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1 Introduction

For several decades models of cointegrated systems have enjoyed a vast range of empirical

applications in economics and finance.1 A leading condition that underlies much of the

empirical research on such systems, particularly when vector autoregressive approaches are

employed, is that the individual time series are integrated with most attention focused on

simple I(1) cointegrated systems. The I(1) condition has proved extremely convenient in

the development of an asymptotic theory of estimation and testing and has given rise to a

wealth of empirical findings. Nonetheless, it is well understood that the I(1) assumption is

usually just an approximate representation of more general nonstationary processes within a

wider class such as the I(d) processes where the order of integration d may take on fractional

values.

There is ample evidence in the literature for fractional processes taking positive values of

the memory parameter d, yielding what is known as long memory. Nonstationary economic

time series have spectral shapes in which the low frequency part of the spectrum is strongly

dominant. This characteristic matches well with one of the fundamental empirical properties

of an I(d) process with d > 0, as noted in much early economic research (Adelman, 1965;

Granger, 1966; Diebold and Rudebusch, 1989; Ding et al., 1993; Baillie et al., 1996). Cor-

respondingly, considerable research has been devoted to explain this phenomenon in terms

of more primitive generating mechanisms that have empirical justification. Simple unit root

cases where d = 1 gain support from the theory of efficient markets. For more general I(d)

cases with d ̸= 1, it is known that mechanisms such as cross section aggregation (Robinson,

1978; Granger, 1980; Abadir and Talmain, 2002), structural breaks (Klemeš, 1974; Perron

and Qu, 2010), trends (Bhattacharya et al., 1983), regime switching (Potter, 1976; Diebold

and Inoue, 2001), learning (Alfarano and Lux, 2007; Chevillon and Mavroeidis, 2017), nonlin-

earity (Chen et al., 2010), marginalization (Chevillon and Mavroeidis, 2017), and networking

(Schennach, 2018) can all generate long memory.

By combining short-run autoregressive (order p) and moving average (order q) compo-

nents parametrically with fractional integration, the class of ARFIMA(p, d, q) models has

1Amongst a wide and diverse literature we mention the following short list of papers: Friedman and
Kuttner (1992); Beaudry and Portier (2006); Ireland (2009); Bauer and Rudebusch (2020).
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been widely used in empirical work to model economic time series that manifest both short

and long memory as well as possible nonstationarity. The impulse response function implied

by this general model with fractional integration is substantially different from that of an

ARMA(p, q) model, allowing for long decays in responses. This feature of impulse responses

is present in much financial data, making the class attractive in financial applications. The

ARFIMA(1, d, 0) model has been found to be especially useful and a leading example that

motivates the present paper is the stochastic volatility of financial assets.

In the large literature on volatility two different forms of estimated ARFIMA(1, d, 0)

models have been discovered in empirical research. First, log volatility is often found to be

well modelled by an ARFIMA(1, d, 0) model with d > 0. Among the many references and

empirical contexts we mention the following studies: Baillie et al. (1996) for GARCH models;

Comte and Renault (1996) and Breidt et al. (1998) for stochastic volatility models; Ander-

sen and Bollerslev (1997), Andersen et al. (2001, 2003), Andersen, Bollerslev, Diebold, and

Ebens (2001), Bandi and Perron (2006); Baillie et al. (2019) with realized volatility (RV);

and Bandi and Perron (2006) with implied volatility. Popular estimation methods for d

include semiparametric methods, such as local Whittle estimation (Künsch, 1987; Robinson,

1995a) and log periodogram regression (Geweke and Porter-Hudak, 1983; Robinson, 1995b).

These two methods rely on the asymptotic behavior of periodogram ordinates at frequencies

near zero and are valid in the stationary region with −0.5 < d < 0.5. A method that is

asymptotically valid over wider regions and provides uniformly valid confidence intervals

covering stationary and nonstationary cases (d ≥ 0.5) is the exact local Whittle procedure

(Shimotsu and Phillips, 2005). Estimated values of d with log volatility data usually turn out

to be close to 0.5, the boundary point of nonstationarity for d, and these estimates are typ-

ically statistically significantly greater than zero and less than unity. After semiparametric

estimation of d and data filtering to remove the fractional component, first order autoregres-

sive estimation can be conducted on the filtered series, which often leads to autoregressive

coefficient estimates that are close to zero (Andersen et al., 2003; Shi and Yu, 2022).

Second, ample empirical evidence now points towards the same ARFIMA(1, d, 0) model

but with a negative value for d (so-called antipersistence) producing what is called ‘rough-
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volatility’ with an autoregressive parameter taken to be unity or near unity.2 Amongst many

studies that support such a model we mention the following: Gatheral et al. (2018); Bayer

et al. (2016); Wang et al. (2021); Bolko et al. (2022); Liu et al. (2020); Fukasawa et al. (2021).

Rough volatility modeling has received considerable attention in the financial industry and

financial engineering as well as in academic research in quantitative finance, mathematical

finance, and financial econometrics. The 2021 Risk Awards were presented for introducing

rough-volatility models – see the Risk website for the citation;3 and the Rough Volatility

website4 has a collection of some 200 papers in this rapidly growing literature. In spite of

this considerable interest only a single study to our knowledge has advanced an economic

microstructure foundation to explain the rough-volatility phenomenon (El Euch et al., 2018).

These two empirical findings seem contradictory. Yet they reveal that this simple model

has dual capabilities of matching the data. Only two parameters in the model, the au-

toregressive parameter α and the memory parameter d, control dependency. The empirical

evidence above indicates that nonstationarity/near-nonstationarity in the data may be cap-

tured either by a long-memory parameter d ≈ 0.5 (the nonstationarity border for d) or

an autoregressive parameter α near unity. The first group of studies point to the values

(α ≈ 0, d ≈ 0.5) where autoregressive effects are small (and often negative) but there is

strong long-run dependence in the data. The second group point to values of α near unity

capturing nonstationary/near-nonstationarity dependence coupled with d < 0 which cap-

tures volatility roughness or possible slight overdifferencing in the raw data.

Inspired by what is now an extensive literature on weak identification (Phillips, 1989;

Staiger and Stock, 1997; Stock and Wright, 2000; Stock and Yogo, 2005; Andrews and Cheng,

2012; Andrews et al., 2019; Andrews and Mikusheva, 2022), we recognize that the contra-

dictory findings may be symptomatic of weak identification in the fitted ARFIMA(1, d, 0)

model for this type of economic data. To clarify these findings in the present case we show

that for two well isolated local parameterizations the model-implied spectral densities are

nearly indistinguishable. The two parameterizations correspond, as described above, to cases

2The rough-volatility literature, pioneered by Gatheral et al. (2018), use a class of continuous-time models
driven by the fractional Brownian motion with the Hurst parameter H, whose discrete-time representations
are asymptotically equivalent to the ARFIMA(1, d, 0) model with H = d+ 1/2; see Tanaka (2013).

3https://www.risk.net/awards/7736196/quants-of-the-year-jim-gatheral-and-mathieu-rosenbaum.
4https://sites.google.com/site/roughvol/home/risks-1.
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where the autoregressive coefficient lies either near unity or near zero.5 More specifically,

we show that the ‘distance’ between a near-unit-root ARFIMA(1, d, 0) model and a near-

zero-root ARFIMA(1, d + 1, 0) model goes to zero when nearness parameters shrink.6 The

two seemingly distinct parameterizations that have been studied extensively in the literature

therefore generate observationally nearly equivalent dynamics. The consequences of such ob-

servational equivalence have been well studied in other contexts and it is known, for instance,

that methods of inference based on conventional (identified) asymptotic theory lead to major

finite sample distortions under identification failure (Phillips, 1989; Dufour, 1997) that can

include unbounded confidence intervals. Further, Duffy and Kasparis (2021) have discovered

asymptotic affinities between time series with long memory parameter at the nonstationary

boundary d = 0.5 and the class of mildly integrated processes with roots near unity studied

in Phillips and Magdalinos (2007). Against the background of these findings some related

phenomena involving inferential distortions are to be expected in the present context and

have been documented in recent work by Shi and Yu (2022).

To address this issue we propose using an identification-robust confidence set obtained

by inverting tests for zero serial correlation in the model-implied residual series. The implied

inferences are semiparametric, data-driven, and do not rely on Gaussian errors. Consonant

with theory, simulations show that the robust confidence sets generally ‘bifurcate’ in the

sense that they include two distinctly isolated regions in which either (i) the autoregressive

parameter is close to unity and the memory parameter is negative or (ii) the autoregressive

parameter is close to zero and the memory parameter is positive.

Real data studies are undertaken to explore how prevalent this empirical phenomenon is

in practical work with financial data. We report results for a large sample of realized volatility

and trading volume data for a broad variety of U.S. equities and international stock market

indices. Our findings indicate that identification-robust confidence sets often do bifurcate,

exhibiting precisely the same pattern observed in simulations. This highlights the empirical

difficulty in determining whether a time series is driven by long-memory disturbances with

5Precise definitions of ‘near unity’ and ‘near zero’ involve sample size dependencies as commonly used in
the time series literature and these are discussed explicitly in Section 2 of the paper.

6The result is unsurprising upon noting that ARFIMA model identification failure occurs when the
nonstationary long-memory operator (1− α1L)

−1(1−L)−d1 , with α1 = 0 and d1 = 0.5 takes the equivalent
ARFIMA form (1− α2L)

−1(1− L)−d2 with α2 = 1 and d2 = −0.5. See (2.5) in Section 2.2.
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d > 0, a property that is highly relevant for forecasting, pricing applications, or improved

understanding of a network structure in an economic system (Schennach, 2018). To shed

more light on this question we draw on insights from the mixture-of-distribution hypothesis

(Clark, 1973; Tauchen and Pitts, 1983; Andersen, 1996), which postulates that price volatil-

ity and trading volume are driven by underlying information flows. Applying our robust

inference method on a Twitter-based economic uncertainty measure (Baker et al., 2021), we

find that inferences concerning this news arrival process do not appear to be affected by weak

identification, and the resulting confidence sets of the model parameters support the long-

memory specification. An implication of our empirical findings is that the rough-volatility

narrative advocated by Gatheral et al. (2018), among others, may need further evaluation

to account for potential weak identification issues and possible analysis with an extended

model that allows for joint dynamics with trading volume and news arrivals.

The paper is organized as follows. Section 2 reviews model specifications, details nearness

measures, and shows how weak identification manifests by establishing conditions under

which the spectral densities of the processes are asymptotically equivalent. Section 3 explains

how to invert tests for zero serial correlation to construct Anderson–Rubin confidence sets

for both parameters. Section 4 presents Monte Carlo results that explore the relevance

of weak identification by examining these identification-robust confidence sets. Section 5

reports extensive empirical studies using RV and trading volume series for many assets and

Twitter-based economic uncertainty indices. Section 6 concludes. The appendix collects

proofs. The online supplement contains details about the data, various empirical robustness

checks, and additional empirical applications to economic and climate data.

2 The Econometric Method

This section describes the identification-robust inference methods used in our simulation

and empirical analysis. Section 2.1 provides a brief background on ARFIMA processes

and Section 2.2 explains the weak-identification issue under study. The procedure for the

construction of identification-robust confidence sets is given in Section 2.3.
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2.1 Fractionally integrated processes

We start with introducing the econometric model. Let L denote the lag operator. The

observed time series yt is modeled as an ARFIMA(1, d, 0) process:

(1− αL) yt = ut, ut = σ (1− L)−d εt, (2.1)

where α is the autoregressive coefficient, ut is a fractionally integrated process with memory

parameter d, σ > 0 is a scale parameter and εt is a stationary martingale difference sequence

(MDS) with unit variance. In the stationary case where d ∈ (−0.5, 0.5) the fractional

operator in (2.1) can be defined by binomial series expansion as

(1− L)−d =
∞∑
j=0

(
−d

j

)
(−L)j =

∞∑
j=0

(d)j
j!

Lj (2.2)

giving ut = σ (1− L)−d εt = σ
∑∞

j=0
(d)j
j!
εt−j. In (2.2), (d)j = d(d + 1)...(d + j − 1) = Γ(d+j)

Γ(d)

is a forward factorial and Γ (·) is the gamma function. In nonstationary cases where d ≥ 0.5

initial conditions are set to a fixed origin such as t = 0 and the series is truncated giving

ut = σ (1− L)−d εt 1{t ≥ 1} = σ
∑t−1

j=0
(d)j
j!
εt−j (Phillips, 1999; Shimotsu and Phillips, 2005).

When d = 0 the series reduces to the identity and ut = σεt. We denote the parameter of

interest by θ = (α, d) and the variance σ2 is treated as a nuisance parameter.

In our empirical work the observed series yt may be (after demeaning) a volatility mea-

sure, trading volume, or news-based uncertainty. While these series are highly persistent,

they evidently do not wander without bounds as random walks. We therefore focus on the

empirically relevant scenario by restricting the autoregressive coefficient to |α| < 1. When

0 < |d| < 0.5, the innovation ut is stationary (Granger and Joyeux, 1980; Hosking, 1981)

with autocorrelation function (acf) at lag k

ρu (k) =
(−d)! (k + d− 1)!

(d− 1)! (k − d)!
∼a

(−d)!

(d− 1)!

1

k1−2d
as k → ∞, (2.3)

which decays at a power rate (compared with the exponential rate of a stationary ARMA
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model) as k → ∞. The spectral density of yt is

fθ (λ) =
σ2

2π

[2− 2 cos (λ)]−d

1− 2α cos (λ) + α2
for − π ≤ λ ≤ π, (2.4)

which encodes the dynamics of the observed series yt and is divergent with a fractional pole

at the zero frequency when d > 0. When d ≥ 0.5 and yt is nonstationary, fθ (λ) is no longer

integrable but is still defined for λ ̸= 0 (Solo, 1992; Velasco and Robinson, 2000).

The sign of d determines whether the fractional process ut has long or short memory.

McLeod and Hipel (1978) define a stationary process as having a long (resp. short) memory

if its acf is not summable (resp. summable). Evidently from (2.3), ut has long memory when

d > 0 and short memory when d ≤ 0. The memory parameter d in ut relates to the Hurst

parameter H in the increment of fractional Brownian motion (fBM) through the relationship

d = H − 1/2; see Giraitis et al. (2012, chap. 3).7 In continuous time models driven by fBM

increments, the long memory (resp. short memory) setting corresponds to H > 1/2 (resp.

H ≤ 1/2). The Hurst index H controls the smoothness of the sample path of fBM and the

process has ‘rough’ paths when H ∈ (0, 1
2
).

The empirical literature on volatility modeling has yielded apparently conflicting results

on the memory parameter d (which we identify with its continuous-time analogue H). For

example, Comte and Renault (1998) found that d ≈ 0.25 in a continuous-time fBM-driven

model, and Andersen et al. (2003) estimated d ≈ 0.4 in a discrete-time ARFIMA(1, d, 0)

model. In sharp contrast, the recent literature on ‘rough-volatility’ starting with Gatheral

et al. (2018) provides empirical evidence for d < 0, where the typical estimated value of

d is close to −0.5. The corresponding long memory and rough sample path models can

have different implications for volatility forecasting and option pricing. The conflicting

empirical findings are surprising because the long memory property of volatility, among

that of many other economic time series (Diebold and Rudebusch, 1989), has been deemed a

stylized fact. If this is debatable for volatility modeling, similar conflicting outcomes can arise

with other economic time series or data from a wider field of disciplines such as hydrology,

meteorology, and geophysics where long memory has been documented (Graves et al., 2017).

7For the same reason, the d and α parameters in an ARFIMA(1, d, 0) model correspond to two parameters
in the fractional Ornstein–Uhlenbeck process; see Tanaka (2013); Wang et al. (2021).
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Some examples from these fields are given in the Online Supplement.

Besides its long-run implications, the distinction between long memory and rough-volatility

models is also extremely important for the large literature on high-frequency-based non-

parametric volatility estimation, as most of the existing work in that literature requires (in

a stochastic sense) sufficient smoothness in the volatility path that is incompatible with

the rough-volatility model. As a case in point, consider the nonparametric estimation of

spot volatility (say, over an event window before or after a macro news announcement).

When the volatility is ‘rough’, a small bandwidth in nonparametric estimation is needed

to tame the large nonparametric estimation bias, which leads to a slower optimal rate of

convergence. In the boundary case with d approaching −0.5 and fBM becoming ‘barely’

continuous, the rate of convergence can be arbitrarily close to zero even with optimal tun-

ing. This in turn would severely limit the use of the high-frequency identification strategy

(Nakamura and Steinsson, 2018a,b) based on heteroskedasticity (Rigobon, 2003), or high-

frequency regression-discontinuity designs (Bollerslev et al., 2018).

Motivated by these empirical and theoretical considerations, we aim to shed new light on

long memory versus rough-volatility empirical issues that should be helpful in analyzing other

economic time series where long memory seems evident. While the aforementioned empirical

studies have focused on alternative ways of estimating the fractional parameter d, we ask a

more fundamental question: whether this parameter is strongly or weakly identified along

with the companion autoregressive coefficient α. If these parameters are weakly identified,

standard econometric inference may be severely distorted, and identification-robust inference

is required to reveal the underlying ambiguities in inference.

2.2 The weak identification problem

Why are the fractional parameter d and the autoregressive parameter α weakly identified?

To guide intuition, note that the ARFIMA(1, d, 0) model with α = 1 is observationally

equivalent to the ARFIMA(1, d+ 1, 0) model with α = 0. That is,

(1− L)yt = σ (1− L)−d εt ⇐⇒ yt = σ (1− L)−(d+1) εt. (2.5)
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Thus, for any d ∈ R there is identification failure between the two configurations (α, d) =

(1, d) and (α̃, d̃) = (0, d+1). This failure is clearly specific to α = 1, as the 1−αL operator

can only be absorbed into the differencing filter (1 − L)−d when α = 1. Failure manifests

here in a separable manner as these two isolated points on the parameter space become

observationally equivalent.

This simple identification failure in the ARFIMA model may appear irrelevant if the unit

autoregressive root α = 1 is ruled out a priori. But such a restriction does not prevent

weak identification when α is near unity and there is near observational equivalence in the

two structures. For whenever α is close to unity (and α̃ close to zero), a breakdown of

identification between (α, d) and (α̃, d̃) = (0, d + 1) holds approximately. In particular, a

‘rough’ parametric configuration with d ≈ −0.5 is observationally nearly equivalent to a

‘long memory’ configuration with d ≈ 0.5, provided that the autoregressive coefficients α

and α̃ are adjusted accordingly.

This weak identification issue is qualitatively distinct from the ‘common root’ identifica-

tion failure in ARMA models. In that setting common AR and MA roots are well known

to lead to identification failure (Ansley and Newbold, 1980) and the related weak identifica-

tion issue has been studied in detail for stationary ARMA models by Andrews and Cheng

(2012). Identification failure in ARMA models can arise for any corresponding AR/MA

parameter values in the parameter space. In contrast, weak identification in the present

ARFIMA setting is specific to the joint ‘near-unity and near-zero’ scenario for the AR coef-

ficient. Further, when weak identification occurs it manifests as a discrete ‘phase transition’

between one set of parameters (α, d) = (1, d) and the other (α̃, d̃) = (0, d+1). Complications

related to unit-root asymptotics also prevent any application of the common root ARMA

weak identification analysis in the present setting.

The weak identification issue considered here is related to but also distinct from the

well known long memory estimation bias phenomenon in which both Gaussian maximum

likelihood and semiparametric Whittle estimates of long memory exhibit large finite sample

bias in the presence of a substantial autoregressive component. This bias problem was shown

in early simulations in Agiakloglou et al. (1993) and bias correction methods were considered

in subsequent research, e.g., Andrews and Guggenberger (2003) and Poskitt et al. (2017).

10



To fix ideas we now formalize the intuition on weak identification by quantifying the

‘distance’ between two isolated local ARFIMA models. Let d∗ ∈ (−1, 0) be a fixed constant.

We consider two models indexed by the following local parameter regions: for some positive

sequences γT = o(1), γ̃T = o(1), and ηT = O(1) as T → ∞, define the regions RT = {(αT , dT ) : |αT − 1| < γT , |dT − d∗| < ηT},

R̃T = {(α̃T , d̃T ) : |α̃T | < γ̃T , |d̃T − d∗ − 1| < ηT}.
(2.6)

Note that RT and R̃T are respectively near the identification-failure points (1, d∗) and (0, d∗+

1) in the autoregressive dimension (i.e. α), shrinking at rates γT and γ̃T ; we only require

γT → 0 and γ̃T → 0 without setting any specific rates on these sequences. Whether the width

ηT of these regions along the fractional dimension (i.e., d) shrinks to zero is not essential for

our analysis, so it is kept unspecified. It is convenient, but not essential, to think of these

sequences as depending on the sample size T → ∞. In such cases, the formulation subsumes

a large class of near unity and near zero local parameterizations that have been used in the

econometric literature, as described in footnote 9 below.

Since the dynamics implied by each parameter vector θ = (α, d) is summarized by the

spectral density fθ(·), the two local models may be represented as the corresponding col-

lections of spectral densities, MT = {fθ(·) : θ ∈ RT} and M̃T = {fθ(·) : θ ∈ R̃T}. This

definition mirrors the usual definition of a statistical experiment as a collection of probabil-

ity laws, but our focus is more specifically on the dynamics, with other model ingredients

treated as nuisance. Recognizing this connection, it is natural to adapt Le Cam’s notion of

distance between statistical experiments (see, e.g., Section 2.2 in Le Cam and Yang (2000))

to the present setting as follows. We define the deficiency of M̃T with respect to MT as

δ
(
M̃T ,MT

)
≡ sup

θ∈RT

inf
θ̃∈R̃T

sup
λT≤|λ|≤π

|log fθ (λ)− log fθ̃ (λ)| ,

where the lower bound λT > 0 may possibly shrink to zero.8 The idea under this definition

8The λT lower bound is needed to properly define the uniform distance between spectral densities for
ARFIMA models because these densities have fractional poles at frequency zero. When dT ̸= d̃T the
fractional asymptotes differ and the lower bound λT → 0 controls the rate at which comparisons are made
in the relative differences between the spectral densities as T → ∞.
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is, for any θ ∈ RT under the model MT , one can find θ̃ ∈ R̃T under the other model M̃T ,

such that the uniform distance between their spectral densities (in log form) is bounded

by δ(M̃T ,MT ). The deficiency measure thus quantifies the extent to which the dynamics

generated by MT cannot be captured by M̃T . Symmetrizing the roles of MT and M̃T , we

can then gauge the (pseudo) distance between the two local models using

∆
(
MT ,M̃T

)
= max

{
δ
(
M̃T ,MT

)
, δ
(
MT ,M̃T

)}
.

When the distance between the two models is zero, they generate exactly the same spectral

densities. Theorem 1 shows that this equivalence nearly holds for MT and M̃T .

Theorem 1 Let RT and R̃T be defined as (2.6) for some positive sequences γT = o(1),

γ̃T = o(1), and ηT = O(1). Then, ∆(MT ,M̃T ) = O((λ−2
T γT ) ∨ γ̃T ).

This result formally clarifies the weak identification issue in the ARFIMA context. It

shows that the ∆(MT ,M̃T ) distance between the two local models, parameterized by RT

and R̃T , asymptotically shrinks to zero when the former is near-unity and the latter is

near-zero (in the autoregressive dimension).9 This leads to a rather severe form of weak

identification because the two sets of parameters RT and R̃T are not close to each other, as

they are centered around the two isolated points (1, d∗) and (0, d∗ + 1) in the (α, d) plane.

As γT and γ̃T approach zero, these two regions become further apart in the parameter space

but, as shown in Theorem 1, the difference between their dynamic implications also vanishes,

provided the lower frequency bound λT does not tend to zero too fast, i.e. faster than
√
γT .

As such, weak identification arises in a ‘bimodal’ form, with two distinct sets of parameters

being observationally nearly equivalent.

To illustrate this point, Figure 1 plots the log spectral densities of the ARFIMA model

under these two local models. In panel (a), the configuration with α = 0 and d = 0.5 belongs

to M̃T , while the others fall in MT with α ranging from 0.8 to 0.999 and d fixed at −0.5.

Similarly, in panel (b), the configuration α = 0.995 and d = −0.5 falls in MT , while the

9The near-unity restriction covers a wide spectrum of near unit root behavior, including the local-to-unity
specification of Phillips (1987) and Chan and Wei (1987), the mildly integrated specification of Phillips and
Magdalinos (2007), and the general near-unity specification of Phillips (2022).
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Figure 1: Log Spectral Densities of Two Local Models: An Illustration

(a) (b)

spectral densities for the remaining parameter settings are in M̃T with α between −0.2 and

0.2. Evidently, as α → 1 (resp. α → 0), the log spectral density generated from MT (resp.

M̃T ) approaches and eventually becomes virtually indistinguishable from that associated

with M̃T (resp. MT ), revealing the weak identification between them, subject to the lower

frequency bound λT not passing to zero so fast that the different order of the fractional poles

dominates the discrepancy in the spectral densities. To further appreciate the impact of λT

on the discrepancy measure, we show in the inset in panel (a) an enlarged graphic of the

log spectral densities focused at frequencies closer to zero, ranging between 0.001 and 0.02.

Evidently, for a given θ ∈ R̃T (panel (a)), the uniform distance between the two spectral

densities is affected by the lower bound of λ but diminishes rapidly provided λT does not

pass to zero too fast. When θ is in RT , the densities are very close (panel (b)). In this

case, the impact of small negative autoregressive coefficients α < 0 under long memory with

d = 0.5 evidently also raises spectral power at high frequency.

This weak-identification perspective on ARFIMA specifications provides a plausible ex-

planation for the conflicting empirical findings in the literature regarding long memory or

roughness in volatility dynamics. In the empirical rough volatility literature when αT is as-

sumed to be unity or local to unity the estimated value of d is negative and often close to -0.5

(Gatheral et al., 2018; Fukasawa et al., 2021; Wang et al., 2021).10 This corresponds to the

10The discrete-time representation of fBM implies that αT is unity while the discrete-time representation
of fOU under an infill scheme implies that αT is local to unity.
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RT region in our analysis. As discussed above, such a parametric configuration is essentially

indistinguishable from its counterpart in R̃T with d around 0.5 and αT near zero. The latter

parameter values are actually in line with the estimates reported in the long memory RV

literature reviewed in the Introduction.

If weak identification is indeed in force, conventional asymptotic inference based on strong

identification may be unreliable. This explains why Shi and Yu (2022) find two disjoint

intervals in the highest density set for the time-domain maximum likelihood estimators and

frequency-domain maximum likelihood estimators. Similar effects have been extensively

studied in the literature on weak instrumental variables (Staiger and Stock (1997), Moreira

(2003)) and more generally in the setting of weak GMM (Stock and Wright (2000), Andrews

and Mikusheva (2022)). Andrews and Cheng (2012) analyze the weak identification problem

in a broad range of problems, including weakly identified stationary ARMA models (Ansley

and Newbold (1980)). A key lesson from the weak identification literature is this: if the

strength of identification is in doubt, it is better to apply inferential methods that are robust

to identification failure. This idea motivates the approach we now propose.

2.3 Identification-robust confidence sets

Theory suggests that parameters α and d are jointly weakly identified when α is near-unity

or near-zero. To prevent weak identification from distorting statistical inference, we now

construct identification-robust confidence sets for θ = (α, d). Using a standard approach from

the weak identification literature we construct Anderson–Rubin confidence sets by inverting

tests for null hypotheses of the form H0 : θ0 = θ, where θ0 denotes the true parameter

value and θ denotes a generic candidate parameter that runs over the parameter space Θ.

Specifically, equipped with a test that has asymptotic size β and following Anderson and

Rubin (1949), the associated 1− β level confidence set is constructed as the collection of all

non-rejected parameter values, viz.,

CS1−β = {θ ∈ Θ : The null hypothesis H0 : θ0 = θ is not rejected at level β}. (2.7)

The remaining task is to construct a test that is robust to weak identification. Conven-

14



tional tests derived from (quasi) maximum likelihood or GMM estimators are not suitable for

this task, because the classical inferential theory relies heavily on strong identification. We

instead consider a test that targets moment conditions implied by the null hypothesis θ0 = θ.

Under the null the θ-implied disturbance term εt (θ) ≡ (1− L)d (yt − αyt−1) coincides with

the true εt error term and forms an MDS. This in turn implies

HWN
0 : γj (θ) = 0 for all j ≥ 1, (2.8)

where γj(θ) denotes the autocovariance of εt(θ) of order j. We may test the original null

hypothesis H0 : θ0 = θ by testing the moment conditions in (2.8), viz., εt(θ) forms a white

noise sequence for the candidate parameter value θ.

It is worth clarifying that the ‘white-noise’ null hypothesisHWN
0 does not fully exhaust the

model restrictions implied by the maintained stationary MDS assumption on εt. By testing

the weaker null hypothesis HWN
0 , we intentionally direct test power towards the detection of

non-zero serial correlations rather than general forms of nonlinear serial dependence (which

are not intended to be captured by the ARFIMA model). Evidently, this technical gap would

not have appeared if we had assumed from the outset that the εt ‘only’ comprise white noise.

We adopt the stationary MDS structure for technical convenience, which is common in the

literature, because it simplifies the computation of the test statistic.

Our proposal for constructing identification-robust confidence sets is simply to invert

tests for zero serial correlation in the implied disturbance. Testing for serial correlation is

a well studied topic in time series analysis. We can therefore address weak identification in

the present context by drawing from the broad literature on serial correlation tests.

In principle, any reasonable test for serial correlation may be used for robust inference

here. Arguably the most popular test in practical work is the portmanteau test proposed by

Box and Pierce (1970) and Ljung and Box (1978), for which the test statistic is formed as

a (weighted) sum of the first p ≥ 1 squared sample autocorrelation coefficients. Under the

baseline setting with i.i.d. errors, the asymptotic distribution of this test statistic under the

null hypothesis (i.e., no serial correlation) is χ2
p. This classical test has also been adapted to

accommodate non-i.i.d. errors; see, for example, Diebold (1986), Guo and Phillips (2001),
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Lobato et al. (2002), Escanciano and Lobato (2009), Dalla et al. (2022), and the many ref-

erences therein. The portmanteau test is designed to detect violations of the null hypothesis

up to the pth lag. It is also possible to allow the lag length p to slowly diverge to infinity

as T → ∞ so that the test is consistent against alternatives with unknown forms; see Hong

(1996). In finite samples, however, it is evident that choosing p too large dilutes power

if violations against the null can already be detected from the first few lags (which is not

uncommon in practice). The power of this type of test crucially depends on the choice of p.

Motivated by these considerations, we adopt the Adaptive Portmanteau (AP) test pro-

posed by Escanciano and Lobato (2009). The key advantage of their approach is to choose p

in a data-driven fashion, which makes the test ‘adaptive’ with respect to the unknown com-

plexity and nonparametric nature of the alternative. The test also readily accommodates an

MDS structure of the error without requiring εt to be i.i.d. The simulation evidence provided

in Escanciano and Lobato (2009) shows that the AP test is generally more powerful than

commonly used competitors.11

We implement the AP test for a given candidate parameter θ as follows. Let γ̂j(θ) denote

the jth sample autocovariance of εt (θ), that is,

γ̂j (θ) ≡
1

T − j

T∑
t=j+1

(
εt (θ)− ε̄ (θ)

)(
εt−j (θ)− ε̄ (θ)

)
,

where ε̄(θ) is the sample average of εt(θ). The asymptotic variance of γ̂j (θ) is estimated by

τ̂j (θ) ≡
1

T − j

T∑
t=j+1

(
εt (θ)− ε̄ (θ)

)2(
εt−j (θ)− ε̄ (θ)

)2
.

For a generic lag order p ≥ 1, the portmanteau test statistic is defined as the sum of squared

t-statistics in the following form

Qp (θ) ≡ T

p∑
j=1

γ̂j(θ)
2

τ̂j(θ)
. (2.9)

11The AP test is also easy to implement as it does not require re-sampling the data as with bootstrap
methods. Computational efficiency is highly relevant for our application since we need to invert the test
across a large number of candidate parameter values.
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The data-driven choice of p underlying the AP test relies on a combination of the Akaike

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Specifically, let

p̄ ≥ 1 be a user-specified upper bound for p. Define the hybrid penalty function π (p, T ) as

π (p, T ) ≡

 p log T if max1≤j≤p̄

√
T |γ̂j(θ)|/

√
τ̂j(θ) ≤

√
2.4 log T ,

2p otherwise.
(2.10)

The lag order actually used in the AP test, denoted p∗(θ), is determined as (the smallest

element of) the argmax of Qp (θ)− π (p, T ), with T and θ taken as given.

With this notation, the AP test statistic is defined by

Q∗ (θ) ≡ T

p∗(θ)∑
j=1

γ̂j(θ)
2

τ̂j(θ)
. (2.11)

Escanciano and Lobato (2009) show that the asymptotic distribution of this test statistic

under the null hypothesis is χ2
1. Hence, we reject the null at the significance level β when

Q∗ (θ) exceeds the 1 − β quantile of χ2
1, denoted χ2

1,1−β. Recalling (2.7), the 1 − β level

identification-robust confidence set that we propose can thus be written explicitly as follows

CS1−β =
{
θ ∈ Θ : Q∗ (θ) ≤ χ2

1,1−β

}
. (2.12)

For ease of application, we summarize the proposed procedure in the following algorithm.

Algorithm 1 (Construction of Identification-Robust Confidence Sets).

Step 1: For a given candidate parameter vector θ = (α, d) ∈ Θ, obtain the implied residual

sequence εt (θ) = (1− L)d (yt − αyt−1).

Step 2: Given a user-specified upper bound p̄, compute Qp(θ) according to (2.9) for all

p ∈ {1, . . . , p̄}. Set p∗(θ) as the smallest p that maximizes Qp(θ) − π(p, T ), with π(p, T )

defined by (2.10).

Step 3: Compute the AP test statistic Q∗(θ) as in (2.11).

Step 4: Repeat Steps 1–3 for all θ on a (fine) discretization of the parameter space Θ. Form

the 1 − β level confidence set as (2.12), which collects all θ’s such that Q∗(θ) is below the
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1− β quantile of the χ2
1 distribution. □

3 Simulations

We apply the proposed identification-robust inference method in a Monte Carlo setting that

is designed to illustrate the intuition discussed in Section 2.2 and, at the same time, match

some key patterns seen in empirical work, including our own study in Section 4. We generate

the observed yt series from the ARFIMA(1, d, 0) model (2.1) for different (α, d) parameter

values, with the εt error terms simulated as i.i.d. standard normal variables.12 Specifically, we

consider d = −0.4 or 0.4 under which the process ut exhibits roughness or long-memory, re-

spectively. Whether the model is weakly or strongly identified depends critically on the value

of the autoregressive coefficient α. Accordingly, we consider a broad range of configurations

for this parameter by varying its value over the set A = {−0.2,−0.1, 0, . . . , 0.9} ∪ {0.995},

with the point α = 0.995 being representative of the near-unity region.13

Under each configuration, we compute the 95%-level robust confidence set for (α, d)

as described in Algorithm 1. Test inversion is carried out via a grid search over the set

[−1, 1] × [−1, 1]. This candidate set is sufficiently wide so that empirical estimates seen in

the prior literature are not ruled out a priori. To keep the computation manageable, we

discretize each dimension of the parameter space with mesh size 0.01. Since the near-unity

region for the autoregressive parameter α is of special importance, we refine the mesh size

for α down to 0.001 when α ∈ [0.99, 1].

It is instructive to illustrate the workings of the proposed confidence set for a single

random draw in the Monte Carlo experiment. Figure 2 plots (one-shot) realizations of the

estimated confidence sets under four Monte Carlo configurations. Specifically, we consider

two sample sizes, T = 2, 000 or T = 5, 000, that are in line with the real datasets used

in our empirical study. For each sample size, we consider two parameter configurations

(α, d) = (0.995,−0.4) or (0, 0.4), which are representative of the empirical estimates in

12Since the inference procedure is scale-invariant, the scale parameter σ is set to unity without loss of
generality.

13This value matches the estimate reported in Shi and Yu (2022) for the S&P 500 ETF (SPY) from
January 2010 to May 2021 based on the Whittle method.
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Figure 2: Identification-Robust Confidence Sets: One-Shot Realizations

(a) α = 0.995, d = −0.4, and T = 2000 (b) α = 0, d = 0.4, and T = 2000

(c) α = 0.995, d = −0.4, and T = 5000 (d) α = 0, d = 0.4, and T = 5000

prior studies that support rough or long-memory volatility dynamics, respectively (see, e.g.,

Gatheral et al. (2018) and Andersen et al. (2003)). Also note that these configurations

directly mirror the two parameterizations analyzed in Theorem 1.

Inspection of the plotted confidence sets for all four settings in Figure 2 reveals that they

share a common ‘bifurcation’ pattern in which there are two disjoint regions irrespective of

which region actually contains the true parameters. One region features near-unity α and

d < 0 (signifying roughness), while the other features near-zero α and d > 0 (signifying long-

memory). Viewed through the lens of robust confidence set inference, neither of these two

possibilities can be ruled out at the given confidence level, despite the fact that the parameter

values seem highly disjoint and individually very different between the two regions. Although

this indeterminacy may be disconcerting and unsatisfying from a practical viewpoint, it

reflects the intrinsic difficulty arising from the near indistinguishability of the two parameter
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schemes, given the available data. Increasing the sample size from 2, 000 to 5, 000 sharpens

the individual regions in the confidence sets as may be expected but it does not eliminate

the bifurcation phenomenon.

The pattern depicted in these illustrations is representative. This may be shown by

overlaying the plots in Figure 2 across all Monte Carlo trials. More precisely, for each

candidate parameter value on the (α, d) plane, we compute the frequency that it falls in the

confidence set; we then plot these coverage rates as a heatmap. For brevity, we focus on the

case T = 5, 000, which is roughly the average sample size for datasets used in our empirical

work. The top row of Figure 3 plots the coverage rate heatmaps for (α, d) = (0.995,−0.4)

and (α, d) = (0, 0.4), as in the illustrative examples. The bifurcation pattern is again self-

evident, suggesting that the identification-robust confidence sets generally contain those two

disjoint regions. While our approach does not estimate any parameter, our findings reinforce

what Shi and Yu (2022) found when maximum likelihood methods are used.

For comparison, we plot heatmaps for the true parameter values (α, d) = (0.5,−0.4) or

(0.5, 0.4) in the bottom row of Figure 3. From the analysis in Section 2.2, weak identification

is mainly relevant when α is near unity or near zero. Therefore, the two configurations with

α = 0.5 are expected to deliver strong identification and this behavior is evident in the plot-

ted heatmaps. Indeed, an ‘average’ confidence set for (α, d) has the familiar (single-region)

elliptic shape and is centered at the true parameter value, precisely what is expected in clas-

sical likelihood or moment-based inference. On the other hand, confidence sets under strong

identification are not necessarily small. Instead, weak identification is revealed through non-

standard shapes, such as the bifurcation pattern seen here in the robust confidence sets,

rather than by the size of the confidence set. Readers are referred to the literature for more

discussion of these differences (Staiger and Stock, 1997; Stock and Wright, 2000; Stock and

Yogo, 2005; Andrews and Cheng, 2012; Andrews et al., 2019).

To reveal the incidence of bifurcation Figure 4 plots its frequency of occurrence as a

function of the true value of the autoregressive coefficient α ∈ A while fixing d = −0.4

(left) or d = 0.4 (right). For brevity the T = 5, 000 case is reported. In the left panel where

d = −0.4 the confidence set almost always contains two disjoint regions when α = 0.995, just

as in panel (a) of Figure 3. When α = 0.9, the bifurcation frequency drops to approximately
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Figure 3: Identification-Robust Confidence Sets: Coverage Rates

(a) α = 0.995, d = −0.4 (Weak ID) (b) α = 0, d = 0.4 (Weak ID)

(c) α = 0.5, d = −0.4 (Strong ID) (d) α = 0.5, d = 0.4 (Strong ID)

Note: See the online version for this figure in color.

70%, suggesting that weak identification is still largely in play. As the true value of α moves

further away from the near-unity region, the bifurcation frequency drops essentially to zero.

The overall pattern is consistent with the intuition that when d < 0 the parameters tend

to be weakly identified when α is near unity. Mirroring this finding, the right panel of

Figure 4 shows that when d > 0, weak identification is more severe when α is close to zero,

complementing intuition and Theorem 1.

These Monte Carlo findings corroborate theory and intuition. In ARFIMA model sim-

ulations the (α, d) parameters show strong evidence of joint weak identification when α is

near unity or near zero. In such cases, identification-robust confidence sets typically contain

two distinct regions that exhibit the bifurcation pattern predicted by theory and guide the

interpretation of empirical findings, to which we now turn.
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Figure 4: Bifurcation Frequencies of the Identification-Robust Confidence Set

(a) d = −0.4 (b) d = 0.4

4 Empirical Applications

The proposed identification-robust inference approach is applied to several economic time

series. Section 4.1 presents results based on realized volatility (RV) measures for a broad

range of U.S. ETFs and stocks, and international stock market indices. Sections 4.2 and

4.3 report additional empirical findings for trading volume and social-media news flow data.

Further empirical results for a wider range of time series are given in the Online Supplement.

4.1 Realized volatility measures

Daily RV measures from two publicly available databases are employed: the Realized Library

of the Oxford–Man Institute of Quantitative Finance and the Risk Lab constructed by

Dacheng Xiu.14 For analysis of U.S. equity market data we use daily RV time series of

the S&P 500 market ETF, nine industry ETFs, and the Dow Jones Industrial Average 30

stocks from the Risk Lab15 – see Da and Xiu (2021) for the construction of these measures.

The list of assets and summary statistics are reported in Table S1 of the online supplement.

We also conduct empirical analyses of international stock market indexes, for which the RV

measures are obtained from the Realized Library and constructed as the sum of squared

5-minute intraday returns – see Table S2 in the online supplement for a summary.

14See https://realized.oxford-man.ox.ac.uk/ and https://dachxiu.chicagobooth.edu/#risklab.
15Since Dow Inc. (NYSE: DOW) is listed on NYSE only since 2019, its sample size is substantially shorter

than all the other stocks. For this reason we replace it with Exxon Mobil Co. (NYSE: XOM), which belonged
to the Dow Jones index until August 31, 2020.
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Following Andersen et al. (2003), we model each demeaned log RV series using the

ARFIMA model in (2.1). For each series we compute the 95%-level robust confidence set for

(α, d) by inverting the AP test at the 5% significance level, as in Algorithm 1. The implied

inferences are constructed in a semiparametric data-driven manner with respect to potential

serial correlation, employ asymptotic theory under the null, and do not rely on Gaussian

errors. To simplify interpretation the RV measures are treated as stand-alone time series

and attention is confined to their individual properties. In principle it is possible to translate

empirical evidence obtained from the RV measures into statements regarding certain latent

volatility-related functionals (e.g., integrated variance or quadratic variation) by invoking

the so-called asymptotic negligibility argument as in Corradi and Distaso (2006) (see also

Li and Patton (2018) for similar results designed more specifically for hypothesis testing).

Extensions to obtain such further interpretation requires additional assumptions and asymp-

totic approximations with no changes in the robust approach to inference.16 This extension

is not pursued here to retain the weak identification focus of the paper.

As in the Monte Carlo simulations, we carry out the test inversion via a grid search for

(α, d) ∈ [−1, 1] × [−1, 1]. Given the large number of assets under consideration, presenting

and comparing the two-dimensional confidence sets for all data series (say, in the form of

Figure 2) is challenging in limited space. To achieve a concise presentation, one-dimensional

confidence sets are reported for the autoregressive coefficient α and the fractional parameter

d obtained by projecting the two-dimensional confidence sets onto each dimension.

Figure 5 plots the one-dimensional confidence sets for the SPY and the nine industry

ETFs, with panel (a) and panel (b) showing the results for α and d, respectively. Since the

confidence set for (α, d) often contains two disjoint regions, we use two gray scales (dark and

light) to signify them, so that the same-colored one-dimensional confidence sets of α and

d are projected from the same parent two-dimensional confidence set. By convention, the

dark-colored (resp. light-colored) confidence sets are associated with d > 0 (resp. d < 0).

From Figure 5 five of the ten ETFs (including SPY, XLP, XLU, XLV, and XLY) have

16Asymptotic negligibility arguments use sufficient conditions to ensure the errors between a realized mea-
sure and its ‘population’ continuous time counterpart can be ignored provided the high-frequency measures
converge sufficiently fast. In recent work Bolko et al. (2022) explicitly address the measurement error prob-
lem by introducing assumptions on the proxy error which require primitive conditions on the continuous
model and may be misspecified in general.
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Figure 5: Confidence Sets for Selected ETFs (1996–2021)

(a) 95% Confidence Set of α (b) 95% Confidence Set of d

confidence sets with disjoint regions. In dark-colored regions the autoregressive coefficient

α is near zero and the positive fractional parameter indicates long memory, whereas in

light-colored regions α is near unity and d takes large negative values. These patterns

are consistent with theory, earlier intuition, and mirror the simulation findings, revealing

evidence of weak identification in these cases.

These findings go some way to reconcile conflicting empirical evidence on long memory

and rough-volatility in the existing literature. By accommodating the possibility of weak

identification and adopting identification-robust inference, the present approach offers a ra-

tionale for different modeling schemes to ‘co-exist’, with both showing statistical support

in the data. Lessons from the wider literature on weak identification suggest caution in

the use of conventional methods that presume strong identification in the present setting of

ARFIMA inference. Prior restriction of attention to one region in the parameter space (e.g.,

by imposing α = 1 or by conducting optimization within a local neighborhood) removes the

opportunity to introduce evidence in partial support of an alternative parameter region of

d, thereby influencing forecasting and decision making.

Figure 5 also reveals that the confidence sets for some assets (including XLB, XLE,

XLF, XLI, and XLK) consist of only a single region, becoming confidence intervals. These

confidence intervals for the fractional parameter d all hover around 0.4, which is close to
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Figure 6: Confidence Sets for Selected ETFs: Subsample Analysis

(a) 95% Confidence Set of α (1996–2009) (b) 95% Confidence Set of d (1996–2009)

(c) 95% Confidence Set of α (2010–2021) (d) 95% Confidence Set of d (2010–2021)

the estimate reported in Andersen et al. (2003) and other work, thereby favoring the long

memory narrative advocated in the early RV literature.

How robust are these findings to different sample periods? To investigate, the full sample

is divided into two subsamples of similar size, spanning 1996–2009 and 2010–2021. Each

subsample is analyzed and Figure 6 reports the estimated confidence sets. The results for

1996–2009 (in the top row) are qualitatively similar to those of the full-sample shown in

Figure 5. But the bottom row of Figure 6 shows that bifurcation into disjoint confidence

regions is more prevalent for the 2010–2021 subsample, for which the confidence sets of all

but one ETF contain regions of long memory and antipersistence.
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So far, the evidence from the ten ETFs clearly demonstrates the empirical relevance of

weak identification and the difficulty in robustly discriminating between long memory and

rough dynamics. This phenomenon is not specific to ETFs. Similar analyses were conducted

for each of the 30 constituent stocks of the Dow Jones Industrial Average and Figure 7 plots

the resulting one-dimensional confidence sets for α and d. Almost all these sets bifurcate,

suggesting that weak identification issues are even more prevalent for individual stocks than

market indices. The estimated confidence sets are again fairly stable across assets.

Figure 7: Confidence Sets for Dow Jones Industrial Average Stocks

(a) 95% Confidence Set of α (b) 95% Confidence Set of d

Additional empirical evidence is obtained with data from a broad range of international

markets. The analysis relies on the daily RV series for all 31 stock market indices that

are available online from the Oxford–Man Realized Library.17 The same procedure is con-

ducted for these market-level volatility measures and Figure 8 plots the projection-based

one-dimensional confidence sets. The confidence sets for nine of the 31 indices exhibit bi-

furcation, eighteen of them are single-region, and the confidence sets for the remaining four

indices (i.e., AEX, FCHI, FTMIB, and KSE) are empty.18 These findings show that weak

identification issues occur over a broad set of markets but that the overall evidence tends in

17Robustness checks based on alternative RV measures are provided in the online supplement.
18An empty confidence set may be interpreted as a specification test leading to a rejection of the hypothesis

that the ARFIMA(1, d, 0) model is correctly specified for a given data series. However, in view of the number
of time series analyzed in the empirical analysis, these rejections seem tolerable with respect to possible false
rejections (type I errors).
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Figure 8: Confidence Sets for International Stock Market Indices

(a) 95% Confidence Set of α (b) 95% Confidence Set of d

favor of the long memory configuration, which is always present in the confidence set irre-

spective of whether there is one region or two regions. The volatility of stock market indices

are weighted sums of individual stock variances and covariances. The fact that their RV

measures exhibit stronger support for long memory is consistent with the property that long

memory can arise from aggregation (Robinson, 1978; Granger, 1980). The online supplement

provides additional subsample results which support the same conclusion.

These empirical results for RV measures are summarized as follows. First, weak identifi-

cation is prevalent in volatility dynamics analyzed via ARFIMA modeling. Robust inference

manifests the issue in bifurcated confidence sets, suggesting caution in any statements about

the generating mechanism relating to long memory versus roughness when the methodol-

ogy relies on a presumption of strong identification. Second, for some assets the robust

confidence sets reveal only a single region, which is always associated with a long memory

configuration (d > 0). Long memory therefore appears to be more compatible with the

in-sample RV dynamics for these assets. But this conclusion does not rule out the possibility

that a rough-volatility model may outperform long memory in volatility forecasting or option

pricing applications, which are certainly of interest but lie beyond the scope of the present

paper.
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4.2 Trading volume

The methodology is next applied to trading volume data, which are of independent economic

interest and somewhat easier to interpret than RV measures because volume series are di-

rectly observable (in contrast to RV measures which are often regarded as proxies for latent

volatility functionals). Given the well-known relationship between volume and volatility,

these processes are expected to share similar qualitative dynamic properties and may there-

fore assist in interpreting results for volatility dynamics. A leading theoretical explanation

of the volume-volatility relationship is the mixture-of-distributions hypothesis (Clark, 1973;

Tauchen and Pitts, 1983; Andersen, 1996) which postulates that both volume and volatility

are driven by common underlying information flows. The volume-volatility relationship is

supported more formally in an equilibrium model. For instance, Collin-Dufresne and Fos

(2016) shows that stochastic liquidity can drive this relationship in a Kyle (1985)-type noisy

rational expectations model.

We study the same 40 assets in the U.S. equity market as those in Section 4.1. For ease

of replication, we use publicly available trading volume data obtained from Yahoo Finance.

The sample period is February 1, 1993 to June 4, 2021. In parallel to the RV analysis the

volume series are measured in logarithms. Because trading volume in the U.S. equity market

exhibits a salient trend during earlier samples, we detrend the log volume series following

standard practice, adopting a procedure similar to Andersen (1996) in which an additive (in

logs) trend component is removed using a two-sided moving average spanning 512 trading

days. Table S3 in the online supplement reports summary statistics for the de-trended log

trading volume. With only a few exceptions, the sample sizes of these volume series are

greater than 5,000.

Using the same approach as before robust confidence sets are computed for each of the

40 (de-trended) log volume series. The projected one-dimensional confidence sets of α and

d are plotted for the ten ETFs in Figure 9 and the 30 Dow Jones stocks in Figure 10. As

before, there is overwhelming evidence of weak identification in the trading volume data.

Almost all the confidence sets have two disjoint regions, one suggesting rough near unit root

dynamics (i.e., d < 0 and α ≈ 1) and the other implying long memory with weak short-run
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dynamics (i.e., d > 0 and α ≈ 0).

Figure 9: Confidence Sets for Trading Volume of Selected ETFs

(a) 95% Confidence Set of α (b) 95% Confidence Set of d

Figure 10: Confidence Sets for Trading Volume of Dow Jones Industrial Average Stocks

(a) 95% Confidence Set of α (b) 95% Confidence Set of d

Overall, the findings point to the relevance of weak identification in ARFIMA modeling of

trading volume, which is sometimes used as a measure of liquidity or investor sentiment, and

thereby lends support to the results for volatility in view of the volume-volatility relationship.

The patterns exhibited in Figures 9 and 10 are qualitatively similar to those in Figures 5 and

7, but the ‘statistically acceptable’ values of d (i.e., those in the confidence sets) for trading

volume are generally lower than those of the RV measures. Restricting attention to the long
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memory scheme, this outcome suggests that the volatility process may have longer memory

than the volume process, a matter that deserves further investigation and may be associated

with prior detrending of the volume series19.

4.3 Twitter-based economic uncertainty

The above findings highlight a central message of the paper concerning the common difficulty

in economic data of empirically determining the dynamics in an ARFIMA generating mech-

anism when disjoint confidence sets suggest plausible mechanisms of either long memory or

near unit root roughness as compatible with observed data. This duality in interpreting

empirical outcomes is an advantage of identification-robust confidence regions but it does

not resolve a definitive generating mechanism for use in practice.

Weak identification issues of this type are not necessarily purely finite sample problems

because indeterminacy may persist asympotically as central limit theory can apply internally

under either unidentified specifications or local ‘drifting to unidentified’ specifications, each of

which reproduces finite sample characteristics of uncertainty asymptotically (Phillips, 1989;

Staiger and Stock, 1997)20. The sample sizes used in the current paper are already large by

normal standards and using a few more years of data is unlikely to lead to any meaningful

change in the results, as simulation findings affirm. Other possibilites involve using prior

information from relevant theory or additional data that provide new information to assist

in resolving the indeterminacy empirically.

The mixture-of-distributions hypothesis suggests a strong volume-volatility relationship

and further postulates that both volume and volatility are driven by underlying information

flows. The precise manner in which these economic quantities are linked depends partly on

trading behavior and is generally unknown, but that they are linked raises little doubt. It is

therefore reasonable to conjecture the news arrival process may well share dynamics similar

to volatility and volume.

This consideration provides motivation to examine the dynamics of news arrivals. In view

of the enormous attention now paid to social media, we focus on the Twitter-based Economic

19For instance, Phillips and Jin (2021) show that detrending a stochastic trend by the HP filter materially
influences the nature of the fitted trend and the residual series.

20The internal nature of the asymptotics is explained and established in Phillips (1989).
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Figure 11: Twitter Economic Uncertainty Indices

Uncertainty (TEU) index, which is publicly available from the Economic Policy Uncertainty

website.21 The TEU index is constructed based on Twitter messages containing keywords

related to uncertainty and economy – see Baker et al. (2021) for details. Since our empirical

analysis mainly concerns the U.S. equity market, we use the TEU-USA index, which is built

on tweets originating from the U.S., and its attention-weighted variant TEU-WGT.22 The

TEU indices are available at the daily frequency and our sample spans the period June 1,

2011 to July 24, 2021, giving a sample size of T = 3, 789 observations. Figure 11 plots these

two TEU indices in logarithmic units. Unsurprisingly, they are highly correlated (correlation

coefficient = 0.996) and highly persistent.

Following the same procedure as before, we compute identification-robust confidence sets

of (α, d) for the two (log-transformed and then demeaned) TEU indices. The confidence sets

are plotted in Figure 12. Interestingly, the confidence sets for these TEU indices contain

only one region, with memory parameter around 0.4 and autoregressive coefficient taking

21https://www.policyuncertainty.com/twitter_uncert.html
22The TEU-WGT index adjusts the weight of each tweet according to the number of its re-tweets.
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Figure 12: Confidence Sets for Twitter-Based Economic Uncertainty Indices

(a) Estimated interval of α (b) Estimated interval of d

negative values but close to zero.23 Weak identification does not appear to be a major issue

here, and the statistical evidence supports long memory and weak short-run autoregressive

(negatively correlated) dynamics. Notably, the confidence sets for the memory parameter d

in both TEU indices center around d = 0.4, which, incidentally, is the estimate reported by

Andersen et al. (2003) for RV measures, despite the fact that these estimates are obtained

using quite different datasets, over different periods, and by different econometric methods.

This empirical exercise is based on specific measures of news flows, and the extent to which

the empirical outcomes may apply over a broader set of measures remains to be investigated

in future research. A further caveat is that the finding that the news arrival process exhibits

long memory does not in itself eliminate the ambiguity revealed in the bifurcated confidence

sets for volatility and trading volume; and it does not rule out the possibility that volatility

may be generated by a rough model involving antipersistence and near unit root dynamics.

But this evidence does pose a conceptual challenge for the rough-volatility narrative from an

economic standpoint. If volatility dynamics are driven by news arrivals, then the question

remains what economic mechanism might explain their distinct empirical behavior along

the long memory/roughness spectrum – that is, why is volatility rough, but news arrivals

have long memory? Nonetheless, the small-scale analysis conducted here is suggestive and

23Specifically, the confidence intervals for d are [0.4, 0.45] for TEU-USA and [0.36, 0.44] for TEU-WGT,
with the corresponding intervals for α being [−0.14,−0.04] and [−0.14,−0.01].

32



it highlights the potential usefulness of studying the joint dynamics of volatility, volume,

and news arrivals, in the hope of revealing a suitable model for the ‘forest’ and not just the

‘trees’. A comprehensive analysis, possibly based on more complete measures of economic

news flows, is warranted for future research.

5 Conclusion

Economic time series often manifest long memory characteristics. Asset price volatility has

received arguably the most attention, partly due to advances in high-frequency-based real-

ized volatility estimation where fractional processes have proved particularly useful. In early

applied literature the ARFIMA(1, d, 0) model was found to be an adequate model for log re-

alized volatility with a fitted autoregressive parameter (α) near zero and estimated memory

parameter (d) close to 0.5, signifying long memory in volatility. Recent literature using the

same ARFIMA model has found autoregressive parameters near unity and memory param-

eters close to −0.5, providing empirical evidence for ‘rough volatility’, reflecting a primary

characteristic of antipersistent time series in contrast to long memory. This paper explains

these co-existing, yet conflicting, empirical outcomes as a symptom of intrinsic weak identifi-

cation within the ARFIMA model itself. Our theory suggests that, while the two parameter

configurations appear very different, the distance between the corresponding models (gauged

by a deficiency measure adapted from Le Cam’s theory on limits of experiments) converges

to zero when the autoregressive parameter is localized to unity or zero.

To address potential weak identification in practical work our approach proposes the

use of Anderson–Rubin identification-robust confidence sets for the model parameters by

inverting tests for zero serial correlation in the implied disturbances. Extensive applications

of this approach conducted on a broad range of realized volatility and trading volume series,

document the prevalence of weak identification in ARFIMA inference. Robust confidence

sets are often found to bifurcate, containing two disjoint regions that signal a severe form of

weak identification and reveal an indeterminacy between the two parameter configurations

reported in the literature. The overall empirical evidence we have examined leans in favor

of the long memory configuration in that the corresponding parameter region is always part

of the estimated confidence set. The finding is further corroborated by an analysis of news
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arrivals, measured by Twitter-based economic uncertainty indices, for which identification-

robust inference lends support to long memory in the ARFIMA(1, d, 0) model.

The weakness in ARFIMA modeling revealed in our analysis is a cautionary message to

empirical investigators using this model. A deeper implication is that the observed data are

often not rich enough to discriminate between disjoint memory structures in the ARFIMA

model framework. Practical econometric work can face this reality by reporting confidence

regions that reflect any ambiguity, as demonstrated here; and if this robustness is insufficient

for a task at hand, such as prediction, then the framework must be extended to accommodate

data that might assist in resolving the ambiguity. Possible extensions include the use of

varying coefficient regression so that memory and autoregressive parameters vary according

to news flow covariates that import information about memory in the data to assist in

resolving ambiguities; another is to incorporate such covariates in a multivariate system to

jointly model news flows with the relevant economic variables.
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A Appendix: Proof of Theorem 1

Proof. Throughout this proof K denotes a generic finite positive constant that may change

from line to line but does not depend on T or parameter values in RT or R̃T . Let θ =
(αT , dT ) ∈ RT . Consider a generic sequence α̃T such that |α̃T | < γ̃T and set θ′ = (α̃T , dT + 1).

It is easy to see that θ′ ∈ R̃T . Hence,

inf
θ̃∈R̃T

sup
λ

|log fθ (λ)− log fθ̃ (λ)| ≤ sup
λ

|log fθ (λ)− log fθ′ (λ)| , (A.1)

where we have written supλ in place of supλT≤|λ|≤π for brevity. By definition (recall (2.4)),

log f(αT ,dT ) (λ) = log

(
σ2

2π

)
− dT log (2− 2 cos (λ))− log

(
1− 2αT cos (λ) + α2

T

)
,

log f(α̃T ,dT+1) (λ) = log

(
σ2

2π

)
− (dT + 1) log (2− 2 cos (λ))− log

(
1− 2α̃T cos (λ) + α̃2

T

)
.

Hence,

sup
λ

∣∣log f(αT ,dT )(λ)− log f(α̃T ,dT+1) (λ)
∣∣

= sup
λ

∣∣∣∣log( 2− 2 cos (λ)

1− 2αT cos (λ) + α2
T

)
+ log

(
1− 2α̃T cos (λ) + α̃2

T

)∣∣∣∣
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≤ sup
λ

∣∣∣∣log( 2− 2 cos (λ)

1− 2αT cos (λ) + α2
T

)∣∣∣∣+ sup
λ

∣∣log (1− 2α̃T cos (λ) + α̃2
T

)∣∣ . (A.2)
Since αT → 1, we may assume that αT ∈ (1/2, 2) without loss of generality. Hence,

uniformly for λ satisfying λT ≤ |λ| ≤ π,

2− 2 cos (λ)

1− 2αT cos (λ) + α2
T

≥ 2− 2 cos (λT )

9
> 0.

By the mean-value theorem, we further have

sup
λ

∣∣∣∣log( 2− 2 cos (λ)

1− 2αT cos (λ) + α2
T

)∣∣∣∣ = sup
λ

∣∣∣∣log( 2− 2 cos (λ)

1− 2αT cos (λ) + α2
T

)
− log(1)

∣∣∣∣
≤ 9

2− 2 cos (λT )
sup
λ

∣∣1− 2(1− αT ) cos (λ)− α2
T

∣∣
≤ K

(
|1− αT |+ |1− αT |2

λ2
T

)
. (A.3)

Similarly, since α̃T → 0, 1 − 2α̃T cos (λ) + α̃2
T → 1 uniformly for all λ, and so, is uniformly

bounded away from zero. Applying the mean-value theorem again yields

sup
λ

∣∣log (1− 2α̃T cos (λ) + α̃2
T

)∣∣ ≤ K
(
|α̃T |+ α̃2

T

)
. (A.4)

Combining (A.1)–(A.4) yields

inf
θ̃∈R̃T

sup
λ

|log fθ (λ)− log fθ̃ (λ)| ≤ K
(
λ−2
T |1− αT |+ |α̃T |

)
= O

(
(λ−2

T γT ) ∨ γ̃T
)
.

Since the upper bound in the above display holds for a universal constant K not depending

on θ, it also holds for the supremum over θ ∈ RT , which further implies that δ(M̃T ,MT ) =

O
(
(λ−2

T γT ) ∨ γ̃T
)
. By symmetry, we can also show that δ(MT ,M̃T ) = O

(
(λ−2

T γT ) ∨ γ̃T
)
.

The assertion of the theorem then readily follows. Q.E.D.
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Abstract

This online supplement contains two sections. Section S1 provides details of the datasets em-
ployed in our empirical analysis. Section S2 presents various robustness checks for the empirical
findings in the main paper. Section S3 provides additional empirical results with economic and
climate data.

S1 Data Description

This section details the data series used in our empirical analysis. Tables S1 and S2 describe the

two datasets for realized volatility (RV) measures employed in the empirical analysis of Section 4.1 of

the main text. This includes ten ETFs and 30 Dow Jones Industrial Average stocks obtained from

Dacheng Xiu’s Risk Lab (see Table S1) and 31 internal stock market indices obtained from the Oxford–

Man Realized Library (see Table S2). Table S3 provides summary statistics for the trading volume

series employed in Section 4.2 of the main text.
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Table S1: Summary Statistics for Log Realized Variances of U.S. Equities

Ticker Start date Nob Mean Std. Skew. Kurto.

S&P 500 market ETF (SPY) 03-Jan-1996 6164 -2.19 0.55 -0.20 8.62
Industry ETF: Material (XLB) 05-Jan-1999 5161 -1.98 0.65 -1.41 12.90
Industry ETF: Energy (XLE) 23-Dec-1998 5392 -1.81 0.62 -1.77 14.53
Industry ETF: Financial (XLF) 23-Dec-1998 5403 -1.95 0.65 -0.37 8.05
Industry ETF: Industrial (XLI) 05-Jan-1999 4943 -2.17 0.69 -1.64 14.19
Industry ETF: Technology (XLK) 23-Dec-1998 5403 -1.93 0.60 -0.20 8.33
Industry ETF: Consumer staples (XLP) 23-Dec-1998 5380 -2.40 0.70 -2.01 16.23
Industry ETF: Utilities (XLU) 24-Dec-1998 5108 -2.10 0.64 -1.67 14.36
Industry ETF: Health care (XLV) 05-Jan-1999 5013 -2.25 0.64 -2.58 28.33
Industry ETF: consumer discretionary (XLY) 07-Jan-1999 4948 -2.17 0.71 -1.70 15.31

Dow Jones 30

Apple Inc (AAPL) 03-Jan-1996 6174 -1.35 0.55 -0.34 9.40
Honeywell International Inc (ALD or HON) 03-Jan-1996 6152 -1.60 0.56 -0.51 9.32
Amgen Inc (AMGN) 03-Jan-1996 6172 -1.47 0.42 0.54 4.15
American Express Co (AEXP or AXP) 03-Jan-1996 6173 -1.56 0.58 0.04 8.99
Boeing Co (BA) 03-Jan-1996 6174 -1.53 0.46 0.49 3.90
Verizon Communications Inc (BEL or VZ) 03-Jan-1996 6145 -1.72 0.47 0.34 5.39
Caterpillar Inc (CAT) 03-Jan-1996 6173 -1.48 0.45 -0.35 12.10
Chevron Corp (CHV or CVX) 03-Jan-1996 6174 -1.68 0.43 0.12 8.35
Salesforce.Com Inc (CRM) 24-Jun-2004 4110 -1.27 0.45 0.37 3.71
Cisco Systems Inc (CSCO) 03-Jan-1996 6173 -1.45 0.47 0.47 3.08
Walt Disney Co (DIS) 03-Jan-1996 6172 -1.60 0.47 0.53 3.29
Goldman Sachs Group Inc (GS) 05-May-1999 5359 -1.48 0.47 1.01 4.46
Home Depot Inc (HD) 03-Jan-1996 6174 -1.56 0.47 0.58 3.29
International Business Machines Corp (IBM) 03-Jan-1996 6174 -1.72 0.47 0.64 3.28
Intel Corps (INTC) 03-Jan-1996 6172 -1.43 0.43 0.58 3.31
Johnson & Johnson (JNJ) 03-Jan-1996 6173 -1.88 0.45 0.60 3.47
JPMorgan Chase & Co (JPM) 03-Jan-1996 6153 -1.50 0.55 0.23 7.69
Coca-Cola Co (KO) 03-Jan-1996 6174 -1.84 0.46 0.60 3.40
McDonald’s Corp (MCD) 03-Jan-1996 6173 -1.75 0.47 0.47 3.50
3M Co (MMM) 03-Jan-1996 6173 -1.75 0.47 0.21 5.27
Merck & Co Inc (MRK) 03-Jan-1996 6172 -1.65 0.42 0.69 4.08
Microsoft Corp (MSFT) 03-Jan-1996 6172 -1.60 0.42 0.52 3.31
Nike Inc (NIKE) 03-Jan-1996 6174 -1.55 0.48 -0.13 11.20
Procter & Gamble Co (PG) 03-Jan-1996 6172 -1.83 0.46 0.76 3.96
Travelers Companies Inc (SPC or TRV) 03-Jan-1996 6153 -1.73 0.65 -1.05 11.17
UnitedHealth Group Inc (UNH) 03-Jan-1996 6156 -1.48 0.48 -0.09 9.40
Visa Inc (V) 20-Mar-2008 3183 -1.68 0.48 1.00 4.26
Walgreens Boots Alliance Inc (WAG or WBA) 03-Jan-1996 6141 -1.53 0.43 -0.29 9.54
Walmart Inc (WMT) 03-Jan-1996 6139 -1.73 0.49 0.22 5.99
Exxon Mobil Co (XOM) 03-Jan-1996 6345 -1.70 0.45 0.55 3.79
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Table S2: Summary Statistics for Log Realized Variances of Stock Market Indices

Name (Ticker) Start date Nob Mean Std. Skew. Kurto.
AEX index (AEX) 03-Jan-2000 5459 -9.68 1.02 0.53 3.40
All Ordinaries (AORD) 04-Jan-2000 5409 -10.47 0.96 0.71 4.18
Bell 20 Index (BFX) 03-Jan-2000 5457 -9.81 0.93 0.53 3.41
S&P BSE Sensex (BSESN) 03-Jan-2000 5308 -9.44 0.98 0.60 3.69
PSI All-Share Index (BVLG) 15-Oct-2012 2193 -10.23 0.76 0.66 4.03
BVSP BOVESPA Index (BVSP) 03-Jan-2000 5268 -9.21 0.83 0.62 4.52
Dow Jones Industrial Average (DJI) 03-Jan-2000 5366 -9.86 1.12 0.43 3.52
CAC 40 (FCHI) 03-Jan-2000 5461 -9.48 0.99 0.39 3.28
FTSE MIB (FTMIB) 01-Jun-2009 3042 -9.50 0.88 0.36 3.59
FTSE 100 (FTSE) 04-Jan-2000 5400 -9.65 1.01 0.58 3.66
DAX (GDAXI) 03-Jan-2000 5427 -9.36 1.04 0.42 3.22
S&P/TSX Composite index (GSPTSE) 02-May-2002 4772 -10.30 1.10 0.90 4.47
HANG SENG Index (HSI) 03-Jan-2000 5245 -9.69 0.84 0.68 3.95
IBEX 35 Index (IBEX) 03-Jan-2000 5426 -9.33 0.95 0.17 3.04
Nasdaq 100 (IXIC) 03-Jan-2000 5370 -9.68 1.10 0.44 3.09
Korea Composite Stock Price Index (KS11) 04-Jan-2000 5269 -9.64 1.03 0.47 3.05
Karachi SE 100 Index (KSE) 03-Jan-2000 5216 -9.78 1.04 0.18 4.79
IPC Mexico (MXX) 03-Jan-2000 5370 -9.94 0.92 0.67 3.88
Nikkei 225 (N225) 02-Feb-2000 5205 -9.70 0.94 0.30 3.43
NIFTY 50 (NSEI) 03-Jan-2000 5300 -9.66 1.05 0.42 3.90
OMX Copenhagen 20 Index (OMXC20) 03-Oct-2005 3888 -9.59 0.89 1.10 5.15
OMX Helsinki All Share Index (OMXHPI) 03-Oct-2005 3929 -9.82 1.01 0.91 4.15
OMX Stockholm All Share Index (OMXSPI) 03-Oct-2005 3929 -9.95 1.03 0.81 3.97
Oslo Exchange All-share Index (OSEAX) 03-Sep-2001 4917 -9.56 0.97 0.78 4.11
Russel 2000 (RUT) 03-Jan-2000 5367 -10.07 1.00 0.33 7.28
Madrid General Index (SMSI) 04-Jul-2005 4055 -9.48 0.96 0.27 3.45
S&P 500 Index (SPX) 03-Jan-2000 5369 -9.89 1.15 0.38 3.39
Shanghai Composite Index (SSEC) 04-Jan-2000 5171 -9.38 1.06 0.40 3.06
Swiss Stock Market Index (SSMI) 04-Jan-2000 5363 -9.94 0.90 1.07 4.61
Straits Times Index (STI) 03-Jan-2000 3425 -10.05 0.68 0.56 3.91
EURO STOXX 50 (STOXX50E) 03-Jan-2000 5458 -9.38 1.05 0.01 5.70
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Table S3: Summary Statistics: De-trended Log Trading Volume

Ticker Start date Nob Mean Std. Skew. Kurto.

S&P 500 market ETF (SPY) 01-Feb-1993 7137 -0.16 0.51 -0.66 6.86
Industry ETF: Material (XLB) 23-Dec-1998 5647 -0.30 0.81 -0.99 6.18
Industry ETF: Energy (XLE) 23-Dec-1998 5647 -0.25 0.66 -0.58 4.35
Industry ETF: Financial (XLF) 23-Dec-1998 5647 -0.24 0.66 -0.66 4.85
Industry ETF: Industrial (XLI) 23-Dec-1998 5646 -0.35 0.87 -1.04 5.81
Industry ETF: Technology (XLK) 23-Dec-1998 5647 -0.17 0.55 0.09 3.75
Industry ETF: Consumer staples (XLP) 23-Dec-1998 5647 -0.27 0.68 -0.12 4.47
Industry ETF: Utilities (XLU) 23-Dec-1998 5647 -0.28 0.73 -0.79 5.79
Industry ETF: Health care (XLV) 23-Dec-1998 5647 -0.32 0.76 -0.44 5.33
Industry ETF: consumer discretionary (XLY) 23-Dec-1998 5647 -0.38 0.89 -1.09 6.13

Dow-Jones 30

Apple Inc (AAPL) 01-Feb-1993 7137 -0.13 0.47 0.39 4.40
Honeywell International Inc (ALD or HON) 01-Feb-1993 7137 -0.10 0.42 0.30 5.04
Amgen Inc (AMGN) 01-Feb-1993 7137 -0.11 0.43 0.54 6.58
American Express Co (AEXP or AXP) 01-Feb-1993 7137 -0.10 0.42 0.31 4.26
Boeing Co (BA) 01-Feb-1993 7137 -0.12 0.46 0.12 4.81
Verizon Communications Inc (BEL or VZ) 01-Feb-1993 7137 -0.09 0.39 0.54 6.02
Caterpillar Inc (CAT) 01-Feb-1993 7137 -0.10 0.42 0.29 4.20
Chevron Corp (CHV or CVX) 01-Feb-1993 7137 -0.07 0.34 0.27 4.67
Salesforce.Com Inc (CRM) 23-Jun-2004 4267 -0.15 0.51 0.48 4.94
Cisco Systems Inc (CSCO) 01-Feb-1993 7137 -0.09 0.40 0.11 6.99
Walt Disney Co (DIS) 01-Feb-1993 7137 -0.10 0.41 0.71 5.17
Goldman Sachs Group Inc (GS) 04-May-1999 5558 -0.12 0.44 0.32 4.92
Home Depot Inc (HD) 01-Feb-1993 7137 -0.09 0.40 0.48 4.50
International Business Machines Corp (IBM) 01-Feb-1993 7137 -0.09 0.39 0.58 4.67
Intel Corps (INTC) 01-Feb-1993 7137 -0.08 0.39 0.08 5.69
Johnson & Johnson (JNJ) 01-Feb-1993 7137 -0.07 0.36 0.41 5.03
JPMorgan Chase & Co (JPM) 01-Feb-1993 7137 -0.10 0.40 0.22 3.99
Coca-Cola Co (KO) 01-Feb-1993 7137 -0.07 0.36 0.41 4.42
McDonald’s Corp (MCD) 01-Feb-1993 7137 -0.09 0.39 0.52 4.44
3M Co (MMM) 01-Feb-1993 7137 -0.09 0.39 0.56 4.74
Merck & Co Inc (MRK) 01-Feb-1993 7137 -0.09 0.39 0.65 4.99
Microsoft Corp (MSFT) 01-Feb-1993 7137 -0.08 0.39 0.35 4.68
Nike Inc (NIKE) 01-Feb-1993 7137 -0.12 0.46 0.48 4.76
Procter & Gamble Co (PG) 01-Feb-1993 7137 -0.09 0.39 0.72 6.51
Travelers Companies Inc (TRV) 01-Feb-1993 7137 -0.12 0.46 0.03 4.48
UnitedHealth Group Inc (UNH) 01-Feb-1993 7137 -0.13 0.47 0.41 5.03
Visa Inc (V) 19-Mar-2008 3326 -0.11 0.42 0.72 5.66
Walgreens Boots Alliance Inc (WAG or WBA) 01-Feb-1993 7137 -0.10 0.41 0.52 4.54
Walmart Inc (WMT) 01-Feb-1993 7137 -0.08 0.38 0.58 4.66
Exxon Mobil Co (XOM) 01-Feb-1993 7137 -0.06 0.33 0.31 5.12
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S2 Empirical Robustness Checks

S2.1 Subsample analysis for international stock market indices

We perform a subsample analysis for the realized volatility (RV) measures of the 31 international stock

market indices obtained from the Oxford–Man Realized Library. This complements the full-sample

analysis shown in Figure 8 of the main text. The full sample is divided into two subsamples using the

first day of 2010 as the cutoff. The confidence sets for α and d are plotted in the top (resp. bottom)

row of Figure S1 for the 2000–2009 (resp. 2010–2021) subsample. Due to data availability, the first

subsample for the FTSE MIB index (FTMIB) is very short, containing only seven months of data, and

results in highly inaccurate estimates. In addition, the PSI all-share index (BVLG) is unavailable for

the first subsample as the data only starts from 2012.

We find similar patterns as those in the full-sample analysis shown in Figure 8 of the main text.

Indeed, we again observe that the confidence sets of some indices contain two disjoint regions, but

many of them have only a single region associated with long-memory. As expected, the bifurcation, or

weak identification, phenomenon is more severe for the shorter subsamples. The number of bifurcated

confidence sets increases from 9 to 18 (resp. 15) for the first (resp. second) subsample.

S2.2 Analysis using alternative realized volatility measures

Our main empirical analysis (see Section 4.1 of the main text) on the international stock market indices

are based on the classical 5-minute RV from the Oxford–Man Realized Library. In this section, we

further check whether the weak identification issue is specific for this particular measure by considering

several alternative RV measures that are also available in the Realized Library. For brevity, we focus

on the S&P 500 index (SPX). The list of RV measures and their summary statistics are reported in

Table S4.

Figure S2 reports the projected one-dimensional confidence sets for the autoregressive parameter α

and the memory parameter d, computed separately for each RV measure. These results are in line with

those reported in the main text. Some confidence sets bifurcate with two disjoint regions, suggesting

the presence of weak identification. When the confidence set contains only one region, the evidence

points to long-memory. It is also interesting to note that the long-memory regions of the confidence

sets are relatively stable across different RV measures.
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Figure S1: Confidence Sets for International Stock Market Indices: Subsample Analysis

(a) 95% Confidence Set of α (2000–2009) (b) 95% Confidence Set of d (2000–2009)

(c) 95% Confidence Set of α (2010–2021) (d) 95% Confidence Set of d (2010–2021)
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Table S4: Summary Statistics: log volatility estimators of SPX (Realized Library)

Name (Ticker) Nob Mean Std. Skew. Kurto.
Median realized variance (5-min,medrv) 5369 -10.81 1.22 0.37 3.34
Realized kernel variance (Two-Scale/Bartlett, rk twoscale) 5369 -10.00 1.10 0.43 3.46
Bipower variation (5-min sub-sampled, bv ss) 5369 -10.09 1.14 0.44 3.46
Realized variance (5-min, rv5) 5369 -9.89 1.15 0.38 3.39
Realized kernel variance (Tukey-Hanning(2), rk th2) 5369 -9.99 1.11 0.43 3.42
Bipower variation (5-min, bv) 5369 -10.09 1.14 0.44 3.46
Realized semi-variance (5-min, rsv) 5369 -10.69 1.24 0.33 3.26
Realized variance (10-min sub-sampled, rv10 ss) 5369 -9.90 1.17 0.35 3.35
Realized kernel variance (non-flat Parzen, rk parzen) 5369 -10.01 1.22 0.29 3.25
Realized semi-variance (5-min sub-sampled, rsv ss) 5369 -10.69 1.24 0.33 3.26
Realized variance (5-min, sub-sampled, rv5 ss) 5369 -9.89 1.15 0.38 3.39
Realized variance (10-min, rv10) 5369 -9.90 1.17 0.35 3.35

Figure S2: Confidence Sets for Alternative Realized Volatility Measures of SPX

(a) 95% Confidence Set of α (b) 95% Confidence Set of d

S3 Additional Empirical Results

There is evidence that weak identification of the type studied in the present work is present in other

economic data and certain climate data. To illustrate we studied two additional time series: US 10-year

Treasury Inflation Indexed Security downloaded from the FRED1 at the daily frequency from January

2, 2003, to June 13, 2022, containing 4,867 observations; and annual global land surface temperature

(1880 - 2021) obtained from Berkeley Earth2.

We applied identification-robust inference to these two (demeaned) data series. Figure S3 depicts

the dynamics of the two data series on the left column and the identified confidence sets on the right

column. For both data sets the method identifies two disjoint confidence sets for the model parameters,

revealing the presence of weak identification.

1https://fred.stlouisfed.org/
2http://berkeleyearth.org/
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Figure S3: Time Series Dynamics and 95% Confidence Sets: the US 10-year Treasury Inflation Indexed
Security and the Global Land Surface Temperature

(a) 10-year Treasury Inflation Indexed Security (b) Confidence Set: 10-year Treasury Inflation Indexed Security

(c) Global Land Surface Temperature (d) Confidence Set: Global Land Surface Temperature
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