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Abstract

The linkage among the realized volatilities across component stocks are important
when modeling and forecasting the relevant index volatility. In this paper, the link-
age is measured via an extended Common Correlated Effects (CCE) approach under
a panel heterogeneous autoregression model where unobserved common factors in
errors are assumed. Consistency of the CCE estimator is obtained. The common fac-
tors are extracted using the principal component analysis. Empirical studies show that
realized volatility models exploiting the linkage effects lead to significantly better out-
of-sample forecast performance, for example, an up to 32% increase in the pseudo R2.
We also conduct various forecasting exercises on the the linkage variables that compare
conventional regression methods with popular machine learning techniques.
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1 Introduction

Volatility forecasting is central to financial institutions and market regulators. Portfolio

managers tends to maximize returns when facing risk limits. With the development of

realized variation based on high-frequency data, we are able to better measure financial

market volatility. From then on, various volatility forecasting models have been put for-

ward in the literature, such as the renowned fractionally integrated autoregressive moving

average models (ARFIMA) used in Andersen, Bollerslev, Diebold, and Labys (2001) and

the heterogeneous autoregressive (HAR) model proposed by Corsi (2009). No matter how

complicate forms the above models can take, most of them rely on the asset-specific re-

alized volatility histories. On the other hand, the comovement and spillover effect of risk

across assets is well documented in the existing volatility literature and has been modeled

by multivariate GARCH and stochastic volatility models.1

This paper exploits the linkages among the realized volatilities across component stocks

to improve the corresponding stock index volatility forecasting. We propose a heteroge-

neous panel HAR (HARP) model assuming unobserved common factors to grasp the link-

ages. Our framework is based on the CCE estimator of Pesaran (2006) and allows us

to extract unobserved common factors from the residuals of our econometric model. We

then prove consistency of the CCE estimator within our framework. Regarding the spec-

ification of cross-sectional unit regressors, we follow the realized semivariance models of

Patton and Sheppard (2015). Another important step for our forecasting implementation

is to model the dynamics of unobserved common factors. We conduct various forecasting

exercises and compare regression methods with popular machine learning techniques.

We consider empirical applications to many equity indices, including the NASDAQ 100

1See Bauwens, Laurent, and Rombouts (2006) and Asai, McAleer, and Yu (2006) for more detailed re-
views and discussions.
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exchange traded fund, the Dow Jones Industrial Average, the Dow Jones Transportation

Average, and the Dow Jones Utility Average. Several novel findings are summarized as fol-

lows. First, the cross-sectional correlation of realized volatilities does exist for the consid-

ered component stocks. This finding holds irrespective of the underlying models.2 Second,

the in-sample results suggest that the role of unobserved common factors at explaining fu-

ture volatility is nontrivial. They even carry partially the information contained in realized

semivariances, especially the negative realized semivariances. Third and perhaps more

importantly, we show that incorporating unobserved common factors into the HAR-type

regressions leads to large and significant improvements in forecast accuracy.

It should be noted that there are other empirical applications of the CCE estimator

in the literature. For example, the CCE approach allows Kapetanios and Pesaran (2004)

to estimate asset return equations with both observed and unobserved common factors.

Bernoth and Pick (2011) utilize the CCE framework to model the linkages between bank

and insurance companies so as to improve forecasting the systemic risk. Chudik, Mohad-

des, Pesaran, and Raissi (2017) develop tests for debt threshold effects in the context of

dynamic heterogeneous panel data models, where the CCE estimator produces unbiased

and consistent coefficient estimates for threshold variables. However, we are not aware of

any application of the CCE estimator to the problem of volatility forecasting.

This paper makes several contributions in several strands of literature. The first con-

tribution is to extend the HAR model to a heterogeneous panel data model to exploit the

linkages among the realized volatilities across component stocks. Secondly, we introduce

the CCE approach to estimation of the panel data model and establish consistency of the

CCE estimator. Thirdly, we contribute to the literature pioneered by Bollerslev, Hood, Huss,

2After some normalization of daily realized volatilites for a wide range of asset classes, Bollerslev, Hood,
Huss, and Pedersen (2018) reach a conclusion closely related to ours. Their “normalized risk measuresâe
exhibit almost identical unconditional distributions and similar highly persistent autocorrelation functions
when comparing across assets and asset classes.
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and Pedersen (2018) that seek to exploit strong commonality in volatility in a “global risk

factor” to improve forecast accuracy. Bollerslev, Hood, Huss, and Pedersen (2018) de-

fined the global risk factor as the average normalized realized volatilities across all assets,

whereas our linkage factors are extracted using the principal component analysis from the

residuals of the CCE framework. Both approaches try to utilize the panel data informa-

tion to better volatility forecasts, but from different angles. We show that the model that

exploits the linkage effects can lead to up to 32% increase in the pseudo R2 relative to

models without accommodating the linkage effects for volatility forecasting.

In the next section, we review a list of reference HAR-type models. Section 3 discusses

the econometric approach and the forecasting procedure. Section 4 describes the data,

which are analyzed in Section 5. Section 6 conducts some robustness checks. Finally, Sec-

tion 7 concludes. An online supplement contains extra empirical and theoretical results.

2 A review of reference models

Before moving into the panel-based HAR model, it is useful to review some HAR-type

reference models, which act either as our basic specification for the CCE estimator or as

comparison models in the subsequent exercise. Following Andersen and Bollerslev (1998),

the M-sample daily realized variance (RV) at day t can be calculated by summing the

corresponding M equally spaced intra-daily squared returns rt,j. Here, the subscript t

indexes the day, and j indicates the time interval within day t,

RVt ≡
M

∑
j=1

r2
t,j, for t = 1, 2, ..., T, j = 1, 2, ..., M, (1)

where rt,j = pt,j − pt,j−1 with pt,j being the log-price at time (t, j).
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To model realized variation, a series of HAR-type models were invented in the lit-

erature, see Corsi, Audrino, and Renò (2012) for a survey. The basic HAR model was

introduced by Corsi (2009) and has gained great popularity because of its estimation sim-

plicity and outstanding out-of-sample performance. The basic HAR model in Corsi (2009)

postulates that the h-step-ahead daily RVt+h can be modeled by

RVt+h = β0 + βdRV(1)
t + βwRV(5)

t + βmRV(22)
t + ςt+h, (2)

where the explanatory variables can take the general form of RV(l)
t . It is defined by

RV(l)
t ≡ l−1

l

∑
s=1

RVt−s (3)

as the l period averages of daily RV, the βs are the coefficients, and {ςt}t is the error term.

Since each RV(l)
t can be regarded as a volatility cascade, generated by the actions of distinct

types of market participants trading at daily, weekly or monthly frequencies (Müller et al,

1993), the lag structure in the HAR model is fixed at some lag index vector l = [1, 5, 22].

Andersen, Bollerslev, and Diebold (2007) extend the standard HAR model from two

perspectives. First, they added the daily jump component Jt to Equation (2) to explicitly

capture its impacts. The extended model is denoted as the HAR-J model,

RVt+h = β0 + βdRV(1)
t + βwRV(5)

t + βmRV(22)
t + βjJt + ςt+h, (4)

where the empirical measurement of the squared jumps is Jt = max(RVt − BPVt, 0), and

the realized bipower variation (BPV) is defined as BPVt ≡ (2/π)−1 ∑M
j=2 |rt,j−1||rt,j|. Sec-

ond, through a decomposition of RV by the Z1,t statistic in Huang and Tauchen (2005)

into the continuous sample path and the jump components, they extend the HAR-J model

by explicitly incorporating the above two types of volatility components. The Z1,t statistic
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distinguishes the “significant” jumps CJt from continuous sample path components CSPt:

CSPt ≡ I(Zt ≤ Φα) · RVt + I(Zt ≤ Φα) · BPVt,

CJt ≡ I(Zt > Φα) ·max(RVt − BPVt, 0),

where Zt is the ratio-statistic defined in Huang and Tauchen (2005), and Φα is the cu-

mulative distribution function (CDF) of a standard Gaussian distribution with α level of

significance. The daily, weekly, and monthly average components of CSPt and CJt are then

constructed in the same manner as RV(l) in Equation (3). The model specification for the

continuous HAR-J, namely, HAR-CJ, is given by

RVt+h = β0 + βc
dCSP(1)

t + βc
wCSP(5)

t + βc
mCSP(22)

t + β
j
dCJ(1)t + β

j
wCJ(5)t + β

j
mCJ(22)

t + ςt+h.

(5)

Note that compared with the HAR-J model, the HAR-CJ model explicitly controls for the

weekly and monthly components of continuous jumps. Thus, the HAR-J model can be

treated as a special and restrictive case of the HAR-CJ model for βd = βc
d + β

j
d, βj = β

j
d,

βw = βc
w + β

j
w, and βm = βc

m + β
j
m.

To capture the information from signed high-frequency variation, Patton and Sheppard

(2015) developed a series of realized semivariance HAR (HAR-RS) models. The first one,

HAR-RS-I model, completely decomposes the RV(1) in Equation (2) into two asymmetric

semi-variances, RS+
t and RS−t ,

RVt+h = β0 + β+
d RS+

t + β−d RS−t + βwRV(5)
t + βmRV(22)

t + ςt+h, (6)

where RS−t = ∑M
j=1 r2

t,j · I(rt,j < 0) and RS+
t = ∑M

j=1 r2
t,j · I(rt,j > 0). To verify the actual

effects of signed variations, they include an additional term capturing the leverage effect,
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RV(1)
t · I(rt < 0). The second model in Equation (7) is denoted as HAR-RS-II,

RVt+h = β0 + β1RV(1)
t · I(rt < 0) + β+

d RS+
t + β−d RS−t + βwRV(5)

t + βmRV(22)
t + ςt+h. (7)

The third and fourth models in Patton and Sheppard (2015), denoted as HAR-SJ-I

(Equation (8)) and HAR-SJ-II (Equation (9)), respectively, examine the role that decom-

posing realized variances into signed jump variations and bipower variation (BPV) can

play in forecasting volatility:

RVt+h = β0 + β
j
dSJt + β

bpv
d BPVt + βwRV(5)

t + βmRV(22)
t + ςt+h, (8)

RVt+h = β0 + β
j−
d SJ−t + β

j+
d SJ+t + β

bpv
d BPVt + βwRV(5)

t + βmRV(22)
t + ςt+h, (9)

where SJt = RS+
t − RS−t , SJ+t = SJt · I(SJt > 0), and SJ−t = SJt · I(SJt < 0). The HAR-

SJ-II model further extends the HAR-SJ-I model by distinguishing the effect of a positive

jump variation from that of a negative jump variation.

In practice, RVt+h is unobservable at time t. Hence both the dependent and explanatory

variables of the models in Section 2 must take h-period of lags.

3 The panel HAR model

In this section we construct a heterogeneous panel HAR model with error cross-sectional

dependence, which is an extension of the framework of Chudik and Pesaran (2015). Let

yit be the realized variance of the ith individual asset at time t for i = 1, ..., N; t = 1, ..., T.

Suppose that yit is described by the following heterogeneous dynamic panel data model,

yit = α′idt + ∑
l∈L

φ
(l)
i ȳ(l)it + β′ixit + uit, (10)
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ȳ(l)it = l−1
l

∑
s=1

yi,t−s, (11)

for i = 1, 2, ..., N and t = 1, 2, ..., T, where dt is a r× 1 vector of observed common effects,

including deterministics such as intercepts or seasonal dummies, xit is a k × 1 vector of

regressors specific to cross-sectional unit i at time t, and αi and βi are parameter vectors.

yi,t−s represents the sth lag of yit, and ȳ(l)it is the HAR component, which is the average of

previous l periods of yit. φ
(l)
i is the coefficient for ȳ(l)it , L is the lag index vector of l and

we let L = max(L).3 Furthermore, we assume that the realized variance of individual

stocks is correlated beyond what can be explained by the observed determinants because

the error term, uit, comprises m unobserved common factors,4

uit = γ′i f t + εit, (12)

where γi is the m× 1 vector of factor loadings, f t is the m× 1 vector of unobserved com-

mon factors that could themselves be serially correlated, and εit are the idiosyncratic errors

assumed to be independently distributed of (dt, xit) and uncorrelated with the factors. As-

sume that f t has vector autoregressive form,

f t = Φ f f t−1 + ζt. (13)

Following Pesaran (2006) and Chudik and Pesaran (2015), the unobserved factors, f t,

can be also correlated with (ȳ(l)it , dt, xit). To permit such a possibility, we assume a fairly

3Following the convention of the HAR-RV literature, we set L = 22 in our empirical exercise. In this
literature, it is common to set L = [1, 5, 22] to claim that tomorrow’s realized variance can be a sum of daily,
weekly, and monthly averages of past realized variances.

4The recent paper by Bollerslev, Hood, Huss, and Pedersen (2018) interprets the common factors as
combined economic forces from the investor sentiment, the variance risk premium and the news surprise
variable.
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general model for individual specific regressors, xit,

xit = Πiyit,−L + Λ′idt + Γ′i f t + vit, (14)

where yit,−L = (yi,t−1, . . . , yi,t−L)
′ , Λi and Γi are r × k and m × k matrix of factor load-

ings for observed and unobserved factors, respectively, Πi is a k × L matrix of unknown

coefficients, and vit is assumed to follow a general linear covariance stationary process dis-

tributed independently of the idiosyncratic errors, εit. The equations (10) to (14) hitherto

set out our panel HAR volatility forecasting model, denoted as the HARP model.5

3.1 The CCE estimator and its consistency

Clearly, forecasts of yit need estimates of the parameters and the unobserved common

factors. Unfortnately, conventional panel estimatiors of equation (10) yield inconsistent

estimates of coefficients due to the correlation of regressors (xit, ȳ(l)it ) and error terms uit.

To see this, since f t is assumed to be serially correlated, the error term in (10), uit, is

thus serially correlated through (12), which further entails the correlation of uit and yi,t−s.

Since the HAR components ȳ(l)it are linear functions of yi,t−s, they are correlated with the

error terms uit. It is more apparent to witness the correlation between xit and uit, regarding

the fact that they share common factors f t.

In this section we address the issue of inconsistency and demonstrate how to estimate

the slope coefficients (φ
(1)
i , ..., φ

(L)
i , βi) from (10), employing the CCE estimator proposed

by Pesaran (2006). Moreover, we prove that the CCE estimator holds its consistency in

the HAR specification. Drawing from Chudik and Pesaran (2015), we posit the following

assumptions for equations (10), (12) and (14).

5Note that before we pin down the underlying specification of xit, the HARP model can be quite general
to accommodate other HAR-type models in the literature.
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Assumption 1 Individual-Specific Errors: The individual-specific errors εit and vjt′ are dis-

tributed independently for all i, j, t, and t′. We further assume that for each i, εit has uniformly

bounded positive variance, supi σ2
i ≤ K < ∞, for some constant K, and vit has covariance

matrices, Σvi , which are non-singular and satisfy supi ‖Σvi‖ ≤ K < ∞, where ‖·‖ denotes

the spectral norm. Both εit and vit have finite fourth-order cumulants.

Assumption 2 Factor Loadings: The unobserved factor loadings γi and Γi are independent

and identically distributed across i, and of the individual specific errors εjt and vjt, the com-

mon factors
(
d′t, f ′t

)
for all i, j, and t. Also, γi and Γi have fixed means γ and Γ, respectively,

and finite variances.

Remark Assumption 1 and 2 are standard in the literature of panel data model with com-

mon factor error structure; see, Pesaran (2006) and Chudik and Pesaran (2015).

We note that equations (10) and (12) can be combined, and rewritten as

yit = α′idt +
L

∑
l=1

ψi,lyi,t−s + β′ixit + γ′i f t + εit

= α′idt + ψ′iyit,−L + β′ixit + γ′i f t + εit, (15)

where yit,−L = (yi,t−1, . . . , yi,t−L)
′ and ψi = (ψ1,i, . . . , ψL,i)

′ are given by

ψi,1 = φ
(1)
i +

φ
(2)
i
2

+ · · ·+
φ
(L)
i
L

, ψi,2 =
φ
(2)
i
2

+ · · ·+
φ
(L)
i
L

,

...

ψi,L−1 =
φ
(L−1)
i

L− 1
+

φ
(L)
i
L

, ψi,L =
φ
(L)
i
L

.

As a result, we note that equation (15) can be viewed as a panel restricted AR(L) model

with error cross sectional dependence.
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The parameters of interest in (15) are ψi and βi while f t is unobserved. To estimate

ψi and βi in model (15), we can adopt the the common correlated effects (CCE) estimator

proposed by Pesaran (2006), which is further extended by Chudik and Pesaran (2015) to

dynamic panel data models. To this end, let zit =
(
yit, x′it

)′ , and rewrite (14) and (15) in

the below system of equations

A0izit = Bidt +
L

∑
l=1

Ai,lzit−l + Ci f t + eit, (16)

where

A0i =

 1 −β′i

0
k×1

Ik

 , Bi =

 α′i

Λ′i

 , Ci =

 γ′i

Γ′i

 , eit =

 εit

vit

 ,

Ai,l =

 ψi,l 0
1×k

Π
(l)
i 0

k×k

 , for l = 1, . . . , L, and Π
(l)
i denotes the lth column of Πi.

For equation (16), we note that A0i is invertible for any i, therefore multiplying both

sides of (16) by A−1
0i yields

zit = B̄idt +
L

∑
l=1

Āi,lzit−l + A−1
0i Ci f t + ezit, (17)

where B̄i = A−1
0i Bi, Āi,l = A−1

0i Ai,l and ezit = A−1
0i eit. Equation (17) is a reduced form

VAR(L) model of zit. We make the following assumption regarding the invertibility of Āi,l.

Assumption 3 All of the roots of Ik+1− Āi,1z− Āi,2z2− · · · − Āi,LzL = 0 lie outside the unit

circle i = 1, . . . , N.

Remark The above assumption is called stability condition and under which zit is stable

(Lukepohl, 2005).
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Define Āi (L) as Āi (L) = Ik+1 − Āi,1L− Āi,2L2 − · · · − Āi,LLL, where L being the

lag operator with Lyt = yt−1. Under Assumption 3, there exists Φi (L) = ∑∞
l=0 ΦilL

l such

that Φi (L) Āi (L) = Ik+1 and the coefficient matrices of Φi (L) are absolutely summable

(Lukepohl, 2005). Consequently, we have

zit =
∞

∑
l=0

ΦilL
l
(

B̄idt + A−1
0i Ci f t + ezit

)
, (18)

for i = 1, 2, . . . , N. Taking cross-section averages of the above and making use of the fact

that the elements of ezit are weakly cross-sectionally dependent, 6 we have

1
N

N

∑
i=1

∞

∑
l=0

ΦilL
lezit = Op

(
N−1/2

)
.

Furthermore, we can obtain

1
N

N

∑
i=1

∞

∑
l=0

ΦilL
l A−1

0i Ci f t =
∞

∑
l=0

1
N

N

∑
i=1

ΦilL
l A−1

0i Ci f t

=
∞

∑
l=0

LlE
(

Φil A−1
0i Ci

)
f t + Op

(
N−1/2

)
= Λ (L)C f t + Op

(
N−1/2

)
,

where the inverse of polynomial Λ (L) = ∑∞
l=0 ΛlL

l with Λl = E
(

Φil A−1
0i

)
exists, and

C = E (Ci). Consequently, for cross-section averages of (18), we obtain

z̄t = B̄dt + Λ (L)C f t + Op

(
N−1/2

)
, (19)

where z̄t = 1
N ∑N

i=1 zit and B̄ = 1
N ∑N

i=1 ∑∞
l=0 Φil B̄i. As established by Assumption 6 of

6Pesaran (2006) discusses the more general case of cross-section weighted averages, which could be
readily adapted to our case. However, to simplify the exposition we restrict our attention to simple averages
throughout. Furthermore, the asymptotic variance matrix for slope coefficients

(
ψ′i, β′i

)′ does not depend on
the weights.
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Chudik and Pesaran (2015), we make the following assumption to ensure the invertibility

of C′C and consequently the viable estimation of unit-specific coefficients.

Assumption 4 (k + 1)×m dimensional matrix C = (γ, Γ)′ has full column rank.

Rearranging (19) for the expression of f t, we have

f t = G (L)
(

z̄t − B̄dt

)
+ Op

(
N−1/2

)
, (20)

where G (L) =
(
C′C

)−1 C′Λ (L)−1. Substituting (20) into (15) yields

yit = α∗′i dt + ψ′iyit,−L + β′ixit + δ′i (L) z̄t + εit + Op

(
N−1/2

)
, (21)

where α∗i = αi − B̄
′
δi (L) and δi (L) = ∑∞

l=0 δilL
l = G (L)′ γi.

Since δ′i (L) z̄t contains an infinite order of lags of z̄t, one can practically use pT lags in

the estimation (assuming pT > L). The following augmented regression is thus obtained

yit = α∗′i dt + ψ′iyit,−L + β′ixit +
pT

∑
l=0

δ′il z̄t−l + ey,it, (22)

where α∗i and δil (l = 0, 1, . . . , pT) are nuisance parameters. The composite errors ey,it

consist of three components: an idiosyncratic term, εit, an error component due to the

truncation of infinite polynomial distributed lag function at pT, δ′i (L), and an error com-

ponent due to the approximation of unobserved common factors, specifically

ey,it = εit +
∞

∑
l=pT+1

δ′il z̄t−l + Op

(
N−1/2

)
.

The parameter of interests are θi =
(
ψ′i, β′i

)′, which can be estimated by the least
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squares estimation based on the cross-sectionally augmented regression (22). Define

Ξi =



y′ipT+1,−L x′i,pT+1

y′ipT+2,−L x′i,pT+2
...

...

y′iT,−L x′i,T


, Q̄ =



d′pT+1 z̄′pT+1 z̄′pT
· · · z̄′1

d′pT+2 z̄′pT+2 z̄′pT+1 · · · z̄′2
...

...
...

...
...

d′T z̄′T z̄′T−1 · · · z̄′T−pT


, (23)

and the projection matrix MQ̄ = IT−pT − Q̄
(

Q̄′Q̄
)+

Q̄′, where IT−pT is a (T − pT) ×

(T − pT) dimensional identity matrix, and A+ represents the Moore-Penrose generalized

inverse of A. Based on (22), the CCE estimator of θi based on (22) is given by

θ̂i,CCE =
(

Ξ′i MQ̄Ξi

)−1
Ξ′i MQ̄yi, (24)

where yi =
(
yi,pT+1, yi,pT+2, . . . , yi,T

)′ . We manage to establish the consistency of CCE

estimates for the HARP model in the ensuing theorem.

Theorem 1 Suppose yit for i = 1, 2, . . . , N and t = 1, 2, . . . , T, are generated following

the HARP models (3), (12)-(14). Under the Assumptions 1-4, as (N, T) → ∞ and pT =

O
(
T1/3), we have

θ̂i,CCE →p θi,

where θ̂i,CCE =
(

ψ̂
′
i, β̂
′
i

)′
is described by (24).

Remark The proof of Theorem 1 is provided in Appendix A. Since the parameters of in-

terest φ
(l)
i in model (10) are linear transformations of the first coefficient vector in θi,CCE,

based on the above theorem and the Slutsky’s theorem, we can claim that the CCE estima-

tor φ
(l)
i is consistent as T → ∞ for i = 1, . . . , N and l = 1, . . . , L. In Appendix B, we conduct

Monte Carlo simulation to investigate the general performance of the CCE estimator under

the HARP framework.

14



3.2 Forecasting realized volatility

We are interested in the forecast of yi,T+h conditional the information up to time T. With-

out loss of generality, yit can also be described by the following direct forecasting model7

yi,t+h = α′idt + ψ′iyit,−L + β′ixit + γ′i f t+h + εit. (25)

The forecast of yi,T+h contingent on the information up to time T is therefore

ŷi,T+h|T = α̂′idT + ψ̂
′
iyiT,−L + β̂

′
ixiT + γ̂′i f̂ T+h|T, (26)

where α̂i, ψ̂i, β̂i, γ̂i are the estimates from (10) and (12), and f̂ T+h|T is a forecast of f T+h.

The forecast requires consistent estimation of the unobserved factors and hence the

consistent estimation of parameters. Since the consistency of slope coefficients θ̂i,CCE has

been established in Section 3.1 without a prior knowledge of f t , we solve the forecasting

problem by employing a two stage process: first, we estimate the parameters
(
ψ′i, β′i

)′ and

unobserved common factors ft, utilizing the CCE estimator and principal components. The

factor estimates from this procedure are consistent (Pesaran, 2006). In the second stage,

the factor estimates can be used directly to estimate the parameters αi, ψi, βi and γi in

(25) by OLS. We then obtain forecasts of ft+h under hypothetical processes of ft.8

Given the consistent estimation of ψi and βi, we can obtain git = α′idt−h + uit, as

ĝit = yit − ψ̂
′
iyit−h,−L − β̂

′
ixit−h. (27)

After acquiring the residuals, ĝit, an estimate of uit is produced by integrating out the

7Assuming certain vector autoregressive processes for dt and f t, we can iterate on (10) and (12), and
then conduct recursive substitutions to yield the direct forecasting model. Bernoth and Pick (2009) provide
a detailed mathematical induction on a similar question.

8Section 5.1 provides a detailed discussion on various forecasting schemes of ft and their implications.
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common observed factors, dt−h,

ûi = MD ĝi, (28)

where ûi = (ûi,h+1, ûi,h+2, . . . , ûi,T), MD = I−D ( D′D)
−1 D′ and D =

(
d1
′, d2

′, . . . , dT−h
′).

Bernoth and Pick (2011) pointed out that the orthogonality assumption of dt to f t is nec-

essary to guarantee unbiasedness of the parameter estimates of the common factors, α̂i,

although an absence of it will not bias the forecasts resulting from the above procedure.

With estimates of the residuals ûit, we are able to extract the unobserved common fac-

tors, f t, using the principal component analysis. In our application, consistent estimation

of ψi and βi is guaranteed under any fixed number of unobserved factors, m.9 However,

since f t and its factor loadings still matter for the forecasts by equation (25), an estimate

of m seems essential. To resolve this, we apply the Bai and Ng’s (2002) method to the

residuals, ûi given in (28), which yields a choice of m = 2.10

For forecasting yi,t+h, a prediction of f t+h is required, since the principal component

analysis only generates f̂ t up to time T. Based on Pesaran, Pick, and Allan (2011) and

Stock and Watson (2002), we assumes a VAR model of f̂ t to predict f̂ t+h, where the num-

ber of lags is selected by the Bayes Information Criterion (BIC). We also use the standard

HAR model and the random forest method to forecast f̂ t.
11

3.3 Assessment of the forecasts

Forecast performance of yit is evaluated using the following criteria:

MAFE(h) =
1
M

M

∑
j=1
|eiTj,h|, (29)

9As suggested by Pesaran (2006), the number of unobserved factors, m, only becomes a practical issue if
the focus of the analysis is on the factor loadings, for instance, the parameters of asset pricing factors.

10We also test the forecasts for different values of m and the results remain qualitatively similar.
11A detailed description of the random forest technique is provided in Appendix C.
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MSFE(h) =
1
M

M

∑
j=1

e2
iTj,h, (30)

SDFE(h) =

√√√√ 1
M− 1

(
eiTj,h −

1
M

M

∑
j=1

eiTj,h

)2

, (31)

where eiTj,h = yiTj,h − ŷiTj,h is the forecast error, j = 1, 2, . . . , M, and ŷiTj,h is the h-day

ahead forecast with information up to Tj, where Tj stands for the last observation in each

of the M rolling windows. Another widely-adopted method for evaluation is by means of

the R2-criterion of the Mincer-Zarnowitz regression,12 given by

yiTj,h = a + bŷiTj,h + uTj , for j = 1, 2, . . . , M, (32)

Note that we choose the level-regression (32) over the log-regression, because Hansen and

Lunde (2006) have argued that the R2 from a regression of log(yiTj,h) on a constant and

log(ŷiTj,h) is unlikely to induce the same ranking of volatility models as the R2 from the

infeasible regressions (with the true volatility), unless a proportionate relationship exists

between the estimated and true values of volatility.13

Based on the findings of Hansen and Lunde (2006) and Patton (2011), we also compute

the expected values of gaussian quasi-likelihood (QLIKE),

QLIKE(h) = log ŷiTj,h +
yiTj,h

ŷiTj,h
, for j = 1, 2, . . . , M, (33)

The QLIKE function, along with the MSFE loss, has been demonstrated to be robust to

noise in the proxy for volatility in Patton (2011). Moreover, Patton and Sheppard (2009)

find that relative to the MSFE loss, the QLIKE loss has better power properties under the

12Interested readers may refer to Mincer and Zarnowitz (1969) for more details.
13Hansen and Lunde (2006) prove that if the proxy, σ̃2

t , and the true volatility, σ2
t , satisfy the equation

σ̃2
t = (1− υt)σ2

t for some random variable, υt, the ranking of volatility models remains unaffected by the
measurement errors of σ̃2

t .
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Diebold-Mariano test. In the last place, we complement the above results by running the

unconditional Giacomini and White (2006) test for the mean absolute forecast error, in

order to test the equal predictive ability of a pair of models.

4 Data descriptions

In the empirical exercise, we consider an application to the realized variance of the NAS-

DAQ 100 Trust exchange-traded fund (ETF) tracking the NASDAQ 100 Index, with ticker

symbol QQQ. To avoid the concerns of data mining, the information on unobserved com-

mon factors is extracted solely from a panel data of the NASDAQ 100 constituents.

The data on the NASDAQ 100 ETF consist of high frequency transaction prices from

May 22, 2007 to October 20, 2017, which totals 2,625 observations. The 104 constituents

cover industry groups ranging from computer hardware and software, telecommunica-

tions, retail/wholesale trade, and biotechnology. Since the components of the NASDAQ

100 index are varying over time, we only include the stocks that always belong to the in-

dex during our sample period, in order to keep the panel balanced. In total, 89 stocks are

selected. A more detailed description of these stocks is given in Appendix D, including their

ticker symbols, names, and Global Industry Classification (GIC) sectors. The whole data

set and its relevant information are provided by Pitrading Inc., which base their source in-

formation from New York Stock Exchange’s TAQ database. All the above data are obtained

at one-minute increments. The intraday prices are then used to calculate daily realized

variance measures by equation (1).

To have an abundance of time series, we use the original data at one-minute intervals

in our primary analysis. However, we are aware that a too high sampling frequency might

cause microstructure bias to distort volatility estimates from its true daily variance. The
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previous work by Liu, Patton, and Sheppard (2015) offers some evidence on why 5-minute

RV is typically considered as the benchmark.14 For the justification of using the 1-minute

data, we construct volatility signature plots for the NASDAQ 100 ETF (QQQ) and the eight

representative stocks in Figure 1, to check if 1-minute RV is an appropriate alternative to

5-minute RV.15 A description of the full company names and their weights is included in

Table 1. The main pattern is that volatility signature plots for all the considered assets

are flat, which is especially the case for QQQ. This indicates no apparent variations from

1-minute sampling, relative to 5-minute sampling, at least for our data sets.16

Table 1: Descriptions of liquid and illiquid stocks

Ticker Company Name Weights in the NASDAQ 100 (%)
Liquid Stocks
AAPL Apple Inc. 12.39
FB Facebook Inc. 4.85
INTC Intel Corporation 2.60
NVDA NVIDIA Corporation 1.80

Iliquid Stocks
CTAS Cintas Corporation 0.27
IDXX IDEXX Laboratories Inc. 0.25
ISRG Intuitive Surgical Inc. 0.70
JBHT J.B. Hunt Transport Services Inc. 0.16

We describe summary statistics of the RV series for the NASDAQ100 ETF in column 2 of

Table 2. Due to the vast number of the NASDAQ 100 Index components, we only present

the statistics of six representative stocks in columns 3 to 8 of Table 2. Table 2 documents

the results of the sample mean, median, minimum, maximum, standard deviation, skew-

ness, and kurtosis for the RV series over the full sample periods. Table 2 also reports the

14Liu, Patton, and Sheppard (2015) conduct a comprehensive study for over 400 different realized mea-
sures, with a wide range of sampling frequencies, and they apply these to 11 years of daily data on 31
individual financial assets. Overall, they find it difficult to significantly outperform 5-minute RV.

15The volatility signature plot was first introduced by Andersen, Bollerslev, Diebold, and Labys (2000) to
provide some guidance on the optimal sampling frequency.

16Liu, Patton, and Sheppard (2015) conclude that as long as the assets are liquid enough, one-minute
sampling are nevertheless sparse to avoid the problem of microstructure bias. For the robustness check, we
also conduct a similar empirical analysis on five-minute sampling data in Section 6.2 and the HARP model
still outperforms the risk models solely based on its own realized volatility components.
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p-values17 of the Jarque-Bera test for normality and those of the augmented Dickey-Fuller

(ADF) test for unit root. The null hypotheses of a normal distribution and a unit root are

strongly rejected in all cases, whereas the other statistics disperse over a wide range.

Table 2: Summary statistics for the RV of the NASDAQ100 ETF and 6 representative stocks

Statistic QQQ Tickers of representative stocks
AAL ALXN DISCA ISRG QCOM XLNX

Mean 1.0536 17.0766 4.7820 3.5654 4.1525 2.3330 2.7815
Median 0.6119 7.2913 3.4835 2.0676 2.6538 1.4461 1.7512
Maximum 9.8061 669.3273 135.1100 583.1942 65.4187 34.2651 33.9595
Minimum 0.0687 0.5071 0.4013 0.4374 0.3030 0.1598 0.3030
Standard Deviation 1.2467 30.9578 5.0603 13.5319 4.6312 2.7424 2.9660
Skewness 3.0783 7.8892 9.2852 35.4074 4.0143 4.2497 3.5105
Kurtosis 15.1628 117.0782 189.5792 1416.5222 29.7366 31.5784 21.4986

Jarque-Bera 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
ADF 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

The second column of Table 2 contains statistics for the realized variance of the NASDAQ100 ETF from May
22, 2007 to October 20, 2017, for a total of 2,625 observations. The statistics of six component stocks of
the NASDAQ 100 index are presented in columns 3 to 8. For JB and ADF test statistics that are outside
tabulated critical values, we report maximum (0.999) or minimum (0.001) p-values. All the statistics here
are computed based on the data at one-minute increments.

4.1 Observed common factors

Note that the main forecast equation (10) contains a set of observed macroeconomic fac-

tors dt. Inspired by recent research by Fernandes, Medeiros, and Scharth (2014), we

include the following predictors in dt contemporaneously: (i) the j-day continuously com-

pounded return on the one-month crude oil futures contract for j = 1, 5, 10, 22, 66 (oil j-day

return); (ii) the first difference of the logarithm of the trade-weighted average of the for-

eign exchange value of the US dollar index against the Australian dollar, Canadian dollar,

Swiss franc, euro, British pound sterling, Japanese yen, and Swedish krona (USD change);

(iii) the excess yield of the Moody’s seasoned Baa corporate bond over the Moody’s sea-

soned Aaa corporate bond (credit spread); (iv) the difference between the 10-Year and

3-month Treasury constant maturity rates (term spread); (v) and the difference between

17In our exercises, we set the lower bound of the p-values of the Jarque-Bera and the ADF tests at 0.001.
Values less than 0.001 are truncated at 0.001.
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the effective and target federal fund rates (FF deviation). While both oil prices (Oil) and

term spread (TS) are concerned with different dimensions of the overall market condi-

tions, USD change (USDI) and FF deviation (FED) are both linked to US macroeconomic

conditions. Descriptive statistics for dt are available in Appendix E.

5 Empirical analysis

In this section, we conduct an empirical exercise to thoroughly examine both the in-sample

and the out-of-sample performance of the HARP model. This is in comparison with the

performance of the autoregressive model (AR) and a battery of HAR-type models reviewed

in Section 2. The rivalry models are listed as follows:

(i) AR model: the simple autoregression model AR(22);

(ii) HAR model: defined in (2);

(iii) HAR-J model: defined in (4);

(iv) HAR-CJ model: defined in (5);

(v) HAR-RS-I model: defined in (6);

(vi) HAR-RS-II model: defined in (7);

(vii) HAR-SJ-I model: defined in (8);

(viii) HAR-SJ-II model: defined in (9).

In the first instance, we need to verify the existence of the possible error cross-sectional

dependence. In Table 3 we report the cross-section dependence (CD) test of Pesaran (2004,

2015) and their p-values, which are based on the average of pair-wise correlations of the

residuals from regressions of individual stock volatility. For all regressions and forecast
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horizons, these error terms show a considerable degree of cross-sectional dependence.18

This implies that even after controlling for the predictors of volatility in our data set, sizable

cross-section dependance remains across component stocks, which supports the utilization

of this information to improve the accuracy of forecasts.

Table 3: Results for cross-section dependence test for RV of the NASDAQ 100 con-
stituents

Method h = 1 h = 5 h = 10 h = 22
CD p-value CD p-value CD p-value CD p-value

RW 5386.1615 0.0000 6661.1541 0.0000 6844.1628 0.0000 7426.2886 0.0000
AR(22) 4178.6508 0.0000 5563.3119 0.0000 6031.7421 0.0000 6814.7767 0.0000
HAR 4491.6446 0.0000 5719.2537 0.0000 6167.5320 0.0000 6957.3473 0.0000
HAR-J 4384.6859 0.0000 5655.8968 0.0000 6107.9819 0.0000 6895.6076 0.0000
HAR-CJ 4251.0679 0.0000 5474.3930 0.0000 5880.9295 0.0000 6596.3800 0.0000
HAR-RS-I 4386.1947 0.0000 5641.6365 0.0000 6118.8177 0.0000 6919.7391 0.0000
HAR-RS-II 4179.7576 0.0000 5530.1978 0.0000 6063.0118 0.0000 6884.2000 0.0000
HAR-SJ-I 4403.8828 0.0000 5646.2349 0.0000 6132.6288 0.0000 6926.7192 0.0000
HAR-SJ-II 4351.2087 0.0000 5611.6945 0.0000 6103.8054 0.0000 6900.0884 0.0000

CD is short for the CD test statistic of cross-section independence applied to the residuals of the asset specific regression.
RW indicates a random walk model. A large CD indicates that the residuals of certain model estimation are correlated
across individual component stocks.

With an explicit control of error cross-sectional dependence, we implement the HARP

model built upon the specification of HAR-RS-II, due to its sound out-of-sample perfor-

mance documented in Patton and Sheppard (2015). This particularly implies that unit-

specific regressors xit are (RV(1)
it · I(rt < 0), RS+

it , RS−it )
′, while other regressors in (10) are

well defined above.19 This is our benchmark forecasting specification in the sequel. In the

following analysis, we mostly concentrate on forecasting the RV of the NASDAQ 100 ETF,

where the information of unobserved common effects are extracted from the volatility of

the NASDAQ 100 components. We want to see if the comovements of component stocks

genuinely assist in predicting the index fund volatility.

For all of the exercises, we conduct an in-sample exercise with the full sample data and

a rolling window out-of-sample exercise. The window length is set at 1000. We also test

18Under the null of weak error cross-sectional dependence, the CD statistics are asymptotically distributed
as N (0, 1).

19The lagged dependent variables ȳ(l)it include RV(5)
it and RV(22)

it , while dt are observed macroeconomic
factors, of which the details are explained in Section 4.1.
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other values of the window length and the results remain similar.20 Each of the above

candidate models is applied to the data set, and a series of h days ahead forecasts are

obtained.21 We consider both short-horizon and long-horizon forecasts with h = 1, 5, 10

and 22. For comparing the forecast performance, we specifically employ the five statistics

in Section 3.3: (i) the mean squared forecast error (MSFE); (ii) the standard deviation

of forecast error (SDFE); (iii) the mean absolute forecast error (MAFE); (iv) the Mincer-

Zarnowitz pseudo-R2 and (v) the QLIKE function for each model at each forecast horizon.

5.1 The benchmark scheme of predicting f̂ t+h

Next, we need to choose a benchmark scheme for forecasting f̂ t+h. In order to accomplish

this, an investigation on the statistical properties of f t is necessary. We start by estimating

f t based on the HARP specification and the CCE estimator, across various forecast horizons

(h = 1, 5, 10, 22). We report summary statistics of f t in Table 4.22 As can be seen clearly,

the null hypotheses of a normal distribution and a unit root process are strongly rejected

for the two principal components ( f 1 and f 2). Except for f 2 at h = 1, the factors have

highly persistent autocorrelation structures in other cases.

In Section 3.2, we consider four methods of forecasting f̂ t+h: the AR model, the HAR

model, the VAR model,23 and the random forest method. With the HARP model and its

benchmark specification (i.e., HAR-RS-II), the relative out-of-sample performance from the

above three ways of forecasting f̂ t+h is compared in Table 5. Looking across the columns,

we see that the random forest method performs the very best overall, followed by the
20We test the results with the window length of 500 observations. Tables are provided in Appendix G.2.
21Note that, to compute h-day ahead forecasts, we employ a direct forecast approach in which we use

RVt+h in the above models. This approach permits us to produce multi-step ahead forecasts without imposing
any assumption about future realizations on the explanatory variables.

22The sample autocorrelation functions of f t is reported in Figure A2 of Appendix F.
23We also tried to apply VARMA model to forecast f t+h. However, the VARMA model requires the data to

be highly stationary. Since we are using a rolling window exercise, this implies that f t needs to be highly
stationary in every roll, which is not guaranteed in practice. Hence, we use the VAR model instead.
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Table 4: Summary statistics for the unobserved common factors

Statistic h = 1 h = 5 h = 10 h = 22
f1 f2 f1 f2 f1 f2 f1 f2

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Median 0.2038 0.1382 0.2290 0.1189 0.2524 -0.0393 -0.2678 0.0697
Maximum 14.1083 7.2167 5.4090 20.6654 5.0550 12.5781 12.3710 15.2257
Minimum -14.1560 -26.5783 -18.9432 -21.5940 -15.4713 -15.9108 -6.7179 -13.2345
Standard Deviation 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Skewness -2.5078 -11.2995 -6.4684 -0.8306 -5.0666 -2.0137 4.0513 0.7770
Kurtosis 56.8944 252.7725 88.6692 189.6395 54.0926 64.9030 35.8895 49.9837

Jarque-Bera 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
ADF Test 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Table 4 contains statistics for the unobserved common factors computed based on the CCE estimator and applied to RVs
of the NASDAQ 100 constituents. For each forecast horizon (h = 1, 5, 10, 22.), we extract two principal components. For
JB and ADF test statistics that are outside tabulated critical values, we report maximum (0.999) or minimum (0.001)
p-values.

HAR model. The Giacomini-White (GW) tests based on the mean absolute forecast errors,

reported in Table 6, again corroborate these conclusions. Now taking the random forest

method as the benchmark, the pairwise tests show that the forecasts from this method

result in significantly lower errors than the forecasts from all the other methods, except for

the forecast horizon of h = 1. Based on the above set of analyses, we decide to employ the

random forest method as the benchmark scheme, to predict f̂ t+h in the following empirical

exercises.

5.2 The in-sample and out-of-sample results for the NASDAQ 100 ETF

We begin our discussions by considering the in-sample results in Table 7, where the HARP

model is compared with its baseline specification without unobserved common factors,

the HAR-RS-II model. The race is evaluated by the in-sample predictive R2’s. We find that,

in the HARP model with f t, the coefficients on negative realized semivariance decrease

substantially in magnitude but remain significant for all horizons, and the effect is much

milder for the coefficients on positive realized semivariance. Akin to a substitution effect,

the coefficients on all f t are large and significant. Moreover, the HARP model explains

32% (at h = 1) to 174% (at h = 22) more of the variation in future volatility than the
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Table 5: The out-of-sample forecast comparison for different ways of forecasting f̂ t+h

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: h = 1
HARPAR 0.2190 0.1330 0.2753 0.4680 0.7767
HARPHAR 0.2160 0.1307 0.2722 0.4647 0.7799
HARPVAR 0.2159 0.1375 0.2775 0.4646 0.7800
HARPRF 0.2114 0.1339 0.2698 0.4598 0.7845

Panel B: h = 5
HARPAR 0.3666 0.2085 0.3758 0.6055 0.6272
HARPHAR 0.3622 0.2072 0.3724 0.6018 0.6316
HARPVAR 0.3564 0.1956 0.3604 0.5970 0.6375
HARPRF 0.3433 0.1931 0.3409 0.5859 0.6509

Panel C: h = 10
HARPAR 0.4075 0.2398 0.4024 0.6384 0.5862
HARPHAR 0.4075 0.2449 0.4059 0.6383 0.5862
HARPVAR 0.4150 0.2453 0.3790 0.6442 0.5785
HARPRF 0.4058 0.2654 0.3683 0.6370 0.5879

Panel D: h = 22
HARPAR 0.4670 0.2863 0.4595 0.6834 0.5261
HARPHAR 0.4629 0.3061 0.4614 0.6804 0.5303
HARPVAR 0.5193 0.3587 0.4410 0.7206 0.4731
HARPRF 0.4788 0.3748 0.4266 0.6919 0.5142

This table reports the out-of-sample results for predicting h-day
future realized variation using the different models of forecast-
ing f̂ t+h. The candidate models are the HAR model (HARPHAR),
the AR(h) model (HARPAR), and the random forecast method
(HARPRF). The results are based on the transaction data of the
NASDAQ 100 ETF spanning from May 22, 2007 to October 20,
2017 (a total of 2,625 observations). We use a rolling window of
1000 observations to estimate the coefficients of the HARP model,
and evaluate the out-of-sample forecast performance at four hori-
zons (h = 1, h = 5, h = 10 and h = 22). Each panel in Table 5
corresponds to a specific forecast horizon, which varies from 1 day
to 22 days. Bold numbers indicate the best performing model by
each criterion at each forecast horizon.

Table 6: The Giacomini-White test for the mean absolute fore-
cast errors-different ways of forecasting f̂ t+h

Method HARPAR HARPHAR HARPVAR HARPAR HARPHAR HARPVAR
h = 1 h = 5

HARPAR - - - - - -
HARPHAR 0.0244 - - 0.1274 - -
HARPVAR 0.4173 0.0185 - 0.0097 0.0266
HARPRF 0.0573 0.3722 0.4001 0.0000 0.0000 0.0000

h = 10 h = 22
HARPAR - - - - - -
HARPHAR 0.3843 - - 0.6001 - -
HARPVAR 0.0088 0.0021 - 0.3418 0.2872 -
HARPRF 0.0003 0.0001 0.0141 0.0476 0.0325 0.1026

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test
the null hypothesis that the row method (in vertical headings) performs equally well as
the column method (in horizontal headings) in terms of the absolute forecast error. Cor-
responding p values for a number of forecasting horizons (h = 1, 5, 10, 22) are reported
in Panels A to D of Table 6, respectively. Bold numbers indicate the null hypothesis can
be rejected at 5% level of significance.
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model not containing f t. The above finding indicates that aside from some additional

useful information for prediction, the unobserved common factors partially capture the

information contained in positive and negative realized semivariances.

Table 7: In-sample results for the benchmark specification with and without un-
observed common factors

h = 1 h = 5 h = 10 h = 22
M M′ M M′ M M′ M M′

Panel A: Feasible common factors
Constant 0.3700 0.4505 0.4317 0.5096 0.4845 0.5260 0.6013 0.6428

(0.0413) (0.0237) (0.0508) (0.0310) (0.0565) (0.0352) (0.0629) (0.0379)
OIL 0.4373 -0.2574 -0.9595 -0.9611 0.4554 -0.1422 -0.7933 -1.0313

(0.6334) (0.3622) (0.7781) (0.4736) (0.8639) (0.5377) (0.9577) (0.5770)
USD -1.7878 1.2087 -1.3487 0.7342 -3.2909 -1.2032 0.9706 2.3014

(3.0697) (1.7551) (3.7716) (2.2960) (4.1871) (2.6061) (4.6416) (2.7970)
CS -1.3083 -0.8762 -0.0156 0.7781 0.4170 1.1349 0.9932 1.6086

(0.6697) (0.3829) (0.8226) (0.5009) (0.9131) (0.5683) (1.0124) (0.6104)
TS -0.0590 -0.0254 -0.0419 0.0049 -0.0298 -0.0233 -0.0303 -0.0196

(0.0180) (0.0103) (0.0222) (0.0135) (0.0246) (0.0154) (0.0273) (0.0165)
FFD 1.7295 1.2395 1.0488 0.3062 1.5633 1.5272 1.7559 1.6254

(0.1547) (0.0889) (0.1901) (0.1165) (0.2112) (0.1348) (0.2344) (0.1429)

Panel B: Cross-section specific regressors
RV(1)

t · I(rt < 0) 0.0778 0.0798 -0.1214 -0.0585 -0.0954 -0.0634 -0.0147 0.0068
(0.0333) (0.0190) (0.0409) (0.0249) (0.0453) (0.0282) (0.0502) (0.0303)

RS+
t 0.1129 0.1315 0.0926 0.0995 0.2715 0.1749 0.0196 0.0176

(0.0501) (0.0287) (0.0616) (0.0375) (0.0683) (0.0426) (0.0756) (0.0457)
RS−t 0.2733 0.0957 0.1447 0.0673 0.1229 0.0459 0.1368 0.0731

(0.0163) (0.0097) (0.0201) (0.0123) (0.0223) (0.0139) (0.0247) (0.0149)
RV(5)

t 0.2379 0.1930 0.3287 0.1714 0.1177 0.0674 0.1744 0.0746
(0.0220) (0.0126) (0.0270) (0.0166) (0.0300) (0.0187) (0.0332) (0.0201)

RV(22)
t 0.2710 0.2490 0.2548 0.2466 0.3098 0.3770 0.2320 0.2923

(0.0165) (0.0094) (0.0203) (0.0123) (0.0225) (0.0149) (0.0249) (0.0151)

Panel C: Estimated unobserved common factors
Common effect f1 -0.4718 -0.6600 -0.7052 0.8185

(0.0086) (0.0108) (0.0124) (0.0132)
Common effect f2 -0.4150 -0.3149 0.3062 -0.2731

(0.0081) (0.0109) (0.0133) (0.0136)

Panel D: Goodness of fit
R2 0.6765 0.8944 0.5127 0.8196 0.4008 0.7681 0.2686 0.7347

Adj. R2 0.6753 0.8939 0.5108 0.8188 0.3985 0.7670 0.2658 0.7335

This table reports the in-sample results for predicting the h-day future realized volatility using the HAR-RS-II model
and the HARP model. The estimation is based on the full sample data of the NASDAQ 100 ETF and considers a
range of forecast horizons (h = 1, 5, 10, 22). Panel A reports the coefficient estimates of observed common factors and
their standard errors (in parentheses). Panel B reports the coefficient estimates of unit-specific regressors and their
standard errors (in brackets), while panel C reports the relevant results for unobserved common factors. The bottom
panel provides the in-sample predictive R2 and adjusted R2.

Table 8 presents some descriptive results of the out-of-sample evaluation for forecasts

1, 5, 10 and 22 days ahead. In particular, we report the MSFE, SDFE, MAFE, QLIKE as well

as the pseudo R2 from the rolling-window regressions for the HARP model and for the set
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Table 8: Out-of-sample forecast comparison of
models for RV of the NASDAQ 100 ETF

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: h = 1
AR(22) 0.4428 0.1587 0.3282 0.6654 0.5487
HAR 0.4190 0.1569 0.3250 0.6473 0.5729
HAR-J 0.3783 0.1487 0.3114 0.6150 0.6145
HAR-CJ 0.3575 0.1491 0.3096 0.5979 0.6356
HAR-RS-I 0.2341 0.1371 0.2884 0.4839 0.7614
HAR-RS-II 0.2302 0.1349 0.2819 0.4798 0.7654
HAR-SJ-I 0.2498 0.1465 0.2927 0.4998 0.7454
HAR-SJ-II 0.2333 0.1382 0.2891 0.4830 0.7622
HARP 0.2114 0.1339 0.2698 0.4598 0.7845

Panel B: h = 5
AR(22) 0.5623 0.2618 0.4247 0.7499 0.4280
HAR 0.4761 0.2547 0.4101 0.6900 0.5158
HAR-J 0.4768 0.2728 0.4052 0.6905 0.5151
HAR-CJ 0.4578 0.3255 0.3942 0.6766 0.5343
HAR-RS-I 0.4780 0.2548 0.3984 0.6914 0.5138
HAR-RS-II 0.4632 0.2612 0.3965 0.6806 0.5289
HAR-SJ-I 0.4874 0.2577 0.3999 0.6981 0.5043
HAR-SJ-II 0.4462 0.2443 0.3925 0.6680 0.5461
HARP 0.3433 0.1931 0.3409 0.5859 0.6509

Panel C: h = 10
AR(22) 0.5782 0.3126 0.4460 0.7604 0.4128
HAR 0.5426 0.3322 0.4398 0.7366 0.4490
HAR-J 0.5223 0.9742 0.4368 0.7227 0.4696
HAR-CJ 0.5222 0.3965 0.4276 0.7226 0.4697
HAR-RS-I 0.5107 0.3472 0.4310 0.7146 0.4814
HAR-RS-II 0.5027 0.3552 0.4269 0.7090 0.4895
HAR-SJ-I 0.5056 0.3622 0.4308 0.7110 0.4866
HAR-SJ-II 0.9043 0.3170 0.4415 0.9509 0.0817
HARP 0.4058 0.2654 0.3683 0.6370 0.5879

Panel D: h = 22
AR(22) 0.6179 0.3958 0.4941 0.7861 0.3730
HAR 0.6012 0.3952 0.4899 0.7754 0.3900
HAR-J 0.6112 0.3815 0.4885 0.7818 0.3799
HAR-CJ 0.6250 0.3982 0.4883 0.7906 0.3658
HAR-RS-I 0.6035 0.4550 0.4899 0.7768 0.3877
HAR-RS-II 0.6045 0.3888 0.4872 0.7775 0.3866
HAR-SJ-I 0.6017 0.4642 0.4898 0.7757 0.3894
HAR-SJ-II 0.6055 0.5216 0.4887 0.7781 0.3856
HARP 0.4788 0.3748 0.4266 0.6919 0.5142

This table reports the out-of-sample results for predicting h-day fu-
ture realized variation using the different predictor variables and
risk models. The results are based on the transaction data of the
NASDAQ 100 ETF spanning from May 22, 2007 to October 20, 2017
(a total of 2,625 observations). We use a rolling window of 1000
observations to estimate the coefficients of the models, and evalu-
ate the out-of-sample forecast performance at four horizons (h = 1,
h = 5, h = 10 and h = 22). Each panel in Table 8 corresponds
to a specific forecast horizon, which varies from 1 day to 22 days.
Bold numbers indicate the best performing model by each criterion
at each forecast horizon.
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of candidate models discussed in Section 2. We find consistent ranking of models across all

forecast horizons: the AR(22) performs the worst, followed by models with high-frequency

intraday data (i.e., the HAR, the HAR-J and the HAR-CJ), while the more sophisticated RV

models perform better. The HARP model has the best performance in all cases of h. To

further examine whether the out-performance is statistically significant, we perform the

modified GW test in Table 9. The outcome indicates that the out-performance of the HARP

model is statistically significant at all four forecasting horizons.

6 Robustness checks

This section presents three out-of-sample checks on the conclusions from the previous

section, with the identical set of volatility models. The first is an application to the Dow

Jones Industrial Average (DJIA). The second is a test of the main results on the NASDAQ

100 ETF with a different sampling frequency, a 5-minute sampling interval. The third is an

exercise using the principal components (PCs) approach, an alternative way of estimating

unobserved common factors. Apart from the above trials, we also test our findings by other

industrial indices in Appendix G.1, by a different window length in Appendix G.2, and by

varying the sample period in Appendix G.3.

6.1 Evidence on DJIA

The previous sections presented results for the NASDAQ 100 ETF. In this section we report

out-of-sample results for the DJIA index. Data at 1-minute sampling interval is provided

by Pitrading Incorporation and covers the same period as the main results. The DJIA is

a weighted average index that indicates the value of 30 large, publicly owned companies
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Table 9: The Giacomini-White test for the mean absolute forecast errors-
the NASDAQ 100 ETF

Method AR(22) HAR HAR-J HAR-CJ HAR-RS-I HAR-RS-II HAR-SJ-I HAR-SJ-II
Panel A: h = 1
AR(22) - - - - - - - -
HAR- 0.5936 - - - - - - -
HAR-J 0.0068 0.0000 - - - - - -
HAR-CJ 0.0008 0.0000 0.4332 - - - - -
HAR-RS-I 0.0001 0.0001 0.0050 0.0058 - - - -
HAR-RS-II 0.0000 0.0000 0.0000 0.0000 0.0304 - - -
HAR-SJ-I 0.0000 0.0000 0.0020 0.0028 0.0656 0.0000 - -
HAR-SJ-II 0.0002 0.0002 0.0068 0.0086 0.3482 0.0190 0.1289 -
HARP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0060 0.0000 0.0000

Panel B: h = 5
AR(22) - - - - - - - -
HAR- 0.1284 - - - - - - -
HAR-J 0.0475 0.0062 - - - - - -
HAR-CJ 0.0028 0.0002 0.0077 - - - - -
HAR-RS-I 0.0139 0.0003 0.0027 0.3819 - - - -
HAR-RS-II 0.0093 0.0000 0.0003 0.5971 0.1716 - - -
HAR-SJ-I 0.0178 0.0030 0.0260 0.2597 0.0175 0.0714 - -
HAR-SJ-II 0.0034 0.0000 0.0000 0.7023 0.0072 0.0176 0.0052 -
HARP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel C: h = 10
AR(22) - - - - - - - -
HAR- 0.4620 - - - - - - -
HAR-J 0.3554 0.2268 - - - - - -
HAR-CJ 0.0477 0.0042 0.0154 - - - - -
HAR-RS-I 0.1665 0.0236 0.0022 0.4104 - - - -
HAR-RS-II 0.1279 0.0359 0.0165 0.9043 0.1295 - - -
HAR-SJ-I 0.1858 0.0536 0.0185 0.4746 0.8771 0.0495 - -
HAR-SJ-II 0.6800 0.8733 0.7063 0.2821 0.4451 0.3663 0.4666 -
HARP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Panel D: h = 22
AR(22) - - - - - - - -
HAR- 0.6077 - - - - - - -
HAR-J 0.4487 0.5539 - - - - - -
HAR-CJ 0.5025 0.6427 0.9489 - - - - -
HAR-RS-I 0.5918 0.9796 0.4787 0.6039 - - - -
HAR-RS-II 0.3305 0.3026 0.4892 0.7376 0.1795 - - -
HAR-SJ-I 0.5900 0.8755 0.6093 0.6654 0.8190 0.2828 - -
HAR-SJ-II 0.4660 0.5700 0.8699 0.8888 0.3776 0.2854 0.5575 -
HARP 0.0075 0.0127 0.0136 0.0140 0.0124 0.0131 0.0126 0.0120

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis
that the row method (in vertical headings) performs equally well as the column method (in horizontal head-
ings) in terms of the absolute forecast error. Corresponding p values for a number of forecasting horizons
(h = 1, 5, 10, 22) are reported in Panels A to D of Table 9, respectively. Bold numbers indicate the null
hypothesis can be rejected at 5% level of significance.

based in the United States. All forecasts are generated using rolling window regressions

based on 1,000 observations, and parameter estimates are updated daily.

The results are reported in Tables 10 and 11. We note that the HARP forecast is always

the winner and significantly improves the out-of-sample forecast performance. Relative
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Table 10: Out-of-sample forecast comparison of
models on the DJIA

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: h = 1
AR(22) 1.1207 0.2401 0.3852 1.0586 0.2990
HAR 0.9000 0.2177 0.3707 0.9487 0.4370
HAR-J 0.8720 0.2116 0.3648 0.9338 0.4545
HAR-CJ 0.9153 0.2154 0.3722 0.9567 0.4275
HAR-RS-I 0.9776 0.2063 0.3636 0.9887 0.3885
HAR-RS-II 0.8223 0.2049 0.3467 0.9068 0.4857
HAR-SJ-I 0.9325 0.2089 0.3662 0.9656 0.4168
HAR-SJ-II 1.1121 0.2036 0.3653 1.0546 0.3044
HARP 0.5487 0.1852 0.3005 0.7407 0.6568

Panel B: h = 5
AR(22) 1.3034 0.3465 0.4744 1.1416 0.1859
HAR 0.8782 0.3252 0.4391 0.9371 0.4515
HAR-J 0.8822 0.3200 0.4388 0.9392 0.4490
HAR-CJ 0.9012 0.3502 0.4391 0.9493 0.4371
HAR-RS-I 0.8617 0.3206 0.4337 0.9283 0.4618
HAR-RS-II 0.8222 0.3157 0.4306 0.9068 0.4864
HAR-SJ-I 0.8471 0.3194 0.4333 0.9204 0.4709
HAR-SJ-II 0.7602 0.3105 0.4254 0.8719 0.5252
HARP 0.5644 0.2209 0.3435 0.7513 0.6475

Panel C: h = 10
AR(22) 1.0535 0.4052 0.5045 1.0264 0.3432
HAR 0.8767 0.3756 0.4849 0.9363 0.4534
HAR-J 0.8740 0.3732 0.4822 0.9349 0.4551
HAR-CJ 0.9050 0.3761 0.4830 0.9513 0.4358
HAR-RS-I 0.8780 0.3724 0.4835 0.9370 0.4526
HAR-RS-II 0.8853 0.3763 0.4832 0.9409 0.4481
HAR-SJ-I 0.8708 0.3732 0.4837 0.9332 0.4571
HAR-SJ-II 0.8077 0.3692 0.4778 0.8987 0.4964
HARP 0.6043 0.3014 0.3780 0.7773 0.6233

Panel D: h = 22
AR(22) 2.0514 0.5088 0.6419 1.4323 -0.2733
HAR 1.1346 0.4721 0.5842 1.0652 0.2958
HAR-J 1.1211 0.4865 0.5820 1.0588 0.3042
HAR-CJ 1.1576 0.4725 0.5947 1.0759 0.2815
HAR-RS-I 1.1450 0.5333 0.5847 1.0700 0.2894
HAR-RS-II 1.0788 0.4880 0.5840 1.0386 0.3304
HAR-SJ-I 1.1261 0.6599 0.5844 1.0612 0.3011
HAR-SJ-II 1.0841 0.5133 0.5801 1.0412 0.3272
HARP 0.7172 0.3415 0.4420 0.8469 0.5548

This table reports the out-of-sample results for predicting h-day fu-
ture realized variation using the different predictor variables and
risk models. The results are based on data of the Dow Jones In-
dustrial Average spanning from May 22, 2007 to October 20, 2017
(a total of 2,625 observations). We use a rolling window of 1000
observations to estimate the coefficients of the models, and evalu-
ate the out-of-sample forecast performance at four horizons (h = 1,
h = 5, h = 10 and h = 22). Each panel in Table 10 corresponds
to a specific forecast horizon, which varies from 1 day to 22 days.
Bold numbers indicate the best performing model by each criterion
at each forecast horizon.
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to the best semivariance-based specification, the HARP alternative generates gains in the

out-of-sample R2 of between 35.2% (h = 1) and 69.6% (h = 22). The GW test in Table 11

implies that the improvement by HARP is significant. Overall, the above conclusions are

in agreement with the results for the NASDAQ 100 ETF.

Table 11: The Giacomini-White test for the mean absolute forecast errors-
the DJIA

Method AR(22) HAR HAR-J HAR-CJ HAR-RS-I HAR-RS-II HAR-SJ-I HAR-SJ-II
Panel A: h = 1
AR(22) - - - - - - - -
HAR 0.0959 - - - - - - -
HAR-J 0.0239 0.0266 - - - - - -
HAR-CJ 0.1254 0.3795 0.0016 - - - - -
HAR-RS-I 0.0129 0.0034 0.7456 0.0033 - - - -
HAR-RS-II 0.0000 0.0000 0.0009 0.0000 0.0001 - - -
HAR-SJ-I 0.0316 0.1331 0.7198 0.0833 0.1478 0.0000 - -
HAR-SJ-II 0.0324 0.1526 0.9165 0.0919 0.4069 0.0004 0.7530 -
HARP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel B: h = 5
AR(22) - - - - - - - -
HAR 0.0413 - - - - - - -
HAR-J 0.0357 0.6419 - - - - - -
HAR-CJ 0.0299 0.9917 0.9169 - - - - -
HAR-RS-I 0.0182 0.0014 0.0039 0.1231 - - - -
HAR-RS-II 0.0133 0.0395 0.0419 0.0979 0.4131 - - -
HAR-SJ-I 0.0184 0.0013 0.0045 0.1095 0.4816 0.4684 - -
HAR-SJ-II 0.0099 0.0001 0.0003 0.0122 0.0169 0.2224 0.0162 -
HARP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel C: h = 10
AR(22) - - - - - - - -
HAR 0.0370 - - - - - - -
HAR-J 0.0168 0.0010 - - - - - -
HAR-CJ 0.0172 0.6185 0.8431 - - - - -
HAR-RS-I 0.0234 0.3035 0.3525 0.8879 - - - -
HAR-RS-II 0.0214 0.4243 0.5734 0.9466 0.8606 - - -
HAR-SJ-I 0.0262 0.4239 0.3272 0.8486 0.5191 0.7606 - -
HAR-SJ-II 0.0050 0.0064 0.0889 0.3101 0.0472 0.1004 0.0365 -
HARP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel D: h = 22
AR(22) - - - - - - - -
HAR 0.1786 - - - - - - -
HAR-J 0.1690 0.3074 - - - - - -
HAR-CJ 0.2649 0.0354 0.0164 - - - - -
HAR-RS-I 0.1720 0.7118 0.3231 0.0451 - - - -
HAR-RS-II 0.1663 0.9334 0.4615 0.0432 0.7895 - - -
HAR-SJ-I 0.1728 0.8626 0.3431 0.0412 0.4813 0.8687 - -
HAR-SJ-II 0.1527 0.0357 0.3910 0.0078 0.0311 0.1347 0.0220 -
HARP 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis
that the row method (in vertical headings) performs equally well as the column method (in horizontal head-
ings) in terms of the absolute forecast error. Corresponding p values for a number of forecasting horizons
(h = 1, 5, 10, 22) are reported in Panels A to D of Table 11, respectively. Bold numbers indicate the null
hypothesis can be rejected at 5% level of significance.
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6.2 Variation in the sampling frequency

In this section, we examine the robustness of the HARP model to the intraday RVs con-

structed from a 5-minute sampling frequency. This choice directly reflects the sampling

frequency used in much of the existing realized volatility literature.24 Summary statistics

of the 5-minute RVs of the NASDAQ 100 ETF are reported in Table 12.

Table 12: Summary statistics for the 5-min RV of the NASDAQ100 ETF and selected stocks

Statistic QQQ Tickers of representative stocks
AAL ALXN DISCA ISRG QCOM XLNX

Mean 0.9913 14.8403 4.2783 3.3142 3.5345 2.1977 2.5813
Median 0.5586 6.2083 2.9420 1.8320 2.0853 1.3135 1.5721
Maximum 9.8942 1007.9313 228.1957 896.5039 56.6374 54.5670 35.3205
Minimum 0.0461 0.4526 0.3081 0.2676 0.2545 0.1351 0.2156
Standard Deviation 1.2470 32.3428 6.4480 17.9007 4.4494 2.8914 2.9424
Skewness 3.2858 14.2782 18.8513 47.9847 4.2328 5.6266 3.6790
Kurtosis 16.9410 370.0102 587.4505 2393.3160 31.4911 63.2058 23.8816

Jarque-Bera 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
ADF Test 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

The second column contains statistics for the RV of the NASDAQ100 ETF from May 22, 2007 to October 20,
2017. The statistics of 6 component stocks are presented in columns 3 to 8. For JB and ADF test statistics
that are outside tabulated critical values, we report maximum (0.999) or minimum (0.001) p-values.

Comparing to the statistics based on 1-minute intraday data in Table 2, we notice very

minor changes. We then duplicate the rolling window regressions relying on the the 5-

minute data. Tables 13 and 14 contain the results from the forecasting analysis. The losses

for all the forecast criteria are systematically lower than those in the 1-minute case. We

also notice that the results are qualitatively the same as those based on the 1-minute data.

The experiment confirms that the robustness of HARP under different sampling frequency.

6.3 An alternative way of estimating f t

In this section, we consider a direct estimation of unobserved common factors from RVs of

the NASDAQ 100 components, using the PC analysis. Following Kapetanios and Pesaran
24See also the theoretical comparisons of various volatility estimators in Andersen, Bollerslev, and Meddahi

(2011) and Ghysels and Sinko (2011) from a forecasting perspective. Liu, Patton, and Sheppard (2015)
provide a comprehensive empirical study of 400 volatility estimators across multiple assets.
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Table 13: Out-of-sample forecast comparison of
models on the NASDAQ 100 ETF sampled at a
5-minute frequency

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: h = 1
AR(22) 1.1111 0.2327 0.4401 1.3125 -0.8863
HAR 1.0463 0.2257 0.3824 1.0229 -0.1457
HAR-J 0.7040 0.1963 0.3428 0.8390 0.2291
HAR-CJ 0.7178 0.1881 0.3293 0.8472 0.2139
HAR-RS-I 0.3090 0.1906 0.3269 0.5559 0.6616
HAR-RS-II 0.6451 0.1847 0.3255 0.8032 0.2936
HAR-SJ-I 0.2812 0.1909 0.3249 0.5303 0.6921
HAR-SJ-II 0.2641 0.1853 0.3125 0.5139 0.7108
HARP 0.2400 0.1757 0.2948 0.4899 0.7372

Panel B: h = 5
AR(22) 1.1099 0.4246 0.4834 1.0535 -0.2161
HAR 0.5493 0.3099 0.4292 0.7411 0.3982
HAR-J 0.4898 0.3009 0.4148 0.6999 0.4633
HAR-CJ 0.5215 0.3006 0.4083 0.7221 0.4286
HAR-RS-I 0.4766 0.2976 0.4125 0.6903 0.4778
HAR-RS-II 0.4808 0.2976 0.4102 0.6934 0.4732
HAR-SJ-I 0.4804 0.3016 0.4130 0.6931 0.4736
HAR-SJ-II 0.4776 0.2927 0.4051 0.6911 0.4767
HARP 0.4051 0.2545 0.3702 0.6365 0.5561

Panel C: h = 10
AR(22) 0.8593 0.3482 0.4736 0.9270 0.0609
HAR 0.6494 0.3418 0.4403 0.8058 0.2903
HAR-J 0.7303 0.3389 0.4366 0.8546 0.2019
HAR-CJ 0.7456 0.3509 0.4363 0.8635 0.1852
HAR-RS-I 0.5661 0.3377 0.4309 0.7524 0.3814
HAR-RS-II 0.5166 0.3393 0.4262 0.7188 0.4354
HAR-SJ-I 0.5110 0.3390 0.4289 0.7149 0.4415
HAR-SJ-II 1.0454 0.3296 0.4359 1.0224 -0.1424
HARP 0.4236 0.2895 0.3825 0.6508 0.5371

Panel D: h = 22
AR(22) 0.6860 0.4409 0.5087 0.8283 0.2520
HAR 0.5850 0.4175 0.4847 0.7649 0.3621
HAR-J 0.5858 0.4740 0.4824 0.7654 0.3613
HAR-CJ 0.6163 0.4414 0.4887 0.7850 0.3280
HAR-RS-I 0.5884 0.5270 0.4839 0.7671 0.3584
HAR-RS-II 0.6486 0.4211 0.4870 0.8054 0.2928
HAR-SJ-I 0.5862 0.4890 0.4840 0.7656 0.3609
HAR-SJ-II 0.5940 0.4826 0.4808 0.7707 0.3524
HARP 0.4520 0.3329 0.4339 0.6723 0.5072

This table reports the out-of-sample results for predicting h-day fu-
ture realized variation using the different predictor variables and
risk models. The results are based on data of the Dow Jones Trans-
portation Average spanning from May 22, 2007 to October 20, 2017
(a total of 2,625 observations). We use a rolling window of 1000
observations to estimate the coefficients of the models, and evalu-
ate the out-of-sample forecast performance at four horizons (h = 1,
h = 5, h = 10 and h = 22). Each panel in Table 13 corresponds
to a specific forecast horizon, which varies from 1 day to 22 days.
Bold numbers indicate the best performing model by each criterion
at each forecast horizon.
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Table 14: The Giacomini-White test for the mean absolute forecast error-
the NASDAQ 100 ETF at a 5-minute sampling frequency

Method AR(22) HAR HAR-J HAR-CJ HAR-RS-I HAR-RS-II HAR-SJ-I HAR-SJ-II
Panel A: h = 1
AR(22)
HAR 0.0013
HAR-J 0.0000 0.0000
HAR-CJ 0.0000 0.0000 0.0000
HAR-RS-I 0.0000 0.0012 0.1849 0.8437
HAR-RS-II 0.0000 0.0000 0.0000 0.3558 0.9096
HAR-SJ-I 0.0000 0.0048 0.2370 0.7770 0.5794 0.9649
HAR-SJ-II 0.0000 0.0008 0.0542 0.3025 0.0013 0.3993 0.0000
HARP 0.0000 0.0000 0.0029 0.0379 0.0000 0.0033 0.0000 0.0000

Panel B: h = 5
AR(22)
HAR 0.0593
HAR-J 0.0261 0.0009
HAR-CJ 0.0151 0.0003 0.1482
HAR-RS-I 0.0250 0.0016 0.3114 0.4493
HAR-RS-II 0.0201 0.0005 0.1141 0.7354 0.2580
HAR-SJ-I 0.0252 0.0013 0.3025 0.3534 0.5359 0.2264
HAR-SJ-II 0.0118 0.0000 0.0001 0.5128 0.0065 0.0582 0.0015
HARP 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel C: h = 10
AR(22)
HAR 0.1192
HAR-J 0.0863 0.2069
HAR-CJ 0.0969 0.6042 0.9643
HAR-RS-I 0.0848 0.0651 0.3394 0.6036
HAR-RS-II 0.0776 0.0802 0.2500 0.4410 0.1607
HAR-SJ-I 0.0956 0.1605 0.4023 0.5783 0.5424 0.0345
HAR-SJ-II 0.0594 0.6190 0.9218 0.9444 0.6916 0.5334 0.6575
HARP 0.0024 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 0.0036

Panel D: h = 22
AR(22)
HAR 0.1951
HAR-J 0.1514 0.1019
HAR-CJ 0.2441 0.4948 0.2226
HAR-RS-I 0.1770 0.4383 0.1499 0.3582
HAR-RS-II 0.1928 0.6754 0.3407 0.6512 0.5147
HAR-SJ-I 0.1854 0.5111 0.1387 0.4013 0.7541 0.5737
HAR-SJ-II 0.1180 0.2433 0.5217 0.0897 0.2890 0.0853 0.3150
HARP 0.0046 0.0045 0.0058 0.0034 0.0055 0.0034 0.0057 0.0053

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis
that the row method (in vertical headings) performs equally well as the column method (in horizontal head-
ings) in terms of the absolute forecast error. Corresponding p values for a number of forecasting horizons
(h = 1, 5, 10, 22) are reported in Panels A to D of Table 14, respectively. Bold numbers indicate the null
hypothesis can be rejected at 5% level of significance.

(2004), this is implemented in a two-stage procedure, where in the first stage principal

components for RVs of the NASDAQ 100 components are obtained as in Stock and Wat-

son (2002), and in the second stage the model for the NASDAQ 100 ETF is estimated

augmenting the observed regressors with the estimated PCs. It can be seen that this ap-
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proach immediately generates the unobserved factors instead of approximating them by

cross-section averages of the dependent variable and the observed regressors. Also unlike

the CCE method, we need to determine the number of factors initially to implement the

PC augmented procedure. This can be solved using the criteria in Bai and Ng (2002).

A theoretical comparison is provided in Kapetanios and Pesaran (2004) on the small

sample performance of the CCE method and the PC approach. After a series of Monte Carlo

experiments, Kapetanios and Pesaran (2004) conclude that the PC augmented method

does not perform as well as the CCE estimator, and can be subject to substantial bias in

small samples. They attribute this deficiency to the small sample errors in the number of

factors selected by the Bai and Ng procedure. Because of the above discussion, it becomes

more appealing to conduct an empirical comparison of the two approaches.

To compare things on a equal basis, we adopt the same model specification (i.e., the

HAR-RS-II model) for the two procedures. The out-of-sample forecast results are presented

in Tables 15, which shows that the HARP forecasts based on the CCE method still dom-

inate those relying on the PC procedure. We conduct GW test and obtain the p-values

[0.0002, 0.0005, 0.0261, 0.5612] respectively for h = 1, 5, 10, and 22. The above conclusion is

compatible with the theoretical finding in Kapetanios and Pesaran (2004).

7 Conclusion

In this paper, we argue that the linkages among component stock volatilities are important

for forecasting the relevant index or index fund volatility. We develop a panel-based HAR

model assuming unobserved common factors across cross-sectional units to capture the

comovements in realized volatility. The framework configuration draws from the CCE-

type estimators of Pesaran (2006) and Chudik and Pesaran (2015). It is shown that the
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Table 15: Out-of-sample comparison of the
HARP model and the PC method on the NAS-
DAQ 100 ETF

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: h = 1
HARPCA 0.2382 0.8017 0.2887 0.4881 0.7577
HARP 0.2129 0.1307 0.2709 0.4614 0.7831

Panel B: h = 5
HARPCA 0.4310 1.3620 0.3681 0.6565 0.5616
HARP 0.3458 0.2072 0.3409 0.5880 0.6483

Panel C: h = 10
HARPCA 0.4903 0.9658 0.3941 0.7002 0.5021
HARP 0.4071 0.2449 0.3662 0.6380 0.5866

Panel D: h = 22
HARPCA 0.5650 1.1543 0.4390 0.7516 0.4267
HARP 0.4835 0.3061 0.4258 0.6954 0.5093

The results are based on data of the NASDAQ 100 ETF spanning
from May 22, 2007 to October 20, 2017 (a total of 2,625 observa-
tions). HARPCA denotes estimating the unobserved factors with
the principal component analysis. Bold numbers indicate the best
performing model by each criterion at each forecast horizon.

CCE estimator is consistent. Monte Carlo studies show that the CCE estimator has good

finite sample performance.

We illustrate the relevance of the proposed HARP model by an empirical application

to forecasting the realized volatility of the NASDAQ 100 ETF. The in-sample analysis dis-

close that the unobserved factors from the panel regression play an important role. They

capture information that are not already contained in the asset-specific realized volatility

histories, such as the sentiment of the financial market, the news effect, or the varying

risk premium.25 Taking the unobserved factors into account leads up to 174% increase in

the in-sample R2. In the out-of-sample exercise, the HARP model that includes this latent

common factors significantly outperforms models that do not. Moreover, the HARP model

produces up to 32% increase in the pseudo R2 of the forecasts of the index fund volatility.

Our findings are robust to different stock indices and an alternative way of estimating the

unobserved common factors.

25See, for example, Baker and Wurgler (2006) and Baker, Wurgler, and Yuan (2012) for the importance of
investor sentiment in explaining the cross-section of stock returns.
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