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Modeling and Forecasting Realized Volatility with the

Fractional Ornstein-Uhlenbeck Process*

Xiaohu Wang, Weilin Xiao, Jun Yu

August 30, 2021

Abstract

This paper proposes to model and forecast realized volatility (RV) using the
fractional Ornstein-Uhlenbeck (fO-U) process with a general Hurst parameter, H.
A two-stage method is introduced for estimating parameters in the fO-U process
based on discrete-sampled observations. In the first stage, H is estimated based on
the ratio of two second-order differences of observations from different frequencies.
In the second stage, with the estimated H, the other parameters of the model are
estimated by the method of moments. All estimators have closed-form expressions
and are easy to implement. A large sample theory of the proposed estimators is
derived. Extensive simulations show that the proposed estimators and the large-
sample theory perform well in finite samples. We apply the model and the method
to the logarithmic daily RV series of various financial assets. Our empirical findings
suggest that H is much smaller than 1/2, indicating that the RV series have rough
sample paths, and that the mean reversion parameter takes a small positive number,
indicating that the RV series are stationary but have slow mean reversion. The
proposed model is compared with many alternative models, including the fractional
Brownian motion, ARFIMA, and HAR, in forecasting RV and logarithmic RV.
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1 Introduction

With the increasing availability of high frequency financial data, daily realized volatility

(RV) is readily available. As a result, modeling and forecasting daily RV have been

extensively studied. For example, Andersen et al. (2001a) and Andersen et al. (2001b)

provide evidence of long-range dependence in the RV of equities and exchange rates, re-

spectively. Andersen et al. (2003) point out that forecasts from a simple autoregressive

fractionally integrated moving average (ARFIMA) model for the logarithmic daily RV

outperforms several popular daily GARCH models and more complicated high-frequency

models. Andersen and Bollerslev (1997) show how long-range dependence in volatility

can arise via interactions of a large number of heterogeneous information processes. Mo-

tivated by this heterogeneity, Corsi (2009) introduces the heterogeneous autoregressive

(HAR) model for the daily RV. Bollerslev et al. (2016) extend the HAR model by al-

lowing the parameters of the HAR model to vary explicitly with the measurement error

in estimating the daily RV.

More recently, Gatheral et al. (2018) call for more attention to another stylized

fact of RV, namely, the roughness of the sample path. They show that the fractional

Brownian motion (fBm) with the Hurst parameter H = 0.14 can generate a rough

sample path and outperform the HAR model in forecasting logarithmic RV and RV out-

of-sample. Moreover, they argue that although fBm with H < 1/2 is not a long-memory

process, classical statistical procedures, such as the log-periodogram regression, tend to

find the evidence of long memory in data generated from fBm with H < 1/2.1 A growing

strand of literature now supports the findings of Gatheral et al. (2018). For example,

Livieri et al. (2018) report strong support for roughness using the implied volatility-

based approximations to spot volatility. Bayer et al. (2016) obtain strong support for

roughness via the S&P 500 volatility surface and variance swaps. Bennedsen (2017) and

Bennedsen et al. (2021) document roughness in daily RVs of nearly two thousand U.S.

equities.2

In the context of fBm, the roughness of a sample path is determined by the Hurst

parameter, H, if H < 1/2. Let BH
t denote an fBm that is a zero-mean Gaussian process

1Bennedsen et al. (2021) propose an alternative volatility model that can generate a rough sample
path and has the long-memory property at the same time.

2Rough volatility models have also been applied in mathematical finance, such as in option pricing
(Bayer et al., 2016; Garnier and Sølna, 2017), portfolio choice (Fouque and Hu, 2018), and dynamic
hedging (Euch and Rosenbaum, 2018). Jaisson and Rosenbaum (2016) study microstructural foundations
for the roughness.
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with the covariance function

Cov
(
BH

t , B
H
s

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, ∀t, s ≥ 0. (1.1)

If H = 1/2, BH
t is a standard Brownian motion (Bm, denoted by Wt) that has indepen-

dent increments. Whereas, when H ̸= 1/2, the increments of BH
t are serially correlated.

The serial correlations are positive when H ∈ (1/2, 1) and negative when H ∈ (0, 1/2).

The smaller the H is, the rougher the sample path of BH
t .

Unfortunately, fBm is non-stationary, making it less ideal for modeling daily RV.

To allow both stationarity and potential roughness of a sample path, in this paper, we

consider the following discrete-time model

Xi∆ = e−κ∆X(i−1)∆ +
(
1− e−κ∆

)
µ+ εi∆ with εi∆ = σ

∫ i∆

(i−1)∆
e−κ(i∆−s)dBH

s , (1.2)

where {Xi∆}ni=0 is a set of observations on the logarithmic RV, ∆ denotes the sampling

interval, κ ∈ R+, σ ∈ R+, and µ ∈ R are the unknown parameters. Here, it is assumed

that we have n + 1(n = T/∆) equally spaced observations at points {i∆}ni=0 over the

time interval [0, T ] with T being the time-span of the data.3 If κ = 0, e−κ∆ = 1 and

Xi∆−X(i−1)∆ is the increment of fBm, which is known as the fractional Gaussian noise.

As a result, Xi∆ is a discrete sample from fBm. However, when κ > 0, e−κ∆ < 1 and

Xi∆ is stationary. In this case, κ is often referred to as the mean reversion parameter.

Together with H, it determines the autocorrelation function (ACF) of Xi∆. When

H < 0.5 and κ takes a small positive value, which are estimates that we obtained from

real data, the sample path of Xi∆ is rough and the ACF decays slowly.

Model (1.2) is the exact discrete-time representation of the following continuous-time

fractional Ornstein-Uhlenbeck (fO-U) process

dXt = κ (µ−Xt) dt+ σdBH
t . (1.3)

In this paper, we propose a two-stage method to estimate all unknown parameters in

Model (1.3) based on the discrete-time observations {Xi∆}ni=0. In the first stage, follow-

ing Lang and Roueff (2001) and Barndorff-Nielsen et al. (2013), H is estimated based on

the ratio of squared summations of the second-order differences of Xi∆ obtained at two

different frequencies. In the second stage, estimators of the other parameters in Model

(1.3) are constructed based on a set of moment conditions in which the true value of H

3When Xi∆ is annualized and observed daily (weekly or monthly), then ∆ = 1/252 (1/52 or 1/12).
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is replaced with the estimated H obtained in the first stage. Closed-form expressions

are established for all the proposed estimators, denoted by Ĥ, κ̂, µ̂, and σ̂.

We then develop the large-sample theory for the proposed estimators. In particular,

we consider two asymptotic schemes: (i) the in-fill scheme under which the sampling

interval ∆ goes to zero with a fixed time-span T ; and (ii) the double scheme in which

∆ → 0 and T → ∞ simultaneously. Under both schemes, the consistency and asymptotic

normality of Ĥ and σ̂ are established for all H ∈ (0, 1) and regardless of the stationarity

property of the model. In addition, an explicit formula is derived for the asymptotic

variance of Ĥ, which depends only on the value of H. This feature greatly facilitates

statistical inference about H. Under the double scheme, the consistency and the asymp-

totic distributions of κ̂ and µ̂ are developed. The convergence rate of µ̂ is a function

of H. Both the convergence rate and the asymptotic distribution of κ̂ depend crucially

on H. Extensive simulations are designed to check the finite-sample performance of the

proposed estimators and derived asymptotic distributions.

We apply Model (1.3) and the proposed estimation method in empirical studies where

we model and fit the logarithmic daily RV for the S&P 500, DJIA, and NASDAQ 100.

We obtain the strong evidence of H < 1/2 in all cases, reinforcing the finding of rough

volatility documented in the literature. Also found is the evidence of κ taking a small

positive number, suggesting slow mean reversion. We compare the out-of-sample per-

formance of Model (1.3) with that of five alternative models, including fBm, ARFIMA,

and HAR, in forecasting RV and logarithmic RV.

The remainder of the paper is organized as follows. Section 2 introduces the model,

discusses its relationship with ARFIMA, and provides the forecasting formula with Model

(1.3). Section 3 proposes a two-stage estimation approach. Section 4 establishes the

asymptotic properties of the proposed estimators. In Section 5, Monte Carlo experiments

are designed to check the finite-sample performance of the proposed estimators and the

large-sample theory. Empirical studies are carried out in Section 6. Section 7 concludes.

All proofs are collected in the Appendix A. More empirical results can be found in the

online supplement where we apply the proposed method to forecast the logarithmic RV,

logarithmic bipower variation (BV) and logarithmic realized kernel (RK) for the S&P

500, DJIA, and NASDAQ 100. Throughout the paper, we use
p→,

a.s.→ ,
d→,

d
= to denote

convergence in probability, convergence almost surely, convergence in distribution, and

equivalence in distribution, respectively.
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2 Model

2.1 Preliminaries

The model with which we are concerned in this paper is given by (1.3). The stochastic

differential equation in (1.3) has a unique path-wise solution as

Xt = e−κtX0 +
(
1− e−κt

)
µ+ σ

∫ t

0
e−κ(t−s)dBH

s , (2.1)

where X0 is the initial value and
∫ t
0 e

−κ(t−s)dBH
s exists as a path-wise Riemann-Stieltjes

integral by using partial integration and exploiting that the exponential function is of

finite variation. Moreover, the integral in (2.1) is almost surely continuous in t (Cheridito

et al., 2003). Letting t > s and u > v, we have

E
[(
BH

t −BH
s

) (
BH

u −BH
v

)]
=

1

2

(
(s− u)2H + (t− v)2H − (t− u)2H − (s− v)2H

)
,

(2.2)

which implies that
{
BH

t

}
t≥0

has stationary increments for any H ∈ (0, 1).

When H = 1/2,
{
BH

t

}
t≥0

has independent increments and becomes a standard

Bm. Whereas, when H ̸= 1/2, the increments of
{
BH

t

}
t≥0

are serially correlated.

If H ∈ (1/2, 1), the covariances of increments of BH
t are not summable, suggesting

long-range dependence of the increment process. If H ∈ (0, 1/2), the two-sided long-

run variance of increments of BH
t is zero, suggesting anti-persistence of the increment

process. For all ε > 0 and T > 0, there exists a nonnegative random variable Gε,T such

that E (|Gε,T |p) < ∞ for all p ≥ 1, and
∣∣BH

t −BH
s

∣∣ ≤ Gε,T |t− s|H−ε almost surely

for all s, t ∈ [0, T ]. This fact ensures that the sample path of
{
BH

t

}
t≥0

is (locally)

Hölder continuous of order H − ε, which in turn suggests that Xt is (locally) Hölder

continuous of order H − ε (Gehringer and Li, 2020). Hence, the smaller the value of H,

the rougher the sample paths of BH
t and Xt. Cheridito et al. (2003) obtain the order of

the covariance function of fO-U when the lag goes to infinity, suggesting that the decay

of the covariance of fO-U is very similar to that of increments of BH
t .4

With a proper initial condition, the stationarity and ergodicity of Xt are guaranteed

by κ > 0 (Hu and Nualart, 2010). Whereas, if κ < 0, Xt is explosive and Xt = Op

(
e−κt

)
as t→ ∞ (Belfadli et al., 2011). When κ = 0, Xt is an fBm. In this case, Xt = σBH

t =

Op

(
tH
)
as t → ∞ and hence, is nonstationary. The last equation is from the fact of

4More in-depth discussions of fBm and fO-U can be found in Samorodnitsky and Taqqu (1994),
Embrechts and Maejima (2002), and Cheridito et al. (2003).
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E
[(
BH

t −BH
0

)2]
= t2H , which can be obtained straightforwardly from (2.2) by letting

t = u and s = v = 0.

For the case of κ > 0, set the initial condition to be

X0 = µ+ σ

∫ 0

−∞
eκsdB̃H

s with B̃H
s =

{
BH

s for s ≥ 0

WH
|s| for s ≤ 0

,

where B̃H
s is a two-sided fBm with WH

|s| being an fBm independent of BH
s . Then, Xt in

(2.1) becomes a covariance stationary process with

E (Xt) = µ and V ar (Xt) = σ2κ−2HHΓ (2H) , (2.3)

where Γ (·) denotes the gamma function. Moreover, Xt can be identically represented as

Xt = µ+ σ

∫ t

−∞
e−κ(t−s)dB̃H

s . (2.4)

Under a general initial condition X0 = Op (1), Xt is asymptotically covariance sta-

tionary. In this case, the impact of the initial condition disappears as t → ∞ because

e−κt → 0 as t→ ∞. Hence, it is easy to get limt→∞ E (Xt) = µ and limt→∞ V ar (Xt) =

σ2κ−2HHΓ (2H).

2.2 Discrete-time model

When H = 1/2, Model (1.2) turns out to be an AR(1) model with independent Gaussian

errors {εi∆} (see, for example, Bergstrom, 1990). Under the in-fill asymptotic scheme

where ∆ → 0 with a fixed T , e−κ∆ = 1 − κT/n + O(n−2) → 1, implying that Xi∆ is a

local-to-unity process (see, for example, Phillips, 1987). Under the double asymptotic

scheme where ∆ → 0 and T → ∞, Xi∆ is a mildly stationary process for it has a root

moderately deviated from unity, as studied in Wang and Yu (2016).

Whereas, when H ̸= 1/2, {εi∆} is serially dependent with the covariance

E
(
εi∆ε(i+j)∆

)
= σ2H (2H − 1)

∫ i∆

(i−1)∆

∫ (i+j)∆

(i+j−1)∆
e−κ(2(i+j)∆−s−τ) |s− τ |2H−2 dsdτ,

(see, Lemma 2.1 of Cheridito et al. (2003)). Note that, as ∆ → 0,

εi∆ = σ

∫ i∆

(i−1)∆
e−κ(i∆−s)dBH

s = σ
(
BH

i∆ −BH
(i−1)∆

)
+Op

(
∆1+H

)
:= σvi∆+Op

(
∆1+H

)
,

where vi∆ = BH
i∆ −BH

(i−1)∆. Hence, the dependence structure of {εi∆} is determined by

that of {vi∆}. From (1.1), it can be proven that, for any fixed ∆, {vi∆} is stationary

6



with the following autocovariance function

Cov
(
vi∆, v(i+j)∆

)
=

1

2
∆2H

{
|j + 1|2H − 2 |j|2H + |j − 1|2H

}
= O

(
j2H−2

)
as j → ∞.

If H ∈ (1/2, 1), it has Cov
(
vi∆, v(i+j)∆

)
> 0 and

∑∞
j=0Cov

(
vi∆, v(i+j)∆

)
= +∞.

In this case, both {vi∆} and {εi∆} have positive serial correlations and long-range de-

pendence. In contrast, if H ∈ (0, 1/2), Cov
(
vi∆, v(i+j)∆

)
< 0 for any j ̸= 0 and∑∞

j=−∞Cov
(
vi∆, v(i+j)∆

)
= 0.5 This property implies that {vi∆} is anti-persistent

when H ∈ (0, 1/2). Consequently, {εi∆} has negative serial correlations that quickly

decay to zero as the lag order increases.

The degree of persistence of {Xi∆} defined in Model (1.2) is determined jointly by

the autoregressive root e−κ∆ and H. If H = 1/2, {εi∆} is iid. In this case, the ACF

of {Xi∆} at the jth lag is e−κ∆j that converges to 0 at the exponential rate as j → ∞
and hence summable. When H ̸= 1/2, the convergence rate of the ACF of {Xi∆} is

O
(
j2H−2

)
, which is solely determined by H as j → ∞ and dominates the exponential

rate e−κ∆j . Clearly, only when H ∈ (1/2, 1), can long-range dependence be found in

{Xi∆}. However, if e−κ∆ takes a value close to unity, which is ensured by κ taking

a small positive value, {Xi∆} behaves almost like the cumulative sums of {εi∆}. In

this case, e−κ∆j plays an important role in determining the ACF of {Xi∆} at small and

moderate lags. As a result, even when H ∈ (0, 1/2), the ACF of {Xi∆} may decay slowly

at small and moderate lags. However, if H ∈ (1/2, 1), the positive serial dependence

of {εi∆} makes the ACF of {Xi∆} decay “too” slowly and the sample path of {Xi∆}
“too” smooth. In practical applications, we do not know ex-ante if a slowly decaying

ACF at small and moderate lag is generated by a small positive κ or by a large positive

κ together with H ∈ (1/2, 1). However, if a slowly decaying ACF and the rough feature

are both important in a dataset, then a small positive κ and H ∈ (0, 1/2) are expected.

One goal of our paper is to find a reasonable method to estimate H and κ.

To better appreciate the discussion above, we simulate {Xi∆} and {εi∆} from Model

(1.3) with various values of H. We set κ = 0.2366, µ = 2.4165, σ = 0.7007, and

∆ = 1/256. Details about how to simulate data from Model (1.3) are given in Section 5.

Figure 1 plots simulated {Xi∆} and the autocorrelation function of {Xi∆} and {εi∆}, in
which the left panels represent the model with H = 0.7 and the right panels represent

the model with H = 0.1299 (which is the estimated H from the S&P500 reported later).

This figure clearly shows that {εi∆} has positive serial correlations when H = 0.7 and

negative serial correlations when H = 0.1299. More importantly, as the autoregressive

5It can be shown that
∑∞

j=1 Cov
(
vi∆, v(i+j)∆

)
=

∑−∞
j=−1 Cov

(
vi∆, v(i+j)∆

)
= −0.5V ar (vi∆).
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Figure 1: Simulated sample paths of {Xi∆}, autocorrelation functions of {Xi∆} and
{εi∆} from Model (1.3).

root e−κ∆ = 0.9991 is very close to unity, for both values of H, {Xi∆} has positive and

slowly decaying autocorrelations. The autocorrelations decay much more slowly when

H = 0.7 than when H = 0.1299. Furthermore, the sample path of {Xi∆} is smooth

when H = 0.7, but quite rough when H = 0.1299.

2.3 Relation to ARFIMA

There are close relationships and crucial differences between the models introduced in

(1.3) and (1.2) and the following stationary ARFIMA(1, d, 0) model with d := H − 1/2

that is widely used and extensively studied in the discrete-time literature:

yi∆ = µ(1− ρ) + ρy(i−1)∆ + ui∆, |ρ| < 1, (2.5)

ui∆ = (1− L)−dei∆, ei∆ ∼ i.i.d.(0, σ2e), i = 1, ..., n,

where L is the lag operator with (1− L)−d defined as

(1− L)−d =

∞∑
j=0

Γ(j + d)

Γ(d)Γ(j + 1)
Lj .

As H ∈ (0, 1), d ∈ (−1/2, 1/2). Together with the condition that |ρ| < 1, the ARFIMA

model is stationary. It is well-established in the literature that {ui∆} has long-range

8



Table 1: Mean and standard deviation (SD) of the Whittle MLE of d and ρ when fitting the

ARFIMA(1, d, 0) model to data simulated from Model (1.3). When simulating data, we set κ =

15, µ = 2.8, σ = 1, H = 0.15, T = 4, ∆ = 1/256. This setup implies that d = H − 1/2 = −0.35

and ρ = exp(−κ∆) = 0.9414.

Mean of d̂ SD of d̂ Mean of ρ̂ SD of ρ̂

0.3954 0.0409 0.0118 0.0529

dependence when d ∈ (0, 1/2) but it is anti-persistent when d ∈ (−1/2, 0) (see, for

example, Giraitis et al., 2012).

Letting ρ = e−κ∆, σ2e = 1−e−2κ∆

2κ σ2, and n = 1/∆ (i.e., T = 1), using the result of

Davydov (1970), we have, as ∆ → 0,

δHΓ(H + 1/2)

nH
y⌊ns⌋ ⇒ Xs , ∀ 0 ≤ s ≤ 1 , (2.6)

where δH =
√

2HΓ(3/2−H)
Γ(H+1/2)Γ(2−2H) , ⌊z⌋ denotes the greatest integer less than or equal to z,

and {Xs} is the fO-U process (see also Tanaka, 2013).

The weak convergence in (2.6) may lead one to believe that the fO-U model (1.3)

is essentially identical to the ARFIMA(1, d, 0) model. Unfortunately, this belief is

not justified under popular estimation methods. To show the difference between fO-

U and ARFIMA(1, d, 0), we simulate data from Model (1.3) but fit the stationary

ARFIMA(1, d, 0) model with the frequency-domain (or Whittle) ML method of Whittle

(1953). When simulating the data, we set κ = 15, µ = 2.8, σ = 1, H = 0.15, T = 4, and

∆ = 1/256. This setup implies that d = H − 1/2 = −0.35 and ρ = exp(−κ∆) = 0.9414.

Table 1 reports the means and standard deviations (SD) of the Whittle ML estimates

(MLE) of d and ρ over 200 replications. The mean of d̂ is very close to 0.4, whereas the

mean of ρ̂ is very close to 0. Both values are far away from the true values. In fact,

the Whittle MLE of d and ρ are very close to those obtained in the empirical studies

when we fit the ARFIMA model to the daily logarithmic RV of stock indices as shown

in Section 6. Although not reported, the decreasing the value of ∆ essentially leads to

no change in the mean of d̂ and the mean of ρ̂.6

2.4 Out-of-sample forecast with fO-U

To forecast future Xt with the fO-U model, let Fs be the σ-algebra generated by fBm

over [0, s]. According to Corollary 3.1 of Fink et al. (2013), the conditional expectation

6We have also tried to use the log-periodogram method of Geweke and Porter-Hudak (1993) to fit
the ARFIMA(1, d, 0) to the simulated data and obtained similar results to the Whittle ML method.
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and conditional variance are

E [Xt|Fs] = Xse
−κ(t−s) + µ(1− e−κ(t−s))− κµ

σ

∫ s

0
ΨH(s, t, v)dv

+
κ

σ

∫ s

0
ΨH(s, t, v)Xvdv +

1

σ

∫ s

0
ΨH(s, t, v)dXv , (2.7)

V ar [Xt|Fs] =
∥∥c (v)1[s,t] (v)∥∥2H,t

−
∥∥ΨH (s, t, v)1[0,s] (v)

∥∥2
H,t

, (2.8)

where c (v) = e−κ(t−v), 1[s,t] (v) = 1 if v ∈ [s, t] and 0 otherwise,

ΨH(s, t, v) =
sin (π (H − 1/2))

π
v1/2−H (s− v)1/2−H

∫ t

s

zH−1/2 (z − s)H−1/2

z − v
σe−κ(t−z)dz,

and

∥∥f (v, t)1[0,t](v)∥∥2H,t
=

2πH (H − 1/2)
∫ t
0 s

1−2H

(∫ t
s

rH−1/2f(r,t)1[0,t](r)

(r−s)3/2−H dr

)2

ds

Γ (2− 2H) sin (π (H − 1/2)) Γ2 (H − 1/2)
. (2.9)

By the Gaussian property of Xt, the h-step-ahead predictor of RVt = exp(Xt) is

R̂V t+h = exp

(
E [Xt+h|Ft] +

1

2
V ar [Xt+h|Ft]

)
. (2.10)

When only discrete-sampled data is available, say at periods ∆, 2∆, ..., n∆, (n +

1)∆, ..., (n + m)∆, we need to discrete the expression of E [Xt|Fs] and V ar [Xt+h|Ft].

Let s = n∆ and t = (n + m)∆. Since ΨH (s, t, v) is a deterministic function, we can

discretize E [Xt|Fs] using the Euler scheme:

E [Xt|Fs] = X−κ(t−s)
s e−κ(t−s) + µ(1− e−κ(t−s))− κµ

σ

∫ s

0
ΨH(s, t, v)dv

+
κ

σ

∫ s

0
ΨH(s, t, v)Xvdv +

1

σ

∫ s

0
ΨH(s, t, v)dXv

≈ Xse
−κ(t−s) + µ(1− e−κ(t−s))− κµ

σ

n∑
i=1

ΨH(s, t, i∆)∆

+
κ

σ

n∑
i=1

ΨH(s, t, i∆)Xi∆∆+
1

σ

n∑
i=1

ΨH (s, t, i∆)
(
X(i+1)∆ −Xi∆

)
,

where

ΨH(s, t, v) ≈ sin (π (H − 1/2))

π
v1/2−H (n∆− v)1/2−H

×
m+n∑
j=n+1

(j∆)H−1/2 (j∆− n∆)H−1/2

j∆− v
σ∆e−κ((n+m)∆−j∆) . (2.11)
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To discretize the expression of V ar [Xt|Fs], following Fink et al. (2013), for an

interval [i∆, (i + 1)∆] where i = 0, . . . , n +m − 1, taking a partition i∆ = ui0 ≤ ui1 ≤
· · · ≤ uip = (i+ 1)∆ with p ∈ N ,7 we have∫ t

0
s1−2H

(∫ t

s

rH−1/2c (r)1[s,t] (r)

(r − s)3/2−H
dr

)2

ds

=
n+m+l−1∑

i=0

∫ (i+1)∆

i∆
s1−2H

(∫ t

s

rH−1/2c (r)1[s,t] (r)

(r − s)3/2−H
dr

)2

ds

≈
n+m+l−1∑

i=0

[
((i+ 1)∆)1−2H − (i∆)1−2H

] [ p−1∑
j=1

[(
uij+1 − i∆

)H− 1
2 −

(
uij − i∆

)H− 1
2

]

×

(
1

H − 1
2

)2
(
uij

)H− 1
2
c
(
uij

)
+
(
uij+1

)H− 1
2
c
(
uij+1

)
2

]2
.

Substituting the above result into (2.9), we obtain

∥∥c (r)1[s,t] (r)∥∥2H,t
≈
πH (2H − 1)

∑n+m+l−1
i=0

[
((i+ 1)∆)1−2H − (i∆)1−2H

]
4Γ (2− 2H) sin (π (H − 1/2)) Γ2 (H + 1/2)

×

[
p−1∑
j=1

[(
uij+1 − i∆

)H− 1
2 −

(
uij − i∆

)H− 1
2

]

×
[(
uij
)H− 1

2 c
(
uij
)
+
(
uij+1

)H− 1
2 c
(
uij+1

)] ]2
. (2.12)

Similarly, we have

∥∥ΨH (s, t, r)1[0,s] (r)
∥∥2
H,t

≈
πH (2H − 1)

∑n+m+l−1
i=0

[
((i+ 1)∆)1−2H − (i∆)1−2H

]
4Γ (2− 2H) sin (π (H − 1/2)) Γ2 (H + 1/2)

×

[
p−1∑
j=1

[(
uij+1 − i∆

)H− 1
2 −

(
uij − i∆

)H− 1
2

]

×
[(
uij
)H− 1

2 ΨH

(
s, t, uij

)
+
(
uij+1

)H− 1
2 ΨH

(
s, t, uij+1

)] ]2
,

where the approximation of ΨH(s, t, v) is given by (2.11).8

7In the empirical studies, we set p = 100.
8To forecast future RV with fBm, using Eq. (5.2) in Gatheral et al. (2018), we have

R̂V t+h = exp
(
B̂H

t+h + 2cv2h2H
)
, (2.13)

where B̂H
t+h is the h-step-ahead predictor of BH

t , c and v2 are defined in Section 5.2 of Gatheral et al.
(2018).
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3 A Two-Stage Estimation Approach

To estimate the parameters in (1.3) based on discrete-sampled data, it is difficult to apply

the ML method to estimate all the parameters simultaneously for the reason that the

errors {εt∆} in (1.2) have a complicated dependence structure when H ̸= 1/2. Following

Phillips and Yu (2009b), we propose a two-stage estimation approach to estimate the

parameters in Model (1.3). Our method is straightforward to implement.

In the first stage, following Lang and Roueff (2001) and Barndorff-Nielsen et al.

(2013), we propose to estimate the Hurst parameter H by using the change-of-frequency

(COF) estimator based on the second-order differences of Xt:

Ĥ =
1

2
log2


n−4∑
i=1

(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2
n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
 , (3.1)

where log2 (·) is the base-2 logarithm,
{
X(i+4)∆ − 2X(i+2)∆ +Xi∆

}n−4

i=1
and{

X(i+2)∆ − 2X(i+1)∆ +Xi∆

}n−2

i=1
are the second-order differences of {Xi∆}ni=1 taken at

two different frequencies.

The square summation of the second-order differences is known to be related to the

smoothness parameter of a stochastic process. Lang and Roueff (2001) consider the

COF estimator for Gaussian processes with stationary increments. Barndorff-Nielsen et

al. (2013) consider the COF estimator for Brownian semi-stationary (BSS) processes

when H ∈ (0, 1/2) ∪ (1/2, 3/4) while Corcuera et al. (2013) consider a modified COF

estimator for BSS processes that is applicable when H ∈ (3/4, 1). All these studies

develop the in-fill asymptotic distribution of the COF estimator. Moreover, Bennedsen

et al. (2019) introduce bootstrap procedures to improve the finite-sample performance

of the COF-based hypothesis testing.

Gaussian processes with stationary increments and BSS processes include many inter-

esting processes, including the fO-U model with κ > 0, as special cases (see, Corollary

4.3 and Remark 4.4 in Barndorff-Nielsen and Basse-O’Connor (2011)). However, the

fO-U model with κ < 0 is not a special case of the Gaussian processes with stationary

increments and BSS processes. While focusing our attention on the simple fO-U model,

we extend the COF estimator to the explosive fO-U model in which κ < 0 and develop

both the in-fill asymptotic and the double asymptotic distributions for all H ∈ (0, 1).

Besides the COF estimator, many other estimators for H have been proposed and

studied in the literature. Comprehensive surveys of these estimators can be found in
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Gneiting et al. (2012), and Bardet (2018). While the COF estimator may not be statisti-

cally efficient, we consider it for the following reasons. First, it is easy to implement and

performs well in finite samples. Second, we can develop its asymptotic distribution for

all values of H and κ. Third, its asymptotic variance has an analytical expression, which

depends only on H. Hence, statistical inference of H can be made without knowing the

values of the other parameters in the model.

In the second stage, assuming Model (1.3) is stationary, we estimate the other pa-

rameters, σ, µ, κ using the following method-of-moments estimators:

σ̂ =

√√√√√√
n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
n
(
4− 22Ĥ

)
∆2Ĥ

, (3.2)

µ̂ =
1

n

n∑
i=1

Xi∆, (3.3)

κ̂ =


n

n∑
i=1

X2
i∆ −

(
n∑

i=1
Xi∆

)2

n2σ̂2ĤΓ
(
2Ĥ
)


−1/(2Ĥ)

. (3.4)

Note that σ̂ depends on Ĥ obtained in the first stage and κ̂ depends on both σ̂ and Ĥ.

The estimators in the second stage are based on a set of moment conditions. When

∆ is small, X(i+2)∆− 2X(i+1)∆+Xi∆ = σ
(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

)
+Op

(
∆1+H

)
. It

is well studied in the literature that, when ∆ = 1, the process
{
BH

i+2 − 2BH
i+1 +BH

i

}n
i=1

is stationary and ergodic with mean zero and variance 4− 22H for any H ∈ (0, 1). Using

the self-similarity property of BH
t , we have

V ar
(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)
= σ2

(
4− 22H

)
∆2H + o

(
∆2H

)
,

which justifies the estimator of σ2 given in (3.2). The estimators µ̂ and κ̂ come from the

expressions of the unconditional mean and variance of Xi∆ given in (2.3).

Our estimators µ̂ and κ̂ can be regarded as the discrete-time version of the ergodic-

type estimators of κ and µ of Xiao and Yu (2019a, b). However, since Xiao and Yu

(2019a, b) assume that σ2 and H are known and a continuous record of {Xt} is observed,

we have to modify their estimators by (i) replacing σ and H with σ̂ and Ĥ; (ii) replacing

the Riemann integral with the Riemann sum.

There is somewhat related but separate literature that focuses on estimating κ in

the fO-U process. Almost all studies in this literature assume that H is known. When σ
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and H are known and a continuous record of Xt is available over the time interval [0, T ],

Kleptsyna and Le Breton (2002) and Tanaka et al. (2020) obtain expressions for the ex-

act MLE of κ which involve stochastic integrals. Replacing these stochastic integrals by

corresponding Riemann sums calculated from discrete-time observations {Xi∆}, Tudor
and Viens (2007) introduce an approximate MLE of κ with discrete-sampled data. How-

ever, the approximate MLE is challenging to implement, and its limiting distribution is

unknown. Moreover, when σ and H are unknown, how to obtain an approximate MLE

from discrete-sampled data remains as an unsolved problem. Bishwal (2011) proposes a

minimum contrast (MC) estimator of κ. Hu and Nualart (2010) and Hu et al. (2019) de-

velop the least-squares (LS) estimator of κ and the ergodic type estimator of κ. Tanaka

(2013, 2015) and Xiao and Yu (2019a, b) extend these estimators from the stationary

case with κ > 0 to the non-stationary case with κ ≤ 0. When discrete-time observations

of {Xt} are available, the MC, LS, and ergodic type estimators have been studied by

Ludeña (2004), Es-Sebaiy (2013) and Hu et al. (2019), respectively. A critical difference

from these studies is that our study does not assume H is known when estimating κ.

For practical applications, it is important to assume that H is unknown when esti-

mating other parameters. Moreover, it is important to estimate parameters based on a

discrete record of data. It is because we estimate H and other parameters in the model

based on a discrete record of data, we can examine the performance of fO-U model in

empirical studies.

The asymptotic distribution of LS estimator of κ has been derived in the O-U model

(H is assumed to be 1/2). For example, assuming κ > 0, Tang and Chen (2009) obtain

the long-span and double asymptotic distributions of MLE of κ. Assuming κ < 0, Wang

and Yu (2016) obtain the double asymptotic distribution of the LS estimator of κ. We

extend the asymptotics of κ from the O-U model to the fO-U model.

4 Asymptotic Theory

The large-sample theory of Ĥ and σ̂ defined in (3.1) and (3.2) is developed in Section

4.1. We first show that Ĥ and σ̂ are consistent as long as T∆ → 0 and n = T/∆ → ∞,

a condition that is satisfied under either (i) the in-fill asymptotic scheme where ∆ → 0

with a fixed T ;9 or (ii) the double asymptotic scheme where ∆ → 0 and T → ∞
9The relevance and superiority of the in-fill asymptotic theory relative to the long-span asymptotic

theory have been well documented in econometrics, even when the available frequency is daily, weekly
or monthly; see, Yu (2014) and Zhou and Yu (2015), Jiang et al. (2018, 2021) for further details.
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simultaneously with T diverging at a lower rate than that of 1/∆.10 In Section 4.2, we

show that T → ∞ is a necessary condition for the consistency of µ̂ and κ̂ defined in (3.3)

and (3.4) and report the double asymptotic theory of µ̂ and κ̂.

4.1 Asymptotic theory of Ĥ and σ̂

Theorem 4.1 Let Ĥ and σ̂ be the estimators defined by (3.1) and (3.2) for Model (1.3).

For all H ∈ (0, 1), when T∆ → 0 and n = T/∆ → ∞, it has

(a) Ĥ
p→ H and

√
n
(
Ĥ −H

)
d→ N

(
0,

Σ11 +Σ22 − 2Σ12

(2 log 2)2

)
. (4.1)

(b) σ̂
p→ σ and

√
n

log (1/∆)
(σ̂ − σ)

d→ N
(
0,

Σ11 +Σ22 − 2Σ12

(2 log 2)2
σ2
)
, (4.2)

where

Σ11 = 2 + 22−4H
∞∑
j=1

(
ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|

)2
, (4.3)

Σ12 = 21−2H

4(ρ1 + 1)2 + 2

∞∑
j=0

(ρj+2 + 2ρj+1 + ρj)
2

 , (4.4)

Σ22 = 2 + 4
∞∑
j=1

ρ2j , (4.5)

with

ρj =
1

2 (4− 22H)

(
− |j + 2|2H + 4 |j + 1|2H − 6 |j|2H + 4 |j − 1|2H − |j − 2|2H

)
. (4.6)

Remark 4.1 The asymptotics of Ĥ and σ̂ apply to all H ∈ (0, 1). Moreover, they apply

to all κ, including κ > 0, κ = 0, and κ < 0.

Remark 4.2 It can be proved that ρj = O
(
j2H−4

)
as j → ∞. Hence, for any H ∈

(0, 1), the sequence {ρj}∞j=1 is square summable, ensuring that the infinite sums in Σ11,

Σ12, and Σ22 are all finite. Using the mean value theorem for integrals repeatedly, we

have, as j → ∞,

2
(
4− 22H

)
ρj

10The consistency of Ĥ only requires ∆ → 0. In other words, even when T diverges faster than 1/∆,

violating the condition T∆ → 0, Ĥ is still consistent as long as ∆ → 0.
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Figure 2: Asymptotic variance of
√
n
(
Ĥ −H

)
as a function of H ∈ (0, 1) .

=2H
{
− (j + 1 + λ1)

2H−1 + 3 (j + λ2)
2H−1 − 3 (j − 1 + λ3)

2H−1 + (j − 2 + λ4)
2H−1

}
=O

(
j2H−4

)
,

where {λs}6s=1 are real numbers in the interval (0, 3).

Remark 4.3 Figure 2 plots the values of the asymptotic variance of
√
n
(
Ĥ −H

)
for

H ∈ (0, 1). It shows that the asymptotic variance of
√
n
(
Ĥ −H

)
is a decreasing func-

tion in H over the interval H ∈ (0, 1).

Remark 4.4 It is worth mentioning that the asymptotic variance of Ĥ only depends on

H while the asymptotic variance of σ̂ only depends on H and σ. This feature greatly

facilitates statistical inference about H and σ because H and σ can be consistently esti-

mated when T is fixed but κ and µ cannot. If an alternative estimator of H is used, as

long as the rate of convergence remains to be
√
n,

√
n (σ̂ − σ) / (σ log (∆)) should have

the same limiting distribution.

When H = 1/2, Model (1.3) becomes the O-U model which enjoys the Markov

property. Whereas, ifH ̸= 1/2, Model (1.3) does not have the Markov property anymore.

To facilitate the test of the hypothesis H = 1/2, Corollary 4.2 gives the value of the

asymptotic variance of
√
n
(
Ĥ − 1/2

)
. Putting H = 1/2 into the formulae given in

Theorem 4.1, we get that ρ0 = 1, ρ1 = −1/2, ρj = 0 for j ≥ 2, Σ11 = 7/2, Σ12 = 3/2,

and Σ22 = 3, and then Corollary 4.2 is obtained directly and reported below.

Corollary 4.2 When H = 1/2, we have, as T∆ → 0 and n = T/∆ → ∞,

√
n
(
Ĥ − 1/2

)
d→ N

(
0,

7

8 (log 2)2

)
.
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4.2 Asymptotic theory of µ̂ and κ̂

To develop the asymptotic theory of µ̂ and κ̂ defined in (3.3) and (3.4), we need the

double asymptotic scheme where T → ∞ and ∆ → 0. We may also need a condition to

govern the relative divergence/convergence rates of T and ∆.

Theorem 4.3 Let µ̂ be the estimator of µ defined in (3.3) for Model (1.3) with κ > 0.

For all H ∈ (0, 1), when T → ∞ and ∆ → 0, we have µ̂
p→ µ. If, in addition,

T 1−H∆H → 0, then

T 1−H (µ̂− µ)
d→ N

(
0, σ2/κ2

)
. (4.7)

Theorem 4.4 Let κ̂ be the estimator of κ defined in (3.4) for Model (1.3) with κ > 0.

For all H ∈ (0, 1), when T → ∞ and T∆ → 0, we have κ̂
p→ κ. If, in addition,

(a) for H ∈ (0, 3/4),
√
T∆H → 0, then

√
T (κ̂− κ)

d→ N (0, κϕH) , (4.8)

with

ϕH =


1

4H2

[
(4H − 1) + 2Γ(2−4H)Γ(4H)

Γ(2H)Γ(1−2H)

]
if H ∈ (0, 12)

4H−1
4H2

[
1 + Γ(3−4H)Γ(4H−1)

Γ(2−2H)Γ(2H)

]
if H ∈ [12 ,

3
4)

;

(b) for H = 3/4,
√
T∆H/ log (T ) → 0, then

√
T

log(T )
(κ̂− κ)

d→ N
(
0,

16κ

9π

)
;

(c) for H ∈ (3/4, 1), T 2−2H∆H → 0, then

T 2−2H (κ̂− κ)
d→ −κ2H−1

HΓ(2H + 1)
R ,

where R is the Rosenblatt random variable whose characteristic function is given by

c(s) = exp

(
1

2

∞∑
k=2

(
2
√
−1sψ(H)

)k ak
k

)
,

with ψ(H) =
√
H(H − 1/2) and

ak =

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
|x1 − x2|H−1 · · · |xk−1 − xk|H−1 |xk − x1|H−1 dx1 · · · dxk.

Remark 4.5 If an alternative estimator of H is used, as long as the rate of convergence

remains to be
√
n and the condition that governs the relative divergence/convergence rates

of T and ∆ is imposed, we expect that Theorems 4.3 and 4.4 continue to hold.
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Figure 3: Plot of ϕH as a function of H.

Remark 4.6 Note that ϕH in Part (a) of Theorem 4.4 is continuous at H = 1/2. Using

the formula Γ (z + 1) = zΓ (z), ϕH for H ∈ (0, 1/2) can be rewritten as

ϕH =
1

4H2

[
(4H − 1) +

Γ (3− 4H) Γ (4H)

Γ (2H) Γ (2− 2H)

]
.

Hence, when H → 1/2 from the left side of 1/2, we have

lim
H↗1/2

ϕH =

[
1 +

Γ (1) Γ (2)

Γ (1) Γ (1)

]
= 2.

If H = 1/2, ϕH = 2. Hence, ϕH is continuous at H = 1/2.

Remark 4.7 When H = 1/2 and is known, the double asymptotic distribution of the

MLE of κ is known to be N (0, 2κ); see, for example, Tang and Chen (2009). Since ϕH =

2 when H = 1/2, our method-of-moments estimator κ̂ has the same limiting distribution

as the MLE in this case. Therefore, κ̂ is asymptotically efficient when H = 1/2.

Remark 4.8 Figure 3 plots ϕH as a function of H that reaches the minimum at H =

1/2. Over the interval (0, 1/2], ϕH is decreasing in H. Whereas, over the interval

[1/2, 3/4), ϕH monotonically increases to +∞ as H → 3/4. This feature suggests that

the convergence rate of κ̂ − κ should be lower than 1/
√
T when H = 3/4. Part (b) of

Theorem 4.4 shows that the convergence rate of κ̂− κ is log (T ) /
√
T when H = 3/4.

5 Monte Carlo Studies

This section checks the finite-sample performance of the proposed estimators and the

developed asymptotic theory with data simulated from Model (1.3), various values of H,

σ, µ and κ, and different combinations of the sampling frequency ∆ and the time span

T . The data simulation and parameter estimation steps are summarized as follows:
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(i) Set values for parameters H, µ, κ, σ, in Model (1.3).

(ii) Choose the values of ∆ and T , and hence, the number of observations for parameter

estimation n = T/∆.

(iii) For any given ∆, choose the value of M > 1 to get a finer grid

{0,∆/M, 2∆/M, . . . ,∆; (M + 1)∆/M, (M + 2)∆/M, . . . , 2∆; . . . , n∆} .

Then, generate a series of fractional Gaussian noise
{
BH

jγ −BH
(j−1)γ

}nM

j=1
by using

fast Fourier transformation at the finer grid γ := ∆/M .11

(iv) The Euler approximation of Model (1.3) over the interval ((j − 1) γ, jγ) takes the

form of

Xjγ = X(j−1)γ + κ
(
µ−X(j−1)γ

)
γ + σ

(
BH

jγ −BH
(j−1)γ

)
. (5.1)

Starting from any pre-determined initial value X0, the time series {Xjγ}nMj=1 is

generated recursively based on Equation (5.1) with the simulated fractional Gaus-

sian noise series
{
BH

jγ −BH
(j−1)γ

}nM

j=1
obtained in Step 3. A subset of {Xjγ}nMj=1 is

{Xi∆}ni=0, which gives the simulated sample path of the process Xt with the target

sampling interval ∆.12

11Details of the use of fast Fourier transformation to generate a series of fractional Gaussian noise
can be found in Paxson (1997). Other methods for simulating fBm can be seen in a survey paper by
Coeurjolly (2000).

12For any target sampling interval ∆, a representation of Model (1.3) over the interval ((i− 1)∆, i∆)
is

Xi∆ = X(i−1)∆ + κµ∆− κ

∫ i∆

(i−1)∆

Xtdt+ σ
(
BH

i∆ −BH
(i−1)∆

)
. (5.2)

If we let γ = ∆ (i.e. M = 1), Equation (5.1) for simulating the data becomes

Xi∆ = X(i−1)∆ + κµ∆− κX(i−1)∆∆+ σ
(
BH

i∆ −BH
(i−1)∆

)
,

which is the same as Equation (5.2) but with the integral
∫ i∆

(i−1)∆
Xtdt replaced by X(i−1)∆∆. If

we choose an M > 1, by dividing the interval ((i− 1)∆, i∆) into M equally-spaced subintervals as
∪iM

j=(i−1)M+1 ((j − 1) γ, jγ] and simulating data based on Equation (5.1), then the simulated data are

Xi∆ = X(i−1)∆ + κµ∆− κ

iM∑
j=(i−1)M+1

X(j−1)γγ + σ
(
BH

i∆ −BH
(i−1)∆

)
,

which is the same as Equation (5.2) but with the integral replaced by the corresponding Riemann sum,

i.e.,
∫ i∆

(i−1)∆
Xtdt ≈

∑iM
j=(i−1)M+1 X(j−1)γγ. Clearly, the larger M is, the smaller the approximation error

generated by using Riemann sums. When ∆ is small, the approximation error can be ignored even when
M is a relatively small number. Our idea is the same as the in-fill technique used in Elerian et al. (2001).
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Table 2: Finite sample properties of Ĥ. Values reported in parentheses corresponds to the

asymptotic theory in (4.1). We set M = 8, and fix κ = 0.2366, µ = 2.4165, and σ = 0.7007.

Value of H 0.1 0.2 0.3 0.5 0.7 0.8 0.9

Panel A: T = 4

∆ = 1
256

Mean 0.0984 0.1983 0.2982 0.4982 0.6981 0.7981 0.8981

SD
0.0470 0.0460 0.0449 0.0423 0.0392 0.0375 0.0357
(0.0474) (0.0461) (0.0449) (0.0421) (0.0390) (0.0374) (0.0356)

∆ = 1
512

Mean 0.0995 0.1995 0.2994 0.4993 0.6992 0.7991 0.8991

SD
0.0334 0.0326 0.0319 0.0301 0.0280 0.0269 0.0256
(0.0335) (0.0326) (0.0317) (0.0298) (0.0276) (0.0264) (0.0252)

Panel B: T = 16

∆ = 1
256

Mean 0.0995 0.1995 0.2994 0.4994 0.6993 0.7993 0.8993

SD
0.0239 0.0232 0.0225 0.0211 0.0196 0.0187 0.0179
(0.0237) (0.0230) (0.0224) (0.0210) (0.0195) (0.0187) (0.0178)

∆ = 1
512

Mean 0.0998 0.1998 0.2998 0.4998 0.6998 0.7998 0.8998

SD
0.0166 0.0161 0.0157 0.0147 0.0137 0.0131 0.0125
(0.0167) (0.0163) (0.0158) (0.0149) (0.0138) (0.0132) (0.0126)

(v) Using the simulated data {Xi∆}ni=0, estimate H, µ, κ, and σ based on the estimators

defined in (3.1), (3.2), (3.3), and (3.4), respectively.

(vi) Replicate the above procedure 10,000 times.

In the first experiment, we investigate the finite-sample properties of Ĥ defined by

(3.1) under various combinations of the sampling frequency ∆ and the time span T .

We let the true value of H vary from 0.1 to 0.9, and set κ = 0.2366, µ = 2.4165, and

σ = 0.7007, which are the estimated values when Model (1.3) is fitted to the logarithmic

daily RV of S&P 500 index. Simulation results are reported in Table 2, including the

mean and SD. For comparison, we also report, in parentheses, the SD implied by the

asymptotic theory given by (4.1).

Table 2 reveals several features. First, for all combinations of ∆, T , and H, the

estimator Ĥ always has a very small bias and a small SD. This suggests that H can

be accurately estimated by Ĥ. Second, the bias and the SD become smaller when the

sampling interval ∆ decreases, or the time span T increases. This finding supports the

asymptotic theory of Ĥ given by (4.1). Third, the finite-sample SD is very close to the

asymptotic counterpart, suggesting that the asymptotic distribution derived in Theorem

4.1 provides excellent approximations to finite-sample distribution. Since our interest in

this paper is to model logarithmic daily RV, ∆ = 1/256 is more relevant.

In the second experiment, we set κ = 0.2366, µ = 2.4165, σ = 0.7007, T = 16,

∆ = 1/256, and let H vary from 0.1 to 0.7. Table 3 reports the estimation results
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Table 3: Finite sample properties of the estimates of the parameters (H,σ, µ, κ) with
various values of H, T = 16 and ∆ = 1/256. Values reported in parentheses are the
asymptotic SDs implied by (4.1) for Ĥ, (4.2) for σ̂, (4.7) for µ̂, and (4.8) for κ̂.

H σ µ κ :::: H σ µ κ

True value 0.1000 0.7007 2.4165 0.2366 0.3000 0.7007 2.4165 0.2366

Mean 0.0995 0.7046 2.4305 0.5847 0.2994 0.7040 2.4266 0.4975

SD
0.0239 0.0926 0.2315 0.8977 0.0225 0.0900 0.3813 0.4089
(0.0237) (0.0921) (0.2442) (0.2288) (0.0224) (0.0872) (0.4252) (0.1865)

True value 0.5000 0.7007 2.4165 0.2366 0.7000 0.7007 2.4165 0.2366

Mean 0.4994 0.7037 2.4242 0.5395 0.6993 0.7040 2.4229 0.6120

SD
0.0211 0.0890 0.6284 0.3455 0.0196 0.0925 1.0390 0.3467
(0.0210) (0.0819) (0.7403) (0.1719) (0.0195) (0.0759) (1.2890) (0.2398)

of each parameter (H, σ, µ, and κ) and reveals several features. First, σ and µ can

always be accurately estimated with negligible biases and small SDs. When the value

of H increases from 0.1 to 0.7, the SD of σ̂ decreases, as predicted by the asymptotic

theory given by (4.2) and by Figure 2, which shows that the asymptotic variance of σ̂

is a decreasing function of H.13 Furthermore, as H increases, the SD of µ̂ increases.

This observation is also supported by the asymptotic theory given in (4.7), which shows

that the convergence rate of µ̂ is T 1−H , hence larger values of H worsen the precision

of µ̂. Second, the parameter κ can be estimated with less precision. The SDs are

comparatively large, and the bias in κ̂ are noticeable. Also, the finite-sample SDs are

very different from the asymptotic SDs. The difficulties in estimating κ have been well

studied for continuous-time models driven by standard Brownian motion; see, Phillips

and Yu (2005, 2009a) and Wang et al. (2011). Tang and Chen (2009) and Yu (2012)

derive analytical expressions to approximate the bias in the LS of κ when H = 1/2. Our

simulation results show that the bias in estimating κ continues to exist for continuous-

time models driven by fBm and depends not only on κ but also on H in a nonlinear

fashion. This finding is supported by the asymptotic theory given in Theorem 4.4, which

shows that both the convergence rate and the asymptotic variance of κ̂ depend crucially

on H.

In the third experiment, we fix H to 0.1299 (which is the estimated H for the S&P500

reported later) and allow the other parameters (σ, µ, and κ) to take various values to

determine how a change in one parameter affects the estimates of the other parameters.

13While the asymptotic variance of σ̂ does not strictly monotonically decrease in H, when we increase
the number of replications to 100,000, the strict monotonicity is found.
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Table 4: Estimates of (H,σ, µ,κ) when H = 0.1299, T = 16, ∆ = 1/256, and (σ, µ,κ) take

various values. Values reported in parentheses are the asymptotic SDs implied by (4.1)
for Ĥ, (4.2) for σ̂, (4.7) for µ̂, and (4.8) for κ̂.

H σ µ κ :::: H σ µ κ

Panel A: σ varies

True value 0.1299 0.3000 2.4165 0.2366 0.1299 0.5000 2.4165 0.2366
Mean 0.1294 0.3016 2.4302 0.5292 0.1294 0.5027 2.4300 0.5312

SD
0.0237 0.0394 0.1068 0.7056 0.0237 0.0657 0.1780 0.7062
(0.0235) (0.0391) (0.1136) (0.2199) (0.0235) (0.0652) (0.1893) (0.2199)

True value 0.1299 1.0000 2.4165 0.2366 0.1299 2.0000 2.4165 0.2366
Mean 0.1294 1.0055 2.4293 0.5319 0.1294 2.0110 2.4281 0.5321

SD
0.0237 0.1315 0.3561 0.7061 0.0237 0.2631 0.7123 0.7059
(0.0235) (0.1304) (0.3786) (0.2199) (0.0235) (0.2609) (0.7573) (0.2199)

Panel B: µ varies

True value 0.1299 0.7007 1.0000 0.2366 0.1299 0.7007 2.0000 0.2366
Mean 0.1294 0.7045 1.0049 0.5321 0.1294 0.7045 2.0108 0.5318

SD
0.0237 0.0922 0.2495 0.7060 0.0237 0.0922 0.2495 0.7062
(0.0235) (0.0914) (0.2653) (0.2199) (0.0235) (0.0914) (0.2653) (0.2199)

True value 0.1299 0.7007 3.0000 0.2366 0.1299 0.7007 4.0000 0.2366
Mean 0.1294 0.7045 3.0166 0.5314 0.1294 0.7045 4.0225 0.5307

SD
0.0237 0.0922 0.2495 0.7062 0.0237 0.0922 0.2495 0.7061
(0.0235) (0.0914) (0.2653) (0.2199) (0.0235) (0.0914) (0.2653) (0.2199)

Panel C: κ varies

True value 0.1299 0.7007 2.4165 0.1000 0.1299 0.7007 2.4165 0.5000
Mean 0.1294 0.7045 2.6585 0.4307 0.1294 0.7046 2.4160 0.7737

SD
0.0237 0.0921 0.4840 0.6292 0.0237 0.0922 0.1236 0.8866
(0.0235) (0.0914) (0.6278) (0.1430) (0.0235) (0.0914) (0.1255) (0.3198)

True value 0.1299 0.7007 2.4165 2.5000 0.1299 0.7007 2.4165 12.5000
Mean 0.1294 0.7048 2.4163 2.8762 0.1289 0.7044 2.4164 12.7455

SD
0.0237 0.0922 0.0253 2.2122 0.0237 0.0922 0.0058 6.2194
(0.0235) (0.0914) (0.0251) (0.7151) (0.0235) (0.0914) (0.0050) (1.5990)
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Panel A of Table 4 reports the simulation results when κ = 0.2366, µ = 2.4165, and σ

varies from 0.3 to 2. The simulation results confirm the developed asymptotic theory

that an increase in σ should not affect estimation of H and κ, but it should increase the

variance of σ̂ and µ̂.

Panel B of Table 4 reports the simulation results when κ = 0.2366, σ = 0.7007, and

µ varies from 1 to 4. As predicted by the asymptotic theory, the estimation results of

H, σ, and κ and the SD of µ̂ all remain the same when the value of µ changes.

Panel C of Table 4 reports the simulation results when µ = 2.4165, σ = 0.7007, and

κ varies from 0.1 to 12.5. It shows that the estimation results for H and σ are insensitive

to the change in κ, whereas when the value of κ increases, the SD of µ̂ decreases and

the SD of κ̂ increases. Again, these findings are consistent with the suggestions of the

developed asymptotic theory.

6 Empirical Studies

This section reports empirical studies where we assume the logarithmic daily RV of eq-

uities follows Model (1.2) and hence, under the in-fill scheme, Model (1.3). We apply

the proposed model, the estimation method, and the new asymptotic theory to each

logarithmic daily RV series and test the hypothesis of H = 0.5. We also compare the

out-of-sample performance of Model (1.3) relative to five competing models, namely

the random walk (RW), AR(1), HAR of Corsi (2009), ARFIMA(1, d, 0), and fBm in

forecasting RV. When forecasting future RV, we replace the underlying parameters in

each candidate model with their estimates. Then, we evaluate the forecasting perfor-

mance of the competing models based on the root mean squared error (RMSE), the

Mincer-Zarnowitz-R2 (MZ-R2) of Mincer and Zarnowitz (1969).14 We also check the

statistical significance of the forecasts from these competing models using the Diebold-

Mariano (DM) test of Diebold and Mariano (1995), and the model confidence set (MCS)

of Hansen et al. (2011). When comparing the nested models, we use the Clark and West

(CW) test of Clark and West (2007). In the online supplement, we apply our method to

the logarithmic daily bipower variation (BV) and the logarithmic daily realized kernel

(RK) for the equities. We show that the empirical results reported in the main text

continue to hold.

14As in Andersen et al. (2003), we project the actual RV data on a constant and each of the competing
forecasted series. The MZ-R2 is the coefficient of determination of the projection that captures the
correlation between the actual and forecast series, and hence, is often used to compare the performance
of competing forecasts.
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Figure 4: Time series plots of log(100
√
RV × 252) for the three equity series.

Table 5: Empirical results for log(100
√
RV × 252) of S&P 500, DJIA, and NASDAQ 100.

Name H σ µ κ Tn

S&P 500
.1299 .7007 2.4165 .2366

3.3027
(.0876, .1722) (.6953, .7061) (1.9869, 2.8460) (.2122, .2609)

DJIA
.0829 .5770 2.4296 .0154

3.1366
(.0399, .1258) (.5726, .5815) (-2.2950, 7.1542) (.0087, .0220)

NASDAQ 100
.2269 1.0482 2.5166 2.9182

2.4605
(.1858, .2678) (1.0403, 1.0559) (2.4468, 2.5862) (2.8411, 2.9952)

We first fit Model (1.3) to three logarithmic daily RV series for the S&P 500, DJIA,

and NASDAQ 100. The three RV series are obtained from the Oxford-Man realized

library and based on 5-minute returns.15 The sample period is from January 3, 2000 to

December 31, 2019. Figure 4 plots three time series of log
(
100

√
RV × 252

)
which is the

logarithmic annualized RV.

Table 5 reports the estimation results for the fO-U model, including the point esti-

mates and the 95% confidence intervals (CIs) for all four parameters, and the CUSUM

statistic Tn. The CIs are obtained from our asymptotic theory with the asymptotic vari-

ances obtained by the plug-in method. In all cases, the estimated H is much less than

0.5, ranging between 0.0829 for DJIA to 0.2269 for NASDAQ 100. The 95% CIs suggest

that we have strong evidence against H ≥ 1/2. In all cases, the estimated κ is positive

but very close to zero, but the 95% confidence intervals of κ exclude zero. Hence, each

15The data are obtained from https://realized.oxford-man.ox.ac.uk/.
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Figure 5: Rolling-window estimates of H for log(100
√
RV × 252). The smoothed version

is a simple moving average filter using 100 values on both sides.

RV series is better modeled by fO-U with H < 1/2 than by fO-U with H > 1/2, fBm

and O-U.

To test if there are structural breaks in H, we employ the CUSUM test, Tn, of

Bibinger (2020) that converges to the Kolmogorov-Smirnov limit law for any H ∈ (0, 1).

The CUSUM test Tn rejects the hypothesis of a constant H.16 To show the degree

of instability in Ĥ, following Bennedsen et al. (2017), we estimate H based on rolling

windows, each of which has 504 observations. Figure 5 plots the rolling-window estimates

of H, a smoothed version of the estimates, and the median value of the estimates.

Although Ĥ varies over time, their values always lie in the interval [0.1, 0.25]. The

results are qualitatively the same for different window sizes or for expanding windows.

We now compare performance of fO-U, fBm, ARFIMA, HAR, AR(1), and RW in

forecasting RV. To evaluate the out-of-sample forecasting performance, we split the sam-

ple period into two periods. The first period is between January 3, 2000 and December

31, 2018 and the second period is between January 2, 2019 and December 31, 2019.

On each day in the second period, h-day-ahead (with h = 1, . . . , 10) forecasts of RV are

obtained from six competing models, each of which is estimated using data from January

3, 2000 to the day before.

Tables 6-7 report the RMSE and the MZ-R2 of six competing models for h-day-

ahead-forecast of RV with h = 1, 2, . . . , 10 with the best result highlighted in boldface

for each h. For RMSE, we report the ratio of RMSE of each candidate model and that

16The critical value at the 5% level is 1.3581/
√
n. When n = 5071, it is 0.0192.
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of HAR. Most importantly, regardless of the RV series and forecasting horizon, fO-U

always performs the best, followed by fBm and then by ARFIMA. ARFIMA model

always outperforms the RW, AR(1), HAR models in both criteria and by a wide margin.

This result confirms the finding of Andersen et al. (2003) that the ARFIMA model can

generate accurate volatility forecasts.

Table 6: The ratio of RMSE of different models and that of HAR for h-day-ahead-forecast of

RV.

h 1 2 3 4 5 6 7 8 9 10

Panel A: S&P 500

RW 1.0231 1.0733 1.1629 1.1940 1.2526 1.2745 1.2986 1.2782 1.2742 1.2956
AR(1) 1.0103 1.0331 1.0724 1.0362 1.0663 1.0521 1.0472 1.0000 1.0274 1.0803
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ARFIMA 0.9000 0.9125 0.9367 0.9232 0.9317 0.9279 0.9312 0.9098 0.9068 0.9197
fBm 0.8974 0.9078 0.9299 0.9147 0.9213 0.9158 0.9175 0.8947 0.8885 0.9015
fO-U 0.8897 0.9054 0.9276 0.9126 0.9151 0.9118 0.9096 0.8891 0.8848 0.8960

Panel B: DJIA

RW 1.0379 1.1272 1.2902 1.3729 1.4416 1.4356 1.4978 1.4470 1.4283 1.4177
AR(1) 1.0352 1.0050 1.1000 1.0855 1.1005 1.0378 1.1143 1.0064 1.0594 1.1024
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ARFIMA 0.9106 0.9077 0.9585 0.9549 0.9673 0.9422 0.9753 0.9364 0.9385 0.9458
fBm 0.9024 0.9002 0.9488 0.9454 0.9579 0.9333 0.9619 0.9280 0.9283 0.9317
fO-U 0.8970 0.8953 0.9439 0.9430 0.9533 0.9289 0.9596 0.9237 0.9242 0.9297

Panel C: NASDAQ 100

RW 1.0360 1.0843 1.1704 1.2293 1.2878 1.3250 1.3912 1.3625 1.3511 1.3717
AR(1) 1.0000 1.0752 1.1256 1.1157 1.1237 1.1083 1.1381 1.0438 1.0725 1.1151
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ARFIMA 0.9041 0.9339 0.9574 0.9541 0.9616 0.9563 0.9833 0.9462 0.9485 0.9679
fBm 0.8993 0.9248 0.9507 0.9476 0.9531 0.9479 0.9749 0.9382 0.9313 0.9434
fO-U 0.8897 0.9157 0.9350 0.9323 0.9382 0.9333 0.9582 0.9223 0.9218 0.9358

To test if forecasts from fO-U are statistically significantly different from those of

competing models, Table 8 reports the DM test based on the squared forecast errors and

the p-value (in parenthesis) with the benchmark being fO-U (boldface means statistically

significant at the 10% level). To save space, we only report the results for HAR, ARFIMA

and fBm in Table 8. In terms of DM, fO-U is always statistically different from HAR,

ARFIMA and fBm at the 10% level, regardless of the RV series and forecasting horizon.

To find out which models contain the best model in the set of competing models, we

implement the MCS of Hansen et al. (2011). The MCS determines which models can be

considered to be statistically superior, and at what level of significance. Table 9 reports

the p-value of the semi-quadratic statistic obtained from 2, 000 bootstrap iterations with

a block length of 12. Values in boldface denote that the model belongs to the confidence
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Table 7: MZ-R2 for h-day-ahead-forecast of RV in different models.

h 1 2 3 4 5 6 7 8 9 10

Panel A: S&P 500

RW 0.3569 0.2732 0.2020 0.1382 0.1095 0.0795 0.0595 0.0332 0.0184 0.0137
AR(1) 0.3935 0.2990 0.2038 0.1570 0.1125 0.0822 0.0603 0.0411 0.0255 0.0153
HAR 0.3941 0.3002 0.2077 0.1593 0.1145 0.0829 0.0633 0.0421 0.0255 0.0162

ARFIMA 0.4444 0.3310 0.2218 0.1634 0.1152 0.0898 0.0687 0.0495 0.0312 0.0184
fBm 0.4447 0.3311 0.2227 0.1685 0.1157 0.0926 0.0805 0.0816 0.0414 0.0198
fO-U 0.4520 0.3353 0.2274 0.1709 0.1237 0.0965 0.0851 0.0869 0.0477 0.0208

Panel B: DJIA

RW 0.2908 0.1991 0.1674 0.1493 0.1292 0.0846 0.0824 0.0465 0.0251 0.0140
AR(1) 0.3307 0.2805 0.1708 0.1565 0.1325 0.1105 0.0848 0.0674 0.0369 0.0161
HAR 0.3317 0.2817 0.1756 0.1617 0.1353 0.1115 0.0878 0.0679 0.0380 0.0168

ARFIMA 0.3722 0.2837 0.1916 0.1662 0.1362 0.1184 0.0926 0.0742 0.0419 0.0185
fBm 0.3770 0.2838 0.1951 0.1689 0.1377 0.1380 0.0945 0.1206 0.0514 0.0210
fO-U 0.3847 0.2908 0.2019 0.1760 0.1430 0.1471 0.0954 0.1344 0.0683 0.0325

Panel C: NASDAQ 100

RW 0.2218 0.1660 0.1509 0.1223 0.0950 0.0848 0.0697 0.0469 0.0196 0.0123
AR(1) 0.2828 0.1888 0.1383 0.1246 0.0979 0.0894 0.0717 0.0599 0.0272 0.0141
HAR 0.2834 0.1898 0.1399 0.1255 0.1048 0.0928 0.0759 0.0746 0.0338 0.0147

ARFIMA 0.3236 0.2221 0.1720 0.1443 0.1110 0.0929 0.0820 0.0856 0.0423 0.0165
fBm 0.3268 0.2281 0.1794 0.1549 0.1224 0.1055 0.0871 0.1030 0.0460 0.0215
fO-U 0.3363 0.2405 0.1945 0.1703 0.1357 0.1183 0.0936 0.1085 0.0517 0.0217

set of the best models. HAR, AR(1), and RW are always rejected regardless of the RV

series and forecasting horizon. In all but two cases, ARFIMA is also rejected. In one

case, fBm is rejected. Most importantly, in no case, fO-U is rejected.

There are nested models in the set of competing models. For example, fO-U nests

fBm, AR(1) and RW. To compare the forecasting performance across nested models,

we calculate MSFE-adjusted statistics and p-values of the CW test of Clark and West

(2007) that account for estimation errors. Table 10 reports the CW test and the p-value

(in parenthesis) with the encompassing model being fO-U (boldface means statistically

significant at the 10% level). According to CW, the performance of fO-U is always

statistically significantly better than RW, AR(1), and fBm, regardless of the RV series

and forecasting horizon.

7 Conclusions

Over the past two decades, the consensus is that the volatility of financial assets displays

long-range dependence. More recently, a new feature named rough volatility has been

documented. In our continuous-time fO-U model, the ACF of RV is jointly determined
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Table 8: DM statistic with fO-U being the benchmark model.

h 1 2 3 4 5 6 7 8 9 10
Panel A: S&P 500

HAR
-3.7063 -3.3613 -3.0482 -3.3732 -5.7227 -3.5121 -5.3147 -4.2277 -5.2174 -4.3701

(0.0001) (0.0003) (0.0011) (0.0003) (0.0000) (0.0002) (0.0000) (0.0000) (0.0000) (0.0000)

ARFIMA
-2.8461 -2.9371 -2.3965 -2.5667 -3.2590 -3.1858 -3.1162 -4.0784 -4.2191 -4.3414

(0.0022) (0.0016) (0.0082) (0.0051) (0.0005) (0.0007) (0.0009) (0.0000) (0.0000) (0.0000)

fBm
-2.5026 -1.7870 -1.9006 -1.5298 -3.1347 -2.7829 -2.6281 -2.3105 -3.0311 -4.0768

(0.0061) (0.0369) (0.0286) (0.0630) (0.0008) (0.0026) (0.0042) (0.0104) (0.0012) (0.0000)
Panel B: DJIA

HAR
-3.5431 -4.2664 -3.5632 -3.1413 -3.5105 -3.5138 -3.1507 -3.6108 -3.3440 -3.5700

(0.0001) (0.0000) (0.0001) (0.0008) (0.0002) (0.0002) (0.0008) (0.0001) (0.0004) (0.0001)

ARFIMA
-3.2895 -3.6539 -2.9467 -2.7869 -2.5570 -3.2736 -2.7536 -2.9251 -3.1646 -3.4715
(0.0005) (0.0001) (0.0016) (0.0026) (0.0052) (0.0005) (0.0029) (0.0017) (0.0007) (0.0002)

fBm
-1.8430 -2.3946 -1.8642 -2.3838 -1.9719 -2.1959 -1.7686 -1.5442 -2.6065 -2.6816

(0.0326) (0.0083) (0.0311) (0.0085) (0.0243) (0.0140) (0.0384) (0.0612) (0.0045) (0.0036)
Panel C: NASDAQ 100

HAR
-3.5700 -4.5170 -4.3910 -3.3634 -3.4575 -3.6766 -3.3347 -3.1904 -3.1106 -4.0507

(0.0001) (0.0000) (0.0000) (0.0003) (0.0002) (0.0001) (0.0004) (0.0007) (0.0009) (0.0000)

ARFIMA
-3.4715 -3.3687 -3.7547 -3.1701 -3.4524 -3.1080 -3.2860 -2.7206 -2.9136 -3.4443

(0.0002) (0.0003) (0.0000) (0.0007) (0.0002) (0.0009) (0.0005) (0.0032) (0.0017) (0.0002)

fBm
-2.6816 -3.3310 -1.9921 -2.4964 -2.4277 -2.9629 -1.5113 -2.3930 -2.6990 -1.7309

(0.0036) (0.0004) (0.0231) (0.0062) (0.0075) (0.0015) (0.0653) (0.0083) (0.0034) (0.0417)

by H and κ at small and moderate lags but solely determined by H when the lag goes

to infinity. Moreover, the smoothness in RV is determined by H. When H < 1/2, the

sample path of fO-U is rough. Although the fO-U model with H < 1/2 and κ taking a

small positive value does not lead long-range dependence asymptotically, it can generate

an ACF that decays slowly at small and moderate lags due to the near unit root feature

in the discretized model.

Our study contributes to the literature by developing an estimation method for

all parameters in the fO-U model based on discrete-sampled observations when the

parameter space forH is (0, 1). In the first stage, H is estimated based on the ratio of two

second-order differences of observations at two frequencies and hence, determined by the

smoothness of the sample path. In the second stage, the other parameters are estimated

by the method of moments. All estimators have closed-form expressions and are easy to

obtain. We also develop the asymptotic distributions for the proposed estimators that

facilitate statistical inference.

Simulations suggest that our two-stage estimators perform well in finite samples. The

method is applied to the logarithmic RV of three equity indices. Empirical studies show

that the logarithmic RV is better modeled by fO-U with H < 1/2 and a small positive

mean-reversion parameter κ. We compare the out-of-sample performance of fO-U with

those of fBm, ARFIMA, RW, AR(1) and HAR in forecasting RV. All statistics considered
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Table 9: p-values of MSC to compare forecasts of RV from six competing models.

h 1 2 3 4 5 6 7 8 9 10

Panel A: S&P 500

RW 0.0005 0.0030 0.0050 0.0060 0.0015 0.0025 0.0005 0.0015 0.0020 0.0010
AR(1) 0.0015 0.0075 0.0085 0.0195 0.0025 0.0030 0.0015 0.0020 0.0025 0.0015
HAR 0.0065 0.0120 0.0185 0.0245 0.0030 0.0180 0.0035 0.0075 0.0030 0.0022

ARFIMA 0.0085 0.1105 0.0320 0.0470 0.1060 0.0654 0.0895 0.0325 0.0212 0.0050
fBm 0.1030 0.1835 0.2325 0.3450 0.1550 0.3245 0.1015 0.1320 0.1022 0.1125
fO-U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel B: DJIA

RW 0.0000 0.0000 0.0000 0.0020 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000
AR(1) 0.0000 0.0000 0.0005 0.0005 0.0025 0.0000 0.0000 0.0005 0.0001 0.0003
HAR 0.0000 0.0010 0.0025 0.0014 0.0095 0.0015 0.0005 0.0005 0.0025 0.0085

ARFIMA 0.0765 0.0060 0.0030 0.0217 0.0239 0.0130 0.0270 0.0235 0.0225 0.0225
fBm 0.1205 0.1175 0.0523 0.1535 0.1870 0.1105 0.2105 0.1980 0.1245 0.1185
fO-U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel C: NASDAQ 100

RW 0.0020 0.0000 0.0000 0.0020 0.0010 0.0005 0.0000 0.0000 0.0000 0.0000
AR(1) 0.0035 0.0005 0.0005 0.0010 0.0060 0.0025 0.0010 0.0005 0.0025 0.0005
HAR 0.0060 0.0025 0.0010 0.0120 0.0085 0.0045 0.0065 0.0240 0.0030 0.0025

ARFIMA 0.0070 0.0035 0.0090 0.0125 0.1458 0.0070 0.0295 0.0045 0.0195 0.0275
fBm 0.1470 0.1245 0.1465 0.2170 0.2260 0.1730 0.1530 0.1515 0.1495 0.1585
fO-U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

suggest that fO-U outperforms the other models for the forecasting horizons considered,

and hence, raise the benchmark for volatility forecast. In the online appendix, the

method is applied to the logarithmic BP and RK of the three equity indices. All the

empirical results continue to hold.

There are several ways to extend our study. First, the estimation method proposed

in the present paper is by no means efficient. How to conduct the full-likelihood-based

inference for the fO-U model from discrete-time observations {Xt∆}nt=1 and how well the

model performs in forecasting RV are among interesting questions. We plan to pursue

this line of research in future work.

Second, our model is not the only one in the literature that disentangles the short-

term from the long-term behavior. Gneiting and Schlather (2004) propose a general

Cauchy process that allows for both types of behavior. Bennedsen et al. (2021) show

how the Cauchy process can decouple the short-term and long-term behavior of volatility.

Unlike fO-U, the Cauchy processes are not self-similar nor BSS. Hence, conceptually they

are more complicated than the fO-U model. Another example is the non-Gaussian O-U

model with infinite activity jumps. It would be interesting to examine the forecasting

performance of fO-U relative to these alternative specifications.
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Table 10: CW test with fO-U being the encompassing model.

h 1 2 3 4 5 6 7 8 9 10

Panel A: S&P 500

RW
5.8431 8.2638 11.1017 12.3055 13.3093 13.7838 14.3113 14.5086 14.6219 14.7257

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

AR(1)
4.9955 5.1822 4.9254 4.8855 6.0645 5.1925 5.7541 5.0158 6.2011 6.7644

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

fBm
2.6120 1.5814 1.6575 1.3153 4.6266 2.6107 4.5480 4.1035 5.1021 4.3290

(0.0045) (0.0569) (0.0487) (0.0942) (0.0000) (0.0045) (0.0000) (0.0000) (0.0000) (0.0000)

Panel B: DJIA

RW
6.5436 10.7224 13.3905 14.6893 15.5466 15.9252 16.3186 16.4104 16.1193 15.8740

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

AR(1)
5.0058 8.7172 7.3277 7.6079 7.5306 6.8555 8.3416 8.1724 9.3732 9.1739

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

fBm
1.9344 4.8768 4.8277 3.0862 4.5777 3.2953 3.0694 2.9148 3.0860 2.6142

(0.0265) (0.0000) (0.0000) (0.0000) (0.0010) (0.0005) (0.0011) (0.0018) (0.0010) (0.0045)

Panel C: NASDAQ 100

RW
5.1952 7.5749 10.1456 11.8752 13.2111 14.0357 14.7021 15.0329 14.8542 14.7266

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

AR(1)
4.4821 5.5555 5.1159 4.5121 4.6783 5.0579 4.6578 4.9708 4.8524 5.5991

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

fBm
3.2709 3.8405 4.1662 3.6594 3.8851 3.5977 3.7466 3.0263 3.1796 2.2354

(0.0005) (0.0001) (0.0000) (0.0001) (0.0001) (0.0002) (0.0001) (0.0012) (0.0007) (0.0127)

Third, perhaps a better model for logarithmic RV is fO-U with jumps. It is important

to develop an estimation method of H and other parameters and establish asymptotic

theory for the fO-U model with jumps.

Appendix A

Lemma 7.1 Let BH
t = BH (t) be an fBm with the Hurst parameter H ∈ (0, 1) and

t ∈ [0,∞).

(a) Define yi = BH (i+ 2) − 2BH (i+ 1) + BH (i) for i = 0, 1, 2, . . .. The process {yi}
is a Gaussian stationary process with E (yi) = 0 and V ar (yi) = 4 − 22H , and has

autocorrelation functions as, for j = 0, 1, 2, . . . ,

ρj =
1

2 (4− 22H)

{
− |j + 2|2H + 4 |j + 1|2H − 6 |j|2H + 4 |j − 1|2H − |j − 2|2H

}
;

(b) Define yi,∗ = BH (i+ 4)− 2BH (i+ 2)+BH (i) for i = 0, 1, 2, . . .. The process {yi,∗}
is a Gaussian stationary process with E (yi,∗) = 0 and V ar (yi,∗) = 22H

(
4− 22H

)
, and

has autocorrelation functions as, for j = 0, 1, 2, . . . ,

ρj,∗ = 2−2H
(
ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|

)
;
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(c) Define ξi,∗ = y2i,∗ − E
(
y2i,∗

)
and ξi = y2i − E

(
y2i
)
, for i = 0, 1, 2, . . .. The bivariate

process
{(
ξi,∗ ξi

)′}
is a weakly stationary process with mean zero and autocovariance

matrices as, for j = 0, 1, 2, . . . ,

Γj = E
((

ξi+j,∗
ξi+j

)(
ξi,∗ ξi

))
= 2

(
4− 22H

)2( 24Hρ2j,∗ (ρj+2 + 2ρj+1 + ρj)
2(

ρj + 2ρ|j−1| + ρ|j−2|
)2

ρ2j

)
.

Lemma 7.2 Let BH (t) be the same fBm as in Lemma 7.1 with t ∈ [0, T ], where T is the

time span. Suppose BH (t) are observed at discrete-time points with sampling interval

∆, denoted by
{
BH

i∆ = BH (i∆)
}n
i=0

, where n = ⌊T/∆⌋ is the number of observations.

Define

ηi,∗ =

(
BH

(i+4)∆ − 2BH
(i+2)∆ +BH

i∆

∆H

)2

− 22H
(
4− 22H

)
for i = 0, 1, 2, . . . n− 4,

ηi =

(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

∆H

)2

−
(
4− 22H

)
for i = 0, 1, 2, . . . n− 2.

It has, as n→ ∞,

1√
n

(∑n−4
i=0 ηi,∗∑n−2
i=0 ηi

)
d−→ N

(0
0

)
,Γ0 +

∞∑
j=1

(
Γj + Γ′

j

) ,

where Γj are the covariance matrices defined in Lemma 7.1, and the long-run covariance

matrix in the limiting distribution is well-defined.

Proof of Lemma 7.1: The results in Parts (a)-(b) can be obtained straightforwardly

based on the definition of fBm and its covariance structure given in (1.1). Details are

tedious and omitted here for simplicity.

For Part (c), let us first prove that
{
ξi = y2i − E

(
y2i
)}∞

i=0
is a stationary process.

From the stationarity of {yi}, it can be obtained that E (ξi) = 0. Then, we have, for

j = 0, 1, 2, . . .,

Cov (ξi+j , ξi) = E (ξi+jξi) = E
(
y2i+jy

2
i

)
− E

(
y2i+j

)
E
(
y2i
)

= V ar (yi+j)V ar (yi) + 2 [Cov (yi+j , yi)]
2 − E

(
y2i+j

)
E
(
y2i
)

= 2
(
4− 22H

)2
ρ2j

where the third equality comes from Isserlis’ theorem (Isserlis, 1918) for computing high-

order moments of the multivariate normal distribution, and the last equation is from the

stationarity properties of {yi} given in Part (a).
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Taking the same procedure above with the stationarity properties of {yi,∗} shown

in Part (b) gives a proof of {ξi,∗} being a stationary process with mean zero and

E (ξi+j,∗ξi,∗) = 2
(
4− 22H

)2
24Hρ2j,∗.

We now derive the expressions of E (ξi+jξi,∗) and E (ξi+j,∗ξi) and show that they only

depend on j, not i. For any i = 0, 1, 2, . . . , it can be seen that

yi,∗ =
[
BH (i+ 4)− 2BH (i+ 3) +BH (i+ 2)

]
+ 2

[
BH (i+ 3)− 2BH (i+ 2) +BH (i+ 1)

]
+
[
BH (i+ 2)− 2BH (i+ 1) +BH (i)

]
= yi+2 + 2yi+1 + yi.

Hence, for any j = 0, 1, 2, . . . ,

Cov (yi+j , yi,∗) = Cov (yi+j , yi+2 + 2yi+1 + yi) =
(
4− 22H

) (
ρ|j−2| + 2ρ|j−1| + ρj

)
.

Then, by using Isserlis’ theorem (Isserlis, 1918) again, we have

E (ξi+jξi,∗) = E
(
y2i+jy

2
i,∗
)
− E

(
y2i+j

)
E
(
y2i,∗
)

= V ar (yi+j)V ar (yi,∗) + 2 [Cov (yi+j , yi,∗)]
2 − E

(
y2i+j

)
E
(
y2i,∗
)

= 2
(
4− 22H

)2 (
ρ|j−2| + 2ρ|j−1| + ρj

)2
.

Similarly, it can be proved that E (ξi+j,∗ξi) = 2
(
4− 22H

)2
(ρj+2 + 2ρj+1 + ρj)

2. Then,

the covariance matrices {Γj} are obtained.

In Remark 4.2, we have proved that ρj = O
(
j2H−4

)
as j → ∞. Therefore, the se-

quence of covariance matrices {Γj} is absolutely summable, and the long-run covariance

matrix Γ0 +
∑∞

j=1

(
Γj + Γ′

j

)
is well-defined. Hence, the bivariate process

{(
ξi,∗ ξi

)′}
is weakly stationary.

Proof of Lemma 7.2: For the case where T = 1 and m = ⌊1/∆⌋, the asymptotic

normality of 1√
m

(∑m−4
i=0 ηi,∗

∑m−2
i=0 ηi

)′
as m → ∞ can be obtained straightforwardly

from the results in Section 2.4 of Bégyn (2007) and also from Coeurjolly (2001). Note

that, from the self-similarity property of fBm, for any i = 0, 1, . . ., we have

BH
(i+4)∆ − 2BH

(i+2)∆ +BH
i∆

∆H

d
= BH (i+ 4)− 2BH (i+ 2) +BH (i) := yi,∗ , (A.1)

and

BH
(i+2)∆ − 2BH

(i+1)∆ +BH
i∆

∆H

d
= BH (i+ 2)− 2BH (i+ 1) +BH (i) := yi . (A.2)
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Hence, for any value of m,

1√
m

(∑m−4
i=0 ηi,∗∑m−2
i=0 ηi

)
d
=

1√
m

(∑m−4
i=0

[
y2i,∗ − 22H

(
4− 22H

)]∑m−2
i=0

[
y2i −

(
4− 22H

)] )
=

1√
m

(∑m−4
i=0 ξi,∗∑m−2
i=0 ξi

)
where ξi,∗ and ξi are the same variables defined in Lemma 7.1. Therefore, we get the

asymptotic normality of 1√
m

(∑m−4
i=0 ξi,∗

∑m−2
i=0 ξi

)′
as m→ ∞. It is important to note

that the variables ξi,∗ and ξi are independent of the sampling frequency ∆.

For general values of T , we define n = ⌊T/∆⌋. By the self-similarity property of

fBm, we get

1√
n

(∑n−4
i=0 ηi,∗∑n−2
i=0 ηi

)
d
=

1√
n

(∑n−4
i=0

[
y2i,∗ − 22H

(
4− 22H

)]∑n−2
i=0

[
y2i −

(
4− 22H

)] )
=

1√
n

(∑n−4
i=0 ξi,∗∑n−2
i=0 ξi

)
.

Therefore, as long as n→ ∞, we get the asymptotic normality of 1√
n

(∑n−4
i=0 ξi,∗

∑n−2
i=0 ξi

)′
and the asymptotic normality of 1√

n

(∑n−4
i=0 ηi,∗

∑n−2
i=0 ηi

)′
. Based on the fact that

{(
ξi,∗ ξi

)′}
is a weakly stationary vector process, the corresponding asymptotic covariance is just

the long-run variance of the process
{(
ξi,∗ ξi

)′}
, as given in the theorem.

Proof of Theorem 4.1: (a) From Equation (1.2), we have, as ∆ → 0,

X(i+1)∆ −Xi∆ =
(
e−κ∆ − 1

)
(Xi∆ − µ) + σ

∫ (i+1)∆

i∆
e−κ[(i+1)∆−s]dBH

s

= Op (∆) + σ

∫ (i+1)∆

i∆
{1 +O (∆)} dBH

s

= σ
(
BH

(i+1)∆ −BH
i∆

)
+Op (∆) = Op

(
∆H
)
,

and

X(i+2)∆ − 2X(i+1)∆ +Xi∆

=
(
X(i+2)∆ −X(i+1)∆

)
−
(
X(i+1)∆ −Xi∆

)
=
(
e−κ∆ − 1

) (
X(i+1)∆ −Xi∆

)
+ σ

(∫ (i+2)∆

(i+1)∆
e−κ[(i+2)∆−s]dBH

s −
∫ (i+1)∆

i∆
e−κ[(i+1)∆−s]dBH

s

)

= Op

(
∆1+H

)
+ σ

(∫ (i+2)∆

(i+1)∆
{1 +O (∆)} dBH

s −
∫ (i+1)∆

i∆
{1 +O (∆)} dBH

s

)
= σ

(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

)
+Op

(
∆1+H

)
.

Therefore, by using the results in Lemma 7.2, we have, as ∆ → 0,

σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
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=
1

n∆2H

n−2∑
i=1

{(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

)2
+Op

(
∆1+2H

)}

=
1

n

n−2∑
i=1

(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

∆H

)2

+
1

n

n−2∑
i=1

Op (∆)

=
1

n

n−2∑
i=1

[
ηi +

(
4− 22H

)]
+Op (∆)

p→ 4− 22H , (A.3)

and, as ∆ → 0 and T∆ → 0,

σ−2

√
n∆2H

n−2∑
i=1

{(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2 − σ2
(
4− 22H

)
∆2H

}
=

1√
n∆2H

n−2∑
i=1

{(
BH

(i+2)∆ − 2BH
(i+1)∆ +BH

i∆

)2
−
(
4− 22H

)
∆2H +Op

(
∆1+2H

)}

=
1√
n

n−2∑
i=1

(BH
(i+2)∆ − 2BH

(i+1)∆ +BH
i∆

∆H

)2

−
(
4− 22H

)+
1

n

n−2∑
i=1

Op

(√
T∆
)

=
1√
n

n−2∑
i=1

ηi + op (1)
d→ N

0, 2
(
4− 22H

)2ρ20 + 2

∞∑
j=1

ρ2j

 , (A.4)

where the asymptotic variance can be equivalently represented as
(
4− 22H

)2
Σ22 with

Σ22 defined as in (4.5).

Similarly, using the results in Lemma 7.2 again, we have, as ∆ → 0,

σ−2

n∆2H

n−4∑
i=1

(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2
=

1

n

n−4∑
i=1

[
ηi,∗ + 22H

(
4− 22H

)]
+Op (∆)

p→ 22H
(
4− 22H

)
, (A.5)

and, as ∆ → 0 and T∆ → 0,

σ−2

√
n∆2H

n−4∑
i=1

{(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2 − σ222H
(
4− 22H

)
∆2H

}

=
1√
n

n−4∑
i=1

ηi,∗ + op (1)
d→ N

0, 21+4H
(
4− 22H

)2ρ20,∗ + 2
∞∑
j=1

ρ2j,∗

 . (A.6)

The asymptotic variance has an identical representation as

21+4H
(
4− 22H

)2ρ20,∗ + 2
∞∑
j=1

ρ2j,∗
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= 21+4H
(
4− 22H

)21 + 21−4H
∞∑
j=1

[(
ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|

)2]
= 24H

(
4− 22H

)2
Σ11 ,

where the first equation comes from the relationship between ρj,∗ and ρj given in Lemma

7.1, and Σ11 is defined in (4.3).

Then, based on (A.5) and (A.3), the consistency of 22Ĥ is achieved as long as ∆ → 0:

22Ĥ =

σ−2

n∆2H

n−4∑
i=1

(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2
σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2 p→
22H

(
4− 22H

)
4− 22H

= 22H .

With the continuity of log2 (·), the consistency of Ĥ = 1
2 log2

(
22Ĥ

)
is obtained straight-

forwardly.

To derive the asymptotic distribution, we first note that, from Lemma 7.2,

lim
n→∞

Cov

(
1√
n

n−4∑
i=1

ηi,∗,
1√
n

n−2∑
i=1

ηi

)

= 2
(
4− 22H

)2(ρ2 + 2ρ1 + ρ0)
2 +

∞∑
j=1

[
(ρj+2 + 2ρj+1 + ρj)

2 +
(
ρj + 2ρ|j−1| + ρ|j−2|

)2]
= 2

(
4− 22H

)24 (ρ0 + ρ1)
2 + 2

∞∑
j=0

(ρj+2 + 2ρj+1 + ρj)
2

 = 22H
(
4− 22H

)2
Σ12,

which leads to the asymptotic result that, as n→ ∞,

1√
n

n−4∑
i=1

ηi,∗ − 22H
1√
n

n−2∑
i=1

ηi
d→ N

(
0, 24H

(
4− 22H

)2
[Σ11 +Σ22 − 2Σ12]

)
,

where Σ12 is defined as in (4.4). Then, together with the results given in (A.3), (A.4)

and (A.6), the asymptotic distribution of 22Ĥ −22H is obtained as ∆ → 0 and T∆ → 0 :

√
n
(
22Ĥ − 22H

)

=

σ−2
√
n∆2H

{
n−4∑
i=1

(
X(i+4)∆ − 2X(i+2)∆ +Xi∆

)2 − 22H
n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2}
σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
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=

1√
n

n−4∑
i=1

ηi,∗ − 22H 1√
n

n−2∑
i=1

ηi − 1√
n
21+2H

(
4− 22H

)
σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
d→

N
(
0, 24H

(
4− 22H

)2
[Σ11 +Σ22 − 2Σ12]

)
4− 22H

d
= N

(
0, 24H [Σ11 +Σ22 − 2Σ12]

)
.

Note that 22Ĥ = 22H + 2 log (2) · 22H̃
(
Ĥ −H

)
, where H̃ lies between H and Ĥ.

Therefore, as ∆ → 0 and T∆ → 0,

√
n
(
Ĥ −H

)
=

√
n
(
22Ĥ − 22H

)
22H̃2 log (2)

d→ N
(
0,

Σ11 +Σ22 − 2Σ12

{2 log (2)}2

)
.

The proof is completed.

(b) Based on the result that
√
n
(
Ĥ −H

)
= Op (1) as ∆ → 0 and T∆ → 0, we have

∆2Ĥ−2H = exp
{
2
(
Ĥ −H

)
log (∆)

}
= exp

{
2
√
n
(
Ĥ −H

) log (∆)√
n

}

= exp

2
√
n
(
Ĥ −H

) 2
√
∆log

(√
∆
)

√
T

 p→ 1,

where the last limit is due to log(∆)√
n

→ 0 as ∆ → 0 and n → ∞. Together with the

limiting result given in (A.3), the consistency of σ̂2 is obtained under the condition of

∆ → 0 and T∆ → 0:

σ̂2 =

σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2
σ−2

(
4− 22Ĥ

)
∆2Ĥ−2H

p→ 4− 22H

σ−2 (4− 22H)
= σ2.

To derive the asymptotic distribution of σ̂2, we first prove that, as ∆ → 0 and

T∆ → 0,

∆2Ĥ−2H−1 = exp

{
2
√
n
(
Ĥ −H

) log (∆)√
n

}
−1 = 2

√
n
(
Ĥ −H

) log (∆)√
n

+op

(
log (∆)√

n

)
,

and
√
n

log (∆)

(
∆2Ĥ−2H − 1

)
= 2

√
n
(
Ĥ −H

)
+ op (1)

d→ N
(
0,

Σ11 +Σ22 − 2Σ12

{log (2)}2

)
. (A.7)

Then, from the representation of σ̂2 given in (3.2), we have

σ̂2 − σ2

36



=

σ−2
√
n∆2H

n−2∑
i=1

{(
X(i+2)∆ − 2X(i+1)∆ +Xi∆

)2 − σ2
(
4− 22H

)
∆2H

}
√
nσ−2

(
4− 22Ĥ

)
∆2Ĥ−2H

+
σ2 (n− 2)

(
4− 22H

)
n
(
4− 22Ĥ

)
∆2Ĥ−2H

− σ2

=
Op (1)

Op (
√
n)

+
(n− 2)

(
4− 22H

)
σ2

n
(
4− 22Ĥ

)
∆2Ĥ−2H

− σ2

=
σ2(

4− 22Ĥ
)
∆2Ĥ−2H

{
n− 2

n

(
4− 22H

)
−
(
4− 22Ĥ

)
∆2Ĥ−2H

}
+Op

(
1√
n

)

=
σ2(

4− 22Ĥ
)
∆2Ĥ−2H

{(
22Ĥ − 22H

)
−
(
4− 22Ĥ

)(
∆2Ĥ−2H − 1

)
+O

(
1

n

)}
+Op

(
1√
n

)
,

where the second equation is from the result in (A.3). Note that 22Ĥ −22H = Op (1/
√
n)

and ∆2Ĥ−2H p→ 1. Therefore, as ∆ → 0 and T∆ → 0, we have

√
n

log (∆)

(
σ̂2 − σ2

)
= −

√
n

log (∆)

(
∆2Ĥ−2H − 1

)
σ2

∆2Ĥ−2H
+Op

(
1

log (∆)

)
d→ N

(
0,

Σ11 +Σ22 − 2Σ12

{log (2)}2
σ4
)
,

where the last limit comes from the asymptotic result proved in (A.7).

Proof of Theorem 4.3: Starting from the definition of µ̂ given in (3.3), we have, as

∆ → 0,

µ̂ =
1

n

n∑
i=1

Xi∆ =
1

T

n−1∑
i=0

∫ (i+1)∆

i∆
Xi∆dt+

XT −X0

n

=
1

T

n−1∑
i=0

∫ (i+1)∆

i∆

(
Xt +Op

(
∆H
))
dt+

XT −X0

n
=

1

T

∫ T

0
Xtdt+Op

(
∆H
)
+Op

(
1

n

)
.

Therefore, as T → ∞ and ∆ → 0,

µ̂ =
1

T

∫ T

0
Xtdt+ op (1)

p→ E (Xt) = µ,

where the last limit comes from the ergodicity of the process {Xt} when κ > 0 (see Xiao

and Yu (2019a,b)).

To derive the limiting distribution, first notice that, according to Theorem 3.3 of

Xiao and Yu (2019a) and Theorem 3.1 of Xiao and Yu (2019b), as T → ∞,

T 1−H

(
1

T

∫ T

0
Xtdt− µ

)
d→ N

(
0,
σ2

κ2

)
,
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for the cases where H ∈ [1/2, 1) and H ∈ (0, 1/2), respectively. Consequently, when

T → ∞, ∆ → 0, and T 1−H∆H → 0, we have

T 1−H (µ̂− µ) = T 1−H

(
1

T

∫ T

0
Xtdt− µ

)
+Op

(
T 1−H∆H

)
+Op

(
T 1−H∆H∆1−H

T

)
= T 1−H

(
1

T

∫ T

0
Xtdt− µ

)
+ op (1)

d→ N
(
0, σ2/κ2

)
.

Proof of Theorem 4.4: We first prove the consistency of κ̂ for all H ∈ (0, 1) under

the condition of T → ∞ and T∆ → 0. From the definition of κ̂ given in (3.4), we have

κ̂−2Ĥ =

1
n

n∑
i=1

X2
i∆ −

(
1
n

n∑
i=1

Xi∆

)2

σ̂2ĤΓ
(
2Ĥ
) .

Note that, as T → ∞ and ∆ → 0,

1

n

n∑
i=1

X2
i∆ =

1

T

n−1∑
i=0

∫ (i+1)∆

i∆
X2

i∆dt+
X2

T −X2
0

n

=
1

T

n−1∑
i=0

∫ (i+1)∆

i∆

(
X2

t +Op

(
∆H
))
dt+

X2
T −X2

0

n

=
1

T

∫ T

0
X2

t dt+Op

(
∆H
)
+Op (1/n)

p→ E
(
X2

t

)
= σ2κ−2HHΓ (2H) + µ2,

where the limit has been proved in Xiao and Yu (2019a, b) for H ∈ [1/2, 1) and H ∈
(0, 1/2), respectively. With the limit of 1

n

n∑
i=1

Xi∆ obtained in the proof of Theorem 4.3,

it is obtained that

1

n

n∑
i=1

X2
i∆ −

(
1

n

n∑
i=1

Xi∆

)2
p→ E

(
X2

t

)
− µ2 = σ2κ−2HHΓ (2H) .

The consistency of σ̂2 and Ĥ have been proved in Theorem 4.1 under the condition of

T∆ → 0. As a result, we have, when T → ∞ and T∆ → 0,

κ̂−2Ĥ =

1
n

n∑
i=1

X2
i∆ −

(
1
n

n∑
i=1

Xi∆

)2

σ̂2ĤΓ
(
2Ĥ
) p→ σ2κ−2HHΓ (2H)

σ2HΓ (2H)
= κ−2H ,

and

κ̂ = exp

{
− 1

2Ĥ
log
{
κ̂−2Ĥ

}}
p→ exp

{
− 1

2H
log
{
κ−2H

}}
= κ.
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To derive the asymptotic distribution of
√
T (κ̂− κ) as shown in Part (a) of the

theorem, we will first find the asymptotic distribution of
√
T
(
κ̂−2Ĥ − κ−2H

)
. Notice

that

σ̂2ĤΓ
(
2Ĥ
)(

κ̂−2Ĥ − κ−2H
)
=

1

n

n∑
i=1

X2
i∆ −

(
1

n

n∑
i=1

Xi∆

)2

− κ−2H σ̂2ĤΓ
(
2Ĥ
)

=
1

n

n∑
i=1

X2
i∆ −

(
1

n

n∑
i=1

Xi∆

)2

− σ2κ−2HHΓ (2H)

− κ−2H
{
σ̂2ĤΓ

(
2Ĥ
)
− σ2HΓ (2H)

}
. (A.8)

From the asymptotic theory of σ̂2 and Ĥ provided in Theorem 4.1, we have, as

T∆ → 0,

σ̂2ĤΓ
(
2Ĥ
)
− σ2HΓ (2H)

=
(
σ̂2 − σ2

)
ĤΓ

(
2Ĥ
)
+ σ2

(
Ĥ −H

)
Γ
(
2Ĥ
)
− σ2H

[
Γ
(
2Ĥ
)
− Γ (2H)

]
= Op

(
log (∆)√

n

)
+Op

(
1√
n

)
+Op

(
1√
n

)
. (A.9)

The order of the term Γ
(
2Ĥ
)
− Γ (2H) is from the Taylor expansion as

Γ
(
2Ĥ
)
− Γ (2H) = Γ′

(
2H̃
)
2
(
Ĥ −H

)
,

where H̃ takes values between Ĥ and H and Γ′ (·) is finite over the interval (0, 4).

Define

κ̂HN =

 1
T

∫ T
0 X2

t dt−
(

1
T

∫ T
0 Xtdt

)2
σ2HΓ (2H)


−1/(2H)

. (A.10)

According to Theorem 3.3 of Xiao and Yu (2019a) and Theorem 3.1 of Xiao and Yu

(2019b), when H ∈ [1/2, 3/4) and H ∈ (0, 1/2), as T → ∞,

√
T (κ̂HN − κ)

d→ N (0, κϕH) .

As a result, we have

1
T

∫ T
0 X2

t dt−
(

1
T

∫ T
0 Xtdt

)2
σ2HΓ (2H)

= (κ̂HN )−2H

= κ−2H − 2Hκ−2H−1 (κ̂HN − κ) +Op

(
(κ̂HN − κ)2

)
,
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and, as T → ∞,

√
T

{
1

T

∫ T

0
X2

t dt−
(
1

T

∫ T

0
Xtdt

)2

− σ2κ−2HHΓ (2H)

}
=

√
Tσ2HΓ (2H)

{
(κ̂HN )−2H − κ−2H

}
=

√
Tσ2HΓ (2H)

{
−2Hκ−2H−1 (κ̂HN − κ) +Op

(
(κ̂HN − κ)2

)}
d→ σ2HΓ (2H)

(
−2Hκ−2H−1

)
N (0, κϕH) .

Then, for the first term in (A.8), it is obtained that, as T → ∞ and
√
T∆H → 0,

√
T

 1

n

n∑
i=1

X2
i∆ −

(
1

n

n∑
i=1

Xi∆

)2

− σ2κ−2HHΓ (2H)


=

√
T

{
1

T

∫ T

0
X2

t dt−
(
1

T

∫ T

0
Xtdt

)2

− σ2κ−2HHΓ (2H) +Op

(
∆H
)
+Op

(
1

n

)}
d→ σ2HΓ (2H)

(
−2Hκ−2H−1

)
N (0, κϕH) . (A.11)

Now, putting (A.9) and (A.11) in Equation (A.8), we have, as T → ∞, T∆ → 0,

and
√
T∆H → 0,

√
T σ̂2ĤΓ

(
2Ĥ
)(

κ̂−2Ĥ − κ−2H
)

d→ σ2HΓ (2H)
(
−2Hκ−2H−1

)
N (0, κϕH) ,

and √
T
(
κ̂−2Ĥ − κ−2H

)
d→
(
−2Hκ−2H−1

)
N (0, κϕH) .

Note that the first-order Taylor expansion of κ̂−2Ĥ at κ̂ = κ takes the form of

κ̂−2Ĥ = κ−2Ĥ − 2Ĥκ̃−2Ĥ−1 (κ̂− κ) ,

where κ̃ lies between κ̂ and κ. As a result, we have

−2Ĥκ̃−2Ĥ−1 (κ̂− κ) = κ̂−2Ĥ − κ−2Ĥ =
(
κ̂−2Ĥ − κ−2H

)
−
(
κ−2Ĥ − κ−2H

)
=
(
κ̂−2Ĥ − κ−2H

)
+ 2 log (κ)κ−2H

(
Ĥ −H

)
+Op

((
Ĥ −H

)2)
,

where the third equation comes from the first-order Taylor expansion of κ−2Ĥ at Ĥ = H.

Finally, we have, as T → ∞, T∆ → 0, and
√
T∆H → 0,

−2Ĥκ̃−2Ĥ−1
√
T (κ̂− κ) =

√
T
(
κ̂−2Ĥ − κ−2H

)
+Op

(√
∆
)

d→
(
−2Hκ−2H−1

)
N (0, κϕH) ,
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thereby, √
T (κ̂− κ)

d→ N (0, κϕH) ,

which gives the asymptotic distribution shown in Part (a) of the theorem.

For κ̂HN given in (A.10), Xiao and Yu (2019a) have proved that, when H = 3/4,

√
T

log(T )
(κ̂− κ)

d→ N
(
0,

16κ

9π

)
, as T → ∞,

and, when H ∈ (3/4, 1),

T 2−2H (κ̂− κ)
d→ −κ2H−1

HΓ(2H + 1)
R , as T → ∞,

where R denotes the Rosenblatt random variable with E
(
R2
)
= 2H2(2H − 1)/(4H −

3). Using these results and taking the same procedure above for the proof of Part (a)

of the theorem will give the asymptotic distributions in Part (b)-(c) of the theorem,

respectively. The proof of the theorem is completed.

Appendix B

Supplementary material related to this article, such as more empirical results where the

proposed method is applied to forecast the logarithmic RV, logarithmic bipower variation

(BV) and logarithmic realized kernel (RK) for the S&P 500, DJIA, and NASDAQ 100,

can be found online at DOI TO BE SPECIFIED.
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