Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

12-2014

Detecting Camouflaged Applications on Mobile Application
Markets

Mon Kywe SU
Singapore Management University, monkywe.su.2011@smu.edu.sg

Yingjiu LI
Singapore Management University, yjli@smu.edu.sg

Huijie Robert DENG
Singapore Management University, robertdeng@smu.edu.sg

Jason HONG
Carnegie Mellon University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Information Security Commons

Citation

SU, Mon Kywe; LI, Yingjiu; DENG, Huijie Robert; and HONG, Jason. Detecting Camouflaged Applications on
Mobile Application Markets. (2014). Information Security and Cryptology ICISC 2014: 17th International
Conference, Seoul, South Korea, December 3-5, Revised Selected Papers. 8949, 241-254.

Available at: https://ink.library.smu.edu.sg/sis_research/2601

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2601&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2601&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Detecting Camouflaged Applications on Mobile
Application Markets

Su Mon Kywe! ™), Yingjiu Li', Robert H. Deng', and Jason Hong?

1 School of Information Systems, Singapore Management University,
Singapore, Singapore
{monkywe.su.2011,yjli,robertdeng}@smu.edu.sg
2 Human Computer Interaction Institute, Carnegie Mellon University,
Pittsburgh, USA
jasonh@cs.cmu.edu

Abstract. Application plagiarism or application cloning is an emerging
threat in mobile application markets. It reduces profits of original devel-
opers and sometimes even harms the security and privacy of users. In
this paper, we introduce a new concept, called camouflaged applications,
where external features of mobile applications, such as icons, screenshots,
application names or descriptions, are copied. We then propose a scalable
detection framework, which can find these suspiciously similar camou-
flaged applications. To accomplish this, we apply text-based retrieval
methods and content-based image retrieval methods in our framework.
Our framework is implemented and tested with 30,625 Android applica-
tions from the official Google Play market. The experiment results show
that even the official market is comprised of 477 potential camouflaged
victims, which cover 1.56 % of tested samples. Our paper highlights that
these camouflaged applications not only expose potential security threats
but also degrade qualities of mobile application markets. Our paper also
analyze the behaviors of detected camouflaged applications and calculate
the false alarm rates of the proposed framework.

Keywords: Camouflaged applications + Application plagiarism - Cloning

1 Introduction

With the growing number of third-party applications on mobile market places,
it becomes increasingly hard to manage these applications and ensure that they
are authentic, secure and of high quality. One of the emerging problems that the
market owners encounter is plagiarism or cloning of mobile applications. During
cloning, malicious parties copy all or parts of original applications and create
similar applications or the clones. Such application plagiarism causes two main
problems in mobile application markets. Firstly, it allows malicious parties to
siphon revenues from original developers by replacing the advertisement libraries
of plagiarised applications or by selling the clones with different prices to users. It
has been shown that original developers, who are the victims of plagiarism, lost

14 % of their advertising revenues and 10 % of their user base to the attackers [6].
Secondly, there are cases, where attackers add malicious payloads to the clones of
popular applications and threaten the security and privacy of mobile application
users. In a recent study by Zheng M. et al. [30], cloning is even regarded as one
of the main distribution channels of mobile malwares.

Thus, to hinder application plagiarism, a number of clone detection meth-
ods have been proposed in [3,7,13,29]. However, these methods only focuses on
repackaged applications, which are the clones created from the reverse-engineered
codes of original applications. As such, these methods only search for code sim-
ilarities among applications, consequently missing out a different set of clones,
called camouflaged applications. Hence, in this paper, we introduce the concept
of camouflaged applications. Camouflaged applications are applications whose
external information, such as application names, icons, user interfaces or appli-
cation descriptions, are cloned. These clones may or may not have similar codes
as original applications but like other clones, they plagiarise and take advantage
of other applications without consensus from original developers. They are not
only confusing and harmful to the users but also discourage application devel-
opment by affecting developers’ reputation and monetary profits.

Therefore, in this paper, we propose a detection framework for finding cam-
ouflaged applications. Our method is based on external features of applications
and applies text similarity and image similarity measurements, calculated by
information retrieval systems. Although information retrieval systems have been
applied to detect phishing web pages, we are the first to apply these technologies
to efficiently detect camouflaged applications in mobile platforms. Our detection
framework is tested with 30,625 Android applications from Google Play market.
The experiment shows that 477 applications (1.56 %) are potential camouflaged
applications. We further analyze the behaviors of detected camouflaged applica-
tions and inspect the false alarms rate of our detection method. A total of 44
false positives, which is 9.22 % of tested application samples, are identified.

Our paper is organized as follows. Problem definition of camouflaged appli-
cations and threat model are provided in Sect. 2. Background information about
information retrieval systems and repackaged applications are given in Sect. 3.
Our detection framework is proposed in Sect.4 and our experiment results are
shown in Sect. 5. Discussion about our findings, limitations of our method and
future direction are provided in Sect. 6. After that, related work on repackaged
applications are summarized in Sect.7 and we conclude the paper in Sect. 8.

2 Problem Definition

Informally, camouflaged applications are defined as “copycat” applications or
“confusingly similar” applications. There have been a lot of such applications
on both official Google Play store and Apple’s iTunes store. Generally, the fea-
tures being cloned in camouflaged applications are icons, names, screenshots and
descriptions. For instance, there are camouflaged applications with very similar

names, such as “Irate Birds” for the official “Angry Birds” and “Snip the Rope”
for the official “Cute the Rope”!. Moreover, some camouflaged applications focus
on screenshots to deceive users. For example, fake Pokemon Yellow application
used Nintendo’s popular Game Boy RPG as its application screenshots. It even
managed to rise to top 3 position on iTunes store before being removed [19].

Camouflaged applications may exist on different application markets of the
same platforms or across different platforms. According to Zhou et al. [29],
5-13% of the applications from unofficial Android market places are cloned from
the official Google Play market. In addition, some clones may also spans across
different platforms, such as Android or iOS. For instance, fake versions of pop-
ular iOS applications, such as Infinity Blade II? and Temple Run?, appeared on
Google Play, even before their official releases in Android version.

Market owners have imposed various developer policies for trademarks, copy-
rights, and patents of applications. For instance, Google Play has a policy for
impersonation, stating (1) not to pretend as another company, (2) not to link
to another website to represent itself as another application and (3) not to use
another application’s branding in title and description [20]. Moreover, Google
Play’s Trademark Infringement policy suggests to use distinct name, icon and
logo and not to use those that are “confusingly similar” to another company’s
trademark. However, according to Liebergeld et al. [14], there is insufficient mar-
ket control in Google Play market, because uploaded applications are not checked
upfront on whether they indeed follow the policies. The policy enforcement relies
heavily on feedbacks from users and developers.

Threat Model: The main goal of attackers is to trick users into installing their
camouflaged applications. There are two ways by which users can install appli-
cations on their mobile devices. One way is to use default installer applications,
such as Play Store or iTune Store, on mobile devices. Another way is to use
desktop browsers, download applications from the providers’ websites and later
synchronize the applications to their mobile devices. In both cases, there are
two situations in which user can be tricked to install the camouflaged applica-
tions. One is during the search and another is after the user goes to the detailed
information page.

— When browsing applications or searching for an application, users can only
observe application icons, application names and publishing company names.
Some users download applications directly from the search results, instead of
going to the detailed pages. Therefore, these three pieces of information play
an important role in tricking the users. Although the ranking algorithm used
by the Google also plays a role, it is out of scope of our paper.

! http://arstechnica.com/gaming/2012/08/google-play-cracks-down-on-confusingly-
similar-apps/.

2 http://www.pocketgamer.co.uk/r/Android/Infinity+Blade41I/news.asp?c=43572.

8 http://m.androidcentral.com/temple-run-android-still-isnt-out-anything-else-just-
malware.

http://arstechnica.com/gaming/2012/08/google-play-cracks-down-on-confusingly-similar-apps/
http://arstechnica.com/gaming/2012/08/google-play-cracks-down-on-confusingly-similar-apps/
http://www.pocketgamer.co.uk/r/Android/Infinity+Blade+II/news.asp?c=43572
http://m.androidcentral.com/temple-run-android-still-isnt-out-anything-else-just-malware
http://m.androidcentral.com/temple-run-android-still-isnt-out-anything-else-just-malware

— In the detailed information pages, application descriptions and screenshots
are the main visual elements for users. Thus, they also play a critical role in
tricking the users by attackers.

There are several ways in which attackers can gain profit for creating camou-
flaged applications. Table 1 summarizes different attackers’ motivations as well
as various possible attacks from camouflaged applications. Attack type may vary
from mild copy-right violation and information theft to severe phishing and mal-
ware attacks. From the table, we can see that in addition to users and develop-
ers, other third-parties, such as banks and telecom providers, can be adversely
affected by camouflaged applications.

Table 1. Categorizing attacks of camouflaged applications

Attacker motivation Attack type Mainly affected parties

Replacing advertise libraries Copy-right violation | Developers

Creating paid version of free applications | Copy-right violation | Developers

Selling users’ information to third parties | Information theft Users
Stealing users’ bank credentials Phishing Users and banks
Sending premium SMSes Malware Users and telecom providers

3 Background

3.1 Information Retrieval Systems

Information retrieval systems are used for retrieving relevant information from a
collection of information resources. Most information retrieval systems includes
two processes: indexing and retrieving. During indexing, the systems process
documents that are either text documents or image, and extract useful informa-
tion from them. During retrieving steps, query objects that are also processed,
cleaned and their useful information are extracted. Then, similarity distance are
measured between the query document and a collection of documents by using
their representations. Ranked or sorted results are then returned to the users,
together with the similarity scores.

Information retrieval techniques have also been used to detect phishing web-
sites [24,25]. However, the traditional phishing detection methods cannot be
applied directly on platform providers’ websites, such as Google Play Store.
This is because camouflaged applications and original applications can be fea-
tured on the same official website. Thus, meta-data analysis of web contents,
such as hyper-links, web titles, web links, etc., cannot be applied in detecting
camouflaged applications.

3.2 Repackaging and Code-Based Detectors

Cloned applications are often the result of repackaging, which includes recov-
ering source codes of original applications and illegally re-compiling them with

different developers’ certificates. Repackaging is common in Android applica-
tion platform. In Android applications, Java source code are compiled into the
Dalvik executable (DEX) format and run in Dalvik virtual machines. Dalvik
byte codes can be easily reverse engineered by publicly available online tools,
such as dex2jar and jd-gui.

As the repackaged clones are created from source codes of original applica-
tions, their source codes are similar to certain extent. Thus, code-based detectors
can be used to detect repackaged applications. Generally, there are three types
of code similarity detectors: feature-based, structure-based and PDG (Program
Dependence Graph)-based. Feature-based detectors extracts features, such as
number or size of classes, methods, loops, variables, from the applications and
detects their similarities. Structure-based detectors convert applications into a
stream of tokens and compare their streams. On the other hand, PDG-based
detectors construct PDGs from the applications and compare them to derive
the similarity scores. Many other code-based detectors, that have been proposed
for repackaged applications, will be discussed more in Sect. 7.

4 A Framework for Detecting Camouflaged Applications

Accuracy and scalability are the key factors, considering the number of third-
party applications in mobile markets. Thus, the goal of our paper is to have
a lightweight simple detection system, which can efficiently detects the camou-
flaged applications. The implementation of our framework should allow develop-
ers to check their applications before submitting to the application stores. It can
also used by Google Play for vetting before or after the application submission.

Our system leverages on the light-weight information retrieval systems, such
as text retrieval and content-based image retrieval systems. There are four fea-
tures with which we try to find camouflaged applications: application name,
description, icon and screenshot. Application name and descriptions are handled
by text retrieval systems, while application icon and screenshots are handled by
image retrieval system. Figure 1 shows the architecture of our detection system.
Our detection system includes four main steps: crawling, indexing, querying and
detecting.

4.1 Crawling

First, we need a collection of existing applications, with which the potential
camouflaged applications are compared. This application collection can be from
different markets of different mobile platforms, depending on where we want
to detect camouflaged applications. For instance, if we want to detect camou-
flaged applications, which are uploaded on unofficial Android markets, existing
application collection should be crawled from official Google Play market and
tested applications should be crawled from unofficial Android markets. However,
if we want to detect camouflaged applications on Google Play’s Android mar-
ket, which are copied from iTunes market, the existing application collection

Step 1: Crawling

Collection of
Existing Apps

Detection

Methods
Intersect(I, S, N, D)

Intersect(I, S, N)

Step 5:

Intersect(l, S, D) Detecting

Intersect(I, N, D)

Intersect(S, N, D)

Camouflaged
Apps

Step 3: Querying
-
App A
- Screenshot
App B Index
Step 4: Retrieving
 Set of Icon-Similar Apps (I) "
« Set of Screenshot-Similar Apps (S) 3
Set of Name-Similar Apps (N) !
. _ Setof Description-Similar Apps (D) /

= g

Description
Index

Fig. 1. Framework for detecting camouflaged applications

should be from official Google Play market and tested applications should be
from Apple’s iTunes market.

Our framework is independent of mobile platform and application market. It
can be used on any platforms or markets as long as the market displays applica-
tion names, icons, screenshots and descriptions. In our experiment, we crawled
applications from official Android market and detect camouflaged applications
within the same market. We use unofficial Google API to crawl App info, such
as id, name, developer, rating as well as application description, icon and screen-
shots. Total of 30,625 applications are crawled for the experiment.

4.2 Indexing

The second step of most information retrieval systems is indexing. During index-
ing, a collection of documents are cleaned and processed to get ready for queries.
We call both texts and images as “documents”. Indexing can be done offline
and just one time. Therefore, it is suitable for a large collection of documents.
For each application in our 30,625 crawled applications, we create a name index,
description index, icon index and screenshot index. Name and description indexes
are created by text retrieval engines, while icon and screenshot indexes are han-
dled by image retrieval engine.

Text Indexing. There are many types of text retrieval systems, such as boolean
model, vector space model, probabilistic models. Most of them can be plugged
and played in our detection framework. However, in our experiment, vector space
model is used as it applies similar-word matching instead of exact-word matching
algorithm. In the vector space model, each document is represented by a weighted
vector in high-dimensional space. The weights from vectors are measured by
TF-IDF scheme, which stands for Term Frequency (TF) and Inverse Document

Frequency (IDF). Open-source software, such as Lucene [18], can be used to
implement TF-IDF scheme. Tokenizing, stemming and removal of stop words
are all handled by Lucene.

Image Indexing. Similar to text retrieval methods, there are also many types of
image retrieval methods. They extract visual features from the images and index
those features with a pointer to the parent image. The extracted features include
colors, color distributions, textures or joint histograms, which involve both color
and texture information. Different algorithms have their own advantages and
disadvantages on performance and robustness depending on the applied scenar-
ios and types of images. We choose auto color correlogram algorithm [9], which
uses the spatial correlation of colors. The algorithm is tested using SIMPLIcity
data set [23] and is shown to be both effective and inexpensive in general pur-
pose situations [17]. Note that our framework can also be easily modified to use
other visual information retrieval algorithms. We use an open-source software,
LIRE [16], to perform the visual information retrieval.

4.3 Querying and Retrieving

The third step is to query the index databases with potential camouflaged appli-
cations. In our case, the same 30,625 crawled applications are used as potential
camouflaged applications. For each queried application, we retrieved applica-
tions, which have similar user interfaces but are from different developers. Infor-
mation retrieval systems are used to calculate the similarity scores, and developer
ID information, obtained from Google Play website, is used to ensure that similar
applications are not from the same developer.

For each query, information retrieval systems calculate the cosine similarity
score between query document and a set of indexed documents. The cosine sim-
ilarity score measures the similarity distance between two vector representations
of documents. The score ranges from 0 to 1, where similarity score of 0 repre-
sents two totally different documents and similarity score of 1 represents two
totally similar documents. The retrieved similarity score are then used to rank
the documents. In our case, retrieved set of applications is sorted based on the
decreasing similarity scores, meaning the most similar ones are on the top of the
list. We only use top-ten similar applications in each retrieved set to reduce false
positives.

The output of each queried application is four sets of similar applications,
namely I, S, N and D, where

— Tis a set of applications that have similar icons as queried application,

— S is a set of applications that have similar screenshots as queried application,
— N is a set of applications that have similar names as queried application and
— D is a set of applications that have similar description as queried application.

Each set contains at most ten similar applications and many sets have fewer
than ten applications. Note that although we use the same application set

for indexing and querying, different application set can also be applied in our
architecture if we want to differentiate camouflaged applications across different
markets.

4.4 Detecting

The fourth step of our framework is detection. Our detection method is different
intersection sets of the four retrieved set I, S, N and D. This step generates the
following five different result sets for each potential camouflaged application.

— Intersect(I,S,N,D) is a set of applications that have similar icons, screenshots,
names and descriptions as queried application,

— Intersect(I,S,N) is a set of applications that have similar icons, screenshots
and names as queried application but are not included in Intersect(I,S,N,D),

— Intersect(I,S,D) is a set of applications that have similar icons, screenshots and
descriptions as queried application but are not included in Intersect(I,S,N,D),

— Intersect(I,N,D) is a set of applications that have similar icons, names and
descriptions as queried application but are not included in Intersect(I,S,N,D),

— Intersect(S,N,D) is a set of applications that have similar screenshots, names
and descriptions as queried application but are not included in Intersect
(I,S,N,D).

Since these sets contain very similar applications from different developers,
they are considered as camouflaged applications. Nonetheless, there can also be
false alarms, where the result set contains non-camouflaged applications. False
alarms are created because information retrieval methods cannot differentiate
them, although they are obvious to normal users that they are not camouflaged
applications.

5 Experiment and Results

Out of 30,625 applications, we find that 477 applications (1.56 %) have 1 to
6 camouflaged applications. Figure2 shows the exact number of camouflaged

No. of Camouflaged Apps
S
S

2 - -
0
Intersect Intersect Intersect Intersect Intersect

@SND) (ISN) (ISD) (IND) (SND)
Result Sets from Different Detection Methods

Fig. 2. Number of camouflaged applications for each detection method

VTX Mobile Dialer (T ~ | OneSuite Mobile Dialer

>
WXD VERTEX TELECOM, INC Ei C ONESUITE CORPORATION

= W
s ko %
Q 1| 52 people +1'd this Q +1| 241 people +1d this
Description Description
New for VTX users: NO access numbers, NO PIN New for OneSuite users: NO access numbers, NO PIN

dialing and NO Wi-Fi required! dialing and NO Wi-Fi required

OneSuite's Mobile Dialer is a free application that acts

Fig. 3. Example of detected camouflaged application

application from each result set. According to the figure, we can see that Inter-
sect(I,S,N,D), Intersect(I,N,D) and Intersect(S,N,D) reports more camouflaged
applications than Intersect(I,S,N) and Intersect(I,S,D) methods.

An example of detected camouflaged applications, namely “VTX Mobile
Dialer” and “OneSuite Mobile Dialer”, is shown in Fig.3. The two applica-
tions have the very similar screenshots, application name and description. Thus,
they are reported in Intersect(S,N,D) set. However, they use different devel-
oper IDes as well as different contact information. The developer website and
email address of “VTX Mobile Dialer” are https://www.vtxtelecom.com/ and
mobileapp Qutxtelecom.com. On the other hand, the developer website and email
address of “VTX Mobile Dialer” are http://www.onesuite.com/ and mobileapp @
onesuite.com. Although they claim to be from different companies, their user
interfaces are suspiciously similar. Therefore, they are regarded as camouflaged
applications.

Determining the False Alarms: Determining the false positives and false
negatives for camouflaged applications is a challenge, as we do not have any
ground truth samples. Thus, we decide to do manual inspection on the result
sets to determine the false positives. Though tedious, expert manual inspection
has been a common way to test the efficiencies of information retrieval systems.
To our surprise, a lot of the reported camouflaged applications have almost
identical user interfaces. This makes our manual inspection easier.

Our manual inspection shows that the result sets contain a total of 44
false positives, which is 9.22 % of reported camouflaged applications. However,
false positives exist only in the Intersect(I,N,D) and Intersect(S,N,D). Inter-
sect(I,N,D) contains 21 false positive samples and Intersect(S,N,D) contains

https://www.vtxtelecom.com/
http://www.onesuite.com/

.l = 8:39 o [#] a0 <.l = 8:40

Q U

@\;; Fake Coin - You always w /#%, Coin Toss
‘

MARCO RINALDI {\1‘\. i .-'I SMARTGADGETZ
)
3

1 26 people +1'd this Q 1| 48 people +1'd this

Description Description
Stop with the usual Coin Flip! Heads or Tails is a fun Coin Toss Tool

1. Pick Heads or Tails
With Flippo you can decide if next coin toss is head or 2. Click the Coin to Toss it!

tail, sim))li with the touch of a button 3. See if EO“ Win or Lose!

Fig. 4. Example of false-positive camouflaged applications

23 false positive samples. No false positive applications have been identified in
Intersect(I,S,N,D), Intersect(I,S,N) and Intersect(I,S,D), which consider the sim-
ilarity of both icons and screeenshots. This indicates that icons and screenshot
similarity measures are great indicators of camouflaged applications.

Figure4 shows an example of false alarm applications, called “Fake Coin -
You always win!” and “Coin Toss”. Although their user interfaces are similar, it
is quite obvious to the real users that they provide different functions: the for-
mer application is for tricking friends and the latter application is for randomly
tossing the coin. Therefore, these two applications should not be regarded as
camouflaged applications.

6 Discussion

In this section, we will discuss about our findings on camouflaged applications
as well as limitations of our method and future work.

Feature Selection in Detection Method: Our detection method is limited to
camouflaged applications with at least three similar features. Nonetheless, there
can still be camouflaged applications with only one or two similar features. For
instance, there are camouflaged applications with only similar icons. Although
our method can be easily extended to find applications with one or two similar
features, many applications use very simple and easily searchable icons, such as
a light bulb. Consequently, there are a lot of false alarms when we use only two
features. Thus, it is still a challenge on how to ensure quality control on icons
and names of applications in the market.

Applications from Open-Source Projects: Our result shows that there are
applications, which are modified from open-source projects, such as e-book read-
ers, music players and map applications. Although they use different contents,
such different books or songs, and change the themes, the applications are still
highly similar as they use source codes from the same projects. Thus, although
they do not copy from each other, they are still considered as camouflaged appli-
cations in our framework.

Applications with Different Versions: We find out that some camouflaged
applications claim to be different versions from one another. They use version dif-
ferentiating words, such as “HD” (High Definition), “full”, “II” (two), “plus” and
“pro”. However, many of them do not provide additional functionalities, although
they claim to be upgraded versions. It is possible that a malicious attacker tries
to attract more customers by claiming to provide upgraded version of the vic-
tim application. To solve this problem, application markets should enforce that
developers use the same account, when they claim to provide upgraded version
of an existing application. Our detection framework for camouflaged applica-
tions can serve as an automatic policy enforcement mechanism for these kind of
applications.

Internationalized Applications: Another finding of our experiment is that
many international companies, such as banks, have different applications devel-
oped for different countries and languages. Unfortunately, they also use different
developer ID in Google Play to update them. For instance, “Banco Weng Hang,
S.A.” application uploaded by “Banco Weng Hang, S.A.” provides banking ser-
vices in Chinese, while “Wing Hang Bank” application uploaded by “Wing Hang
Bank Ltd” provides the same services in English. This is actually a vulnerabil-
ity, which allows attackers to impersonate as legitimate applications and launch
phishing attacks.

7 Related Work

Studies on the repackaged applications have become popular recently. Zhou
et al. [30] studies 1260 Android malwares and finds out that 1083 malwares
are repackaged applications. Balanza et al. [1] analyzes a repackaged malware,
called DroidDreamLight and states that trojanizing or repackaging is common
form of infection in Android market. Jung et al. [11] launches repackaging attack
on bank applications. Moreover, Vidas et al. [22] shows that some malwares are
even repackaged with the valid certificates from original developers. It also pro-
poses an authentication protocol for market applications which makes it difficult
for an attacker to perform repackaging.

Chen et al. [2] also studies the underground economy of Android application
plagiarism. Similarly, Gibler et al. [6] studies the impact of repackaged applica-
tions and finds out that 14 % of original developers’ revenues and 10 % of user
based are redirected to the attacker. Zheng et al. [26] presents various obfus-
cation techniques which allow automatic repackaging of original malwares to
different variants. Transformed malwares are then used to test the robustness

of Android anti-virus systems. Potharaju et al. [21] uses permission informa-
tion and estimates that 29.4 % of applications are likely to be plagiarized. They
also detect repackaged applications using Deckard [10], which is a tree-based
detection algorithm of cloned codes.

DroidMOSS [29] and Juxtapp [7,13] and apply fuzzy hashing on program
instruction sequence and derive the similarity score by calculating the edit dis-
tance between two generated fingerprints. Crussell et al. [3] proposes DNADroid,
which uses Program Dependence Graph(PDG) to determine code similarity.
DNADroid is similar to our approach because it filters the applications based on
application names, packages, markets, owners and descriptions. However, such
filtering is performed only to make the PDG comparison more scalable for deter-
mining the similarity between two applications.

AnDarwin [4] applies Locality-Sensitive Hashing (LSH) to detect the repack-
aged applications. Zhou et al. [28] calls repackaged applications as “piggybacked”
applications and proposes linearithmic search algorithm in a metric space to
detect them. Desnos et al. [5] proposes an algorithm, which uses Normalized
Compression Distance (NCD) to analyze the similarity and differences between
two Android applications. Similarly, Lin et al. [15] apply thread-grained system
call sequences to detect repackaged applications. Ko et al. [12] extract k-gram
based software birthmarks from the dissembled codes and measure the similarity
of DEX files.

Huang et al. [8] proposes an evaluation framework for detection algorithms
of repackaged application by measuring their resilience to obfuscation methods.
Different from other approaches, [27] proposes to use software watermarking to
prevent repackaging. In summary, researchers have proposed different ways of
detecting repackaged applications by measuring the source code similarity or
software watermarking. However, none of them have yet considered camouflaged
applications, which have very similar user interfaces, instead of similar source
codes.

8 Conclusion

Our paper highlights the existence of camouflaged applications in mobile appli-
cation markets as well as their exposed risk on application users and developers.
Although there have been papers about repackaged applications and their copy-
right infringement, our paper is the first to introduce the concept of camouflaged
applications and consider their user interface similarity. Our paper describes a
proper threat model of camouflaged applications, including their attack scenarios
and attackers’ motivations. Moreover, we propose a simple, yet effective, detec-
tion framework, which applies text and image retrieval systems that are accurate
and scalable in detecting camouflaged applications. The proposed framework is
tested and the experiment result shows that 477 applications are camouflaged.
We analyze these camouflaged applications, discuss their behaviors and calculate
the false alarm rates. Our paper shows that detecting camouflaged applications
is important, not only for maintaining a safe mobile application market but also
for controlling the quality of mobile applications.

References

10.

11.

12.

13.

14.

Balanza, M., Abendan, O., Alintanahin, K., Dizon, J., Caraig, B.: Droiddreamlight
lurks behind legitimate android apps. In: Proceedings of the 2011 6th International
Conference on Malicious and Unwanted Software, MALWARE 2011, pp. 73-78.
IEEE Computer Society, Washington, DC (2011)

Chen, H.: Underground economy of android application plagiarism. In: Proceed-
ings of the First International Workshop on Security in Embedded Systems and
Smartphones, SESP 2013, pp. 1-2. ACM, New York (2013)

Crussell, J., Gibler, C., Chen, H.: Attack of the clones: detecting cloned applications
on android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012.
LNCS, vol. 7459, pp. 37-54. Springer, Heidelberg (2012)

Crussell, J., Gibler, C., Chen, H.: Scalable semantics-based detection of similar
android applications. In: 18th European Symposium on Research in Computer
Security, ESORICS 2013, Egham, U.K. (2013)

Desnos, A.: Android: static analysis using similarity distance. In: Proceedings of
the 2012 45th Hawaii International Conference on System Sciences, HICSS 2012,
pp. 5394-5403. IEEE Computer Society, Washington, DC (2012)

Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: Adrob: Exam-
ining the landscape and impact of android application plagiarism. In: Proceedings
of 11th International Conference on Mobile Systems, Applications and Services
(2013)

Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: a scalable system
for detecting code reuse among android applications. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62-81. Springer,
Heidelberg (2013)

Huang, H., Zhu, S., Liu, P., Wu, D.: A framework for evaluating mobile app
repackaging detection algorithms. In: Huth, M., Asokan, N., Capkun, S., Flechais,
I., Coles-Kemp, L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 169-186. Springer,
Heidelberg (2013)

Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J., Zabih, R.: Image indexing using
color correlograms. In: Proceedings of the 1997 Conference on Computer Vision
and Pattern Recognition (CVPR 1997), CVPR 1997, pp. 762-768. IEEE Computer
Society, Washington, DC (1997)

Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: scalable and accurate tree-
based detection of code clones. In: Proceedings of the 29th International Confer-
ence on Software Engineering, ICSE 2007, pp. 96-105. IEEE Computer Society,
Washington, DC (2007)

Jung, J.-H., Kim, J.Y., Lee, H.-C., Yi, J.H.: Repackaging attack on android bank-
ing applications and its countermeasures. Wirel. Pers. Commun. 73(4), 1421-1437
(2013)

Ko, J., Shim, H., Kim, D., Jeong, Y.-S., Cho, S.-J., Park, M., Han, S., Kim, S.B.:
Measuring similarity of android applications via reversing and k-gram birthmark-
ing. In: Proceedings of the 2013 Research in Adaptive and Convergent Systems,
RACS 2013, pp. 336-341. ACM, New York (2013)

Li, S.: Juxtapp and DStruct: detection of similarity among android applications.
Master’s thesis, EECS Department, University of California, Berkeley, May 2012

Liebergeld, S., Lange, M.: Android security, pitfalls and lessons learned. In:
Gelenbe, E., Lent, R. (eds.) Information Sciences and Systems 2013. LNEE, vol.
264, pp. 409-417. Springer, Heidelberg (2013)

15.

16.

17.

18.

19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Lin, Y.-D., Lai, Y.-C., Chen, C.-H., Tsai, H.-C.: Identifying android malicious
repackaged applications by thread-grained system call sequences. Comput. Secur.
39, 340-350 (2013)

Lux, M., Chatzichristofis, S.A.: Lire: lucene image retrieval: an extensible java cbir
library. In: Proceedings of the 16th ACM International Conference on Multimedia,
MM 2008, pp. 1085-1088. ACM, New York (2008)

Marques, O., Lux, M.: Visual information retrieval using java and lire. In: Hersh,
W.R., Callan, J., Maarek, Y., Sanderson, M. (eds.) SIGIR, p. 1193. ACM (2012)

McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action: Covers Apache
Lucene 3.0, 2nd edn. Manning Publications Co., Greenwich (2010)

Orland, K.: Fake pokemon yellow rises to no. 3 position on itunes app charts (2012)
Play, G.: Intellectual property

Potharaju, R., Newell, A., Nita-Rotaru, C., Zhang, X.: Plagiarizing smartphone
applications: attack strategies and defense techniques. In: Barthe, G., Livshits,
B., Scandariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp. 106-120. Springer,
Heidelberg (2012)

Vidas, T., Christin, N.: Sweetening android lemon markets: measuring and com-
bating malware in application marketplaces. In: Proceedings of the Third ACM
Conference on Data and Application Security and Privacy, CODASPY 2013, pp.
197-208. ACM, New York (2013)

Wang, J.Z., Li, J., Wiederhold, G.: Simplicity: semantics-sensitive integrated
matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9),
947-963 (2001)

Xiang, G., Hong, J.I.: A hybrid phish detection approach by identity discovery and
keywords retrieval. In: Proceedings of the 18th International Conference on World
Wide Web, WWW 2009, pp. 571-580. ACM, New York (2009)

Zhang, Y., Hong, J.I., Cranor, L.F.: Cantina: a content-based approach to detecting
phishing web sites. In: Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, pp. 639-648. ACM, New York (2007)

Zheng, M., Lee, P.P.C., Lui, J.C.S.: ADAM: an automatic and extensible platform
to stress test android anti-virus systems. In: Flegel, U., Markatos, E., Robertson,
W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 82-101. Springer, Heidelberg (2013)
Zhou, W., Zhang, X., Jiang, X.: Appink: watermarking android apps for repackag-
ing deterrence. In: Proceedings of the 8th ACM SIGSAC Symposium on Informa-
tion, Computer and Communications Security, ASIA CCS 2013, pp. 1-12. ACM,
New York (2013)

Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of
“piggybacked” mobile applications. In: Proceedings of the Third ACM Conference
on Data and Application Security and Privacy, CODASPY 2013, pp. 185-196.
ACM, New York (2013)

Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone appli-
cations in third-party android marketplaces. In: Proceedings of the Second ACM
Conference on Data and Application Security and Privacy, CODASPY 2012, pp.
317-326. ACM, New York (2012)

Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: IEEE Symposium on Security and Privacy, pp. 95-109. IEEE Computer Society
(2012)

	Detecting Camouflaged Applications on Mobile Application Markets
	Citation

	Detecting Camouflaged Applications on Mobile Application Markets
	1 Introduction
	2 Problem Definition
	3 Background
	3.1 Information Retrieval Systems
	3.2 Repackaging and Code-Based Detectors

	4 A Framework for Detecting Camouflaged Applications
	4.1 Crawling
	4.2 Indexing
	4.3 Querying and Retrieving
	4.4 Detecting

	5 Experiment and Results
	6 Discussion
	7 Related Work
	8 Conclusion
	References

