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Abstract
We study the mechanism design problem where the planner can observe ex-post the
first-ranked alternatives or peaks of voter preferences. We contrast this with the design
problem where the planner has ex-ante information regarding the peaks of voter pref-
erences.

Keywords Local strategy-proofness · Strategy-proofness · Unanimity

JEL Classification D71

1 Introduction

The Gibbard–Satterthwaite Theorem (Gibbard 1973; Satterthwaite 1975), is a funda-
mental result in the theory of mechanism design. According to the Theorem, a planner
can provide dominant strategy incentives for agents to reveal their private informa-
tion or a social choice functions can be made strategy-proof only by allowing some
agent (called the dictator) to always get his most preferred alternative. An assumption
which is crucial for the result, is that the domain of preference orderings is complete.
An extensive literature on restricted domains has emerged which shows that there
are natural restrictions on the domain of preferences for which the strongly negative
conclusion of the Gibbard–Satterthwaite Theorem can be avoided. For instance, the
median voter rule is strategy-proof if preferences are single-peaked (Moulin 1980). In
models with money and quasi-linear preferences, the rich theory of Vickrey–Groves–
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Clarke mechanisms applies and numerous possibility results exist. Other examples
include allocation models where agents have selfish preferences and models where
outcomes are lotteries and agents’ preferences satisfy von-Neumann–Morgenstern
axioms (Gibbard 1977).

In this paper, we propose a model quite different in spirit to the one with restricted
preference domains. We refer to it as one with a partially observant planner. The idea
is that ex-ante, an agent can have any preference ordering. However, after realization,
the planner is able to observe some feature of these preferences. For instance, in a
model of voting by committee, the planner may be able to observe that voter 1’s most
preferred candidate is x , voter 2’s least preferred candidate is y, voter 3 prefers w to
z and so on. Thus, the planner has some (ex-post) information on preferences which
could be based on commonly known ideological positions, personal dislikes etc. The
mechanism, however, in keeping with the standard assumption has to be designed
ex-ante, i.e. before the realization of preferences. On the other hand, in the restricted
domains model, which we refer to as the partially informed planner model, the planner
has some ex-ante information on the structure of preferences. We believe that the
observant planner model is a realistic one and worthy of attention. It is particularly
plausible in the standard voting model where it may be unnatural to impose structure
such as single-peakedness, convexity or cardinal-valuedness.

The observant planner model is also related to the complete information imple-
mentation model (Maskin 1999). In the latter, agents know each others preferences
perfectly but the planner is completely ignorant. The problem here is to design a
mechanism which will allow the planner to collate reports from each agent to infer
something about the true state of the world. In the observant planner model, partial
information about each voters’ preference is not only common knowledge amongst
the other voters but is also known to the planner.

The analysis in the observant planner model differs in crucial respects from that in
the informed planner model. In the former, the domain of preferences remains com-
plete unlike that in the informed planner model. However, the incentive compatibility
condition is weaker. In particular we require only that no voter can gain by misrep-
resenting his preferences only for those misrepresentations which are consistent with
observed information. Suppose that the planner knows that voter i’s peak is x . Then it
must the case that the agent cannot do better than truth-telling than by announcing any
other preference whose peak is x . The analysis, in the two models is thus independent
of each other.

In the paper, we assume that the observant planner can observe the first-ranked
alternative or peak of each voters’ preference ordering. We provide a complete char-
acterization of incentive compatible social choice functions under a range assumption.
We contrast this case with that of a restricted domain model where the planner has
some ex-ante information about peaks. In particular, we consider the case where it is
known that each voter’s peak lies in some pre-specified set which is a subset of the set
of alternatives.

Our results are as follows. In the observant planner case we show that if a range
condition is satisfied, a social choice condition is incentive-compatible if and only if,
for every vector of peaks, there is a voter and a set of alternatives over which this voter
is a dictator. The choice of the voter who dictates and the set over which he does so,
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could depend on what the planner observes. Our results in the informed planner model
on the other hand, are less sharp. We show there are particular information structures
regarding voter peaks where a dictatorship result emerges but we are unable to provide
a general result. The dictatorship result is rather delicate in the following sense: we
show by means of an example that if the planner has information on the alternatives
which were ranked first and second, then non-dictatorial possibility results exist.

Although our results are quite intuitive they are not very easy to prove. There does
not appear to be a way to apply the Gibbard–Satterthwaite Theorem directly. A special
feature of these models is that the “effective” domain of preferences is voter specific.
The induction technique of coalescing or cloning voters used in various proofs (for
example, Sen (2001) can no longer be used. We develop a completely novel induction
techniquewhich can be used to provide yet another proof of theGibbard–Satterthwaite
Theorem.

This paper is organized as follows. Section 2 lays out the basic notation while the
next two sections discuss the observant and informed planner models. The last section
concludes.

2 Preliminaries

The set I = {1, . . . , N } is the set of agents or voters. The set of alternatives is the set
A with |A| = m. Elements of A will be denoted by a, b, c, d etc. Let P denote the
set of strict orderings1 of the elements of A. A typical preference ordering (or simply
a preference) will be denoted by Pi ∈ P where aPib will signify that a is preferred
(strictly) to b under Pi . A preference profile is an N -tuple whose i th component is
the preference of voter i . Preference profiles will be denoted by P, P̄, P ′ etc and their
i th components by Pi , P̄i , P ′

i respectively with i = 1, . . . , N . For any voter i , P−i

will denote a preference profile for the set of voters N\{i}. Let (P̄i , P−i ) denote the
preference profile where the i th component of the profile P is replaced by P̄i .

For all Pi ∈ P and k = 1, . . . ,m, let rk(Pi ) denote the kth ranked alternative in Pi ,
i.e., rk(Pi ) = a implies that |{b �= a|bPia}| = k − 1. For all Pi , the alternative r1(Pi )
will be referred to as the peak of Pi . For any a ∈ A, Pa = {Pi ∈ P : r1(Pi ) = a}, i.e. it
is the set of preference ordering with a as the peak. Let ā = (ā1, . . . , āN ) ∈ AN be an
N - tuple of alternatives. ThenPā is the set of profiles P such that r1(Pi ) = āi for all i =
1, . . . N . For any ā ∈ AN and i = 1, . . . , N , let ā−i = (ā1, . . . , āi−1, āi+1, . . . , āN ) ∈
AN−1. Also let Pā−i be the set of profiles P−i such that r1(Pj ) = ā j for all j �= i . For
all Pi ∈ P and B ⊂ A, max(Pi , B) will denote the maximal element in B according
to Pi .

A social choice function (SCF) is a mapping f :
N times

︷ ︸︸ ︷
P × · · · × P → A. The range

of the SCF f denoted by R f is the set {a ∈ A : f (P) = a for some P ∈ D}. The
SCF f is dictatorial if there exists i ∈ I such that f (P) = max(Pi , R f ) for all
P ∈ D. The SCF f is manipulable by voter i at profile P ∈ D if there exists P ′

i ∈ Di

such that f (P ′
i , P−i )Pi f (P). The SCF is strategy-proof if it is not manipulable by

1 A strict ordering is a complete, transitive and antisymmetric binary relation.
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any voter at any profile. A strategy-proof SCF has the property that no voter can gain
by misrepresenting her preference ordering irrespective of the announcements of the
voters. A fundamental result for strategy-proof SCFs is the Gibbard–Satterthwaite
Theorem.

Theorem 1 (Gibbard-Satterthawite) Let f : PN → A be a SCF satisfying |R f | ≥ 3.
Then f is strategy-proof if and only if it is dictatorial.

3 The partially observant planner

In this model, it is assumed that each voter i’s preference Pi is drawn from the set P
and is private information for i . However, once it has been realized, each voter i’s peak
r1(Pi ) can be observed by the planner. Since the outcome of an SCF at a preference
profile can depend on more than voters’ peaks at that profile, preferences still have
to be elicited from voters. The appropriate notion of incentive-compatibility is that a
voter cannot manipulate by a preference consistent with the information observed by
the planner.

Definition 1 The SCF f is constrained strategy-proof (CSP) if, for all i ∈ I , for all
a ∈ A and Pi ∈ P

a , there does not exist P ′
i ∈ P

ai , and an N\{i} profile P−i such that
f (P ′

i , P−i )Pi f (Pi , P−i ).

The notion of CSP differs from strategy-proofness insofar as the former imposes the
additional consistency requirement that voter i can manipulate using a preference P ′

i
only if P ′

i ∈ P
ai . It is a clear that CSP is a weaker requirement than strategy-proofness.

The next example shows that the conclusion of the Gibbard–Satterthwaite Theorem
does not hold in this model.

Example 1 For each a ∈ A, let Ba ⊂ A. Define the SCF f as follows: for all profiles
P , f (P) = max(P2, Br1(P1)). Voter 1 “offers” a set of outcomes for voter 2 to choose
from. This set depends on voter 1’s observable peak. This SCF satisfies the CSP
property. It can also be specified so as to be non-dictatorial. In fact, by choosing the
set Ba to be either a singleton or the whole set A, the set of preference profiles can
be partitioned arbitrarily into two sets, one over which voter 1 gets his maximum in
R f and the other over which 2 gets her maximum in R f .

We now present a more general result. Let f be a SCF. Let ā ∈ AN denote an N -
tuple of alternatives whose i th component is āi ∈ A. Let R f (ā) = { f (P)|P ∈ P

ā},
i.e. R f (ā) is the range of f when voter’s peaks are constrained to be ā.

Theorem 2 Let f be a SCF satisfying CSP. Let ā ∈ AN be such that |R f (ā)| ≥ 3.
There exists j ∈ I such that for all P ∈ P

ā , we have f (P) = max(Pj , R f (ā)).

Suppose f is a SCF that satisfies theCSP requirement and the range condition. Then
f must have a particular structure. A voter and a subset of alternatives is specified
depending on the N -tuple of first-ranked alternatives at a preference profile. The
outcome at the profile is the specified voter’s maximal alternative in the specified set.
The SCF in Example 1 clearly belongs to the class of SCFs described in the Theorem.
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Proof Wewill prove the result by induction on N . Suppose there is only one voter, say
voter 1. Let f be a SCF satisfying CSP. Let ā1 be such that |R f (ā1)| ≥ 3. Suppose
there exists P1 ∈ P

ā1
1 and a, b ∈ A such that f (P1) = a, b ∈ R f (ā1) and bP1a. By

assumption, there exists P ′
1 ∈ P

ā1 such that f (P
′
1) = b. This violates the assumption

that f satisfies CSP. Hence f (P) = max(P1, R f (ā1)) establishing the result for
N = 1.

We briefly outline the main idea behind the proof of the induction step. We
demonstrate the existence of two voters i, j and a preference Pi ∈ P

āi such that
f (Pi , P−i ) = max(Pj , R f (Pi )). Here R f (Pi ) denotes the range of f fixing voter
i ′s preference at Pi . Next we show that f (P ′

i , P−i ) = max(Pj , R f (P ′
i )) continues to

hold for all P ′
i ∈ P

āi . Finally we show that R f (Pi ) = R f (P ′
i ) for all Pi ∈ P

āi , so that
R f (ā) = ⋃

Pi∈Pāi R
f (Pi ) = R f (Pi ). This establishes f (P) = max(Pj , R f (ā)) as

required.
In order to complete the induction step, we fix an integer N ≥ 2 and assume the

following Induction Hypothesis (IH):

IH: Let h :
N-1 times

︷ ︸︸ ︷
P × · · · × P → A be an arbitrary SCF satisfying CSP. Let b̄ ∈ AN−1

be such that |Rh(b̄)| ≥ 3. There exists voter i such that for all P ∈ P
b̄, we have

h(P) = max(Pi , Rh(b̄)).

Let f :
N times

︷ ︸︸ ︷
P × · · · × P → A be a SCF satisfying CSP. Let ā ∈ AN be such that

|R f (ā)| ≥ 3. Lemmas 1, 2, 3 and 4 will enable us to identify a voter i and to construct
a SCF h defined over a set of voters N − 1 which satisfies CSP and |Rh(ā−i )| ≥ 3.
This will then allow us to apply IH and complete the proof.

Define the function g : Pā → A as follows: for all P ∈ P
ā , g(P) = f (P). Thus

g can be interpreted as a social choice function defined on the restricted domain P
ā .

Since f satisfies CSP, it follows that g is strategy-proof in the conventional sense, i.e.
for all voters i and Pi ∈ P

āi , there does not exist an N\{i} profile P−i ∈ P
ā−i and

P ′
i ∈ P

āi such that g(Pi , P−i )Pi g(P).
Let Rg = {a ∈ A|g(P) = a for some P ∈ P

ā}, i.e. Rg is the range of g. For
convenience, we shall denote Rg simply as B for the remainder of the proof. Note that
B = R f (ā) and so |B| ≥ 3 by assumption.

Fix i ∈ I and Pi ∈ P
āi . Let Rg(Pi ) = {x ∈ A|x = g(Pi , P−i ) for some P−i ∈

P
ā−i }. Thus Rg(Pi ) is the range of g when voter i’s preference is fixed at Pi . We will

show that there exists i and Pi such that |Rg(Pi )| ≥ 3.

Lemma 1 Pick x ∈ B and Pi ∈ P
āi
i such that x = max(Pi , B). Let Pi ∈ P

āi
i be such

that x = r2(Pj ) whenever x �= ā j . Then g(Pi , P−i ) = x.

Proof Since x ∈ B there exists P̄ ∈ P
ā such that g(P̄) = x . Pick j �= i and switch her

preference from P̄j to Pj . Note that r1(P̄j ) = r1(Pj ) = ā j . Let g(Pj , P̄− j ) = w �= x .
If x Pjw, then the CSP property of f (or strategy-proofness of g) is violated since j
can manipulate by announcing P̄j when her true preference is Pj . If wPj x , then
w = ā j and w P̄j x . Again, CSP is violated since j can manipulate by announcing Pj

when her true preference is P̄j . Hence w = x . Repeating this argument for all voters
j �= i , we conclude g(P̄i , P−i ) = x . Let g(Pi , P−i ) = w and suppose w �= x . Since
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x = max(Pi , B), it must be true that x Piw. Since r1(Pi ) = r1(P̄i ) = āi , CSP is
violated because i can manipulate by announcing P̄i when her true preference is Pi .
Therefore g(Pi , P−i ) = x . �	

An immediate consequence of Lemma 1 is that x ∈ Rg(Pi ) whenever x =
max(Pi , B).

Lemma 2 Let Pi , P̄i ∈ P
āi be such that max(Pi , B) = max(P̄i , B). Then Rg(Pi ) =

Rg(P̄i ).

Proof Suppose the Lemma is false. Let max(Pi , B) = max(P̄i , B) = x . Assume
without loss of generality that there exists y �= x such that y ∈ Rg(Pi ) but y /∈ Rg(P̄i ).
Choose P−i ∈ P

ā−i satisfying the following properties: for all j �= i (i) r2(Pj ) = y if
x = ā j (i i) r2(Pj ) = x if y = ā j and (i i i) r2(Pj ) = y and r3(Pj ) = x if x, y �= ā j .
Thus y and x are ranked “as high as possible” with y always ranked above x unless
x = ā j .

We claim that g(Pi , P−i ) = y. Since y ∈ Rg(Pi ), there exists P ′−i ∈ P
ā−i such

that y = g(Pi , P ′−i ). Pick j �= i and switch her preference from P ′
j to Pj . Suppose

the outcome of g at the resultant profile is w �= y. If yPjw, then CSP is violated
because j can gain by manipulating to P ′

j when her true preference is Pj . If wPj y,
then w = ā j , so that wP ′

j y holds. Now j can gain by manipulating to Pj when her
true preference is P ′

j violating CSP. Hence w = y. Changing the preferences of all
voters other than i in sequence, we conclude g(Pi , P−i ) = y.

Next, we claim that g(P̄i , P−i ) = x . For all j �= i , define P̄j ∈ P
ā j by reversing

the ranking of x and y in Pj leaving the ranking of all other alternatives undisturbed.
If either x or y coincide with ā j , we let Pj = P̄j . Note that we have x = r2(Pj )

whenever x �= ā j . Since x = max(P̄i , B), Lemma 1 applies allowing us to conclude
that g(P̄i , P̄−i ) = x . Note that r1(Pj ) = r1(P̄j ) for all j �= i . Now, consider a
sequence of profiles obtained by progressively switching the preferences of all voters
j �= i from P̄j to Pj . Since g(P̄i , P̄−i ) = x and the only alternatives whose rankings
differ between P̄j and Pj are x and y, CSP implies that the outcomes of g along this
sequence can only be either x or y. But the outcome cannot be y since y /∈ Rg(P̄i ) by
assumption. Hence g(P̄i , P−i ) = x .

Observe that r1(Pi ) = r1(P̄i ) and x Pi y (since x, y ∈ B and x = max(Pi , B)).
We have argued that g(Pi , P−i ) = y and g(P̄i , P−i ) = x . Therefore we have a
contradiction to CSP. �	
Lemma 3 Either |Rg(Pi )| = 1 or |Rg(Pi )| ≥ 3.

Proof Suppose the Lemma is false. Since |Rg| ≥ 3, we can assume without loss of
generality that x, y, z ∈ Rg with x, y ∈ Rg(Pi ) but z /∈ Rg(Pi ). In view of the
Observation following Lemma 1, we can assume without loss of generality that x =
max(Pi , B). According to Lemma 2, Rg(Pi ) depends only on max(Pi , B). Therefore
we can assume r2(Pi ) = x , r3(Pi ) = z and r4(Pi ) = y if x �= āi and r2(Pi ) = z,
r3(Pi ) = y if x = āi .

Choose P−i ∈ P
ā−i satisfying the following properties: for all j �= i (i) r2(Pj ) = z

if y = ā j (i i) r2(Pj ) = y if z = ā j and (i i i) r2(Pj ) = z and r3(Pj ) = y if y, z �= ā j .
We claim that g(Pi , P−i ) = y.
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Let P̄−i ∈ P
ā−i be the profile of preferences of voters j �= i obtained by switching

the ranking of y and z in Pj unless ā j = z or ā j = y. Thus y is ranked “as high as
possible” in P̄j unless ā j = z. The arguments in Lemma 2 can be applied to conclude
that g(Pi , P̄−i ) = y. Note that r1(Pj ) = r1(P̄j ). Consider the sequence of profiles
where voters j �= i progressively switch preferences from P̄j to Pj . Since g satisfies
CSP, the outcome can switch only from y to z along the sequence. Since z /∈ Rg(Pi ),
the outcome cannot be z anywhere along the sequence. Hence g(Pi , P−i ) = y.

Since z ∈ Rg , there exists P ′
i ∈ P

āi and P̂−i ∈ D
ā−i such that g(P ′

i , P̂−i ) = z.
Note that z is as “high as possible” in P−i . Therefore the arguments in Lemma 2 apply
and g(P ′

i , P−i ) = z. Since g(Pi , P−i ) = y, r1(Pi ) = r1(P ′
i ) and zPi y, we have a

violation of CSP. �	
Lemma 4 There exists i ∈ I and Pi ∈ P

āi such that |Rg(Pi )| �= 1.

Proof Suppose the Lemma is false, i.e. |Rg(Pi )| = 1 for all i ∈ I and all Pi ∈ P
āi .

Pick an arbitrary i ∈ I and P̄i ∈ P
āi and let Rg(P̄i ) = {x}. We will show that for

an arbitrary profile P ∈ P
ā , we have g(P) = x contradicting our assumption that

|B| ≥ 3.
Choose the profile P̄−i ∈ P

ā−i as follows: for all j �= i , P̄j = Pj if ā j = x ;
otherwise x is bottom-ranked in P̄j . Since Rg(P̄i ) = {x}, we have g(P̄i , P̄−i ) = x .
Let P̂i ∈ P

āi be such that P̂i = Pi if āi = x ; otherwise x is bottom-ranked in P̂i . For
any j �= i , |Rg(P̄j )| = 1 by assumption. Since g(P̄i , P̄−i ) = x , it must be true that
g(P̂i , P̄−i ) = x . At the profile (P̂i , P̄−i ), x is bottom-ranked for all agents k for whose
preferences are different from Pk . Chose such a voter k and change her preference
to Pk . If the outcome of g changes from x , there will be a violation of CSP since x
is bottom-ranked for k in the profile (P̂i , P̄−i ). Switching the preferences of all such
voters k, we have g(P) = x as claimed. �	

Applying Lemmas 3 and 4 , we conclude that there exists i ∈ I and Pi ∈ P
āi such

that |Rg(Pi )| ≥ 3. Define the map h : Pā−i → A as follows: for all P−i ∈ P
ā−i ,

h(P−i ) = g(Pi , P−i ). Clearly h is a SCF defined over a society of N − 1 voters. It
is trivial to check that h satisfies CSP. Since |Rg(Pi )| ≥ 3, we can appeal to IH to
conclude that there exists a voter j ∈ N\{i} such that, for all P−i ∈ P

ā−i we have
g(Pi , P−i ) = h(P−i ) = max(Pj , Rg(Pi )). We will conclude the proof by showing
that the identity of voter j cannot depend on Pi and that Rg(Pi ) is in fact independent
of Pi and is completely determined by āi .

Pick an arbitrary P̄i ∈ P
āi . We know from Lemma 3 that |Rg(P̄i )| = 1 or

|Rg(P̄i )| ≥ 3 must hold. We show that |Rg(P̄i )| = 1 cannot hold.
Suppose Rg(P̄i ) = {z}. Since |Rg(Pi )| ≥ 3 we can pick distinct x , y and z and

x, y ∈ Rg(Pi ). Suppose z �= max(Pi , Rg(Pi )). Assume without loss of generality
that x = max(Pi , Rg(Pi )). Pick P̂i ∈ P

āi such that r2(P̂i ) = x and r3(P̂i ) = z if
āi �= x and r2(P̂i ) = z if āi = x . According to the observation following Lemma 1,
we have x = max(Pi , B). By construction, x = max(P̂i , B). Applying Lemma 2,
we have Rg(P̂i ) = Rg(Pi ); in particular y ∈ Rg(P̂i ). Note that x �= ā j . In that case
|Rg(Pi )| = 1 contradicting our assumption that |Rg(Pi )| ≥ 3. Choose P−i ∈ P

ā−i

such that r2(Pj ) = y. Also r2(Pk) = y for all k �= j, i unless āk = y. Since
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y ∈ Rg(P̂i ), we can apply the arguments in Lemma 2 to conclude that g(P̂i , P−i ) = y.
However g(P̄i , P−i ) = z. Since z P̂i y, we have a contradiction to CSP.

The remaining case is z = max(Pi , Rg(Pi )), i.e. zPi x holds. Choose P−i ∈ P
ā−i

such that r2(Pj ) = x . Since j is a dictator in h, we have g(Pi , P−i ) = x while
g(P̄i , P−i ) = z. Once again CSP is violated.

We have deduced that |Rg(P̄i )| ≥ 3. The IH implies the existence of a voter
k ∈ N\{i} such that, for all P−i ∈ P

ā−i , we have g(P̄i , P−i ) = max(Pk, Rg(P̄i )).
The only case of interest is when k �= j . We consider this case in detail below.

Suppose there exists x ∈ Rg(Pi ) and y ∈ Rg(P̄i ) such that yPi x . Choose P−i ∈
P
ā−i such that r2(Pj ) = x and r2(Pk) = y. (Note, once again that ā j �= x and

āk �= y ; otherwise Rg(Pi ) = {x} and Rg(P̄i ) = {y} contradicting the assumption
that |Rg(Pi )|, |Rg(P̄i )| ≥ 3. Therefore g(Pi , P−i ) = x while g(P̄i , Pi ) = y which is
a violation of CSP.

Suppose the hypothesis in the earlier paragraph fails to hold. Let
x = max(Pi , R f (P̄i )). By assumption, there exists y ∈ Rg(P̄i ) and x Pi y. Choose
P−i ∈ P

ā−i such that r2(Pj ) = y and r2(Pk) = x . Then g(Pi , P−i ) = y while
g(P̄i , P−i ) = x . Once again, CSP is violated.

In conclusion, the identity of voter j only depends on the observable peak of voter i ,
āi . Similarly Rg(Pi ) also depends only on āi . To verify this step, consider Pi , P̄i ∈ P

āi

and assume without loss of generality that z ∈ Rg(Pi )\Rg(P̄i ). Then it follows from
Lemma 2 that max(Pi , B) = x �= y = max(P̄i , B). (Note, once again that ā j �= x, z
and ā j �= y ; otherwise Rg(Pi ) = {x} and Rg(P̄i ) = {y} contradicting the assumption
that |Rg(Pi )|, |Rg(P̄i )| ≥ 3).Nowconsider P−i where Pj has r2(Pj ) = z, r3(Pj ) = y
and consider P ′

i which is derived from Pi by placing y immediately below x and z
immediately below y in Pi . Then by Lemma 2 we have Rg(Pi ) = Rg(P ′

i ), so that
g(P ′

i , P−i ) = z while g(P̄i , P−i ) = y, and consequently i manipulates at P ′
i . Thus

Rg(Pi ) depends only on āi . To sum up, we have shown that R f (ā) = Rg(Pi ), and we
have identified voter j as the voter specified in the statement of the Theorem. �	

The proof of Theorem 2 has a special feature. The usual induction proofs of such
propositions, such as the proof of the Gibbard–Satterthwaite Theorem in Sen (2001),
employ the technique of coalescing or cloning voters in the induction step. This is
done in order to define a SCF on a society of lower cardinality with the appropriate
properties (strategy-proofness and unanimity). Thismakes the induction step relatively
straightforward but entails the additional cost of having to establish the Theorem in
the non-trivial case of N = 2. In the current setting, the cloning technique does not
work because the peaks of all voters in the function g may be different. In order to
define a SCF in a society of N − 1 voters we use a projection technique. Most of the
effort in proving the result goes into showing that there exists a SCF induced on a
N − 1 voter society which satisfies the range requirement.

Some of the methods here are similar to the arguments developed in Barberà and
Peleg (1990). In fact the object Rg(Pi ) can be interpreted as the option set offered by
voter i to the voters I\{i}. However, an attractive aspect of our approach is that the
induction can begin at N = 1 which is a trivial case.

Another noteworthy aspect of our result is that it does not invoke the axiom of una-
nimity. According to the axiom, the outcome at a profile P is a whenever r1(Pi ) = a
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for all i ∈ I . Unanimity is an assumption frequently made in the context of character-
ization results for strategy-proof SCFs. It is a convenient way of ensuring that SCFs
under consideration have full range. It can be incorporated in our framework without
difficulty. Consider the special case where the profile P and the alternative a are such
that ri (Pi ) = a for all i ∈ I . Unanimity would imply that for any f satisfying CSP,
we would have f (P) = a for all P ∈ P

a , i.e. R f (a) = {a}. On the other hand, if P
is such that all voters do not have a common first-ranked alternative, unanimity does
not impose any restrictions on f .

4 The partially informed planner

In this section, we consider the case where the planner has some ex-ante information
about the peaks of individual preferences. We refer to this situation as one where the
planner is partially informed. This is the standard case of restricted domains. Our
objective is to contrast both the formulation and the results with those in the partially
observant planner model.

For all i ∈ I , let Āi ⊂ A denote the set of admissible peaks for voter i . In other
words, the planner knows ex-ante that i’s peak must belong to the set Āi . The N -tuple
( Ā1, . . . ĀN ) ∈ [2N\∅]N will be denoted by Ā, i.e. the i th component of Ā is Āi . We
let P Āi ⊂ P denote the set of preferences whose peaks are restricted to belong to Āi .
Also P Ā will denote the set of profiles whose i component is a preference in P Āi . Fix
an N -tuple Ā. A SCF is a map f : P Ā → A. The notion of strategy-proofness in this
model is standard and is the one defined in Sect. 2.

A general analysis of the structure of strategy-proof SCFs f : D( Ā) → A is
difficult because it may depend on the sets Āi . We are however, able to prove that it is
dictatorial in some special cases.

Proposition 1 Fix an N-tuple Ā ∈ [2A \ ∅]N . Let f : D( Ā) → A be a strategy-proof
SCF with |R f | ≥ 3. Then f is dictatorial if either of the two cases below occur.

(i) Āi is a singleton set for each i ∈ I .
(ii) R f ∩ (∪i∈I Āi ) = ∅.
Proof Case (i) follows immediately from an application of Theorem 2. For case (i i),
we use the well-known fact that the value of a SCF at any profile can only depend on
voter preferences over the range of f . Since R f ∩ (∪i∈I Āi ) = ∅, preferences over
R f are in effect, unrestricted and the Gibbard–Satterthwaite Theorem applies. �	

The analysis in the case where Āi ∩ R f �= ∅ for some voters i , is far more subtle.
We prove a result in the special case of two voters.

Proposition 2 Let N = {i, j}. Fix an N-tuple Ā ∈ [2N\∅]2. Let f : D( Ā) → A be a
strategy-proof SCF with |R f | ≥ 3. Suppose |(R f ∩ Āi )∩ (R f ∩ Ā j )| ≥ 3. Then f is
dictatorial.

Proof Let f be a strategy-proof SCF with |R f | ≥ 3 and |(R f ∩ Āi )∩(R f ∩ Ā j )| ≥ 3.
We say that i dictates over alternative x if, for all profiles (Pi , Pj ) such that
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max(Pi , R f ) = x , we have f (Pi , Pj ) = x . In order to show that f is dictatorial
we will show that there exists a voter i who dictates over all alternatives x ∈ R f . We
will proceed in three steps. In the first, we will identify a voter i who dictates over all
x ∈ (R f ∩ Āi ) ∩ (R f ∩ Ā j ). In the next step, we will show that i dictates over all
x ∈ (R f ∩ Āi ). Finally, we will show that i dictates over all x ∈ R f \ Āi .

The following observations will be used frequently in the proof.

Observation 1 (i) Suppose x ∈ (R f ∩ Āi )∩(R f ∩ Ā j ). Then f (Pi , Pj ) = x whenever
r1(Pi ) = r1(Pj ) = x.
(i i) Let i be an arbitrary voter. Suppose x ∈ (R f ∩ Āi ) and let Pi be such that
r1(Pi ) = x. Then there exists Pj such that f (Pi , Pj ) = x.

The observations follow from the assumption that x ∈ R f and the familiar “lifting”
lemma for strategy-proof SCF. We omit the details of the proof.

We closely follow arguments in Sen (2001) in order to establish the first step in the
argument. Pick x, y ∈ (R f ∩ Āi ) ∩ (R f ∩ Ā j ). Let (Pi , Pj ) be a profile such that
r1(Pi ) = x and r1(Pj ) = y. We claim that f (Pi , Pj ) = {x, y}. Suppose this is false
and assume f (Pi , Pj ) = a where a �= x, y. Let P̄i and P̄j be such that r1(P̄i ) = x ,
r2(P̄i ) = y, r1(P̄j ) = y and r2(P̄j ) = x . Consider the profile (P̄i , Pj ). The outcome
here cannot be x ; otherwise i would manipulate at (Pi , Pj ) by announcing P̄i . It
cannot also be an alternative worse than y at Pi since i can obtain y by announcing
y as her first-ranked alternative (Observation 1 part (i)). Therefore f (P̄i , Pj ) = y.
Furthermore f (P̄i , P̄j ) = y; otherwise j wouldmanipulate at (P̄i , P̄j ) by announcing
Pj . On the other hand, a symmetric argument leads to the conclusion that f (Pi , P̄j ) =
f (P̄i , P̄j ) = x . In order to avoid a contradiction, we must have f (Pi , Pj ) ∈ {x, y}.
Assume without loss of generality that f (Pi , Pj ) = x . The rest of the proof consists
in showing that i is a dictator in f .

Starting from the profile (Pi , Pj ) consider all preferences for i where x is ranked
first. Strategy-proofness implies that the outcomes at all these profiles is x . Nowchange
the preferences of voter j keeping y as the first-ranked alternative. By the argument in
the previous paragraph, the outcome at all these profiles must either be x or y. But if it
is ever y, then j would manipulate. We conclude that at a profile where i ranks x first
and j ranks y first and x last, the outcome must be x . But the lifting argument implies
that the outcome must be x if i ranks x as the top ranked alternative, irrespective of j’s
preferences. Consider a profile (Pi , Pj ) where x = max(Pi , R f ). If f (Pi , Pj ) �= x , i
will manipulate by announcing an ordering where x is first-ranked thereby obtaining
x . We have shown that i dictates for alternative x .

Pick an arbitrary alternative z distinct from x and y such that z ∈ (R f ∩ Āi )∩(R f ∩
Ā j ). Such an alternative exists in view of our assumption on the cardinality of the set
(R f ∩ Āi )∩ (R f ∩ Ā j ). Let (Pi , Pj ) be a profile such that r1(Pi ) = x , r2(Pi ) = z and
r1(Pj ) = y. We know that f (Pi , Pj ) = x . Let P̄i be an ordering where r1(P̄i ) = z
and r2(P̄i ) = x . Strategy-proofness implies f (P̄i , Pj ) ∈ {x, z}. However, we also
have f (P̄i , Pj ) ∈ {z, y}. Clearly f (P̄i , Pj ) = z. Replicating our earlier arguments,
we conclude that i dictates over z.

Once again, let z be an alternative distinct from x and y such that z ∈ (R f ∩ Āi )∩
(R f ∩ Ā j ). Let (Pi , Pj ) be a profile such that r1(Pi ) = z, r2(Pi ) = y, r1(Pj ) = x
and y is ranked last in Pj . Let P̄i be an ordering where r1(P̄i ) = y and r2(P̄i ) = z.
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Our earlier arguments imply f (P̄i , Pj ) = y. Since y is ranked last in Pj , it follows
that i dictates over y. We have therefore shown that i dictates over all alternatives in
(R f ∩ Āi ) ∩ (R f ∩ Ā j ) completing the first step of the proof.

Pick an arbitrary alternative a ∈ (R f ∩ Āi )\ Ā j . Let x, y ∈ (R f ∩ Āi )∩ (R f ∩ Ā j ).
Let (Pi , Pj ) be a profile such that r1(Pi ) = a, r2(Pi ) = x , r1(Pj ) = y and a and x
are ranked second-last and last respectively in Pj . Since i dictates over x , i can always
obtain x by announcing a preferencewhere x is first-ranked, it follows that f (Pi , Pj ) ∈
{a, x}. Suppose f (Pi , Pj ) = x . Since a ∈ R f and a = r1(Pi ), Observation 1, part (ii)
implies the existence of a preference P ′

j such that f (Pi , P
′
j ) = a. Since aPj x , j will

manipulate at (Pi , Pj ) via P ′
i . Hence f (Pi , Pj ) = a. Let P̄i be a preference where a

and x are ranked first and last respectively. Strategy-proofness implies f (P̄i , Pj ) = a.
Let P̄j be a preference where r1(P̄j ) = y and x and a are ranked second-last and last
respectively. Strategy-proofness implies f (P̄i , P̄j ) ∈ {a, x}. Suppose f (P̄i , P̄j ) = x .
Since y P̄i x and i dictates over y, i will manipulate at (P̄i , P̄j ) by announcing a
preference where y is first-ranked thereby obtaining y. Hence f (P̄i , P̄j ) = a. Since a
is ranked first and last at P̄i and P̄j respectively, it follows that i dictates over a. This
concludes the second step.

Pick an arbitrary alternative a ∈ R f \ Āi . By assumption, there exists a profile,
say (P∗

i , P
∗
j ) such that f (P∗

i , P
∗
j ) = a. Let r1(P∗

i ) = b. Note that b /∈ R f . If

b ∈ R f , the second step applies leading to the conclusion that f (P∗
i , P

∗
j ) = b.

Let x ∈ (R f ∩ Āi ) ∩ (R f ∩ Ā j ). Let Pi be a preferences such that r1(Pi ) = b,
r2(Pi ) = a, r3(Pi ) = x . Let Pj be a preference where a is ranked second-last and
x last respectively. Let f (Pi , Pj ) = c. Clearly c �= b since b /∈ R f . If c is ranked
below x in Pi , then i will manipulate in (Pi , Pj ) by announcing x as her first-ranked
alternative. Here we are using the fact that i dictates over x . Therefore c ∈ {a, x}.
Suppose c = x . Let us return to the profile (P∗

i , P
∗
j ) where the outcome is a. Since

r1(P∗
i ) = r1(Pi ) = b, the lifting argument implies f (Pi , P∗

j ) = a. Since aPj x and
f (Pi , Pj ) = x , j will manipulate at (Pi , Pj ) by announcing P∗

j . Hence c = x is
impossible, i.e. f (Pi , Pj ) = a.

Let P̄i be a preference where r1(P̄i ) = b, r2(P̄i ) = a and x is ranked last.
Strategy-proofness implies f (P̄i , Pj ) = a. Let P̄j be a preference which is obtained
by switching the ranks of a and x in Pj , i.e. x is ranked second-last and a last in P̄j .
By strategy-proofness, f (P̄i , P̄j ) ∈ {a, x}. Suppose f (P̄i , P̄j ) = x . Consider y �= x
and y ∈ (R f ∩ Āi ) ∩ (R f ∩ Ā j ). By construction yPi x . Moreover i dictates over y.
Consequently i will manipulate at (P̄i , P̄j ). Therefore f (P̄i , P̄j ) = a.

We can summarize our conclusions for the third step of the proof as follows:
there exists b /∈ R f such that for all profiles (Pi , Pj ) where r1(Pi ) = b and a =
max(Pi , R f ), we have f (Pi , Pj ) = a. Suppose there exists P ′

i where r1(P
′
i ) = c �= b,

a = max(Pi , R f ) and f (P ′
i , Pj ) = d �= a. Clearly aP ′

i d holds. Then i will manip-
ulate at (P ′

i , Pj ) by announcing Pi where r1(Pi ) = b and r2(Pi ) = a. Therefore i
dictates over a and the third step is established. This also completes the proof. �	

We note that existing results on dictatorial domains do not readily apply to our
model because of the inherent asymmetry in voter preferences that we allow for.
Consider the notion of a linked introduced in Aswal et al. (2003). A strategy-proof
SCF defined on a linked domain satisfying the additional property of unanimity is
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shown to be dictatorial. An assumption that is central in this approach is that if the
domain contains a preference where alternatives a and b are ranked first and second
respectively, the domain also includes a preference where b is first and a second. This
assumption is clearly violated in our model.

There are non-trivial difficulties associated with extending Proposition 2 to the case
of an arbitrary number of voters.2 In Aswal et al. (2003), it is assumed that all voters
have the same preference domain. Moreover, this common domain has the property of
minimal richness - for every alternative a, there is a preference in the domainwhere a is
first-ranked. Any domain satisfying these properties satisfies a fundamental reduction
property: if every two-voter strategy-proof SCF satisfying unanimity defined on the
domain, is strategy-proof, then every n, (n ≥ 3) voter strategy-proof SCF satisfying
unanimity defined on the domain, is strategy-proof. Clearly we cannot rely on such
a result because minimal richness is too strong a property in our model. We could
attempt to formulate n-voter version of the condition in Proposition 1. We choose not
to because it is likely to be cumbersome; in any case we are unable to show whether
conditions of this sort are necessary.

The dictatorship result of Proposition 1 does not hold if the planner has more
information than just the top-ranked alternatives of the voters. Consider the following
example.

Example 2 Let I = {1, 2} and A = {a, b, c, d}. Suppose the planner has the following
ex ante information regarding the preferences of voter 1. He knows that if voter 1
ranks a first, then voter 1 ranks b second. There are no other restrictions regarding the
ranking of alternatives. In other words, among the 12 possible pairs of first and second
alternatives, exactly two, viz. a is first and c second and a is first and d second are
infeasible. There are no other restrictions on the preferences of other voters.

We claim that there exists a non-dictatorial SCF in this setting which is defined as
follows. The outcome at any profile is voter 1’s top ranked alternative if this alternative
is b, c or d. If it is a then the outcome is the alternative in the set {a, b}which is higher
ranked in voter 2’s preferences. It is easy to check that this SCF is strategy-proof.
Voter 1 does not get his peak only in the case where his peak is a. In this case he may
get his second ranked alternative b. However, since 2 prefers b to a, there is no way
for 1 to do better and get a. �	

Example 2 appeared originally in Aswal et al. (2003) where it was employed for a
different purpose. We note that there are other ways to extend the spirit of the domain
restrictions from the tops case analysed in this section to more general cases. For
instance, the planner may be aware that an alternative is never ranked among the top k
alternatives and so on. The restricted domain settings that arise from such information
structures could be interesting to explore.

2 There are also difficulties in verifyingwhetherConditions such as (i) and (i i) are necessary for dictatorship
in the two-voter case. At present, we are unable to answer this question.
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5 Conclusion

We have introduced a formulation of mechanism design called the observant plan-
ner model where a planner receives ex post information on the realization of voters
preferences. Specifically, we study the case where the planner observes the peak of
each voters preferences. We provide a characterization of all social choice functions
that satisfy an appropriate version of strategy-proofness, under a requirement on the
range of the social choice function. We contrast this model with the partially informed
planner model, which is one where the planner possesses ex ante information on the
peaks of voters preferences. This latter model differs from the standard restricted
domain formulation in that the planner’s information may vary across voters. Stan-
dard techniques for proving characterization results do not apply to either model. It
would be of interest to explore the consequences of the planner obtaining other forms
of information on the preferences rather than just information of the peaks.
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