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Abstract

This study provides new mechanisms for identifying and estimating explosive
bubbles in mixed-root panel autoregressions with a latent group structure. A post-
clustering approach is employed that combines a recursive k-means clustering al-
gorithm with panel-data test statistics for testing the presence of explosive roots in
time series trajectories. Uniform consistency of the k-means clustering algorithm is
established, showing that the post-clustering estimate is asymptotically equivalent
to the oracle counterpart that uses the true group identities. Based on the estimated
group membership, right-tailed self-normalized t-tests and coefficient-based J-tests,
each with pivotal limit distributions, are introduced to detect the explosive roots.
The usual Information Criterion (IC) for selecting the correct number of groups is
found to be inconsistent and a new method that combines IC with a Hausman-type
specification test is proposed that consistently estimates the true number of groups.
Extensive Monte Carlo simulations provide strong evidence that in finite samples,
the recursive k-means clustering algorithm can correctly recover latent group mem-
bership in data of this type and the proposed post-clustering panel-data tests lead
to substantial power gains compared with the time series approach. The proposed
methods are used to identify bubble behavior in US and Chinese housing markets,
and the US stock market, leading to new findings concerning speculative behavior in
these markets.
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1 Introduction

A key characteristic of financial bubbles such as the dot-com bubble of the 1990s and
early 2000s is the presence of mildly explosive deviations of asset prices from their fun-
damental values during the expansive phase of the bubble. Divergence from market
fundamentals can arise whenever there is widespread belief that ongoing robust price
increases will continue. Sufficient market participants sharing this belief can drive up
prices and produce expectations that ongoing price gains will continue, as argued by
Shiller (2015) and others. This self-fulfilling mechanism can lead to price growth that be-
comes exponential (or explosive), resulting in a market that is progressively misaligned
from its fundamentals.

This expansive phase of a financial bubble, although not the switching mechanism to
bubble collapse, is partly captured by the standard present value model

Pt =
∞∑
i=0

(
1

1 + rf

)i
Et (Dt+i) +Bt, (1)

where Pt is the price of an asset at time t, Dt is the payoff of the asset, rf is the risk-
free interest rate, and Bt represents a potential bubble component which satisfies the
following submartingale property

Et (Bt+1) =
(
1 + rf

)
Bt > Bt.

When there is no bubble (i.e., Bt = 0), the asset price is completely determined by the
aggregate of the discounted expected future payoffs,

∑∞
i=0(1 + rf )−iEt(Dt+i), which con-

stitutes what is known as the fundamental value. Further, if Dt+i is a martingale or more
generally an I(1) (unit root) process, then asset prices Pt cannot be explosive. However,
if there is a bubble (i.e., Bt , 0), then Bt and in consequence Pt are explosive. This im-
plication of the model (1) explains why the econometric analysis of bubble behavior has
focused on implementing right-tailed unit root tests to detect explosive behavior in asset
prices adjusted by the fundamentals, as in Phillips et al. (2015a,b).

Conventional econometric methods for bubble detection, including the Dickey-Fuller
(DF) and augmented DF (ADF) tests (Diba and Grossman, 1987, 1988), the SADF test
(Phillips and Yu, 2009, 2011; Phillips et al., 2011) and the GSADF test (Phillips et al.,
2015a,b), all proceed with a single time series to assess evidence. Single series meth-
ods do not always have good discriminatory power for bubble detection especially with
short-lived or slow-growing bubbles; and such tests neglect the presence of any prevail-
ing wider phenomena of market exuberance. To illustrate the low-power problem of con-
ventional single series tests when a bubble is short-lived or grows slowly, we employed
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two experiments with simulated data from the following simple AR(1) design,

yt = ρyt−1 +ut , y0 = 0, ut ∼ i.i.d. N (0,1), t = 1,2, ...,T , (2)

using the DF t-statistic [(ρ̂ − 1) /se(ρ̂)] and the DF J-statistic [T (ρ̂ − 1)], where

ρ̂ =
T∑
t=1

(yt − ȳ) (yt−1 − ȳ−1) /
T∑
t=1

(yt−1 − ȳ−1)2 , (3)

is the least-squares (LS) estimator of ρ, with ȳ = 1
T

∑T
s=1 ys, ȳ−1 = 1

T

∑T
s=1 ys−1, and se(ρ̂)

is the usual standard error of ρ̂ in the AR(1) model with intercept. The null hypothesis
H0 : ρ = 1 is tested against the explosive alternativeH1 : ρ > 1 based on right-tailed nom-
inal 95% critical values. The first experiment uses the empirical estimates of ρ found
in Phillips et al. (2011) as the true values (i.e., ρ = 1.033, 1.040) and sets T = 10,20,30.
This experiment has small sample sizes so the bubble is short-lived but realistic, from the
empirical findings in Phillips et al. (2015a,b). Table 1 reports the powers (i.e., empirical
rejection frequency under H1 : ρ > 1 from 10,000 replications) of the right-tailed t and
J tests rejecting the null hypothesis. Evidently, the power of these tests is low, ranging
from 0.1009 to 0.2202 for the t-test and from 0.0957 to 0.2261 for the J-test. The sec-
ond experiment uses true values of ρ that are much closer to unity (ρ = 1.0009,1.0069),
leading to very slow exponential growth during the expansive phase of the bubble and
reflecting some of the growth rates actually found in the empirical results reported later
in Section 6. Table 2 reports the powers of the right-tailed t and J tests in this case. The
power of these tests is again found to be very low, ranging from 0.0590 to 0.2913 for the
t-test and from 0.0597 to 0.2991 for the J-test.

[Insert Tables 1 and 2 Here]

As an empirical illustration of low discriminatory power from single time series re-
gressions, the t-test was applied to each of the 107 city-level house price indices in China
used in the empirical section of the paper – see Section 6 for details. The results led to
rejections of the unit root null in favor of an explosive alternative for 58 cities, with tests
for the remaining 49 cities failing to reject. Figure 2 compares these test results with
those of the new panel tests that make use of the clustering algorithm to identify clusters
of cities with the same autoregressive coefficient reflecting group time series behavior
within the panel. The effects of clustering individual time series into common groups
reveal the additional discriminatory power obtained by grouping. Clustered panel tests
of this type can also detect the presence of explosive roots that fail detection in time se-
ries tests. Empirical examples are given in Figures 3 and 4 for the US housing and equity
markets. More specifically, the clustered panel t-test introduced later helps to diagnose
mildly explosive price behavior in U.S city housing markets where individual time series
tests reveal no evidence of such behavior, confirming the discriminatory power gains that
arise from cross section aggregation.
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[Insert Figures 2–4 Here]

As indicated above, behavior such as speculative exuberance in financial, commodity,
and real estate markets often manifests as a wider market phenomenon. Market prices of
multiple assets in the same class are often available and can therefore be used in testing
for exuberance. The primary contribution of the present paper is to propose the use of
such panel data to enhance power in bubble detection algorithms. When there is ho-
mogeneity in behavior over certain cross section units in a particular group there are
typically power advantages to pooling within that group for estimation and testing. If
the group structure in a panel is known or can be reliably estimated and exuberance is
expected, then pooling will sharpen statistical inference on the common explosive root
compared to the use of single time series. It is often reasonable to expect some homo-
geneity over cross section units in economic and financial panel data (Hahn and Moon,
2010; Narayan et al., 2013; David et al., 2016; Kong et al., 2019; Wang et al., 2019; Bordt
et al., 2020). In financial markets, for instance, stocks in the same industry may share
similar fundamentals and their dynamic behavior may be closely related. Or in real es-
tate markets, the dynamics in house prices may be related among cities with a similar
characteristics, including demographics, locational features, and level of urbanization.

In practice, group structure is often unknown and has to be estimated from the panel
itself. To do so in the context of asset bubble investigation, a mixed-root specification
for the panel model is specified in which the individual time series are characterized as
autoregressive with a mixture of roots, some mildly explosive, some near stationary, and
some unit roots (Phillips and Magdalinos, 2007a,b; Phillips and Lee, 2013). In bubble
detection it is typically far too restrictive to impose a homogeneous explosive root across
all cross section units and instead more realistic to allow for some explosive bubble be-
havior in a proportion of these units so that parameter homogeneity is group specific.
Then any underlying group structure must be recovered empirically. To achieve this end,
econometric methods have recently been developed, including the k-means clustering al-
gorithm (Bonhomme and Manresa, 2015; Bonhomme et al., 2017) and the classification
Lasso (C-Lasso) approach of Su et al. (2016). The present paper uses the recursive k-
means algorithm to uncover latent group membership. With grouping accomplished,
bubble detection procedures can be implemented in the second step.

After estimating and determining the number of the latent groups, two right-tailed
tests are proposed to detect explosive behavior. The tests are panel versions of the self-
normalized and coefficient-based tests, which we subsequently refer to as the t and J

statistics, and these are asymptotically pivotal with standard Gaussian distributions un-
der the null hypothesis of a common unit root in the group. Under the alternative of
a group-specific mildly explosive root, these post-clustering panel statistics diverge and
the tests are consistent. For comparison with the single time series tests, the panel tests
are applied to the same house price and stock market data discussed above.

The panel tests dominate the time series tests in two aspects. First, unlike the time se-
ries tests which have nonstandard limit theory, the panel tests have standard asymptotic
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Gaussian distributions under the null and are convenient to implement. Second, under
the condition of within group coefficient homogeneity, the tests have the advantage faster
divergence rates than the time series tests by virtue of cross section information aggre-
gation. Extensive Monte Carlo simulations demonstrate that the empirical powers of the
panel tests are considerably higher than their time series counterparts.

This paper makes five contributions. First, it extends the literature on bubble detec-
tion by using statistical clustering and group averaging to raise test power of existing
time series tests in a manner similar to the mechanism of the standard left-sided panel
unit root tests (Im et al., 2003; Moon and Perron, 2004; Chang and Song, 2009; Bai and
Ng, 2010). An alternative approach to panel modeling of financial bubbles is to allow for
potentially explosive common factors and employ principal component analysis (PCA)
to detect explosive behavior in some of the factors, as in Chen et al. (2022) who work
with a model that has a single explosive factor and no latent groupings. An important
advantage of the factor-based panel approach is the allowance for cross section depen-
dence. That work can be extended by using the clustering methods of the present paper
to allow for latent groups with different factors that reflect differing behavior among the
groups.

Second, the paper contributes to the literature on latent membership and clustering
algorithms. There are presently several clustering algorithms (Bonhomme and Manresa,
2015; Ando and Bai, 2016; Bonhomme et al., 2017; Su et al., 2016, 2019; Wang et al.,
2018), and most of the available methods apply only to stationary data. An exception
is the C-Lasso approach (Huang et al., 2020, 2021), which is not directly applicable to
the mixed-root panel autoregressive model. To the best of our knowledge, this study
is the first attempt to extend clustering algorithms to the context of a mixed-root panel
model that incorporates the group-specific nonstationary phenomena. Our approach
follows Bonhomme and Manresa (2015) by using a two stage procedure. In our case
the procedure combines an estimation procedure for group identities to determine latent
membership in the first stage and a bubble testing procedure in the second stage, both in
the context of a mixed-root panel model.

Third, the present work contributes to random coefficient panel modeling where co-
efficient heterogeneity occurs across individuals in the panel (Pesaran and Smith, 1995;
Hsiao et al., 2002; Pesaran, 2006; Arellano and Bonhomme, 2012; Hsiao, 2014). One
strand of that literature deals with nonstationary panels where there is random autore-
gressive coefficient heterogeneity in a dynamic panel. In that framework unit root test-
ing is conducted by pooling the cross section under the null hypothesis that the autore-
gressive coefficients have unit mean (Westerlund and Larsson, 2012). In our model the
autoregressive coefficients may deviate from unity in a way that produces coefficient het-
erogeneity across groups and homogeneity within groups in the panel, thereby leading
to a mixed-root panel framework. The nonstationary elements allow for unit roots and
explosive roots in different clusters, so that subgroups of the panel can manifest very dif-
ferent time series behavior. The framework is therefore suited to large panels in which
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some clusters may manifest wandering behavior of the unit root type and other groups
manifest various degrees of explosiveness or near stationarity.

Fourth, the paper contributes to the literature on the estimation of the number of
groups. At present, group number is usually selected using an Information Criterion
(IC) and model specification tests. The IC, which balances model fitness and penalty, can
consistently estimate the number of groups in both stationary panel models (Bonhomme
and Manresa, 2015; Bonhomme et al., 2017; Su et al., 2016; Miao et al., 2020; Okui and
Wang, 2021; Wang and Su, 2021) and panel cointegration models (Huang et al., 2020,
2021). Model specification tests can be categorized into two cases – multiple groups (Lu
and Su, 2017) and a single group (Pesaran et al., 1996; Phillips and Sul, 2003; Pesaran and
Yamagata, 2008; Su and Chen, 2013). Both IC and residual-based inference approaches
are found to underestimate the true number of groups in the mixed-root dynamic panel
model. To address this limitation and consistently select the true number of groups in
this setting, a novel method is proposed that combines the IC approach with a Hausman-
type specification test.

A final contribution relates to the literature of bias-corrected procedures in panel
data models. The presence of incidental parameters is well known to produce bias in
many panel settings, especially dynamic panels (Hahn and Kuersteiner, 2002; Hahn and
Newey, 2004; Gouriéroux et al., 2010) and nonlinear panels (Hahn and Newey, 2004;
Arellano et al., 2007). Bias correction methods include the use of explicit bias approx-
imations (Phillips and Moon, 1999; Hahn and Kuersteiner, 2002), jackknife methods
(Hahn and Newey, 2004; Dhaene and Jochmans, 2015), and indirect inference methods
(Gouriéroux et al., 2010). The limit theory in the present paper involves a new asymp-
totic bias term that originates from the demeaning process and the presence of serially
correlated errors. An explicit expression of this bias is obtained under the null hypothe-
sis of a group-specific unit root, which enables the construction of asymptotically pivotal
tests of explosive behavior in subgroups of the panel.

The rest of this paper is organized as follows. Section 2 discusses the model setup.
Section 3 introduces a two stage method consisting of the recursive k-means clustering
algorithm in the first stage and bubble testing statistics in the second stage. Section 4 de-
rives the asymptotic properties of the two stage procedure and establishes pivotal limit
theory for the post-clustering test statistics under the null hypothesis of a group-specific
unit root. Section 5 reports simulation findings that explore the finite sample perfor-
mance of the two stage procedure and tests. Section 6 provides empirical applications
of the methodology to the Chinese and US real estate markets and the US stock market.
Section 7 concludes.

Throughout the paper, the symbols Id , `d×1, 0d×d ,→p,⇒ and Pr(A) denote the d × d
identity matrix, a d-vector of ones, a d × d matrix of zeros, convergence in probability,
weak convergence in Euclidean and function spaces, and the probability of event A. For
two sequences AnT and BnT , the notation AnT � BnT signifies that AnT /BnT is eitherOp (1)
or op (1) as (n,T )→∞; AnT � BnT signifies that BnT /AnT = op (1) as (n,T )→∞; AnT ∼ BnT
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signifies limT→∞AnT /BnT = 1, AnT ∼a BnT denotes Pr(|AnT /BnT | , 1)→ 0 as (n,T )→∞;
the notation log2 (·) represents log(log(·)), and a zero affix on a parameter, as in

{
a0

}
,

refers to the true value of the corresponding parameter {a}. The notations Avar and Acov
represent asymptotic variance and asymptotic covariance.

2 Model Setup

To capture explosive and midly explosive behavior in panels we use the following data
generating process (DGP) based on the time series model of Phillips and Magdalinos
(2007b) {

yit = µi + ρgiyi,t−1 +uit , i = 1, ...n, t = 1, ...,T ,
ρgi = 1 +

cgi
T γ .

(4)

The rate exponent γ ∈ (0,1)1 and the scale coefficients cgi both influence the extent of de-
parture of the autoregressive coefficients ρgi from unity, and gi denotes the group mem-
bership of individual i, for which the group structure is defined later. The innovations
uit follow a stationary linear process (i.e., I(0)) for each i and are defined later in (27)
of Assumption 1. Long run variances are given by ω2

i =
∑∞
h=−∞E

(
uitui,t−h

)
, one-sided

long run covariances by λi
(
:=

∑∞
h=1E

(
uitui,t−h

))
, and variances by σ2

iu = E

(
u2
it

)
, so that

ω2
i = 2λi + σ2

iu for each individual unit i.
Model (4) mixes three types of potential time series behavior depending on the sign

and value of the autoregressive coefficient, covering mildly explosive roots (with cgi > 0
and ρgi > 1), mildly integrated roots (with cgi < 0 and ρgi < 1), and unit roots (with cgi = 0

and ρgi = 1). Since the signs of the
{
cgi

}n
i=1

determine the presence or absence of bubble
behavior it is convenient to assume a common unknown value of the rate coefficient γ in
(4) and then heterogeneity in the autoregressive coefficients ρgi arises through the localiz-

ing scale parameters
{
cgi

}n
i=1

. Latent group membership of the ρgi is therefore determined
by the value of these localizing scale coefficients. The signs of the cgi and their magni-
tudes determine the nature and strength of the mildly explosive and mildly integrated
character of the individual time series.

The framework we adopt lies between a homogeneous panel (where cgi = c for all i)
and a fully heterogeneous panel (where cgi , cg` for any i , `). Instead, we assume a group
structure involving a fixed number G < n of unknown separate groups that are classified
according to the scale parameters cgi . The group membership variables are given by
the {gi}ni=1 which map individual units (i.e. i ∈ {1,2, ...,n}) into specific groups for which
j ∈ {1, ...,G} with G < n. This group structure allows for several possible mildly explosive
and mildly integrated groups together with a unit root group. The mixed-root groups
are determined by the signs and values of the scale coefficients and these are represented

1The case where γ = 0 is a specialization of the current model and remains suited to the two-stage algo-
rithm developed here. The asymptotic theory of the two-stage algorithm when γ = 0 follows similar lines to
that the main article and details are provided in the Online Supplement.
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in the following diagram:

Explosive groups:


Group 1: c1 > 0
Group 2: c2 > 0

...
...

Group g: cg > 0
Unit root group: Group (g + 1): cg+1 = 0

Stationary groups:


Group (g + 2): cg+2 < 0
Group (g + 3): cg+3 < 0

...
...

Group G: cG > 0

, (5)

where cj , ck for any j , k with indices j,k ∈ {1,2, ...,G}. The localizing scale coefficients
are therefore homogeneous within each group but heterogeneous across groups. There
are G groups in total: g mildly explosive groups each with a different scale coefficient{
cj > 0| j = 1, ..., g

}
; a single unit root group; and (G − g − 1) mildly stationary groups, each

with a different scale coefficient
{
cj < 0| j = g + 2, ...,G

}
.

We begin by fixing notation. Denote the full set of n individuals by In := {1,2, ...,n}
and membership indicators by the parameter vector δ

(
:= (g1, g2, ..., gn)′

)
. The true mem-

bership indicators are given by δ0
(
:=

(
g0

1 , g
0
2 , ..., g

0
n

)′)
. The estimated membership indica-

tor, defined later, is δ̂
(
:= (ĝ1, ĝ2, ..., ĝn)′

)
. Hence, for any individual subscript i ∈ In, the

membership indicators gi , g
0
i , and ĝi all map from the set of individuals In to the set of

group identities G := {1,2, ...,G}with G (j) representing the jth group for any j ∈ G. Let ∆G
be the set of all possible mappings from In to G, so that δ,δ0, δ̂ ∈ ∆G. As indicated, the no-
tation G(j) is used to represent the jth group, with G0(j) being the true jth group and Ĝ(j)
the estimated jth group to be defined later. We also define the collection G0 :=

{
1,2, ...,G0

}
where G0 denotes the true number of groups.

Note that for any j ∈ G, the distancing parameter in the group G(j) is cj and the
slope coefficient parameter is ρj . Let CG be a compact subset of G-dimensional Eu-

clidean space R
G, c

(
:=

(
c1, ..., cj , ...cG

)′)
∈ CG be the distancing parameter vector, and

ρ :=
(
ρ1, ...,ρj , ...,ρG

)′
=

(
1 + c1

T γ , ...,1 +
cj
T γ , ...,1 + cG

T γ

)′
be the corresponding AR coefficient

vector. Both c and ρ are G-dimensional vectors of group-specific parameters.
Within each group we impose an identical membership structure on the variances

and covariances, so that for any i, ` ∈ In with g0
i = g0

` = j ∈ G0, we have σ2
iu = σ2

`u

(
=: σ2

j

)
,

ω2
i = ω2

`

(
=:ω2

j

)
and λi = λ`

(
=: λj

)
. For the group-specific parameters σ2

j , λj and ω2
j ,

the oracle estimates, which rely on the true group identities, are denoted σ̂2
j , λ̂j and ω̂2

j .
Moreover, the post-clustering estimates, which rely on the estimated group identities,
are denoted σ̌2

j , λ̌j and ω̌2
j if the estimated membership is δ̂ = (ĝ1, ..., ĝn)′. Let the group-

specific variances σ2
j , λj , and ω2

j have true values
(
σ0
j

)2
, λ0

j , and
(
ω0
j

)2
. The true cardi-

nality of the true jth group is given by nj and the estimated cardinality of the estimated
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jth group is given by ňj :=
∑n
i=1 1{ĝi=j}.

This paper also considers the individual distancing parameters and estimates

ci := cgi , c
0
i := c0

g0
i
, ĉi := čĝi , ∀i ∈ In. (6)

We define the following n-dimensional vectors of individual distancing parameters, their
true values, and their estimated values as: c := (c1, ..., cn)′, c0 :=

(
c0

1, ..., c
0
n

)′
, ĉ :=

(̂
c1, ...,̂ cn

)′
.

Similar representations apply to ρ, ρ0 and ρ̂. For any i ∈ In and j ∈ G0, the estimates of

individual variances are given by σ̂
2
iu , ω̂

2
i and λ̂i , which are time series variance estimates

based on the post-clustering estimate ρ̌j with ĝi = j. Correspondingly, the true values of
the individual-specific variances, individual-specific one-sided and two-sided long run
variances are denoted by(

σ0
iu

)2
:=

(
σ0
j

)2
, λ

0
i := λ0

j ,
(
ω0
i

)2
:=

(
ω0
j

)2
. (7)

3 A Two Stage Approach

Econometric analysis of the model given in (4) and (5) employs a two stage approach. The
first stage uses recursive k-means clustering to estimate the underlying group structure.
In the second stage, post-clustering estimates of the parameters of interest are obtained
and new tests for bubble detection are developed. It is convenient at first to assume that
the true value of the number of groups, G0, is known. A hybrid selection method that
combines an information criterion (IC) and a Hausman-type specification test is designed
later to enable consistent estimation of G0, and thereby the full group structure.

3.1 Stage 1: a recursive k-means clustering algorithm

When groups are unobserved two types of parameters are considered in distinguishing
membership – the group membership variable δ, which maps cross-sectional units into
groups, and the G0-dimensional distancing parameter vector c. Similar to Bonhomme
and Manresa (2015), estimates ĉ∗ and δ̂ (and hence {ĝi}ni=1) are obtained by extremum
estimation, viz.,

(̂
c∗, δ̂

)
= arg min

(c,δ)∈ CG0×∆G0

1
n

n∑
i=1

1
ΥiT

 T∑
t=1

(
ỹit − ỹi,t−1

(
1 +

cgi
T γ

))2
 , (8)

where ΥiT :=
∑T
t=1 ỹ

2
i,t−1. The demeaned variables ỹit

(
:= yit − yi

)
and ỹi,t−1

(
:= yit − yi,−1

)
,

using the respective sample means yi = 1
T

∑T
t=1 yit and yi,−1 = 1

T

∑T
t=1 yi,t−1, are employed

to eliminate fixed effects.
Instead of estimating c and δ simultaneously as in (8), which is numerically challeng-

ing, we use an iterative strategy (Bonhomme and Manresa, 2015), given in Algorithm
1 below, to estimate ĉ∗ and δ̂ recursively. For convenience in the following derivations,
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knowledge of γ ∈ (0,1) is treated as prior information.2 This assumption is partly jus-
tified by the fact that in a time series sample with an autoregressive root ρ = 1 + c

T γ the
localizing rate and localizing scale parameters (c,γ) are not jointly identifiable from ρ

but each is clearly identified given the other.3 Moreover, variation of c facilitates estima-
tion and provides a full range of possibilities for the autoregressive coefficient ρ, while
ensuring near unit root behavior when c is fixed as T →∞.

Algorithm 1 Recursive procedure to estimate c and δ

(i) Set s = 0. Obtain the individual time series estimates ρ̂
T S
i of the slope coefficients

ρi for all i ∈ In and the corresponding estimates of the localizing coefficients ĉ
T S
i ,

given γ . Using any relevant prior information or selective quantiles of the time
series estimates, or by random assignment, choose G0 estimates of the distancing

parameters c(0)
j to form a G0-dimensional vector c(0) as the initial value. For in-

stance, in our later empirical analysis of the Chinese housing market, the initial

values {c(0)
j }1≤j≤3 for the k-means algorithm are chosen as the 30%, 70%, and 90%

quantiles of the individual time series estimates, {̂ρ
T S
i }1≤i≤n.

(ii) Given c(s), for i ∈ In compute the extremum estimate of gi

g
(s+1)
i = argmin

j∈G0


T∑
t=1

ỹit − ỹi,t−1

1 +
c

(s)
j

T γ




2 . (9)

(iii) Given {g(s+1)
i }ni=1, compute the extremum estimate of c

c(s+1) = arg min
c∈CG0

1
n

n∑
i=1

1
ΥiT

 T∑
t=1

(
ỹit − ỹi,t−1

(
1 +

c
g

(s+1)
i

T γ

))2 . (10)

(iv) Let s = s+1 and repeat steps (ii)-(iii) to update the estimates until convergence (say

at step S). Define ĉ∗ = c(S+1) and δ̂ =
(
g

(S+1)
1 , · · · , g(S+1)

n

)′
.

3.2 Stage 2: post-clustering estimation and testing

Denote the true collection of members of the jth group as

G0 (j) =
{
i ∈ In| g0

i = j
}
∀j ∈ G0.

2Numerical simulations show that the estimated groupings are robust to various choices of the true scal-
ing parameter γ0.

3See Phillips (2021) for more details of parameter identification, estimation and inference in mildly inte-
grated and mildly explosive models.
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Suppose the estimated membership indicator vector is δ̂ = (ĝ1, ĝ2, ..., ĝn)′. Denote the esti-
mated members of the jth group by

Ĝ (j) = {i ∈ In| ĝi = j} ∀j ∈ G0.

We consider two pooled LS estimators for ρj , namely, the oracle estimator ρ̂j and the
post-clustering estimator ρ̌j . The oracle estimator, that employs data from the true jth
group G0(j), is given by

ρ̂j =

∑
i∈G0(j)

∑T
t=1 ỹi,t−1ỹit∑

i∈G0(j)
∑T
t=1 ỹ

2
i,t−1

. (11)

The post-clustering estimator, that uses data from the estimated jth group Ĝ (j), is given
by

ρ̌j =

∑
i∈Ĝ(j)

∑T
t=1 ỹi,t−1ỹit∑

i∈Ĝ(j)
∑T
t=1 ỹ

2
i,t−1

. (12)

Next define the following quantities

σ̌2
j =

1
ňj

∑
i∈Ĝ(j)

σ̂
2
iu , ω̌

2
j =

1
ňj

∑
i∈Ĝ(j)

ω̂
2
i , λ̌j =

1
ňj

∑
i∈Ĝ(j)

λ̂i , Ěj,nT =
∑
i∈Ĝ(j)

Ei,nT , (13)

where

ω̂
2
i =

1
T

T∑
t=1

û2
it +

2
T

L∑
l=1

T∑
t=l+1

w (l,L) ûitûi,t−l , (14)

σ̂
2
iu =

1
T

T∑
t=1

û2
it , λ̂i =

1
T

L∑
l=1

T∑
t=l+1

w (l,L) ûi,t−l ûit , (15)

Ei,nT =
T∑
t=1

ϕ2
i,t + 2

L∑
l=1

T∑
t=l+1

w (l,L)ϕi,tϕi,t−l , (16)

ϕi,t = ỹi,t−1
̂̃ui,t −ϕj ,ϕj =

1
ňjT

∑
i∈Ĝ(j)

T∑
t=1

ỹi,t−1
̂̃ui,t ,

ûit = yit − ρ̌jyi,t−1,̂̃ui,t = ỹit − ρ̌j ỹi,t−1, with i ∈ Ĝ (j) ,

w (l,L) = 1− l
L+ 1

.

The quantities defined in (13) are variance, long run variance, long run one-sided covari-
ance, and bias estimates, constructed from the regression residuals ûit and ̂̃ui,t. The long
run quantities are constructed using the Bartlett window w (l,L).

Based on the membership and variance estimates, we proceed to implement testing

procedures to detect group-specific explosiveness. To test the null hypothesisH(j)
0 : c0

j = 0

11



against H(j)
1 : c0

j > 0 for any j, we provide two statistics, denoted by the following panel J
and panel t statistics

J̃j =

√
ňj
3
T

ρ̌j − 1−
ňjT λ̌j

Ďj,nT
+
ňjT ω̌

2
j

2Ďj,nT

 , t̃j =

(
ρ̌j − 1− ňjT λ̌j

Ďj,nT
+
ňjT ω̌

2
j

2Ďj,nT

)
Ďj,nT

ω̌j

√
Ěj,nT

, (17)

in which Ďj,nT :=
∑
i∈Ĝ(j)

∑T
t=1 ỹ

2
i,t−1, and Ěj,nT is defined in (16).

Note that there are two bias correction terms separately introduced by serial correla-
tions and demeaned variables in each test. The term −(ňjT λ̌j )/Ďj,nT removes the bias of
the stationary linear process while the term (ňjT ω̌

2
j )/(2Ďj,nT ) eliminates the bias caused

by demeaning variables. To the best of our knowledge, the explicit forms of these bias
terms are novel and are derived here for the first time, although they have a clear prece-
dent in Phillips and Magdalinos (2007b) in the time series context. The above findings
help to enhance our understanding of bias correction procedures in dynamic panel mod-
els. In particular, beyond incidental parameter problems and the bias generated by the
presence of nonlinear functions, serial correlation in the component innovations can lead
to non-negligible additional bias, coupled with inferential issues that need treatment to
ensure asymptotically pivotal tests. These adjustments are especially needed in near unit
root cases.

A significant advantage of these panel tests is the potential power gains from cross
section aggregation within a homogeneous cluster of individual time series that can en-
hance their discriminatory power for bubble detection. By comparison the recently de-
veloped panel approach of Chen et al. (2022) focuses on the possible presence of a com-
mon single explosive factor extracted by principal component analysis. This method has
the advantage of allowing for individual weighting and cross section dependence but it
does not enhance discriminatory power. However, the factor model approach might be
modified by the use of clustering methods, similar to those used here, to gain power from
group aggregation.

The test statistics in (17) are based on the entire sample. But further development
of the methodology is possible to embed a real-time dating strategy for estimating the
origination and collapse dates of financial bubbles analogous to the time series meth-
ods in Phillips et al. (2011, 2015a). As indicated above, cross section dependence (e.g.,
through interactive fixed effects) can be added to the mixed-root dynamic panel with la-
tent membership, similar to second generation panel unit root testing (Moon and Perron,
2004; Bai and Ng, 2004, 2010; Westerlund, 2015). Such extensions involve non-trivial
technical developments and are therefore left for future research.

3.3 Estimation of the group number

So far we have assumed that the true number of groups G0 is known. In practice G0 is
unknown. When the group number is set to G, the estimated quantities δ̂, ρ̌j and Ĝ (j) are
all dependent on G. For clarity they are therefore denoted by δ̂ (G), ρ̌j (G) and Ĝ (j,G). We

12



propose to estimate the true number of groups using a new methodology that combines
an IC and a Hausman-type model specification test. In particular, we use IC to select the
lower bound of the group number in the first step, where the IC function is defined as

IC(G) = ln

 1
nT

G∑
j=1

∑
i∈Ĝ(j,G)

T∑
t=1

(
ỹit − ỹi,t−1ρ̌j (G)

)2

+κnTG, (18)

with penalty κnTG depending on the number of groups G and a tuning parameter κnT
that satisfies the rate restriction

κnT +
1

nT κnT
→ 0. (19)

The lower bound of the group number is set to the minimizer of the IC, that is,

G̃ = arg min
G=1,2,...,Gmax

IC(G) , (20)

where Gmax is a generic upper bound of G.
It is well known that the IC function defined in (18) can consistently select the true

number of groups or the true number of factors in many contexts (Bai and Ng, 2002;
Bonhomme and Manresa, 2015). But as discussed in Remark 3.1 and proved in Theorem
4.4 below, when mildly stationary groups, a unit root group, and mildly explosive groups
are present in the panel data, G̃ ≤ G0 with probability approaching 1, so that G̃ may
underestimate G0 even in the limit.

To produce a consistent estimator of G0, after G̃ is obtained by IC, we propose a
new Hausman-type specification test to assess slope homogeneity when G is assumed to
be the number of groups for all G ∈

{
G̃, G̃+ 1, ...,Gmax

}
. Assuming there are G groups,

the recursive k-means algorithm is applied to each estimated group j for j ∈ {1,2, ...,G}
by assuming that each group j has at most G := (Gmax −G+ 1) subgroups. In the sub-
group analysis of the estimated jth group, the variables of interest are denoted by δ̂j (G),
ρ̌j,h (G), Ĝ (j,h,G), ňj,h and πj,h with h = 1,2, ...,G. The notation becomes somewhat com-
plex because of the groupings, subgroupings, and selection process. For precision we
let δ̂j (G) =

(
ĝj,1 (G) , ĝj,2 (G) , ..., ĝj,ňj (G)

)′
be the estimated membership of subgroups in

the estimated jth group, ρ̌j (G) =
(
ρ̌j,1 (G) , ρ̌j,2 (G) , ..., ρ̌j,G (G)

)′
be the estimated slopes in

subgroups of the estimated jth group, Ĝ (j,h,G) be the estimated individuals in the esti-
mated hth subgroup of the estimated jth group, and ňj,h be the estimated dimension of
individuals in the estimated hth subgroup of the estimated jth group. In a mild abuse of
notation, we continue to denote the post-clustering estimate with undemeaned variables
as ρ̌j (G) and let

ρ̌j (G) =

∑
i∈Ĝ(j,G)

∑T
t=1 yi,t−1yit∑

i∈Ĝ(j,G)
∑T
t=1 y

2
i,t−1

, ρ̌j,h (G) =

∑
i∈Ĝ(j,h,G)

∑T
t=1 yi,t−1yit∑

i∈Ĝ(j,h,G)
∑T
t=1 y

2
i,t−1

, and lim
n,T

ňj,h
ňj
→ πj,h.

(21)
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The idea behind this Hausman-type test is to detect unspecified parameter hetero-
geneity across subgroups in a recursive manner. Without losing generality, we discuss
the case in which G subgroups are specified in the estimated jth group since subgroup
divisions with dimension smaller than G can be addressed in the same fashion as the fol-
lowing approach. Under the null hypothesis of slope homogeneity in the jth group, the
joint asymptotic theory (i.e. (n,T )→∞) that will be discussed later in Section 4 shows√

ňjT 1+γ
(
ρ̌j (G) · `G×1 − ρ̌j (G)

)
⇒N

(
0G×1, − 2c0

j

(
π̃−1
j − IG

))
, if c0

j < 0; (22)√
ňjT 2

(
ρ̌j (G) · `G×1 − ρ̌j (G)

)
⇒N

(
0G×1, 2

(
π̃−1
j − IG

))
, if c0

j = 0; (23)√
ňjT 2γ

(
ρ0
j

)2T (
ρ̌j (G) · `G×1 − ρ̌j (G)

)
⇒N

(
0G×1, 4

(
c0
j

)2 (
π̃−1
j − IG

))
, if c0

j > 0; (24)

where π̃j = diag
{
πj,1,πj,2, ...,πj,G

}
. We assume that 0 < πj,h < 1 for all {j,h} under the null

hypothesis of slope homogeneity in the jth group. Therefore, the Hausman-type statistic
can be written

Wj (G) :=
(
ρ̌j (G)`G×1 − ρ̌j (G)

)′ [(
−IG + π̃−1

j

)
ω̌2
j Ď
−1
j,nT

]−1 (
ρ̌j (G)`G×1 − ρ̌j (G)

)
⇒ χ2

(
G
)
, under the null hypothesis of slope homogeneity in the jth group,

(25)

where Ďj,nT :=
∑
i∈Ĝ(j,G)

∑T
t=1 y

2
i,t−1. Diminishing Type I error is achieved by implementing

tests of slope homogeneity in each estimated group (j = 1,2, ...,G) with a slowly diverg-
ing critical value of the form cvnT := (1 + b log(nT ))χ2

0.95

(
G
)
, where χ2

0.95

(
G
)

is the 95%

critical value of χ2
(
G
)

and b is some positive constant.4 We define the new estimator of

the group number as Ĝ defined by

Ĝ = inf
G̃≤G≤Gmax

{
G| Wj (G) ≤ cvnT , for any j = 1,2, ...,G

}
. (26)

For clarity, the procedure to estimate G0 is summarized in Algorithm 2.

Remark 3.1 Consistency of the IC procedure (Bai and Ng, 2002; Su et al., 2016; Bonhomme
and Manresa, 2015) and residual-based model specification tests (Lu and Su, 2017) rely on the
successful extraction of valid signals concerning potential model misspecifications from regres-
sion residuals. But the usual validity of these methods does not always hold for nonstationary
models whose roots are close to unity. When the mixed-root panel model contains latent mem-
berships, these procedures tend to underestimate the true number of groups. In particular,
when individual time series follow a mildly stationary process, the usual theory and limit re-
sults change because the error variance can still be consistently estimated using an inconsistent
estimate of the distance parameter ci . For instance, if c0

i < 0 and an inconsistent time series

estimator ĉ
T S
i with ĉ

T S
i − c0

i =Op (1) is employed, we have

1
T

T∑
t=1

(
yit − ρ̂

T S
i yi,t−1

)2

4The setting b = 5 was found to work well in both the simulations and the empirical work.
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Algorithm 2 Recursive procedure to compute Ĝ

(i) Optimize the IC function of equation (18) and estimate the lower bound of group
number G̃ via equation (20).

(ii) Let G = G̃.

(iii) Implement the recursive k-means algorithm in Algorithm 1. Set j = 1.

(iv) Obtain the Hausman-type statistic of equation (25) for the estimated jth group. If
the test statistic exceeds cvnT , then set G = G+ 1 and go back to Step (iii). If the test
statistic is smaller than cvnT , then set j = j + 1 and re-iterate Step (iv).

(v) If the null hypothesis of group-specific slope homogeneity cannot be rejected in
each group j = 1,2, ...,G and G < Gmax, set Ĝ = G. If G = Gmax, set Ĝ = Gmax.

=
1
T

T∑
t=1

u2
it +

2
T 1+γ

T∑
t=1

uityi,t−1

(
c0
i − ĉ

T S
i

)
+

1
T 1+2γ

T∑
t=1

y2
i,t−1

(
c0
i − ĉ

T S
i

)2

=
1
T

T∑
t=1

u2
it +Op

(
1

T
1+γ

2

)
+Op

( 1
T γ

)
→p

(
σ0
iu

)2
,

where ρ̂
T S
i = 1 + ĉ

T S
i /T γ . Thus, when mildly stationary individual time series are miss-

clustered into other groups, the sample variance of regression residuals can still consistently
estimate the error variance. This property violates a key requirement of model selection, e.g.,
Assumption A.4 of Su et al. (2016), explaining the need to develop an alternative procedure
based on a Hausman-type test that can correctly select the true number of groups.

4 Asymptotic Theory

This section develops the asymptotic properties of the two stage procedure for the mixed-
root panel autoregressive model given in (4) and (5). We first establish the uniform con-
sistency of the recursive k-means clustering method so that the estimated membership
is asymptotically identical to the true membership. The post-clustering estimators of the
AR coefficients are then shown to be asymptotically equivalent to the oracle estimators
that employ the true group identities and the right-tailed panel J and t tests are shown to
have pivotal limit distributions under the null hypothesis of a group-specific unit root.
Consistency is demonstrated for the group number estimator based on the combined use
of IC and Hausman-type tests, so that Ĝ correctly selects the true number of groups G0

in large samples.
To establish the asymptotic theory of the two stage procedure, we first impose the

following two assumptions to facilitate the development.

Assumption 1 (i) For any i ∈ In, the individual fixed effects µi =Op
(
T −1

)
.
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(ii) The equation errors uit follow stationary linear processes

uit =
∞∑
h=0

Fihεi,t−h = Fi (L)εit , (27)

in which the operator Fi (z)
(
:=

∑∞
h=0Fihz

h
)

contains a series of deterministic coefficients

{Fih}∞h=0 with Fi0 = 1, for any i ∈ In. The innovations {εit} in (27) are iid
(
0,

(
σ0

)2
)

over

t with
(
σ0

)2
> 0 for each i and independent across i with uniformly bounded finite qth

(q ≥ 4) moments, supiE|εit |q <∞. The summability restrictions

∞∑
h=0

h |Fih| <∞, (28)

hold uniformly over i ∈ In. If g0
i = g0

` for any i, ` ∈ In, then Fih = F`h for all h. For
individuals i ∈ In with c0

i < 0, then Fih = 0 for all h ≥ 1 and uit = εit.

(iii) Assume yi0 = 0 for any i ∈ In and uis = 0 for any i ∈ In and s ≤ 0.

(iv) There exist clow, cup > 0 for which c0
j ∈ C :=

[
−cup,−clow

]
∪ {0} ∪

[
clow, cup

]
,∀j ∈ G0.

(v) There exists a constant ċ ∈ (0,∞) such that, for any j, j ′ ∈ G0,

inf
j,j ′

∣∣∣∣c0
j − c

0
j ′

∣∣∣∣ ≥ ċ.
Assumption 1(i) provides restrictions on the individual fixed effects that ensure drift

effects from the equation intercept are asymptotically negligible in all cases. Assumption
1(ii) provides for linear process equation errors uit with group-specific homogeneity that
facilitates the limit theory (Phillips and Solo, 1992). Assumption 1 (ii) assumes cross-
sectional independence and possible heterogeneity over i ∈ In with uniform moment
conditions that facilitate the development of limit theory for cross section averages. Fur-
ther enhancements to this framework that allow for cross section dependence are possi-
ble and will be considered in future work.

Under Assumption 1(ii), the error process {uit} admits the Beveridge-Nelson decom-
position, namely,

uit = Fi (1)εit − ε̃i,t−1 + ε̃it,

where ε̃it =
∑∞
h=0 F̃ihεi,t−h and F̃ih =

∑∞
k=h+1Fik . The summability condition

∑∞
h=0 |F̃ih| <

∞ is satisfied by (28), which in turn assures functional laws hold for the partial sum
processes Sit =

∑t
s=1uis (Phillips and Solo, 1992)

Bi,T γ (·) =
Si,bT γ ·c (·)
T γ/2

=
1
T γ /2

bT γ ·c∑
s=1

uis⇒ Bi (·) ,
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for all i where the Bi (·) are Brownian motions with variance
(
ω0
i

)2
.

Assumption 1(iii) details simple initial conditions and these may be considerably
weakened without changing the limit theory, as shown in time series settings (Phillips
and Magdalinos, 2009), at the expense of further notational complications. Assumption
1(iv) imposes an identification condition that ensures a bounded support for the distanc-
ing parameter vector c so that, employing the earlier support notation CG0 , we have

CG0 := XG
0

1 C, with C :=
[
−cup,−clow

]
∪ {0} ∪

[
clow, cup

]
.

Assumption 1(v) gives another identification condition in which the group-specific pa-
rameters are well separated and ensures that the recursive k-means algorithm can specify
each group under the joint asymptotic scheme (i.e., with both n,T →∞).

Assumption 2 (i) As n→∞,
nj
n
→ πj ∈ (0,1],

where πj is a constant value for any j ∈ G0. Moreover,

inf
j∈G0

πj ≥M > 0,

for some constant M > 0.

(ii) The following rate restrictions hold5: T γ∧(1−γ)

(log2 T )2 � n, T 3−4γ

(log2 T )8 � n2, T

(log2 T )8 � n
(
log2n

)2,

γ < 1
3 and n � T 5γ−1 (logT )16.

(iii) The truncation for the long run variance estimates, L, satisfies the condition that L =
o
(
T

1
3

)
and L = o

(
T 2γ

)
.

Assumption 2(i) implies that the cardinality of each group increases proportionally
to the full dimension of the cross section. If we denote

σ2
0 :=

G0∑
j=1

πj
(
σ0
j

)2
,

then, under Assumption 2(i), we have

lim
n→∞

1
n

n∑
i=1

(
σ0
iu

)2
= lim
n→∞

G0∑
j=1

nj
n

 1
nj

∑
i∈G0(j)

(
σ0
j

)2

 =
G0∑
j=1

πj
(
σ0
j

)2
= σ2

0 > 0. (29)

The reason σ2
0 > 0 is that by assumption

(
σ0

)2
> 0 which in turn ensures that

(
σ0
j

)2
> 0

for all j.
Assumption 2(ii) imposes rate restrictions that ensure the clustering errors are negli-

gible and the recursive k-means clustering algorithm is uniformly consistent. Assump-
tion 2(iii) provides necessary conditions to ensure consistent estimates for the one-sided
and two-sided long run variances.

5Recall that AnT � BnT signifies that BnT /AnT = op (1) as (n,T )→∞.
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4.1 Clustering and estimation

First, uniform consistency of the recursive k-means clustering method is established,
showing that the estimated membership is equivalent to the true membership under the
joint asymptotic scheme, (n,T )→∞.

Theorem 4.1 Suppose Assumptions 1 and 2 hold. When (n,T )→∞,

Pr
(

max
1≤i≤n

∣∣∣ĝi − g0
i

∣∣∣ > 0
)
→ 0.

Theorem 4.1 shows that we can correctly recover the latent group structures of the
mixed-root panel autoregression model under the joint asymptotic framework. This re-
sult relies heavily on the identification conditions given in Assumptions 1(iv) and 1(v),
based on which the computational algorithm of Bonhomme and Manresa (2015) applies
to the present model. As long as the group-specific distancing parameters are well sep-
arated across groups and the support of parameters is compact, we can always estimate
the latent membership of distancing parameters through the recursive k-means cluster-
ing algorithm.

With the clustered membership obtained from Stage 1, we employ the panel within
estimate ρ̌j based on the estimated membership {ĝi}ni=1. Since the clustering errors are
asymptotically negligible, it is easy to show that the post-clustering estimator ρ̌j is asymp-
totically equivalent to the oracle estimator ρ̂j that uses the true group structure. Thus,
for any 1 ≤ j ≤ G0, if ρ̂j and ρ̌j are defined as in (11) and (12), then

√
nj

(
ρ0
j

)T
T γ

(
ρ̌j − ρ0

j

)
=

√
nj

(
ρ0
j

)T
T γ

(
ρ̂j − ρ0

j

)
+ op(1), if c0

j > 0, (30)

√
njT

ρ̌j − 1 +
3
(
σ0
j

)2(
ω0
j

)2
1
T

 =
√
njT

ρ̂j − 1 +
3
(
σ0
j

)2(
ω0
j

)2
1
T

+ op (1) , if c0
j = 0, (31)

and

√
njT

1+γ
2

ρ̌j − ρ0
j −

1
T γ
−2c0

j(
ω0
j

)2

λ0
j +

c0
j

T γ
mj,T




=
√
njT

1+γ
2

ρ̂j − ρ0
j −

1
T γ
−2c0

j(
ω0
j

)2

λ0
j +

c0
j

T γ
mj,T


+ op (1) , if c0

j < 0, (32)

where mj,T in (32) denotes a non-negligible bias element whose explicit form is given by
(36) in Theorem 4.2. Based on (30), (31) and (32), the asymptotic theory may be obtained
from that of the oracle estimator based on the true group membership. Under the joint
convergence framework (n,T )→∞, the following theorem provides the Gaussian limit
theory of the post-clustering estimator ρ̌j of the jth estimated group.
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Theorem 4.2 Suppose Assumptions 1 and 2 hold. When (n,T )→∞,√
nj

(
ρ0
j

)T
T γ

(
ρ̌j − ρ0

j

)
⇒N

(
0,4

(
c0
j

)2
)
, if c0

j > 0; (33)

√
njT

ρ̌j − 1 +
3
(
σ0
j

)2(
ω0
j

)2
1
T

⇒N (0,3) , if c0
j = 0; (34)

√
njT

1+γ
2

ρ̌j − ρ0
j −

1
T γ
−2c0

j(
ω0
j

)2

λ0
j +

c0
j

T γ
mj,T


⇒N (

0,−2c0
j

)
, if c0

j < 0, (35)

where

mj,T =
1
nj

∑
i∈G0(j)

mi,T and mi,T =
∞∑
h=1

(
ρ0
j

)h−1
E

(
ε̃itui,t−h

)
. (36)

Remark 4.1 Theorem 4.2 shows that ρ̌j can consistently estimate the true slope parameters
in all three types of nonstationary roots. The asymptotic distributions of the post-clustering
estimators are always Gaussian, regardless of the value of c0

j and show distinctively different
behaviors from the time series case, as shown in Phillips and Magdalinos (2007b), in which
the limiting distributions are Cauchy, Dickey-Fuller, and Gaussian when c0

j > 0, = 0, < 0,
respectively. The above difference suggests that it is easier to test a hypothesis about the autore-
gressive coefficient in the panel context than in a time series context, as only the pivotal critical
values are needed in practice.

Remark 4.2 The convergence rates of ρ̌j are √nj
(
ρ0
j

)T
T γ , √njT and √njT

1+γ
2 for the respec-

tive cases c0
j > 0, cj = 0, and cj < 0. These rates are √nj times the usual convergence rates for

time series (Phillips and Magdalinos, 2007b). These enhanced rates in the panel model exploit
the effects of cross section averaging and confirm that panel tests, which combine cross-section
and time series information, are expected to have improved statistical power over tests that rely
only on time series data.

4.2 Testing for explosive roots

Theorem 4.3 Suppose Assumptions 1 and 2 hold and (n,T )→∞. Under the null hypothesis
H(j)

0 : c0
j = 0, we have t̃j ⇒ N (0,1) , and J̃j ⇒ N (0,1) . Under the alternative hypothesis

H(j)
1 : c0

j > 0, we have t̃j =Op
((
ρ0
j

)T √
n
)
, and J̃j =Op

(√
nT 1−γ

)
.

Remark 4.3 In the explosive root groups, where c0
j > 0, the sample moment

∑
i∈G0(j)

T∑
t=1

ỹ2
i,t−1 =Op

(
n
(
ρ0
j

)2T
T 2γ

)
,
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ensures asymptotically negligible bias terms, which diminish at a faster rate than the Gaussian
distribution. Therefore,

√
nj

(
ρ0
j

)T
T γ

ρ̌j − ρ0
j +

njT
(
σ0
j

)2

2
∑
i∈G0(j)

∑T
t=1 ỹ

2
i,t−1

⇒N (
0,4

(
c0
j

)2
)
, if c0

j > 0; (37)

√
njT

ρ̌j − ρ0
j +

njT
(
σ0
j

)2

2
∑
i∈G0(j)

∑T
t=1 ỹ

2
i,t−1

⇒N (0,3) , if c0
j = 0. (38)

By Theorem 4.2 and Lemma B.1, when (n,T )→∞, we can simply replace the sample moment
that relies on the true membership by the corresponding sample moment based on the estimated
group structures. It follows that

√
nj

(
ρ0
j

)T
T γ

ρ̌j − ρ0
j +

ňjT σ̌
2
j

2
∑
i∈Ĝ(j)

∑T
t=1 ỹ

2
i,t−1

⇒N (
0,4

(
c0
j

)2
)
, if c0

j > 0, (39)

√
njT

ρ̌j − ρ0
j +

ňjT σ̌
2
j

2
∑
i∈Ĝ(j)

∑T
t=1 ỹ

2
i,t−1

⇒N (0,3) , if c0
j = 0. (40)

The consistency of the short-run variance estimate ensures standard normality of the post-
clustering statistics t̃j and J̃j under H(j)

0 : c0
j = 0.

Remark 4.4 In comparison with statistics based on time series data, the t-statistic under
the alternative hypothesis of an explosive root diverges at the rate O

(
(ρ0
j )T

)
, slower than the

O((ρ0
j )T
√
n) rate of Theorem 4.3. The power deficiency of pure time series t-tests arises from

this lower convergence rate of time series estimates under the alternative. Importantly, under

the alternative H(j)
1 : c0

j > 0 the t-statistic t̃j = Op

((
ρ0
j

)T √
n
)

has a divergence rate that is

faster by an exponential factor than the coefficient based test for which J̃j =Op
(√
nT 1−γ

)
. This

difference, which does not occur in stationary alternatives (for either time series or panel data
tests), arises because t̃j is constructed with a standard error in the denominator that shrinks at
an exponential rate corresponding to the signal strength of the regressor in the mildly explosive
case.

4.3 Estimating the number of groups

The following Theorem shows that the IC estimator G̃ is inconsistent when there are
mildly stationary groups in the data.

Theorem 4.4 Suppose Assumptions 1 and 2 hold and (n,T )→∞. When either (i) γ ∈ (0,1)
and c0

i ≥ 0 or (ii) γ = 0, we have G̃→p G
0. When γ ∈ (0,1), we have G̃ ≤ G0, with probability

approaching 1.
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The first part of Theorem 4.4 indicates that when there is no mildly stationary group,
G̃ consistently estimates G0. The second part of the theorem shows that G̃ may under-
estimate G0 with positive probability asymptotically when mildly stationary processes
are present in the panel. The next result shows that the combined IC and Hausman test
estimator Ĝ delivers a consistent estimate of G0.

Theorem 4.5 Let Assumptions 1 and 2 hold and γ ∈ (0,1). Then Ĝ→p G
0, as (n,T )→∞.

Remark 4.5 The idea of using a Hausman-type statistic in this context follows Phillips and
Sul (2003). The procedure consistently tests for slope heterogeneity and possible mis-clustering
of individuals in the panel, thereby providing a useful complement to IC group number selec-
tion, especially in cases like the present where IC is not consistent for all possible classifications.
Pesaran et al. (1996) gave another Hausman-type statistic to test for a difference between panel

within estimation ρ̂FE and mean group estimation ρ̂MG, where ρ̂MG = 1
n

∑n
i=1 ρ̂

T S
i and ρ̂

T S
i is

the time series estimate for individual i in the panel, as defined in equation (3). But this pro-
cedure is not easily used in the present context since ρ̂FE and ρ̂MG are both asymptotically
efficient estimates with Avar

(
ρ̂FE

)
= Avar

(
ρ̂MG

)
, so the Rao-Blackwell theorem is not appli-

cable (Pesaran and Yamagata, 2008).

Remark 4.6 In the asymptotic analysis earlier in this section, the limit theory was obtained
under the assumption that the true number of groups, G0, was known. Theorem 4.5 shows that
the estimator, Ĝ consistently estimates G0. Following common practice in the panel clustering
literature (Bonhomme and Manresa, 2015; Su et al., 2016; Huang et al., 2021), we treat the
consistent estimate Ĝ as the true value G0 in the practical work of implementation6.

5 Simulation Studies

Several numerical experiments were designed to check the finite sample performance of
the procedures developed above. These include: the group number estimate in (26); the
membership estimate generated by the recursive k-means clustering algorithm in (8); the
post-clustering estimates in (12); and the size and power performances of the proposed
tests in (17).

The following model setup was used to generate the simulated data: the individual

fixed effects µi
i.i.d.∼ T −1N (0,0.1); the error process uit = θui,t−1 + εit with (i) serially cor-

related errors (θ = 0.5, εit
i.i.d.∼ N (0,0.01)) or (ii) iid errors (θ = 0, εit

i.i.d.∼ N (0,0.01));7

sample sizes n = 30, 60, 90, 120, 150, and T = 100, 150, 200, 250, 350, 450, 550; and
group number G0 = 3 (i.e., three groups) with π1 : π2 : π3 = 1

3 : 1
3 : 1

3 or G0 = 2 (i.e.,

6It is worth noting that a slow rate of convergence in determining the correct model specification can lead
to invalid inference (Leeb and Pötscher, 2005, 2008) due to post-selection inference difficulties particularly
in small samples. However, existing results in the literature (Liu et al., 2020; Dzemski and Okui, 2021)
show that overidentification of the group number and resulting minor classification errors do not damage
the asymptotic properties of the post-classification estimators. Extensions of such findings to nonstationary
panel models like those of the present paper are a topic for further research.

7The iid error case is studied in the Online Supplement.
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two groups) with π1 : π2 = 1
2 : 1

2 . The following parameter settings for c and γ were
considered:

(
c0

1, c
0
2, c

0
3,γ

)
=


(−15,−8,−1,0.6) for DGP 0

(1, 0,−6,0.6) for DGP 1
(1,0.2,−6,0.6) for DGP 2

, (41)

and (
c0

1, c
0
2,γ

)
= (−1,1,0.6) for DGP 3. (42)

These settings reflect those found in the empirical work in Section 6. The models
considered allow for three groups (G0=3) and two groups (G0 = 2). With 3 groups and
all c0

j < 0 DGP 0 helps to reveal the downward bias problem of IC when all groups are
mildly stationary. DGPs 1–3 each has a mixed collection of groups and these collections
are designed to show the accuracy of the hybrid model specification procedure, the con-
sistency of the recursive k-means clustering algorithm, and the power improvements that
result from cross section within group averaging in the panel inference procedures.

Figure 1 plots both the empirical density and the sample average of the signal-to-
noise ratio (SNR) for each group in DGPs 1–3. The SNR is measured by the ratio of the

sample variance of (1 +
čj
T γ )yi,t−1 to the sample variance of ûit with sample sizes n = 60,

T = 100 and ĝi = j obtained from the simulated sample paths. For all DGPs the SNR of
the mildly explosive group is far greater than the SNR of the unit root group, which in
turn is much larger than the SNR of the mildly stationary group. These results, which
are also evident in Table 3, are to be expected in view of the different divergence rates

(Op
(
T 2γ−1

(
ρ0
j

)2T
)
, Op (T ) and Op (T γ ), respectively) of the SNRs in these groups. This

heterogeneity in rates across groups facilitates recovery of the latent group structure by
the recursive k-means clustering algorithm and the overall performance in selection is
strengthened in the panel regressions because of cross section averaging within groups.

[Insert Figure 1 and Table 3 Here]

To explore the advantages of the post-clustering panel tests we draw comparisons
with the behavior of the usual semiparametric time series test statistics (Phillips, 1987;
Phillips and Perron, 1988):

PP t-test =

(̂
ρ
T S
i − 1−T ·̂λ

T S

i
Di,T

)√
Di,T

ω̂
T S
i

, PP J-test = T

̂ρT Si − 1− T · λ̂
T S

i

Di,T

 , (43)

in which ρ̂
T S
i is the time series estimate of ρ0

i defined in (3), the long run covariance

estimate λ̂
T S

i and long run variance estimate
(
ω̂
T S
i

)2
are based on ρ̂

T S
i , and the sample
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moment Di,T :=
∑T
t=1 ỹ

2
i,t−1. Under the null hypothesis H0 : c0

i = 0, it follows from stan-
dard theory that

PP t-test⇒

∫ 1
0 W˜i(r)dWi(r)[∫ 1

0 W˜i(r)2dr
] 1

2

, PP J-test⇒

∫ 1
0 W˜i(r)dWi(r)∫ 1

0 W˜i(r)2dr
, (44)

where the Wi (·) are standard Brownian motions and W˜i(r) =Wi(r)−
∫ 1

0 Wi(s)ds.
According to the pivotal distributions of the panel t- and J-tests under the null hy-

pothesis, the right-tailed 95% critical value is 1.64. For the time series PP t- and J-tests,
the right-tailed 95% critical values are set at −0.07 and −0.13, respectively (e.g., Tables
B.5-B.6 in Hamilton (1994)). The bandwidth for the long run variance estimates in (14)
and (15) was set at L = bT 0.3c, the bandwidth for the variance estimate in (16) was set
to L = bT 0.1c, and for the time series statistics in (43) the bandwidth for the long run
variance and covariance components was set to bT 0.3c.8 These bandwidth choices are
consistent with the rate restrictions in the theory development and they are used in the
empirical analysis. In all cases in the numerical simulations the number of replications
was 1,000.

The performance of the group number estimate Ĝ is considered first. The penalty
κnT of IC is (nT )−0.35 and the upper bound Gmax is 5. The critical value of the Hausman
test is set as cvnT = (1 + 5log(nT ))χ2

(
G
)

and G = (Gmax −G+ 1). Tables 4–7 report the

empirical frequency of Ĝ in (26). As T increases, the performance of the estimator Ĝ
steadily improves, so that when T is larger than 350 Ĝ successfully identifies the true
G0 with only small errors involving overestimation, revealing evidence of consistency in
group number estimation. By comparison the downward bias of IC is evident in nearly
every case, corroborating the asymptotic theory.

[Insert Tables 4–7 Here]

Next, we checked the finite sample performance of the recursive k-means clustering
algorithm and post-clustering estimation, assuming the true group number G0 is known.
Tables 8–10 report the clustering error (CE), root mean squared error (RMSE), and bias
of the post-clustering estimates. The CE is defined as

1
n

G0∑
j=1

∑
i∈Ĝ(j)

1
{
ĝi , g

0
i

}
.

The RMSE is the square root of the sample moment of the squared differences between
the post-clustering estimates and the true values. The bias is the averaged differences

8Bandwidths are selected based on the simulation findings in the mixed-root panel model. When the
bandwidth of (14) and (15) is smaller than bT 0.3c, the panel t test statistic overrejects and leads to size
distortion. When the bandwidths used in (16) exceed bT 0.1c, the panel t test statistic is too small and test
power in rejecting the null of a group-specific unit root is reduced. Automated bandwidth choices could be
obtained by cross-validation, as in Phillips et al. (2017), and this approach is left for future investigation.
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between the post-clustering estimates and the true values. For comparison we also report
the CE, RMSE, and bias of the oracle estimates where it is assumed that the true group
membership δ0 is known.

[Insert Tables 8–10 Here]

According to Tables 8–10, the CE decreases to zero as T increases. The RMSE and
bias of the oracle estimates are smaller than those of the post-clustering estimates. For
the post-clustering estimates of the nonstationary groups, the magnitude of the RMSE
and bias also generally decreases when T → ∞. For all DGPs, the difference between
the oracle and the post-clustering estimates is negligible when T ≥ 150. The diminishing
differences suggest asymptotic equivalence between these two sets of estimates. This
property is due to the uniform consistency of the recursive k-means clustering algorithm,
as shown in the theory development.

Based on the estimated membership δ̂, the performance of the post-clustering panel
t and J tests for detecting explosive roots is analyzed and compared with the time series
counterparts. The nominal levels are all set at 5%, accompanied by the right-tail 95%
critical values of the standard normal distribution and standard unit root limit distribu-
tions. We obtain the empirical rejection rates of the PP t and J tests when n = 1 and the
empirical rejection rates of the post-clustering panel t and J tests when n > 1, which are
presented in Table 11. If the distancing parameter c0

j is zero (as in the null hypothesis)

the empirical rejection rate gives test size; and when c0
j is nonzero, the empirical rejection

rate gives test power.

[Insert Table 11 Here]

Evidently the size distortion of both panel tests is small when n ≥ 60 and T ≥ 150,
although size distortion of the panel tests is slightly larger than that of the time series
counterparts. This is unsurprising as the asymptotics require the use of cross section
central limit theory, which inevitably introduces approximation errors in finite samples,
particularly small samples that arise in group subsamples. This loss is counterbalanced
by a substantial improvement in the power of the panel tests over the time series tests.
For instance, when c0

j = 0.2 (the corresponding ρ0
j is 1.0126, 1.0099 and 1.0083 when

T = 100,150,200, which are empirically plausible values based on our empirical work),
the power performances of the post-clustering panel tests are much larger than those
of the time series tests. If T = 100, the post-clustering panel t-test raises the power of
the time series t-test from 0.175 to 0.599 when nj = 10, to 0.807 when nj = 20, and to
0.917 when nj = 30. The post-clustering panel t test with T = 100 has substantially
greater power than the time series t test with T = 200 (0.917 versus 0.382). Moreover,
it is interesting to note that the panel t test has greater power than the panel J-test that
is based on the estimated membership, corroborating the different divergence rates in
asymptotic theory of Theorem 4.3 under the mildly explosive alternative.
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6 Empirical Applications

6.1 Housing prices in China

It is well known that housing prices in China have experienced unprecedented growth
over the last 20 years. Using data on thirty five major Chinese cities, Chen and Wen
(2017) found that housing prices have substantially outgrown income in these cities,
leading them to interpret China’s housing boom as a rational bubble. Such an interpre-
tation is important to subject to a formal assessment of the empirical evidence using
rigorous methods to detect potential explosive behavior. Our first empirical study ap-
plies the methods of this paper to a panel of monthly housing indices from 107 (n = 107)
cities in China obtained from Fang et al. (2016). The sample period is from January 2003
to December 2012 and contains 120 monthly observations (T = 120). Ideally housing
rental prices in these cities would be useful to measure fundamental values in these real
estate markets. But it is difficult to find reliable rental indices at the city level in China.
Instead, as a proxy, we use the monthly national-level Consumer Price Index (CPI) for
rentals to approximate fundamental values.9 For this application we let {yit} be the ratio
between the nominal housing price index for city i and the CPI for rentals in month t.

The model in (4) and (5) was fitted to {yit} using the proposed methods. Cross sec-
tion heterogeneity exists because different cities have different characteristics and may,
for example, experience different levels of urbanization. Nonetheless, a group structure
in the evolution of house prices may exist because of similarities in the driving mecha-
nism underlying the house price dynamics in some cities and commonalities that exist
in supply and demand factors, leading to the co-existence of possible groupings of cities
into mildly explosive groups, a unit root efficient market group, and mildly stationary
groups.

[Insert Table 12 Here]

With tuning parameter10 κnT = (nT )−0.7, Table 12 reports the values of the computed
ICs for G = 1, ...,5. According to the IC selection G̃ = 3. The Hausman-type test algorithm
is applied using the critical value cvnT = (1 + 5log(nT ))χ2

(
G
)

and this procedure leads

to the same estimate Ĝ = 3. The recursive k-means clustering algorithm is then imple-
mented based on (8), giving the post-clustering estimate (12). This two stage procedure
provides the clustered group structure11,12. There are 27 cities in Group 1 including one

9The CPI for rentals is available on the official website of National Bureau of Statistics, China,
http://www.stats.gov.cn/

10Here and in the following empirical applications the IC penalty tuning parameter κnT was chosen to
satisify the rate condition (19). The results reported were found to be robust to tuning parameter choices
in the range κnT ∈ [(nT )−0.7 , (nT )−0.6]. In particular, for κnT = (nT )−0.62, membership estimation, post-
clustering parameter estimation and inferences concerning explosive behavior are unchanged in all the ap-
plications of the paper.

11The initial values used to start the k-means algorithm were chosen as the 30%, 70%, and 90% quantiles
of the individual time series estimates. The rate parameter γ = 0.6 was used. The estimated groups were
found to be robust to various choices of the initial values and the rate parameter.

12The names of the cities in each estimated group are reported in the Online Supplement.
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tier-1 city, Beijing. Another 42 cities are included in Group 2 including two tier-1 cities,
Guangzhou and Shenzhen. Comparatively, there are 38 cities in Group 3 including the
other tier-1 city, Shanghai, whose time series estimate of the slope coefficient is 0.9959.
Figure 5 gives the time series plots for all three groups.

[Insert Table 13 Here]

For each identified group, we report the panel-within estimate ρ̌j , the number of cities
in each estimated group, the post-clustering t- and J-statistics for the null hypothesis of
the group-specific unit root, as in Table 13. For Group 1, the estimated ρ̌1 is 1.011. Both
the panel t-test and the panel J-test which are based on the estimated groups suggest
that c0

1 is significantly larger than zero at the 1% significance level. For Group 2, the
estimated ρ̌2 is 1.003, which is very close to unity. Nonetheless, the post-clustering t-test
suggests that the true scale coefficient is bigger than zero at the 1% level while the panel
J-test rejects the null hypothesis of the group-specific unit root at the 5% significance
level. For Group 3, the post-clustering estimate ρ̌3 is just below unity and the unit root
null hypothesis is not rejected in this group. The post-clustering t and J tests therefore
indicate explosive behavior in Groups 1 and 2 but unit root behavior in Group 3.

[Insert Figure 5 Here]

6.2 Housing prices in the US

In recent years, strong surges in house prices have occurred in many US cities. Possible
reasons for these surges include near-zero interest rates and rising inflation expectations.
To examine whether rising fundamental values justify these developments the two-stage
algorithm of the present paper was applied to a panel of monthly housing indices for 11
(n = 11) US cities obtained from the official website of the Federal Reserve Bank of St.
Louis13. Monthly observations of T = 105 time series for each series were used, cover-
ing the period from January 2013 to September 2021. To measure fundamental values
monthly city-specific Consumer Price Index (CPI) data for rentals was employed.14 In
the application, {yit} was set as the ratio of the nominal housing price index to the CPI
for rentals for city i in month t.

[Insert Table 14 Here]

Using the penalty parameter setting κnT = (nT )−0.65, Table 14 reports calculated val-
ues of the ICs for G = 1, ...,5, leading to the choice G̃ = 2. The combined IC-Hausman test
procedure with critical value cvnT = (1 + 5log(nT ))χ2

(
G
)

gave the same estimated value

Ĝ = 2. Using this estimated group number the clustering algorithm based on (8) was im-
plemented, giving post-clustering estimates from (12) and the corresponding clustered

13https://fred.stlouisfed.org/
14For cities whose city-specific CPI for rentals data were unavailable, fundamental values were approxi-

mated using the national CPI for rentals.
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group structure.15,16 The two stage procedure produced 7 cities in Group 1 and and 4
cities in Group 2. Time series plots of these two groups are provided in Figure 6.

[Insert Figure 6 Here]

For each identified group of cities in the US housing market, Table 15 reports the
panel within-group estimates ρ̌j , the number of cities in each estimated group, and the
post-clustering t- and J-statistics for the null hypothesis of the group-specific unit root.
According to both the post-clustering t and J statistics, the explosive root ρ̌1 = 1.0432 of
Group 1 is statistically significant at the 1% level, indicating the presence of a housing
bubble in this group. For Group 2, the post-clustering estimate ρ̌2 = 1.0113 also exceeds
unity and the unit root group null is rejected at the 5% level. These post-clustering
panel tests suggest that explosive price bubbles are present in the data for both Groups 1
and 2, although Group 2 has 4 cities with a considerably weaker common explosive root
in housing prices. In consequence, there are clear differences in detection between the
panel clustered series and the individual time series. Figure 3 shows the time series of
US house prices17 for the cities where explosive behavior was detected by the panel t-test
but not by individual time series t-tests. In fact, none of the 11 cities were found to have
explosive behavior in house prices in the individual tests at the 5% level.

[Insert Table 15 Here]

6.3 Equity prices in the US

In a further application the methodology is applied to a panel of equity prices in the US
stock market. Whereas analysis of a general stock price index may indicate the presence
of an explosive root as in the historical study of Phillips et al. (2015a), such a finding does
not mean that all of the component stocks manifest explosive features. Narayan et al.
(2013) found evidence of group-specific heterogeneity in 589 stocks from nine different
sectors, so it is natural to incorporate group-specific heterogeneity in the analysis of stock
market bubbles. Our application employs the proposed two stage approach in which the
panel variables {yit} are set as the difference in levels between the monthly price and
monthly dividends of stock i in period t. The presence of a significant explosive common
root in any group is then indicative of a stock price bubble in that group.

[Insert Table 16 Here]

Monthly data for the S&P 500 component stocks were sourced from the Wharton
Research Data Service (WRDS), covering around 500 stocks in different sampling peri-
ods. For this study we selected a panel of 146 stocks giving 98 monthly observations

15The initial values were obtained from the 30% and 80% quantiles of the individual time series estimates
and the localizing rate parameter was set to γ = 0.6. The empirical results were found to be robust to various
initial values and localizing rate parameters.

16The names of the US cities in each estimated group are reported in the Online Supplement.
17Specifically, the plotted data in Figure 3 is the ratio of the city price index to the CPI of the city rentals
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(n = 146,T = 98) taken over the common period between January 2010 and February
2018.

Using the penalty parameter κnT = (nT )−0.6 Table 16 reports IC values for G = 1, ...,5,
leading to the estimate G̃ = 2. The combined IC-Hausman test procedure with critical
value cvnT = (1 + 5log(nT ))χ2

(
G
)

produced the same estimate Ĝ = 2. The clustering
algorithm was implemented using (8) and post-clustering estimates from (12). The two
stage procedure provided the group structure18,19. The results gave 40 stocks in Group
1 and 106 stocks in Group 2, in which high-tech stocks such as IT and biotech stocks
and energy stocks usually manifest mildly explosive roots. Time series plots of these two
groups are provided in Figure 7.

[Insert Table 17 Here]

For each identified group, Table 17 reports the panel within-group estimates ρ̌j , the
number of stocks in each estimated group, and the post-clustering t- and J-statistics for
the null hypothesis of the group-specific unit root. According to both the post-clustering
t and J statistics, the explosive root ρ̌1 = 1.012 of Group 1 is statistically significant at
the 5% level, indicating the presence of a price bubble in this group. For Group 2, the
post-clustering estimate ρ̌2 = 0.967 is smaller than unity and we cannot reject the null
hypothesis of a group-specific unit root. These post-clustering panel tests therefore sug-
gest that an explosive price bubble is manifest in Group 1 with 40 stocks, whereas Group
2 has 106 stocks with near unit root behavior indicative of an efficient market. The time
series in the two groups are displayed in Figure 7. In individual time series tests at the
5% level, only 29 of the stocks in Group 1 were found to be explosive and no explosive
behavior was supported in any of the 109 stocks in Group 2. Clustering the time series
therefore assists in the detecting 11 further stocks manifesting explosive behavior.

[Insert Figure 7 Here]

7 Conclusions

The existence of explosive phenomena is conveniently captured in time series autore-
gression by an autoregressive root that exceeds unity. Phillips and Magdalinos (2007a)
introduced the concept of mildly explosive roots, which have proved particularly useful
in empirical research because they are amenable to estimation and inference with piv-
otal asymptotic theory, confidence interval construction (Phillips, 2021) and recursive
testing algorithms. This mechanism of detection has assisted in determining the pres-
ence of asset price bubbles in financial assets like stocks and real assets like housing.
The present paper extends this mechanism to allow for latent group structures within a

18The initial values were obtained from the 30% and 80% quantiles of the individual time series estimates
and the localizing rate parameter was set to γ = 0.6. The empirical results were found to be robust to various
initial values and localizing rate parameters.

19The individual stock symbols in each estimated group are reported in the Online Supplement.
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dynamic panel model so that the individual time series may have mixed roots that fall
into three general categories, some that are mildly explosive, some that are mildly sta-
tionary, and some with a unit root. This extension is appealing in wide panels where
behavior may vary within each of these general classifications. The framework then al-
lows for subgroups with different autoregressive coefficients within a particular class
such as those with mildly explosive roots, which assists in modeling several forms of
explosive behavior. The paper develops a clustering algorithm that accommodates this
framework and enables detection of the clusters and estimation of their respective coef-
ficients, taking advantage of cross section averaging within each cluster. In particular, a
two stage approach is proposed to detect explosive behavior, incorporating a recursive
k-means clustering algorithm in the first stage and the panel approach to bubble anal-
ysis in the second stage. Both asymptotic theory and numerical simulations show that
the post-clustering testing procedures attain better power performance in bubble detec-
tion than a time series approach; and the clustering algorithm is uniformly consistent in
recovering the latent group membership.

Several extensions of the present research are possible. First, the framework of this
paper only accommodates time-invariant parameters and does not allow for structural
breaks. Hence, the origination and termination of an explosive episode in data are not in-
cluded within the present framework. However, the model and methods can be extended
to a wider panel setup that includes the real-time bubble dating strategy developed in
Phillips et al. (2011, 2015a) and more recent research on dating methods. Second, cross
section independence was imposed in the present framework to facilitate the develop-
ment of the asymptotic theory of clustering. A natural extension of this framework is
to employ models with panel interactive fixed effects (Bai, 2009) or panel group fixed
effects (Bonhomme and Manresa, 2015; Bonhomme et al., 2017) to accommodate some of
the features that are often present in panel data, particularly those where common fac-
tors play a role in determining episodes of exuberance in the data (c.f., Chen et al. (2022)).
Such extensions of the present model involve considerable complexities, especially when
different groups involve different break dates and real-time analysis is need for practical
implementation. Some of these complications are currently under investigation and will
be reported in future work.

Appendix: Proofs

Throughout the following proofs we use the same notation as in the paper. The technical
lemmas listed in the next section are proved in the Online Supplement and play central
roles in the proofs of the main theorems in the paper.

A Proofs for Stage 1: Recursive k-means Clustering

Let ĝi := ĝi (̂c∗) denote the membership estimator of g0
i generated by the recursive k-

means clustering algorithm for any individual i ∈ In. Note that ĉ∗
(
:=

(̂
c∗1, ĉ

∗
2, ..., ĉ

∗
G0

))
is the
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first-stage estimator of the distancing parameter vector c.
To demonstrate uniform consistency of the recursive k-means clustering algorithm,

we first establish consistency of the parameter estimate ĉ∗ in terms of the Hausdorff dis-
tance that measures how far two compact subsets in a metric space are separated from
each other. This distance is defined as

dH (a,b) = max

 max
j∈{1,2,...,G0}

 min
j̃∈{1,2,...,G0}

(
aj̃ − bj

)2
 , max

j̃∈{1,2,...,G0}

(
min

j∈{1,2,...,G0}

(
aj̃ − bj

)2
) ,

in which a := (a1, a2, ..., aG0) and b := (b1,b2, ...,bG0). The proof of uniform consistency
makes use of the following lemmas which are stated first.

Lemma A.1 If Assumptions 1 and 2 hold, then

sup
(c,δ)∈CG0×∆G0

T 4γ (logT )8
∣∣∣Q̂nT (c,δ)− Q̃nT (c,δ)

∣∣∣ = op(1),

where

Q̂nT (c,δ) =
1
n

n∑
i=1

1
ΥiT

T∑
t=1

(
ỹit − ỹi,t−1ρi

)2
, and

Q̃nT (c,δ) =
1
n

n∑
i=1

1
ΥiT

T∑
t=1

(
ỹi,t−1

(
ρ0
i − ρi

))2
+

1
n

n∑
i=1

1
ΥiT

T∑
t=1

ũ2
it ,

with ΥiT =
∑T
t=1 ỹ

2
i,t−1 and ρi and ρ0

i defined in (6).

Lemma A.2 Suppose Assumptions 1 and 2 hold. Then, when (n,T )→∞,

dH (c0, ĉ∗) = op
(
T −2γ (logT )−8

)
. (45)

Moreover, there exists a permutation τ :
{
1,2, ...G0

}
→

{
1,2, ...,G0

}
, such that

T γ (logT )4
∣∣∣∣∣̂c∗τ(ĵ) − c0

j

∣∣∣∣∣→p 0.

If we relabel ĉ∗ by setting τ
(
ĵ
)

= j, then∥∥∥ĉ∗ − c0
∥∥∥ = op

(
T −γ (logT )−4

)
. (46)

In the rest of the paper, we always relabel ĉ∗ by setting τ
(
ĵ
)

= j. For any η > 0, define

Nη , ĝi (̂c∗), and δ̂ as

Nη :=
{
c ∈ CG0 :

∣∣∣∣c0
j − cj

∣∣∣∣ < η, ∀j = 1,2, ...,G0
}
, (47)

ĝi (̂c
∗) := arg min

j∈{1,2,...,G0}

T∑
t=1

ỹit − ỹi,t−1 exp

 ĉ∗jT γ
2

,

δ̂ := (ĝ1 (̂c∗) , ĝ2 (̂c∗) , ..., ĝn (̂c∗)) ,

where we treat the scaling parameter γ as given a priori.
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Lemma A.3 Suppose Assumptions 1 and 2 hold. Then, for any fixed M > 0,

(i) if c0
i > 0, maxi∈In Pr

(
(logT )2

(ρ0
i )

2T
T γ

∣∣∣∑T
t=1 ỹi,t−1ũit

∣∣∣ ≥M)
= o

(
1
n

)
;

(ii) if c0
i = 0, maxi∈In Pr

(
(log2(T ))2

T 2−γ

∣∣∣∑T
t=1 ỹi,t−1ũit

∣∣∣ ≥M)
= o

(
1
n

)
;

(iii) if c0
i < 0, maxi∈In Pr

(
1
T

∣∣∣∑T
t=1 ỹi,t−1ũit

∣∣∣ ≥M)
= o

(
1
n

)
.

Lemma A.4 Suppose that Assumptions 1 and 2 hold, then:

(i) if c0
i > 0 and M̃1 ≥ 1

c2
low

maxi∈In
(
ω0
i

)2
,

max
i∈In

Pr

 1(
ρ0
i

)2T
T 2γ (logT )2

∣∣∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣∣∣ ≥ M̃1

 = o
(1
n

)
;

(ii) if c0
i = 0 and M̃2 ≥maxi∈In

(
ω0
i

)2
,

max
i∈In

Pr

 1

T 2 (log2T
)2

∣∣∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣∣∣ ≥ M̃2

 = o
(1
n

)
;

(iii) if c0
i < 0 and M̃3 ≥

2maxi∈In(σ
0
iu)

2

clow
,

max
i∈In

Pr

 1
T 1+γ

∣∣∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣∣∣ ≥ M̃3

 = o
(1
n

)
.

Lemma A.5 Suppose Assumptions 1 and 2 hold, then:

(i) if c0
i > 0 and 0 <M1 ≤ 1

16c2
up

mini∈In
(
ω0
i

)2
,

max
i∈In

Pr

 (logT )2(
ρ0
i

)2T
T 2γ

∣∣∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣∣∣ ≤M1

 = o
(1
n

)
;

(ii) if c0
i = 0 and 0 <M2 ≤mini∈In

(ω0
i )

2

24 ,

max
i∈In

Pr

(log2T
)2

T 2

∣∣∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣∣∣ ≤M2

 = o
(1
n

)
;

(iii) if c0
i < 0 and 0 <M3 ≤

mini∈In(σ
0
iu)

2

8cup
,

max
i∈In

Pr

 1
T 1+γ

∣∣∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣∣∣ ≤M3

 = o
(1
n

)
.
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Lemma A.6 Suppose Assumptions 1 and 2 hold. Let η =O
(

1
T γ (logT )4

)
. Then, when (n,T )→

∞,

sup
c∈Nη

1
n

n∑
i=1

1
{
ĝi(c) , g

0
i

}
= op

(1
n

)
,

whereNη is defined in (47).

For any j ∈ G0 and i ∈ In, let

Êj,i :=
{
ĝi , j |g0

i = j
}

and F̂j,i :=
{
g0
i , j |̂gi = j

}
. (48)

Moreover, let Êj,nT :=
⋃
i∈G0(j) Êj,i and F̂j,nT :=

⋃
i∈Ĝ(j) F̂j,i . To show uniform consistency of

the recursive k-means clustering algorithm, we use the following lemma.

Lemma A.7 (Uniform Consistency of Clustering) Suppose Assumptions 1 and 2 hold. Then,
when (n,T )→∞,

(i) Pr
(⋃G0

j=1 Êj,nT
)
≤

∑G0

j=1 Pr
(
Êj,nT

)
→ 0;

(ii) Pr
(⋃G0

j=1 F̂j,nT
)
≤

∑G0

j=1 Pr
(
F̂j,nT

)
→ 0.

Proof of Theorem 4.1: We use Lemmas A.7(i) and A.7(ii). To establish uniform consis-
tency of the recursive k-means clustering algorithm, we first bound the clustering error
by

Pr

 G
0⋃

j=1

Êj,nT

 ≤ G0∑
j=1

Pr
(
Êj,nT

)
≤

G0∑
j=1

∑
i∈G0(j)

Pr
(
Êj,i

)
.

Then, it follows that

G0∑
j=1

∑
i∈G0(j)

Pr
(
Êj,i

)
≤nmax

i∈In
E1{ĝi (̂c∗) , g0

i } ≤ nmax
i∈In

Pr{
∣∣∣ĝi (̂c∗)− g0

i

∣∣∣ > 0}

≤nmax
i∈In

sup
c∈Nη

Pr{
∣∣∣ĝi(c)− g0

i

∣∣∣ > 0}+n max
1≤j≤G0

Pr{
∣∣∣∣̂c∗j − c0

j

∣∣∣∣ > η}
=o(1) +n max

1≤j≤G0
Pr{

∣∣∣∣̂c∗j − c0
j

∣∣∣∣ > η}
=o (1) , (49)

where the last step is due to the Markov inequality, equation (46) in Lemma A.1 and the
rate restriction in Assumption 2. This proves Lemma A.7(i). For Lemma A.7(ii), we can
follow the proof of Theorem 2.2(ii) in Su et al. (2016). The results of Theorem 4.1 are
then extensions of Lemma A.7 and the proof is complete. �
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B Proofs for Stage 2: Post-clustering Estimation and Testing

We need a lemma that establishes consistency of the variance estimates ω̌2
j , σ̌2

j and λ̌j
and lemmas that show the limits of various sample moments. These lemmas are stated
first.

Lemma B.1 Suppose Assumptions 1 and 2 hold. Then, for any j ∈ G0, if c0
j ≥ 0, when (n,T )→

∞,

ω̌2
j →p

(
ω0
j

)2
, ω̂2

j →p

(
ω0
j

)2
,

σ̌2
j →p

(
σ0
j

)2
, σ̂2

j →p

(
σ0
j

)2
,

λ̌j →p λ
0
j , λ̂j →p λ

0
j .

Lemma B.2 Suppose Assumptions 1 and 2 hold. Then, for any j ∈ G0, when (n,T )→∞,

1
njT 2

∑
i∈G0(j)

T∑
t=1

ỹ2
i,t−1→p

(
ω0
j

)2

6
, if c0

j = 0; (50)

1

njT 2γ (ρ0
j )2T

∑
i∈G0(j)

T∑
t=1

ỹ2
i,t−1→p

1

2c0
j


(
ω0
j

)2

2c0
j

 , if c0
j > 0;

1
njT 1+γ

∑
i∈G0(j)

T∑
t=1

ỹ2
i,t−1→p

(
ω0
j

)2

−2c0
j

, if c0
j < 0.

Lemma B.3 Suppose Assumptions 1 and 2 hold. Then, for any j ∈ G0, when (n,T )→∞,

1
√
njT

∑
i∈G0(j)

T∑
t=1

ỹi,t−1ũi,t − λ̂j +
ω̂2
j

2

⇒N
0,

(
ω0
j

)4

12

 , if c0
j = 0; (51)

1
√
njT γ (ρ0

j )T

∑
i∈G0(j)

T∑
t=1

ỹi,t−1ũit⇒N

0,

(
ω0
j

)4

4
(
c0
j

)2

 , if c0
j > 0; (52)

1
√
njT

1+γ
2

∑
i∈G0(j)

T∑
t=1

ỹi,t−1ũit −λ0
j −mj,T

c0
j

T γ

⇒N
0,

(
ω0
j

)4

−2c0
j

 , if c0
j = 0,

where

mj,T =
1
nj

∑
i∈G0(j)

mi,T , and mi,T =
∞∑
h=1

(
ρ0
j

)h−1
E

(
ε̃itui,t−h

)
.
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Proof of Theorem 4.2: When c0
j > 0, the following decompositions apply to the numer-

ator and denominator of the post-clustering estimate, ρ̌j :

1
√
njT γ (ρ0

j )T

∑
i∈Ĝ(j)

T∑
t=1

ỹi,t−1ũit

=
1

√
njT γ (ρ0

j )T

∑
i∈G0(j)

T∑
t=1

ỹi,t−1ũit +
1

√
njT γ (ρ0

j )T

∑
j̃,j

∑
i∈Ĝ(j)∩G0(j̃)

T∑
t=1

ỹi,t−1ũit

− 1
√
njT γ (ρ0

j )T

∑
j̃,j

∑
i∈Ĝ(j̃)∩G0(j)

T∑
t=1

ỹi,t−1ũit ,

and

1

njT 2γ (ρ0
j )2T

∑
i∈Ĝ(j)

T∑
t=1

ỹ2
i,t−1

=
1

njT 2γ (ρ0
j )2T

∑
i∈G0(j)

T∑
t=1

ỹ2
i,t−1 +

1

njT 2γ (ρ0
j )2T

∑
j̃,j

∑
i∈Ĝ(j)∩G0(j̃)

T∑
t=1

ỹ2
i,t−1

− 1

njT 2γ (ρ0
j )2T

∑
j̃,j

∑
i∈Ĝ(j̃)∩G0(j)

T∑
t=1

ỹ2
i,t−1.

To demonstrate the asymptotic equivalence between the post-clustering estimates and
the oracle estimates, we need to show the following:

(i) for any j = 1,2, ...,G0,

1
√
njT γ (ρ0

j )T

∑
j̃,j

∑
i∈Ĝ(j)∩G0(j̃)

T∑
t=1

ỹi,t−1ũit = op (1) ,

1

njT 2γ (ρ0
j )2T

∑
j̃,j

∑
i∈Ĝ(j)∩G0(j̃)

T∑
t=1

ỹ2
i,t−1 = op (1) ;

(ii) for any j = 1,2, ...,G0,
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Since the treatment of the denominator is identical to that of the numerator, we need
only focus on the numerator. In terms of (ii), for any j̃ , j and any ε > 0,

Pr
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1
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→ 0, (53)

when (n,T )→∞. Similarly, in terms of (i), for any j̃ , j and any ε > 0,
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when (n,T )→∞. Combining (53) and (54), we have
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and
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Based on (55) and (56), the asymptotic theory for the post-clustering estimator is equiv-
alent to that of the infeasible estimator, which is√
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Similarly, asymptotic equivalence can be obtained in the other cases. For example, when
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when c0
j < 0,

√
njT

1+γ
2

ρ̌j − ρ0
j −

1
T γ
−2c0

j(
ω0
j

)2

λ0
j +

c0
j

T γ
mj,T




=
√
njT

1+γ
2

ρ̂j − ρ0
j −

1
T γ
−2c0

j(
ω0
j

)2

λ0
j +

c0
j

T γ
mj,T


+ op (1) , (59)

35



wheremj,T = 1
nj

∑
i∈G0(j)mi,T andmi,T =

∑∞
h=1

(
ρ0
j

)h−1
E

(
ε̃itui,t−h

)
. Therefore, we only need

to derive the limit distribution of the infeasible estimator in all cases. From Lemmas
B.2 and B.3, the limit distributions of the oracle estimators that employ the true group
identities are derived and this completes the proof. �

Proof of Theorem 4.3: By Lemma B.1 and Theorem 4.2, when (n,T )→∞,
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So both the post-clustering t- and J-statistics follow a pivotal distribution upon standard-
izations, under the null hypothesis of group-specific unit root behavior.

Similarly, under the alternative hypothesis of the group-specific explosive root, for
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where the last equality is due to Theorem 4.2. For the post-clustering J-test, we have√
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where the last equality is due to Theorem 4.2. This concludes the proof. �
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C Proofs for the Estimation of Group Numbers

Proofs of Equations (22)–(24): We first discuss the results of equation (22). When
G = G0 and c0
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whose derivations are similar to Theorem 4.2. Since ňj,h/ňj → πj,h, then we have√
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Further, based on the assumption of cross-sectional independence, we prove equation
(22). The proof of equation (24) follows a procedure similar to equation (22). For equa-
tion (23), the impact of the asymptotic bias needs to be considered as
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The proof is now complete. �

Proof of Theorem 4.5: Assume any G with G̃ ≤ G ≤ Gmax where G̃ estimated by IC.
Also assume any j = 1,2, ...,G. Under the null hypothesis of slope homogeneity in the jth
group, the test statistic (26) converges to χ2

(
G
)

based on equations (22)–(24). Since the

critical values cvnT := (1 + b log(nT )) · χ2
0.95

(
G
)
→∞, the probability of the Type I error

shrinks to zero asymptotically. Under the alternative hypothesis of a nonzero fraction
of slope heterogeneity in the jth group, the test statistic (26) asymptotically diverges to
infinity since
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power converges to unity asymptotically. Then the estimator Ĝ of (26) is consistent and
the proof is complete. �
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D Simulation & Empirical Results

D.1 Simulation results

Table 1: Powers of the right-tailed DF t- and J-tests when a bubble is short-lived

ρ 1.033 1.040
T 10 20 30 10 20 30

Power of DF t-test 0.1009 0.1203 0.1676 0.1043 0.1381 0.2202
Power of DF J-test 0.0957 0.1202 0.1716 0.1042 0.1393 0.2261

Table 2: Powers of the right-tailed DF t- and J-tests when the bubble grows slowly

ρ 1.0009 1.0069
T 50 100 200 50 100 200

Power of DF t-test 0.0590 0.0590 0.0647 0.0801 0.1127 0.2913
Power of DF J-test 0.0597 0.0590 0.0647 0.0808 0.1142 0.2991

Table 3: SNRs for mildly explosive, unit root and mildly stationary groups

n T
DGP 1 DGP 2 DGP 2

c1(×105) c2(×102) c3(×1) c1(×105) c2(×102) c3(×1) c1(×105) c2(×1)
30 100 6.798 2.792 8.375 6.814 7.338 8.493 6.726 47.096
30 150 82.066 4.935 13.139 82.202 16.354 12.926 81.978 71.135
30 200 562.425 6.942 15.426 562.771 28.344 15.426 559.628 85.447
60 100 6.595 2.859 8.881 6.606 7.458 8.623 6.693 47.220
60 150 81.352 5.009 13.496 81.506 16.580 13.088 81.527 71.234
60 200 562.555 6.974 15.686 563.078 28.350 15.584 561.495 85.547
90 100 6.668 2.852 9.026 6.676 7.434 8.642 6.724 47.204
90 150 81.778 5.077 13.408 81.935 16.816 13.155 82.117 71.359
90 200 565.714 7.013 15.754 566.288 28.469 15.641 561.739 85.688
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(a) DGP 1, Group 1 (b) DGP 1, Group 2 (c) DGP 1, Group 3

(d) DGP 2, Group 1 (e) DGP 2, Group 2 (f) DGP 2, Group 3

(g) DGP 3, Group 1 (h) DGP 3, Group 2

Figure 1: Empirical frequency distribution and sample average (shown by the vertical
line) of the signal-to-noise ratio in each group of DGPs 1–3.
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Table 4: Empirical frequency of model selection under DGP 0 (θ = 0.5)

IC n T G = 1 G = 2 G = 3 G = 4 G = 5
120 150 0.000 1.000 0.000 0.000 0.000
120 250 0.000 1.000 0.000 0.000 0.000
120 350 0.015 0.985 0.000 0.000 0.000
120 450 0.476 0.524 0.000 0.000 0.000
150 150 0.000 1.000 0.000 0.000 0.000
150 250 0.000 1.000 0.000 0.000 0.000
150 350 0.000 1.000 0.000 0.000 0.000
150 450 0.014 0.986 0.000 0.000 0.000

Hausman Test n T G = 1 G = 2 G = 3 G = 4 G = 5
120 150 0.000 0.008 0.980 0.012 0.000
120 250 0.000 0.005 0.993 0.001 0.001
120 350 0.000 0.004 0.996 0.000 0.000
120 450 0.000 0.004 0.996 0.000 0.000
150 150 0.000 0.000 0.992 0.006 0.002
150 250 0.000 0.000 0.998 0.001 0.001
150 350 0.000 0.000 1.000 0.000 0.000
150 450 0.000 0.000 1.000 0.000 0.000

Table 5: Empirical frequency of model selection under DGP 1 (θ = 0.5)

IC n T G = 1 G = 2 G = 3 G = 4 G = 5
120 150 0.000 0.976 0.024 0.000 0.000
120 250 0.000 0.891 0.109 0.000 0.000
120 350 0.000 0.774 0.226 0.000 0.000
120 450 0.000 0.610 0.390 0.000 0.000
150 150 0.000 0.994 0.006 0.000 0.000
150 250 0.000 0.931 0.069 0.000 0.000
150 350 0.000 0.829 0.171 0.000 0.000
150 450 0.000 0.671 0.329 0.000 0.000

Hausman Test n T G = 1 G = 2 G = 3 G = 4 G = 5
120 150 0.000 0.000 0.726 0.067 0.207
120 250 0.000 0.000 0.892 0.041 0.067
120 350 0.000 0.000 0.963 0.011 0.026
120 450 0.000 0.000 0.982 0.008 0.010
150 150 0.000 0.000 0.669 0.085 0.246
150 250 0.000 0.000 0.884 0.037 0.079
150 350 0.000 0.000 0.966 0.008 0.026
150 450 0.000 0.000 0.977 0.010 0.013
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Table 6: Empirical frequency of model selection under DGP 2 (θ = 0.5)

IC n T G = 1 G = 2 G = 3 G = 4 G = 5
120 150 0.000 0.625 0.375 0.000 0.000
120 250 0.000 0.259 0.741 0.000 0.000
120 350 0.000 0.091 0.909 0.000 0.000
120 450 0.000 0.017 0.983 0.000 0.000
150 150 0.000 0.700 0.300 0.000 0.000
150 250 0.000 0.271 0.729 0.000 0.000
150 350 0.000 0.094 0.906 0.000 0.000
150 450 0.000 0.017 0.983 0.000 0.000

Hausman Test n T G = 1 G = 2 G = 3 G = 4 G = 5
120 150 0.000 0.000 0.743 0.058 0.199
120 250 0.000 0.000 0.911 0.023 0.066
120 350 0.000 0.000 0.957 0.012 0.031
120 450 0.000 0.000 0.984 0.006 0.010
150 150 0.000 0.000 0.678 0.078 0.244
150 250 0.000 0.000 0.914 0.020 0.066
150 350 0.000 0.000 0.948 0.017 0.035
150 450 0.000 0.000 0.984 0.007 0.009

Table 7: Empirical frequency of model selection under DGP 3 (θ = 0.5)
IC n T G = 1 G = 2 G = 3 G = 4 G = 5

120 150 0.000 1.000 0.000 0.000 0.000
120 250 0.000 1.000 0.000 0.000 0.000
120 350 0.000 1.000 0.000 0.000 0.000
120 450 0.000 1.000 0.000 0.000 0.000
150 150 0.000 1.000 0.000 0.000 0.000
150 250 0.000 1.000 0.000 0.000 0.000
150 350 0.000 1.000 0.000 0.000 0.000
150 450 0.000 1.000 0.000 0.000 0.000

Hausman Test n T G = 1 G = 2 G = 3 G = 4 G = 5
120 150 0.000 0.738 0.003 0.233 0.026
120 250 0.000 0.928 0.000 0.065 0.007
120 350 0.000 0.967 0.000 0.032 0.001
120 450 0.000 0.986 0.000 0.014 0.000
150 150 0.000 0.703 0.003 0.248 0.046
150 250 0.000 0.904 0.000 0.093 0.003
150 350 0.000 0.957 0.000 0.042 0.001
150 450 0.000 0.988 0.000 0.012 0.000
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Table 8: Clustering and estimation by the two stage procedure under DGP 1 (θ = 0.5)

n T CE Post-clustering Oracle
RMSE Bias RMSE Bias

Group 1 60 100 0.015 0.003 -0.002 0.003 -0.002
60 150 0.007 0.001 -0.001 0.001 -0.001
60 200 0.004 0.000 -0.000 0.000 -0.000
90 100 0.014 0.003 -0.002 0.003 -0.002
90 150 0.007 0.001 -0.001 0.001 -0.001
90 200 0.003 0.000 -0.000 0.000 -0.000

Group 2 60 100 0.015 0.180 -0.164 0.175 -0.160
60 150 0.007 0.154 -0.142 0.151 -0.139
60 200 0.004 0.138 -0.128 0.138 -0.127
90 100 0.014 0.173 -0.163 0.168 -0.158
90 150 0.007 0.148 -0.140 0.146 -0.137
90 200 0.003 0.134 -0.127 0.133 -0.126

Group 3 60 100 0.015 3.600 3.596 3.568 3.565
60 150 0.007 3.697 3.695 3.680 3.678
60 200 0.004 3.747 3.745 3.739 3.737
90 100 0.014 3.603 3.600 3.569 3.567
90 150 0.007 3.695 3.693 3.679 3.678
90 200 0.003 3.748 3.746 3.740 3.739

Table 9: Clustering and estimation by the two stage procedure under DGP 2 (θ = 0.5)

n T CE Post-clustering Oracle
RMSE Bias RMSE Bias

Group 1 60 100 0.013 0.003 -0.002 0.003 -0.002
60 150 0.005 0.001 -0.001 0.001 -0.001
60 200 0.003 0.000 -0.000 0.000 -0.000
90 100 0.012 0.003 -0.002 0.003 -0.002
90 150 0.005 0.001 -0.001 0.001 -0.001
90 200 0.003 0.000 -0.000 0.000 -0.000

Group 2 60 100 0.013 0.177 -0.168 0.174 -0.166
60 150 0.005 0.139 -0.133 0.138 -0.132
60 200 0.003 0.114 -0.109 0.114 -0.109
90 100 0.012 0.172 -0.166 0.170 -0.164
90 150 0.005 0.134 -0.130 0.133 -0.129
90 200 0.003 0.110 -0.107 0.110 -0.107

Group 3 60 100 0.013 3.599 3.595 3.568 3.565
60 150 0.005 3.697 3.694 3.680 3.678
60 200 0.003 3.748 3.745 3.739 3.737
90 100 0.012 3.601 3.597 3.569 3.567
90 150 0.005 3.699 3.697 3.679 3.678
90 200 0.003 3.749 3.748 3.740 3.739
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Table 10: Clustering and estimation by the two stage procedure under DGP 3 (θ = 0.5)

n T CE Post-clustering Oracle
RMSE Bias RMSE Bias

Group 1 60 100 0.005 0.003 -0.002 0.003 -0.002
60 150 0.002 0.001 -0.001 0.001 -0.001
60 200 0.001 0.000 -0.000 0.000 -0.000
90 100 0.006 0.002 -0.002 0.002 -0.002
90 150 0.002 0.001 -0.001 0.001 -0.001
90 200 0.001 0.000 -0.000 0.000 -0.000

Group 2 60 100 0.005 0.562 0.559 0.563 0.560
60 150 0.002 0.586 0.584 0.586 0.584
60 200 0.001 0.600 0.598 0.600 0.598
90 100 0.006 0.575 0.556 0.563 0.561
90 150 0.002 0.587 0.585 0.587 0.585
90 200 0.001 0.600 0.599 0.600 0.599

Table 11: Tests for detecting explosiveness (θ = 0.5)

DGP 1 n T
c1 = 1 c2 = 0

t-test J-test t-test J-test
1 100 0.994 0.994 0.060 0.059
1 150 0.996 0.996 0.064 0.066
1 200 0.999 0.999 0.069 0.069

30 100 1.000 1.000 0.045 0.047
30 150 1.000 1.000 0.062 0.064
30 200 1.000 1.000 0.042 0.041
60 100 1.000 1.000 0.070 0.057
60 150 1.000 1.000 0.054 0.057
60 200 1.000 1.000 0.058 0.059
90 100 1.000 1.000 0.082 0.079
90 150 1.000 1.000 0.052 0.053
90 200 1.000 1.000 0.040 0.042

DGP 2 n T
c1 = 1 c2 = 0.2

t-test J-test t-test J-test
1 100 0.994 0.994 0.175 0.175
1 150 0.996 0.996 0.293 0.297
1 200 0.999 0.999 0.382 0.382

30 100 1.000 1.000 0.599 0.262
30 150 1.000 1.000 0.797 0.441
30 200 1.000 1.000 0.920 0.657
60 100 1.000 1.000 0.807 0.527
60 150 1.000 1.000 0.961 0.785
60 200 1.000 1.000 0.994 0.951
90 100 1.000 1.000 0.917 0.705
90 150 1.000 1.000 0.992 0.938
90 200 1.000 1.000 0.999 0.996

DGP 3 n T
c1 = 1 c2 = −1

t-test J-test t-test J-test
30 100 1.000 1.000 0.010 0.226
30 150 1.000 1.000 0.006 0.195
30 200 1.000 1.000 0.003 0.179
60 100 1.000 1.000 0.027 0.513
60 150 1.000 1.000 0.014 0.454
60 200 1.000 1.000 0.005 0.473
90 100 1.000 1.000 0.089 0.766
90 150 1.000 1.000 0.040 0.719
90 200 1.000 1.000 0.029 0.734
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D.2 Empirical results

Figure 2: Chinese house price index (demeaned ratio of price index to rental CPI - see the
text) for all cities detected by the panel t-test, separated into those cities also detected by
the time series test and cities not detected by the individual time series t-test.

Figure 3: US house price index for the cities detected by the panel t-test but not by the
single time series t-test.
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Figure 4: The US stock price time series for the cities detected by the panel t-test (blue
lines) but not by the single time series t-test (red lines).

Table 12: Selection by IC of the number of groups G in Chinese city housing markets

G 1 2 3 4 5
IC -14.8792 -14.8777 -14.8817 -14.8810 -14.8793

Note: The smallest IF value is in boldface.

Table 13: Post-clustering estimates and panel t- and J-tests in China’s housing market

Groups Group 1 Group 2 Group 3
ňj 27 42 38
ρ̌j 1.011 1.003 0.995

t-test 7.140∗∗∗ 4.409∗∗∗ -0.480
J-test 4.743∗∗∗ 2.313∗∗ -0.356

Note: ∗, ∗∗ and ∗∗∗ imply rejection of the null hy-
pothesis at the 10%, 5% and 1% levels.

Table 14: Selection of G by IC in the US housing market

G 1 2 3 4 5
IC -11.1665 -11.1854 -11.1823 -11.1752 -11.1658

Note: The smallest IF value is in boldface.
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Figure 5: Times series plots of the demeaned ratio of Chinese city house price indices to
the rental CPI (vertical axis) for the estimated groups.

Figure 6: Time series plots of the demeaned ratio of the housing price to the rental CPI
(vertical axis) in the two estimated groups of the US housing market
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Table 15: Post-clustering estimate and the panel t- and J-tests in the US housing market

Groups Group 1 Group 2
ňj 7 4
ρ̌j 1.0432 1.0113

t-test 31.9880∗∗∗ 1.8617∗

J-test 35.5062∗∗∗ 2.3412∗∗

Note: ∗, ∗∗ and ∗∗∗ imply rejection of the null
hypothesis at the 10%, 5% and 1% levels.

Table 16: Selection of the group number G by IC in the US equity market

G 1 2 3 4 5
IC -2.9545 -2.9639 -2.9631 -2.9615 -2.9588

Note: The smallest IF value is in boldface.

Figure 7: Time series plots of the demeaned difference between S&P 500 stock prices and
dividends in the two estimated groups.

Table 17: Post-clustering estimates and panel t- and J-tests in the US equity market

Groups Group 1 Group 2
ňj 40 106
ρ̌j 1.012 0.967

t-test 2.236∗∗ 0.141
J-test 8.908∗∗∗ 1.330

Note: ∗, ∗∗ and ∗∗∗ imply rejection of the
null hypothesis at the 10%, 5% and 1%
levels.
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Notation Glossary

Symbol Description

G Number of groups;

G0 True number of groups;

Ĝ Estimated number of groups generated by the combined method based on the use of IC

and the Hausman test

j Subscript for group identities, namely 1 ≤ j ≤ G0 or 1 ≤ j ≤ G;

i Subscript for individuals, namely 1 ≤ i ≤ n;

In Set of individual subscripts {1,2, ...,n};

G Set of group identities {1,2, ...,G};

G0 Set of group identities
{
1,2, ...,G0

}
;

gi Membership indicator mapping from individuals In into group identities G0;

g0
i True membership indicator for (gi);

ĝi Estimated membership indicator for (gi) generated by recursive k-means clustering;

δ Collection of membership indicators
(
:= (g1, g2, ..., gn)′

)
;

δ0 True value of δ as δ0
(
:=

(
g0

1 , g
0
2 , ..., g

0
n

)′)
;

δ̂ Estimation of δ as δ̂
(
:= (ĝ1, ĝ2, ..., ĝn)′

)
;

∆G0 Set of all possible δ, so that δ ∈ ∆G0 ;

G (j) Individuals of the jth group; for instance, G (j) = {i ∈ In|gi = j};

G0 (j) Individuals of the true jth group; for instance, G0 (j) =
{
i ∈ In|g0

i = j
}
;

Ĝ (j) Individuals of the estimated jth group; for instance, Ĝ (j) = {i ∈ In |̂gi = j};

cj Group-specific distancing parameter; for instance, cj
(
:= cgi

)
if gi = j;

c0
j True value of group-specific distancing parameter cj ;

ĉ∗j First-stage estimate of group-specific parameter cj by recursive k-means clustering;

ĉj Oracle estimate of group-specific parameter cj based on the true membership δ0;

čj Post-clustering estimate of group-specific parameter cj based on the estimation δ̂;

ĉ
T S
i Time series estimate of individual parameter ci ;

CG and CG0 Set of all possible G-dimensional or G0-dimensional distance parameter c;

ρj Group-specific slope coefficient ρj = 1 + cj /T γ ;
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– Continued from previous page

Symbol Description

ρ0
j True value of group-specific slope coefficient ρ0

j = 1 + c0
j /T

γ ;

ρ̂∗j First-stage estimate of group-specific slope coefficient ρ̂∗j = 1 + ĉ∗j /T
γ ;

ρ̂j Oralce estimate of group-specific slope coefficient ρ̂j = 1 + ĉj /T γ ;

ρ̌j Post-clustering estimate of group-specific slope coefficient ρ̌j = 1 + čj /T γ ;

ρ̂
T S
i Time series estimate of individual parameter ρi ;

c, ρ G0-dimensional parameters c = (c1, c2, ..., cG0)′ and ρ = (ρ1,ρ2, ...,ρG0)′;

c0, ρ0 G0-dimensional true values c0 =
(
c0

1, c
0
2, ..., c

0
G0

)′
and ρ0 =

(
ρ0

1,ρ
0
2, ...,ρ

0
G0

)′
;

ĉ∗, ρ̂∗ First-stage estimate of c, ρ as ĉ∗ =
(̂
c∗1, ĉ

∗
2, ..., ĉ

∗
G0

)′
and ρ̂∗ =

(
ρ̂∗1, ρ̂

∗
2, ..., ρ̂

∗
G0

)′
;

ĉ, ρ̂ Oracle estimate of c, ρ as ĉ = (̂c1, ĉ2, ..., ĉG0)′ and ρ̂ = (ρ̂1, ρ̂2, ..., ρ̂G0)′;

č, ρ̌ Post-clustering estimate of c, ρ as č = (č1, č2, ..., čG0)′ and ρ̌ = (ρ̌1, ρ̌2, ..., ρ̌G0)′;

clow, cup Bounds for cj ; for instance, cj ∈
[
−cup,−clow

]
∪ {0} ∪

[
clow, cup

]
;

ρlow, ρup Bounds for ρj ; for instance ρup = 1 +
cup
T γ and ρlow = 1 + clow

T γ ;

ċ Separation for cj ; for instance infj,j̃

∣∣∣∣cj − cj̃ ∣∣∣∣ ≥ ċ;
σ2
j , λj , ω

2
j Group-specific parameters for variances, one-sided and two-sided long run variances

in the jth group;

nj Number of individuals in the jth true group;

ňj Number of individuals in the jth estimated group;(
σ0
j

)2
, λ0

j ,
(
ω0
j

)2
True values for variances, one-sided and two-sided long run variances in the true jth

group;(
σ̌j

)2
, λ̌j ,

(
ω̌j

)2
Post-clustering estimates for variances, one-sided and two-sided long run variances

in the estimated jth group;

ci , ρi Individual distancing parameter and slope coefficient for the ith individual; namely,

ρi = 1 + ci
T γ ;

c0
i , ρ0

i True values for ci and ρi ; namely, ρ0
i = 1 + c0

i
T γ ;

ĉi , ρ̂i Post-clustering estimations for ci and ρi ; namely, ρ̂i = 1 + ĉi
T γ ;

c, ρ c = (c1, c2, ..., cn)′ and ρ =
(
ρ1,ρ2, ...,ρn

)′
;

c0, ρ0 c0 =
(
c0

1, c
0
2, ..., c

0
n

)′
and ρ0 =

(
ρ0

1,ρ
0
2, ...,ρ

0
n

)′
;

ĉ, ρ̂ ĉ =
(̂
c1 ,̂ c2, ...,̂ cn

)′
and ρ̂ =

(̂
ρ1, ρ̂2, ..., ρ̂n

)′
;
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– Continued from previous page

Symbol Description

σ2,
(
σ0

)2
Parameter representation and true value of V ar (εit);

σ2
iu , λi , ω

2
i Individual parameters for variances, one-sided and two-sided long run variances of

the ith individual; for instance, σ2
iu := σ2

gi , λi := λgi and ω2
i :=ω2

gi ;(
σ0
iu

)2
, λ

0
i ,

(
ω0
i

)2
True values for variances, one-sided and two-sided long run variances of the ith individual;

for instance,
(
σ0
iu

)2
:=

(
σ0
g0
i

)2
, λ

0
i := λ0

g0
i

and
(
ω0
i

)2
:=

(
ω0
g0
i

)2
;(

σ̂ iu
)2

, λ̂i ,
(
ω̂i

)2
Individual time series estimates for variances, one-sided and two-sided long run variances of

the ith individual, based on the post-clustering estimate ρ̌j with ĝi = j;

Id , 0d×d A d × d identity matrix; A d × d matrix of zeros;

→p,⇒ Convergence in probability; Weak convergence in the Euclidean space or functional space;

AnT � BnT AnT /BnT is either Op (1) or op (1) as (n,T )→∞;

AnT � BnT BnT /AnT is op (1) as (n,T )→∞;

AnT ∼a BnT Pr(|BnT /AnT | , 1)→ 0 as (n,T )→∞;

AnT ∼ BnT |BnT /AnT | → 1 as (n,T )→∞;

Gmax Generic upper bound for group number G;

G := Gmax −G+ 1 The maximum number of subgroups in each group j = 1,2, ...,G;

G̃ The lower bound of group number selected by IC as in (20);

ρ̌j (G), ρ̌j,h (G), h = 1, ...G Post-clustering pooled LS estimators for slopes in the estimated j group and in the

estimated hth subgroup of the estimated jth group when assuming G groups, as in (21);

ĝj,h, h = 1, ...,G The estimated membership of the estimated hth subgroup of the estimated jth group;

δ̂j (G) The estimated membership of subgroups in the estimated jth group,

and δ̂j (G) =
(
ĝj,1 (G) , ĝj,2 (G) , ..., ĝj,G (G)

)′
;

ρ̌j (G) The estimated slopes of subgroups in the estimated jth group,

and ρ̌j (G) =
(
ρ̌j,1 (G) , ρ̌j,2 (G) , ..., ρ̌j,G (G)

)′
;

Ĝ (j,h,G), h = 1,2, ...,G Individuals in the estimated hth subgroup of the estimated jth group;

ňj,h, h = 1,2, ...,G The dimension of the estimated hth subgroup in the estimated jth group, assuming G groups;

πj,h limn
ňj,h
ňj
→ πj,h;

π̃j π̃j = diag
{
πj,1,πj,2, ...,πj,G

}
.
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