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Abstract

This paper proposes a test for the conditional superior predictive ability (CSPA) of a family of

forecast methods with respect to a benchmark. The test is functional in nature: Under the null

hypothesis, the benchmark’s conditional expected loss is no more than those of the competitors,

uniformly across all conditioning states. By inverting the CSPA tests for a set of benchmarks,

we obtain confidence sets for the uniformly most superior method. The econometric inference

pertains to testing a system of conditional moment inequalities for time series data with gen-

eral serial dependence, and we justify its asymptotic validity using a uniform nonparametric

inference method based on a new strong approximation theory for mixingales. The usefulness

of the method is demonstrated in empirical applications on volatility and inflation forecasting.
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1 Introduction

A central problem in time-series econometrics is forecasting economic quantities, such as GDP

growth, inflation, stock returns, and volatility. Empiricists often face an extensive list of “rea-

sonable” candidate forecast methods that are invariably backed by influential prior studies. For

example, classical ARMA- and ARCH-type models contain numerous variants, and the recent trend

of using machine-learning algorithms—such as LASSO, random forests, support vector machines,

and deep neural nets—can make a forecaster’s choice even more difficult. Rigorously evaluating

the relative performance of these methods, and identifying superior ones, is thus of great and

ever-growing importance.

The most popular forecast evaluation method is, arguably, Diebold and Mariano’s (1995) test.

Under the null hypothesis of the Diebold–Mariano test, two competing methods have the same

unconditional expected loss, and the test can be carried out using a simple t-test. More generally,

a multivariate extension of the Diebold–Mariano test can be used to test unconditional equal

predictive ability (UEPA) concerning multiple competing forecasts, which amounts to testing a

system of unconditional moments (i.e., expected loss differentials) being zero.

Two significant extensions of the Diebold–Mariano test have been developed in the literature.

The first is the test for unconditional superior predictive ability (USPA), which is first studied by

White (2000) and later refined by Hansen (2005). The null hypothesis states that a benchmark

method weakly outperforms a collection of competing alternatives, as formalized by a system of

unconditional moment inequalities. In his seminal work, White (2000) proposes critical values

under the least favorable null (i.e., all inequalities are binding), which effectively reduces the

USPA test into a multivariate version of the Diebold–Mariano test. Hansen makes an important

observation that White’s test can be very conservative when there are competing models that are

clearly inferior to the benchmark. To remedy this issue, Hansen proposes a preliminary selection

based on studentized moment conditions to remove these clearly inferior methods, and shows that

this can significantly improve the test’s statistical power.

The second extension is the conditional equal predictive ability (CEPA) test proposed by Gia-

comini and White (2006). The authors eloquently argue that, in practice, a forecast evaluator is

not only interested in knowing whether one method is better than another on average, but also

interested in when this occurs. This consideration is particularly relevant when the methods on

the forecaster’s “shortlist” appear similar on average, but can actually behave very differently con-
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ditional on certain economic states. The CEPA null hypothesis states that conditional expected

loss functions of different forecast methods are identically the same across all conditioning states.

The corresponding econometric inference in principle concerns global features of the conditional

expected loss functions. Giacomini and White, however, do not directly attack this functional infer-

ence problem. Instead, they propose a practical method based on a fixed number of (instrumented)

unconditional moments implied by the original conditional ones. As such, the Giacomini–White

test is operationally the same as a finite-dimensional UEPA test.

Set against this background, we extend these existing evaluation paradigms by proposing a

test for conditional superior predictive ability (CSPA), which synergizes the key insights of White

(2000), Hansen (2005), and Giacomini and White (2006). Specifically, the CSPA null hypothesis

asserts the uniform (weak) superiority of the benchmark method, in the sense that the conditional

expected loss of the benchmark does not exceed those of the competing forecasts across all con-

ditioning states. On the other hand, a rejection of the CSPA null hypothesis suggests that some

competing alternative method outperforms the benchmark in certain states, which are revealed as

a by-product of the testing procedure, providing useful diagnostic information.

Our CSPA test formally pertains to testing inequalities for forecast methods’ conditional ex-

pected loss functions. To implement the test, we nonparametrically estimate the conditional mean

function using the series method (Andrews (1991a), Newey (1997), Chen (2007)), and then adopt

the intersection-bound methodology (Chernozhukov, Lee, and Rosen (2013)) to conduct infer-

ence regarding the functional inequalities. It is well-known that the underlying uniform inference

problem is non-Donsker, for which conventional functional central limit theorems based on the

weak convergence concept are not applicable. In a setting with independent data, Chernozhukov,

Lee, and Rosen (2013) address this issue by using Yurinskii’s coupling, which provides a strong

Gaussian approximation for the growing-dimensional moment conditions in the series estimation.

As a result, the t-statistic process (indexed by the conditioning state variable) can be strongly

approximated by a divergent Gaussian process that can be used to construct critical values.

In this paper, we also adopt the strong approximation strategy to make inference on the

conditional moment inequalities, but in a more general time-series setting. One possible way to

achieve this is to invoke the strong approximation theory recently developed by Li and Liao (2019),

which provides a Yurinskii coupling for general dependent data modeled as mixingales, and then

proceed as in Chernozhukov, Lee, and Rosen (2013). However, a drawback of this approach is

that Yurinskii’s coupling concerns the approximation for the entire sample moment vector (under

Euclidean distance), and hence, occurs at a slow rate of convergence. This in turn leads to relatively

restrictive conditions on how fast the number of approximating series terms, mn, can grow with
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the sample size n. Specifically, in both the independent-data setting of Chernozhukov, Lee, and

Rosen (2013) and the time-series setting of Li and Liao (2019), Yurinskii’s coupling is available

when mn = o(n1/5). This issue can be more severe in the time-series context (which is also the

setting here), as the requisite restriction on mn becomes more stringent when the data is serially

“more dependent.”

Motivated by this issue, in this paper we develop a new strong approximation theory in the time-

series setting which substantially improves the theory of Li and Liao (2019) for making uniform

series inference in the time-series context. Rather than strongly approximating the entire vector

of moment conditions, we instead establish a strong approximation for the “maximum projection”

of this growing-dimensional statistic along a large number of directions. This new result is weaker

than Yurinskii’s coupling, and it can be established under notably weaker restrictions on the

number of series terms. The “cost” of not coupling the entire vector of sample moments is that

one can no longer construct a strong approximation for the t-statistic process associated with

the (functional) series estimator, which is needed as a high-level condition in Chernozhukov, Lee,

and Rosen’s (2013) theory (see Condition C.2 of that paper). That being said, we show that the

general framework of intersection-bound inference can nevertheless be adapted to accommodate

this weaker notion of coupling. Our theory thus extends that of Chernozhukov, Lee, and Rosen

(2013) by both allowing for time-series dependence in the data and a weaker notion of strong

approximation. This theory may be further extended to settings with spatial dependence, but

that extension is beyond the scope of the present paper on forecast evaluation.

These new econometric ingredients suggest that the proposed (nonparametric) CSPA test dif-

fers from the conventional forecast evaluation methods not only in concept, but also in econometric

technicality: The unconditional tests of Diebold and Mariano (1995), White (2000), and Hansen

(2005) concern a fixed number of unconditional expected losses; Giacomini and White’s (2006)

CEPA hypothesis is nonparametric in nature, but they only test a fixed number of implied uncondi-

tional moments. In contrast, the CSPA test directly addresses the functional inference by adopting

and generalizing recent results from the partial identification literature (see Molinari (2019) for a

recent review).1 CSPA unifies these prior evaluation paradigms in the following theoretical sense:

USPA is its special case with empty conditioning information set, and CEPA corresponds to the

least favorable null hypothesis of CSPA. It is interesting to note that, like Hansen’s (2005) USPA

1Our theory is a complement, instead of substitute, of Giacomini and White’s (2006) test. In fact, the strong

approximation theory developed here can be used to provide a nonparametric interpretation of Giacomini and White’s

test, by allowing the number of instruments to grow with the sample size. We do not develop this explicitly here so

as to be focused on the CSPA test.

4
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test, our CSPA test also involves a preliminary selection that removes clearly inferior forecasts in

the computation of critical values and, in the same spirit, it also removes regions in the state space

on which the competing forecasts are clearly inferior, which is unique to our functional inference

problem.

We apply the CSPA test in two important empirical settings to demonstrate its usefulness. The

first pertains to the evaluation of volatility forecasts, which is one of the most important topics in

financial econometrics. We consider a variety of autoregressive (AR) models for realized volatility,

including: AR(1), AR(22) with or without adaptive variable selection, fractionally integrated AR,

HAR (Corsi (2009)) and its HARQ extension (Bollerslev, Patton, and Quaedvlieg (2016, 2018)).

Consistent with prior studies, we find that HARQ is generally superior to the other methods using

Hansen’s (2005) USPA test. But the CSPA test provides further useful diagnostic information. We

find that in many cases, we cannot reject the CSPA null hypothesis that HARQ weakly dominates

the other methods uniformly across different states. Interestingly, the conditional test also reveals

cases in which alternative methods—particularly the fractionally integrated model and, somewhat

surprisingly, the simple AR(1) model—significantly outperforms HARQ over certain regions of

the state space. With the CSPA criterion, we pose a new challenge for the empirical search of

“uniformly” superior volatility forecasting methods, for which the proposed test can be used to

formally run the horse race.

In the second empirical application, we evaluate inflation forecasts in a macroeconometric

setting. We consider eight forecasting methods for monthly inflation based on the recent work

of Medeiros, Vasconcelos, Veiga, and Zilberman (2019). Four of these methods are traditional

inflation models such as factor model and Bayesian vector autoregression. The other four are

machine-learning algorithms. Using Hansen’s (2005) USPA test, we find that the traditional models

are typically beaten by at least one of the four machine-learning methods, but the latter methods

appear to be virtually indistinguishable judged by (unconditional) average loss. In contrast, the

CSPA test clearly distinguishes them for a wide variety of economically important conditioning

variables. In particular, the bagging (Breiman (1996)) forecasts turn out to perform extremely

poorly in the tail regions of many of our conditioning variables, such as the macro uncertainty

measure of Jurado, Ludvigson, and Ng (2015).

The paper is organized as follows. Section 2 describes our test and asymptotic theory. Section

3 reports simulation results. Sections 4 and 5 present the empirical applications on volatility

and inflation forecasting, respectively. Section 6 concludes. The appendix contains proofs for our

main theoretical results. Additional technical results and proofs are detailed in the Supplemental

Appendix to this paper.
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2 Testing for conditional superior predictive ability

We present the theory for the CSPA test in this section. Section 2.1 introduces the hypotheses

of interest. In Section 2.2, we describe the CSPA test and establish its asymptotic validity under

high-level conditions. Section 2.3 further shows how to invert the CSPA test to obtain confidence

sets for the most superior forecast method. Our econometric inference relies on a new coupling

theory established in Section 2.4, which may be skipped by readers who are mainly interested in

applications. Below, for two real sequences an and bn, we write an � bn if bn/C ≤ an ≤ Cbn for

some constant C > 1.

2.1 Forecast evaluation hypotheses

Let (F †t )t≥1 be the time series to be forecast. We consider a benchmark forecast sequence (F0,t)1≤t≤n

and J competing forecast sequences (Fj,t)1≤t≤n, 1 ≤ j ≤ J . With a loss function L (·, ·), we mea-

sure the performance of the benchmark method relative to the jth competing alternative by the

loss differential sequence defined as

Yj,t ≡ L
(
F †t , Fj,t

)
− L

(
F †t , F0,t

)
. (2.1)

In particular, Yj,t ≥ 0 indicates that the benchmark (weakly) outperforms method j in period t.

Two types of null hypotheses are commonly tested in forecast evaluation. One is the hypothesis

of unconditional equal predictive ability (UEPA):

HUEPA
0 : E [Yj,t] = 0, 1 ≤ j ≤ J, (2.2)

that is, the benchmark has the same expected performance as all competing alternatives. The

other is the hypothesis of unconditional superior predictive ability (USPA):

HUSPA
0 : E [Yj,t] ≥ 0, 1 ≤ j ≤ J, (2.3)

meaning that the benchmark weakly outperforms the others. UEPA and USPA are clearly con-

nected, in that the former is the least-favorable null of the latter.

The unconditional tests are informative about the relative performance of forecast methods on

average. As such, they have a “blind spot:” Two methods may appear to have (statistically) iden-

tical performance on average, but can behave very differently given certain economic conditions.

Giacomini and White (2006) advocate testing the hypothesis of conditional equal predictive ability

(CEPA), that is,

HCEPA
0 : E [Yj,t|Xt = x] = 0, x ∈ X , 1 ≤ j ≤ J, (2.4)

6

Electronic copy available at: https://ssrn.com/abstract=3536461



where Xt is a conditioning state variable chosen by the evaluator, and X specifies the conditioning

region as a subset of the domain of X. For example, one can track forecast methods’ performance

through business cycles by setting Xt to be a cyclical indicator (e.g., GDP growth). The CEPA null

hypothesis then states that the benchmark performs equally well as all competing alternatives, not

only on average, but also through the ups-and-downs of the economy. This hypothesis is rejected

if some competing forecast method performs differently than the benchmark in some states (say,

expansion or recession).

A rejection of the CEPA hypothesis is not directly informative about whether the competing

methods is better or worse than the benchmark—it only signifies their difference. In contrast, we

consider the conditional superior predictive ability (CSPA) hypothesis. The null hypothesis asserts

HCSPA
0 : E [Yj,t|Xt = x] ≥ 0, x ∈ X , 1 ≤ j ≤ J. (2.5)

This imposes a very stringent requirement on the benchmark, that is, it needs to weakly dominate

all competing methods across the conditioning region X . Therefore, “passing” the CSPA test

should be deemed a highly desirable feature of a forecasting method.

Introducing CSPA to the forecast evaluation literature seems to be rather natural and concep-

tually straightforward: CSPA is to CEPA simply as USPA is to UEPA. However, testing this new

hypothesis is fundamentally different from—and econometrically much more complicated than—

those in the prior forecast evaluation literature. To see why, note that unconditional tests only

concern the finite-dimensional vector (E [Yj,t])1≤j≤J . In contrast, conditional tests involve func-

tional inference for conditional expectation functions of loss differentials given by

hj (x) ≡ E [Yj,t|Xt = x] , 1 ≤ j ≤ J.

The related functional inference is theoretically nontrivial because it requires knowledge about

the global behavior of the hj functions. In their pioneering work, however, Giacomini and White

(2006) bypassed the functional inference by instead testing certain implications of CEPA. These

authors take as given a finite-dimensional instrument Wt that is measurable with respect to the

σ-field generated by Xt, and derive from (2.4) the following unconditional moment equalities:

E [Yj,tWt] = 0, 1 ≤ j ≤ J.

These can then be tested by using a conventional Wald test.

Unlike Giacomini and White (2006), we attack the functional inference problem directly in

our study of CSPA. Our approach relies on inference methods recently developed in the partial

identification literature, particularly those concerning conditional moment inequalities. We adopt

7
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the intersection-bound approach originally proposed by Chernozhukov, Lee, and Rosen (2013) for

microeconometric applications, and extend it to a general time-series setting. More precisely, we

rewrite the CSPA hypothesis as

HCSPA
0 : η∗ ≡ min

1≤j≤J
inf
x∈X

hj (x) ≥ 0. (2.6)

For some significance level α ∈ (0, 1/2), we can construct a 1− α upper confidence bound η̂n,1−α

for η∗ such that

lim inf
n→∞

P
(
η∗ ≤ η̂n,1−α

)
≥ 1− α. (2.7)

Consequently, a test that rejects the CSPA null hypothesis when η̂n,1−α < 0 has probability of

type-I error bounded by α in large samples. The feasible computation of η̂n,1−α and the theoretical

properties of the test are detailed in Section 2.2 below.

2.2 The CSPA test and its asymptotic properties

In this subsection, we describe how to implement the CSPA test and establish its theoretical

validity (see Proposition 1). For readability, we present the theory under high-level conditions,

most of which are standard for series-based nonparametric inference and are well understood in

the literature. The key exception is a condition for coupling a maximum projection of a growing-

dimensional sample moment constructed using dependent data, for which we develop a new theory

in Section 2.4.

To perform the CSPA test, we first estimate the hj (·) functions nonparametrically by the

least-square series regression. Let P (x) = (p1(x), . . . , pmn(x))> be an mn-dimensional vector of

approximating basis functions, such as polynomial, Fourier, spline, and wavelet series; see Chen

(2007) for a comprehensive review. By convention, we suppose that P (·) always contains the

constant function by setting p1(·) ≡ 1. To conduct series estimation, for each j, we regress Yj,t on

P (Xt) and obtain the regression coefficient

b̂j,n ≡ Q̂−1n

(
n−1

n∑
t=1

P (Xt)Yj,t

)
, where Q̂n ≡ n−1

n∑
t=1

P (Xt)P (Xt)
> .

The functional estimator for hj (·) is then given by

ĥj,n (·) ≡ P (·)> b̂j,n.

The series regression coefficient b̂j,n formally resembles the conventional least-square estimator,

but corresponds to a very different theory. We require the number of series terms mn → ∞
asymptotically so that the unknown hj(·) function can be approximated sufficiently well by a

8
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large number of approximating functions. The growing dimension of b̂j,n renders the conventional

weak-convergence-based characterization of asymptotic normality inappropriate. This is why we

shall need a strong approximation theory for growing-dimensional statistics to construct uniform

inference, as in Chernozhukov, Lee, and Rosen (2013), Belloni, Chernozhukov, Chetverikov, and

Kato (2015), and Li and Liao (2019).

We now proceed to describe the inference procedure. Let ut ≡ (u1,t, . . . , uJ,t)
>, where uj,t is

the nonparametric regression error term defined as

uj,t ≡ Yj,t − hj (Xt) .

We further set An to be the Jmn × Jmn covariance matrix of n−1/2
∑n

t=1 ut ⊗ P (Xt), that is,

An ≡ V ar

(
n−1/2

n∑
t=1

ut ⊗ P (Xt)

)
, (2.8)

where ⊗ denotes the Kronecker product. To conduct feasible inference, we suppose that a het-

eroskedasticity and autocorrelation consistent (HAC) estimator Ân for An is available and satisfies

the following condition, where ‖·‖S denotes the matrix spectral norm.

Assumption 1. ‖Ân −An‖S = Op(δA,n) for some sequence δA,n → 0 at polynomial rate.2

Assumption 1 is high-level and in fact nonstandard, because it concerns the convergence rate

of HAC estimators with growing dimensions (i.e., Jmn → ∞), whereas classical HAC estimation

theory (e.g., Newey and West (1987) and Andrews (1991b)) are developed in settings with fixed

dimensions. In the present growing-dimensional setting, the consistency of the HAC estimator is

not enough for feasible inference, and we need a stronger form of consistency (i.e., with polynomial

rate) as stated by the assumption above.

A theoretically valid choice of Ân that verifies Assumption 1 is the Newey–West type HAC

estimator (see Theorem 6 of Li and Liao (2019)). However, Newey–West estimators may lead to

nontrivial size distortions in finite samples. This is well-known in the HAC estimation literature,

and we also document a similar issue in our Monte Carlo experiments. To remedy this finite-sample

distortion, in this paper we analyze a more general class of pre-whitened HAC estimators in the

spirit of Andrews and Monahan (1992), and characterize their convergence rates in the growing-

dimensional setting. We find that the pre-whitened estimator indeed leads to better size control.

The theory on the pre-whitened estimator, however, is somewhat tangential to our main result on

CSPA testing, and it also requires a technical setup that is not used elsewhere in the paper. To

2That is, δA,n � n−a for some fixed constant a > 0 that may be arbitrarily small.
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remain focused, we relegate all details on the pre-whitened estimator to Supplemental Appendix

SC.

Equipped with the estimator Ân, we can estimate the Jmn × Jmn covariance matrix of the

normalized estimators (n1/2(b̂j,n − b∗j,n))1≤j≤J via

Ω̂n ≡
(
IJ ⊗ Q̂n

)−1
Ân

(
IJ ⊗ Q̂n

)−1
,

where IJ denotes the J × J identity matrix, and b∗j,n is the “population analogue” of b̂j,n that is

formally introduced in Assumption 2 below. We further partition Ω̂n into J×J blocks of mn×mn

submatrices Ω̂n (j, k), 1 ≤ j, k ≤ J . Note that Ω̂n (j, k) is the estimator of the covariance matrix

between n1/2(b̂j,n − b∗j,n) and n1/2(b̂k,n − b∗k,n). The standard deviation function of n1/2(ĥj,n (x)−
hj(x)) is then estimated by

σ̂j,n (x) ≡ (P (x)> Ω̂n (j, j)P (x))1/2.

Algorithm 1, below, provides the implementation details of the CSPA test, which is based on the

intersection-bound inference of Chernozhukov, Lee, and Rosen (2013).

Algorithm 1 (Implementation of the CSPA Test).

Step 1. Simulate a Jmn-dimensional random vector
(
ξ∗>1 , . . . , ξ∗>J

)> ∼ N (0, Ω̂n), where each ξ∗j is

mn-dimensional. Set t̂∗j,n (x) ≡ P (x)> ξ∗j/σ̂j,n (x).

Step 2. Repeat step 1 many times. Set γ̃n ≡ 1 − 0.1/ log(n). Let K̂n be the γ̃n-quantile of

max1≤j≤J supx∈X t̂
∗
j,n (x) in the simulated sample and then set

V̂n ≡
{

(j, x) : ĥj,n (x) ≤ min
1≤j≤J

inf
x∈X

(
ĥj,n (x) + n−1/2K̂nσ̂j,n (x)

)
+ 2n−1/2K̂nσ̂j,n (x)

}
.

Step 3. Set k̂n,1−α as the (1− α)-quantile of sup
(j,x)∈V̂n t̂

∗
j,n (x) and set

η̂n,1−α = min
1≤j≤J

inf
x∈X

[
ĥj,n (x) + n−1/2k̂n,1−ασ̂j,n (x)

]
.

Reject the CSPA null hypothesis at significance level α if η̂n,1−α < 0. �

It is instructive to provide some intuition for this procedure. The Gaussian variables (ξ∗j )1≤j≤J

approximate the distribution of (n1/2(b̂j,n− b∗j,n))1≤j≤J and (t̂∗j,n(·))1≤j≤J mimick the law of the t-

statistic processes associated with (ĥj,n(·))1≤j≤J . Step 2 of the algorithm implements the adaptive

inequality selection: We jointly select j ∈ {1, . . . , J} and x ∈ X into the set V̂n such that, with

probability approaching one, hj(x) is minimized on V̂n. For example, if the entire function ĥj,n(·)
is “far above” the infimum η∗ for some j, then the corresponding inequality is removed from our
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subsequent inference. Similarly, for the remaining inequalities, we also remove subsets of X on

which ĥj,n(·) is “far above” η∗. Step 3 of the algorithm produces the critical value η̂n,1−α.

We are now ready to present the asymptotic theory that justifies the validity of the CSPA

test described in Algorithm 1 above. As mentioned in the introduction, our theory differs from

Chernozhukov, Lee, and Rosen (2013) because we allow for general time series dependence and

use a less restrictive notion of strong approximation. For ease of discussion, we collect the key

ingredients of the theorem in the following two high-level assumptions. Below, we denote ζn ≡
max1≤j≤mn supx∈X |pj(x)| and ζLn ≡ supx1,x2∈X ,x1 6=x2 ‖P (x1)− P (x2)‖ / ‖x1 − x2‖.

Assumption 2. Suppose: (i) for each j = 1, . . . , J , hj(·) is a continuous function on a compact

subset X ⊆ Rdx; (ii) there exist sequences (b∗j,n)n≥1 of mn-dimensional constant vectors, with

mn →∞ at polynomial rate, such that

max
1≤j≤J

sup
x∈X

n1/2
∣∣∣hj(x)− P (x)>b∗j,n

∣∣∣ = op
(
(log n)−1

)
,

(iii) the eigenvalues of Qn and An are bounded from above and away from zero uniformly over

n; (iv) ‖Q̂n − Qn‖S = Op (δQ,n) for δQ,n = o(m
−1/2
n (log n)−1); (v) ζnmnn

−1/2 = o(1); and (vi)

log(ζLn ) = O(log n).

The conditions in Assumption 2 are fairly standard for series estimation; see, for example,

Andrews (1991b), Newey (1997), Chen (2007), Chernozhukov, Lee, and Rosen (2013), and Belloni,

Chernozhukov, Chetverikov, and Kato (2015). In particular, condition (ii) specifies the precision for

approximating the unknown function hj (·) via approximating functions. This condition implicitly

requires that the function hj (·) is sufficiently smooth, for which well-known results are available

from numerical approximation theory. Condition (iv) imposes a mild convergence rate condition

on Q̂n, which can be verified under primitive conditions.3

Assumption 3. For any sequence of integers Ln = O(((log n)2m
1/2
n ζLn )dx) and any collection of

uniformly bounded vectors (αl)1≤l≤Ln
⊆ RJmn, there exists a sequence of random variables Ũn such

that ∣∣∣∣∣ max
1≤l≤Ln

α>l

(
n−1/2

n∑
t=1

ut ⊗ P (Xt)

)
− Ũn

∣∣∣∣∣ = op
(
(log n)−1

)
, (2.9)

and Ũn has the same distribution as max1≤l≤Ln α
>
l Ñn for some generic Gaussian vector Ñn ∼

N (0, An).

3See, for example, Lemma 2.2 of Chen and Christensen (2015) and Lemma B5 in the supplemental appendix of

Li and Liao (2019).
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Assumption 3 is the key to the uniform functional inference underlying the CSPA test, and is

nontrivial to establish. Note that our series estimation is based on the Jmn-dimensional moment

condition E[ut ⊗ P (Xt)] = 0. The assumption above states that the maximum projection of the

normalized growing-dimensional sample moment n−1/2
∑n

t=1 ut ⊗ P (Xt) can be approximated by

Ũn, which has the same distribution as max1≤l≤Ln α
>
l Ñn. In contrast, Yurinskii’s coupling provides

a strong approximation for the entire vector in Euclidean norm, namely,∥∥∥∥∥n−1/2
n∑
t=1

ut ⊗ P (Xt)− Ñn

∥∥∥∥∥ = op

(
log (n)−1

)
, (2.10)

which is clearly stronger than (2.9), but it invariably also demands more restrictive regularity

conditions. An important part of our theoretical analysis (see Section 2.4) is to construct the

coupling in (2.9) for general heterogeneous mixingales under substantially weaker conditions on

the growth rate of mn than those employed in Li and Liao (2019) for establishing Yurinskii’s

coupling in a similar time series setting.

A “cost” of using the weaker coupling condition (2.9), instead of (2.10), is that we do not have

a strong Gaussian approximation for the entire t-statistic process(
n1/2ĥj,n (x)

σ̂j,n (x)

)
1≤j≤J,x∈X

,

which is required in Chernozhukov, Lee, and Rosen’s (2013) intersection-bound theory as a high-

level condition (see their Condition C.2). Consequently, we cannot directly invoke the theory from

that prior work. Nevertheless, we show that under Assumption 3, one can still construct strong

approximations for the supremum of the t-statistic process over all subsets of X (see Theorem

A1 in the appendix), which turns out to be enough for establishing the validity of the testing

procedure.

The asymptotic properties of the CSPA test are described by the following proposition.

Proposition 1. Suppose that Assumptions 1, 2, and 3 hold. Then, the CSPA test at significance

level α ∈ (0, 1/2) satisfies the following:

(a) Under the null hypothesis with η∗ ≥ 0, the test has asymptotic size α, that is,

lim sup
n→∞

P
(
η̂n,1−α < 0

)
≤ α;

(b) Under the alternative hypothesis with η∗ < 0, the test has asymptotic power one, that is,

P
(
η̂n,1−α < 0

)
→ 1.
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Comments. (i) Part (a) of Proposition 1 shows that the CSPA test controls size under the null

hypothesis. As is common for testing inequalities, the test may be conservative, that is, the

asymptotic rejection probability may be less than α.

(ii) Part (b) shows that the test is consistent against fixed alternatives. As shown in our proof,

this result follows from η̂n,1−α−η∗ = Op
(
ζnmnn

−1/2) = op(1). The proof can be straightforwardly

adapted to show that the test is consistent against local alternatives with η∗ < 0 drifting to zero

at rate strictly slower than ζnmnn
−1/2. �

2.3 Confidence sets for the most superior forecast method

The CSPA test described in the previous subsection concerns the comparison of a benchmark

method with the other competing alternatives. In many applications, however, it may be a priori

unclear which forecast method should be chosen as the benchmark, and the empirical researcher

may naturally experiment with different choices. This practice can be formalized as constructing

a model confidence set for the most superior forecast, as we discuss in this subsection.

Formally, we define a partial order � between two forecast methods indexed by j and k as

j � k ⇐⇒ E
[
L(F †t , Fj,t)|Xt = x

]
≤ E

[
L(F †t , Fk,t)|Xt = x

]
for all x ∈ X .

That is, the expected forecast loss of method j is less than that of method k across all conditioning

states. The set of the most superior methods is then defined as

M≡{0 ≤ j ≤ J : j � k for all 0 ≤ k ≤ J}. (2.11)

Note that the CSPA null hypothesis with method j being the benchmark can then be written as

j ∈M. Since the � order—which is defined using conditional expectation functions—is generally

not complete, the set M may be empty (i.e., there exists no method that weakly dominates all

others).

It is interesting to contrast M with its unconditional special case, that is,

MU ≡ {0 ≤ j ≤ J : E[L(F †t , Fj,t)] ≤ E[L(F †t , Fk,t)] for all 0 ≤ k ≤ J}.

SinceMU relies on ordering the scalar-valued expected losses, it is guaranteed to be nonempty. It

is also obvious thatM⊆MU and, in general, we expect the inclusion to be strict. By imposing a

stronger notion of dominance, M provides a refinement relative to its unconditional counterpart

MU .
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An Anderson–Rubin type confidence set for the most superior method can be constructed by

inverting the CSPA test. We set

M̂n,1−α = {0 ≤ j ≤ J : the α-level CSPA test

with method j as the benchmark does not reject}.
(2.12)

By the duality between tests and confidence sets, Proposition 1 directly implies that for each

j∗ ∈M,

lim inf
n→∞

P
(
j∗ ∈ M̂n,1−α

)
≥ 1− α.

We refer to M̂n,1−α as the confidence set for the most superior (CSMS).

We stress that the CSMS is distinct from the model confidence set (MCS) proposed by Hansen,

Lunde, and Nason (2011) in two ways. First, the CSMS is based on conditional tests, while the

MCS is based on unconditional ones; note that the unconditional test is a special case of the

conditional test with Xt being empty. Second, the CSMS, M̂n,1−α, is designed to cover each

element j∗ inM, instead of the whole setM. In contrast, the MCS provides coverage for theMU

set. Of course, this distinction is only relevant whenM contains more than one method. While the

unconditional expected losses of two distinct forecast methods might be identical (as real numbers)

and result in a non-singleton MU , it is hard to conceive a scenario in which two different forecast

sequences share exactly the same conditional expected loss across all states in X (as functions).

For this reason, we argue that covering each most superior method serves essentially the same

empirical goal as covering the whole set M in the context of conditional testing. The CSMS may

thus be considered as the conditional extension of Hansen, Lunde, and Nason’s (2011) MCS.

2.4 Strong approximation for the maximum projection

In this subsection, we establish a strong approximation that can be used to verify the high-

level Assumption 3. Since this type of coupling result is of independent theoretical interest, and

is broadly useful for other types of nonparametric uniform inference in time-series analysis, we

present the theory in a general setting. This subsection may be skipped by readers who are mainly

interested in the application of the CSPA test.

We now turn to the setting. Let ‖·‖q denote the Lq-norm of a random variable for q ≥ 1. We

consider an Mn-dimensional Lq-mixingale array (Xn,t) with respect to a filtration (Fn,t). That is,

Xn,t satisfies, for each 1 ≤ l ≤Mn and k ≥ 0,

‖E[Xl,n,t|Fn,t−k]‖q ≤ c̄nψk, ‖Xl,n,t − E[Xl,n,t|Fn,t+k]‖q ≤ c̄nψk+1, (2.13)
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where Xl,n,t denotes the lth component of Xn,t, and the constants c̄n and ψk control the magnitude

and the dependence of the Xn,t variables, respectively. Recall that mixingales form a very general

class of time series models, including martingale differences, linear processes, and various types of

mixing and near-epoch dependent processes as special cases, and naturally allow for data hetero-

geneity; we refer the reader to Davidson (1994) for a comprehensive review. To verify Assumption

3, we can set Xn,t = ut ⊗ P (Xt) and Mn = Jmn.

Denote

Sn ≡ n−1/2
n∑
t=1

Xn,t, Σn ≡ V ar (Sn) .

For bounded Mn-dimensional vectors (αl)1≤l≤Ln
, we aim to construct a sequence of random vari-

ables Ũn such that Ũn has the same distribution as max1≤l≤Ln α
>
l S̃n for S̃n ∼ N (0,Σn) and∣∣∣∣ max

1≤l≤Ln

α>l Sn − Ũn
∣∣∣∣ = op

(
(log n)−1

)
. (2.14)

In a recent paper, Li and Liao (2019) establish a Yurinskii-type coupling in a similar mixingale

setting, which has the form ‖Sn− S̃n‖ = Op (δn) for some δn = o(1). The Yurinskii-type coupling is

stronger than the coupling concept formulated in (2.14), but with a slower rate of convergence than

the latter as discussed below. For ease of comparison, we impose the same regularity conditions

as in Li and Liao (2019).

Assumption 4. (i) For some q ≥ 3, there exists a martingale difference array X∗n,t such that

max1≤l≤Mn ‖X∗l,n,t‖q ≤ c̄nψ∗ for some finite constant ψ∗ > 0 and

‖Sn − S∗n‖ = Op(c̄nM
1/2
n n−1/2)

for S∗n ≡ n−1/2
∑n

t=1X
∗
n,t; (ii) the eigenvalues of E

[
X∗n,tX

∗>
n,t

]
are uniformly bounded from above

and away from zero; (iii) uniformly for any integer sequence kn that satisfies n− o(1) ≤ kn ≤ n,∥∥∥∥∥
kn∑
t=1

(
V ∗n,t − E

[
V ∗n,t

])∥∥∥∥∥
S

= Op(rn) (2.15)

where V ∗n,t ≡ n−1E
[
X∗n,tX

∗>
n,t |Fn,t−1

]
and rn = o(1) is a real positive sequence; (iv) the largest

eigenvalue of Σn is uniformly bounded.

A few remarks on Assumption 4 are in order. Condition (i) directly imposes a martingale

approximation for the mixingale array, which is a well-known and very useful property of mixin-

gales.4 This condition effectively reduces the task of constructing a strong approximation for Sn

4A sufficient condition is
∑

q≥0 ψq < ∞, under which the martingale difference is defined as X∗n,t ≡∑∞
s=−∞ {E [Xn,t+s|Fn,t]− E [Xn,t+s|Fn,t−1]}; see Lemma A4 in the supplemental appendix of Li and Liao (2019).
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to a simpler one for the approximating martingale S∗n. The other conditions are needed for ana-

lyzing the latter, which can also be established under primitive conditions. In particular, we note

that condition (iii) can be generally derived by using a matrix law of large numbers, and it holds

trivially with rn = 0 if V ∗n,t is deterministic (while allowed to be time-varying). As a concrete

illustration of this assumption, we consider the following example.

Example (Martingale Approximation). Suppose that Xn,t is formed as a linear process with

the form Xn,t =
∑
|j|<∞ θjεn,t−j where εn,t is a triangular array of independent variables with finite

qth moments. Under the condition
∑
|j|<∞ |jθj | <∞, Assumption 4(i) can be verified with the ap-

proximating martingale difference array defined explicitly as X∗n,t = (
∑
|j|<∞ θj)εn,t, where the fil-

tration is given by Fn,t = σ(εn,s : s ≤ t). In this case, V ∗n,t = n−1(
∑
|j|<∞ θj)E

[
εn,tε

>
n,t

]
(
∑
|j|<∞ θj)

>

is deterministic and may be time-varying if E
[
εn,tε

>
n,t

]
depends on t. Condition (ii) is satisfied if

E
[
εn,tε

>
n,t

]
and its inverse have bounded eigenvalues. Condition (iii) is automatically satisfied with

rn = 0. Although the volatility of the approximating martingale is deterministic, it is interesting

to note that Xn,t can have stochastic conditional volatility because E[X2
n,t|Fn,t−1] depends on the

realizations of lagged innovations (εs)s<t. �

We are now ready to state our main theorem on strong approximation.

Theorem 1. Let (αl)1≤l≤Ln
be Mn-dimensional real vectors with uniformly bounded Euclidean

norm, and S̃n be a generic Mn-dimensional random vector with distribution N (0,Σn). We set

B1,n ≡ n−3/2
n∑
t=1

E
[
(logLn)3/2 max

1≤l≤Ln

(
E
[
(α>l X

∗
n,t)

2|Fn,t−1
])3/2

+ max
1≤l≤Ln

|α>l X∗n,t|3
]
,

B2,n ≡ min

{
L1/q
n max

1≤t≤n,1≤l≤Ln

‖α>l X∗n,t‖q,M1/2
n

}
+ (logLn)1/2.

Suppose that c̄n(logLn)1/2M
1/2
n n−1/2+B

1/3
1,n (logLn)2/3+B2,nr

1/2
n = o((log n)−1) and Assumption 4

holds. Then, there exists a sequence of random variables Ũn such that Ũn has the same distribution

as max1≤l≤Ln α
>
l S̃n and ∣∣∣∣ max

1≤l≤Ln

α>l Sn − Ũn
∣∣∣∣ = op

(
(log n)−1

)
.

Theorem 1 establishes the strong approximation for the maximum statistic max1≤l≤Ln α
>
l Sn.

There are two components in the approximation error. The first is related to the martingale ap-

proximation and is of order Op(c̄n(logLn)1/2M
1/2
n n−1/2). The other error term captures the strong

approximation error for the maximum statistic max1≤l≤Ln α
>
l S
∗
n formed using the approximating

martingale S∗n, and has order Op(B
1/3
1,n (logLn)2/3 +B2,nr

1/2
n ). In a setting with independent data,
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Chernozhukov, Chetverikov, and Kato (2014) prove a similar coupling result. Their proof heavily

relies on symmetrization-based empirical process techniques that are not available in a general time

series setting. We establish the coupling using very different techniques, which is a key theoretical

contribution of the current paper.

Theorem 1 can be used to verify Assumption 3. Since the theorem is somewhat complicated

in its general form, we provide a corollary in a special case that is much easier to understand.

Corollary 1. Let (αl)1≤l≤Ln
and S̃n be defined as in Theorem 1. Suppose that (i) Assumption 4

holds with c̄n = O(1) and V ∗n,t being deterministic; (ii) Mn � na for some a ∈ (0, 1/3); and (iii)

Ln has polynomial growth as n → ∞. Then, there exists a sequence of random variables Ũn such

that Ũn has the same distribution as max1≤l≤Ln α
>
l S̃n and∣∣∣∣ max

1≤l≤Ln

α>l Sn − Ũn
∣∣∣∣ = op

(
(log n)−1

)
.

Comment. To apply this result in the context of Section 2.2, we set Mn = Jmn and note that

mn and Ln have polynomial growth as n → ∞. Under the simple setting stated by Corollary 1,

Assumption 3 is verified provided that mn = O(na) for some a ∈ (0, 1/3). In contrast, Li and Liao’s

(2019) Yurinskii-type coupling has the form ‖Sn − S̃n‖ = Op(m
5/6
n n−1/6), with the approximation

error shrinking to zero when mn = O(na) for a ∈ (0, 1/5), which is notably more restrictive. �

3 Monte Carlo study

In this section, we examine the finite-sample performance of the CSPA test in Monte Carlo exper-

iments. Section 3.1 presents the setting and Section 3.2 reports the results.

3.1 The data generating process

We consider a setting with J conditional moments for J = 1, 3, or 5. The data are simulated

according to the following data generating process (DGP):

Yj,t = 1− a e−(Xt−c)2 + uj,t, 1 ≤ j ≤ J,

Xt = 0.5Xt−1 + εt, with εt
iid∼ N (0, 0.75),

uj,t = ρuuj,t−1 + vj,t, with vj,t
iid∼ N (0, σ2v).

We consider c ∈ {0, 0.5, 1} and ρu ∈ {0, 0.4, 0.8}. We also set σ2v = 3(1− ρ2u) so that the variance

of uj,t is kept constant at 3.
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A few remarks on this DGP are in order. First, the Xt process is a centered Gaussian AR(1)

process with its variance normalized to unity. Second, the conditional expectation function hj(x) =

E[Yj,t|Xt = x] has the form

hj (x) = 1− a e−(x−c)
2

,

and it attains its minimum 1− a at x = c. The corresponding unconditional expectation is

E [Yj,t] = E [hj (Xt)] = 1− a e−c
2/3

√
3

. (3.1)

The c parameter plays a useful role in our experiments: Since the distribution of Xt is concentrated

around zero, we can explore the effect of data density on the estimation accuracy for different parts

of the hj (·) function by varying c. Third, as we increase ρu from 0 to 0.8, the error series uj,t

become more persistent, rendering time-series inference more difficult.

We impose the null and alternative hypotheses for CSPA as follows. The null hypothesis

described in (2.5) is satisfied when a = 1, that is, hj(c) = 0 and hj(x) > 0 when x 6= c. On

the other hand, when a > 1, the conditional moment violates the CSPA null hypothesis because

hj(x) < 0 when x falls in the (c −
√

log a, c +
√

log a) interval. The deviation of a from 1 thus

quantifies the “distance” between the null and alternative hypotheses.

In additional to the proposed CSPA test, we also implement Hansen’s (2005) USPA test for

comparison. Although these tests concern different hypotheses, it is interesting to concretely

demonstrate how their difference manifests in the present numerical setting. From equation (3.1),

we see that

E [Yj,t] ≥ 0 if and only if a ≤
√

3ec
2/3.

Therefore, when 1 < a ≤
√

3ec
2/3, the CSPA null hypothesis will be violated, whereas the USPA

null hypothesis still holds. This corresponds to a situation in which a competing forecast model

strictly outperforms the benchmark in certain regions of the conditioning state space, but, at the

same time, underperforms the benchmark on average. By design, the USPA test should not reject,

and the CSPA test will reject, providing useful additional diagnostic information.

We consider three sample sizes, n = 250, 500 or 1,000. The small sample speaks to typical

macroeconomic applications with quarterly data, the medium sample corresponds to financial

application with monthly data, and the large sample is easily attainable for analysis based on

daily observations. The simulation consists of 10,000 Monte Carlo replications.

Finally, we describe the implementation details of the CSPA test. The significance level is set

to be 5%. We employ the Legendre polynomials P (z) = (1, z, 0.5(z2 − 1), ...) as basis functions

and use the Akaike Information Criteria (AIC) to select the basis up to fiven series terms.5 These

5In results not presented here, we include up to seven series terms, which yields very similar results.
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basis functions are orthogonal on the [−1, 1] interval under Lebesgue measure, and tend to be less

affected by multicollinearity issues in finite samples. To obtain estimates of the long-run variance

Ω̂n, we consider both the standard Newey–West type and pre-whitened HAC estimators. For the

former, we use the Bartlett kernel (Newey and West (1987)) and, following Andrews (1991b),

set the bandwidth to b0.75n1/3c. For the pre-whitened estimator that is described in detail in

Supplemental Appendix SC, we pre-whiten the data using an autoregressive filter adaptively tuned

via the AIC up to four lags.6

3.2 Results

To set the stage, we discuss results from the univariate setting (i.e., J = 1). We first examine the

size property of the CSPA test, for which we impose the null hypothesis by setting a = 1. Table

1 reports the rejection rates of the test under the null for various values of ρu and c. The left

and right panels report results based on the Newey–West HAC estimator and the pre-whitened

estimator, respectively.

We summarize the results as follows. First, looking at the “quarterly” case (Panel A), we see

that the test based on the standard HAC estimator controls size well when the error terms are

moderately persistent (i.e., ρu = 0 or 0.4). However, the test can be nontrivially oversized when

ρu = 0.8. For example, the rejection rate is 8.4% when c = 1, which is notably higher than the 5%

nominal level. In contrast, tests based on the pre-whitened estimator show satisfactory size control

even in the presence of high persistence. We note that overrejection resulted from the standard

HAC estimator is mainly a small-sample issue, which dampens as we increase the sample size, and

is no longer present for the “daily” sample displayed in Panel C. But to be cautious, we focus only

on results based on the pre-whitened HAC estimator in all our discussion below.

Second, we note that the CSPA test is generally conservative, as its rejection rate is often

below the 5% nominal level. This is expected from the asymptotic theory, as we can see from

(2.7) that the probability of type-I error is asymptotically bounded by α. The intuition for the

conservativeness is as follows. In our simulation design, the inequality hj(x) ≥ 0 is binding at x = c.

If this information were known a priori, we could compute the critical value by concentrating on

the singleton x = c. However, in finite samples, we need to conservatively uncover the “binding

region” using a nonparametric estimator. To the extent that this preliminary estimation is coarse,

the resulting critical value is conservative.

We next turn to power properties of the CSPA test, again for the univariate case with J = 1.

6As in Andrews and Monahan (1992), the validity of the pre-whitened HAC estimator does not require the time

series to actually follow a vector autoregressive model.
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Table 1: Rejection Rates under the Null Hypothesis

Newey–West HAC Pre-whitened HAC

ρu = 0.0 ρu = 0.4 ρu = 0.8 ρu = 0.0 ρu = 0.4 ρu = 0.8

Panel A: Small-sample Case (n = 250)

c = 0.0 0.007 0.014 0.057 0.008 0.013 0.025

c = 0.5 0.008 0.016 0.065 0.008 0.014 0.027

c = 1.0 0.030 0.036 0.084 0.030 0.034 0.048

Panel B: Medium-sample Case (n = 500)

c = 0.0 0.003 0.008 0.033 0.003 0.007 0.012

c = 0.5 0.005 0.008 0.032 0.005 0.006 0.011

c = 1.0 0.021 0.024 0.057 0.021 0.021 0.030

Panel C: Large-sample Case (n = 1,000)

c = 0.0 0.003 0.003 0.017 0.003 0.003 0.006

c = 0.5 0.003 0.003 0.018 0.003 0.003 0.006

c = 1.0 0.015 0.018 0.030 0.015 0.016 0.015

Note: This table presents rejection rates of the CSPA test under the univariate null hy-

pothesis (i.e., J = 1 and a = 1). The test is implemented using either the Newey–West

or the pre-whitened HAC estimator. We consider different data generating processes

by varying the sample size n, residual autocorrelation ρu, and the location parameter

c.
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Figure 1: Simulation Results: Power Curves
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Note: This figure presents the power curves of the CSPA test (top row) and Hansen’s (2005)

USPA test (bottom row). In the left (resp. right) column we vary the ρu (resp. c) parameter

while keeping the c (resp. ρu) parameter fixed. To highlight whether the value of a corresponds

to the null or the alternative hypothesis, we signify the latter with a marker.

As discussed above, the alternative hypothesis can be imposed by setting a > 1. In the top panels

of Figure 1, we plot the CSPA test’s rejection rates as functions of a while varying the ρu and c

parameters in the DGP. For brevity, we only show results for the n = 500 case.

The top-left panel of Figure 1 plots the CSPA power curves for different levels of persistence

quantified by the ρu parameter, while fixing c = 0.5. As a increases, the rejection rate approaches

one, which is consistent with the asymptotic theory. In addition, we see that the test has higher

power when the error terms are less persistent. On the top-right panel, we plot power curves for

different c values while fixing ρu = 0.4. When a is small, the test tends to be more conservative

when c is closer to zero, which mirrors the findings in Table 1. Interestingly, this ranking is reversed

when a is large.
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It is instructive to compare the power properties of CSPA test with those of Hansen’s (2005)

USPA test. The USPA power curves are plotted in the bottom panels of Figure 1, and computed

under the same DGPs. We stress that this comparison should be interpreted cautiously, because

CSPA and USPA tests are designed for different hypotheses. Specifically, the USPA null hypothesis

is violated when a >
√

3ec
2/3; the threshold is 1.73, 1.88, and 2.42 for the cases with c = 0, 0.5,

and 1, respectively.

Looking at the USPA power curves, we see that the test essentially does not reject when a is less

than the
√

3ec
2/3 threshold; this is particularly evident in the bottom-right panel as we vary the

value of c. When a exceeds this threshold, we observe increasingly more rejections, with rejection

rate approaching one as a becomes larger. Although the USPA test starts to have nontrivial power

under its own alternative hypothesis, its rejection rate is notably lower than that of the CSPA

test. This comparison thus concretely illustrates scenarios in which the conditional test can reveal

useful information above and beyond its unconditional counterpart.

Finally, we present simulation results for the multivariate setting with J = 3 or 5. Similar to

the univariate setting above, we impose the null hypothesis by setting a = 1, and set a = 1.5 to

obtain the alternative. This alternative is chosen to have nondegenerate local power in view of

Figure 1. Table 2 reports the rejection rates. From the table, we see that the CSPA test controls

size in the multivariate setting and is slightly more conservative. Meanwhile, the power of the test

is higher as more conditional moment inequalities are violated under the alternative.

4 Empirical application on volatility forecast

As a first empirical application of the CSPA test, we consider the conditional evaluation of forecast-

ing models of realized volatility (RV ). Ex-post measures of daily volatility based on high-frequency

data, and the reduced-form modeling of their dynamics, are popularized by Andersen, Bollerslev,

Diebold, and Labys (2003), whose seminal work has since spurred a large and burgeoning literature

in financial econometrics. We apply the CSPA test on a collection of prominent forecasting meth-

ods. Section 4.1 introduces the forecasting models and reports baseline results from unconditional

evaluation tests. Section 4.2 presents results from the CSPA test.

4.1 Volatility forecasting methods and their unconditional evaluation

Our analysis is based on the publicly available dataset from Bollerslev, Patton, and Quaedvlieg

(2016), which contains daily realized volatility and other high-frequency measures for the S&P 500

index and 27 stocks in Dow Jones Industrial Average that are traded over the full sample period
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Table 2: Simulation Results: Multivariate Test

Null Hypothesis Alternative Hypothesis

ρu = 0 ρu = 0.4 ρu = 0.8 ρu = 0 ρu = 0.4 ρu = 0.8

Panel A: J = 3

c = 0.0 0.004 0.007 0.014 0.983 0.885 0.467

c = 0.5 0.003 0.006 0.011 0.958 0.806 0.396

c = 1.0 0.013 0.016 0.027 0.915 0.773 0.467

Panel B: J = 5

c = 0.0 0.003 0.007 0.015 0.997 0.961 0.561

c = 0.5 0.004 0.007 0.013 0.988 0.911 0.491

c = 1.0 0.014 0.019 0.027 0.958 0.877 0.556

Note: This table presents rejection rates of the CSPA test when J = 3 or J = 5.

We set a = 1 and 1.5 for the null and the alternative hypotheses, respectively. We

consider different data generating processes by varying the sample size n, residual

autocorrelation ρu, and the location parameter c.

from April 1997 to December 2013. Realized volatility is computed as the sum of squared 5-minute

returns within regular trading hours. We focus on one-day-ahead forecasts that are formed using

rolling-window estimation with 1,000 daily observations. This results in over 3,000 daily forecasts

for each series.7

We study 6 competing forecasting methods in total. The first is Corsi’s (2009) HAR model,

which is arguably the most popular model in the recent financial econometrics literature for volatil-

ity forecasting. This model is a restricted AR(22), in which common coefficients are imposed across

“daily,” “weekly,” and “monthly” lags. We consider three alternative autoregressive specifications,

including AR(1), AR(22), and an adaptive AR(22) model with LASSO-based variable selection.8

Note that the HAR model is designed to capture the well-known long-memory feature of volatil-

7The S&P500 Realized volatility is based on futures data from Tick Data and ends in August 2013, resulting in a

total of 4,096 observations. The individual stocks, whose data comes from the TAQ database, spans the full sample

with 4,202 observations. See Bollerslev, Patton, and Quaedvlieg (2016) for details.
8The regularization parameter of the LASSO is obtained using 10-fold cross-validation.
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ity. In this vein, we also include an ARFIMA(1, d, 0) model in our analysis, which is a classical

alternative for capturing long memory via fractional integration. Lastly, we include one of many

recent augmentations to HAR—the HARQ model proposed by Bollerslev, Patton, and Quaedvlieg

(2016). HARQ allows the first autoregressive parameter to vary over time in response to the level

of measurement error in the high-frequency estimate of daily RV . The level of measurement error

is quantified by the daily realized quarticity (RQ), defined as the (scaled) sum of the 4th power of

high-frequency returns. More precisely, the specifications of these forecast models are given below:

AR(1) RVt = φ0 + φ1RVt−1 + εt,

AR(22) RVt = φ0 +
∑22

i=1 φiRVt−i + εt,

HAR RVt = φ0 + φ1RVt−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + εt,

HARQ RVt = φ0 + (φ1 + φ1QRQ
1/2
t−1)RVt−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + εt,

ARFIMA (1− L)dRVt = φ0 + φ1RVt−1 + εt,

where RVt−1|t−k = k−1
∑k

i=1RVt−i and L denotes the lag operator.

To set the stage, we first conduct an unconditional comparison of these six methods using

Hansen’s (2005) USPA test. The test is implemented under two schemes: one-versus-one or one-

versus-all. Under one-versus-one, we compare each benchmark with one alternative for all model

pairs. Under one-versus-all, we perform the USPA test to compare each benchmark model with all

the other five competing models jointly. To mitigate the impact of rare but large volatility spikes,

we follow Patton (2011) and employ the QLIKE loss function, defined as

L(F †t , Fj,t) =
Fj,t

F †t
− log

(
Fj,t

F †t

)
− 1.

The tests are implemented separately for each asset. As a simple summary of these testing

results, we report the number of assets (out of 28 in total) for which the USPA test (one-versus-

one or one-versus-all) rejects at 5% significance level in Table 3.9 From the top panel, we see

considerable heterogeneity in the models’ average loss: The average loss of the worst model,

AR(1), is more than twice as high as that of the best model, HARQ. HAR appears to easily

outperform AR(22)-LASSO. Interestingly, the latter adaptive method actually underperforms the

AR(22) model with unrestricted coefficients.

We next turn to formal testing results. Under the one-versus-one scheme, we find that the USPA

null hypothesis is almost never rejected when HARQ is the benchmark (see the fifth column). The

only exception occurs when the competing method is ARFIMA, and the null hypothesis is rejected

9We do not intend to interpret the testing results jointly across different assets.
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Table 3: Unconditional Superior Predicative Ability for Volatility Forecasts

Benchmark Methods

AR(1) AR(22) AR(22)

LASSO

HAR HARQ ARFIMA

Panel A: Average QLIKE Loss

0.401 0.229 0.298 0.213 0.185 0.198

Panel B: One-versus-one USPA tests against different competing methods

AR(1) 0 3 0 0 0

AR(22) 28 27 0 0 0

AR(22) LASSO 25 0 0 0 0

HAR 28 26 28 0 1

HARQ 28 28 28 28 22

ARFIMA 28 27 28 26 2

Panel C: One-versus-all USPA tests against all competing methods

28 28 28 28 2 22

Note: Panel A reports the average QLIKE loss of each of the six models, where the averaging is

both over time and across assets. Panel B (resp. C) reports the number of assets for which the

one-versus-one (resp. one-versus-all) USPA null hypothesis is rejected at 5% significance level.
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for 2 out of the 28 assets. But when ARFIMA is the benchmark, the associated USPA null is

rejected for most of the assets against HARQ. Judged in similar fashion, the other four methods

can be ranked as follows: HAR, AR(22), AR(22)-LASSO, and AR(1). The one-versus-all tests, as

shown in Panel C, more clearly confirms HARQ’s superior performance. In particular, the joint

test always rejects when each of the four underperforming models is used as the benchmark.

Overall, these unconditional evaluation results largely confirm prior findings in the literature.

However, this does not preclude, for instance, the possibility that AR(1) can outperform HARQ

and ARFIMA in some states of the world. The CSPA test is designed to investigate such issue,

to which we now turn.

4.2 CSPA of volatility forecasts

We implement the CSPA test with the CBOE Volatility Index (VIX) as the conditioning state

variable. The VIX is an option-based implied volatility measure, and is often deemed to be the

“fear gauge” of investors. We stress that the testing methodology does not depend on this specific

choice. In our analysis below, we use each of the aforementioned models as a benchmark, and

test whether E[Yj,t|VIXt−1] ≥ 0, where Yj,t denotes the loss differential between the jth competing

model and the benchmark. We follow the same implementation procedure using the pre-whitened

HAC estimator as described in the simulation study.

To concretely illustrate how the CSPA test works in practice, we start with a case study for

Johnson & Johnson (NYSE: JNJ). The evaluation scheme is one-versus-one: The benchmark is

HAR and the competing alternative is either AR(1) or HARQ. In Figure 2, we plot the estimated

conditional expected loss differential functions, along with the 95% upper confidence bounds given

by ĥj,n (·)+n−1/2k̂n,1−ασ̂j,n (·). Recall that the critical value η̂n,1−α of the CSPA test is the infimum

of the latter function and the CSPA test rejects the null hypothesis if some part of this function

is below zero.

The left panel illustrates the comparison between HAR and AR(1). As shown by the conditional

expected loss differential curve, the simple AR(1) forecast underperforms HAR when VIX is below

30, but appear to be more accurate in extremely volatile states. That being said, the CSPA null

hypothesis is not rejected at the 5% level (because the confidence bound function is always above

zero), although this non-rejection is marginal.

Turning to the right panel of Figure 2, we see that HARQ outperforms the benchmark HAR

model not only on average but also uniformly across different states, in that the conditional

expectation function is always below zero.10 The improvement stems from both quiescent (say,

10A direct consequence is that the CSPA null hypothesis is not rejected if we instead take CSPA as the benchmark
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Figure 2: Forecasting Volatility: One-versus-one CSPA Tests
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Note: This figure plots the estimated conditional expected loss differential functions (solid), along

with its 95% confidence bound (dashed), for the realized variance series of Johnson & Johnson,

against the conditioning variable VIX. The HAR model is used as the benchmark, with the AR(1)

(left panel) and the HARQ (right panel) as competing alternatives. A negative value of the condi-

tional expected loss differential indicates that the HAR model is outperformed by the competing

alternative. The CSPA test rejects the null hypothesis (i.e., HAR is weakly superior) if the confi-

dence bound is below zero over some region of the conditioning state space.

VIX ≈ 15) and high-uncertainty states. These results are in line with Bollerslev, Patton, and

Quaedvlieg’s (2016) finding that the benefit of HARQ is twofold: The model allows for more

persistence in quiet times, and sharply down-weights past observations under crisis-like market

conditions. Looking at the upper confidence bound, we see that HARQ’s better performance is

highly statistically significant when VIX ranges between, for example, 11.3 and 23.6, resulting in

a rejection of the CSPA null hypothesis.

We now summarize all testing results. Panel A of Table 4 reports the number of assets, out of

28, for which the one-versus-one CSPA null hypothesis is rejected for each benchmark-competitor

pair. These results are markedly different from those of the unconditional test (cf. Table 3), in that

the CSPA test, not surprisingly, yields many more rejections than its unconditional counterpart.

This is best illustrated by the case in which HARQ is the benchmark (see the fifth columns of Tables

and HAR as the competing alternative.
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Table 4: Conditional Superior Predicative Ability for Volatility Forecasts

Benchmark Methods

AR(1) AR(22) AR(22)

LASSO

HAR HARQ ARFIMA

Panel A: One-versus-one CSPA tests against different competing models

AR(1) 13 9 7 7 8

AR(22) 28 28 0 0 1

AR(22)+LASSO 27 15 4 4 9

HAR 28 23 28 3 7

HARQ 28 28 28 28 23

ARFIMA 28 27 28 27 13

Panel B: One-versus-all CSPA tests against all competing models

28 28 28 28 8 22

Note: Panel A (resp. B) reports the number of assets, out of 28, for which the one-versus-one

(resp. one-versus-all) CSPA null hypothesis is rejected at 5% significance level. Each column

corresponds to a different benchmark.

3 and 4): While the USPA null hypothesis is essentially never rejected, we see many rejections from

the CSPA test. In other words, although HARQ almost always outperforms the other competing

models on average, its dominance is sometimes not uniform. Indeed, HARQ’s close competitor,

ARFIMA, leads to 13 CSPA rejections, which can be contrasted with the 2 rejections from the

corresponding USPA test.

Another interesting, and somewhat surprising, finding from Table 4 concerns the conditional

performance of the simple AR(1). Looking at the large rejection numbers in the first column of

the table, we see clearly that AR(1) does not show any uniform superiority with respect to the

other methods. But from the first row of the table, which shows the results with AR(1) being the

competitor, we also see a nontrivial number of rejections, suggesting that the AR(1) model cannot

be easily dominated by the others uniformly across different states, either. This finding mirrors
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Figure 3: Forecasting Volatility: One-versus-all CSPA Tests
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Note: In the left (resp. right) panel, we plot the estimated conditional expected loss differential

functions, ĥj,n(·), using the AR(1) (resp. HARQ) model as the benchmark, and each of the

other five models as the competing alternative. We also plot their lower envelope (solid dark),

minj ĥj,n(·), along with its 95% upper confidence bound (dashed). The one-versus-all CSPA test

rejects the null hypothesis if the confidence bound is below zero over some region of the conditioning

state space.

the pattern seen in Figure 2: The AR(1) model, which has “short memory” and is fast-updating,

can outperform those with long memory during extremely volatile periods. The moral is, when

crisis hits, “amnesia” could be a bliss.

Panel B of Table 4 reports results from the one-versus-all CSPA tests. From here, we see more

clearly that HARQ reigns supreme in the conditional evaluation, albeit not uniformly dominating.

To provide further insight on the one-versus-all CSPA test, we make a visualization in Figure 3

for the case of Johnson & Johnson, where the left and right panels feature AR(1) and HARQ as

benchmarks, respectively. In each panel, we plot the estimated conditional expected loss differential

function for each competing alternative, their lower envelope, and the confidence bound of the

latter. The left panel shows a clear CSPA rejection of the AR(1) benchmark, mainly due to the

method’s severe underperformance in low-VIX states. On the right panel, we see that, compared

with HARQ, the best-performing competitor (which varies across different states) can reduce the

conditional expected loss slightly in some states, but the reduction is statistically insignificant.
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In sum, the application on volatility forecasting clearly highlights the usefulness of the CSPA

test. We intentionally emphasize how nonparametric tools can provide richer diagnostic informa-

tion regarding the state-dependent performance of different forecasting models, above and beyond

conventional unconditional evaluation methods. As a by-product, we show that the recently de-

veloped HARQ model performs well not only on average but, quite often, also uniformly across

different states. That being said, the stringent CSPA criterion reveals that HARQ still needs

improvement, and the search for uniformly superior volatility forecast should remain to be an

important, and challenging, task on financial econometricians’ research agenda.

5 Empirical application on inflation forecast

Our second application concerns inflation, which is notoriously difficult to forecast (Stock and Wat-

son (2010); Faust and Wright (2013)) as evidenced by the fact that over extended periods of time a

simple random walk forecast outperformed the official Greenbook inflation forecasts (Atkeson and

Ohanian (2001), Faust and Wright (2009)). Meanwhile, in various academic and commercial appli-

cations, machine-learning methods have increasingly shown their potential for improving classical

prediction methods. In a recent paper, Medeiros, Vasconcelos, Veiga, and Zilberman (2019) exper-

iment with a variety of machine-learning methods including shrinkage method and random forests,

among others. In this section, we apply the CSPA test to examine the conditional performance of

these forecasts, along with traditional ones. This is a particularly relevant application of the CSPA

test in a macroeconometric context in light of the considerable instability in the performance of

inflation forecasting models (Stock and Watson (2009, 2010)), which our test may serve to help

understand.

5.1 CSPA of inflation forecasts

We apply the CSPA test to evaluate eight inflation forecasting methods, which are selected from

those constructed by Medeiros, Vasconcelos, Veiga, and Zilberman (2019) for the one-month-

ahead forecast of Consumer Price Index (CPI).11 This collection includes four traditional methods:

random walk, AR(1), Bayesian vector-autoregression (BVAR), and a factor model. The other four

methods rely on machine-learning techniques, such as random-forest regression (RF-OLS), LASSO,

elastic net (ElNet), and bagging. Specifically, RF-OLS implements a standard linear regression

11We are grateful to Marcelo C. Medeiros for kindly providing their forecasts and data. The forecasts are con-

structed using a rolling window of 360 months. The estimation sample starts from January 1960 and is based on the

2016 vintage of the Fred-MD database (McCracken and Ng (2016)). For brevity, we refer the reader to Appendix B

of Medeiros, Vasconcelos, Veiga, and Zilberman (2019) for the complete description of their models.

30

Electronic copy available at: https://ssrn.com/abstract=3536461



based on variables selected by random forest (Breiman (2001)); LASSO is proposed by Tibshirani

(1996) and has been used in inflation forecasting by Bai and Ng (2008); ElNet combines the

classical ridge regression with the LASSO method (Zou and Hastie (2005)); Bagging, or bootstrap

aggregation (Breiman (1996)), is first used to forecast inflation by Inoue and Kilian (2008).12 The

evaluation sample period is between January 1990 and December 2015, consisting of 312 monthly

observations in total. All tests below are based on the quadratic loss function and are at the 5%

significance level.

When implementing the CSPA test on these inflation forecasts, it is a priori unclear which

conditioning state variable would be the most revealing, largely because of the intrinsic difficulty

in inflation forecasting and many potentially relevant macroeconomic variables. We thus consider

a number of important—and conceptually distinct—conditioning variables, including: average

inflation over the past three months (INFL), industrial production growth (∆IP), unemployment

rate (UR), 12-month macro uncertainty (MU), economic policy uncertainty (EPU), equity market

volatility (EMV), and VIX.13

Table 5 presents results of the USPA and CSPA tests. The first two columns summarize

the unconditional performance of the eight forecasting methods. The first column reports each

method’s relative mean-squared-error (RMSE), defined as the ratio between its average quadratic

loss and that of the random-walk forecast. Note that the methods are ordered according to their

RMSEs in the table. The second column shows the number of one-versus-one USPA rejections for

the method in each row (as the benchmark) against each one of the other seven methods (as the

competitor), and we use asterisks to signify rejections from one-versus-all tests. From here, we see

that the four machine-learning methods cannot be “separated” by the USPA test, in that the test

never rejects. That being said, it does provide strong statistical evidence for the underperformance

of the “traditional” models, such as AR(1).

We further turn to the CSPA test to examine the conditional performance of these methods,

particularly the ones based on machine learning. In columns 3–9, we present analogous rejection

numbers from the CSPA tests based on the aforementioned conditioning variables separately. For

ease of discussion, we also report the total number of rejections in the last column. As expected,

the conditional test indeed helps discriminating these forecast methods. The most striking finding

12These four methods are selected because they have the smallest average mean-square-errors among all 18 methods

studied by Medeiros, Vasconcelos, Veiga, and Zilberman (2019). In results not reported here, we instead analyze the

full list. But the larger-scale study does not change our main empirical findings.
13The INFL, ∆IP, and UR series are obtained from McCracken and Ng’s (2016) FRED-MD database. The MU

index is proposed by Jurado, Ludvigson, and Ng (2015). The EPU and EMV indexes are constructed by Baker,

Bloom, and Davis (2016).
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Table 5: USPA and CSPA Tests for Inflation Forecasts

CSPA

RMSE USPA INFL ∆IP UR MU EPU EMV VIX Total

RF-OLS 0.65 0 0* 2* 0 0* 0 0 0 2

ElNet 0.69 0 0 0* 0 2* 1 0 0 3

LASSO 0.69 0 1* 0* 0 2* 1* 0 0 4

Bagging 0.69 0 3 1* 1* 5* 3* 1 3* 17

BVAR 0.74 1* 1 0* 0 0* 3* 0 3* 7

Factor 0.76 3* 4* 3* 3* 5* 3* 3* 4* 25

AR(1) 0.81 3* 3* 3* 3* 4* 2 4* 3* 22

Random Walk 1.00 7* 6* 7* 7* 7* 7* 7* 7* 48

Note: The first column reports the relative mean-squared-error (RMSE) of each forecast method’s average

quadratic loss with respect to that of the random walk model. The second column reports the number

of times the one-versus-one USPA test rejects the benchmark in each row against each of the other seven

competing methods. The next seven columns present similar summary statistics for the CSPA tests using

the seven conditioning variables separately, with the total number of rejections shown in the last column.

For each of the entries, the * symbol signifies a one-versus-all rejection by the USPA or CSPA test.

Forecast methods are sorted based on their RMSEs displayed in the first column.

concerns the bagging method. Conditioning on the macroeconomic uncertainty index, the one-

versus-one CSPA test rejects the null hypothesis with the bagging benchmark against five (out of

seven) competing alternatives. Bagging’s total number of rejections reported in the last column

is also much higher than those of RF-OLS, ElNet, and LASSO. The performance of the RF-

OLS method is particularly impressive, in that it not only has the smallest average loss, but also

generally exhibits uniform conditional superiority as postulated by the CSPA null hypothesis.

Overall, the analysis above further demonstrates the usefulness of the CSPA test in a macroe-

conometric context. Unlike our previous application on volatility, this example presents a concrete

empirical scenario in which unconditional evaluation is completely silent on the relative perfor-

mance of certain forecasting methods, and the CSPA test—by imposing a more stringent uniform

requirement under the null—can be used to rule out seemingly indistinguishable methods.
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5.2 Additional diagnostic visualizations

The USPA test cannot distinguish RF-OLS, ElNet, LASSO, and bagging, but the CSPA test can

tell them apart. This is interesting particularly because the latter three methods have virtually

the same average loss, rendering any unconditional evaluation a fruitless effort. In this subsection,

we provide further diagnostic information for these forecasts so as to better understand their

differential state-dependent performances.

To do so, we visualize one-versus-one CSPA tests in Figure 4, where the top, middle, and bottom

panels corresponds to cases with ElNet, LASSO, and bagging as the benchmark, respectively.

The competing alternative method is fixed to be RF-OLS. For brevity, we focus on only two

conditioning state variables: the average inflation of the past three months INFL (left column),

and the macroeconomic uncertainty index MU (right column). In each case, we plot the conditional

expectation function of the loss differential and the 95% upper confidence bound.

Looking at the left column, we see that when INFL is the conditioning variable, RF-OLS’s

conditional expected loss is generally lower than ElNet, LASSO, and bagging. This difference is

marginally insignificant for the ElNet benchmark, but is significant at the 5% level for LASSO and

bagging, for which the rejections occur around states with INFL ≈ 2%.

Using MU as the conditioning variable reveals a quite different, and perhaps more interest-

ing, pattern. While all three benchmarks are rejected, the underlying reasons are different. On

one hand, ElNet and LASSO behave quite similarly, as they both underperform RF-OLS in low-

uncertainty states, and outperform the latter in high-uncertainty states. These shrinkage-based

methods are rejected mainly due to their inaccuracy at low-uncertainty times. On the other hand,

bagging appears to be uniformly dominated by the random-forest methods across all states. In con-

trast to ElNet and LASSO, bagging’s underperformance mostly stems from the high-uncertainty

states. This finding provides some empirical validation for the concern that some machine learn-

ing techniques may over-fit the data during “normal times,” but behave poorly in rare—but

important—economic environments that are not seen in the training sample. The CSPA test,

and conditional tests in general, is useful to shed light on this issue.

6 Conclusion

Motivated by the ever-increasing variety of forecasting methods in many areas of research, we

introduce a new test for conditional superior predictive accuracy, or CSPA. This test examines

the conditional state-dependent performance of competing forecast methods, and imposes a more

stringent uniform weak dominance requirement on the benchmark. Two empirical applications
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Figure 4: Forecasting Inflation: One-versus-one CSPA Tests
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Note: This figure plots the conditional expected loss differential functions ĥj,n(·) (solid) with

lagged inflation (INFL) and macro uncertainty (MU) as the conditioning state variable on the left

and right columns, respectively. Elastic Net, LASSO, and bagging methods are used separately

as benchmark models, and the competing alternative model is fixed to be RF-OLS. The one-

versus-one CSPA test rejects the null hypothesis at 5% significance level if some part of the 95%

upper confidence bound (dashed) is below zero.
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from financial and macroeconomic settings demonstrate the discriminating power of the CSPA

test relative to its conventional unconditional counterpart. Econometrically, this is achieved by

introducing and extending recently developed theoretical tools for the uniform nonparametric in-

ference in the time-series setting, as CSPA concerns functional inequalities defined by conditional

expected loss differentials. To the best of our knowledge, this is the first application of conditional-

moment-inequality methods in time-series econometrics, and the theoretical tools developed here

are broadly useful for other types of inference problems involving partial identification and depen-

dent data.
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A Proofs

In this appendix, we prove the theoretical results in the main text. To highlight our new technical

contributions, we demonstrate the main steps of our proofs here, and relegate additional technical

details to the Supplemental Appendix. Throughout this appendix, we use K to denote a generic

positive finite constant, which may vary from line to line.

A.1 Proof of Proposition 1

The proof of Proposition 1 shares some similar steps with Chernozhukov, Lee, and Rosen’s (2013)

proofs of their Theorem 2 and Lemma 5. To avoid repetition, we only highlight the key difference

here and provide a detailed step-by-step proof in the Supplemental Appendix. An important

difference stems from the fact that we rely on a strong approximation condition in the form of

Assumption 3, instead of the (stronger) Yurinskii-type coupling used in Lemma 5 of Chernozhukov,

Lee, and Rosen (2013), which in turn is needed to verify their high-level Condition C.2 for the

uniform strong approximation of the t-statistic process. A key step of our analysis is to establish

Theorem A1 below. We denote

σj,n (x) ≡
√
P (x)>Q−1n An (j, j)Q−1n P (x),

where An (j, j) is the jth mn ×mn diagonal block of the matrix An. For two random variables X

and Y , we write X
d
= Y if they have the same distribution.

Theorem A1. Let Vn be any subset of V = { (j, x) : 1 ≤ j ≤ J and x ∈ X} and Ñn be a generic

sequence of random variables such that Ñn ∼ N (0, An). Suppose that Assumptions 2 and 3 hold.

Then, there exist random sequences Ũ1,n, Ũ2,n, and Ũ3,n such that

Ũ1,n
d
= Ũ2,n

d
= sup

(j,x)∈Vn

P (x)>Q−1n
σj,n(x)

Ñj,n, Ũ3,n
d
= sup

(j,x)∈Vn

∣∣∣∣∣P (x)>Q−1n
σj,n(x)

Ñj,n

∣∣∣∣∣ ,
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and

sup
(j,x)∈Vn

n1/2(ĥj,n(x)− hj (x))

σj,n(x)
− Ũ1,n = op

(
(log n)−1

)
,

sup
(j,x)∈Vn

n1/2(hj(x)− ĥj,n (x))

σj,n(x)
− Ũ2,n = op

(
(log n)−1

)
,

sup
(j,x)∈Vn

∣∣∣∣∣n1/2(hj(x)− ĥj,n (x))

σj,n(x)

∣∣∣∣∣− Ũ3,n = op
(
(log n)−1

)
,

where Ñj,n is the mn-dimensional subvector defined implicitly by the partition Ñ>n = (Ñ>1,n, . . . , Ñ
>
J,n).

Proof. Step 1. In this step, we show that

sup
(j,x)∈V

∣∣∣∣∣n1/2(ĥj,n (x)− hj(x))

σj,n(x)
− P (x)>Q−1n

σj,n(x)
n−1/2

n∑
t=1

P (Xt)uj,t

∣∣∣∣∣ = op
(
(log n)−1

)
. (A.1)

Denote h∗j,n(·) = P (·)> b∗j,n, with b∗j,n given by Assumption 2. By Assumption 2, σj,n (·) is bounded

away from zero. We then deduce that

sup
(j,x)∈V

∣∣∣∣∣n1/2(hj(x)− h∗j,n(x))

σj,n(x)

∣∣∣∣∣ ≤ K sup
(j,x)∈V

∣∣∣n1/2(hj(x)− h∗j,n(x))
∣∣∣ = op

(
(log n)−1

)
. (A.2)

Observe that

b̂j,n − b∗j,n = Q̂−1n

(
n−1

n∑
t=1

P (Xt)uj,t + n−1
n∑
t=1

P (Xt) (hj(Xt)− h∗j,n(Xt))

)
. (A.3)

Therefore, by the triangle inequality and the Cauchy–Schwarz inequality, we have uniformly in x,∣∣∣∣∣n1/2(ĥj,n (x)− h∗j,n(x))

σj,n(x)
− P (x)>Q−1n

σj,n(x)
n−1/2

n∑
t=1

P (Xt)uj,t

∣∣∣∣∣
≤

∣∣∣∣∣P (x)> (Q̂−1n −Q−1n )

σj,n(x)
n−1/2

n∑
t=1

P (Xt)uj,t

∣∣∣∣∣
+

∣∣∣∣∣P (x)> Q̂−1n
σj,n(x)

n−1/2
n∑
t=1

P (Xt) (hj(Xt)− h∗j,n(Xt))

∣∣∣∣∣
≤ K

∥∥∥Q̂−1n −Q−1n ∥∥∥
S

∥∥∥∥∥n−1/2
n∑
t=1

P (Xt)uj,t

∥∥∥∥∥
+K

∥∥∥∥∥Q̂−1n n−1/2
n∑
t=1

P (Xt) (hj(Xt)− h∗j,n(Xt))

∥∥∥∥∥ . (A.4)

It is easy to see that ‖n−1/2
∑n

t=1 P (Xt)uj,t‖ = Op(m
1/2
n ). Then, by Assumption 2,∥∥∥Q̂−1n −Q−1n ∥∥∥

S

∥∥∥∥∥n−1/2
n∑
t=1

P (Xt)uj,t

∥∥∥∥∥ = Op

(
δQ,nm

1/2
n

)
= op

(
(log n)−1

)
. (A.5)
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In addition, we note that∥∥∥∥∥Q̂−1n n−1/2
n∑
t=1

P (Xt) (hj(Xt)− h∗j,n(Xt))

∥∥∥∥∥
2

≤ Op (1)
n∑
t=1

(
hj(Xt)− h∗j,n(Xt)

)2
= op

(
(log n)−2

)
. (A.6)

By (A.5) and (A.6), the majorant side of (A.4) can be further bounded by op((log n)−1). This

estimate and (A.2) imply (A.1) as claimed.

Step 2. Recall that ζLn is the Lipschitz coefficient for the P (·) function. By the triangle

inequality and the Cauchy–Schwarz inequality, we have uniformly for x1, x2 ∈ X ,

|σj,n(x1)− σj,n (x2)| =

∣∣∣σ2j,n(x1)− σ2j,n (x2)
∣∣∣

σj,n(x1) + σj,n (x2)
≤ KζLn ‖x1 − x2‖ . (A.7)

We then observe, for any j ∈ {1, . . . , J} and x1, x2 ∈ X ,∣∣∣∣∣
(
P (x1)

σj,n(x1)
− P (x2)

σj,n(x2)

)>
Q−1n n−1/2

n∑
t=1

P (Xt)uj,t

∣∣∣∣∣
≤ ‖P (x1)− P (x2)‖

∥∥Q−1n n−1/2
∑n

t=1 P (Xt)uj,t
∥∥

σj,n(x1)

+
|σj,n(x1)− σj,n (x2)|

σj,n(x1)

‖P (x2)‖
σj,n(x2)

∥∥∥∥∥Q−1n n−1/2
n∑
t=1

P (Xt)uj,t

∥∥∥∥∥
≤ KζLn ‖x1 − x2‖

∥∥∥∥∥Q−1n n−1/2
n∑
t=1

P (Xt)uj,t

∥∥∥∥∥ , (A.8)

where the first inequality is by the triangle inequality and the Cauchy–Schwarz inequality, and the

second inequality follows from (A.7).

Let εn ≡ ((log n)2m
1/2
n ζLn )−1. Since X is compact, there exists a set of points {xi}Kn

i=1 ⊆ X
with Kn = O(ε−dxn ) such that each x ∈ X can be matched with some xi satisfying ‖x− xi‖ ≤ εn.

For each of such matched pairs, {x, xi}, (A.8) implies∣∣∣∣∣
(
P (x)>

σj,n(x)
− P (xi)

>

σj,n(xi)

)
Q−1n n−1/2

n∑
t=1

P (Xt)uj,t

∣∣∣∣∣
≤ KζLn ‖x− xi‖

∥∥∥∥∥Q−1n n−1/2
n∑
t=1

P (Xt)uj,t

∥∥∥∥∥
≤ K(log n)−2m−1/2n

∥∥∥∥∥Q−1n n−1/2
n∑
t=1

P (Xt)uj,t

∥∥∥∥∥ . (A.9)

In addition, we associate with the set Vn a finite subset Ṽn ⊆ {1, . . . , J} × X defined as

Ṽn = {(j, x̃) : x̃ ∈ {xi}1≤i≤Kn and ‖x̃− x‖ ≤ εn for some x such that (j, x) ∈ Vn}.
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By (A.9), we deduce∣∣∣∣∣ sup
(j,x)∈Vn

P (x)>Q−1n
σj,n(x)

n−1/2
n∑
t=1

P (Xt)uj,t − max
(j,x)∈Ṽn

P (x)>Q−1n
σj,n(x)

n−1/2
n∑
t=1

P (Xt)uj,t

∣∣∣∣∣
≤ K (log n)−2m−1/2n max

1≤j≤J

∥∥∥∥∥Q−1n n−1/2
n∑
t=1

P (Xt)uj,t

∥∥∥∥∥ = op
(
(log n)−1

)
, (A.10)

where the op(·) statement follows from ‖Q−1n n−1/2
∑n

t=1 P (Xt)uj,t‖ = Op(m
1/2
n ).

Define Ln as the cardinality of Ṽn. Consider a generic Jmn-vector z =
(
z>1 , . . . , z

>
J

)>
with each

zj component being mn-dimensional. It is easy to see that we can find Jmn-vectors αl, 1 ≤ l ≤ Ln,

such that for all z,

max
1≤l≤Ln

α>l z = max
(j,x)∈Ṽn

P (x)>Q−1n zj
σj,n(x)

,

and

sup
1≤l≤Ln

‖αl‖ ≤ sup
(j,x)∈V

∥∥∥∥P (x)Q−1n
σj,n (x)

∥∥∥∥ ≤ K.
Note that Ln = O (Kn) = O(ε−dxn ) satisfies the requirement in Assumption 3, which implies the

existence of a random sequence Ũn satisfying Ũn
d
= max1≤l≤Ln α

>
l Ñn and∣∣∣∣∣ max

1≤l≤Ln

α>l

(
n−1/2

n∑
t=1

ut ⊗ P (Xt)

)
− Ũn

∣∣∣∣∣ = op
(
(log n)−1

)
. (A.11)

By the definition of αl, we can rewrite (A.11) as∣∣∣∣∣ max
(j,x)∈Ṽn

P (x)>Q−1n
σj,n(x)

n−1/2
n∑
t=1

P (Xt)uj,t − Ũn

∣∣∣∣∣ = op
(
(log n)−1

)
, (A.12)

and also note that

Ũn
d
= max

(j,x)∈Ṽn

P (x)>Q−1n
σj,n(x)

Ñj,n. (A.13)

Following the same argument leading to (A.10), we can also show that∣∣∣∣∣ sup
(j,x)∈Vn

P (x)>Q−1n
σj,n(x)

Ñj,n − max
(j,x)∈Ṽn

P (x)>Q−1n
σj,n(x)

Ñj,n

∣∣∣∣∣ = op
(
(log n)−1

)
. (A.14)

By (A.13), (A.14), and Lemma 9 in Chernozhukov, Lee, and Rosen (2013), there exists another

random sequence Ũ1,n such that

Ũ1,n
d
= sup

(j,x)∈Vn

P (x)>Q−1n
σj,n(x)

Ñj,n, Ũn − Ũ1,n = op
(
(log n)−1

)
. (A.15)
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From (A.10), (A.12), and (A.15), we further deduce∣∣∣∣∣ sup
(j,x)∈Vn

P (x)>Q−1n
σj,n(x)

n−1/2
n∑
t=1

P (Xt)uj,t − Ũ1,n

∣∣∣∣∣ = op
(
(log n)−1

)
. (A.16)

The assertion of the lemma concerning Ũ1,n then follows from (A.1) and (A.16).

Applying the same arguments with (αl)1≤l≤Ln replaced by (−αl)1≤l≤Ln
and (αl,−αl)1≤l≤Ln ,

we can prove the other two assertions of the lemma, respectively. �

Proof of Proposition 1. We prove this proposition by adapting Chernozhukov, Lee, and

Rosen’s (2013) proof of their Theorem 2. The main change is to use the three types of coupling

results in Theorem A1 in place of Chernozhukov, Lee, and Rosen’s Condition C.2 for coupling the

entire t-statistic process. To avoid repetition, we relegate the (somewhat tedious) details to the

Supplemental Appendix. �

A.2 Proofs of Theorem 1 and Corollary 1

The proof consists of several steps. In the first step (see Lemma A1), we approximate the se-

quence max1≤l≤Ln α
>
l S
∗
n with max1≤l≤Ln α

>
l S

+
n , where S+

n is constructed as a martingale with its

predictable quadratic covariation being equal to the deterministic matrix

Σ∗n ≡
n∑
t=1

E
[
V ∗n,t

]
.

In the second step (see Lemma A2), we establish a coupling for max1≤l≤Ln α
>
l S

+
n using Lindeberg’s

method and Strassen’s theorem, for which the fact that Σ∗n is deterministic is crucial. These

approximation results can then be used to construct the coupling for the original max1≤l≤Ln α
>
l Sn

statistic.

We start with constructing the aforementioned martingale S+
n . The construction is based on

the same scheme as in Li and Liao (2019), which we recall as follows. Consider the following

stopping time:

τn ≡ max

{
t ∈ {1, . . . , n} : Σ∗n −

t∑
s=1

V ∗n,s is positive semi-definite

}
,

with the convention that max ∅ = 0. Note that τn is a stopping time because V ∗n,t is Fn,t−1-
measurable for each t and Σ∗n is nonrandom. The matrix

Ξn ≡


Σ∗n when τn = 0,

Σ∗n −
∑τn

t=1 V
∗
n,s when τn ≥ 1,
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is positive semi-definite by construction.

Let kn be a sequence of integers such that kn → ∞ and let (ηn,t)n+1≤t≤n+kn be indepen-

dent Mn-dimensional standard normal vectors. We construct another martingale difference array

(Zn,t,Hn,t)1≤t≤n+kn as follows:

Zn,t ≡


n−1/2X∗n,t1{t≤τn} when 1 ≤ t ≤ n,

k
−1/2
n Ξ

1/2
n ηn,t when n+ 1 ≤ t ≤ n+ kn,

and the filtration is given by

Hn,t ≡


Fn,t when 1 ≤ t ≤ n,

Fn,n ∨ σ(ηn,s : s ≤ t) when n+ 1 ≤ t ≤ n+ kn.

Since τn is a stopping time, it is easy to verify that (Zn,t,Hn,t)1≤t≤n+kn indeed forms a martingale

difference array. We denote

V +
n,t ≡ E

[
Zn,tZ

>
n,t

∣∣∣Hn,t−1] (A.17)

and set

S+
n ≡

n+kn∑
t=1

Zn,t. (A.18)

Note that the predictable quadratic covariation matrix of S+
n is exactly Σ∗n, that is,

n+kn∑
t=1

V +
n,t =

τn∑
t=1

V ∗n,t + Ξn = Σ∗n. (A.19)

The approximation error between max1≤l≤Ln α
>
l S
∗
n and max1≤l≤Ln α

>
l S

+
n is quantified by Lemma

A1, below. We recall from Theorem 1 that B2,n is defined as

B2,n ≡ min

{
L1/q
n max

l,t
‖α>l X∗n,t‖q,M1/2

n

}
+ (logLn)1/2.

Lemma A1. Under Assumption 4,
∣∣max1≤l≤Ln α

>
l S
∗
n −max1≤l≤Ln α

>
l S

+
n

∣∣ = Op(B2,nr
1/2
n ).

Proof. See the Supplemental Appendix. �

In the next step, we construct a sequence of Gaussian random vectors S̃∗n ∼ N (0,Σ∗n) such

that the distribution of max1≤l≤Ln α
>S̃∗n is “close” to that of max1≤l≤Ln α

>
l S

+
n in the sense stated

by Lemma A2 below. Specifically, let (ζn,t)1≤t≤n+kn be independent Mn-dimensional standard

normal vectors that are also independent of Hn,n+kn , and then set

S̃∗n ≡
n+kn∑
t=1

ζ̃n,t, where ζ̃n,t ≡ (V +
n,t)

1/2ζn,t.
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By (A.19), S̃∗n ∼ N (0,Σ∗n). The next lemma quantifies the difference between the distributions

of max1≤l≤Ln α
>
l S

+
n and max1≤l≤Ln α

>
l S̃
∗
n. Below, for any Borel subset A ⊆ R and any constant

δ > 0, we denote the δ-enlargement of A by Aδ, that is,

Aδ ≡
{
x ∈ R : inf

y∈A
‖x− y‖ ≤ δ

}
.

We remind the reader that the B1,n sequence is defined in Theorem 1.

Lemma A2. Suppose that Assumption 4 holds and kn ≥ (logLn)3B−21,n. Then, for each C > 5,

P
(

max
1≤l≤Ln

α>l S
+
n ∈ A

)
≤ P

(
max

1≤l≤Ln

α>S̃∗n ∈ A
CB

1/3
1,n (logLn)2/3

)
+ εn (C) ,

where εn (C) is a real sequence satisfying supn≥1 εn (C)→ 0 as C →∞.

Proof. See the Supplemental Appendix. �

We are now ready to prove Theorem 1 and its corollary.

Proof of Theorem 1. Since B
1/3
1,n (logLn)2/3 = o((log n)−1) by assumption, we can find a real

sequence Cn →∞ such that

CnB
1/3
1,n (logLn)2/3 = o((log n)−1).

By Lemma A2 (for which the condition on kn can be trivially verified by taking kn sufficiently

large), we have for each n ≥ 1,

P
(

max
1≤l≤Ln

α>l S
+
n ∈ A

)
≤ P

(
max

1≤l≤Ln

α>S̃∗n ∈ A
CnB

1/3
1,n (logLn)2/3

)
+ εn (Cn) .

By Strassen’s theorem, for each n, we can construct a random variable Ũ∗n such that Ũ∗n
d
=

max1≤l≤Ln α
>S̃∗n and

P
(∣∣∣∣ max

1≤l≤Ln

α>l S
+
n − Ũ∗n

∣∣∣∣ > o((log n)−1)

)
≤ εn (Cn) .

Since εn (Cn)→ 0, we deduce from the above estimate that

max
1≤l≤Ln

α>l S
+
n − Ũ∗n = op

(
(log n)−1

)
.

By Lemma A1, we further have

max
1≤l≤Ln

α>l S
∗
n − Ũ∗n = op

(
(log n)−1

)
. (A.20)
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Let S̃n ≡ (Σn)1/2(Σ∗n)−1/2S̃∗n. Note that S̃n ∼ N (0,Σn). By definition,

α>l S̃n − α>l S̃∗n = α>l ((Σn)1/2 − (Σ∗n)1/2)(Σ∗n)−1/2S̃∗n

where (Σ∗n)−1/2S̃∗n is a standard normal random vector. By the triangle inequality,∣∣∣∣ max
1≤l≤Ln

α>l S̃n − max
1≤l≤Ln

α>l S̃
∗
n

∣∣∣∣ ≤ max
1≤l≤Ln

∣∣∣α>l S̃n − α>l S̃∗n∣∣∣ .
With an appeal to the maximum inequality, we deduce

E
[

max
1≤l≤Ln

∣∣∣α>l S̃n − α>l S̃∗n∣∣∣] ≤ K(logLn)1/2 max
1≤l≤Ln

∥∥∥α>l ((Σn)1/2 − (Σ∗n)1/2)
∥∥∥

≤ K(logLn)1/2 ‖Σn − Σ∗n‖S
= O((logLn)1/2c̄nM

1/2
n n−1/2),

where the last line is by (A.79) in the Supplemental Appendix of Li and Liao (2019). Combining

the above estimates, we have∣∣∣∣ max
1≤l≤Ln

α>l S̃n − max
1≤l≤Ln

α>l S̃
∗
n

∣∣∣∣ = Op

(
(logLn)1/2c̄nM

1/2
n n−1/2

)
= op

(
(log n)−1

)
.

By this estimate and Lemma 9 in Chernozhukov, Lee, and Rosen (2013), we can construct another

random sequence Ũn such that

Ũn
d
= max

1≤l≤Ln

α>l S̃n, Ũn − Ũ∗n = op
(
(log n)−1

)
. (A.21)

The assertion of the theorem then follows from Assumption 4(i), (A.20), and (A.21). �

Proof of Corollary 1. The proof is done by verifying the conditions of Theorem 1. Since V ∗n,t

is deterministic, we can set

rn = 0. (A.22)

By the boundedness of (αl) and the Cauchy–Schwarz inequality,
∣∣α>l X∗n,t∣∣ ≤ K ∥∥X∗n,t∥∥. Hence,

max
1≤l≤Ln

(
E
[
(α>l X

∗
n,t)

2|Fn,t−1
])3/2

≤ K
(
E
[∥∥X∗n,t∥∥2 |Fn,t−1])3/2

≤ KE
[∥∥X∗n,t∥∥3 |Fn,t−1] ,

where the second inequality is by Jensen’s inequality. It is then easy to see that

B1,n ≡ n−3/2
n∑
t=1

E
[
(logLn)3/2 max

1≤l≤Ln

(
E
[
(α>l X

∗
n,t)

2|Fn,t−1
])3/2

+ max
1≤l≤Ln

|α>l X∗n,t|3
]

≤ Kn−3/2
n∑
t=1

(
(logLn)3/2 + 1

)
E
[∥∥X∗n,t∥∥3] ≤ Kc̄3n (logLn)3/2 n−1/2M3/2

n .
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Therefore,

B
1/3
1,n (logMn)2/3 ≤ Kc̄n (logLn)1/2 (logMn)2/3M1/2

n n−1/6.

Since Mn and Ln both have polynomial growth in n, logLn = O(log n) and logMn = O(log n).

Therefore,

B
1/3
1,n (logMn)2/3 = o

(
(log n)2n

a
2
− 1

6

)
= o((log n)−1). (A.23)

By a similar argument, it is easy to see that

c̄n(logLn)1/2M1/2
n n−1/2 = o((log n)−1). (A.24)

With (A.22), (A.23), and (A.24), we readily verify the conditions of Theorem 1, which finishes the

proof of this corollary. �
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SA Detailed proof of Proposition 1

In this section, we provide a detailed proof for Proposition 1 in the main text. Section SA.1

introduces some notation and preliminary technical results. Section SA.2 presents the proof of

that proposition.

SA.1 Notation and preliminary results

We need several technical lemmas. The first lemma concerns the uniform convergence rate of the

estimator of the standard error function. We recall that

V ≡ { (j, x) : 1 ≤ j ≤ J and x ∈ X}

and

σj,n (x) ≡
√
P (x)>Q−1n An (j, j)Q−1n P (x),

where An (j, j) is the jth mn ×mn diagonal block of An.

Lemma SA1. Under Assumptions 1 and 2, we have

sup
(j,x)∈V

∣∣∣∣σj,n (x)

σ̂j,n(x)
− 1

∣∣∣∣ = Op(δQ,n + δA,n).

Proof. Denote Ωn (j, j) = Q−1n An (j, j)Q−1n . By definition,

Ω̂n (j, j)− Ωn (j, j) = Q̂−1n Ân(j, j)Q̂−1n −Q−1n An(j, j)Q−1n

= (Q̂−1n −Q−1n )Ân(j, j)Q̂−1n

+Q−1n (Ân(j, j)−An(j, j))Q̂−1n +Q−1n An(j, j)(Q̂−1n −Q−1n ).

Under the maintained assumptions, the eigenvalues of Qn, An, Q̂n, and Ân are bounded from

above and away from zero in probability. Hence, by the triangle inequality and the Cauchy–

Schwarz inequality, we have uniformly in x,∣∣σ̂2j,n (x)− σ2j,n(x)
∣∣ =

∣∣∣P (x)> (Ω̂n (j, j)− Ωn (j, j))P (x)
∣∣∣

≤ Op(1) ‖P (x)‖2 (‖Q̂n −Qn‖S + ‖Ân −An‖S).

We then deduce that, uniformly in (j, x),∣∣∣σ̂2j,n (x)− σ2j,n(x)
∣∣∣

σ̂2j,n(x)
≤ Op(1) · (‖Q̂n −Qn‖S + ‖Ân −An‖S) = Op(δQ,n + δA,n),

and hence, ∣∣∣∣σj,n (x)

σ̂j,n(x)
− 1

∣∣∣∣ ≤
∣∣∣σ̂2j,n (x)− σ2j,n(x)

∣∣∣
σ̂2j,n(x)

= Op(δQ,n + δA,n).
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This finishes the proof. �

To state Lemma SA2, we introduce a selection operator. We partition a Jmn-dimensional

vector z as z =
(
z>1 , . . . , z

>
J

)>
, where each zj is mn-dimensional. The selection operator [ · ]j is

defined as

[z]j = zj for each j ∈ {1, . . . , J}. (SA.1)

Lemma SA2. Let Dn denote the σ-field generated by the data and

Ωn ≡ (IJ ⊗Qn)−1An (IJ ⊗Qn)−1 .

Under Assumptions 1 and 2, we have

P

 sup
(j,x)∈V

∣∣∣∣∣∣∣
P (x)>

[
Ω̂
1/2
n ξn

]
j

σ̂j,n (x)
−
P (x)>

[
Ω
1/2
n ξn

]
j

σj,n(x)

∣∣∣∣∣∣∣ > (log n)−3/2

∣∣∣∣∣∣∣Dn
 = op(1),

where ξn is a Jmn-dimensional standard Gaussian random vector independent of Dn.

Proof. By Assumptions 1 and 2, we have∥∥∥Ω̂n − Ωn

∥∥∥
S
≤

∥∥∥(Q̂−1n −Q−1n )ÂnQ̂
−1
n

∥∥∥
S

+
∥∥∥Q−1n (Ân −An)Q̂−1n

∥∥∥
S

+
∥∥∥Q−1n An(Q̂−1n −Q−1n )

∥∥∥
S

= Op(δQ,n + δA,n).

We can then use the same argument as in the proof of Lemma 5 in Chernozhukov, Lee, and Rosen

(2013) to get

P

 sup
(j,x)∈V

∣∣∣∣∣∣∣
P (x)>

[
Ω̂
1/2
n ξn

]
j

σ̂j,n (x)
−
P (x)>

[
Ω
1/2
n ξn

]
j

σj,n(x)

∣∣∣∣∣∣∣ > (log n)−3/2

∣∣∣∣∣∣∣Dn
 = Op((δQ,n + δA,n)(log n)2).

Since both δQ,n and δA,n vanish at polynomial rates (as n → ∞) by assumption, the assertion of

the lemma readily follows from the estimate above. �

We now need some additional notation. Consider a generic sequence of Gaussian vectors

Ñn ∼ N (0, An) and set Ñj,n = [Ñn]j ; recall that the selection operator [ · ]j is defined in (SA.1).

For each subset V ⊆ V, we denote

κn,V (q) ≡ the q-quantile of sup
(j,x)∈V

P (x)>Q−1n
σj,n(x)

Ñj,n.

Recall the definition of γ̃n from Algorithm 1 and pick a sequence γn such that γ̃n ≥ γn ≥
γ̃n − o(1). We then set

Vn ≡
{

(j, x) ∈ V : hj(x) ≤ η∗ + n−1/2κnσj,n(x)
}
, where κn ≡ κn,V (γn) .

3
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Denote for each (j, x) ∈ V,

Zj,n (x) ≡
n1/2

(
hj (x)− ĥj,n (x)

)
σj,n (x)

.

Applying Theorem A1 for Vn = Vn or V, we can find random sequences Ũ ′1,n, Ũ2,n, Ũ ′2,n, and Ũ ′3,n

such that

Ũ ′1,n
d
= sup

(j,x)∈V

P (x)>Q−1n
σj,n(x)

Ñj,n, sup
(j,x)∈V

(−Zj,n (x))− Ũ ′1,n = op
(
(log n)−1

)
,

Ũ2,n
d
= sup

(j,x)∈Vn

P (x)>Q−1n
σj,n(x)

Ñj,n, sup
(j,x)∈Vn

Zj,n (x)− Ũ2,n = op
(
(log n)−1

)
,

Ũ ′2,n
d
= sup

(j,x)∈V

P (x)>Q−1n
σj,n(x)

Ñj,n, sup
(j,x)∈V

Zj,n (x)− Ũ ′2,n = op
(
(log n)−1

)
,

Ũ ′3,n
d
= sup

(j,x)∈V

∣∣∣∣∣P (x)>Q−1n
σj,n(x)

Ñj,n

∣∣∣∣∣ , sup
(j,x)∈V

|Zj,n (x)| − Ũ ′3,n = op
(
(log n)−1

)
.

(SA.2)

We note that κn,Vn (q) is the q-quantile of Ũ2,n and κn is the γn-quantile of Ũ ′1,n and Ũ ′2,n.

Lemma SA3. Under Assumptions 1, 2, and 3, we have

P

(
sup

(j,x)∈V

n1/2(η∗ − ĥj,n (x))

σ̂j,n (x)
≤ z

)
≥ P

(
Ũ2,n ≤ z

)
− o(1),

uniformly over z ∈ [0,∞).

Proof. Step 1. We collect some technical estimates in this step. By (SA.2),
η̃n ≡

∣∣∣∣∣ sup
(j,x)∈Vn

Zj,n (x)− Ũ2,n

∣∣∣∣∣ = op
(
(log n)−1

)
,

η̃′n ≡

∣∣∣∣∣ sup
(j,x)∈V

Zj,n (x) − Ũ ′2,n

∣∣∣∣∣ = op
(
(log n)−1

)
.

(SA.3)

We set

Rn ≡ sup
(j,x)∈V

{∣∣∣∣ σj,n(x)

σ̂j,n (x)
− 1

∣∣∣∣ (|Zj,n(x)|+ κn)

}
.

By Lemma SA1,

sup
(j,x)∈V

∣∣∣∣ σj,n(x)

σ̂j,n (x)
− 1

∣∣∣∣ = Op (δQ,n + δA,n) = op
(
(log n)−1

)
.

Moreover, by the fourth line of (SA.2) and a maximal inequality for Gaussian processes,

sup
(j,x)∈V

|Zj,n(x)| = Ũ ′3,n + op (1) = Op

(
(log n)1/2

)
.

4
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Since κn = O((log n)1/2), we can combine these estimates to deduce that

Rn = op

(
(log n)−1/2

)
. (SA.4)

Step 2. By the same argument as in the proof of Lemma 1 of Chernozhukov, Lee, and Rosen

(2013), we obtain

sup
(j,x)∈V

n1/2(η∗ − ĥj,n (x))

σ̂j,n (x)
≤ sup

(j,x)∈Vn

{
σj,n(x)

σ̂j,n (x)
Zj,n(x)

}
∨ sup

(j,x)/∈Vn

{
σj,n(x)

σ̂j,n (x)
(Zj,n(x)− κn)

}
.

The two terms on the right-hand side of the above inequality can be further bounded as

sup
(j,x)∈Vn

{
σj,n(x)

σ̂j,n (x)
Zj,n(x)

}
≤ Ũ2,n +Rn + η̃n,

sup
(j,x)/∈Vn

{
σj,n(x)

σ̂j,n (x)
(Zj,n(x)− κn)

}
≤ Ũ ′2,n − κn +Rn + η̃′n.

Hence, by (SA.3) and (SA.4),

sup
(j,x)∈V

n1/2(η∗ − ĥj,n (x))

σ̂j,n (x)
≤ Ũ2,n ∨

(
Ũ ′2,n − κn

)
+ op

(
(log n)−1/2

)
.

Consequently, uniformly in z,

P

(
sup

(j,x)∈V

n1/2(η∗ − ĥj,n (x))

σ̂j,n (x)
> z

)
≤ P

(
Ũ2,n + op

(
(log n)−1/2

)
> z
)

+ P
(
Ũ ′2,n − κn + op

(
(log n)−1/2

)
> 0
)

≤ P
(
Ũ2,n > z

)
+ P

(
Ũ ′2,n > κn

)
+ o(1)

≤ P
(
Ũ2,n > z

)
+ o(1).

where the last two lines follows from the anti-concentration inequality for Gaussian processes and

the fact that κn is the γn-quantile of Ũ ′2,n with γn → 1. �

Lemma SA4. Under Assumptions 1, 2, and 3, P(Vn ⊆ V̂n)→ 1.

Proof. Similar to the proof of Lemma 2 in Chernozhukov, Lee, and Rosen (2013), it is easy to

show that

P
(
Vn ⊆ V̂n

)
≥ p1,n − p2,n, (SA.5)

where

p1,n ≡ P

(
n1/2(ĥj,n (x)− hj,n (x))

σ̂j,n (x)
≤ 2K̂n − κn

σj,n(x)

σ̂j,n (x)
, for all (j, x) ∈ Vn

)
,

p2,n ≡ P

 sup
(j,x)∈V

n1/2
(
η∗ − ĥj,n (x)

)
σ̂j,n (x)

> K̂n

 .

5
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By Lemma SA2 and Chernozhukov, Lee, and Rosen’s (2013) Lemma 11, there exists a positive

real sequence βn = o(1) such that with probability approaching 1,

K̂n ≥ κn,V (γ̃n − βn)− o
(
(log n)−1

)
. (SA.6)

Since γ̃n → 1, we can assume that γ̃n > 1/2 without loss of generality, which implies K̂n ≥ 0.

Since κn,V(q) ≥ κn,Vn (q) for any q ∈ (0, 1), we also have

K̂n ≥ max
{
κn,Vn (γ̃n − βn)− o

(
(log n)−1

)
, 0
}
. (SA.7)

Since κn = O((log n)1/2), by Lemma SA1, we have

κn sup
(j,x)∈V

∣∣∣∣ σj,n(x)

σ̂j,n (x)
− 1

∣∣∣∣ = op
(
(log n)−1

)
.

Combined with (SA.6), this estimate implies that with probability approaching 1, for γn = γ̃n−2βn,

2K̂n − κn
σj,n(x)

σ̂j,n (x)
≥ 2κn,V (γ̃n − βn)− κn,V (γn)− o

(
(log n)−1

)
≥ κn,V (γ̃n − βn)− o

(
(log n)−1

)
.

Hence,

p1,n ≥ P

(
sup

(j,x)∈V

n1/2(ĥj,n (x)− hj,n (x))

σ̂j,n (x)
≤ κn,V (γ̃n − βn)− o

(
(log n)−1

))
− o(1). (SA.8)

By the first line of (SA.2),

sup
(j,x)∈V

n1/2(ĥj (x)− hj(x))

σj,n(x)
− Ũ ′1,n = op

(
(log n)−1

)
.

By Lemma SA1, we can further deduce

sup
(j,x)∈V

n1/2(ĥj (x)− hj(x))

σ̂j,n(x)
− Ũ ′1,n = op

(
(log n)−1

)
. (SA.9)

Note that κn,V (q) is the q-quantile of Ũ ′1,n. Hence, from (SA.8) and (SA.9), we deduce

p1,n ≥ P
(
Ũ ′1,n ≤ κn,V (γ̃n − βn)− o

(
(log n)−1

))
− o(1)

≥ γ̃n − o(1) = 1− o(1). (SA.10)

Next, we observe

P

 sup
(j,x)∈V

n1/2
(
η∗ − ĥj (x)

)
σ̂j,n (x)

 ≤ K̂n


≥ P

 sup
(j,x)∈V

n1/2
(
η∗ − ĥj (x)

)
σ̂j,n (x)

 ≤ max
{
κn,Vn (γ̃n − βn)− o

(
(log n)−1

)
, 0
}− o(1),

≥ P
(
Ũ2,n ≤ κn,Vn (γ̃n − βn)− o

(
(log n)−1

))
− o(1)

≥ γ̃n − o(1) = 1− o(1),

6
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where the first inequality is by (SA.7), and the second inequality is by Lemma SA3. Hence,

p2,n = o(1). The assertion of the lemma then follows from this estimate, (SA.5), and (SA.10). �

SA.2 Proof of Proposition 1

Proof of Proposition 1. (a) Recall that k̂n,1−α is the (1 − α)-quantile of sup
(j,x)∈V̂n t̂

∗
j,n (x).

Let kn,1−α denote the (1− α)-quantile of sup(j,x)∈Vn t̂
∗
j,n (x). By Lemma SA4, we have

P
(
k̂n,1−α ≥ kn,1−α

)
→ 1. (SA.11)

By Lemma SA2 and Chernozhukov, Lee, and Rosen’s (2013) Lemma 11, we have with probability

approaching 1,

kn,1−α ≥ κn,Vn (1− α− o (1))− o
(
(log n)−1

)
. (SA.12)

Note that

P
(
η∗ ≤ η̂n,1−α

)
= P

(
η∗ ≤ inf

(j,x)∈V

[
ĥj,n (x) + n−1/2k̂n,1−ασ̂j,n (x)

])

= P

 sup
(j,x)∈V

n1/2
(
η∗ − ĥj,n (x)

)
σ̂j,n (x)

 ≤ k̂n,1−α


≥ P

 sup
(j,x)∈V

n1/2
(
η∗ − ĥj,n (x)

)
σ̂j,n (x)

 ≤ max
{
κn,Vn (1− α− o (1))− o

(
(log n)−1

)
, 0
}− o(1),

≥ P
(
Ũ2,n ≤ κn,Vn (1− α− o (1))− o

(
(log n)−1

))
− o(1), (SA.13)

where the first inequality is by (SA.12) and the fact that k̂n,1−α ≥ 0, and the second inequality

follows from Lemma SA3. By the anti-concentration inequality of Gaussian processes, we see that

the lower bound in (SA.13) is 1−α+ o(1). Hence, under the null hypothesis with η∗ ≥ 0, we have

lim infn P
(
η̂n,1−α ≥ 0

)
≥ 1− α. The assertion of part (a) readily follows.

(b) Denote h∗j,n(·) = P (·)> b∗j,n, with b∗j,n given by Assumption 2. Note that

b̂j,n − b∗j,n = Q̂−1n

(
n−1

n∑
t=1

P (Xt)uj,t + n−1
n∑
t=1

P (Xt) (hj(Xt)− h∗j,n(Xt))

)
= Op

(
m1/2
n n−1/2

)
.

We then deduce that

sup
(j,x)∈V

∣∣∣ĥj,n(x)− hj(x)
∣∣∣ ≤ sup

x∈X
‖P (x)‖ · max

1≤j≤J

∥∥∥b̂j,n − b∗j,n∥∥∥+ sup
(j,x)∈V

∣∣∣hj(x)− P (x)>b∗j,n

∣∣∣
= Op

(
ζnmnn

−1/2
)
. (SA.14)
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Note that k̂n,1−α = Op
(
(log n)1/2

)
. In addition, by Lemma SA1,

sup
(j,x)∈V

σ̂j,n (x) = Op(1) sup
(j,x)∈V

σj,n (x) = Op

(
ζnm

1/2
n

)
. (SA.15)

By (SA.14) and (SA.15),

sup
(j,x)∈V

∣∣∣ĥj,n (x) + n−1/2k̂n,1−ασ̂j,n (x)− hj (x)
∣∣∣

= Op

(
ζnmnn

−1/2
)

+Op

(
ζnm

1/2
n (log n)1/2n−1/2

)
= Op

(
ζnmnn

−1/2
)
,

where the second equality holds because mn is of polynomial growth in n. This estimate further

implies that

η̂n,1−α − η∗ = Op

(
ζnmnn

−1/2
)
.

Under condition (v) of Assumption 2, ζnmnn
−1/2 = o(1). Hence, η̂n,1−α − η∗ = op(1). The

assertion of part (b) readily follows. �

SB Proofs of technical lemmas for Theorem 1

Proof of Lemma A1. Step 1. We outline the proof in this step. For ease of notation, we write

maxl,t in place of max1≤l≤Ln,1≤t≤n, and interpret maxl and maxt in a similar way. Note that∣∣∣∣max
l
α>l S

∗
n −max

l
α>l S

+
n

∣∣∣∣ ≤ max
l

∣∣∣α>l (S∗n − S+
n )
∣∣∣

≤ max
l

∣∣∣∣∣n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn}

∣∣∣∣∣+ max
l

∣∣∣∣∣k−1/2n

n+kn∑
t=n+1

α>l (Ξ1/2
n ηn,t)

∣∣∣∣∣ .
In step 2 and step 3, respectively, we show that

max
l

∣∣∣∣∣n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn}

∣∣∣∣∣ = Op

(
min

{
L1/q
n max

l,t
‖α>l X∗n,t‖q,M1/2

n

}
r1/2n

)
, (SB.1)

max
l

∣∣∣∣∣k−1/2n

n+kn∑
t=n+1

α>l (Ξ1/2
n ηn,t)

∣∣∣∣∣ = Op((logLn)1/2r1/2n ). (SB.2)

These estimates clearly imply the assertion of the lemma. Below, since ‖αl‖ are uniformly bounded,

we can and will assume that ‖αl‖ ≤ 1 without loss of generality.

Step 2. In this step, we prove (SB.1). Fix some ε > 0. As shown in the proof of Lemma A1 of

Li and Liao (2019) (see their supplemental appendix), there exists a finite constant C1 > 0 such

that for u∗n = dC1nrne and k∗n = n− u∗n,

lim sup
n→∞

P (τn < k∗n) < ε/2, (SB.3)
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where d·e denotes the ceiling function. For a generic positive real sequence an, it is easy to see

that

P

(
max
l

∣∣∣∣∣n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn}

∣∣∣∣∣ > an

)

≤ P

(
max
l

∣∣∣∣∣n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn}

∣∣∣∣∣ > an, τn ≥ k∗n

)
+ P (τn < k∗n)

≤ P

(
max
l

∣∣∣∣∣n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn∨k∗n}

∣∣∣∣∣ > an

)
+ P (τn < k∗n) . (SB.4)

By the maximal inequality under Lq-norm,

E

[
max
l

∣∣∣∣∣n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn∨k∗n}

∣∣∣∣∣
]
≤ L1/q

n max
l

∥∥∥∥∥n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn∨k∗n}

∥∥∥∥∥
q

. (SB.5)

Since τn is a stopping time and k∗n is deterministic, {t > τn ∨ k∗n} ∈ Fn,t−1. It is then easy to see

that (X∗n,t1{t>τn∨k∗n})t≥1 also forms a martingale difference sequence. We further note that∥∥∥∥∥n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn∨k∗n}

∥∥∥∥∥
q

≤ K

(
n−1

n∑
t=1

∥∥∥α>l X∗n,t1{t>τn∨k∗n}∥∥∥2q
)1/2

≤ K

(
n−1

n∑
t=1

∥∥∥α>l X∗n,t∥∥∥2
q

1{t>k∗n}

)1/2

≤ Kr1/2n max
l,t

∥∥∥α>l X∗n,t∥∥∥
q
, (SB.6)

where the first inequality is by Theorem 2.1 of Rio (2009), the second inequality holds because

1{t>τn∨k∗n} is bounded by the deterministic variable 1{t>k∗n}, and the last line follows from n−k∗n =

O (nrn). Combining the estimates in (SB.5) and (SB.6), we deduce

E

[
max
l

∣∣∣∣∣n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn∨k∗n}

∣∣∣∣∣
]
≤ KL1/q

n r1/2n max
l,t

∥∥∥α>l X∗n,t∥∥∥
q
. (SB.7)
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We also observe

E

[
max
l

∣∣∣∣∣n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn∨k∗n}

∣∣∣∣∣
]

≤ E

[∥∥∥∥∥n−1/2
n∑
t=1

X∗n,t1{t>τn∨k∗n}

∥∥∥∥∥
]

≤ K

(
n−1

n∑
t=1

E
[∥∥X∗n,t1{t>τn∨k∗n}∥∥2]

)1/2

≤ K

(
n−1

n∑
t=1

E
[∥∥X∗n,t∥∥2] 1{t>k∗n}

)1/2

≤ Kr1/2n max
t

(
E
[∥∥X∗n,t∥∥2])1/2 ≤ KM1/2

n r1/2n , (SB.8)

where the first inequality is due to the Cauchy–Schwarz inequality and the fact that ‖αl‖ ≤ 1, the

second inequality is by Jensen’s inequality and the fact that (X∗n,t1{t>τn∨k∗n})t≥1 are martingale

differences, and the remaining inequalities are obtained similarly as (SB.6) while using the fact

that
∥∥X∗n,t∥∥2 ≤ KM1/2

n .

Combining (SB.7) and (SB.8), we see that for some finite constant C2 > 0,

E

[
max
l

∣∣∣∣∣n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn∨k∗n}

∣∣∣∣∣
]
≤ C2 min

{
L1/q
n max

l,t
‖α>l X∗n,t‖q,M1/2

n

}
r1/2n .

Applying (SB.4) with

an = 2ε−1C2 min

{
L1/q
n max

l,t
‖α>l X∗n,t‖q,M1/2

n

}
r1/2n ,

and then use Markov’s inequality and (SB.3), we deduce

lim sup
n

P

(
max
l

∣∣∣∣∣n−1/2
n∑
t=1

α>l X
∗
n,t1{t>τn}

∣∣∣∣∣ > an

)
< ε.

This finishes the proof of (SB.1).

Step 3. Fix some constant ε > 0 and consider the same k∗n as in (SB.3). Note that Ξn is

Hn,n-measurable, and conditional on Hn,n, k
−1/2
n

∑n+kn
t=n+1 α

>
l (Ξ

1/2
n ηn,t) is centered Gaussian with

variance α>l Ξnαl. By the maximum inequality under Orlicz norm (see, e.g., Lemma 2.2.2 in van der

Vaart and Wellner (1996) with ψ(x) = exp(x2)− 1),

E

[
max
l

∣∣∣∣∣k−1/2n

n+kn∑
t=n+1

α>l (Ξ1/2
n ηn,t)

∣∣∣∣∣
∣∣∣∣∣Hn,n

]
≤ K(logLn)1/2 max

l
(α>l Ξnαl)

1/2. (SB.9)
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Recall that Ξn = Σ∗n −
∑τn

t=1 V
∗
n,t. By the triangle inequality and the Cauchy–Schwarz inequality,

we have in restriction to the event {τn ≥ k∗n},

max
l
α>l Ξnαl

≤ max
l
α>l

(
Σ∗n −

n∑
t=1

V ∗n,t

)
αl + max

l
α>l

(
n∑

t=τn+1

V ∗n,t

)
αl

≤

∥∥∥∥∥Σ∗n −
n∑
t=1

V ∗n,t

∥∥∥∥∥
S

+ max
l
α>l

 n∑
t=k∗n+1

V ∗n,t

αl

≤ 2

∥∥∥∥∥
n∑
t=1

(
V ∗n,t − E

[
V ∗n,t

])∥∥∥∥∥
S

+

∥∥∥∥∥∥
k∗n∑
t=1

(
V ∗n,t − E

[
V ∗n,t

])∥∥∥∥∥∥
S

+ max
l

n∑
t=k∗n+1

α>l E
[
V ∗n,t

]
αl

≡ Rn (SB.10)

Since E
[
V ∗n,t

]
= n−1E

[
X∗n,tX

∗>
n,t

]
and E

[
X∗n,tX

∗>
n,t

]
has bounded eigenvalues under Assumption

4(ii), we have uniformly in l,

n∑
t=k∗n+1

α>l E
[
V ∗n,t

]
αl ≤ K (n− k∗n) /n ≤ Krn.

In addition, since k∗n/n→ 1, Assumption 4(iii) implies that

2

∥∥∥∥∥
n∑
t=1

(
V ∗n,t − E

[
V ∗n,t

])∥∥∥∥∥
S

+

∥∥∥∥∥∥
k∗n∑
t=1

(
V ∗n,t − E

[
V ∗n,t

])∥∥∥∥∥∥
S

= Op (rn) .

The Rn sequence defined in (SB.10) is thus Op (rn). Therefore, there exists some finite constant

C3 > 0 such that P (Rn > C3rn) < ε/2. Hence,

lim sup
n

P
(

max
l
α>l Ξnαl > C3rn

)
≤ lim sup

n
P (Rn > C3rn, τn ≥ k∗n) + lim sup

n
P (τn < k∗n) < ε,

which shows that maxl(α
>
l Ξnαl)

1/2 = Op(r
1/2
n ). From this estimate and (SB.9), we deduce (SB.2)

as claimed. �

Next, we prove Lemma A2 in the appendix of the main text. We recall that (ζn,t)1≤t≤n+kn

are independent Mn-dimensional standard normal vectors and ζ̃n,t ≡ (V +
n,t)

1/2ζn,t. We need an

additional lemma.

Lemma SB1. Under Assumption 4, we have

(a)
∑n+kn

t=n+1 E[maxl |α>l Zn,t|3] ≤ K(logLn)3/2k
−1/2
n ;

(b)
∑n+kn

t=1 E[maxl |α>l ζ̃n,t|3] ≤ K(logLn)3/2
∑n

t=1 E
[
maxl(α

>
l V
∗
n,tαl)

3/2
]

+K(logLn)3/2k
−1/2
n .
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Proof. (a) By definition, for any t ∈ {n+ 1, . . . , n+ kn},

max
l

∣∣∣α>l Zn,t∣∣∣3 = k−3/2n max
l

∣∣∣α>l (Ξ1/2
n ηn,t)

∣∣∣3 . (SB.11)

Note that Ξn is Hn,n-measurable and k
−1/2
n

∑n+kn
t=n+1 α

>
l (Ξ

1/2
n ηn,t) is Hn,n-conditionally centered

Gaussian with variance α>l Ξnαl. By the maximum inequality under Orlicz norm (see, e.g., Lemma

2.2.2 in van der Vaart and Wellner (1996) with ψ(x) = exp(x2/3)− 1),

E
[

max
l

∣∣∣α>l (Ξ1/2
n ηn,t)

∣∣∣3∣∣∣∣Hn,n] ≤ K(logLn)3/2 max
l

(α>l Ξnαl)
3/2. (SB.12)

Since α>l Ξnαl ≤ α>l Σ∗nαl by the definition of Ξn, we further have

max
l

(α>l Ξnαl)
3/2 ≤ max

l
(α>l Σ∗nαl)

3/2 ≤ K, (SB.13)

where the second inequality holds because ‖αl‖ and the eigenvalues of Σ∗n are bounded. The

assertion of part (a) is then obtained by combining the estimates in (SB.11), (SB.12), and (SB.13).

(b) By the definition of ζ̃n,t, we can write

n+kn∑
t=1

max
l

∣∣∣α>l ζ̃n,t∣∣∣3 =

n∑
t=1

max
l

∣∣∣α>l (V ∗n,t)
1/2ζn,t1{t≤τn}

∣∣∣3
+k−3/2n

n+kn∑
t=n+1

max
l

∣∣∣α>l Ξ1/2
n ζn,t

∣∣∣3 . (SB.14)

Using the same argument in part (a), we can show that

k−3/2n

n+kn∑
t=n+1

E
[
max
l

∣∣∣α>l Ξ1/2
n ζn,t

∣∣∣3] ≤ K(logLn)3/2k−1/2n . (SB.15)

For any t ≤ n, α>l (V ∗n,t)
1/2ζn,t is Hn,t−1-conditionally centered Gaussian with conditional variance

α>l V
∗
n,tαl. Therefore,

E
[

max
l

∣∣∣α>l (V ∗n,t)
1/2ζn,t

∣∣∣3∣∣∣∣Hn,t−1] ≤ K(logLn)3/2 max
l

(α>l V
∗
n,tαl)

3/2 (SB.16)

which implies that

E
[
max
l

∣∣∣α>l (V ∗n,t)
1/2ζn,t1{t≤τn}

∣∣∣3] ≤ K(logLn)3/2E
[
max
l

(α>l V
∗
n,tαl)

3/2

]
. (SB.17)

The assertion of part (b) then follows from (SB.14), (SB.15), and (SB.17). Q.E.D.

Proof of Lemma A2. Step 1. We outline the proof in this step. For any x = (x1, . . . , xLn) ∈ RLn

and σ > 0, we define a function

Fσ(x) = σ log

(
Ln∑
l=1

exp(σ−1xl)

)
.
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By equation (17) in Chernozhukov, Chetverikov, and Kato (2014),

max
l
xl ≤ Fσ(x) ≤ max

l
xl + σ logLn.

For any given sequence (αl)1≤l≤Ln , we denote α = (α1, . . . , αLn), which is an Mn×Ln matrix. We

can then write (
α>1 S

+
n , . . . , α

>
LnS

+
n

)>
= α>S+

n ,
(
α>1 S̃

∗
n, . . . , α

>
LnS̃

∗
n

)>
= α>S̃∗n.

With this notation, we see that∣∣∣∣max
l
α>l S

+
n − Fσ

(
α>S+

n

)∣∣∣∣ ≤ σ logLn,

∣∣∣∣max
l
α>l S̃

∗
n − Fσ

(
α>S̃∗n

)∣∣∣∣ ≤ σ logLn. (SB.18)

Let σn ≡ B
1/3
1,n (logLn)−1/3. With any positive constant C > 1, we associate the following real

sequences

δn(C) ≡ Cσn logLn, ψn(C) ≡ (C logLn)

√
exp

(
1− (C logLn)2

)
.

Note that as C →∞,

sup
n≥1

ψn(C)→ 0. (SB.19)

By the first estimate in (SB.18), we have for any Borel set A ⊆ R,

P
(

max
l
α>l S

+
n ∈ A

)
≤ P

(
Fσn(α>S+

n ) ∈ Aδn(C)
)

. (SB.20)

For ease of notation, below, we shall write δn and ψn in place of δn (C) and ψn (C), respectively.

Given σn and δn, we define a function f (·) as follows. First define

g(x) ≡ max

{
0, 1− d(x,A2δn)

δn

}
,

where d(x,A2δn) denotes the distance between the point x and the set A2δn . We then set for any

x ∈ R,

f(x) ≡ E [g(x+ σnN )] ,

whereN is a generic standard normal random variable. By Lemma 4.2 of Chernozhukov, Chetverikov,

and Kato (2014), we have for all x ∈ R,

|∂f(x)| ≤ δ−1n , |∂2f(x)| ≤ Cfσ−1n δ−1n , |∂3f(x)| ≤ Cfσ−2n δ−1n , (SB.21)

where Cf is a fixed finite constant and ∂jf(x) denotes the jth derivative of f(x); moreover,

(1− ψn)1{x∈Aδn} ≤ f(x) ≤ ψn + (1− ψn)1{x∈A4δn}. (SB.22)
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We further define ∆σn(x) = f ◦ Fσn(x). The first inequality in (SB.22) implies

(1− ψn)1{Fσn (α>S
+
n )∈Aδn} ≤ ∆σn(α>S+

n ). (SB.23)

By (SB.20) and (SB.23),

P
(

max
l
α>l S

+
n ∈ A

)
≤

E
[
∆σn(α>S+

n )
]

1− ψn
. (SB.24)

In addition, by first using (SB.22) and then (SB.18), we can deduce that

E
[
∆σn(α>S̃∗n)

]
≤ ψn + (1− ψn)P

(
Fσn(α>S̃∗n) ∈ A4δn

)
≤ ψn + (1− ψn)P

(
max
l
α>S̃∗n ∈ A5δn

)
. (SB.25)

Combining (SB.24) and (SB.25), we obtain

P
(

max
l
α>l S

+
n ∈ A

)
≤ P

(
max
l
α>S̃∗n ∈ A5δn

)

+
ψn

1− ψn
+

E
[
∆σn(α>S+

n )
]
− E

[
∆σn(α>S̃∗n)

]
1− ψn

. (SB.26)

In step 2, below, we show that, for some constant K that does not depend on C or n,∣∣∣E [∆σn(α>S+
n )
]
− E

[
∆σn(α>S̃∗n)

]∣∣∣ ≤ K B1,n

σ2nδn
. (SB.27)

By construction, σ2nδn = CB1,n. Hence, (SB.26) and (SB.27) imply that

P
(

max
l
α>l S

+
n ∈ A

)
≤ P

(
max
l
α>S̃∗n ∈ A5δn

)
+
ψn(C) +K/C

1− ψn(C)
. (SB.28)

Recall that δn = CB
1/3
1,n (logLn)2/3. Define εn (·) such that

εn (5C) ≡ ψn(C) +K/C

1− ψn(C)
.

Then the assertion of the lemma readily follows from (SB.19) and (SB.28).

Step 2. In this step, we finish the proof of Lemma A2 by establishing (SB.27). We set for each

t ∈ {1, . . . , n+ kn},
Dn,t ≡

∑
s∈[1,t)

Zn,s +
∑

s∈(t,n+kn]

ζ̃n,s.

By this definition, we have S+
n = Dn,n+kn + Zn,n+kn , S̃∗n = Dn,1 + ζ̃n,1, and

Dn,t + Zn,t = Dn,t+1 + ζ̃n,t+1 for any t = 1, . . . , n+ kn − 1.
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Hence,

E[∆σn(α>S+
n )]− E[∆σn(α>S̃∗n)]

=

n+kn∑
t=1

(
E[∆σn(α>Dn,t + α>Zn,t)]− E[∆σn(α>Dn,t + α>ζ̃n,t)]

)
. (SB.29)

Using a third-order mean-value expansion, we deduce∣∣∣E [∆σn(α>Dn,t + α>Zn,t)
]
− E

[
∆σn(α>Dn,t)

]
− E[∂∆σn(α>Dn,t)

>α>Zn,t]

−1

2
E
[
Tr(∂2∆σn(α>Dn,t)α

>Zn,tZ
>
n,tα)

]∣∣∣∣
≤ 1

6

Ln∑
l1,l2,l3=1

E
[∣∣∣(α>l1Zn,t)(α>l2Zn,t)(α>l3Zn,t)∂l1∂l2∂l3∆σn(χ̄n,t)

∣∣∣] ,
(SB.30)

where χ̄n,t is some mean-value between α>Dn,t and α>Dn,t +α>Zn,t. By (SB.21) and Lemma 4.3

in Chernozhukov, Chetverikov, and Kato (2014),

Ln∑
l1,l2,l3=1

E
[∣∣∣(α>l1Zn,t)(α>l2Zn,t)(α>l3Zn,t)∂l1∂l2∂l3∆σn(χ̄n,t)

∣∣∣]

≤ E

 max
1≤l1,l2,l3≤Ln

∣∣∣(α>l1Zn,t)(α>l2Zn,t)(α>l3Zn,t)∣∣∣ Ln∑
l1,l2,l3=1

∣∣∂l1∂l2∂l3∆σn(χ̄n,t)
∣∣

≤
13Cf
σ2nδn

E
[
max
l

∣∣∣α>l Zn,t∣∣∣3] , (SB.31)

which together with (SB.30) implies that∣∣∣E [∆σn(α>Dn,t + α>Zn,t)
]
− E

[
∆σn(α>Dn,t)

]
− E[∂∆σn(α>Dn,t)

>α>Zn,t]

−1

2
E
[
Tr(∂2∆σn(α>Dn,t)α

>Zn,tZ
>
n,tα)

]∣∣∣∣
≤

13Cf
6σ2nδn

E
[
max
l

∣∣∣α>l Zn,t∣∣∣3] .
(SB.32)

Similarly, we can show that∣∣∣E [∆σn(α>Dn,t + α>ζ̃n,t)
]
− E

[
∆σn(α>Dn,t)

]
− E[∂∆σn(α>Dn,t)

>α>ζn,t]

−1

2
E
[
Tr(∂2∆σn(α>Dn,t)α

>ζ̃n,tζ̃
>
n,tα)

]∣∣∣∣
≤

13Cf
6σ2nδn

E
[
max
l

∣∣∣α>l ζ̃n,t∣∣∣3] .
(SB.33)

Since ζ̃n,t = (V +
n,t)

1/2ζn,t and ζn,t is a standard normal random vector independent of Dn,t and

V +
n,t, we have E[∂∆σn(α>Dn,t)

>α>ζ̃n,t] = 0,

E
[
Tr(∂2∆σn(α>Dn,t)α

>ζ̃n,tζ̃
>
n,tα)

]
= E[Tr(∂2∆σn(α>Dn,t)α

>V +
n,tα)].

(SB.34)
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Let

Σ̃+
n,t ≡

∑
s∈(t,n+kn]

V +
n,s = Σ∗n −

∑
s≤t

V +
n,s.

Note that Σ̃+
n,t isHn,t−1-measurable because Σ∗n is deterministic and

∑
s≤t V

+
n,s isHn,t−1-measurable.

By construction, α>
∑

s∈(t,n+kn] ζ̃n,s is Hn,n-conditionally centered Gaussian with conditional vari-

ance α>Σ̃+
n,tα. Hence, the normalized variable

α>
∑

s∈(t,n+kn] ζ̃n,s√
α>Σ̃+

n,tα
(SB.35)

is independent of Hn,n. Let H′n,t be the σ-field generated by Hn,t and the variable defined in

(SB.35). Due to the aforementioned independence property, we see that Zn,t is also a martingale

difference array with respective to H′n,t. In addition, we can rewrite

α>Dn,t = α>
∑
s∈[1,t)

Zn,s +
√
α>Σ̃+

n,tα
α>
∑

s∈(t,n+kn] ζ̃n,s√
α>Σ̃+

n,tα
,

which implies that α>Dn,t is H′n,t−1-measurable. Hence,

E[∂∆σn(α>Dn,t)
>α>Zn,t] = E

[
∂∆σn(α>Dn,t)

>α>E
[
Zn,t|H′n,t−1

]]
= 0, (SB.36)

and

E
[
Tr(∂2∆σn(α>Dn,t)α

>Zn,tZ
>
n,tα)

]
= E

[
Tr(∂2∆σn(α>Dn,t)α

>E[Zn,tZ
>
n,t|H′n,t−1]α)

]
= E

[
Tr(∂2∆σn(α>Dn,t)α

>E[Zn,tZ
>
n,t|Hn,t−1]α)

]
= E

[
Tr(∂2∆σn(α>Dn,t)α

>V +
n,tα)

]
. (SB.37)

Summarizing the results in (SB.34), (SB.36), and (SB.37), we have

E[∂∆σn(α>Dn,t)
>α>Zn,t] = E[∂∆σn(α>Dn,t)

>α>ζ̃n,t],

E
[
Tr(∂2∆σn(α>Dn,t)α

>Zn,tZ
>
n,tα)

]
= E

[
Tr(∂2∆σn(α>Dn,t)α

>ζ̃n,tζ̃
>
n,tα)

]
.

Then, from (SB.29), (SB.32), and (SB.33), we deduce∣∣∣E[∆σn(α>S+
n )]− E[∆σn(α>S̃∗n)]

∣∣∣
≤

5Cf
σ2nδn

n+kn∑
t=1

(
E
[
max
l

∣∣∣α>l Zn,t∣∣∣3]+ E
[
max
l

∣∣∣α>l ζ̃n,t∣∣∣3]) . (SB.38)
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This estimate and Lemma SB1 imply that∣∣∣E[∆σn(α>S+
n )]− E[∆σn(α>S̃∗n)]

∣∣∣ ≤ 10CfK

σ2nδn

(
B1,n + (logLn)3/2k−1/2n

)
≤ K

B1,n

σ2nδn
, (SB.39)

where the second line follows from the condition that kn ≥ (logLn)3B−21,n. Note that the constant

K does not depend on n or C. This finishes the proof of (SB.27). �

SC Pre-whitened HAC estimator with growing dimensions

In this appendix, we provide details about the pre-whitened HAC estimator. Section SC.1 describes

the estimator and its asymptotic properties. The proofs are in Section SC.2.

SC.1 The estimator and its asymptotic properties

To implement the CSPA test, we need an estimator Ân that satisfies Assumption 1 in the present

context with growing dimensions. While Newey–West type estimators are theoretically valid (see

Li and Liao (2019)), they may lead to size distortions in finite samples when the data is highly

serially dependent as shown in our Monte Carlo experiments. This concern motivates us to analyze

a more general class of HAC estimators allowing for pre-whitening as proposed by Andrews and

Monahan (1992). Since this HAC estimation result is useful not only for the CSPA test, but also

for other types of time series inference problems involving growing dimensions, we develop the

theory in a general setting for a Mn-dimensional mixingale array (en,t)1≤t≤n,n≥1 with respect to

a filtration (Fn,t)1≤t≤n,n≥1. If our goal is to verify Assumption 1 in the main text, we can set

en,t = ut ⊗ P (Xt) and Mn = Jmn. Some regularity conditions are needed.

Assumption SC1. We have the following conditions: (i) for some q ≥ 3, (en,t) is a Mn-

dimensional Lq-mixingale array with respect to a filtration (Fn,t), that is, for each 1 ≤ j ≤ Mn

and h ≥ 0,

‖E[ej,n,t|Fn,t−h]‖q ≤ c̄nψh, ‖ej,n,t − E[ej,n,t|Fn,t+h]‖q ≤ c̄nψh+1,

for a positive sequence c̄n and some finite constants (ψk)k≥0; (ii)
∑

h≥0 ψh <∞ and suph≥0 hψ
2
h <

∞; (iii) E [en,t] = 0 and E[en,te
>
n,t+h] does not depend on t; (iv) for all h ≥ 0 and s ≥ 0,

sup
t

max
1≤l,k≤Mn

‖E [el,n,tek,n,t+h|Fn,t−s]− E [el,n,tek,n,t+h]‖2 ≤ c̄
2
nψs;

(v) supt max1≤l,k≤Mn ‖el,n,tek,n,t+h‖2 ≤ c̄2n for all h ≥ 0; (vi) the largest eigenvalues of E[en,te
>
n,t]

are uniformly bounded.
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Our goal is to construct pre-whitened HAC estimators for the long-run variance-covariance

matrix

An ≡ E

 1

n

(
n∑
t=1

en,t

)(
n∑
t=1

en,t

)> .
To pre-whiten the data, we consider a linear filter Bn(L) of the form

Bn (L) ≡ IMn −
p∑
s=1

Bn,sLs,

where L denotes the lag operator, IMn is the Mn-dimensional identity matrix, and for each s ∈
{1, . . . p}, Bn,s is a Mn × Mn nonrandom matrix. The associated pre-whitened array and its

long-run variance-covariance matrix are then defined as

e∗n,t ≡ Bn(L)en,t, for t ∈ {p+ 1, . . . , n},

A∗n ≡ E

 1

n− p

 n∑
t=p+1

e∗n,t

 n∑
t=p+1

e∗n,t

>
 .

We impose the following conditions on the filter and the pre-whitened data.

Assumption SC2. (i) max1≤s≤p ‖Bn,s‖S ≤ C for some finite constant C > 0 and the eigenval-

ues of Bn(1) are bounded away from zero; (ii)
∑∞

h=1 h
r∗2 ‖Γ∗n(h)‖S ≤ Kc̄2nMn for some positive

constants r∗2 and K, where Γ∗n(h) ≡ E[e∗n,te
∗>
n,t+h] is the hth autocovariance matrix of e∗n,t.

Pre-whitening is motivated by the fact that A∗n tends to be easier to estimate nonparametrically

than An because the autocovariances of the pre-whitened data generally decay faster. This effect

is captured by the r∗2 constant in Assumption SC2 (i.e., higher r∗2 corresponds to faster decay).

For example, if the pre-whitened array e∗n,t is a white noise, r∗2 can be taken to be an arbitrarily

large number, which results in a faster rate of convergence in the HAC estimation.

In typical applications, en,t is not directly observed, but relies on some preliminary estimator.

We formalize the setup with generated variables as follows. Suppose that

en,t = g(Zn,t, θ0),

where Zn,t is an observed time series and g (z, θ) is a measurable function known up to a parameter

θ0. We note that the unknown parameter θ0 may be infinite dimensional. This is indeed the case

for the CSPA application, where θ0 represents the conditional mean functions (hj (·))1≤j≤J in our

CSPA test. We suppose that a preliminary estimator θ̂n for θ0 is available and use

ên,t = g(Zn,t, θ̂n)
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as a proxy for en,t. Similarly, the filter Bn(L) may also rely on parameters that need estimation.

We consider preliminary estimators (B̂n,s)1≤s≤p and set

B̂n (L) ≡ IMn −
p∑
s=1

B̂n,sLs.

The following high-level assumptions on the preliminary estimators’ convergence rates will be used

in our analysis.

Assumption SC3. (i) n−1
∑n

t=1 ‖g(Zn,t, θ̂n)−g(Zn,t, θ0)‖2 = Op(δ
2
θ,n) for some positive sequence

δθ,n = o(1); (ii) max1≤s≤p ‖B̂n,s −Bn,s‖S = Op(δB,n) for some positive sequence δB,n = o(1).

Assumption SC3(i) mainly concerns the convergence rate of the preliminary estimator θ̂n. Quite

commonly, g(·) is stochastically Lipschitz in θ and δθ,n is determined by the convergence rate of

θ̂n, for which there are well-known results in the literature. Condition (ii) specifies the convergence

rate of (B̂n,s)1≤s≤p. These conditions can be easily verified under more primitive conditions.

We are now ready to describe the pre-whitened HAC estimator for An. The feasible proxy of

the pre-whitened series e∗n,t is given by

ê∗n,t = B̂n (L) ên,t, p+ 1 ≤ t ≤ n.

We then estimate Γ∗n(h) ≡ E[e∗n,te
∗>
n,t+h] using

Γ̂∗n(h) ≡ 1

n− p

n−h∑
t=p+1

ê∗n,tê
∗>
n,t+h, Γ̂∗n(−h) ≡ Γ̂∗n(h)>, for 0 ≤ h ≤ n− p− 1.

Consider a kernel function K (·) that is bounded, Lebesgue-integrable, symmetric, continuous at

zero with K (0) = 1 such that, for some constants C ∈ R and r1 ∈ (0,∞],

lim
x→0

1−K (x)

|x|r1
= C; (SC.1)

see many examples in Andrews (1991). In addition, we choose a bandwidth sequence κn that goes

to infinity with the sample size n. The HAC estimator for the pre-whitened data is then given by

Â∗n ≡
n−p−1∑

h=−(n−p−1)

K
(
h

κn

)
Γ̂∗n(h).

Finally, with Ĥn ≡ (IMn −
∑p

s=1 B̂n,s)
−1, we define the pre-whitened HAC estimator for An as

Ân ≡ ĤnÂ
∗
nĤ
>
n .

Theorem SC1, below, describes the asymptotic behavior of this estimator.
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Theorem SC1. Suppose that Assumptions SC1, SC2, and SC3 hold, and

c̄2nMn(κnn
−1/2 + κ

−r1∧r∗2
n ) + κnM

1/2
n δθ,n + κnδB,nMn = o(1). (SC.2)

Then,∥∥∥Ân −An∥∥∥
S

= Op(c̄
2
nMn(κnn

−1/2 + κ
−r1∧r∗2
n )) +Op(κnM

1/2
n δθ,n) +Op(κnMnδB,n). (SC.3)

Theorem SC1 quantifies the magnitudes of three sources of estimation errors in the pre-whitened

HAC estimator Ân. The first Op(c̄
2
nMn(κnn

−1/2 + κ
−r1∧r∗2
n )) component is from the infeasible pre-

whitened HAC estimator constructed with known θ0 and (Bn,s)1≤s≤p. Other things equal, this term

tends to be smaller when the autocovariance of e∗n,t decays faster (i.e., larger r∗2). This provides

a theoretical reason for the better finite-sample performance of the pre-whitened estimator. The

other two error terms are resulted from the estimation error in θ̂n and (B̂n,s)1≤s≤p, respectively.

Under quite general settings, ‖Ân − An‖S converges to zero in probability at polynomial rate as

required in Assumption 1.

SC.2 Proof of Theorem SC1

In this subsection, we prove Theorem SC1. We first prove two preliminary lemmas concerning the

infeasible estimator constructed using known θ0 and Bn (L).

Lemma SC1. Let Hn ≡ Bn(1)−1. Under Assumptions SC1 and SC2,∥∥∥An −HnA
∗
nH
>
n

∥∥∥
S

= O(c̄2nMnn
−1). (SC.4)

Proof. Denote np = n− p. It is easy to see that

An =

n−1∑
h=−(n−1)

n− |h|
n

Γn (h) , A∗n =

np−1∑
h=−(np−1)

np − |h|
np

Γ∗n (h) ,

where Γn(h) = E[en,te
>
n,t+h] and Γ∗n(h) = E[e∗n,te

∗>
n,t+h]. For notational simplicity, we further denote

βn,0 = IMn , βn,s = −Bn,s, for 1 ≤ s ≤ p. (SC.5)

We can then rewrite e∗n,t =
∑p

s=0 βn,sen,t−s, and subsequently,

Γ∗n (h) =

p∑
s,u=0

βn,sΓn (h+ s− u)β>n,u =

p∑
l=−p

p∧(l+p)∑
s=0∨l

βn,sΓn (h+ l)β>n,s−l.

Using this representation, we can rewrite A∗n as

A∗n =

np−1∑
h=−(np−1)

np − |h|
np

 p∑
l=−p

p∧(l+p)∑
s=0∨l

βn,sΓn (h+ l)β>n,s−l


=

n−1∑
h=−(n−1)

p∑
l=−p

p∧(l+p)∑
s=0∨l

1{h−np+1≤l≤h+np−1}
np − |h− l|

np
βn,sΓn (h)β>n,s−l. (SC.6)
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Since Bn(1) =
∑p

s=0 βn,s, we also have

Bn (1)AnBn (1)> =

n−1∑
h=−(n−1)

p∑
s=0

p∑
u=0

n− |h|
n

βn,sΓn (h)β>n,u

=

n−1∑
h=−(n−1)

p∑
l=−p

p∧(l+p)∑
u=0∨l

n− |h|
n

βn,sΓn (h)β>n,s−l. (SC.7)

By (SC.6) and (SC.7),∥∥∥A∗n −Bn (1)AnBn (1)>
∥∥∥
S

≤
n−1∑

h=−(n−1)

p∑
l=−p

p∧(l+p)∑
s=0∨l

(
1{h−np+1≤l≤h+np−1}

np − |h− l|
np

− n− |h|
n

)∥∥∥βn,sΓn (h)β>n,s−l

∥∥∥
S

≤ Kn−1
n−1∑

h=−(n−1)

‖Γn (h)‖S , (SC.8)

where the first inequality is by the triangle inequality, and the second inequality holds because

‖Bn,s‖S is bounded and for |l| ≤ p,∣∣∣∣1{h−np+1≤l≤h+np−1}
np − |h− l|

np
− n− |h|

n

∣∣∣∣ ≤ Kn−1.
Let Γk,l,n (h) = E[ek,n,tel,n,t] be the (k, l) element of Γn (h). Note that

|Γk,l,n(h)| ≤
∣∣E[
(
ek,n,t − E

[
ek,n,t|Fn,t+bh/2c

])
el,n,t+h]

∣∣
+
∣∣E[E

[
ek,n,t|Fn,t+bh/2c

]
E
[
el,n,t+h|Fn,t+bh/2c

]
]
∣∣

≤ Kc̄2nψ0ψbh/2c,

where the first inequality is by the triangle inequality, and the second inequality follows from the

Cauchy–Schwarz inequality and mixingale properties. Hence,

n−1∑
h=−(n−1)

‖Γn (h)‖S ≤
∞∑

h=−∞

(
Mn∑
k=1

Mn∑
l=1

Γk,l,n(h)2

)1/2

≤ Kc̄2nMn

∞∑
h=0

ψbh/2c.

Since
∑

h≥0 ψh <∞ by assumption, we further deduce that
∑n−1

h=−(n−1) ‖Γn (h)‖S = O(c̄2nMn). In

view of (SC.8), we then have∥∥∥A∗n −Bn (1)AnBn (1)>
∥∥∥
S

= O
(
c̄2nMnn

−1) .
Since the eigenvalues of Bn(1) are bounded away from zero, the assertion of the lemma readily

follows from this estimate. �
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Lemma SC2. Under Assumptions SC1 and SC2,∥∥∥Ã∗n −A∗n∥∥∥
S

= Op(c̄
2
nMn(κnn

−1/2 + κ
−r1∧r∗2
n )),

where Ã∗n ≡
∑n−p−1

h=−(n−p−1)K (h/κn) Γ̃∗n(h) and Γ̃∗n(h) ≡ (n− p)−1
∑n−h

t=p+1 e
∗
n,te
∗>
n,t+h.

Proof. For ease of notation, we denote np = n − p and write
∑

h in place of
∑np−1

h=−(np−1). By

definition, we can decompose

Ã∗n −A∗n =
∑
h

K
(
h

κn

)(
Γ̃∗n(h)− E[Γ̃∗n(h)]

)
+
∑
h

(
K
(
h

κn

)
− 1

)
np − |h|
np

Γ∗n(h). (SC.9)

Under Assumption SC1, we can follow the same proof as Lemma A6 of Li and Liao (2019) to show

that

E
[∥∥∥Γ̃∗n(h)− E[Γ̃∗n(h)]

∥∥∥
S

]
≤ Kc̄2nMnn

−1/2.

By the triangle inequality, we further deduce

E

[∥∥∥∥∥∑
h

K
(
h

κn

)(
Γ̃∗n(h)− E[Γ̃∗n(h)]

)∥∥∥∥∥
S

]
≤ Kc̄2nMnn

−1/2
∑
h

|K (h/κn)| ≤ Kc̄2nMnκnn
−1/2.

Hence, the first term on the right-hand side of (SC.9) satisfies∥∥∥∥∥∑
h

K
(
h

κn

)(
Γ̃∗n(h)− E[Γ̃∗n(h)]

)∥∥∥∥∥
S

= Op(c̄
2
nMnκnn

−1/2). (SC.10)

Let r = r1∧r∗2. By the properties of the kernel function K (·), we can find some (small) constant

ε ∈ (0, 1) such that
|1−K(x)|
|x|r

≤ |1−K(x)|
|x|r1

≤ K for x ∈ [−ε, ε] .

Hence, |K (h/κn)− 1| ≤ K |h|r κ−rn when |h| ≤ εκn. Therefore,∑
|h|≤εκn

∣∣∣∣(K( h

κn

)
− 1

)
np − |h|
np

∣∣∣∣ ‖Γ∗n(h)‖S ≤ Kκ
−r
n

∑
|h|≤εκn

|h|r ‖Γ∗n(h)‖S .

Since K (·) is bounded,∑
|h|>εκn

∣∣∣∣(K( h

κn

)
− 1

)
np − |h|
np

∣∣∣∣ ‖Γ∗n(h)‖S

≤ K
∑
|h|>εκn

(
|h|
εκn

)r
‖Γ∗n(h)‖S ≤ Kκ

−r
n

∑
|h|>εκn

|h|r ‖Γ∗n(h)‖S .
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Combining the two displayed estimates above yields∑
h

∣∣∣∣(K( h

κn

)
− 1

)
np − |h|
np

∣∣∣∣ ‖Γ∗n(h)‖S ≤ Kκ
−r
n

∑
h

|h|r ‖Γ∗n(h)‖S .

By Assumption SC2,
∑∞

h=1 h
r∗2 ‖Γ∗n(h)‖S ≤ Kc̄2nMn. Hence, the second term on the right-hand

side of (SC.9) satisfies∥∥∥∥∥∑
h

(
K
(
h

κn

)
− 1

)
np − |h|
np

Γ∗n(h)

∥∥∥∥∥
S

≤ Kc̄2nMnκ
−r
n . (SC.11)

The assertion of the lemma then follows from (SC.9), (SC.10), and (SC.11). �

We are now ready to prove Theorem SC1.

Proof of Theorem SC1. By Lemma SC1, Lemma SC2, and (SC.2),∥∥∥An −HnÃ
∗
nH
>
n

∥∥∥
S

= Op(c̄
2
nMn(κnn

−1/2 + κ
−r1∧r∗2
n )) = op(1), (SC.12)

where Hn and Ã∗n are defined in those lemmas. Since An has bounded eigenvalues under Assump-

tion SC1, Ã∗n’s largest eigenvalue is also Op(1).

We complement the definitions in (SC.5) by setting

β̂n,0 = IMn , β̂n,s = −B̂n,s, for 1 ≤ s ≤ p.

Under Assumption SC2 and Assumption SC3, ‖β̂n,s‖S = Op(1) for each s. Note that

ê∗n,t =

p∑
s=0

β̂n,sên,t−s, e∗n,t =

p∑
s=0

βn,sen,t−s.

We then observe that, for each h,

n−h∑
t=p+1

∥∥ê∗n,t − e∗n,t∥∥2
=

n−h∑
t=p+1

∥∥∥∥∥
p∑
s=0

β̂n,sên,t−s −
p∑
s=0

βn,sen,t−s

∥∥∥∥∥
2

≤ K
n−h∑
t=p+1

∥∥∥∥∥
p∑
s=0

β̂n,s (ên,t−s − en,t−s)

∥∥∥∥∥
2

+K
n−h∑
t=p+1

∥∥∥∥∥
p∑
s=0

(
β̂n,s − βn,s

)
en,t−s

∥∥∥∥∥
2

≤ K
n−h∑
t=p+1

p∑
s=0

∥∥∥β̂n,s∥∥∥2
S
‖ên,t−s − en,t−s‖2 +K

n−h∑
t=p+1

p∑
s=0

∥∥∥β̂n,s − βn,s∥∥∥2
S
‖en,t−s‖2

≤ K

(
p∑
s=0

∥∥∥β̂n,s∥∥∥2
S

)(
n∑
t=1

‖ên,t − en,t‖2
)

+K

(
p∑
s=0

∥∥∥β̂n,s − βn,s∥∥∥2
S

)
n∑
t=1

‖en,t‖2
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where the first inequality is by the Cr-inequality, the second inequality is by the Cauchy–Schwarz

inequality, and the third inequality is obvious. Since the eigenvalues of E[en,te
>
n,t] are bounded

by Assumption SC1,
∑n

t=1 ‖en,t‖
2 = Op(nMn). By Assumption SC3, we can further deduce that,

uniformly in h,

1

n− p

n−h∑
t=p+1

∥∥ê∗n,t − e∗n,t∥∥2 = Op
(
δ2θ,n + δ2B,nMn

)
. (SC.13)

We further note that, uniformly in h,∥∥∥Γ̂∗n(h)− Γ̃∗n(h)
∥∥∥

=

∥∥∥∥∥∥ 1

n− p

n−h∑
t=p+1

(
ê∗n,tê

∗>
n,t+h − e∗n,te∗>n,t+h

)∥∥∥∥∥∥
≤ 1

n− p

∥∥∥∥∥∥
n−h∑
t=p+1

(
ê∗n,t − e∗n,t

)
e∗>n,t+h

∥∥∥∥∥∥+
1

n− p

∥∥∥∥∥∥
n−h∑
t=p+1

e∗n,t
(
ê∗n,t+h − e∗n,t+h

)>∥∥∥∥∥∥
+

1

n− p

∥∥∥∥∥∥
n−h∑
t=p+1

(
ê∗n,t − e∗n,t

) (
ê∗n,t+h − e∗n,t+h

)>∥∥∥∥∥∥
≤ 2

n− p

(
n∑
t=1

∥∥ê∗n,t − e∗n,t∥∥2
)1/2( n∑

t=1

∥∥e∗n,t∥∥2
)1/2

+
1

n− p

n∑
t=1

∥∥ê∗n,t − e∗n,t∥∥2
= Op

(
δθ,nM

1/2
n + δB,nMn

)
,

where the first equality is by definition, the first inequality is by the triangle inequality, the second

inequality is by the Cauchy–Schwarz inequality, and the last line follows from (SC.13). This

estimate further implies that∥∥∥Â∗n − Ã∗n∥∥∥
S

= Op

(
κn

(
δθ,nM

1/2
n + δB,nMn

))
. (SC.14)

Noting that ‖Ĥ−1n ‖S = Op(1), we also have∥∥∥ĤnÂ
∗
nĤ
>
n − ĤnÃ

∗
nĤ
>
n

∥∥∥
S

= Op

(
κn

(
δθ,nM

1/2
n + δB,nMn

))
. (SC.15)

Since ‖Ĥn −Hn‖S = Op(δB,n) and ‖Ã∗n‖S = Op(1),∥∥∥ĤnÃ
∗
nĤ
>
n −HnÃ

∗
nH
>
n

∥∥∥
S

= Op(δB,n). (SC.16)

The assertion of the theorem then follows from (SC.12), (SC.15), and (SC.16). �
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