K for some

constant C > 0.

Compared with the assumptions in Mikusheva and Sun (2022), Assumption 7 further requires

that maxi∈[n] |Πi| ≤ C. However, for all the above cross-fit estimators to be consistent, we only need

Π>Π/K → 0, which is weaker than that assumed in Mikusheva and Sun (2022) (e.g., Theorems 5

in their paper require Π>Π/K2/3 → 0).

Lemma B.1. Suppose Assumptions 5 and 7 hold. Then, Lemmas 2, 3, S3.1, S3.2 in Mikusheva

and Sun (2022) hold.

Theorem B.2. Suppose Assumptions 5 and 7 hold. Then, Assumption 2 holds for Mikusheva and

Sun’s (2022) cross-fit estimators defined above.

C Details for Simulations Based on Calibrated Data

The DGP contains only the intercept as the control variable. Therefore, we implement our jackknife

CLC test on the demeaned version of (ỹi, s̃i, Z̃i). The parameter space is B = [−0.5, 0.5]. We test the

null hypothesis that β = β0 for β0 = 0.1 while varying the true value β over 31 equal-spaced grids

over B. The grids for δ is the grid for β minus β0. We generate grids of (a1, a2) as a1 = sin2(t1) and

a2 = cos2(t1) sin2(t2) with t1 taking values over 16 equal-spaced grids over [a1/2(fs(D̂, γ̂(β0)), π/2]

and t2 taking values over 16 equal-spaced grids over [0, π/2]. We gauge E∗φa1,a2,s(δ, D̂, γ̂(β0)) via a

Monte Carlo integration with R = 2000 draws of independent standard normal random variables. In

practice, it is rare but possible that As(D̂, γ̂(β0)) defined in (3.8) is not unique. To increase numeri-

cal stability, we follow I.Andrews (2016) and allow for some slackness in the minimization. Let Ga be

the grid of (a1, a2) mentioned above, Q̂(a1, a2) = supδ∈D(β0)(Pδ,s(D̂, γ̂(β0))−E∗φa1,a2,s(δ, D̂, γ̂(β0))),

Q̂min = min(a1,a2)∈Ga Q̂(a1, a2) + 1/n, where n is the sample size, and

Ξ = {(a1, a2) ∈ Ga : Q̂(a) ≤ Q̂min + (Q̂min(1− Q̂min))1/2(2 log(log(R)))1/2R−1/2}.
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The slackness term in the definition of Ξ is due to the law of the iterated logarithm for sum of

Bernoulli random variables and captures the randomness of the Monte Carlo integration. Sup-

pose there are L elements in Ξ with an ascending order w.r.t. (t1, t2), which are denoted as

{(a1,l, a2,l)}Ll=1. We then define As(D̂, γ̂(β0)) as (a1,bL/2c, a2,bL/2c). We use the cross-fit estimators

defined in Section B.2 throughout the simulation.

D Details for Empirical Application

We consider the 1980s census of 329,509 men born in 1930-1939 based on Angrist and Krueger’s

(1991) dataset. The model for 180 instruments follows Mikusheva and Sun (2022), which can be

written explicitly as

ln Wi = Constant+H>i ζ +

38∑
c=30

Y OBi,cξc +
∑
s 6=56

POBi,sηs + βEi + γi

Ei = Constant+H>i λ+
38∑
c=30

Y OBi,cµc +
∑
s 6=56

POBi,sαs

+
3∑
j=1

∑
s 6=56

QOBi,jPOBi,sδc,s +
3∑
j=1

39∑
c=30

QOBi,jY OBi,cθj,c + εi,

where Wi is the weekly wage, Ei is the education of the i-th individual, Hi is a vector of covariates,16

Y OBi,c is a dummy variable indicating whether the individual was born in year c = {30, 31, ..., 39},
while QOBi,j is a dummy variable indicating whether the individual was born in quarter-of-birth

j ∈ {1, 2, 3, 4}. POBi,s is the dummy variable indicating whether the individual was born in

state s ∈ {51 states}.17 Both γi and εi are the error terms. The coefficient β is the return

to education. We vary this β across 10,000 equidistant grid-points from -0.5 to 0.5 (i.e., β ∈
{−0.5,−4.9999,−4.9998, ..., 0, ..., 4.9999, 0.5}) and solve for the range of β where the null hypothesis

cannot be rejected. Specifically, we can write the above model as

ln Wi = CiΓ + βEi + γi

Ei = Ciτ + ZiΘ + εi,

where Ci is a (329,509×71)-matrix of controls containing the first four terms on the right-hand

of the first equation, while Zi is the (329,509×180)-matrix of instruments containing the first two

terms in the third line. We can then partial out the controls Ci by multiplying each equation by

16The covariates we consider are: RACE, MARRIED, SMSA, NEWENG, MIDATL, ENOCENT, WNOCENT,
SOATL, ESOCENT, WSOCENT, and MT.

17The state numbers are from 1 to 56, excluding (3,7,14,43,52), corresponding to U.S. state codes.
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the residual matrix I − C(C>C)−1C> to obtain a form analogous to that in the main text:

Yi = Xiβ + ei,

Xi = Πi + vi.

Then, at each grid-point we take β0 = β and compute AR(β0), LM(β0), Wald(β0), φ̂App(D̂,γ̂(β0))

and φ̂Akrs(D̂,γ̂(β0))
. We reject the chosen value of β0 for AR(β0) if it exceeds the one-sided 5%-

quantile of the standard normal (i.e., reject if AR(β0) > z0.05). If LM(β0)2 > C0.05, we reject

the chosen β0 for Jackknife LM. If Wald(β0) > C0.05, we reject for JIVE-t. If φ̂As(D̂,γ̂(β0))
>

C0.05(As(D̂, γ̂(β0)); ρ̂(β0)) for s ∈ {pp, krs}, we reject accordingly. The two-step procedure depends

on the value of F̃ . If F̃ > 9.98, we reject if Wald(β0) > C0.02; otherwise if F̃ ≤ 9.98, we reject if

AR(β0) > z0.02.

The model for 1,530 instruments can be written explicitly as

ln Wi = Constant+H>i ζ +

38∑
c=30

Y OBi,cξc +
∑
s 6=56

POBi,sηs + βEi + γi.

Ei = Constant+H>i λ+
38∑
c=30

Y OBi,cµc +
∑
s 6=56

POBi,sαs

+
3∑
j=1

39∑
c=30

∑
s∈{51 states}

QOBi,jY OBi,cPOBi,sδj,c,s.

The main difference between this 1,530-instrument specification and the 180-instrument one is that

we now have QOB-YOB-POB interactions as our instruments, compared with QOB-YOB and

QOB-POB interactions in the case of 180 instruments. Note that in both cases, only quarter-of-

birth 1–3 are used; quarter 4 is omitted in order to avoid multicollinearity.

E Proof of Lemma 2.1

Under strong identification, by (2.3) and Assumption 2, we have1 0 0

0 1 0

0 0 dn


 Qe,e

QX,e

QX,X

 N

0

0

C̃

 ,

Φ1 Φ12 0

Φ12 Ψ 0

0 0 0


 ,

In addition, we note that ei(β0) = ei +Xi∆ with ∆ = dn∆̃→ 0. Therefore, we have

Qe(β0),e(β0) = Qe,e + 2∆QX,e + ∆2QX,X = Qe,e + op(1),
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QX,e(β0) = QX,e + ∆QX,X = QX,e + C̃∆̃ + op(1),

Φ̂
1/2
1 (β0)

p−→ Φ
1/2
1 , and Ψ̂1/2(β0)

p−→ Ψ1/2.

This implies (
AR(β0)

LM(β0)

)
=

(
Qe(β0),e(β0)/Φ̂

1/2
1 (β0)

QX,e(β0)/Ψ̂
1/2(β0)

)
 N

((
0
C̃∆̃

Ψ1/2

)
,

(
1 ρ

ρ 1

))
.

F Proof of Lemma 2.2

Recall N ∗2 = (1− ρ2)−1/2(N2 − ρN1) and(
N1

N ∗2

)
d
= N

((
0
θ

(1−ρ2)1/2

)
,

(
1 0

0 1

))
.

Because ρ is known, it suffices to construct the uniformly most powerful invariant test based on

observations (N1,N ∗2 ). As the null and alternative are invariant to sign changes, the maximum in-

variant is (N1,N ∗22 ). Then, Lehmann and Romano (2006, Theorem 6.2.1) implies the invariant test

should be based on the maximum invariant. Note (N1,N ∗22 ) are independent, N1 follows a standard

normal distribution, and N ∗2 follows a noncentral chi-square distribution with one degree of freedom

and noncentrality parameter λ = θ2

1−ρ2 . Therefore, by the Neyman-Pearson’s Lemma (Lehmann

and Romano (2006, Theorem 3.2.1)), the most powerful test based on observations (N1,N ∗22 ) is the

likelihood ratio test where the likelihood ratio function evaluated at (N1 = `1,N ∗22 = `2) depends

on `2 only and can be written as

LR (`2;λ) = −λ
2

+ log

(
exp(
√
λ`2) + exp(−

√
λ`2)

2

)
In addition, we note that LR (`2;λ) is monotone increasing in `2 for any λ ≥ 0 and `2 ≥

0. Therefore, Lehmann and Romano (2006, Theorem 3.4.1) implies the likelihood ratio test is

equivalent to 1{N ∗22 ≥ Cα}, which is uniformly most powerful among tests for λ = 0 v.s. λ > 0

and based on observations (N1,N ∗22 ) only. This means it is also the uniformly most powerful test

that is invariant to sign changes.

In addition, the joint density of (N1,N2) is

(2π)−1(1− ρ2)−1/2 exp

(
−1

2

(
N 2

1

1− ρ2
− 2ρN1N2

1− ρ2
+
N 2

2

1− ρ2

))
exp

(
θ
ρN1 −N2

1− ρ2

)
exp

(
θ2

1− ρ2

)
≡ C(θ) exp(θN ∗2 )h(N1,N2),

where C(θ) = (2π)−1(1− ρ2)−1/2 exp
(

θ2

1−ρ2

)
and h(N1,N2) = exp

(
−1

2

(
N 2

1
1−ρ2 − 2ρN1N2

1−ρ2 +
N 2

2
1−ρ2

))
.
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Note that N ∗2 is symmetric around 0 under the null. By Lehmann and Romano (2006, Section 4.2),

1{N ∗22 ≥ Cα} is the UMP unbiased level-α test.

G Proof of Lemma 2.3

Under strong identification and fixed alternatives, because (Qe(β0),e(β0)−∆2C, QX,e(β0)−∆C, QX,X−
C)> = Op(1), we have

(
dnAR(β0)

dnLM(β0)

)
p−→

 ∆2C̃
Φ

1/2
1 (β0)

∆C̃
Ψ1/2(β0)

 .

This implies

dnLM
∗(β0)

p−→ 1

(1− ρ2(β0))1/2

(
∆C̃

Ψ1/2(β0)
− ρ(β0)∆2C̃

Φ
1/2
1 (β0)

)
,

which leads to the desired result.

H Proof of Lemma 2.4

Under weak identification, (2.3) implies(
Qe(β0),e(β0)

QX,e(β0)

)
=

(
Qe,e + 2∆QX,e + ∆2QX,X

QX,e + ∆QX,X

)
 N

((
∆2C̃
∆C̃

)
,

(
Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

))
,

which leads to the first result.

For the second result, it is obvious that m1(∆)→ C̃Υ−1/2. In addition, we have

m2(∆) =
C̃
(
∆Φ1(β0)−∆2Φ12(β0)

)
(Φ1(β0)(Φ1(β0)Ψ(β0)− Φ2

12(β0)))1/2

→ τ C̃
(Υ(ΥΨ− τ2))1/2

=
C̃

Υ1/2

ρ23

(1− ρ2
23)1/2

,

where we use the fact that

Φ1(β0)/∆4 → Υ,

(Φ1(β0)Ψ(β0)− Φ2
12(β0))/∆4 → ΥΨ− τ2,

Φ1(β0)−∆Φ12(β0)

∆3
→ τ.
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I Proof of Theorem 2.1

The first statement in Theorem 2.1(i) is a direct consequence of Marden (1982, Theorem 2.1)

because the acceptance region A = {(A,B) : ν1A
2 + ν2B

2 ≤ Cα(a1, a2; ρ(β0))} is closed, convex,

and monotone decreasing in the sense that if (A,B) ∈ A and A′ ≤ A, B′ ≤ B, then (A′, B′) ∈ A.

The second statement in Theorem 2.1(i) follows Andrews (2016, Theorem 2.1), which is a direct

consequence of results in Monti and Sen (1976) and Koziol and Perlman (1978).

For Theorem 2.1(ii), we note that ρ̃ = ρ under local alternatives and

φa1,a2,∞ = 1
{

(a1 + a2ρ
2)N 2

1 + 2a2ρ(1− ρ2)1/2N1N ∗2 + (1− a1 − a2ρ
2)N ∗22 ≥ Cα(a1, a2; ρ)

}
.

The “if” part of Theorem 2.1(ii) is a direct consequence of Lemma 2.2. The “only if” part of

Theorem 2.1(ii) is a direct consequence of the necessary part of Lehmann and Romano (2006,

Theorem 3.2.1). Specifically, given N1 and N ∗2 are independent, the “only if” part requires a1 +

a2ρ
2 = 0, which implies a1 = 0 and a2ρ = 0.

For Theorem 2.1(iii), we consider two cases of fixed alternatives: (1) ∆ 6= Φ
1/2
1 (β0)Ψ−1/2(β0)ρ−1(β0)

and (2) ∆ = Φ
1/2
1 (β0)Ψ−1/2(β0)ρ−1(β0). In Case (1), by Lemma 2.3, the limits of d2

nAR
2(β0),

d2
nLM

2(β0), d2
nLM

∗2(β0) are all positive, which implies that for all (a1,n, a2,n) ∈ A0,

1{a1,nAR
2(β0) + a2,nLM

2(β0) + (1− a1,n − a2,n)LM∗2(β0) ≥ Cα(a1,n, a2,n; ρ̂(β0))} p−→ 1.

In Case (2), we have

P
(
a1,nAR

2(β0) + a2,nLM
2(β0) + (1− a1,n − a2,n)LM∗2(β0) ≥ Cα(a1,n, a2,n; ρ̂(β0))

)
≥ P

(
q̃Ψ2(β0)ρ4(β0)

C̃2Φ1(β0)
d2
nAR

2(β0) ≥ Cα(a1,n, a2,n; ρ̂(β0)

)
≥ P (q̃ + op(1) ≥ Cα,max(ρ(β0)))→ 1,

where the first inequality follows from the restriction on a1.n and the facts that LM2(β0) ≥ 0 and

LM∗2(β0) ≥ 0, the second inequality follows from d2
nAR

2(β0)
p−→ Φ−1

1 (β0)∆4
∗(β0)C̃2 (by Lemma

2.3) and ρ̂(β0)
p−→ ρ(β0), and the last convergence follows from the fact that q̃ > Cα,max(ρ(β0)).

This concludes the proof.
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J Proof of Theorem 4.1

We are under weak identification. By Lemma 2.4 and Assumption 2, we have AR(β0)

LM∗(β0)

D̂

 N

m1(∆)

m2(∆)

µD

 ,

1 0 0

0 1 0

0 0 σ2
D


 .

This implies (AR(β0), LM∗(β0), D̂) are asymptotically independent. By Assumption 3, we have

(AR2(β0), LM∗2(β0),As(D̂, γ̂(β0))) (Z2(m1(∆)),Z2(m2(∆)),As(D, γ(β0)))

where the two normal random variables are independent and independent of D, and by definition,

As(D, γ(β0))) = (a1(fs(D, γ(β0)), γ(β0)), a2(fs(D, γ(β0)), γ(β0))). In addition, we have ρ̂(β0)
p−→

ρ(β0). By the bounded convergence theorem, this further implies

Eφ̂As(D̂,γ̂(β0))
→ Eφa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞(∆, µD, γ(β0)). (J.1)

In addition, suppose the null holds so that ∆ = 0. This implies m1(∆) = m2(∆) = 0. Then,

we have

(φ̂As(D̂,γ̂(β0))
− α)f(D̂) (φa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞(0, µD, γ(β0))− α)f(D),

where

φa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞(0, µD, γ(β0))

= 1


a1(fs(D, γ(β0)), γ(β0))Z2

1 + a2(fs(D, γ(β0)), γ(β0))(ρ(β0)Z1 + (1− ρ2(β0))1/2Z2)

(1− a1(fs(D, γ(β0)), γ(β0))− a2(fs(D, γ(β0)), γ(β0)))Z2
2

≥ Cα(a1(fs(D, γ(β0)), γ(β0)), a2(fs(D, γ(β0)), γ(β0)); ρ(β0))

 ,

Z1 and Z2 are independent standard normals, and they are independent of D. Then, by the

definition of Cα(·), we have

E(φ̂As(D̂,γ̂(β0))
− α)h(D̂)→ E

[
E
(
φa(fs(D,γ(β0)),γ(β0)),∞(0, µD, γ(β0))− α|D

)
h(D)

]
= 0.

42



K Proof of Corollary 4.1

By the continuous mapping theorem, we have

lim
n→∞

Eφ̂As(D̂,γ̂(β0))
1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
=

E(φa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞1{|D − d| ≤ ε})
E1{|D − d| ≤ ε)}

,

and

lim
ε→0

E(φa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞1{|D − d| ≤ ε})
E1{|D − d| ≤ ε)}

= E(φa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞|D = d),

where, by construction, we have

φa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞

= 1{ν1,s(D, γ(β0))Ñ 2
1 + ν2,s(D, γ(β0))Ñ 2

2 ≥ C̃α(ν1,s(D, γ(β0)), ν2,s(D, γ(β0)))}

and

(Ñ1, Ñ2) = (Z1(m1(∆)),Z2(m2(∆)))Us(D, γ(β0)).

Similarly, we can show

lim
ε→0

lim
n→∞

Eφ̃(ÃR
2

s(β0), L̃M
∗2
s (β0), D̂, γ̂(β0))1{|D̂ − d| ≤ ε}

E1{|D̂ − d| ≤ ε}
= E(φ̃(Ñ 2

1 , Ñ 2
2 , D, γ(β0))|D = d).

Therefore, conditional on D = d, φa1(fs(D,γ(β0)),γ(β0)),a2(fs(D,γ(β0)),γ(β0)),∞ is a linear combination

of (Ñ 2
1 , Ñ 2

2 ) with weights (ν1,s(d, γ(β0)), ν2,s(d, γ(β0))), and Ñ1 and Ñ2 are two independent normal

random variables with unit variance and expectations θ1 and θ2, respectively. Under the null, we

have (θ1, θ2) = (0, 0), which, by definition of φ̃(·), implies

E(φ̃(Ñ 2
1 , Ñ 2

2 , D, γ(β0))|D = d) ≤ α.

Therefore, φ̃(Ñ 2
1 , Ñ 2

2 , D, γ(β0)) is a level-α test. Then, the two optimality results follow Theorem

2.1(i).

L Proof of Theorem 4.2

Denote cB = cB(β) and ∆∗ = ∆∗(β). By Assumption 2, Φ1 > 0, which implies |∆∗| > 0. Un-

der strong identification and local alternatives, we have ∆ → 0, cB(β0) → cB, ∆∗(β0) → ∆∗,
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Cα,max(ρ(β0))→ Cα,max(ρ), and

 AR(β0)

LM∗(β0)

dnD̂

 N



0
∆̃C̃

((1−ρ2)Ψ)1/2

C̃

 ,

1 0 0

0 1 0

0 0 0


 .

This implies dnσ̂D
√
r̂ = dnD̂

p−→ C̃, which further implies dnfpp(D̂, γ̂(β0))
p−→ C̃. For fkrs(D̂, γ̂(β0)),

we note that

max(r̂ − 1, 0) ≤ r̂krs ≤ r̂.

Therefore, we also have fkrs(D̂, γ̂(β0))dn
p−→ C̃. Let En(ε) = {||γ̂(β0) − γ(β0)|| + |δnD̂ − C̃| ≤ ε}.

Then, for an arbitrary ε > 0, we have P(En(ε)) ≥ 1− ε when n is sufficiently large.

Denote δ = dnδ̃. We have

As(D̂, γ̂(β0)) ∈ arg min
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0))

sup
δ̃∈D̃n

(
P
dnδ̃,s

(D̂, γ̂(β0))− E∗φa1,a2,s(dnδ̃, D̂, γ̂(β0))
)
,

where D̃n = {δ̃ : dnδ̃ ∈ D(β0)}. Let

Qn(a1, a2, δ̃) = P
dnδ̃,s

(D̂, γ̂(β0))− E∗φa1,a2,s(dnδ̃, D̂, γ̂(β0)) and

Q(a1, a2, δ̃) = E1{Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}

− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)

 ,

where Z1 is standard normal, Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃) is normal with mean (1− ρ2)−1/2Ψ−1/2δ̃C̃
and unit variance, and Z1 and Z2(·) are independent. Then, we aim to show that

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n

∣∣∣∣Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)

∣∣∣∣ p−→ 0. (L.1)

We divide D̃n into three parts:

D̃n,1(ε) = {δ̃ ∈ D̃n, |δ̃| ≤M1(ε)},

D̃n,2(ε) =

{
δ̃ ∈ D̃n,

∣∣∣∣∣ dnδ̃

∆̂∗(β0)
− 1

∣∣∣∣∣ ≤ ε
}
, and

D̃n,3(ε) = D̃n ∩ D̃cn,1(ε) ∩ D̃cn,2(ε),
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where M1(ε) is a large constant so that

P

(
(1− a)Z2

(
M1(ε)ε|C̃|

(2(1− ρ2)ΨcB)1/2

)
≥ Cα,max(ρ) + 1

)
= 1− ε. (L.2)

When n is sufficiently large and ε is sufficiently small, on En(ε), there exists a constant c such that

|∆̂∗(β0)−∆∗| ≤ cε, inf
δ̃∈D̃n,2(ε)

|dnδ̃| ≥ (1− ε)(|∆∗| − cε),

|Φ̂1(β0)− Φ1| ≤ cε, |d2
nf

2
s (D̂, γ̂(β0))− C̃2| ≤ cε,

sup
δ̃∈D̃n,2(ε)

1− (d2
nδ̃

2, dnδ̃)

( Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)2

≤

1− (∆2
∗,∆∗)

(Φ1 Φ12

Φ12 Ψ

)−1(
Φ13

τ

)2

+ cε ≤ cB + cε,

|ĉB(β0)− cB| ≤ cε. (L.3)

This further implies

D̃n,1(ε) ∩ D̃n,2(ε) = ∅.

Recall φa1,a2,s(δ, D̂, γ̂(β0)) defined in (3.7). With δ replaced by dnδ̃ and when δ̃ ∈ D̃n,1(ε), we

have (
d−1
n Ĉ1(dnδ̃)

d−1
n Ĉ2(dnδ̃)

)
(dnfs(D̂, γ̂(β0)))

p−→

(
0

(1− ρ2)−1/2Ψ−1/2δ̃C̃

)
,

Therefore, uniformly over (a1, a2) ∈ A0 and δ̃ ∈ D̃n,1(ε) and conditional on data, we have

φa1,a2,s(dnδ̃, D̂, γ̂(β0)) 1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)

 .

This implies

sup
(a1,a2)∈A0,δ̃∈D̃n,1(ε)

∣∣∣∣E∗φa1,a2,s(dnδ̃, D̂, γ̂(β0))

− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


∣∣∣∣ p−→ 0.
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In addition, by Lemma 2.2, for any δ̃, E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


is maximized at a1 = 0 and a2ρ = 0. This implies

sup
δ̃∈D̃n,1(ε)

|P
dnδ̃,s

(D̂, γ̂(β0))− E1{Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}|

= sup
δ̃∈D̃n,1(ε)

| sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0))

E∗φa1,a2,s(dnδ̃, D̂, γ̂(β0))− E1{Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}|

≤ sup
δ̃∈D̃n,1(ε)

∣∣∣∣ sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0))

E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


− E1{Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}
∣∣∣∣+ op(1),

≤ sup
δ̃∈D̃n,1(ε)

∣∣∣∣ sup
(a1,a2)∈A0

E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


− E1{Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}
∣∣∣∣+ op(1) = op(1),

where the second inequality is due to the facts that a(fs(D̂, γ̂(β0)), γ̂(β0)) = op(1) under strong

identification and E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)

 is continuous at

a1 = 0 uniformly over |δ̃| ≤M1(ε). Therefore, we have

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,1(ε)

∣∣∣∣Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)

∣∣∣∣ p−→ 0. (L.4)

Next, we consider the case in which δ̃ ∈ D̃n,2(ε). We have

φa1,a2,s(dnδ̃, D̂, γ̂(β0))

= 1


a1Z2

1 (Ĉ1(dnδ̃)fs(D̂, γ̂(β0)))

+a2

(
ρ̂(β0)Z1(Ĉ1(dnδ̃)fs(D̂, γ̂(β0))) + (1− ρ̂2(β0))1/2Z2(Ĉ2(dnδ̃)fs(D̂, γ̂(β0)))

)2

+(1− a1 − a2)Z2
2 (Ĉ2(dnδ̃)fs(D̂, γ̂(β0))) ≥ Cα(a1, a2; ρ̂(β0))


≥ 1

{
a(fs(D̂, γ̂(β0)), γ̂(β0))Z2

1 (Ĉ1(dnδ̃)fs(D̂, γ̂(β0))) ≥ Cα,max(ρ̂(β0))
}
.

By (L.3), on En(ε), there exists a constant c > 0 such that

Ĉ2
1 (dnδ̃)(dnfs(D̂, γ̂(β0)))2
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=
Φ̂−1

1 (β0)(dnδ̃)
4(dnfs(D̂, γ̂(β0)))21− (d2

nδ̃
2, dnδ̃)

( Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)2

≥ (Φ1(β0) + cε)−1(1− ε)4(|∆∗| − cε)4(C̃2 − cε)
cB + cε

≥ c

and

a(fs(D̂, γ̂(β0)), γ̂(β0))Ĉ2
1 (dnδ̃)f

2
s (D̂, γ̂(β0))

≥ 1.1Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)d2

nf
2
s (D̂, γ̂(β0))

Ĉ2
1 (dnδ̃)(dnfs(D̂, γ̂(β0)))2

≥ 1.1Cα,max(ρ̂(β0))(Φ1 − cε)(cB − cε)
(|∆∗|+ cε)4(C̃2 + cε)

(Φ1(β0) + cε)−1(1− ε)4(|∆∗| − cε)4(C̃2 − cε)
cB + cε

≥ (1.1− cε)Cα,max(ρ̂(β0)),

where the last inequality holds because ε can be arbitrarily small. This means, on En(ε) and when

δ̃ ∈ D̃n,2(ε),

E∗φa1,a2,s(dnδ̃, D̂, γ̂(β0)) ≥ P∗(op(1) + (1.1− cε)Cα,max(ρ̂(β0)) ≥ Cα,max(ρ̂(β0)))→ 1.

As P(En(ε))→ 1, we have

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

[
1− E∗φa1,a2,s(dnδ̃, D̂, γ̂(β0))

]
p−→ 0,

and thus,

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

[
P
dnδ̃,s

(D̂, γ̂(β0))− E∗φa1,a2,s(dnδ̃, D̂, γ̂(β0))
]

≤ sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

[
1− E∗φa1,a2,s(dnδ̃, D̂, γ̂(β0))

]
p−→ 0. (L.5)

Furthermore, note that a1 + a2 ≤ a < 1 and when δ̃ ∈ D̃n,2(ε), on En(ε), (L.3) implies δ̃2 → ∞.

Therefore, we have

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2
+ (1− a1 − a2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃)

≥ (1− a)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) =

(1− a)δ̃2C̃2

(1− ρ2)Ψ
(1 + op(1))→∞,
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which further implies

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

1− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


 p−→ 0

and

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

[
E1{Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}

− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


]

p−→ 0. (L.6)

Combining (L.5) and (L.6), we have

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

∣∣∣∣Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)

∣∣∣∣→ 0. (L.7)

Last, we consider the case in which δ̃ ∈ D̃n,3(ε). On En(ε), (L.3) implies

Ĉ2
2 (dnδ̃)f

2
s (D̂, γ̂(β0))

=
δ̃2(1− dnδ̃

∆̂∗(β0)
)2

(1− ρ̂2(β0))Ψ̂(β0)

d2
nf

2
s (D̂, γ̂(β0))1− (d2

nδ̃
2, dnδ̃)

( Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)2

≥ (1− cε)M2
1 (ε)ε2(C̃2 − cε)

(1− ρ2)ΨcB

≥ M2
1 (ε)ε2C̃2

2(1− ρ2)ΨcB
,

where the second inequality holds when ε is sufficiently small. In this case,

E∗φa1,a2,s(dnδ̃, D̂, γ̂(β0)) ≥ P∗((1− a)Z2
2 (Ĉ2(dnδ̃)fs(D̂, γ̂(β0))) ≥ Cα,max(ρ̂(β0)))

≥ P∗
(

(1− a)Z2
2

(
M1(ε)ε|C̃|

(2(1− ρ2)ΨcB)1/2

)
≥ Cα,max(ρ̂(β0))

)

≥ P∗
(

(1− a)Z2
2

(
M1(ε)ε|C̃|

(2(1− ρ2)ΨcB)1/2

)
≥ Cα,max(ρ) + cε

)
− ε ≥ 1− 2ε,

where the second inequality is by the fact that the CDF (survival function) of Z2(λ) is monotone

decreasing (increasing) in |λ| and the last equality is by the definition of M1(ε) in (L.2) and the
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fact that Cα,max(ρ̂(β0))
p−→ Cα,max(ρ) . This implies, on En(ε),

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,3(ε)

[
P
dnδ̃,s

(D̂, γ̂(β0))− E∗φa1,a2,s(dnδ̃, D̂, γ̂(β0))
]
≤ 2ε. (L.8)

In addition, we note that (1− ρ2)−1Ψ−1δ̃2C̃2 satisfies

(1− ρ2)−1Ψ−1δ̃2C̃2 ≥ M2
1 (ε)ε2C̃2

2(1− ρ2)ΨcB
,

where we use the facts that δ̃2 ≥M2
1 (ε), cB ≥ 1, and ε < 1. Therefore, by the same argument, we

have

E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)

 ≥ 1− ε

and

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,3(ε)

[
E1{Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}

− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


]
≤ ε. (L.9)

Combining (L.8) and (L.9), we have, on En(ε),

sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,3(ε)

∣∣∣∣Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)

∣∣∣∣ ≤ 3ε. (L.10)

Combining (L.4), (L.7), and (L.10), we have

P

(
sup

(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n
|Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)| > 5ε

)

≤ P

(
sup

(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,1(ε)

|Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)| > ε, En(ε)

)

+ P

(
sup

(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,2(ε)

|Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)| > ε, En(ε)

)

+ P

(
sup

(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n,3(ε)

|Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)| > 3ε, En(ε)

)
+ P (Ecn(ε))

≤ o(1) + ε.
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Since ε is arbitrary, we have

ωn ≡ sup
(a1,a2)∈A(fs(D̂,γ̂(β0)),γ̂(β0)),δ̃∈D̃n

|Qn(a1, a2, δ̃)−Q(a1, a2, δ̃)|
p−→ 0.

Then we have

0 ≤ sup
δ̃∈D̃n

Qn(a(fs(D̂, γ̂(β0)), γ̂(β0)), 0, δ̃)− sup
δ̃∈D̃n

Qn(As(D̂, γ̂(β0)), δ̃)

≤ sup
δ̃∈D̃n

Q(a(fs(D̂, γ̂(β0)), γ̂(β0)), 0, δ̃)− sup
δ̃∈D̃n

Q(As(D̂, γ̂(β0)), δ̃) + 2ωn

= op(1)− sup
δ̃∈D̃n

Q(As(D̂, γ̂(β0)), δ̃) + 2ωn,

where the equality holds because (1) sup
δ̃∈<Q(a1, 0, δ̃) is continuous at a1 = 0 as shown in the proof

of I.Andrews (2016, Theorem 5), (2) a(fs(D̂, γ̂(β0)), γ̂(β0)) = op(1) under strong identification, and

(3) sup
δ̃∈<Q(0, 0, δ̃) = 0 by construction.

Furthermore, we have

Q(a1, a2, δ̃) = E1{Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}

− E1

a1Z2
1 + a2

(
ρZ1 + (1− ρ2)1/2Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

)2

+(1− a1 − a2)Z2
2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)


= E1{Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα}

− E1

{
(a1 + a2ρ

2)Z2
1 + a2ρ(1− ρ2)1/2Z1Z2((1− ρ2)−1/2Ψ−1/2δ̃C̃)

+(1− a1 − a2ρ
2)Z2

2 ((1− ρ2)−1/2Ψ−1/2δ̃C̃) ≥ Cα(a1, a2; ρ)

}

Note that a1 = 0 and a2ρ = 0 if and only if a1 + a2ρ
2 = 0, given that a1 and a2 are nonnegative.

Therefore, Theorem 2.1(ii) implies, for any constant C > 0, there exists a constant c > 0 such that

inf
(a1,a2)∈A0,a1+a2ρ2≥C

sup
δ̃∈D̃n

Q(a1, a2, δ̃) ≥ c > 0.

Therefore,

P
(
A1,s(D̂, γ̂(β0)) +A2,s(D̂, γ̂(β0))ρ2 ≥ C > 0

)
≤ P (c ≤ op(1) + 2ωn)→ 0.

This implies A1,s(D̂, γ̂(β0))
p−→ 0 and A2,s(D̂, γ̂(β0))ρ

p−→ 0.

To see the optimality result, note that

(φ̂As(D̂,γ̂(β0))
, φ(AR(β0), LM(β0))) (1{N ∗22 ≥ Cα}, φ(N1,N2)),
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where (N1,N2) is defined above Theorem 4.2 and N ∗2 = (1− ρ2)−1/2(N2 − ρN1). Then, the result

holds by Theorem 2.1(ii).

M Proof of Theorem 4.3

We prove the result that lim supn→∞ supλn∈Λn Eλ(φ̂As(D̂,γ̂(β0))
) = α. The other one can be proved

in the same manner. Throughout the proof, we are under the null, i.e., β0 = β. We start by proving

the result for the full sequence {n}, rather than a subsequence {nk} of {n}. Then, we note that

the same proof goes through with nk in place of n.

We consider two cases: sequences λn for which Cn converges to a constant and those for which

it diverges to infinity. First, let us consider the case where Cn → C̃ for some fixed constant C̃ ∈ <.

For this case, it is established in Theorem 4.1 that under β0 = β,

(AR2(β0), LM∗2(β0),As(D̂, γ̂(β0))) (Z2
1 ,Z2

2 ,As(D, γ)),

where the two normal random variables are independent from each other and independent of D,

and furthermore (by letting h(·) in Theorem 4.1 be an identity function),

lim
n→∞

Eλn(φ̂As(D̂,γ̂(β0))
) = α.

Second, let us consider the case where Cn diverges to infinity. Then, by Theorem 4.2, we have

lim
n→∞

Eλn(φ̂As(D̂,γ̂(β0))
) = P(Z2

2 ≥ Cα) = α.

To complete the proof, we note that the above argument verifies Assumption B∗ in Andrews et al.

(2020) and then we can establish the result by using Corollary 2.1 in their paper.

N Proof of Theorem 4.4

We consider strong identification with fixed alternatives. By construction, we have A1,s(D̂, γ̂(β0)) ≥
1.1Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)f2

s (D̂,γ̂(β0))
. By Theorem 2.1(iii), it suffices to show that, w.p.a.1,

1.1Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)f2

s (D̂, γ̂(β0))
≥ q̃Ψ2(β0)ρ4(β0)

C2Φ1(β0)
,

or equivalently,

1.1Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)d2

nf
2
s (D̂, γ̂(β0))

≥ q̃Ψ2(β0)ρ4(β0)

C̃2Φ1(β0)
=

q̃Φ1(β0)

C̃2∆4
∗(β0)

, (N.1)
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for some constant q̃ > Cα,max(ρ(β0)). Under strong identification and fixed alternatives, we have

dnD̂ = dn

QX,X − (Qe(β0),e(β0), QX,e(β0))

(
Φ̂1(β0) Φ̂12(β0)

Φ̂12(β0) Ψ̂(β0)

)−1(
Φ̂13(β0)

τ̂(β0)

)
p−→

1− (∆2,∆)

(Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

) C̃.
Therefore, we have

dnfs(D̂, γ̂(β0)) = dnD̂ + op(1)
p−→

1− (∆2,∆)

(Φ1(β0) Φ12(β0)

Φ12(β0) Ψ(β0)

)−1(
Φ13(β0)

τ(β0)

) C̃
for s ∈ {pp, krs}. This means for any ε > 0, w.p.a.1,

d2
nf

2
s (D̂, γ̂(β0)) ≤ (cB(β0) + ε)C̃2.

In addition, we have ĉB(β0)
p−→ cB(β0) ≥ 1, ∆̂∗(β0)

p−→ ∆∗(β0), Cα,max(ρ̂(β0))
p−→ Cα,max(ρ(β0)),

and Φ̂1(β0)
p−→ Φ1(β0) > 0, which imply ĉB(β0) ≥ cB(β0)−cε, Φ̂1(β0) ≥ Φ1(β0)−cε, Cα,max(ρ̂(β0)) ≥

Cα,max(ρ(β0))− cε, and ∆̂4
∗(β0) ≤ ∆4

∗(β0) + cε, w.p.a.1. Therefore, we have, w.p.a.1,

1.1Cα,max(ρ̂(β0))Φ̂1(β0)ĉB(β0)

∆̂4
∗(β0)d2

nf
2
s (D̂, γ̂(β0))

≥ 1.1(Cα,max(ρ(β0))− cε)(cB(β0)− cε)(Φ1(β0)− cε)
(∆4
∗(β0) + cε)(cB(β0) + ε)C̃2

≥ (1.1− cε)Cα,max(ρ(β0))Φ1(β0)

∆4
∗(β0)C̃2

,

where the second inequality holds because ε can be arbitrarily small. Then, we can let q̃ in (N.1)

be (1.1− cε)Cα,max(ρ(β0)) which is greater than Cα,max(ρ(β0)). This concludes the proof.

O Proof of Theorem A.1

We first extend our notation. For ai ∈ <d1×1 and bj ∈ <d2×1, we writeQa,b as
∑

i∈[n]

∑
j 6=i aiPijb

>
j /
√
K.

Let γ̂e = (W>W )−1(W>ẽ) and γ̂V = (W>W )−1(W>Ṽ ). Then, we have ei = ẽi − W>i γ̂e,

Vi = Ṽi −W>i γ̂V , and Xi = Πi + Vi = Πi + Ṽi −W>i γ̂V . By Lemma S.1, we have

Qe,e = Qẽ−Wγ̂e,ẽ−Wγ̂e = Qẽ,ẽ − 2Qẽ,W γ̂e + γ̂>e QW,W γ̂e = Qẽ,ẽ + oP (1).

In addition, let X = Π + Ṽ . Then, we have X = X −Wγ̂V and

QX,e = QX−Wγ̂V ,ẽ−Wγ̂e
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= QX,ẽ −Qẽ,W γ̂V −QX,W γ̂e + γ̂>V QW,W γ̂e

= QX,ẽ −QX,W γ̂e + oP (1)

= QX,ẽ −QΠ,W γ̂e + oP (1)

= QX,ẽ +
∑
i∈[n]

ΠiPiiW
>
i γ̂e/

√
K + oP (1),

where the last equality holds because

QΠ,W =
∑
i∈[n]

Πi(
∑
j 6=i

PijW
>
j )/
√
K = −

∑
i∈[n]

ΠiPiiW
>
i /
√
K.

Denote Gi = (
∑

i∈[n] ΠiPiiW
>
i )(
∑

i∈[n]WiW
>
i )−1Wi. Then, we have

QX,e = QṼ ,ẽ +QΠ,ẽ +
∑
i∈[n]

Giẽi/
√
K + oP (1)

=

∑
i∈[n]

∑
j 6=i ṼiPij ẽj√
K

+
∑
i∈[n]

(Gi + ωi)√
K

ẽi + oP (1),

where ωi =
∑

j 6=i PijΠj .

Similarly, we have

QX,X = QX−Wγ̂V ,X−Wγ̂V

= QX,X − 2QX,W γ̂V + γ̂>V QW,W γ̂V

= QΠ,Π + 2QΠ,Ṽ +QṼ ,Ṽ − 2QΠ,W γ̂V + oP (1)

= QΠ,Π +

∑
i∈[n]

∑
j 6=i ṼiPij Ṽj√
K

+ 2
∑
i∈[n]

ωi +Gi√
K

Ṽi + oP (1).

Given {ẽi, Ṽi}i∈[n] are independent, we can follow the same argument in the proof of Chao et al.

(2012, Lemma 2) and show the joint asymptotic normality of∑i∈[n]

∑
j 6=i ẽiPij ẽj√
K

,

∑
i∈[n]

∑
j 6=i ṼiPij ẽj√
K

,

∑
i∈[n]

∑
j 6=i ṼiPij Ṽj√
K

,
∑
i∈[n]

(Gi + ωi)√
K

ẽi,
∑
i∈[n]

(Gi + ωi)√
K

Ṽi

 .

In particular, we see that

V ar

∑
i∈[n]

(Gi + ωi)ẽi√
K

 =
∑
i∈[n]

(Gi + ωi)
2σ̃2
i

K
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≤ C
∑
i∈[n]

(Gi + ωi)
2

K

≤ C

[
(
∑

i∈[n] ΠiPiiW
>
i )(
∑

i∈[n]WiW
>
i )−1(

∑
i∈[n] ΠiPiiWi)

K
+

Π>Π

K

]

≤ C
[
p2
n

Π>Π

K
+

Π>Π

K

]
= O(1)

and the same result for V ar(
∑

i∈[n]
(Gi+ωi)Ṽi√

K
). This implies the joint asymptotic normality of

(Qe,e, QX,e, QX,X −QΠ,Π),

and thus, verifying Assumption 1.

To see the second result in Theorem A.1, we note that

E

∑
i∈[n]

Giẽi/
√
K

2

≤ C
∑
i∈[n]

G2
i /K

= C(
∑
i∈[n]

ΠiPiiW
>
i )(

∑
i∈[n]

WiW
>
i )−1(

∑
i∈[n]

ΠiPiiWi)/K

≤ C
∑
i∈[n]

Π2
iP

2
ii/K

≤ CΠ>Πp2
n/K.

If Π>Πp2
n/K = o(1), then we have

∑
i∈[n]Giẽi/

√
K = oP (1). Similarly, we can show that, if

Π>Πp2
n/K = o(1),

∑
i∈[n]GiṼi/

√
K = oP (1). These imply QX,W γ̂e = oP (1) and QX,W γ̂V = oP (1),

which further imply that

QX,e = QX,ẽ + oP (1) and QX,X = QX,X + oP (1).

P Proof of Theorem B.1

We focus on the consistency of Φ̂1(β0) and Ψ̂(β0). The consistency of the rest four estimators can be

established in the same manner. We have ei(β0) = ei+∆Xi = Vi(∆)+∆Πi, where Vi(∆) = ei+∆Vi.

Therefore,

Φ̂1(β0) =
2

K

∑
i∈[n]

∑
j 6=i

P 2
ije

2
i (β0)e2

j (β0)

=
2

K

∑
i∈[n]

∑
j 6=i

P 2
ij(∆

2Π2
i + 2∆ΠiVi(∆) + V 2

i (∆))(∆2Π2
j + 2∆ΠjUj(∆) + U2

j (∆))
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=
2

K

∑
i∈[n]

∑
j 6=i

P 2
ijV

2
i (∆)U2

j (∆) + ∆
4

K

∑
i∈[n]

∑
j 6=i

P 2
ij(ΠiVi(∆)U2

j (∆) + ΠjUj(∆)V 2
i (∆))

+ ∆2 2

K

∑
i∈[n]

∑
j 6=i

P 2
ij(Π

2
iU

2
j (∆) + Π2

jV
2
i (∆) + 4ΠiΠjVi(∆)Uj(∆))

+ ∆3 4

K

∑
i∈[n]

∑
j 6=i

P 2
ij(Π

2
iΠjUj(∆) + Π2

jΠiVi(∆)) + ∆4 2

K

∑
i∈[n]

∑
j 6=i

P 2
ijΠ

2
iΠ

2
j

≡
4∑
l=0

∆lTl.

We first note that 1
K

∑
i∈[n] ω

2
i σ

2
i = o(1), 1

K

∑
i∈[n] ω

2
i γi = o(1), and 1

K

∑
i∈[n] ω

2
i η

2
i = o(1).

To see this, note that

1

K

∑
i∈[n]

ω2
i σ

2
i ≤

C

K

∑
i∈[n]

ω2
i =

C

K

∑
i∈[n]

(PiΠ− PiiΠi)
2

≤ C

K
(2Π>P 2Π + 2

∑
i∈[n]

P 2
iiΠ

2
i ) ≤ C

Π>Π

K
= o(1),

where the second and third inequalities are shown in the Proof of Mikusheva and Sun (2022, Lemma

S1.4). The results for 1
K

∑
i∈[n] ω

2
i γi = o(1) and 1

K

∑
i∈[n] ω

2
i η

2
i = o(1) can be established in the

same manner.

We first consider T0. Denote ξij = V 2
i (∆)U2

j (∆)− EV 2
i (∆)U2

j (∆). We want to show that

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijξij = op(1).

Note that

E

 1

K

∑
i∈[n]

∑
j 6=i

P 2
ijξij

2

=
1

K2

∑
i∈[n]

∑
j 6=i

P 4
ijEξ2

ij +
4

K2

∑
i∈[n]

∑
j 6=i

∑
i′ 6=i,j

P 2
ijP

2
ii′Eξijξii′ .

As both Eξ2
ij and |Eξijξii′ | are bounded, we have

1

K2

∑
i∈[n]

∑
j 6=i

P 4
ijEξ2

ij ≤
C

K2

∑
i∈[n]

∑
j 6=i

P 2
ij ≤

C

K
= o(1)

and ∣∣∣∣∣∣ 1

K2

∑
i∈[n]

∑
j 6=i

∑
i′ 6=i,j

P 2
ijP

2
ii′Eξijξii′

∣∣∣∣∣∣ ≤ C

K2

∑
i∈[n]

∑
j 6=i

∑
i′ 6=i,j

P 2
ijP

2
ii′ ≤

C

K2

∑
i∈[n]

∑
j 6=i

P 2
ijPii = o(1).
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Therefore, we have

T0 =
2

K

∑
i∈[n]

∑
j 6=i

P 2
ijE(V 2

i (∆)U2
j (∆)) + op(1)

= ∆4 2

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
i η

2
j + ∆3 4

K

∑
i∈[n]

∑
j 6=i

P 2
ij(η

2
i γj + η2

j γi) + ∆2 2

K

∑
i∈[n]

∑
j 6=i

P 2
ij(η

2
i σ

2
j + η2

jσ
2
i + 4γiγj)

+ ∆
4

K

∑
i∈[n]

∑
j 6=i

P 2
ij(γiσ

2
j + γjσ

2
i ) +

2

K

∑
i∈[n]

∑
j 6=i

P 2
ijσ

2
i σ

2
j + op(1)

= Φ1(β0) + op(1).

By the same argument above, we have

T1 = ET1 + op(1) = op(1)

because ET1 = 0. Similarly, we have ET3 = 0 and T3 = op(1). Next, we have

T2 = ET2 + oP (1) ≤ C

K

∑
i∈[n]

∑
j 6=i

P 2
ijΠ

2
i + op(1) ≤ CpnΠ>Π

K
+ op(1) = op(1).

Last, we have

T4 ≤
C

K

∑
i∈[n]

∑
j 6=i

P 2
ijΠ

2
i = o(1),

where the first inequality is by maxi∈[n] |Πi| < C. This implies

Φ̂1(β0)− Φ1(β0) = op(1).

Next, we consider the consistency of Ψ̂(β0). By the similar argument above, we have

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijXiei(β0)Xjej(β0))

=
1

K

∑
i∈[n]

∑
j 6=i

P 2
ijΠiei(β0)Πjej(β0)) +

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijΠiei(β0)Vjej(β0))

+
1

K

∑
i∈[n]

∑
j 6=i

P 2
ijViei(β0)Πjej(β0)) +

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijViei(β0)Vjej(β0))

=
1

K

∑
i∈[n]

∑
j 6=i

P 2
ij(γi + ∆η2

i )(γj + ∆η2
j ) + op(1). (P.1)
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In addition, we have

1

K

∑
i∈[n]

(
∑
j 6=i

PijXj)
2e2
i (β0)

=
1

K

∑
i∈[n]

(ωi +
∑
j 6=i

PijVj)
2e2
i (β0)

=
1

K

∑
i∈[n]

ω2
i Ee2

i (β0) +
1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
jEe2

i (β0) + op(1)

=
1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
j (σ

2
i + 2γi∆ + ∆2η2

i ) + op(1), (P.2)

where the second equality is due to Mikusheva and Sun (2022, proof of statement (a) in Lemma

S3.2), and the third equality is due to 1
K

∑
i∈[n] ω

2
i σ

2
i = o(1). In the next section, we show the same

results hold under Assumption 6. Combining (P.1) and (P.2), we have

Ψ̂(β0) =
1

K

∑
i∈[n]

∑
j 6=i

P 2
ij(γi + ∆η2

i )(γj + ∆η2
j ) +

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
j (σ

2
i + 2γi∆ + ∆2η2

i ) + op(1)

=
1

K

∑
i∈[n]

∑
j 6=i

P 2
ij(γiγj + σ2

i η
2
j ) +

4∆

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
i γj +

2∆2

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
i η

2
j + op(1)

= Ψ(β0) + op(1).

Q Proof of Theorem B.2

Given Lemma B.1, Lemmas 2 and 3 in Mikusheva and Sun (2022) hold under Assumptions 5 and

7. Therefore, Mikusheva and Sun (2022, Theorem 3) shows that

Φ̂1(β0)− 2

K

∑
i∈[n]

∑
j 6=i

P 2
ijEV 2

i (∆)EU2
j (∆) = op(1).

In addition, the proof of Theorem B.1 shows that

2

K

∑
i∈[n]

∑
j 6=i

P 2
ijEV 2

i (∆)EU2
j (∆) = Φ1(β0) + o(1),

which implies the consistency of Φ̂1(β0).

Similarly, given Lemma B.1, Lemma S3.1 in Mikusheva and Sun (2022) holds under Assumptions

5 and 7, so that the consistency of Υ̂ to Υ is also shown by using their argument. In addition, we
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use the same argument in the proof of Mikusheva and Sun (2022, Theorem 5) to show that

Ψ̂(β0) =

 1

K

∑
i∈[n]

(
∑
j 6=i

PijXj)
2 eiMie

Mii
+

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMiXeiMjXej


+ ∆

 1

K

∑
i∈[n]

(
∑
j 6=i

PijXj)
2

(
eiMiX

Mii
+
XiMie

Mii

)
+

2

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMiXeiMjXXj


+ ∆2

 1

K

∑
i∈[n]

(
∑
j 6=i

PijXj)
2XiMiX

Mii
+

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMiXXiMjXXj


= Ψ + 2∆τ + ∆2Υ + op(1) = Ψ(β0) + op(1),

where the second equality also follows from Lemma S3.1 in Mikusheva and Sun (2022).

Next for Φ̂12(β0), we have

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXej(β0)ei(β0)Mie(β0)

=
1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXejeiMie

+ ∆
1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ij (MjXXjeiMie+MjXejXiMie+MjXejeiMiX)

+ ∆2 1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ij (MjXXjXiMie+MjXXjeiMiX +MjXejXiMiX)

+ ∆3 1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXXjXiMiX.

Note that 1
K

∑
i∈[n]

∑
j 6=i P̃

2
ijMjXejeiMie = 1

K

∑
i∈[n]

∑
j 6=i P̃

2
ij(MjV + λi)ejeiMie, where λi =

MiΠ. Then, by Lemma B.1 and Lemma 3 of Mikusheva and Sun (2022),

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXejeiMie−

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjV ejeiMie = op(1).

Furthermore, by Lemma B.1 and Lemma 2 of Mikusheva and Sun (2022),

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjV ejeiMie−

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijγjσ

2
i = op(1).
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By using similar arguments, we find that

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXXjeiMie =

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
jσ

2
i + op(1),

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXejXiMie =

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijγjγi + op(1),

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXejeiMiX =

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijγjγi + op(1),

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXXjXiMie =

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
j γi + op(1),

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXXjeiMiX =

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
j γi + op(1),

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXejXiMiX =

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijγjη

2
i + op(1),

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMjXXjXiMiX =

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
j η

2
i + op(1).

Putting these results together, we obtain

Φ̂12(β0) = Φ12 + ∆(2Ψ + Φ13) + 3∆2τ + ∆3Υ + op(1) = Φ12(β0) + op(1).

We use similar arguments to prove the results for Ψ̂13(β0) and τ̂(β0). For Φ̂13(β0), notice that

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMiXei(β0)MjXej(β0)

=
1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMiXeiMjXej

+ ∆
1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ij(MiXeiMjXXj +MiXXiMjXej)

+ ∆2 1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijMiXXiMjXXj

=
1

K

∑
i∈[n]

∑
j 6=i

P 2
ijγiγj + ∆

1

K

∑
i∈[n]

∑
j 6=i

P 2
ij(γiη

2
j + η2

i γj) + ∆2 1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
i η

2
j + op(1),

which implies that

Φ̂13(β0) = Φ13 + 2∆τ + ∆2Υ + op(1) = Φ13(β0) + op(1).
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Finally, for τ̂(β0), notice that

1

K

∑
i∈[n]

∑
j 6=i

P̃ 2
ijXiMiXMjXej(β0) =

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
i γj +

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
i η

2
j∆ + op(1),

1

K

∑
i∈[n]

(
∑
j 6=i

PijXj)
2

(
ei(β0)MiX

2Mii
+
XiMie(β0)

2Mii

)
=

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
i γj +

1

K

∑
i∈[n]

∑
j 6=i

P 2
ijη

2
i η

2
j∆ + op(1),

which implies that

τ̂(β0) = τ + ∆Υ + op(1) = τ(β0) + op(1).

This completes the proof of the theorem.

R Proof of Lemma B.1

Let pn = maxi Pii. We first give some useful bounds, which is similar to Lemma S1.4 in Mikusheva

and Sun (2022): ∑
i∈[n]

ω2
i =

∑
i∈[n]

(PiΠ− PiiΠi)
2 ≤ 2Π′P 2Π + 2

∑
i∈[n]

P 2
iiΠ

2 ≤ CΠ>Π,

max
i∈[n]

ω2
i = max

i∈[n]
(
∑
j 6=i

PijΠj)
2 ≤ max

i∈[n]
(
∑
j 6=i

P 2
ij)Π

>Π ≤ pnΠ>Π,

which imply ∑
i∈[n]

ω4
i ≤ max

i∈[n]
ω2
i (
∑
i∈[n]

ω2
i ) ≤ Cpn(Π>Π)2.

First, we show that Mikusheva and Sun (2022, Lemma S2.1) hold under our conditions following

the lines of argument in their proof. More specifically, we notice that to show ∆2|EA2| = o(1),

where A2 is defined in the proof of Mikusheva and Sun (2022, Lemma S2.1), it suffices to show the

following terms are o(1):

C∆2

K

∑
i∈[n]

∑
j 6=i

P 2
ij |λi||Πj | ≤

C∆2

K

∑
i∈[n]

Piiλ
2
i

1/2∑
j∈[n]

PjjΠ
2
j

1/2

≤ C∆2

K
pn

(
λ>λ

)1/2 (
Π>Π

)1/2

≤ C∆2

K3/2
pn

(
Π>Π

)
= o(1) by λ>λ ≤ CΠ>Π

K
,

C∆2

K

∑
i∈[n]

∑
j 6=i

P 2
ij |Πi||Πj | ≤

C∆2

K

∑
i∈[n]

PiiΠ
2
i

1/2∑
j∈[n]

PjjΠ
2
j

1/2

≤ C∆2

K
pn

(
Π>Π

)
= o(1).
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Then, we prove the variance of ∆2A2 = o(1) by showing that

C∆4

K2

∑
i∈[n]

∑
j∈[n]

P 4
ijλ

2
iλ

2
j ≤

C∆4

K2
p2
n

(
λ>λ

)2
≤ C∆4

K2
p2
n

(
Π>Π

K

)2

= o(1) by P 2
ij ≤ Pii,

C∆4

K2

∑
i∈[n]

λ2
i

∑
j∈[n]

P 2
ij

Π>Π + λ>λ

∑
j∈[n]

Pjj |Πj |

2 ≤ C∆4

K2

(
pn(λ>λ)(Π>Π) + (λ>λ)(pnK)(Π>Π)

)
≤ C∆4

K3

(
pn(Π>Π)2 + pnK(Π>Π)2

)
= o(1) by

∑
j∈[n]

P 2
jj ≤ pnK,

C∆4

K2

∑
i∈[n]

∑
j∈[n]

P 2
ij |ΠiΠj |

2

≤ C∆4

K2

∑
i∈[n]

PiiΠ
2
i

∑
j∈[n]

PjjΠ
2
j

 ≤ C∆4

K2
p2
n(Π>Π)2 = o(1),

and

C∆4

K2

∑
j∈[n]

∑
k∈[n]

∑
i∈[n]

P 2
ij |λiΠiMjk|

2

=
C∆4

K2

∑
j∈[n]

∑
k 6=j

∑
i∈[n]

P 2
ij |λiΠiMjk|

2

+
C∆4

K2

∑
j∈[n]

∑
i∈[n]

P 2
ij |λiΠiMjj |

2

≤ C∆4

K2

∑
j∈[n]

∑
k 6=j

M2
jk

∑
i∈[n]

Piiλ
2
i

∑
i∈[n]

PiiΠ
2
i

+
C∆4

K2

∑
j∈[n]

∑
i∈[n]

P 2
ij |λi|

2

≤ C∆4

K2
Kp2

n(λ>λ)(Π>Π) +
C∆4

K2

∑
j∈[n]

∑
i∈[n]

P 4
ij

λ>λ

≤ C∆4Kp2
n(Π>Π)2

K2
+
C∆4pnKΠ>Π

K2
= o(1) by

∑
j∈[n]

∑
k 6=j

M2
jk =

∑
j∈[n]

∑
k 6=j

P 2
jk ≤ K and P 2

ij ≤ Pii ≤ pn.

Second, we show that Mikusheva and Sun (2022, Lemma S2.2) holds under our conditions.

Notice that |∆EA1| = o(1) by

C|∆|
K

∑
i∈[n]

∑
j 6=i

P 2
ij |Πi| ≤

C|∆|
K

∑
i∈[n]

P 2
ii

1/2

(Π>Π)1/2 ≤ C|∆|
K

(pnK)1/2(Π>Π)1/2 = o(1),

Then, we show that the variance of ∆A1 is o(1) by showing the following terms are o(1):

C∆2

K2

∑
i∈[n]

∑
j∈[n]

P 2
ij

λ2
i +

∑
i∈[n]

∑
j∈[n]

P 2
ij |λi||λj |

 ≤ C∆2

K2

(
pn(λ>λ) + pn(λ>λ)

)
= o(1),

C∆2

K2

∑
i∈[n]

∑
j∈[n]

P 4
ij(λ

2
i + |λi||λj |) +

∑
i∈[n]

∑
j∈[n]

P 2
ijλ

2
i

 ≤ C∆2

K2

(
p2
n(λ>λ) + p2

n(λ>λ) + pn(λ>λ)
)

= o(1),
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C∆2

K2

∑
i∈[n]

∑
k∈[n]

P 2
ik|λi||λk|+

∑
i∈[n]

∑
j∈[n]

P 2
ij |λi||λj |

 ≤ C∆2

K2

(
pn(λ>λ) + pn(λ>λ)

)
= o(1),

C∆2

K2

∑
j∈[n]

∑
i∈[n]

P 2
ij |λi|

2

≤ C∆2

K2

∑
j∈[n]

∑
i∈[n]

P 4
ij

 (λ>λ) ≤ C∆2

K2
(pnK)(λ>λ) = o(1),

C∆2

K2

∑
j∈[n]

∑
i∈[n]

P 2
ij |Πi|

2

≤ C∆2

K2

∑
j∈[n]

∑
i∈[n]

P 4
ij

 (Π>Π) ≤ C∆2

K2
(pnK)(Π>Π) = o(1),

C∆2

K2

∑
j∈[n]

∑
k∈[n]

∑
i∈[n]

P 2
ij |ΠiMikMjk|

2

=
C∆2

K2

∑
j∈[n]

∑
k 6=j

∑
i∈[n]

P 2
ij |ΠiMikMjk|

2

+
C∆2

K2

∑
j∈[n]

∑
i∈[n]

P 2
ij |ΠiMijMjj |

2

≤ C∆2

K2

∑
j∈[n]

∑
k 6=j

M2
jk

∑
i∈[n]

P 4
ij

Π>Π +
C∆2

K2

∑
j∈[n]

∑
i∈[n]

P 4
ij

Π>Π

≤ C∆2

K2
Kp2

n(Π>Π) +
C∆2

K2
Kpn(Π>Π) = o(1),

C∆2

K2

∑
j∈[n]

∑
k∈[n]

∑
i∈[n]

P 2
ij |ΠiMikMjk|

∑
i∈[n]

P 2
ik|ΠiMijMjk|

 ≤ C∆2

K2
Kpn(Π>Π) = o(1),

C∆2

K2

∑
i∈[n]

∑
j∈[n]

P 2
ij |Πi|

2

≤ C∆2

K2
(pnK)(Π>Π) = o(1).

Then, to show that Mikusheva and Sun (2022, Lemma 3) holds under our conditions, we show

the following terms are o(1):

C

K

∑
i∈[n]

∑
j 6=i

P 2
ij |ΠiλiΠjλj | ≤

C

K

∑
i∈[n]

∑
j∈[n]

P 2
ijΠ

2
iΠ

2
j

1/2∑
i∈[n]

∑
j∈[n]

P 2
ijλ

2
iλ

2
j

1/2

≤ C

K
pn

(
Π>Π

)(
λ>λ

)
≤ C

K2
pn

(
Π>Π

)2
= o(1),

C

K2

∑
j∈[n]

∑
i∈[n]

P 2
ij |Πi||λi|

2

λ2
j ≤

C

K2

∑
j∈[n]

pn ∑
i∈[n]

|Πi||λj |

2

λ2
j ≤

C

K2
p2
n

(
Π>Π

)(Π>Π

K

)2

= o(1),

C

K2

∑
i∈[n]

∑
i′∈[n]

∑
j∈[n]

∑
j′∈[n]

P 2
ij |ΠiλiΠj |P 2

i′j′ |Πi′λi′Πj′ |
∑
k∈[n]

|MjkMj′k|
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≤ C

K2

∑
i∈[n]

∑
j∈[n]

P 2
ijΠ

2
iλ

2
i

∑
i∈[n]

∑
j∈[n]

P 2
ijΠ

2
j

 ≤ C

K2
p2
n(Π>Π)(λ>λ) ≤ C

K3
p2
n

(
Π>Π

)2
= o(1),

where
∑

k∈[n] |MjkMj′k| ≤ 1 by Mikusheva and Sun (2022, Lemma S1.1(ii)).

Now we show that Mikusheva and Sun (2022, Lemma S3.2 ) holds under our conditions, i.e.,

(a)
1

K

n∑
i=1

(ωi +
∑
j 6=i

PijVj)
2Vi −

 1

K

n∑
i=1

ω2
i E[Vi] +

1

K

∑
i,j 6=i

P 2
ijE[Vi]η

2
j

 p−→ 0,

(b)
1

K

n∑
i=1

(ωi +
∑
j 6=i

PijVj)
2 ξ1,i

Mii

∑
k 6=j

Pikξ2,k
p−→ 0,

(c)
1

K

n∑
i=1

(ωi +
∑
j 6=i

PijVj)
2aiξ1,i

p−→ 0,

(d)
1

K

n∑
i=1

(ωi +
∑
j 6=i

PijVj)
2 ai
Mii

∑
k 6=i

Pikξ1,k −
2

K

n∑
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∑
j 6=i

P 2
ijωi

ai
Mii
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p−→ 0,

(e)
1

K

n∑
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(ωi +
∑
j 6=i

PijVj)
2Πi

λi
Mii

p−→ 0,

where ξ1,i, ξ2,i stay for either ei or Vi, Vi stay for e2
i , eiVi, or V 2

i , and ai stay for either Πi or λi
Mii

.

To prove statement (a), following the arguments in Mikusheva and Sun (2022), we just need to

show the following terms are o(1):

E

 1

K

∑
i∈[n]

ω2
i Vi

2

≤ C
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∑
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ω4
i ≤

C

K2
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i
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i
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= o(1),

C
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C
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2
i
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j∈[n]
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2
j
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 ≤ C

K
pnΠ>Π = o(1),

where we have used maxi∈[n] ω
2
i ≤ pnΠ>Π,

∑
i∈[n] ω

2
i ≤ CΠ>Π, and Mikusheva and Sun (2022,

Lemma S1.3(b)).

To prove statement (b), we show that

C
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≤ C
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To prove statement (c), we show that, for ai = Πi or λi/Mii,
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i

λ2
i

M2
ii

≤ C

K2

(
max
i∈[n]

ω2
i

)2 ∑
i∈[n]

λ2
i ≤ Cp2

n

(
Π>Π

K

)3

= o(1),

C

K2

∑
i∈[n]

ω4
i Π

2
i ≤

C

K2

∑
i∈[n]

ω4
i ≤

C

K2
pn

(
Π>Π

)2
= o(1), where we have used max

i∈[n]
|Πi| ≤ C,

C

K2

∑
i∈[n]

∑
j 6=i

P 4
ij

(
a2
i + |ai| |aj |

)
≤ C

K2

(
p2
na
>a+ p2

na
>a
)

= o(1),

C

K2

∑
i∈[n]

∑
j 6=i

P 2
ij(ω

2
i a

2
i + |ωiai||ωjaj |) ≤

C

K2

(
p2
n(Π>Π)(a>a) + pn(Π>Π)(a>a)

)
= o(1).

To prove statement (d), we first show that

C

K2

∑
i∈[n]

ω2
i |ai|

2

+

∑
i∈[n]

|ωiai|

2 = o(1).

In particular, when ai = Πi, we have

C

K2

∑
i∈[n]

ω2
i |Πi|

2

+

∑
i∈[n]

|ωiΠi|

2 ≤ C

K2

∑
i∈[n]

ω2
i

2

+

∑
i∈[n]

|ωiΠi|

2
≤ C

K2

(Π>Π
)2

+

∑
i∈[n]

ω2
i

(Π>Π
) ≤ C

K2

(
(Π>Π)2 + (Π>Π)2

)
= o(1),

When ai = λi
Mii

, we have

C

K2

∑
i∈[n]

ω2
i

∣∣∣∣ λiMii

∣∣∣∣
2

+

∑
i∈[n]

∣∣∣∣ωi λiMii

∣∣∣∣
2 ≤ C

K2

∑
i∈[n]

ω4
i

 (λ>λ) +

∑
i∈[n]

ω2
i

 (λ>λ)


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≤ C

K2

(
pn(Π>Π)2(λ>λ) + (Π>Π)(λ>λ)

)
= o(1).

Furthermore, we can show that

C

K2

∑
i∈[n]

|ωiai|

2

≤ C

K2
(Π>Π)(a>a) = o(1),

C

K

∑
i∈[n]

Pii |ai| ≤
C

K

∑
i∈[n]

P 2
ii

1/2 (
a>a

)1/2
≤ C

K
(pnK)1/2

(
a>a

)1/2
= o(1),

C

K2

∑
i∈[n]

Pii |ai|

2

≤ C

K2

∑
i∈[n]

P 2
ii

(a>a) ≤ C

K2
pnK

(
a>a

)
= o(1).

To prove statement (e), we show that∣∣∣∣∣∣CK
∑
i∈[n]

ω2
i Πi

λi
Mii

∣∣∣∣∣∣ ≤ C

K
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i

∣∣∣∣ λiMii

∣∣∣∣ ≤ C

K
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ω4
i

1/2 (
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C
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PijωiΠi
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2

≤ C
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∑
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ijλ

2
i
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= o(1),

C
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∑
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∑
i 6=j
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ijΠi

λi
Mii

2

≤ C

K2

∑
j∈[n]

∑
i 6=j

P 2
ij |λi|

2

≤ CKpnλ
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K2
= o(1),

C

K

∑
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∑
i 6=j

P 2
ij

∣∣∣∣Πi
λi
Mii

∣∣∣∣ ≤ C

K

∑
i∈n

∑
j∈[n]

P 2
ij |Πiλi| ≤

C

K
pn(Π>Π)1/2(λ>λ)1/2 = o(1),

C

K2

∑
j∈[n]

∑
k 6=j

∑
i 6=j,k

P 2
ijP

2
ikΠi

λi
Mii

2

≤ C

K2

∑
j∈[n]

∑
k 6=j

∑
i 6=j,k

P 2
ijP

2
ik|λi|
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≤ C

K2

∑
j∈[n]

∑
k 6=j

∑
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P 4
ijP

4
ik

λ>λ ≤ Cp3
nKλ

>λ

K2
= o(1),

where we have used Mikusheva and Sun (2022, Lemma S1.1(ii)).

Finally, we can show that Mikusheva and Sun (2022, Lemma S3.1) also holds under our condi-

tions by using similar arguments. We omit the details for brevity.
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S Lemma S.1 and Its Proof

Lemma S.1. Suppose assumptions in Theorem A.1 hold. Then, we have

γ̂e = OP (n−1/2), γ̂V = OP (n−1/2), Qẽ,W = OP (1), QṼ ,W = OP (1),

γ̂>V QW,W> γ̂V = oP (1), γ̂>e QW,W> γ̂e = oP (1), and γ̂>e QW,W> γ̂V = oP (1).

Proof. We have γ̂e = OP (n−1/2) because Eẽi = 0 and mineig(W>W/n) ≥ c > 0. Similarly, we have

γ̂V = OP (n−1/2). To see that Qẽ,W = OP (1), we note that EQẽ,W = 0 and

EQẽ,WQ>ẽ,W ≤ C
∑
i∈[n]

(
∑
j 6=i

PijWj)
>(
∑
j 6=i

PijWj)/K = C
∑
i∈[n]

P 2
iiW

>
i Wi/K ≤ C,

where we use the fact that
∑

j 6=i PijWj = −PiiWi since Pij is the ij-th element of P = Z(Z>Z)−1Z>.

Similarly, we have QṼ ,W = OP (1).

To see γ̂>V QW,W> γ̂V = oP (1), we note that∣∣∣γ̂>V QW,W> γ̂V ∣∣∣ ≤∑
i∈[n]

(W>i γ̂V )2/
√
K = oP (1),

where we use the fact that
∑

i∈[n]WiW
>
i /n = OP (1) and γ̂V = OP (n−1/2), so that

∑
i∈[n]

(W>i γ̂V )2 = OP (1).

Similarly, we can show that

γ̂>e QW,W> γ̂e = oP (1), and γ̂>e QW,W> γ̂V = oP (1).

T Comparison with HLIM Estimator under Strong Identification

We consider the model in Section A and the HLIM estimator proposed by Hausman et al. (2012).

Specifically, Hausman et al. (2012) estimate (β, γ) by (β̂HLIM , γ̂HLIM ) defined as

(β̂HLIM , γ̂HLIM ) = arg min
b,r

Q(b, r), Q(b, r) =

∑
i∈[n]

∑
j 6=i(Ỹi − X̃ib−W>i r)P̃ij(Ỹi − X̃ib−W>i r)∑

i∈[n](Ỹi − X̃ib−W>i r)2
,
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where P̃ij is the projection matrix constructed by (W>i , Z̃
>
i )>. Following Hausman et al. (2012), we

let Π̃i = µnπ̃i/
√
n such that

∑
i∈[n] π̃

2
i /n ≥ c > 0 for some constant c. As explained in the paper,

under strong identification, we have µ2
n/
√
K → ∞. In both cases considered in Hausman et al.

(2012, Assumption 6), the convergence rate can be unified as
√
K/µ2

n. Then, the Wald statistic

can be written as

Wh(β0) =
µ2
n(β̂HLIM − β0)/

√
K

Φ̂
1/2
h

,

where Φ̂h is a consistent estimator of Φh, and Φh is the asymptotic variance of β̂HLIM . To study

the behaviour of Wh(β0) under strong identification and local alternatives, we let β0 denote the

local alternative in the sense that β0 = β+ ∆̃
µ2
n/
√
K

. We will provide the expression for Φh later. We

also note that the notation in Hausman et al. (2012) and our paper is different. Specifically, their

δ0 is our (γ>, β0)>, their δ̂ is our ((γ̂HLIM )>, β̂HLIM )>, their Xi is our (W>i , X̃i)
>, their Zi is our

(W>i , Z̃
>
i )>, and thus their projection matrix P is our P̃ , which is the one based on (W>i , Z̃

>
i )>.

We use P and PW to denote the projection matrices based on our Zi and Wi, respectively, where

Zi = ([MW ]i·Z̃)>, [MW ]i· is the ith row of MW , and MW = In − PW .

Further denote L as a matrix that selects the last element of δ̂ = ((γ̂HLIM )>, β̂HLIM )> and

Sn =

(
Id 0

π>x 1

)
diag(

√
n, · · · ,

√
n, µn),

where πx = (W>W )−1W>Π̃ is the projection coefficient of Π̃ on W . Then, the corresponding

definition of D̂(δ0) in Hausman et al. (2012, p.235) under our notation is as follows:

D̂(δ0) =

∑
i∈[n]

∑
j 6=i

[
WiP̃ijej(β0)− ei(β0)P̃ijej(β0) W>e(β0)

e>(β0)e(β0)

]
√
K

,

where Wi = (W>i , X̃i)
>, W is a n × (d + 1) matrix with its ith row being W>i where d is the

dimension of Wi, and ei(β0) = ẽj − X̃j(β0 − β). In addition, we note that Xi = X̃i −W>i πx =

Πi + Ṽi as defined in Theorem A.1, Xi = Xi −W>i γ̂V , ei(β0) = ei(β0) + W>i γ̂e −W>i π̂x(β0 − β),

where πx = (W>W )−1(W>Π̃), π̂x = (W>W )−1(W>X̃) = πx + γ̂V , γ̂V = (W>W )−1(W>Ṽ ), and

γ̂e = (W>W )−1(W>ẽ). Further let δ be between δ = (γ>, β)> and δ0.

Then, following the argument in the proof of Hausman et al. (2012, Theorem 2), we have

(µ2
n/
√
K)(β̂HLIM − β0)

= (µ2
n/
√
K)L(δ̂ − δ0)

= −(µ2
n/
√
K)L

(
∂D̂(δ)

∂δ

)−1

D̂(δ0)
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= −(µ2
n/
√
K)L(S>n )−1

(
S−1
n

∂D̂(δ)

∂δ
(S>n )−1

)−1

S−1
n D̂(δ0)

= −(µ2
n/
√
K)(0, 1/µn)(H−1 + oP (1))diag(1/

√
n, · · · , 1/

√
n, 1/µn)

(
Id 0

−π>x 1

)
D̂(δ0)

= − µn√
K

((
(H21 + oP (1))/

√
n− π>x (H22 + oP (1))/µn, (H

22 + oP (1))/µn

))
D̂(δ0)

= (H22 + oP (1))(−π>x , 1)D̂(δ0)/
√
K

= (H22 + oP (1))

∑
i∈[n]

∑
j 6=i

[
XiP̃ijej(β0)− ei(β0)P̃ijej(β0) X

>
e(β0)

e>(β0)e(β0)

]
√
K

,

where by Hausman et al. (2012, Lemma A7), S−1
n

∂D̂(δ)
∂δ (S>n )−1 p−→ H, and we denote H−1 =(

H11 H12

H21 H22

)
.

Following the same argument in the proof of Lemma S.1, we can show that∑
i∈[n]

∑
j 6=i γ̂

>
VWiP̃ijej(β0)
√
K

= oP (1),

∑
i∈[n]

∑
j 6=iXiP̃ijW

>
i (γ̂e − π̂x(β0 − β))

√
K

= oP (1)∑
i∈[n]

∑
j 6=i ei(β0)P̃ijW

>
i (γ̂e − π̂x(β0 − β))

√
K

= oP (1), and∑
i∈[n]

∑
j 6=i(γ̂e − π̂x(β0 − β))>WiP̃ijW

>
i (γ̂e − π̂x(β0 − β))

√
K

= oP (1).

In addition, we have X
>
e(β0)/e>(β0)e(β0)

p−→ ρ̃. Then, we have

µ2
n(β̂HLIM − β0)/

√
K = H22

∑
i∈[n]

∑
j 6=i

[
XiP̃ijej(β0)− ei(β0)P̃ijej(β0)ρ̃

]
√
K

+ oP (1).

Because X>W = 0 and e>W = 0, we have X>P̃ e(β0) = X>Pe(β0) and e(β0)>P̃ e(β0) =

e(β0)>Pe(β0). Therefore, we have∑
i∈[n]

∑
j 6=iXiP̃ijej(β0)
√
K

=
X>Pe(β0)−

∑
i∈[n]XiP̃iiei(β0)
√
K

=

∑
i∈[n]

∑
j 6=iXiPijej(β0) +

∑
i∈[n]Xiei(β0)(Pii − P̃ii)

√
K

= QX,e(β0) −
∑

i∈[n]Xiei(β0)PW,ii
√
K

= QX,e(β0) + oP (1),
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where we use the facts that P̃ii = Pii + PW,ii and

∑
i∈[n]

Xiei(β0)PW,ii =
1

n

∑
i∈[n]

Xiei(β0)W>i

(
W>W/n

)−1
Wi = OP (1).

Similarly, we have ∑
i∈[n]

∑
j 6=i ei(β0)P̃ijej(β0)
√
K

= Qe(β0),e(β0) + oP (1),

and thus,

µ2
n(β̂HLIM − β0)/

√
K = H22(QX,e(β0) − ρ̃Qe(β0),e(β0)) + oP (1).

In order for the HLIM based Wald test to have a pivotal standard normal distribution in the limit,

the asymptotic variance Φh must be

Φh = (H22)2(Ψ− 2ρ̃Φ12 + ρ̃2Φ1),

which means the Wald statistic satisfies Wh(β) =
QX,e(β0)−ρ̃Qe(β0),e(β0)

(Ψ−2ρ̃Φ12+ρ̃2Φ1)1/2 + oP (1).

U Additional Simulation Results

U.1 Additional Simulation Results Based on the Limit Problem

In this section, we present further simulation results for the power behavior of tests under the limit

problem described in Section 2.

For Figures 9–40, all the settings remain the same as those in Section 5.1 in the main paper

except we use alternative values of the tuning parameters for (3.5). Specifically, for the values of

p1 and p2 in

a(µD, γ(β0)) = min

(
p1,

p2Cα,max(ρ(β0))Φ1(β0)cB(β0)

∆4
∗(β0)µ2

D

)
,

we use (p1, p2) = (0.01, 1.5), (0.01, 2), (0.001, 1.1), (0.001, 1.5), (0.001, 2), (0.1, 1.1), (0.1, 1.5), or

(0.1, 2), instead of (0.01, 1.1) in Section 5. Specifically, Figures 9–12 report the results for (0.01, 1.5),

Figures 13–16 report those for (0.01, 2), Figures 17–20 report those for (0.001, 1.1), Figures 21–24

report those for (0.001, 1.5), Figures 25–28 report those for (0.001, 2), Figures 29–32 report those

for (0.1, 1.1), Figures 33–36 report those for (0.1, 1.5), and Figures 37–40 report those for (0.1, 2),

respectively. We find the results are very similar to those reported in the main paper.

Furthermore, Figures 41–44 present the power curves in the cases with stronger identification
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(C = 9 or 12). The overall patterns are very similar to those for C = 6. For Figures 41–44, the

tuning parameters are set as (p1, p2) = (0.01, 1.1), which are same as those in Section 5 of the main

text. The results for other values of p1 and p2 remain very similar and thus are omitted for brevity.
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Figure 9: Power Curve for ρ = 0.2, p1 = 0.01, and p2 = 1.5
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Figure 10: Power Curve for ρ = 0.4, p1 = 0.01, and p2 = 1.5
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Figure 11: Power Curve for ρ = 0.7, p1 = 0.01, and p2 = 1.5
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Figure 12: Power Curve for ρ = 0.9, p1 = 0.01, and p2 = 1.5
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Figure 13: Power Curve for ρ = 0.2, p1 = 0.01, and p2 = 2
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Figure 14: Power Curve for ρ = 0.4, p1 = 0.01, and p2 = 2
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Figure 15: Power Curve for ρ = 0.7, p1 = 0.01, and p2 = 2

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 3

(β − β0)C

Po
we

r

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 6

(β − β0)C

Figure 16: Power Curve for ρ = 0.9, p1 = 0.01, and p2 = 2
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Figure 17: Power Curve for ρ = 0.2, p1 = 0.001, and p2 = 1.1
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Figure 18: Power Curve for ρ = 0.4, p1 = 0.001, and p2 = 1.1
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Figure 19: Power Curve for ρ = 0.7, p1 = 0.001, and p2 = 1.1
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Figure 20: Power Curve for ρ = 0.9, p1 = 0.001, and p2 = 1.1
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Figure 21: Power Curve for ρ = 0.2, p1 = 0.001, and p2 = 1.5
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Figure 22: Power Curve for ρ = 0.4, p1 = 0.001, and p2 = 1.5
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Figure 23: Power Curve for ρ = 0.7, p1 = 0.001, and p2 = 1.5
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Figure 24: Power Curve for ρ = 0.9, p1 = 0.001, and p2 = 1.5
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Figure 25: Power Curve for ρ = 0.2, p1 = 0.001, and p2 = 2

75



−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 3

(β − β0)C

Po
we

r

−6 −3 0 3 6

0.0

0.2

0.4

0.6

0.8

1.0

C = 6

(β − β0)C

Figure 26: Power Curve for ρ = 0.4, p1 = 0.001, and p2 = 2
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Figure 27: Power Curve for ρ = 0.7, p1 = 0.001, and p2 = 2
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Figure 28: Power Curve for ρ = 0.9, p1 = 0.001, and p2 = 2
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Figure 29: Power Curve for ρ = 0.2, p1 = 0.1, and p2 = 1.1
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Figure 30: Power Curve for ρ = 0.4, p1 = 0.1, and p2 = 1.1
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Figure 31: Power Curve for ρ = 0.7, p1 = 0.1, and p2 = 1.1
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Figure 32: Power Curve for ρ = 0.9, p1 = 0.1, and p2 = 1.1
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Figure 33: Power Curve for ρ = 0.2, p1 = 0.1, and p2 = 1.5
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Figure 34: Power Curve for ρ = 0.4, p1 = 0.1, and p2 = 1.5
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Figure 35: Power Curve for ρ = 0.7, p1 = 0.1, and p2 = 1.5
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Figure 36: Power Curve for ρ = 0.9, p1 = 0.1, and p2 = 1.5
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Figure 37: Power Curve for ρ = 0.2, p1 = 0.1, and p2 = 2
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Figure 38: Power Curve for ρ = 0.4, p1 = 0.1, and p2 = 2
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Figure 39: Power Curve for ρ = 0.7, p1 = 0.1, and p2 = 2
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Figure 40: Power Curve for ρ = 0.9, p1 = 0.1, and p2 = 2
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Figure 41: Power Curve for ρ = 0.2 with C = 9 or 12
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Figure 42: Power Curve for ρ = 0.4 with C = 9 or 12
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Figure 43: Power Curve for ρ = 0.7 with C = 9 or 12
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Figure 44: Power Curve for ρ = 0.9 with C = 9 or 12

U.2 Additional Simulation Results Based on the Calibrated Data

We run two sets of robustness checks. For the first set, we retained the parameter space of B =

[−0.5, 0.5] and used 16 grid-points in total over this space instead of 31 grid-points used in the main

text. As in the previous section, we vary over (p1, p2) equals (0.001, 1.1), (0.001, 1.5), (0.001, 2),

(0.01, 1.5), (0.01, 2), (0.1, 1.1), (0.1, 1.5), and (0.1, 2). Figures 45–52 are results for DGP 1, while

Figures 53–60 are results for DGP 2. We find that our results are very similar to the main text’s

specification, i.e. (p1, p2) = (0.01, 1.1).

For the second set of robustness checks, we fix (p1, p2) = (0.01, 1.1) as in the main text and

vary the parameter space as B2 = [−0.25, 0.25] and B3 = [−1, 1] over 21 equally-sized grid-points.

This is done in order to capture the null of H0 : β = 0.1. DGP 1 is reported in Figures 61 and 62,

while DGP 2 is reported in Figures 63 and 64.
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Figure 45: Power Curve for DGP 1 with (p1, p2) = (0.001, 1.1)
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Figure 46: Power Curve for DGP 1 with (p1, p2) = (0.001, 1.5)
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Figure 47: Power Curve for DGP 1 with (p1, p2) = (0.001, 2)
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Figure 48: Power Curve for DGP 1 with (p1, p2) = (0.01, 1.5)
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Figure 49: Power Curve for DGP 1 with (p1, p2) = (0.01, 2)
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Figure 50: Power Curve for DGP 1 with (p1, p2) = (0.1, 1.1)
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Figure 51: Power Curve for DGP 1 with (p1, p2) = (0.1, 1.5)
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Figure 52: Power Curve for DGP 1 with (p1, p2) = (0.1, 2)
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Figure 53: Power Curve for DGP 2 with (p1, p2) = (0.001, 1.1)
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Figure 54: Power Curve for DGP 2 with (p1, p2) = (0.001, 1.5)

85



−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Small, (p1,p2) = ( 0.001 , 2 )

β

Pr
ob

ab
ilit

y o
f r

eje
cti

on
 of

   H
0: 

β 0 
= 0

.1

pp
krs
AR
LM_CF
2−step
LM*
LM_MO

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Medium

β

Pr
ob

ab
ilit

y o
f r

eje
cti

on
 of

   H
0: 

β 0 
= 0

.1

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Large

β

Pr
ob

ab
ilit

y o
f r

eje
cti

on
 of

   H
0: 

β 0 
= 0

.1

Figure 55: Power Curve for DGP 2 with (p1, p2) = (0.001, 2)
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Figure 56: Power Curve for DGP 2 with (p1, p2) = (0.01, 1.5)
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Figure 57: Power Curve for DGP 2 with (p1, p2) = (0.01, 2)
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Figure 58: Power Curve for DGP 2 with (p1, p2) = (0.1, 1.1)
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Figure 59: Power Curve for DGP 2 with (p1, p2) = (0.1, 1.5)
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Figure 60: Power Curve for DGP 2 with (p1, p2) = (0.1, 2)
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Figure 61: Power Curve for DGP 1 with Parameter Space = [−0.25, 0.25]
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Figure 62: Power Curve for DGP 1 with Parameter Space = [−1, 1]
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Figure 63: Power Curve for DGP 2 with Parameter Space = [−0.25, 0.25]
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Figure 64: Power Curve for DGP 2 with Parameter Space = [−1, 1]

V Additional Results for the Empirical Application

For the first set of robustness check, we ran 1001 equal-spaced grid-points from parameter space

B = [−0.5, 0.5] (step size = 0.001) over the 9 different variations of (p1, p2), which we furnish in

Table 3. The first row is the specification used in the main text, (p1, p2) = (0.01, 1.1). We do not

include ‘jackknife AR’, ‘jackknife LM’, ‘JIVE-t’ and ‘Two-step’ since variations of (p1, p2) will not

affect the result of those methods. We find that our results are similar to the main text.

(p1, p2)-values pp with 180 IVs krs with 180 IVs pp with 1530 IVs krs with 1530 IVs
(5%) (5%) (5%) (5%)

(0.01,1.1) [0.067,0.128] [0.067,0.128] [0.037,0.133] [0.037,0.133]

(0.001,1.1) [0.072,0.127] [0.072,0.127] [0.041,0.132] [0.041,0.132]

(0.001,1.5) [0.067,0.127] [0.067,0.127] [0.038,0.132] [0.038,0.132]

(0.001,2) [0.066,0.128] [0.066,0.128] [0.039,0.133] [0.039,0.133]

(0.01,1.5) [0.067,0.127] [0.067,0.127] [0.04,0.134] [0.04,0.134]

(0.01,2) [0.071,0.125] [0.071,0.125] [0.041,0.133] [0.041,0.133]

(0.1,1.1) [0.069,0.126] [0.069,0.126] [0.037,0.132] [0.037,0.132]

(0.1,1.5) [0.072,0.126] [0.072,0.126] [0.044,0.132] [0.044,0.132]

(0.1,2) [0.069,0.127] [0.069,0.127] [0.035,0.132] [0.035,0.132]

Table 3: Confidence Intervals under different values of (p1, p2) with Parameter Space B

For the second set of robustness checks, we consider two different parameter spaces, namely

B2 = [−1, 1] and B3 = [−0.25, 0.25]. Both parameter spaces have 1001 equal-spaced grid-points,

and we have retained the values (p1, p2) = (0.01, 1.1) as in our main text. Table 4 reports the

results. Overall, these additional robustness checks show that the results reported in our main text

are reliable and hold for different parameter spaces.

89



Parameter Space pp with 180 IVs krs with 180 IVs pp with 1530 IVs krs with 1530 IVs
(5%) (5%) (5%) (5%)

B [0.067,0.128] [0.067,0.128] [0.037,0.133] [0.037,0.133]

B2 [0.068,0.124] [0.068,0.124] [0.042,0.134] [0.042,0.134]

B3 [0.07,0.1275] [0.07,0.1275] [0.037,0.1335] [0.037,0.1335]

Table 4: Confidence Intervals under (p1, p2) = (0.01, 1.1) with varying Parameter Space B2 and B3
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