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Occupation Density Estimation for Noisy High-Frequency Data
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Abstract

This paper studies the nonparametric estimation of occupation densities for semimartingale

processes observed with noise. As leading examples we consider the stochastic volatility of a

latent efficient price process, the volatility of the latent noise that separates the efficient price

from the actually observed price, and nonlinear transformations of these processes. Our esti-

mation methods are decidedly nonparametric and consist of two steps: the estimation of the

spot price and noise volatility processes based on pre-averaging techniques and in-fill asymp-

totic arguments, followed by a kernel-type estimation of the occupation densities. Our spot

volatility estimates attain the optimal rate of convergence, and are robust to leverage effects,

price and volatility jumps, general forms of serial dependence in the noise, and random irregular

sampling. The convergence rates of our occupation density estimates are directly related to

that of the estimated spot volatilities and the smoothness of the true occupation densities. An

empirical application involving high-frequency equity data illustrates the usefulness of the new

methods in illuminating time-varying risks, market liquidity, and informational asymmetries

across time and assets.
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1 Introduction

Volatility is central to financial theory and decision making. Volatility is also inherently latent.

We provide new econometric methods based on the notion of occupation densities for character-

izing dynamic distributional features of the volatility of the latent efficient price of a financial

asset, the volatility of the “noise” that arises from market microstructure frictions, and nonlinear

transformations of these processes. Our theoretical results rely on infill asymptotic arguments in a

possibly non-stationary non-ergodic setting, and are robust to leverage effects, price and volatility

jumps, serial dependence in the noise, and general forms of random irregular sampling.

Methods for describing the distributions of financial market volatility have been the subject of

a very large and still growing literature (see, e.g., the survey in Andersen, Bollerslev, and Diebold

(2010)). Starting with the earliest work based on parametric ARCH/GARCH and stochastic

volatility type models, to the more recent work relying on so-called realized volatilities constructed

from high-frequency intraday data, our understanding of the latent volatility dynamics and dis-

tributional features of volatility has improved substantially. Still, most of the estimation methods

hitherto used in the literature rely on their own set of assumptions, be it specific distributional

assumptions used in the formulation of most ARCH/GARCH and stochastic volatility models, or

the assumption of an efficient frictionless market that forms the foundation for the original realized

volatility concept. We seek to remedy these limitations by providing an essentially unrestricted

model-free approach that permits very general forms of market microstructure noise and irregularly

sampled high-frequency observations.

Our estimation for the occupation densities is based on nonparametric estimators for the spot

volatility of the efficient price and that of the microstructure noise. In the econometrics literature,

the estimation of spot volatility traces back to Foster and Nelson (1996) and Comte and Renault

(1998); see also Kristensen (2010). However, none of these studies allowed for price jumps or

microstructure noise. Several jump-robust spot estimators have been proposed more recently

based on the truncation technique of Mancini (2001); see, for example, Jacod and Protter (2012).

There has also been a growing interest in the design of spot volatility estimators that are robust

to microstructure noise, as exemplified by Zu and Boswijk (2014), Mancini, Mattiussi, and Renò

(2015) and Bibinger, Hautsch, Malec, and Reiss (2019) among others. Nonetheless, the statistical

settings in all of these papers are somewhat restrictive.1

By comparison, we develop nonparametric spot estimators for the volatility of the price and

1The theory of Mancini, Mattiussi, and Renò (2015), which include Zu and Boswijk (2014) as a special case,

is restricted to a setting with independent noise and deterministic sampling. Bibinger, Hautsch, Malec, and Reiss

(2019) do allow for finitely dependent noise, but their sampling scheme is essentially deterministic as well.
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noise processes in the very general setting of Jacod, Li, and Zheng (2019, 2017), in which: (i) the

latent price may have jumps; (ii) the noise may exhibit long-run serial dependence and possibly

depend on both the price and the volatility of the price; and (iii) the sampling scheme may

be irregular and stochastic, and possibly also depend on other processes, like the price and the

volatility. In contrast to the estimators for the integrated volatility of the price and noise developed

by Jacod, Li, and Zheng (2019, 2017), however, we propose new block-wise estimators for the spot

price volatility and the spot volatility of the noise. While these estimators are explicitly designed

for our main purpose of occupation density estimation, we also establish that the new spot volatility

estimator for the price attains the optimal rate in this very general setting. In addition, we derive

a type of uniform convergence for the spot estimators that we rely on in studying the asymptotic

properties of the associated occupation density estimators.

Armed with the first-step nonparametric spot volatility estimates for the efficient price and the

microstructure noise, we nonparametrically estimate the occupation densities of both processes,

along with non-linear transformations thereof. Intuitively, the occupation density of a process

measures the time that it spends in the vicinity of specific levels. As such, it may be seen as an

“ex post” version of the usual probability density, in the same sense that the realized variance may

be seen as an “ex post” analogue to the population variance.

Li, Todorov, and Tauchen (2013) have previously studied the nonparametric estimation of

volatility occupation densities in a basic setting without microstructure noise or irregular sam-

pling. The theory developed in the present paper is substantially more general than this prior

work. First, we allow for general, and empirically more realistic, forms of microstructure noise

and random irregular sampling. This in turn results in a series of highly nontrivial technical

complications. Second, by explicitly accounting for the presence of noise, our setup allows us to

also estimate the occupation densities for the volatility of the noise, as well as the ratio between

the volatility of the noise and that of the efficient price. Each of these measures carries its own

distinct economic interpretation and, hence, significantly broadens the empirical scope of the new

procedures developed here. In particular, as discussed further below, the volatility of the noise is

naturally interpreted as a measure of the effective spread or illiquidity (see, e.g., Roll (1984)), while

the “noise-to-signal” ratio process serves as a succinct measure of the level of informed trading

(see, e.g., Easley, Kiefer, O’Hara, and Paperman (1996)).

We illustrate the empirical usefulness of the new methods with ultra high-frequency (i.e., tick-

by-tick) price data in a sample from 2007 to 2014, which includes both the height of the 2008

financial crisis and much more stable non-crisis periods before and after. We consider two individual

stocks, Goldman Sachs (GS) and Starbucks (SBUX), as representatives of a financial and a non-
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financial firm, respectively. We further complement the estimates for these individual stocks, with

the analysis of prices at the aggregated level for the XLF financial sector exchange traded fund

(ETF) and the SPY ETF for the S&P 500 market index. Comparing the occupation density

estimates obtained for different episodes in our sample, we find that both the center and the

dispersion of the distributions of the price volatility were higher during the crisis period than non-

crisis periods. This, of course, is hardly surprising. Meanwhile, we also document the same pattern

for the volatility of the microstructure noise. Taken together, these findings therefore corroborate

the idea that not only did financial markets became more volatile during the crisis, they generally

also became less liquid.

Interestingly, and more surprisingly, looking at the distributions of the ratio between the esti-

mated noise and price volatility processes, we find that this measure of informational asymmetry

concentrates at notably lower levels for financial firms than for non-financial firms during the crisis.

As such, this suggests that the increased transparency and concerted governmental efforts aimed

at stabilizing financial markets during the crisis may indeed have been successful in reducing in-

formational asymmetries for the financial firms at the very center of the crisis. At a broader level

this also directly highlights the usefulness of the new estimation theory for casting new light on

questions of economic import.

The remainder of the paper is organized as follows. Section 2 introduces the theoretical setting.

Section 3 develops the new nonparametric methods for spot volatility and occupation density

estimation. Section 4 discusses the results from applying the new methods to high-frequency stock

price data, and further connects the empirical findings to economic market microstructure theories.

Section 5 concludes. Section 6 contains all proofs.

2 Theoretical setup and assumptions

2.1 Efficient and observed price processes

We assume that the efficient log-price Xt of an asset may be described as an Itô semimartingale

defined on the filtered probability space (Ω,F , (Ft)t≥0,P),

Xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs +

∑
s≤t

∆Xs, (2.1)

where the drift process b is locally bounded, the stochastic volatility process σ is càdlàg, W is

a one-dimensional standard Brownian motion, and ∆Xt ≡ Xt − Xt− denotes the time-t (if any)

jump in X. This setting is quite standard in the analysis of high-frequency financial data; see, for

example, Jacod and Protter (2012) and Aı̈t-Sahalia and Jacod (2014).
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The continuous-time efficient price process X is not directly observable. Instead, we observe

“noisy” prices at random (stopping) times over some fixed time interval [0, T ]. Without loss of

generality, we normalize T = 1, and denote the sampling times by 0 = T (n, 0) < T (n, 1) < · · · .
The actually observed price Y n

i at each of the sampling times T (n, i) is assumed to have a standard

“signal-plus-noise” structure,

Y n
i = XT (n,i) + εni , (2.2)

where the observation error εni stems from various market microstructure frictions (e.g., discrete-

ness, and bid-ask bounce effects). This term is commonly referred to as “noise” in the high-

frequency econometrics literature.

The prior literature on realized volatility mainly focuses on the estimation of the volatility σ of

the efficient price, treating the noise term as a statistical nuisance. However, the “noise” term is

of central importance from an empirical market microstructure perspective (see, e.g., Hasbrouck

(2007)). In particular, the volatility of the microstructure noise component εni may be interpreted

as a measure of market illiquidity, and as such is of direct economic interest. This interpretation

can be traced back at least to Roll (1984), who suggested that the volatility of εni may be seen as

a proxy for the “effective spread,” or the cost associated with trading the asset. In actuality, the

effective spread is typically smaller than the bid-ask spread observed in quote data, in that trades

often occur within the quoted spreads due to hidden orders, dark pools, or the (slight) mismatch

between the time stamps of transactions and quotes that invariably exists in most high-frequency

databases.2

In our effort to further study the volatility of the noise as an illiquidity measure, we follow

Jacod, Li, and Zheng (2019, 2017) and assume that it has a multiplicative structure,

εni = γT (n,i) · χi. (2.3)

Without loss of generality, we normalize the standard deviation of the χi shock to unity, so the

γ process is directly interpretable as the volatility of the noise. We in turn use our estimate of

γ as a measure of the effective spread in our empirical analysis. Importantly, since the γ process

is generally stochastic and may be strongly persistent, our setup allows the εni noise term to be

strongly serially dependent. Moreover, the χi term is also allowed to be serially correlated, thus

permitting an extra layer of dependence. Formal regularity conditions on the different noise terms

are given in Assumption 2 below.

2Although the effective spread measure extracted from the transaction prices are robust to the issue of within-

spread trades, it needs to be estimated statistically, and hence is subject to estimation error. The actual quote

prices, on the other hand, are directly observed. As such, these measures have their own distinct merits and should

be regarded as complements rather than substitutes.
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In addition to the volatility of the efficient price and the volatility of the noise, the corresponding

“noise-to-signal” process,

ϕt = γt/σt, (2.4)

is imbued with it’s own distinct economic interpretation. Indeed, using a version of the Glosten–

Milgrom model (see Glosten and Milgrom (1985)), Hasbrouck (2007) shows that the bid-ask spread

is proportional to the price volatility, and that the ratio between the two is an increasing function

of the informational asymmetry between the market marker and the informed trader within the

model.3 In a further extension of the Glosten–Milgrom model explicitly allowing for uncertain

information events, Easley, Kiefer, O’Hara, and Paperman (1996) demonstrate that the spread-

volatility ratio is also directly proportional to the probability of informed trading. As such, the ϕt

ratio process is naturally interpreted as an omnibus measure of informational asymmetry, providing

complementary information to that afforded by the more standard σt and γt price volatility and

trading illiquidity measures.

2.2 Occupation densities

Our main econometric interest centers on characterizing distributional features of the price volatil-

ity σ, the noise volatility γ, and their ratio ϕ. As discussed above, these three different processes

may be seen as proxies for the price risk, the market illiquidity, and the informational asymmetry

of the asset, respectively.

Kernel density techniques are commonly used for empirically estimating distributional features

of stochastic processes. However, the classical theory underlying kernel density estimation invari-

ably relies on stationarity and weak-dependence type assumptions, and the exploitation of these

regularities for characterizing the invariant distribution of the process of interest in a long-span

asymptotic setting. By contrast, we are interested in estimating the distributional features of the

σ, γ, and ϕ processes over relatively short calendar time-spans, so as to allow for temporal varia-

tion and comparisons of the estimates obtained in different economic environments. Since financial

market volatility is well known to be highly persistent (see, e.g., Andersen, Bollerslev, Diebold,

and Ebens (2001); Andersen, Bollerslev, Diebold, and Labys (2001)), arguing that standard sta-

tionarity and weak-dependence type assumptions have “kicked in” over short time spans simply is

not tenable.

Instead, we depart from conventional kernel-based density estimation theory, and rely on the

notion of occupation densities. Formally, for a generic stochastic process Zt, its occupation time

3The level of information asymmetry is formally modeled as the proportion of informed traders in the population;

see Section 5.2 in Hasbrouck (2007) for details.
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is defined as,

FZ (x) ≡
∫ 1

0
1{Zs≤x}ds, x ∈ R.

This is a random function corresponding to the proportion of time the process is below the level

x (recall that the sample span T is normalized to unity). If the occupation time is pathwise

differentiable with respect to the spatial variable x, the associated occupation density fZ(·) is

simply defined as its derivative,

fZ(x) ≡ dFZ (x) /dx x ∈ R.

The existence and basic properties of occupation densities for Markov and Gaussian processes have

been studied by Geman and Horowitz (1980) and Marcus and Rosen (2006), among others. Addi-

tional results specifically pertaining to the jump-diffusion type processes widely used in analyzing

financial data, as formally defined in (2.1), are available in Li, Todorov, and Tauchen (2016).

Intuitively, the occupation density measures how much time a process (e.g., σ, γ or ϕ) spends

in the vicinity of specific levels. Li, Todorov, and Tauchen (2013) have previously proposed an

estimator for the occupation density of the price volatility in a basic setting without microstructure

noise (i.e., εni ≡ 0). In the current paper, we consider a substantially wider class of processes, allow-

ing for both serially dependent microstructure noise and irregular random sampling. Importantly,

we also go beyond the estimation of the (price) volatility occupation density, by developing new

methods for estimating the occupation densities for the noise volatility and the ratio processes,

both of which are of independent economic interest.

2.3 Regularity conditions

Our new estimation procedures naturally require some, albeit very mild, regularity conditions.

We begin by discussing the conditions pertaining to the irregular sampling times, followed by the

conditions for the market microstructure noise, and the latent price process itself.

Compared to a regular sampling scheme with T (n, i) = i∆n for some fixed sampling in-

terval ∆n, the present setting allows T (n, i) to be random, irregularly spaced, and dependent

on various underlying processes, including the latent price volatility process. Specifically, let

Nn
t ≡

∑
i≥1 1{T (n,i)≤t} denote the number of returns observed up to time t. The sampling interval

for the ith return is then,

∆(n, i) ≡ T (n, i)− T (n, i− 1).

We consider an infill asymptotic setting, in which these sampling intervals go to zero as n → ∞
in an average sense. Below, we use ∆n to denote a positive real sequence such that ∆n = o(1) as

n→∞. Formally, we maintain the following assumption.
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Assumption 1. The following conditions hold for some constant ρ > 1/2, a sequence (τm)m≥1 of

stopping times increasing to ∞, and a sequence (Km)m≥1 of strictly positive constants.

(i) α is continuous and αt > 0 for all t.

(ii) ∆nN
n
t

P−→ At ≡
∫ t

0 αsds, for all t.

(iii) In restriction to {T (n, i− 1) ≤ τm}, |E[αT (n,i−1)∆(n, i)|FT (n,i−1)] −∆n| ≤ Km∆1+ρ
n and

E[|αT (n,i−1)∆(n, i)|κ|FT (n,i−1)] ≤ Km∆κ
n for all κ ≥ 2.

The α process in Assumption 1 provides a summary measure of the sampling intensity. Con-

dition (iii), in particular, suggests that ∆n,i ≈ ∆n/αT (n,i−1), so the sampling interval is shorter

when the intensity is higher, and vice versa. As such, the α process is only identified up to scale

(scaling ∆n and α with the same constant leads to no change in the theory). Assumption 1 is

inspired by Jacod, Li, and Zheng (2019, 2017), albeit slightly weaker than the conditions invoked

in those papers.4 It accommodates all of the irregular sampling schemes commonly used in the

literature including, for example, modulated Poisson schemes and time-changed regular sampling

schemes (with ρ = 1), as well as modulated random walk schemes (with any ρ > 0); see Jacod, Li,

and Zheng (2019, 2017) for more detailed discussions of these alternative schemes.

The two separate processes that combine to define the market microstructure noise term also

need to satisfy some mild regularity conditions. The next assumption formalizes these conditions.

Assumption 2. The εni noise has the form (2.3) and the following conditions hold for a sequence

(τm)m≥1 of stopping times increasing to ∞, and a sequence (Km)m≥1 of strictly positive constants.

(i) The process γ is càdlàg and adapted, and 1/Km ≤ γt− ≤ Km in restriction to {t ≤ τm}.
(ii) The variables (χi)i∈Z form a stationary sequence, independent of F∞ ≡

∨
t>0Ft, with zero

mean, unit variance, and finite moments of all orders.

(iii) The variables (χi)i∈Z is ρ-mixing with mixing coefficient ρk satisfying ρk = O(k−v) for

some v > 4.

Importantly, these conditions allow for quite general dependencies in the noise term, including

serial correlation.5 The serial dependence may arise through two separate channels: calendar-time

persistence in the noise volatility process (γt), and tick-time dependence among the shocks (χi).

4See Assumption (O) in Jacod, Li, and Zheng (2017) and Assumption (O-ρ, ρ′) in Jacod, Li, and Zheng (2019).

These authors require stronger assumptions than ours so as to prove central limit theorems. The derivation of central

limit theorems for volatility occupation densities, even in the case without microstructure noise (as in Li, Todorov,

and Tauchen (2013)), remains a very open question, mainly due to the fact that the occupation density itself is a

random function with very limited smoothness properties.
5The empirical analyses in Hansen and Lunde (2006) and Jacod, Li, and Zheng (2017) clearly point to the

importance of allowing for high-frequency serially dependent noise.
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Finally, we also require a “smoothness” type condition on the actual price processes. The

following assumption formalizes this final requisite set of conditions.

Assumption 3. The following conditions hold for a sequence of stopping times (τm)m≥1 increasing

to ∞ and a sequence of positive constants (Km)m≥1.

(i) The efficient price process X satisfies (2.1), with its jump component given by

∑
s≤t

∆Xs =

∫ t

0

∫
R
δ (s, z)µ (ds, dz) ,

where µ is a Poisson random measure on R+ × R with a deterministic compensator ν(dt, dz) =

dt ⊗ λ (dz) for some σ-finite measure λ (dz) on R, and δ is a real-valued predictable function on

Ω×R+×R. There exists a sequence (Γm)m≥1 of deterministic nonnegative λ-integrable functions

on R such that ‖δ̃(ω, t, z)‖r ∧ 1 ≤ Γm(z) in restriction to {t ≤ τm} for some r ∈ (0, 1].

(ii) Each ψ ∈ {α, b, σ, γ} is an Itô semimartingale of the form,

ψt = ψ0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs +

∫ t

0
σ̃′sdW

′
s + J̃t, (2.5)

where the processes b̃, σ̃ and σ̃′ are locally bounded and adapted, W ′ is a Brownian motion orthog-

onal to W , J̃t is a purely discontinuous process of the form,

J̃t =

∫ t

0

∫
R
δ̃ (s, z) 1{‖δ̃(s,z)‖≤1}(µ− ν) (ds, dz) +

∫ t

0

∫
R
δ̃ (s, z) 1{‖δ̃(s,z)‖>1}µ (ds, dz) ,

where δ̃ is a real-valued predictable function on Ω × R+ × R. There exists a sequence (Ψm)m≥1

of deterministic nonnegative λ-integrable functions on R, such that ‖δ̃(ω, t, z)‖2 ∧ 1 ≤ Ψm(z) in

restriction to {t ≤ τm}.
(iii) For each m ≥ 1, 1/Km ≤ σt− ≤ Km when t ≤ τm.

Assumption 3 is quite mild and is satisfied by most continuous-time models used in economics

and finance. In particular, it allows both of the σ and γ volatility processes to exhibit intraday

periodicity, very general forms of dynamic dependencies, and jumps of unrestricted activity.

3 Occupation density estimation

Our estimation of the occupation densities consists of two steps. In the first step, we nonpara-

metrically estimate the price volatility σt and noise volatility γt processes, and then, in the second

step, we use these estimates to form a kernel-type nonparametric estimator for the corresponding

occupation densities. Below, we detail each of these two steps in turn.

9



3.1 Nonparametric spot estimators via pre-averaging

The spot estimators proposed below are essentially localized versions of the integrated variance

estimators in Jacod, Li, and Zheng (2019, 2017). These estimators in turn are general versions

of the pre-averaging estimators (see Jacod, Li, Mykland, Podolskij, and Vetter (2009); Jacod,

Podolskij, and Vetter (2010)), extended to allow for price jumps, serially dependent noise, and

random irregular sampling. The pre-averaging method is one of many strategies that are now

available for estimating the integrated volatility of a latent efficient price process observed with

noise (see, e.g., Zhang, Mykland, and Aı̈t-Sahalia (2005), Zhang (2006), Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008), Xiu (2010) and Reiß (2011) for some of the other methods that

have been proposed in the literature). We focus on the pre-averaging method mainly because of

its generality and ease-of-implementation. However, other spot estimators could in principle be

similarly adapted for the purpose of occupation density estimation, as further discussed in Section

3.2 below.

The key idea behind the pre-averaging method is to “smooth out” the noise, by appropriately

averaging the noisy returns. To this end, we consider a weight function w : R 7→ R that is

continuous, piecewise continuously differentiable with Lipschitz-continuous derivative, and further

satisfies w(s) = 0 for s /∈ (0, 1) and
∫ 1

0 w(s)2ds > 0. In addition to the weight function w, the

pre-averaging method also requires a smoothing parameter hn that governs the scope of the local

averaging. Denoting the ith noisy return by ∆n
i Y ≡ YT (n,i) − YT (n,i−1), the pre-averaged returns

are then simply defined by,

Ỹ n
i ≡

hn−1∑
j=1

w (j/hn) ∆n
i+jY, (3.1)

where the tuning parameter hn needs to grow “slowly” to infinity compared to the increasing

number of high-frequency observations.

By construction, the variance of the pre-averaged return Ỹ n
i depends not only on the price

volatility, but also on the variance and autocovariances of the noise. This induces a bias in the

volatility estimation that needs to be corrected. In order to do so, we require an estimate of the

spot autocovariances of the noise for a growing number of lags k′n. As is common in the literature

on spot volatility estimation, we consider a local window Ln, and divide the (normalized) sample

period [0, 1] into Mn = b1/Lnc non-overlapping blocks (each of length Ln in calendar time).

Intuitively, we need Ln → 0 in order to “kill” the bias in the nonparametric estimation, while

at the same time requiring each of the local windows to contain a sufficiently large number of

pre-averaged returns so as to attain statistical precision.

Specifically, let Ji denote the index of the first observation in the ith estimation block (i.e.,
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[(i− 1)Ln, iLn]). For this block, we define the (unnormalized) spot autocovariance of the noise at

lag l as,

U(l)ni ≡
Nn
iLn
−Nn

(i−1)Ln
−5kn∑

j=0

(
YT (n,Ji+j) − ȲJi+j+2kn

) (
YT (n,Ji+j+l) − ȲJi+j+4kn

)
, (3.2)

where Ȳ n
j ≡ k−1

n

∑kn−1
k=0 YT (n,j+k). For the purpose of defining the spot volatility estimators, it

is useful to further associate the weight function w and the smoothing parameter hn with the

following constants,

φn ≡
1

hn

∑
j∈Z

w

(
j

hn

)2

,

φn,l ≡ hn
∑
j∈Z

(
w

(
j + 1

hn

)
− w

(
j

hn

))(
w

(
j + 1− l

hn

)
− w

(
j − l
hn

))
.

(3.3)

Using this notation, our spot variance estimator of the efficient price on the ith block may be

conveniently expressed as,

σ̂2
(i−1)Ln

≡ 1

Ln

1

hnφn

Nn
iLn
−Nn

(i−1)Ln
−hn∑

j=0

(
Ỹ n
Ji+j

)2
1{|Ỹ nJi+j |≤un}

− 1

Ln

1

h2
nφn

k′n∑
l=−k′n

φn,lU (|l|)ni , (3.4)

where the truncation threshold un is introduced to eliminate jumps (following the approach of

Mancini (2001)), and the second term involving the growing number of k′n autocovariances corrects

for the bias induced by the possibly autocorrelated noise. Correspondingly, our estimator for the

spot variance of the noise is given by,

γ̂2
(i−1)Ln

≡ U(0)ni
Nn
iLn
−Nn

(i−1)Ln

. (3.5)

Finally, to extend the estimators on each of the blocks defined in (3.4) to all times in [0, 1], we

simply set,

σ̂2
t ≡

σ̂2
(i−1)Ln

, t ∈ [(i− 1)Ln, iLn) , 1 ≤ i ≤Mn,

σ̂2
(Mn−1)Ln

, t ∈ [MnLn, 1] ,
(3.6)

with γ̂2
t extended from (3.5) in a similar fashion.

The estimators defined above all rely on certain tuning parameters, as it is invariably the case

with this type of nonparametric estimation in a general statistical setting. Since all of these tuning

parameters are introduced in a standard fashion, the prior literature is also highly informative
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about their choice and interpretation. The smoothing parameter hn, in particular, is standard in

all pre-averaging type estimators (see, e.g., Jacod, Li, Mykland, Podolskij, and Vetter (2009) and

Jacod, Podolskij, and Vetter (2010)). It serves to reduce the bias resulting from microstructure

noise. The thresholding technique and the use of the un truncation parameter is also standard

for eliminating jumps, both in the cases with or without noise (see, e.g., Mancini (2001), Aı̈t-

Sahalia, Jacod, and Li (2012) and Li (2013)). Allowing the noise to have mixing-type serial

dependence necessitates the additional tuning parameters kn and k′n for the purpose of estimating

the “local long-run” variance of the noise (see Jacod, Li, and Zheng (2019, 2017)). This mirrors

the heteroskedasticity and autocorrelation robust variance estimation in conventional long-span

time-series settings. Finally, the use of a local window Ln is also a common feature of essentially

all spot volatility estimators, with or without any noise (see, e.g., Jacod and Protter (2012)).

The following theorem formally spells out the consistency of the spot estimators and their

associated rates of convergence subject to standard choices of the different tuning parameters.6

Theorem 1. Suppose that (i) Assumptions 1, 2 and 3 hold; (ii) hn � ∆
−1/2
n , kn � ∆

−1/5
n ,

k′n � ∆
−1/8
n , Ln � ∆τ

n with 0 < τ < 1
3 , un � (hn∆n)$ and

r <
2 bvc − 4

2 bvc − 3
and

1

4− 2r
< $ <

2 bvc − 3

4 bvc − 4
.

Then, for each t ∈ [0, 1],

σ̂2
t − σ2

t = Op

(
∆τ/2
n ∨∆1/4−τ/2

n

)
,

γ̂2
t − γ2

t = Op

(
∆τ/2
n ∨∆3/10−τ/2

n

)
.

If, in addition (iii) 0 < τ < 11/60, then

sup
1≤i≤Mn

∣∣∣∣∣σ̂2
(i−1)Ln

− 1

Ln

∫ iLn

(i−1)Ln

σ2
sds

∣∣∣∣∣ = Op

(
∆1/4−τ
n ∨∆11/40−3τ/2

n

)
,

sup
1≤i≤Mn

∣∣∣∣∣γ̂2
(i−1)Ln

− 1

Ln

∫ iLn

(i−1)Ln

γ2
sds

∣∣∣∣∣ = Op

(
∆2/5−3τ/2
n ∨∆τ/2

n log
(
∆−1
n

)1/2)
.

Theorem 1 provides upper bounds for both pointwise and uniform convergence rates of the

spot variance estimator of the efficient price and that of the microstructure noise. The former, in

particular, attains the ∆
−1/8
n pointwise convergence rate for τ = 1/4.7 Bibinger, Hautsch, Malec,

6 These new spot estimators could in principle be used in the construction of reduced-form forecasting models

for price volatility and market illiquidity. We leave further work along those lines for future research.
7This optimal rate is attained by judiciously balancing the estimation bias, which is of order Op(∆

τ/2
n ), and the

statistical error, which is of order Op(∆
1/4−τ/2
n ).
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and Reiss (2019) have recently shown that in a setting with finitely-dependent noise and a random

independent sampling scheme, the optimal convergence rate for spot volatility estimation is ∆
−1/8
n .

Since the present statistical setting is more general, our spot volatility estimator thus achieves rate

optimality as well.

The theorem also establishes the convergence rate at which σ̂2
(i−1)Ln

and γ̂2
(i−1)Ln

provide

uniform approximations to the local averages of σ2 and γ2 within the [(i− 1)Ln, iLn) window. If

the σt and γt processes are both continuous, this result further implies that σ̂t and γ̂t are uniformly

consistent estimators of σt and γt for t ∈ [0, 1]. However, this uniform convergence is not generally

attainable when σ and/or γ contain jumps.

3.2 Occupation density estimators

Equipped with the nonparametric spot estimators, the occupation densities may be estimated by

“plug-in” kernel smoothing type methods. More specifically, we are interested in the occupation

density of Z = g(σ2, γ2) for some smooth transform g(·). For example, by setting g
(
σ2, γ2

)
= σ,

γ or γ/σ, we can study the occupation density of the price volatility, the noise volatility or their

ratio, respectively.

More specifically, let the corresponding spot estimator of Z be denoted by Ẑ = g(σ̂2, γ̂2). Then,

in parallel to conventional probability density estimation, we estimate the occupation density fZ(·)
using,

f̂Z(x) ≡
∫ 1

0

1

δn
H

(
Ẑs − x
δn

)
ds, (3.7)

where δn denotes a bandwidth sequence, and the kernel function H (·) is assumed to be bounded

and Lipschitz continuous satisfying
∫∞
−∞H(s)ds = 1. To analyze the asymptotic property of this

estimator, we impose the following additional assumption.

Assumption 4. The occupation density fZ(·) of Z exists. Moreover, for some constant β ∈ (0, 1]

and any compact set K ⊂ (0,∞), there exists a constant K > 0, such that for all a, b ∈ K,

E |fZ(a)− fZ(b)| ≤ K |a− b|β.

Assumption 4 stipulates that the occupation density is β-Hölder continuous under the L1-norm

for some β ∈ (0, 1]. Unlike conventional density estimation problems, in which the density function

is smooth (e.g., differentiable up to a certain order), the occupation density of stochastic processes

are generally not very smooth. For example, the occupation density for a one-dimensional Brownian

motion satisfies Assumption 4 with β = 1/2 (see Exercise VI.1.33 in Revuz and Yor (1999)), while

for more general jump-diffusion models the condition may be verified using Lemma 2.1 in Li,

Todorov, and Tauchen (2016).
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The following theorem establishes the consistency, along with the rate of convergence, for the

occupation density estimator f̂Z(·) under this assumption. As alluded to above, our estimator for

the occupation density is not specific to the pre-averaging spot estimator developed in Section 3.1.

To make this point explicit, we state the theorem under a high-level condition on the convergence

rate of the spot estimators σ̂2 and γ̂2 (see condition (ii)), while remaining agnostic about their

exact constructions. Meanwhile, Theorem 1 may be used to verify this high-level condition for

our proposed pre-averaging spot estimators in the general setting with serial dependent noise and

random irregular sampling.

Theorem 2. Suppose that (i) Assumption 4 holds; (ii) for θ = (σ2, γ2), sup1≤i≤Mn
‖θ̂(i−1)Ln −

L−1
n

∫ iLn
(i−1)Ln

θsds‖ = Op(an) for some positive sequence an = o(1); (iii) the kernel function H

satisfies
∫
H(z) |z|β dz <∞; (iv) the processes σ2 and γ2 are, locally in time, bounded and bounded

away from zero; (v) the transform g (·) is Lipschitz on each compact subset of (0,∞)×(0,∞). Then,

for each fixed x > 0,

f̂Z(x)− fZ(x) = Op(δ
−2
n ān ∨ δβn),

where ān ≡ an ∨∆
τ/2
n .

Theorem 2 readily implies the consistency of f̂Z(x), as long as the bandwidth δn converges

to zero sufficiently “slowly,” namely δn → 0 and δ−2
n ān → 0. Not surprisingly, the convergence

rate of the occupation density estimator is closely connected to the uniform rate of convergence

of the spot estimator and the smoothness of the occupation density. That being said, whether

the estimator attains the optimal rate is unclear. In fact, characterizing the optimal rate for

the nonparametric estimation of occupation densities remains an open question in need of future

research more generally.

Importantly, condition (ii) only requires that the spot estimator θ̂(i−1)Ln uniformly approxi-

mates the local average L−1
n

∫ iLn
(i−1)Ln

θsds. As shown in Theorem 1, this condition can be verified

in general settings, including jumps in the θ =
(
σ2, γ2

)
process. Instead, a theory build on the

“seemingly natural” uniform approximation framed in terms of supt∈[0,1] ‖θ̂t− θt‖ would not allow

for the presence of jumps.

Note also that condition (v) only requires g(·) to be Lipschitz on compact sets. As such, it

allows g(·) to have “explosive growth” at zero, which is the case for the g
(
σ2, γ2

)
= σ, γ and γ/σ

transforms studied empirically below.8

The estimation of occupation densities for volatility processes have previously been studied by

Li, Todorov, and Tauchen (2013). Our results extend this prior work in two important directions.

8The transforms g(σ2, γ2) = σ and γ have unbounded first derivative at zero, while γ/σ is unbounded at σ = 0.
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First, Li, Todorov, and Tauchen (2013) only consider a basic setting with regularly sampled prices

observed without any noise. By contrast, we allow for very general forms of market microstructure

noise and irregular random sampling. Second, Li, Todorov, and Tauchen (2013) only study the

occupation density of the volatility of the (directly observed) efficient price itself. However, our

methods allow for the estimation of the occupation densities of the γ and ϕ processes as well,

thereby considerably broadening the scope of the analysis, and affording new economic insights

related to liquidity and informational asymmetries in financial markets. The empirical application,

to which we now turn, directly illustrates this point.

4 An empirical application

We apply the new methods to the estimation of the occupation densities for two individual stocks

and two exchange trade funds (ETFs). Specifically, we consider Goldman Sachs (GS) and Starbucks

(SBUX), as representatives of similar sized financial and non-financial firms, respectively, together

with the financial sector ETF (XLF) and the S&P 500 ETF (SPY). We intentionally pick these

specific assets in an effort to highlight the differences in volatility, liquidity and informational

asymmetries between firms in the financial and non-financial sectors.

Our data is obtained from the Trade and Quote (TAQ) database from 2007 to 2014. The raw

data consists of tick-by-tick transaction prices for all regular trading days. We remove “overnight”

returns, keeping only the returns observed during the active part of the trading day from 9:30 to

16:00.

In contrast to more traditional probability density estimation techniques based on time se-

ries data, which rely on an increasing sample span and strong stationarity assumptions, our infill

asymptotic theory remains formally valid and empirically reliable over relatively short fixed calen-

dar time spans (e.g., 1 quarter or 1 year). In estimating the relevant spot processes, we further set

Ln = 1/13, corresponding to 30-minute estimation blocks. We adaptively choose hn =
⌊
0.5N1/2

⌋
,

kn =
⌊
N1/5

⌋
, and k′n =

⌊
N1/8

⌋
, where N denotes the number of trades within an estimation

block of length Ln; these choices directly mirror Jacod, Li, and Zheng (2019). For simplicity, we

do not impose any threshold truncation for jumps (the actual empirical estimates obtained with

truncation are almost identical to the ones discussed below).

Our second stage estimation of the occupation densities relies on the widely used Epanechnikov

kernel H(u) = 0.75 max{1 − u2, 0}, with the corresponding bandwidth parameter δn chosen by

cross-validation. We do not claim any optimality of cross-validation, but merely consider it a

sensible way of choosing the bandwidth parameter. The formal theoretical analysis of cross-

15



validation in the present context remains an open (and difficult) question for at least two reasons.

First, our estimation is “doubly” nonparametric, with the second-stage kernel estimation relying

on first-stage nonparametric high-frequency spot estimators. Secondly, the occupation densities

themselves are stochastic processes with limited smoothness, rendering them much more difficult

to analyze theoretically than the probability density functions studied in the more conventional

nonparametric estimation literature.

Turning to the actual empirical results, we begin by discussing the estimates from two years,

2008 and 2014, so as to make a direct comparison of the estimates obtained at the height of the

financial crisis with the estimates during a more recent and stable post-crisis period. Figure 1

shows the occupation density estimates for the price volatility σ, the illiquidity measure γ, and

the informational asymmetry measure ϕ, with the estimates for Goldman Sachs reported in the

left three panels and the estimates for Starbucks in the right three panels. Looking first at the

estimates for the volatility in panels (a) and (b) in the top row, we see that, not surprisingly, for

both of the stocks the levels are clearly higher in 2008 than in 2014. At the same time, the volatility

occupation density estimates reveal not only a shift in the level between the crisis and non-crisis

years, but also in the general shapes of the distributions. The higher dispersion, in particular, that

is evident for both of the stocks in 2008, implies a much greater volatility risk, or “volatility-of-

volatility,” during the crisis. This pattern is especially pronounced for Goldman Sachs, for which

the 2008 distribution manifests a heavy right tail. By comparison, the 2008 volatility density

estimate for Starbucks is much closer to being symmetric, suggestive of an interesting contrast in

the price volatility risk between financial and non-financial sector stocks during the crisis.

The occupation density estimates for the γ illiquidity process in panels (c) and (d) also clearly

reveal both higher centered and more dispersed distributions for 2008 compared to 2014. This

finding underscores the close relationship that generally exists between illiquidity and volatility. In

contrast to the volatility occupation density estimates in panels (a) and (b), however, the estimated

illiquidity occupation densities for the two different stocks appear quite similar during the crisis.

This differential pattern therefore suggests that illiquidity is not entirely driven by volatility, and

that the illiquidity-volatility relationship may be time-varying and differ across assets depending

on the prevailing informational asymmetries at play.

Economic market microstructure theory provides a useful guide for better understanding these

issues. In particular, as previously noted, building on insights from the Glosten–Milgrom equilib-

rium model (see, e.g., Hasbrouck (2007); Easley, Kiefer, O’Hara, and Paperman (1996)), the ratio

ϕ = γ/σ may be seen as a monotonically increasing function of the level of informational asym-

metry. This asymmetry naturally varies, both over time and across assets. During the financial
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Figure 1: Occupation density estimates for Goldman Sachs (GS) and Starbucks (SBUX) individual

stocks.
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crisis, a tremendous amount of information gathering about financial sector firms and the financial

sector as a whole was undertaken by the government. These governmental efforts were further

accompanied by extensive analysis by regulators and researchers in academia and industry alike.

Hence, in spite of the very high level of risk observed for a financial firm like Goldman Sachs,

the level of informational asymmetry among market participants may actually have been lower

during the crisis. Correspondingly, trading in Goldman Sachs stock may have been driven more

by liquidity/rebalancing needs, as opposed to informed trading, during the crisis. On the other

hand, the increased information gathering about the financial sector that occurred during the crisis

should be much less relevant for a company like Starbucks that primarily derives its revenues from

selling coffee.

To examine this conjecture, the bottom two panels (e) and (f) in Figure 1 plot the occupation

density estimates for the ratio process ϕ = γ/σ. Consistent with the implications from the eco-

nomic reasoning above, the density estimate for Goldman Sachs concentrates around a much lower

level in 2008 than in 2014, suggesting that the informational advantage of “informed traders” were

indeed diluted by the increased awareness and level of public information related to the financial

sector as a whole during the financial crisis. By comparison, the estimated occupation densities

of the ϕ ratio process for Starbucks are quite similar for 2008 and 2014, indicative of much more

stable through-time informational asymmetries.

The economic logic behind this “tale-of-two-firms” is not specific to Goldman Sachs and Star-

bucks, but holds true for other financial and non-financial firms, and accordingly diversified port-

folios. To further corroborate this, Figure 2 shows the occupation density estimates for the XLF

financial sector and SPY S&P 500 ETFs. The XLF is comprised of a wide range of stocks in the

financial services industry, including insurance, banks, as well as consumer and mortgage finance,

while the SPY is comprised of 500 large company stocks across all industries. As such, these two

ETFs may naturally be seen as a “Wall Street” versus “Main Street” portfolio parallel to the

Goldman Sachs versus Starbucks “tale-of-two-firms.”

Looking at the actual estimation results also reveal qualitatively very similar patterns to those

observed for the two individual stocks. In particular, the density estimates for the volatility and

illiquidity processes, σ and γ, are both at higher overall levels and more dispersed in 2008 compared

to 2014. At the same time, the estimates for the ratio process ϕ = γ/σ for the SPY ETF shown in

the bottom right panel (f) are fairly similar for each of the two years. By contrast, the estimates

for the ratio process ϕ for the XLF financial sector ETF in panel (e) are clearly different between

the crisis and non-crisis years. This difference again suggests that the large amount of public

information gathering pertaining to the financial services industry that occurred during the crisis
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Figure 2: Occupation density estimates for the financial sector (XLF) and S&P 500 (SPY) exchange

traded funds (EFTs).
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was effective in reducing informational asymmetries for the sector as a whole. It also indirectly

suggests that without these concerted efforts, financial sector firms would likely have been even

more costly to trade during the crisis, and as such these efforts might have helped mitigate liquidity

spiral type effects (see, e.g., the discussion in Brunnermeier and Pedersen (2009)).

Finally, to help visualize the time-varying nature of risk in volatility, illiquidity, and asymmetric

information more generally, we estimate the respective occupation densities for each quarter in our

full 2007–2014 sample. The resulting estimates for the two individual stocks and the two ETFs

shown in Figures 3 and 4, respectively, clearly demonstrate that the occupation densities do vary

over time. They also make it clear that the more detailed results for 2008 and 2014 discussed above

may indeed be seen as representative for crisis and non-crisis periods. Specifically, the occupation

densities of price volatility and illiquidity both became noticeable more dispersed during the great

recession, tightened afterwards, while the estimated densities pertaining to asymmetric information

varied in the opposite direction.

5 Conclusion

This paper develops new methods for the nonparametric estimation of occupation densities of the

volatility of a latent efficient price process, the volatility of the noise that separates the efficient

price from the actually observed price process, and nonlinear transformations of these processes.

The new methods are valid in general high-frequency statistical settings. In parallel to conven-

tional probability density estimators, the occupation density estimators naturally characterize the

distributional features of the underlying processes. Unlike conventional theory for density esti-

mation, however, the new theory underlying the estimation of the occupation densities does not

require stationarity or weak-dependence assumptions on the processes of interest. This allows

implementation of the new methods over relatively short calendar time-spans, thereby providing

a useful complement to more traditional nonparametric density estimation techniques.

An empirical application based on ultra high-frequency equity returns illustrates the usefulness

of the new methods for delineating information about time-varying risks, liquidity, and informa-

tional asymmetries. Consistent with prior empirical evidence based on alternative procedures,

we document systematically higher levels of volatility and illiquidity during the financial crisis

compared to a more recent non-crisis period, along with more dispersed distributions of these

same quantities. In new empirical findings, we further document a clear distributional shift in

the illiquidity/volatility ratio, indicative of lower informational asymmetries for financial sector

firms during the financial crisis. By comparison, the estimated ratio processes and informational
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Figure 3: Quarterly occupation density estimates for Goldman Sachs (GS) and Starbucks (SBUX)

individual stocks spanning 2007–2014. The dark color highlights the six quarters from 2008Q1 to

2009Q2.
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asymmetries pertaining to non-financial firms appear remarkably stable across crisis and non-crisis

periods.

6 Proofs

Throughout the proofs, we use K to denote a generic constant that may change from line to line.

By a classical localization argument, we impose the following stronger assumption without loss of

generality.

Assumption 5. We have Assumptions 1–3 with τ1 = ∞. Moreover, the functions δ, δ̃ and the

processes b, σ, 1/σ, α, 1/α, γ, 1/γ,X are bounded and for some constant K ≥ 1, we have,

Nn
t ≤ Kt

∆n
, (6.1)∣∣∣∣E [∆(n, i)− ∆n

αT (n,i−1)

∣∣∣∣FT (n,i−1)

]∣∣∣∣ ≤ K∆1+ρ
n , (6.2)

E [∆(n, i)κ] ≤ K∆κ
n. (6.3)

We recall some classical estimates for Itô semimartingales that are used repeatedly in the

sequel. If Z is an Itô semimartingale that satisfies Assumption 5, then for any two stopping times

u ≤ v and a constant q ≥ 2,

|E [Zv − Zu|Fu]| ≤ KE [v − u|Fu] ,

E

[
sup
s∈[u,v]

|Zs − Zu|q
∣∣∣∣∣Fu

]
≤ KE [(v − u)q|Fu] +KE [v − u|Fu] .

Since E [∆(n, i)κ] ≤ K∆κ
n (Assumption 5), we further have for any i, j ≥ 0, s ≥ 0 and q ∈ [2, κ],

∣∣E [Z(T (n,i)+s)∧T (n,i+j) − ZT (n,i)|FT (n,i)

]∣∣ ≤ Kj∆n,

E

[
sup

s∈[T (n,i),T (n,i+j)]

∣∣Zs − ZT (n,i)

∣∣q∣∣∣∣∣FT (n,i)

]
≤ K ((j∆n)q + j∆n) .

(6.4)

6.1 Proof of Theorem 1

We start with introducing some additional notation and preliminary estimates. For simplicity,

we set wnj ≡ w (j/hn) and w̄nj ≡ w ((j + 1)/hn) − w (j/hn). For a generic process Z, we denote

Zni = ZT (n,i). Similarly, we write Fni = FT (n,i). We consider the following σ-fields,

Gj ≡ σ (χi : i ≤ j) , G ≡ σ (χi : i ∈ Z) , Knj = Fnj ⊗ Gj−hn .
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In addition, we let Xc be the continuous part of X, ∆N(Ln)ni ≡ Nn
iLn
−Nn

(i−1)Ln
, r(j) ≡ E[χ0χj ],

r̃n,0 ≡ E[(χ̃n0 )2] and

V t ≡
∫ t

0
σ2
sds, ιnj ≡

hn−1∑
u=1

(wnu)2 ∆n
j+uV ,

ε̂nj ≡
(̃
εnj
)2 − (γnj )2 r̃n,0, X̂c,n

j ≡
(
X̃c,n
j

)2
− ιnj ,

Y c,n
j ≡ Xc

T (n,j) + εnj , Ỹ c,n
j ≡ −

hn−1∑
u=0

wnuY
c,n
j+u,

Ξnj ≡
(
Ỹ c,n
j

)2
− ιnj − (γnj )2r̃n,0 = X̂c,n

j + ε̂nj + 2X̃c,n
j ε̃nj ,

where the pre-averaged values χ̃n0 , ε̃nj , X̃c,n
j are defined in exactly the same way as in (3.1).

Lemma 1. Let Z be a generic bounded càdlàg adapted process that satisfies (the localized version

of) Assumption 3(ii). Suppose (i) the conditions of Theorem 1 hold; (ii) (mn) is a sequence of

positive integers satisfying mn∆1−τ
n → 0. Then we have

(a) E


∣∣∣∣∣∣∣
∆n

Ln

(∆N(Ln)ni −mn)∨0∑
j=0

ZT (n,Ji+j) − α(i−1)LnZ(i−1)Ln

∣∣∣∣∣∣∣
 ≤ K (∆τ/2

n ∨mn∆1−τ
n

)
;

(b) E

 sup
1≤i≤Mn

∣∣∣∣∣∣∣
∆n

Ln

(∆N(Ln)ni −mn)∨0∑
j=0

ZT (n,Ji+j) −
1

Ln

∫ iLn

(i−1)Ln

αsZsds

∣∣∣∣∣∣∣
 ≤ K (∆1/2−2τ

n ∨mn∆1−τ
n

)
;

(c) Moreover, An,i ≡ {∆N (Ln)ni ≤ KLn/∆n for some K > 0} satisfies P (An,i) → 1 and, when

τ ∈ (0, 1/4), An ≡ {∆N (Ln)ni ≤ KLn/∆n, for all i and some K > 0} satisfies P (An)→ 1.

Proof. Parts (a) and (b). We decompose

∆n

Ln

(∆N(Ln)ni −mn)∨0∑
j=0

ZT (n,Ji+j) − α(i−1)LnZ(i−1)Ln = ξni + ξ′ni , (6.5)

where

ξni ≡
∆n

Ln

(∆N(Ln)ni −mn)∨0∑
j=0

ZT (n,Ji+j) −
1

Ln

∫ iLn

(i−1)Ln

αsZsds,

ξ′ni ≡
1

Ln

∫ iLn

(i−1)Ln

αsZsds− α(i−1)LnZ(i−1)Ln .

With an appeal to classic estimates for Itô semimartingales together with the assumption Ln � ∆τ
n,

we deduce that

E
[∣∣ξ′ni ∣∣] ≤ KL1/2

n ≤ K∆τ/2
n . (6.6)
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It remains to derive bounds for the term ξni on the right-hand side of (6.5). To this end, we

decompose ξni =
∑4

k=1 ζ
n,k
i , where

ζn,1i ≡ 1

Ln

∆N(Ln)ni∑
j=0

ZT (n,Ji+j)

{
∆n − E

[
αT (n,Ji+j)∆(n, Ji + j + 1)|FT (n,Ji+j)

]}
,

ζn,2i ≡ 1

Ln

∆N(Ln)ni∑
j=0

ZT (n,Ji+j){E
[
αT (n,Ji+j)∆(n, Ji + j + 1)|FT (n,Ji+j)

]
−αT (n,Ji+j)∆(n, Ji + j + 1)},

ζn,3i ≡ 1

Ln

∆N(Ln)ni∑
j=0

(
ZT (n,Ji+j)αT (n,Ji+j)∆(n, Ji + j + 1)−

∫ T (n,Ji+j+1)

T (n,Ji+j)
Zsαsds

)
,

ζn,4i ≡ 1

Ln

∫ T (n,Ji+∆N(Ln)ni +1)

iLn

Zsαsds

− 1

Ln

∫ T (n,Ji)

(i−1)Ln

Zsαsds−
1

Ln

∆N(Ln)ni∑
j=(∆N(Ln)ni −mn)∨0

ZT (n,Ji+j)∆n.

To prove (a), it is enough to bound E[|ζn,ki |], for k = 1, . . . , 4. To prove (b), we need bounds for

E[sup1≤i≤Mn
|ζn,ki |], for k = 1, . . . , 4. We consider these cases in turn.

Case k = 1. Due to the boundedness of Z, the fact that ∆N(Ln)ni ≤ Nn
1 ≤ K/∆n, (6.2) in

Assumption 5 and Ln � ∆τ
n, we have

∣∣∣ζn,1i

∣∣∣ ≤ K∆ρ
n/Ln ≤ K∆ρ−τ

n ,

sup1≤i≤Mn

∣∣∣ζn,1i

∣∣∣ ≤ K∆ρ−τ
n .

(6.7)

Case k = 2. Let ηn,ij denote the summand in the definition of ζn,2i , so that we can rewrite

ζn,2i = L−1
n

∑∆N(Ln)ni
j=0 ηn,ij . Note that the summands ηn,ij form a martingale difference array; hence,

we have

E
[∣∣∣ζn,2i

∣∣∣2] ≤ 1

L2
n

E

 sup
0≤q≤K/∆n

∣∣∣∣∣∣
q∑
j=0

ηn,ij

∣∣∣∣∣∣
2 ≤ K∆n/L

2
n, (6.8)

where the first inequality follows from the fact that ∆N(Ln)ni ≤ K/∆n; the second inequality

follows from Doob’s inequality and (6.3) in Assumption 5. A maximal inequality further implies

(with ‖·‖2 denoting the L2 norm)∥∥∥∥∥ sup
1≤i≤Mn

∣∣∣ζn,2i

∣∣∣∥∥∥∥∥
2

≤M1/2
n sup

1≤i≤Mn

(
E
[∣∣∣ζn,2i

∣∣∣2])1/2

≤ K∆1/2
n M1/2

n /Ln. (6.9)
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Since Ln � ∆τ
n and Mn ≤ K/Ln by definition, we deduce from (6.8), (6.9) and Jensen’s inequality

that 
E
[∣∣∣ζn,2i

∣∣∣] ≤ K∆
1/2−τ
n ,

E
[
sup1≤i≤Mn

∣∣∣ζn,2i

∣∣∣] ≤ K∆
1/2−3τ/2
n .

(6.10)

Case k = 3. We observe that

E
[∣∣∣ζn,3i

∣∣∣] ≤ K

Ln
E

K/∆n∑
j=0

∫ T (n,Ji+j+1)

T (n,Ji+j)

∣∣ZT (n,Ji+j)αT (n,Ji+j) − Zsαs
∣∣ ds


≤ K

Ln

K/∆n∑
j=0

E

[
sup

s∈[T (n,Ji+j),T (n,Ji+j+1)]

∣∣ZT (n,Ji+j)αT (n,Ji+j) − Zsαs
∣∣∆(n, Ji + j + 1)

]

≤ K∆1/2
n /Ln,

(6.11)

where the first inequality is by the triangle inequality; the second inequality is obvious; the third

inequality follows from the Cauchy–Schwarz inequality, (6.3) in Assumption 5 and (6.4). By a

maximal inequality, it follows that

E

[
sup

1≤i≤Mn

∣∣∣ζn,3i

∣∣∣] ≤ KMn sup
1≤i≤Mn

E
[∣∣∣ζn,3i

∣∣∣] ≤ K∆1/2
n Mn/Ln. (6.12)

Since Ln � ∆τ
n and Mn ≤ K/Ln, we deduce from (6.11) and (6.12) that

E
[∣∣∣ζn,3i

∣∣∣] ≤ K∆
1/2−τ
n ,

E
[
sup1≤i≤Mn

∣∣∣ζn,3i

∣∣∣] ≤ K∆
1/2−2τ
n .

(6.13)

Case k = 4. The expectations of the absolute values of the first two terms in the definition of

ζn,4i are bounded by K∆n/Ln. In addition, the absolute value of the third term there is bounded

by K∆nmn/Ln. Under our maintained assumptions on Ln, we obtain
E[|ζn,4i |] ≤ Kmn∆1−τ

n ,

E
[
sup1≤i≤Mn

∣∣∣ζn,4i

∣∣∣] ≤ K (∆1−2τ
n +mn∆1−τ

n

)
.

(6.14)

We are now ready to prove the assertions in parts (a) and (b). Under the assumption that

ρ > 1/2, combining (6.7), (6.10), (6.13) and (6.14), we deduce that E [|ξni |] ≤ K(∆
1/2−τ
n ∨mn∆1−τ

n )

and E
[
sup1≤i≤Mn

|ξni |
]
≤ K(∆

1/2−2τ
n ∨mn∆1−τ

n ), which proves part (b) of the lemma. The assertion

in (a) then follows from this estimate of E [|ξni |], the assumption 0 < τ < 1/3, and (6.6).

(c) Given 0 < τ < 1/4, applying part (b) with mn = 0 and Zt = 1 identically, we deduce

sup
1≤i≤Mn

∣∣∣∣∣∆N(Ln)ni ∆n/Ln −
1

Ln

∫ iLn

(i−1)Ln

αsds

∣∣∣∣∣ = op(1).
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Since the process α is bounded, the variables (∆N(Ln)ni ∆n/Ln)1≤i≤Mn are uniformly bounded

with probability approaching one. That is, P (An)→ 1. Similarly, using the bound in part (a), we

deduce P (An,i)→ 1, for each fixed i. Q.E.D.

Lemma 2. Suppose that the conditions in Theorem 1 hold. Then for some constant η > 0 and an

array (Φn
i,j) of G-measurable random variables satisfying E[(Φn

i,j)
2] ≤ 1, the following statements

hold:

(a)
∣∣∣E [ΞnJi+j |KnJi+j]∣∣∣ ≤ KΦn

i,j∆n;

(b) E
[∣∣∣ΞnJi+j∣∣∣4] ≤ K (h−v∧4

n + ∆2
n

)
;

(c) E
[∣∣∣∣(Ỹ n

Ji+j

)2
1{∣∣∣Ỹ nJi+j∣∣∣≤un} −

(
Ỹ c,n
Ji+j

)2
∣∣∣∣] ≤ K (hn∆n)3/2+η ;

(d) for each l ∈ {1, . . . , kn},
E
[∣∣∣∣U(l)ni − r(l)

∑∆N(Ln)ni −5kn
j=0

(
γnJi+j

)2
∣∣∣∣ 1An,i] ≤ KL1/2

n k
1/2
n /∆

1/2
n ,

E
[
sup1≤i≤Mn

∣∣∣∣U(l)ni − r(l)
∑∆N(Ln)ni −5kn

j=0

(
γnJi+j

)2
∣∣∣∣ 1An] ≤ Kk1/2

n /L
1/2
n ∆

1/2
n .

Proof. To see part (a), we note by the triangle inequality that∣∣E [ΞnJi+j |KnJi+j]∣∣ ≤ K (∣∣∣E [X̂c,n
Ji+j
|KnJi+j

]∣∣∣+
∣∣E [ε̂nJi+j |KnJi+j]∣∣+

∣∣∣E [X̃c,n
Ji+j

ε̃nJi+j |K
n
Ji+j

]∣∣∣)
≤ KΦn

i,j

(
hn∆3/2

n + ∆n +
∆

1/2
n

h
v−1/2
n

)
,

where the second inequality follows from Lemma A2 and Lemma A5 in Jacod, Li, and Zheng

(2019). The assertion of part (a) then follows from hn � ∆
−1/2
n and v > 4. Part (b) can be proved

similarly by noting

E
[∣∣ΞnJi+j∣∣4] ≤ K (E [∣∣∣X̂c,n

Ji+j

∣∣∣4]+ E
[∣∣ε̂nJi+j∣∣4]+ E

[∣∣∣X̃c,n
Ji+j

ε̃nJi+j

∣∣∣4])
≤ K

(
(hn∆n)4 + h−v∧4

n + ∆2
n

)
.

Part (c) is directly from Lemma A.6 of Jacod, Li, and Zheng (2019). We now turn to part (d). In

restriction to An,i ≡ {∆N (Ln)ni ≤ KLn/∆n for some K > 0}, we can adapt the proof of Lemma

A.7 of Jacod, Li, and Zheng (2019) with Nn
t ≤ Kt/∆n replaced by ∆N(Ln)ni ≤ KLn/∆n and

deduce the first assertion in part (d). The second assertion of part (d) then follows from the first

assertion of part (d), a maximal inequality and the fact that Mn ≤ K/Ln. Q.E.D.

The following lemma establishes the convergence rate of the spot estimator σ̂2.
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Lemma 3. Under conditions (i,ii) of Theorem 1, we have

(a) σ̂2
(i−1)Ln

− σ2
(i−1)Ln

= Op

(
∆
τ/2
n ∨∆

1/4−τ/2
n

)
.

(b) sup1≤i≤Mn

∣∣∣σ̂2
(i−1)Ln

− L−1
n

∫ iLn
(i−1)Ln

σ2
sds
∣∣∣ = Op

(
∆

1/4−τ
n ∨∆

11/40−3τ/2
n

)
if τ ∈ (0, 11/60).

Proof. We decompose σ̂2
(i−1)Ln

− σ2
(i−1)Ln

=
∑5

k=1 ξ
n,k
i where

ξn,1i ≡ 1

Ln

1

hnφn

∆N(Ln)ni −hn∑
j=0

ιnJi+j −
1

Ln

∫ iLn

(i−1)Ln

σ2
sds,

ξn,2i ≡ 1

Ln

1

hnφn

∆N(Ln)ni −hn∑
j=0

((
Ỹ n
Ji+j

)2
1{|Ỹ nJi+j |≤un} −

(
Ỹ c,n
Ji+j

)2
)
,

ξn,3i ≡ 1

Ln

 r̃n,0
hnφn

∆N(Ln)ni −hn∑
j=0

(
γnJi+j

)2 − 1

h2
nφn

k′n∑
l=−k′n

φn,lU(|l|)ni

 ,

ξn,4i ≡ 1

Ln

1

hnφn

∆N(Ln)ni −hn∑
j=0

ΞnJi+j ,

ξn,5i ≡ 1

Ln

∫ iLn

(i−1)Ln

σ2
sds− σ2

(i−1)Ln
.

We also note that σ̂2
(i−1)Ln

−L−1
n

∫ iLn
(i−1)Ln

σ2
sds =

∑4
k=1 ξ

n,k
i . Below, we provide estimates for ξn,ki ,

1 ≤ k ≤ 5.

Case k = 1. By definition, we can rewrite ξn,1i as

ξn,1i =
1

Ln

1

hnφn

∆N(Ln)ni −hn∑
j=0

hn−1∑
u=1

(wnu)2∆n
Ji+j+uV −

1

Ln

∫ iLn

(i−1)Ln

σ2
sds.

Changing the order of the two summations yields

ξn,1i =
1

Ln

1

hnφn

∆N(Ln)ni −1∑
v=1

∆n
Ji+vV

v∧(hn−1)∑
l=1∨(v+hn−∆N(Ln)ni )

(wnl )2 − 1

Ln

∫ iLn

(i−1)Ln

σ2
sds

=
1

Ln

∆N(Ln)ni −hn+1∑
v=hn−1

∆n
Ji+vV −

1

Ln

∫ iLn

(i−1)Ln

σ2
sds+ eni , (6.15)

where the boundary term eni is given by

eni =
1

Ln

1

hnφn

hn−2∑
v=1

∆n
Ji+vV

v∑
l=1

(wnl )2 +

∆N(Ln)ni −1∑
v=∆N(Ln)ni −hn+2

∆n
Ji+vV

hn−1∑
l=v+hn−∆N(Ln)ni

(wnl )2


≤ K

Ln

hn−2∑
v=1

∆n
Ji+vV +

∆N(Ln)ni −1∑
v=∆N(Ln)ni −hn+2

∆n
Ji+vV

 .
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Due to the boundedness of σ2, (6.3) and our maintained assumptions on Ln and hn, we have

E [|eni |] ≤ Khn∆n/Ln ≤ K∆1/2−τ
n . (6.16)

Similarly, we get

E

 1

Ln

∣∣∣∣∣∣
∆N(Ln)ni −hn+1∑

v=hn−1

∫ T (n,Ji+v)

T (n,Ji+v−1)
σ2
sds−

∫ iLn

(i−1)Ln

σ2
sds

∣∣∣∣∣∣
 ≤ K∆1/2−τ

n . (6.17)

Combining (6.16) and (6.17) yields
E
[∣∣∣ξn,1i

∣∣∣] ≤ K∆
1/2−τ
n ,

E
[
sup1≤i≤Mn

∣∣∣ξn,1i

∣∣∣] ≤ KMn∆
1/2−τ
n ≤ K∆

1/2−2τ
n ,

(6.18)

where we used a maximal inequality and the fact Mn ≤ K/Ln for deriving the second (uniform)

estimate in (6.18).

Case k = 2. Recall the definitions of An,i and An from Lemma 1. In view of Lemma 2(c)

and our maintained assumptions on Mn, Ln and hn, we derive using the triangle inequality and a

maximal inequality that, for some η > 0,
E
[∣∣∣ξn,2i

∣∣∣ 1An,i] ≤ K∆
1/4+η
n ,

E
[
sup1≤i≤Mn

∣∣∣ξn,2i

∣∣∣ 1An] ≤ KMn∆
1/4+η
n ≤ K∆

1/4+η−τ
n .

(6.19)

Case k = 3. Let λni ≡
∑∆N(Ln)ni −hn

j=0 (γnJi+j)
2. Note that r̃n,0 = h−1

n

∑
|l|<∞ r(l)φn,l. Hence, we

can decompose ξn,3i = Θn
i + Θ′ni , where

Θn
i ≡

λni
Lnh2

nφn

∑
|l|>k′n

φn,lr(l) and Θ′ni ≡
1

Lnh2
nφn

∑
|l|≤k′n

φn,l (r(l)λ
n
i − U(|l|)ni ) .

Due to the boundedness of φn,l and γ, and the fact that
∑
|l|>k′n |r(l)| ≤ K/k

′v−1
n , we deduce

|Θn
i | 1An ≤ |Θn

i | 1An,i ≤ K/k′v−1
n ≤ K∆(v−1)/8

n . (6.20)

Next, we further decompose Θ′ni = Υn,1
i + Υn,2

i , where

Υn,1
i ≡ 1

Lnh2
nφn

∑
|l|≤k′n

φn,l

r(l) ∆N(Ln)ni −5kn∑
j=0

(
γnJi+j

)2 − U(|l|)ni

 ,

Υn,2
i ≡ − 1

Lnh2
nφn

∑
|l|≤k′n

φn,lr(l)

∆N(Ln)ni −5kn∑
∆N(Ln)ni −hn

(
γnJi+j

)2
.
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Note that
∑

l∈Z |r(l)| <∞. Hence, uniformly in i,

|Υn,2
i | ≤ K/(Lnhn) = K∆1/2−τ

n . (6.21)

In view of Lemma 2(d), as well as the assumptions on kn, k′n, Ln and hn, we deduce

E
[∣∣∣Υn,1

i

∣∣∣ 1An,i] ≤ K k′nk
1/2
n

L
1/2
n h2

n∆
1/2
n

= K∆11/40−τ/2
n ,

E

[
sup

1≤i≤Mn

∣∣∣Υn,1
i

∣∣∣ 1An
]
≤ KMn sup

1≤i≤Mn

E
[∣∣∣Υn,1

i

∣∣∣ 1An] ≤ K∆11/40−3τ/2
n .

(6.22)

Combining (6.21) and (6.22), we deduce (recall that τ ∈ (0, 1/3))

E
[∣∣Θ′ni ∣∣ 1An,i] ≤ K∆11/40−τ/2

n , E

[
sup

1≤i≤Mn

∣∣Θ′ni ∣∣ 1An
]
≤ K∆11/40−3τ/2

n .

This estimate, together with (6.20) and v > 4, implies
E
[∣∣∣ξn,3i

∣∣∣ 1An,i] ≤ K∆
11/40−τ/2
n ;

E
[
sup1≤i≤Mn

∣∣∣ξn,3i

∣∣∣ 1An] ≤ K∆
11/40−3τ/2
n .

(6.23)

Case k = 4. We decompose ξn,4i = ζn,1i + ζn,2i , where

ζn,1i ≡ 1

Lnhnφn

∆N(Ln)ni −hn∑
j=0

(
ΞnJi+j − E

[
ΞnJi+j |K

n
Ji+j

])
,

ζn,2i ≡ 1

Lnhnφn

∆N(Ln)ni −hn∑
j=0

E
[
ΞnJi+j |K

n
Ji+j

]
.

By Lemma 2(a), we deduce

E
[
|ζn,2i |1An,i

]
≤ K∆1/2

n , E

[
sup

1≤i≤Mn

∣∣∣ζn,2i

∣∣∣ 1An
]
≤ K∆1/2−τ

n . (6.24)

Note that ΞnJi+j −E[ΞnJi+j |K
n
Ji+j

] is KnJi+j-conditionally mean zero and KnJi+j+2hn
-measurable.

Hence, we can use the Cauchy–Schwarz inequality to deduce that

E
[∣∣∣ζn,1i

∣∣∣2 1An,i

]
≤ K

L2
nhn

KLn/∆n−hn∑
j=0

E
[(

ΞnJi+j − E
[
ΞnJi+j |K

n
Ji+j

])2]

≤ K

Lnhn∆n

(
∆n +

1

h
v/2∧2
n

)
≤ K∆1/2−τ

n ,
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where the second line is implied by Lemma 2(b) and v > 0. Then, a maximal inequality implies∥∥∥sup1≤i≤Mn

∣∣∣ζn,1i

∣∣∣ 1An∥∥∥
2
≤ K∆

1/4−τ
n , where ‖·‖2 denotes the L2 norm. From these estimates, it

readily follows that

E
[∣∣∣ζn,1i

∣∣∣ 1An,i] ≤ K∆1/4−τ/2
n , E

[
sup

1≤i≤Mn

∣∣∣ζn,1i

∣∣∣ 1An
]
≤ K∆1/4−τ

n . (6.25)

Combining (6.24) and (6.25), we deduce
E
[∣∣∣ξn,4i

∣∣∣ 1An,i] ≤ K∆
1/4−τ/2
n ,

E
[
sup1≤i≤Mn

∣∣∣ξn,4i

∣∣∣ 1An] ≤ K∆
1/4−τ
n .

(6.26)

Case k = 5. Due to classic estimates of Itô semimartingales,

E

[∣∣∣∣∣ 1

Ln

∫ iLn

(i−1)Ln

(
σ2
s − σ2

(i−1)Ln

)
ds

∣∣∣∣∣
]
≤ KL1/2

n ≤ K∆τ/2
n . (6.27)

We are now ready to prove the assertions of the lemma. From (6.18), (6.19), (6.23), (6.26) and

(6.27), we deduce
E
[∣∣∣σ̂2

(i−1)Ln
− σ2

(i−1)Ln

∣∣∣ 1An,i] ≤ K (∆
τ/2
n ∨∆

1/4−τ/2
n

)
,

E
[
sup1≤i≤Mn

∣∣∣σ̂2
(i−1)Ln

− (1/Ln)
∫ iLn

(i−1)Ln
σ2
sds
∣∣∣ 1An] ≤ K (∆

1/4−τ
n ∨∆

11/40−3τ/2
n

)
.

By Lemma 1(c), P (An,i) → 1 and P (An) → 1. The assertions of the lemma then readily follows

from the inequalities displayed above. Q.E.D.

The following lemma establishes the convergence rate of the spot estimator γ̂2 for the variance

of microstructure noise.

Lemma 4. Under the assumptions of Theorem 1, we have (a)

γ̂2
(i−1)Ln

− γ2
(i−1)Ln

= Op

(
∆τ/2
n ∨∆(3−5τ)/10

n

)
,

and (b)

sup
1≤i≤Mn

∣∣∣∣∣γ̂2
(i−1)Ln

− L−1
n

∫ iLn

(i−1)Ln

γ2
sds

∣∣∣∣∣
= Op

(
∆1/2−2τ
n ∨∆2/5−3τ/2

n ∨ log
(
∆−1
n

)1/2
∆τ/2
n

)
.
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Proof. Recall the definitions of An,i and An from Lemma 1. Let

Bn,i ≡
{

∆n∆N(Ln)ni
Ln

> η, for some η

}
, Bn ≡

{
∆n∆N(Ln)ni

Ln
> η, for some η and all i

}
.

Applying Lemma 1 with mn = 0 and Z = 1 implies that
∣∣∆n∆N(Ln)ni /Ln − α(i−1)Ln

∣∣ = op(1) for τ ∈ (0, 1/3) ,

sup
1≤i≤Mn

∣∣∣∣∣∆n∆N(Ln)ni
Ln

− (1/Ln)

∫ iLn

(i−1)Ln

αsds

∣∣∣∣∣ = op(1) for τ ∈ (0, 1/4) .

Since α is bounded away from zero, we must have P (Bn,i)→ 1 for 0 < τ < 1/3 and P (Bn)→ 1 for

0 < τ < 1/4. Hence, to prove part (a) and part (b), we can restrict our calculations to An,i ∩Bn,i
An ∩Bn, respectively, without loss of generality.

(a) We decompose γ̂2
(i−1)Ln

− γ2
(i−1)Ln

= ξni + ξ′ni , where

ξni ≡ Ln
∆n∆N(Ln)ni

(
∆n

Ln
U(0)ni − α(i−1)Lnγ

2
(i−1)Ln

)
,

ξ′ni ≡ −
Lnγ

2
(i−1)Ln

∆n∆N(Ln)ni

(
∆n∆N(Ln)ni

Ln
− α(i−1)Ln

)
.

Lemma 1(a) applied with mn = 5kn and Z = γ2, coupled with the restrictions kn � ∆
−1/5
n and

0 < τ < 1/3, implies

E

∣∣∣∣∣∣∆n

Ln

∆N(Ln)ni −5kn∑
j=0

(
γnJi+j

)2 − α(i−1)Lnγ
2
(i−1)Ln

∣∣∣∣∣∣
 ≤ K∆τ/2

n . (6.28)

Using Lemma 2(d) with l = 0, we derive

E

∣∣∣∣∣∣∆n

Ln
U(0)ni −

∆n

Ln

∆N(Ln)ni −5kn∑
j=0

(
γnJi+j

)2∣∣∣∣∣∣ 1An,i
 ≤ K∆

1/2
n k

1/2
n

L
1/2
n

≤ K∆(3−5τ)/10
n . (6.29)

Combining (6.28) and (6.29), we deduce

E
[∣∣∣∣∆n

Ln
U(0)ni − α(i−1)Lnγ

2
(i−1)Ln

∣∣∣∣ 1An,i] ≤ K (∆τ/2
n ∨∆(3−5τ)/10

n

)
.

Note that, in restriction to Bn,i, Ln/(∆n∆N(Ln)ni ) is bounded. Hence, the displayed estimate

above further implies

E
[
|ξni | 1An,i∩Bn,i

]
≤ KE

[∣∣∣∣∆n

Ln
U(0)ni − α(i−1)Lnγ

2
(i−1)Ln

∣∣∣∣ 1An,i] ≤ K (∆τ/2
n ∨∆(3−5τ)/10

n

)
. (6.30)

Due to the boundedness of γ and Lemma 1(a) applied with mn = 0 and Z = 1, we deduce that

E
[∣∣ξ′ni ∣∣ 1An,i∩Bn,i] ≤ KE

[∣∣∣∣∆n∆N(Ln)ni
Ln

− α(i−1)Ln

∣∣∣∣] ≤ K∆τ/2
n . (6.31)
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The assertion of part (a) then follows from (6.30) and (6.31).

(b) We observe

E

[
sup

1≤i≤Mn

∣∣∣∣∣γ̂2
(i−1)Ln

− L−1
n

∫ iLn

(i−1)Ln

γ2
sds

∣∣∣∣∣ 1An∩Bn
]

≤ E

 sup
1≤i≤Mn

∣∣∣∣∣∣ U (0)ni
∆N (Ln)ni

−

∫ iLn
(i−1)Ln

αsγ
2
sds∫ iLn

(i−1)Ln
αsds

∣∣∣∣∣∣ 1An∩Bn


+E

 sup
1≤i≤Mn

∣∣∣∣∣∣
∫ iLn

(i−1)Ln
αsγ

2
sds∫ Ln

(i−1)Ln
αsds

− 1

Ln

∫ iLn

(i−1)Ln

γ2
sds

∣∣∣∣∣∣ 1An∩Bn
 .

(6.32)

It remains to bound the two terms on the majorant side of (6.32).

For the first term on the right-hand side of (6.32), we note that

E

 sup
1≤i≤Mn

∣∣∣∣∣∣ U (0)ni
∆N (Ln)ni

−

∫ iLn
(i−1)Ln

αsγ
2
sds∫ iLn

(i−1)Ln
αsds

∣∣∣∣∣∣ 1An∩Bn


≤ E

 sup
1≤i≤Mn

∣∣∣∣∣∣ U (0)ni
∆N (Ln)ni

−
(1/Ln)

∫ iLn
(i−1)Ln

αsγ
2
sds

∆n∆N(Ln)ni /Ln

∣∣∣∣∣∣ 1An∩Bn


+E

 sup
1≤i≤Mn

∣∣∣∣∣∣
(1/Ln)

∫ iLn
(i−1)Ln

αsγ
2
sds

∆n∆N(Ln)ni /Ln
−

∫ iLn
(i−1)Ln

αsγ
2
sds∫ iLn

(i−1)Ln
αsds

∣∣∣∣∣∣ 1An∩Bn
 .

(6.33)

Recall that, in restriction to Bn, Ln/(∆n∆N (Ln)ni ) ≤ K. Hence,

E

 sup
1≤i≤Mn

∣∣∣∣∣∣ U (0)ni
∆N (Ln)ni

−
(1/Ln)

∫ iLn
(i−1)Ln

αsγ
2
sds

∆n∆N(Ln)ni /Ln

∣∣∣∣∣∣ 1An∩Bn


≤ KE

[
sup

1≤i≤Mn

∣∣∣∣∣∆n

Ln
U (0)ni − (1/Ln)

∫ iLn

(i−1)Ln

αsγ
2
sds

∣∣∣∣∣ 1An∩Bn
]

≤ K
(

∆1/2−2τ
n ∨∆2/5−3τ/2

n

)
,

(6.34)

where the second inequality follows from Lemma 1(b) and Lemma 2(d). In addition, we note that

E

 sup
1≤i≤Mn

∣∣∣∣∣∣
(1/Ln)

∫ iLn
(i−1)Ln

αsγ
2
sds

∆n∆N(Ln)ni /Ln
−

∫ iLn
(i−1)Ln

αsγ
2
sds∫ iLn

(i−1)Ln
αsds

∣∣∣∣∣∣ 1An∩Bn


≤ KE

[
sup

1≤i≤Mn

∣∣∣∣∣∆n∆N(Ln)ni
Ln

− (1/Ln)

∫ iLn

(i−1)Ln

αsds

∣∣∣∣∣ 1An∩Bn
]

≤ K∆1/2−2τ
n ,

(6.35)

where the first inequality holds because the processes α, γ, 1/α are bounded and Ln/ (∆n∆N(Ln)ni ) ≤
K in restriction to Bn; and the second inequality follows from Lemma 1(b). Combining (6.33),
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(6.34) and (6.35), we deduce

E

 sup
1≤i≤Mn

∣∣∣∣∣∣ U (0)ni
∆N (Ln)ni

−

∫ iLn
(i−1)Ln

αsγ
2
sds∫ iLn

(i−1)Ln
αsds

∣∣∣∣∣∣ 1An∩Bn
 ≤ K (∆1/2−2τ

n ∨∆2/5−3τ/2
n

)
. (6.36)

Finally, we consider the second term on the right-hand side of (6.32). Denote ᾱni ≡ L−1
n

∫ Ln
(i−1)Ln

αsds.

We observe

E

 sup
1≤i≤Mn

∣∣∣∣∣∣
∫ iLn

(i−1)Ln
αsγ

2
sds∫ Ln

(i−1)Ln
αsds

− 1

Ln

∫ iLn

(i−1)Ln

γ2
sds

∣∣∣∣∣∣ 1An∩Bn


≤ E

[
sup

1≤i≤Mn

∣∣∣∣∣ 1

Ln

∫ iLn

(i−1)Ln

αsγ
2
sds−

(
1

Ln

∫ iLn

(i−1)Ln

γ2
sds

)
ᾱni

∣∣∣∣∣
]

≤ E

[
sup

1≤i≤Mn

∣∣∣∣∣ 1

Ln

∫ iLn

(i−1)Ln

(αs − ᾱni ) γ2
sds

∣∣∣∣∣
]

≤ KE

[
sup

s,t∈[0,1],|s−t|≤Ln
|αs − αt|

]
≤ K

(
Ln log

(
L−1
n

))1/2
,

where the first inequality is due to the fact αt is bounded away from zero; the second inequality is

obvious; and the last line follows from the boundedness of γ and Theorem 1 in Fischer and Nappo

(2009). The assertion of part (b) then follows from this estimate and (6.36). Q.E.D.

We are now ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 3 and Lemma 4, for each t,∣∣σ̂2
t − σ2

t

∣∣ ≤ ∣∣∣σ̂2
t − σ2

(i−1)Ln

∣∣∣+
∣∣∣σ2

(i−1)Ln
− σ2

t

∣∣∣ = Op

(
∆τ/2
n ∨∆1/4−τ/2

n

)
,∣∣γ̂2

t − γ2
t

∣∣ ≤ ∣∣∣γ̂2
t − γ2

(i−1)Ln

∣∣∣+
∣∣∣γ2

(i−1)Ln
− γ2

t

∣∣∣ = Op

(
∆τ/2
n ∨∆(3−5τ)/10

n

)
,

where i = max{j : 1 ≤ j ≤ Mn, (j − 1)Ln ≤ t}. This proves the first assertion of the theorem.

The second assertion of the theorem follows directly from the uniform bounds in Lemmas 3 and

4, under the condition 0 < τ < 11/60. Q.E.D.

6.2 Proof of Theorem 2

Proof of Theorem 2. By localization, we can strengthen condition (iv) by assuming that the

processes (σ2
t , γ

2
t ) take values in K×K for some bounded closed interval K ⊂ (0,∞). Consequently,

Z also takes values in a compact set and fZ (·) is compactly supported. Under condition (ii),

sup
1≤i≤Mn

∥∥∥∥∥θ̂(i−1)Ln − L
−1
n

∫ iLn

(i−1)Ln

θsds

∥∥∥∥∥ = op(1).
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By enlarging K slightly if necessary, we further deduce that (σ̂2
(i−1)Ln

, γ̂2
(i−1)Ln

)1≤i≤Mn takes value

in K ×K with probability approaching one. By condition (v), g(·) is Lipschitz on K ×K. Hence,∣∣∣Ẑs − Zs∣∣∣ =
∥∥∥g(θ̂s)− g(θs)

∥∥∥ ≤ K ∥∥∥θ̂s − θs∥∥∥ . (6.37)

For each x, we set

fZ,n(x) ≡
∫ 1

0

1

δn
H

(
Zs − x
δn

)
ds.

We observe that∣∣∣f̂Z(x)− fZ,n(x)
∣∣∣

≤ 1

δn

∫ 1

0

∣∣∣∣∣H
(
Ẑs − x
δn

)
−H

(
Zs − x
δn

)∣∣∣∣∣ ds ≤ K

δ2
n

∫ 1

0

∣∣∣Ẑs − Zs∣∣∣ ds
≤ K

δ2
n

∫ 1

0

∥∥∥θ̂s − θs∥∥∥ ds
≤ K

δ2
n

{
Mn∑
i=1

∫ iLn

(i−1)Ln

(∥∥∥∥∥θ̂s − 1

Ln

∫ iLn

(i−1)Ln

θudu

∥∥∥∥∥+

∥∥∥∥∥ 1

Ln

∫ iLn

(i−1)Ln

θudu− θs

∥∥∥∥∥
)
ds

+

∫ 1

MnLn

∥∥∥θ̂s − θs∥∥∥ ds}
≤ K

δ2
n

sup
1≤i≤Mn

∥∥∥∥∥θ̂(i−1)Ln −
1

Ln

∫ iLn

(i−1)Ln

θsdu

∥∥∥∥∥
+

K

δ2
nLn

Mn∑
i=1

∫ iLn

(i−1)Ln

∫ iLn

(i−1)Ln

‖θu − θs‖ duds+
K

δ2
n

∫ 1

MnLn

∥∥∥θ̂s − θs∥∥∥ ds,

(6.38)

where the first inequality is obvious; the second inequality follows from the smoothness requirement

on the kernel function H(·); the third inequality is by (6.37); the fourth inequality follows from

the triangle inequality; and the last inequality is obvious.

By condition (ii), the first term on the majorant side of (6.38) is Op(anδ
−2
n ). The second term is

Op(∆
τ/2
n δ−2

n ), which follows from E[ ‖θu − θs‖] ≤ KL1/2
n , MnLn = O(1) and Ln � ∆τ

n. Since θ̂ and

θ are uniformly bounded with probability approaching one, the third term on the majorant side is

Op(∆
τ
nδ
−2
n ). In view of these estimates, we see that (6.38) further implies (recalling ān = an∨∆

τ/2
n )

f̂Z(x)− fZ,n(x) = Op
(
δ−2
n ān

)
. (6.39)

Finally, we provide bound for the difference fZ,n(x) − fZ(x). By the definition of occupation

density and a change of variable, we can rewrite

fZ,n(x) =

∫
R

1

δn
H

(
v − x
δn

)
fZ(v)dv =

∫
R
H (z) fZ(x+ zδn)dz.
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Therefore, we get

E [|fZ,n(x)− fZ(x)|] ≤
∫
R
H(z)E [|fZ(x+ zδn)− fZ(x)|] dz

≤ Kδβn

∫
R
H(z) |z|β dz ≤ Kδβn .

Combining this estimate with (6.39), we deduce the assertion of the theorem. Q.E.D.
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